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Abstract
Atomer is a static analyser based on the idea that if some sequences of functions of a multi-
threaded program are executed under locks in some runs, likely, they are always intended
to execute atomically. Atomer thus strives to look for such sequences and then detects
for which of them the atomicity may be broken in some other program runs. The author
of this master’s thesis proposed and implemented the first version of Atomer as a plugin
of the Facebook Infer framework in his bachelor’s thesis. In the master’s thesis, a new
and significantly improved version of Atomer is proposed. The improvements aim at both
increasing scalability as well as precision. Moreover, support for several initially not suppor-
ted programming features has been added (including, e.g., the possibility of analysing C++
and Java programs or support for re-entrant locks or lock guards). Through a number of
experiments (including experiments with real-life code and real-life bugs), it is shown that
the new version of Atomer is indeed much more general, scalable, and precise.

Abstrakt
Nástroj Atomer je statický analyzátor založený na myšlence, že pokud jsou některé sekvence
funkcí vícevláknového programu prováděny v některých bězích pod zámky, je pravděpodobně
zamýšleno, že mají být vždy provedeny atomicky. Analyzátor Atomer se tudíž snaží takové
sekvence hledat a poté zjišťovat, pro které z nich může být v některých jiných bězích pro-
gramu porušena atomicita. Autor této diplomové práce ve své bakalářské práci navrhl
a implementoval první verzi nástroje Atomer jako zásuvný modul aplikačního rámce Face-
book Infer. V této diplomové práci je navržena nová a výrazně vylepšená verze analyzátoru
Atomer. Cílem vylepšení je zvýšení jak škálovatelnosti, tak přesnosti. Kromě toho byla
přidána podpora pro několik původně nepodporovaných programovacích vlastností (včetně
např. možnosti analyzovat programy napsané v jazycích C++ a Java nebo podpory pro
reentrantní zámky nebo stráže zámků, tzv. ”lock guards“). Prostřednictvím řady experi-
mentů (včetně experimentů s reálnými programy a reálnými chybami) se ukázalo, že nová
verze nástroje Atomer je skutečně mnohem obecnější, přesnější a lépe škáluje.
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Rozšířený abstrakt
Softwarové chyby se v počítačových programech vyskytují už od samotného vzniku pro-
gramování. Naneštěstí jsou často skryty na neočekávaných místech a můžou vést k neče-
kanému chování, což může způsobit značné škody. V dnešní době mají vývojáři mnoho
možností, jak odhalovat tyto chyby již v rané fázi vývoje. Často se používají dynamické
analyzátory nebo nástroje pro automatizované testování, které jsou v mnoha případech
dostačující. Přesto však stále mohou zanechat spoustu chyb neodhalených, protože jsou
schopny analyzovat pouze konkrétní běhy programu na základě vstupních dat. Alternativ-
ním řešením je statická analýza (která má samozřejmě také některé problémy — jako např.
možnost hlášení mnoha falešných chyb, tzv. ”false alarms“). Poměrně dost nástrojů pro
statickou analýzu již bylo implementováno, např. Coverity nebo CodeSonar. Často jsou
však proprietární a nelze je jednoduše volně vyhodnotit nebo rozšířit.

Firma Facebook nedávno představila nástroj Facebook Infer : nástroj s otevřeným zdro-
jovým kódem pro tvorbu vysoce škálovatelných, kompozičních, inkrementálních a interpro-
cedurálních statických analyzátorů. Nástroj Facebook Infer v poslední době značně rozšířil
své možnosti, ale je stále vyvíjen mnoha týmy po celém světě. Je používán dennodenně
nejen v samotné firmě Facebook, ale také v jiných firmách, jako např. Spotify, Uber,
Mozilla nebo Amazon. V současné době nabízí nástroj Facebook Infer několik analyzá-
torů, které hledají celou řadu typů softwarových chyb, jako např. přetečení vyrovnávací
paměti (”buffer overflows“), časově závislé chyby nad daty (”data races“) a různé druhy
uváznutí (”deadlocks“) a stárnutí (”starvation“), dereference prázdného ukazatele (”null-
dereferencing“) nebo úniky paměti (”memory leaks“). Ale především je nástroj Facebook
Infer aplikační rámec pro rychlou a jednoduchou tvorbu nových analyzátorů. V aktuální
verzi nástroje Facebook Infer však stále chybí lepší podpora pro detekci chyb v paralelních
programech. Přestože nabízí docela pokročilý analyzátor na detekci časově závislých chyb
nad daty, je omezen pouze na programy napsané v jazycích Java a C++ a není navržen
na programy napsané v jazyce C, které používají zámky na nižší úrovni. Mimo to, jediný
dostupný analyzátor na ověřování atomicity na úrovni sekvencí volání funkcí, je první verze
nástroje Atomer, jenž byla navržena v autorově bakalářské práci.

Zároveň se v paralelních programech často vyžaduje, aby určité sekvence instrukcí byly
prováděny atomicky. Porušení těchto požadavků pak může způsobit různé problémy, jako
např. neočekávané chování, výjimky, nepovolené přístupy do paměti (”segmentation faults“)
nebo jiná selhání. Porušení atomicity obvyklé nejsou ověřena překladačem, na rozdíl od
syntaktických nebo některých druhů sémantických pravidel. Požadavky na atomicitu navíc
většinou ani vůbec nejsou dokumentovány. Takže v konečném důsledku musí samotní pro-
gramátoři dbát na jejich dodržení, a to obvykle bez jakýchkoliv podpůrných nástrojů. Navíc
je obecně náročné vyvarovat se těchto chyb v atomicky závislých programech, obzvláště ve
velkých projektech. A ještě těžší a časově náročnější je hledání a opravování takových chyb.
Bohužel podpůrných nástrojů, které jsou schopny automaticky odhalovat tyto typy chyb,
je v současnosti minimum.

Jak již bylo zmíněno, v rámci bakalářské práce autora byl navržen nástroj Atomer — statický
analyzátor pro detekci určitých typů porušení atomicity, který byl implementován jako
zásuvný modul aplikačního rámce Facebook Infer. Nástroj Atomer se konkrétně zaměřuje
na atomické provádění sekvencí volání funkcí, což je často vyžadováno, např. při použití
určitých knihovních volání. Princip nástroje Atomer je založen na předpokladu, že sekvence
volání funkcí provedeny atomicky jednou, by pravděpodobně měly být provedeny atomicky



vždy. Analyzátor proto přirozeně pracuje se sekvencemi volání funkcí. Práce se sekven-
cemi ale ovšem výrazně omezuje škálovatelnost analýzy. Implementace první verze nástroje
Atomer se navíc zaměřuje především na programy napsané v jazyce C, které používají zámky
typu PThread. Takže první verze nástroje Atomer nepodporovala jiné programovací jazyky
ani jiné typy zámků.

V rámci této diplomové práce byl nástroj Atomer výrazně vylepšen a rozšířen. Konkrétně
byla pro zlepšení škálovatelnosti práce se sekvencemi volání funkcí aproximována prací
s množinami volání funkcí. Navíc bylo implementováno několik nových vlastností: podpora
pro analýzu programů napsaných v jazycích C++ a Java, včetně různých pokročilých typů
zámků, které tyto jazyky nabízí (jako např. reentrantní zámky nebo stráže zámků, tzv. ”lock
guards“); nebo přesnější způsob rozlišování mezi různými instancemi zámků. Analýza byla
navíc parametrizována názvy funkcí, na které se zaměřit v průběhu analýzy a omezením
počtu funkcí, které se mohou vyskytovat v kritických sekcích. Tyto parametry se zaměřují
na snížení počtu falešných chyb. Jejich návrh je založen na autorově analýze falešných chyb
generovaných první verzí nástroje Atomer. Nakonec byly provedeny nové experimenty pro
otestování nové verze nástroje Atomer.

Všechna navržená a implementovaná vylepšení a rozšíření nástroje Atomer byla úspěšně
otestována a experimentálně vyhodnocena také na rozsáhlých reálných programech, kde
byly úspěšně znovuobjeveny reálné chyby. Potvrdilo se, že tyto inovace skutečně výrazně
zlepšily přesnost a škálovatelnost analýzy. Přesnost analyzátoru Atomer však může být
dále zlepšována. Stále existují další možnosti, jak analyzátor vylepšit a nápady, na kterých
lze pracovat. Například je možné uvažovat formální parametry funkcí a/nebo rozlišovat
kontext, ve kterém jsou funkce volány. Další možností je kombinace nástroje Atomer s dy-
namickou analýzou. Zajímavým nápadem je také použití strojového učení pro naučení
vhodných hodnot parametrů analýzy pro konkrétní programy. V neposlední řadě je třeba
provést více experimentů na reálných programech s cílem nalézt a nahlásit nové chyby.

Vývoj původní verze nástroje Atomer začal v rámci projektů H2020 ECSEL AQUAS a Ar-
rowhead Tools. Vývoj nové verze je podporován projektem H2020 ECSEL VALU3S. Práce
na projektu byla taktéž diskutována s vývojáři nástroje Facebook Infer.

Očekává se, že práce na tomto projektu bude i nadále pokračovat v rámci výzkumné skupiny
VeriFIT na FIT VUT v Brně. Předběžné výsledky této diplomové práce byly prezentovány
na konferenci Excel@FIT’21, kde tato práce získala dvě ocenění.
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Chapter 1

Introduction

Bugs have been present in computer programs ever since the inception of the programming
discipline. Unfortunately, they are often hidden in unexpected places, and they can lead
to unexpected behaviour, which may cause significant damage. Nowadays, developers have
many possibilities of catching bugs in the early development process. Dynamic analysers
or tools for automated testing are often used, and they are satisfactory in many cases.
Nevertheless, they can still leave too many bugs undetected because they can analyse only
particular program flows dependent on the input data. An alternative solution is static
analysis (which, of course, suffers from some problems too — such as the possibility of
reporting many false alarms, i.e., spurious errors). Quite some tools for static analysis
were implemented, e.g., Coverity or CodeSonar. However, they are often proprietary and
difficult to openly evaluate and extend.

Recently, Facebook introduced Facebook Infer : an open-source tool for creating highly scal-
able, compositional, incremental, and interprocedural static analysers. Facebook Infer has
grown considerably, but it is still under active development by many teams across the globe.
It is employed every day not only in Facebook itself but also in other companies, such as
Spotify, Uber, Mozilla, or Amazon. Currently, Facebook Infer provides several analysers
that check for various types of bugs, such as buffer overflows, data races and some forms of
deadlocks and starvation, null-dereferencing, or memory leaks. However, most importantly,
Facebook Infer is a framework for building new analysers quickly and easily. Unfortunately,
the current version of Facebook Infer still lacks better support for concurrency bugs. While
it provides a reasonably advanced data race analyser, it is limited to Java and C++ pro-
grams only and fails for C programs, which use a lower-level lock manipulation. Moreover,
the only available checker of atomicity of call sequences is the first version of Atomer [18]
proposed in the bachelor’s thesis of the author.

At the same time, in concurrent programs, there are often atomicity requirements for the
execution of specific sequences of instructions. Violating these requirements may cause
many kinds of problems, such as unexpected behaviour, exceptions, segmentation faults, or
other failures. Atomicity violations are usually not verified by compilers, unlike syntactic or
some sorts of semantic rules. Moreover, atomicity requirements, in most cases, are not even
documented at all. Therefore, in the end, programmers themselves must abide by these
requirements and usually lack any tool support. Furthermore, in general, it is difficult to
avoid errors in atomicity-dependent programs, especially in large projects, and even more
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laborious and time-consuming is finding and fixing them. The papers [13, 15, 37, 41]
discuss the importance of atomicity-related bugs, and they also show some bugs in real-
world programs. Unfortunately, tool support for automatically discovering such kinds of
errors is currently minimal.

Atomer As already mentioned, within the author’s bachelor’s thesis [18], Atomer1 was
proposed — a static analyser for finding some forms of atomicity violations implemented as
a Facebook Infer’s module. In particular, Atomer puts stress on the atomic execution of
sequences of function calls, which is often required, e.g., when using specific library calls.
For example, assume the function replace from Listing 1.1 that replaces item a in an array
by item b. It contains an atomicity violation — the index obtained may be outdated when
set is executed (because, e.g., a concurrent thread can modify the array), i.e., index_of
and set should be executed atomically. The analysis is based on the assumption that
sequences of function calls executed atomically once should probably be executed always
atomically. Hence, the checker naturally works with sequences of calls.

1 void replace(int *array, int a, int b)
2 {
3 int index = index_of(array, a);
4 if (index >= 0) set(array, index, b);
5 }

Listing 1.1: An example of an atomicity violation

In fact, the idea of checking the atomicity of certain sequences of function calls is inspired by
the works of contracts for concurrency [13, 37]. In the terminology of [13, 37], the atomicity
of specific sequences of calls is the most straightforward (yet very useful in practice) kind of
contracts for concurrency. However, while the idea of using sequences in the given context
is indeed natural and rather exact, it quite severely limits the scalability of the analysis
(indeed, even with a few functions, there can appear numerous different orders in which
they can be called). Moreover, the implementation of the first version of Atomer targets
mainly C programs using PThread locks. Consequently, there was no support for other
languages and their locking mechanisms in the first version of Atomer.

New Developments of Atomer Within this thesis, Atomer has been significantly im-
proved and extended. In particular, to improve scalability, working with sequences of func-
tion calls was approximated by working with sets of function calls. Furthermore, several
new features were implemented: support for C++ and Java, including various advanced
kinds of locks these languages offer (such as re-entrant locks or lock guards); or a more
precise way of distinguishing between different lock instances. Moreover, the analysis has
been parameterised by function names to concentrate on during the analysis and limits of
the number of functions in critical sections. These parameters aim to reduce the number
of false alarms. Their proposal is based on the author’s analysis of false alarms produced
by the first Atomer’s version. Lastly, new experiments were performed to test capabilities
of a new version of Atomer.

1The implementation of a new version of Atomer is available at GitHub as an open-source repository:
https://github.com/harmim/infer/tree/atomer-v2.0.0.
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Plan of the Thesis The rest of the thesis is organised as follows. Chapter 2 introduces
the basics of all the topics related to and essential to this thesis (including static analysis,
abstract interpretation, Facebook Infer, and contracts for concurrency). The original version
of Atomer, its limitations, and related work are described in Chapter 3. Subsequently,
Chapter 4 presents all the proposed extensions and improvements. The implementation
of these extensions is then covered in Chapter 5. The experimental evaluation of the
new Atomer’s features and other experiments performed within this thesis are discussed
in Chapter 6 together with the future work. Finally, the thesis is concluded in Chapter 7.
Besides, there are included the following appendices. The content of the attached memory
media is listed in Appendix A. Furthermore, Appendix B serves as an installation and user
manual. In the end, Appendix C provides several algorithms of the new version of Atomer’s
implementation that are too long to be placed in the main content of the thesis.

Parts of the thesis concerning the preliminaries and the basic version of Atomer are partially
taken from the thesis [18]. Moreover, some preliminary results were also published in the
Excel@FIT’21 paper [19] written by the author.

Acknowledgement The development of the original Atomer started under the H2020
ECSEL projects AQUAS and Arrowhead Tools. The development of its new version is
supported by the H2020 ECSEL project VALU3S. It has been discussed with the developers
of Facebook Infer too.
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Chapter 2

Preliminaries

This chapter provides the background that the thesis builds on. It also explains and de-
scribes the existing tools used in the thesis. Note that the author already partially published
the contents of the sections in this chapter in his bachelor’s thesis [18] and paper [19]. In-
deed, the background of the original and new versions of Atomer are the same. Moreover,
the author still tried to improve the description when he found this appropriate.

Multi-Threaded Programs [15, 29] Multiple threads of control are commonly used in
the software development process because they help reduce latency, increase throughput,
and better utilise multiple processor computers. Threads or processes contain independ-
ent sequences of instructions that may be performed simultaneously. A process represents
a single running program. It has its own address space and a unique identifier. One pro-
cess can consist of multiple threads, which threads sometimes called lightweight processes.
All threads of a single process share the same address space for code and data. However,
reasoning about the behaviour and correctness of a multi-threaded system is complex due
to the need to consider all possible interleavings of the executions of different threads. An
integral part of parallel programming is the synchronisation of individual threads. Usually,
synchronisation mechanisms ensure the mutual exclusion of shared resources or synchronise
actions that threads perform. Operating systems provide basic synchronisation primitives
that can be often used in programming languages in a higher-level manner. Such fun-
damental mechanisms are semaphores (binary semaphores are called mutexes), barriers,
read-copy-update techniques, or monitors. In this work (and also in practice), for sim-
plicity, the author will use a notion of locks for semaphores, mutexes, monitors, etc. as
a mechanism that mutually excludes access to a critical section.

The use of locks and access to shared data in parallel programs involves the risk of errors
not known in sequential programming. Much previous work on checking thread interference
has focused on data races. A data race occurs when two threads simultaneously access the
same data variable, and at least one of the accesses is a write. In practice, data races are
commonly avoided by guarding each data structure with a lock. Unfortunately, the absence
of data races is insufficient to guarantee the absence of errors due to unexpected interference
between threads [15, 41].
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Atomicity Violations [15] Another possible source of errors due to unexpected inter-
ference between threads are atomicity violations. A method (or, in general, a code block)
is atomic iff, for every (arbitrarily interleaved) program execution, there is an equivalent
execution with the same overall behaviour where the atomic method is executed serially. In
other words, the method’s execution is not interleaved with instructions of other threads.
Also, atomicity provides a powerful, indeed maximal, guarantee of non-interference among
threads. In short, atomicity is a generally applicable and fundamental correctness prop-
erty of multi-threaded code. Nevertheless, commonly used testing approaches are defi-
cient in verifying atomicity. While testing may reveal a concrete interleaving in which an
atomicity violation causes erroneous behaviour, the exponentially large number of possible
interleavings makes it fundamentally impossible to get suitable test coverage. Research
results [13, 15, 37, 41] have shown that defects related to atomicity are common, even in
well-tested libraries.

In order to be able to check for atomicity violations, it must, of course, be known which
blocks of code should be executed atomically. Algorithms for the detection of atomicity
violations often deal only with the atomicity of operations on variables. An approach
that allows for describing complex atomicity requirements is using contracts that require
atomicity of the execution of certain methods/functions (defined in Section 2.4) [29].

Further, Section 2.1 outlines the fundamental notions and approaches in program analysis.
In Section 2.2, there is an explanation of static analysis by abstract interpretation, which
is used in Facebook Infer, i.e., the key framework used in this thesis. Facebook Infer, its
principles, and features are covered in Section 2.3. The concept of contracts for concurrency
is discussed and defined in Section 2.4.

2.1 Concepts in Program Analysis

This section provides a fundamental intuition about the main principles of program analysis.
It discusses several standard techniques for reasoning about programs. The section is based
on a few first chapters from the book [34] and the overview paper [22].

2.1.1 What to Analyse

The first question is what programs to analyse. An obvious characterisation of programs to
analyse is the programming language in which the programs are written. Moreover, certain
specific families of input programs may be distinguished. However, besides the language
and the family of programs to consider, the way input programs are processed can also
differ and affect how the analysis works. The most straightforward way to handle input
programs is working directly with the source code just like a compiler would. Nevertheless,
different representations of programs are used in program analysis likewise. The two below
types of techniques are often distinguished.

Program-Level Analysis The first possibility is to run the analysis on the source code
of input programs (e.g., programs written in conventional programming languages like C
or Java; or hardware described in VHDL, Verilog, etc.) or on executable binaries. This
typically involves some front-end comparable to a compiler’s one that constructs syntax
trees of input programs (and possibly other representations such as control-flow graphs).
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Model-Level Analysis An alternative option is to consider a different input language
that aims at modelling the semantics of programs. Then, the analysis takes as an input
a description that models the program to analyse. Such models either need to be created
manually, or some specialised tools are used to extract them from the source code. These
models may hide implementation details. Examples of the models are automata of any
kind, UML diagrams, Petri nets, Markov chains, or specialised modelling languages like,
e.g., Promela.

2.1.2 Static vs Dynamic Approaches

Another critical question in program analysis is when the analysis is made. In particular,
whether it operates during or before the program’s execution.

One solution is to analyse programs at run-time, i.e., during the program’s execution. This
approach is called dynamic analysis. It takes place while the program computes, often, over
a number of executions.

Another approach is to analyse the program before execution, which is called static analysis.
It is done independently from any execution (at least under the original semantics).

Static and dynamic approaches are significantly distinct in many ways. They come with
different benefits and weaknesses. While dynamic approaches are often simpler to design
and implement (they may have information about concrete states and thus avoid some
false alarms), they often have problems with performance at run-time. They do not force
developers to fix bugs before program execution. Moreover, dynamic approaches do have
limited coverage of program behaviour since they build on what they see in program execu-
tions that were performed. Particular static and dynamic techniques are further discussed
in Section 2.1.5.

2.1.3 Automation and Scalability

Automation is a further relevant aspect in program analysis. It would be ideal if program
analysis methods were fully automated (i.e., no human help is needed). Unfortunately, this
is not always possible due to the consequences of the Rice’s theorem [33]. Thus, sometimes,
it is needed to give up on automation and let program analyses ask some user input (i.e.,
some human help is required). In that case, the user is asked to give some information to
the analysis, e.g., invariants1. That is, the analysis is partially manual since users need to
compute parts of the results themselves. However, having to provide this information may
be unwieldy because input programs can be huge or complex.

Scalability is another essential characteristic of program analysis algorithms. Even if a pro-
gram analysis is fully automatic, it is not guaranteed that it will generate a result within
a reasonable time, depending on the complexity of the algorithms. A program analysis tool
may not scale to extensive programs due to time costs or, e.g., memory constraints.

1An invariant is a logical property that can be proved to be inductive for a given program.
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2.1.4 Soundness and Completeness

In order to preserve automation and/or scalability, the conditions about program analysis
may be relaxed. Namely, the analysis can be proposed to return inaccurate results (altern-
atively, it can return a non-conclusive “do not know” answer). For this purpose, two dual
properties (forms of approximations or inaccuracies) are used. To express these notions,
let ℒ be a Turing-complete language, 𝜙 be a non-trivial semantic property of interest of
programs of ℒ, and 𝑇 be an analysis tool that decides whether 𝜙 holds in a given program.
Ideally, if 𝑇 were absolutely precise, it would be such that:

For every program 𝑃 ∈ ℒ : 𝑇 (𝑃 ) = 𝑡𝑟𝑢𝑒⇐⇒ 𝑃 |= 𝜙.

The above, of course, can be decomposed into a pair of implications:{︃
∀𝑃 ∈ ℒ : 𝑇 (𝑃 ) = 𝑡𝑟𝑢𝑒 =⇒ 𝑃 |= 𝜙,

∀𝑃 ∈ ℒ : 𝑇 (𝑃 ) = 𝑡𝑟𝑢𝑒⇐= 𝑃 |= 𝜙.

Soundness A sound program analysis satisfies the first implication.

Definition 2.1.1 (Soundness [34]). The program analyser 𝑇 is sound w.r.t. property 𝜙
whenever, for any program 𝑃 ∈ ℒ, 𝑇 (𝑃 ) = 𝑡𝑟𝑢𝑒 =⇒ 𝑃 |= 𝜙.

When a sound analysis terminates and claims that the analysed program has property 𝜙,
it guarantees that the program indeed satisfies 𝜙, i.e., no errors are missed. In other words,
a sound analysis will refuse all programs that do not satisfy 𝜙. In terms of errors in binary
classification, there are no false-negative errors2 when using a sound analysis. On the other
hand, there is a chance of false-positive errors3.

Completeness A complete program analysis satisfies the second implication.

Definition 2.1.2 (Completeness [34]). The program analyser 𝑇 is complete w.r.t. prop-
erty 𝜙 whenever, for any program 𝑃 ∈ ℒ, 𝑃 |= 𝜙 =⇒ 𝑇 (𝑃 ) = 𝑡𝑟𝑢𝑒.

A complete program analysis will accept every program that satisfies property 𝜙. In other
words, when a complete analysis refuses an analysed program, it is guaranteed that the
program indeed fails to satisfy 𝜙, i.e., there are no false-positive errors. However, there can
be false-negative errors.

Due to the computability barrier [33], it is not possible to design a general analysis to
determine which programs satisfy any non-trivial property for a Turing-complete language
that is sound, complete, and fully automated (and ideally also scalable) at the same time.
Some of these have to be sacrificed, or the analysis has to be proposed to operate only on
a specific set of input programs.

2A false-negative error is a real error that is undetected by an analysis tool.
3A false-positive error (also called a false alarm) is a spurious error, i.e., it is detected by an analysis

tool, but the error does not exist in the real program.
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2.1.5 Program Analysis Techniques

This section describes several standard program analysis techniques. Although this thesis
focuses on static analysis (or maybe rather bug finding based on static analysis), it is
essential to see the differences between other analysis techniques. Hence, a brief overview
is presented in the below sections.

Testing and Dynamic Analysis The testing approach checks a finite set of finite pro-
gram executions. In the development process, several levels of testing are used at various
stages of the software/hardware life-cycle, e.g., unit testing or integration testing. In gen-
eral, it is challenging to achieve suitable test coverage because of infinite program paths
when using, e.g., random testing. However, several more advanced techniques that improve
the coverage have been introduced. These techniques are often combined with other verific-
ation approaches. For instance, concolic testing combines testing with symbolic execution,
dynamic analysis that observes behaviour in a testing run (such behaviour can be extra-
polated to behaviour not seen in the given testing run), or search-based techniques that
can generate test data or parameters. Moreover, to test programs with non-deterministic
semantics (i.e., concurrent programs), techniques like noise injection are applied. In par-
ticular, many advanced dynamic analysers have been proposed to detect data races or
deadlocks, including, e.g., Eraser [35] or FastTrack [16].

Testing has the following features. In general, it is simple to automate. It is unsound in
almost all cases (besides programs that have a finite number of finite paths). Since failed
testing runs provide incorrect concrete executions, the testing is complete. Note, however,
that this needs not to hold for extrapolation based dynamic analyses such as the already
mentioned Eraser & FastTrack.

Other analysis techniques mentioned below use a static approach. The significant difference
between static and dynamic approaches is the following. It is well-known that testing may
expose errors, but it cannot prove their absence. It was also famously stated by Edsger
W. Dijkstra: “Program testing can be used to show the presence of bugs, but never to show
their absence!”. However, static approaches may be able to prove their absence — with some
approximation — they can check all possible executions of a program and provide guaran-
tees about its properties. Another static approaches’ benefit is that the analysis can be
performed during the development process, so the program does not have to be executable
yet, and it already can be analysed. The biggest drawback of static approaches, in general,
is that they can produce a lot of false alarms (though this is not the case, e.g., for theorem
proving or model checking), which is often resolved by accepting unsoundness. Another
crucial issue of static approaches (this is, however, also an issue of dynamic analyses) is
ensuring sufficient scalability — in fact, typically, the more precise the analysis, the less
scalable it becomes.

Deductive Verification The (usually) semi-automated approach of deductive verifica-
tion (or theorem proving) uses inference systems for inferring theorems about the analysed
system from the facts known about the system and from general theorems of different lo-
gical theories. The approach falls under machine-assisted techniques, which means that
users may be required to provide extra information to the analysis (usually loop invariants,
procedure pre-conditions/post-conditions, assertions, some other invariants, or they may be
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required to guide the proof by selecting which inference should be done from what facts
and when). This can be demanding and require a very high level of expertise. However,
a substantial part of the verification can usually still be carried out in a fully automated
fashion. This approach is very general, but there is a problem with generating diagnostic
information for incorrect systems. There exist a number of interactive theorem proving tools
like Coq, Isabelle/HOL, PVS, ACL2, etc. The user usually guides the inference process in
these tools.

These techniques also involve automated decision procedures (or satisfiability solvers) for
various logical theories. Such solvers are often used as back-end components for higher-level
verification methods, such as symbolic execution or predicate abstraction in model checking.
Commonly used solvers are SAT-solvers (e.g., CaDiCaL and Glucose) and SMT-solvers
(e.g., Z3 and CVC4). Various tools allow the user to provide some logical annotations in
a code and then automatically attempt to prove specific properties using decision proced-
ures. Examples of such tools are VCC and Dafny.

To sum up, theorem proving techniques have the following properties. They are (usually)
not fully automatic, i.e., high user expertise is often needed. They are sound w.r.t. the
model of the program used in the proof, and they are usually complete.

Model Checking Another technique called (finite-state) model checking aims primarily
at finite systems (extensions to the finite-state systems have also been considered — e.g.,
model checking with predicate abstraction, regular model checking, etc.). It automatically
verifies whether a system or its model satisfies a particular property based on an algorithmic
exploration of the system’s state space. Unfortunately, the biggest issue here is the state
space explosion problem [39]. However, in practice, model checking tools use effective data
structures (such as binary decision diagrams or hierarchical storage of states) to describe
program behaviours and avoid enumerating all executions thanks to approaches that reduce
the search space. In addition, other techniques are used to cope with this problem. For
instance, various abstractions are used (e.g., predicate abstraction) or bounded model check-
ing4. Properties are usually defined using temporal logics, such as LTL, CTL, or PCTL.
Finite model checking has the following characteristics. It is automatic (up to the need
of modelling the system or its environment). It is sound and usually complete. Other
advantages are that it is pretty general and provides diagnostic data for incorrect systems.

Model checking is often done at the model level, i.e., a model of the program needs to be
built, either manually or automatically. Even if the program itself needs not to be modelled,
one usually needs a model of its environment. The problem is that the model needs not
precisely capture the input program’s behaviours. Thus, the checking of the model may be
either incomplete or unsound, w.r.t. the input program. Some model checking techniques
can automatically refine the model when they fail to prove a property due to a spurious
counterexample. In practice, model checking tools are often sound and incomplete w.r.t.
the input program.

Model checking has found many successful applications, including hardware verification,
verification of concurrent and distributed systems, probabilistic systems, biological systems,
etc. Examples of hardware model checkers are RuleBase, Incisive Verifier, or NuSMV. Model

4Bounded model checking explores models up to a fixed depth only. This technique is often referred to
as bug finding because it sacrifices completeness and often also soundness. Examples of tools that implement
such technique are CBMC, LLBMC, or JBMC.
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checkers for concurrent and distributed systems include Spin or DIVINE. Tools, such as
CPAchecker or BLAST, are model checkers that use predicate abstraction. PRISM and
Storm are state-of-the-art tools for model checking probabilistic systems. Finally, Uppaal
is a model checker that verifies temporal logic formulas on timed automata.

Static Analysis The last technique (and the most important one for the thesis) is static
analysis. It relies on other techniques to compute conservative (sound but incomplete)
descriptions of program behaviours using finite resources rather than building a finite model.
The fundamental idea is to finitely over-approximate the set of all program behaviours using
a particular set of properties.

According to [30], static analysis of programs is reasoning about the behaviour of computer
programs without really executing them. It has been used since the 1960s in optimising
compilers for generating efficient code. More recently, it has proven valuable also for auto-
matic error detection, verification of the correctness of programs, and it is used in other
tools that can help programmers. Intuitively, a static program analyser is a program that
reasons about the behaviour of other programs by looking for some syntactic patterns in
the code and/or by assigning the program statements some abstract semantics and then
deriving a characterisation of the behaviour in terms of the abstract semantics. Nowadays,
static analysis is one of the leading concepts in formal verification. It can even automatically
answer considerably complicated questions about a given program, such as [30]:

• Does the program terminate on every input?

• Do two pointers refer to disjoint data structures in memory?

• Are data races possible? Can the program deadlock?

• Does there exist an input that leads to a null-pointer dereference, division-by-zero, or
arithmetic overflow?

• Are arrays always accessed within their bounds?

• Are certain operations executed atomically?

In general, conservative static analysis has the following characteristics. It is automatic, it
can often handle large systems, and it does not ordinarily need a model of the environment.
It produces sound results, and it is generally incomplete, i.e., it can produce many false
alarms. However, it is possible to drop soundness to minimise the number of false alarms
and preserve automation, which, in fact, is done by many tools. Such techniques are often
instead called bug finding or bug hunting, which is based not only on static analysis but also,
e.g., on model checking. Since the primary motivation of these approaches is to discover
bugs (and not to prove their absence), they are neither sound nor complete, and they aim
at swiftly catching bugs.

The above explanation of static analysis is quite general. Thus, even model checking or
deductive verification may be considered as static analysis. However, when setting these
approaches aside, the most traditional techniques in the static analysis include:

• Syntactic checks looking for various bug patterns (anti-patterns) — implemented, e.g.,
in Lint, Cppcheck, or in analyses in VisualStudio, Clang, GCC.
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• Data-flow analysis — can be sound, but it is often combined with bug pattern search-
ing and used in an unsound way in the end. Many successful tools of this kind have
been implemented. They are often proprietary and hard to openly evaluate or ex-
tend. Examples of some well-known tools (however, some of them also involve abstract
interpretation) are Coverity, CodeSonar, Klocwork, FindBugs/SpotBugs, SonarQube.

• Constraint-based analysis, type-based analysis (type and effect systems).

• Symbolic execution — implemented, e.g., in KLEE, Pex, Symbiotic.

• Abstract interpretation (see Section 2.2) — examples of sound tools are Polyspace,
AbsInt/Astrée, or Sparrow. State-of-the-art frameworks that allow creating sound
analysers include Facebook Infer (see Section 2.3), Facebook SPARTA, or Frama-C.
These tools also offer already implemented sound as well as unsound checkers.

Properties of the presented program analysis techniques are summarised in Table 2.1.

Table 2.1: A summary of program analysis techniques [34] extended by dynamic analysis

Technique Automatic Sound Complete Object Approach

Testing Yes No Yes Program + DynamicTest suite
Extrapolated Yes No No Program + Dynamicdynamic analysis Test suite
Deductive No Yes Yes/No Model/Program Staticverification
Model checking Yes Yes Yes/No Model/Program Static
Conservative Yes Yes No Program Staticstatic analysis
Bug finding Yes No No Program Static

2.2 Abstract Interpretation

This section explains and defines the basics of the static analysis technique of abstract
interpretation. The description is based on [8, 9, 10, 11, 12, 22, 24, 30, 31, 34]. In these
works, there can be found a more detailed and formal explanation.

Abstract interpretation was introduced and formalised by the French computer scientist
Patrick Cousot and his wife Radhia Cousot at POPL’77 [11]. It is a generic framework for
static analyses. It allows one to create particular analyses by providing specific components
(discussed in Section 2.2.1) to the framework. The obtained analysis is guaranteed to be
sound if specific properties of the components are met.

In general, in set theory, which is independent of the application setting, abstract interpret-
ation is considered a theory for approximating sets and set operations. A more restricted
formulation of abstract interpretation is to interpret it as a theory of approximation of the
behaviour of the formal semantics of programs. Fixpoints may characterise those beha-
viours (see Section 2.2.3), which is why the primary part of the theory provides efficient
techniques for fixpoint approximation [31]. Hence, abstract interpretation is used to derive
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the approximate abstract semantics over an abstract domain (explained in Section 2.2.1).
The abstract semantics obtained from program analysis can then be used for verification,
optimisation, code generation, etc. [10].

To be sound, it is essential that an approximation performed using abstract interpretation
should be an over-approximation. This means that the considered abstract semantics should
be a superset of the concrete semantics, i.e., the abstract semantics should cover all possible
cases. Whence, if the abstract semantics satisfies a given property, then the concrete
semantics satisfies it too. Moreover, the consequence of the over-approximation of the
possible executions is that inexisting executions are considered, leading to false alarms.
Thus, due to a lack of accuracy, abstract interpretation is usually incomplete [9].

Patrick Cousot intuitively and informally illustrates abstract interpretation in [9] as follows.
Figure 2.1a shows the concrete semantics of a program by a set of curves, which represents
the set of all possible executions of the program in all possible execution environments.
Each curve shows the evolution of the vector 𝑥(𝑡) of input, state, and output values of
the program as a function of the time 𝑡. Forbidden zones on this figure represent a set of
erroneous states of the program execution. Proving that the intersection of the concrete
semantics of the program with the forbidden zones is empty may be undecidable because the
program concrete semantics is, in general, not computable. As demonstrated in Figure 2.1b,
abstract interpretation deals with the abstract semantics, i.e., a superset of the concrete
program semantics. The abstract semantics includes all possible executions. That implies
that if the abstract semantics is safe — i.e., it does not intersect the forbidden zones —
the concrete semantics is safe as well. However, the over-approximation of the possible
program executions causes that inexisting program executions are considered, which leads
to false alarms, as demonstrated by Figure 2.1b. It is the case when the abstract semantics
intersects the forbidden zone, whereas the concrete semantics does not intersect it.

(a) The concrete semantics of programs with
forbidden zones

(b) The abstract semantics of programs with
imprecise abstraction

Figure 2.1: An illustration of abstract interpretation [9] (horizontal axes: the time 𝑡; vertical
axes: the vector 𝑥(𝑡) of input, state, and output values of the considered program)
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2.2.1 Components of Abstract Interpretation

Before the formal definition of abstract interpretation is given, it is first intuitively described
the basic components of the framework in accordance with [8, 10, 24, 31]:

• Abstract Domain 𝑄:

– An abstraction of the possible concrete program states (or their parts) in the
form of abstract properties5.

– In other words, it is a set of abstract states (or abstract contexts), where an ab-
stract state represents a set of program states reachable at a particular program
location.

– Various practical domains have been defined — for example: numerical intervals,
polyhedra, octagons, congruences, or various heap domains.

• Abstract Transformers 𝜏 :

– There is a transform function 𝜏 for each program operation (instruction) repres-
enting the impact of the operation executed on an abstract state.

• Join Operator ⊔:

– Joins abstract states from individual program branches into a single one.

• Widening Operator O:

– Enforces termination of the abstract interpretation.
– It is used to over-approximate the least fixed points of program semantics (it is

performed on a sequence of abstract states at a certain location).
– Usually, the later in the analysis this operator is applied, the more accurate the

result is (but the analysis takes more time).

• Narrowing Operator M:

– The approximation obtained by the widening operator can be refined using the
narrowing operator, i.e., it may be used to refine the result of widening.

– It is used when a fixpoint is approximated by the widening operator.

Note that neither the widening operator nor narrowing operator are required. However, at
least the widening operator is frequently used. The narrowing operator can be sometimes
dropped.

2.2.2 Formal Definition of Abstract Interpretation

The definitions below consider notions from lattice theory. More information about lattices,
functions on lattices, partial orders, and set theory can be found, e.g., in [30, 31, 34].

5Abstract properties approximate concrete properties of behaviours [10].
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Definition 2.2.1 (Abstract Interpretation). According to [11, 24], abstract inter-
pretation 𝐼 of a program 𝑃 with the instruction set 𝐼𝑛𝑠𝑡𝑟 is a tuple

𝐼 = (𝑄,⊔,⊑,⊤,⊥, 𝜏)

where

• 𝑄 is the abstract domain (the set of abstract states),

• ⊔ : 𝑄×𝑄→ 𝑄 is the join operator for accumulation of abstract states,

• ⊑ ⊆ 𝑄×𝑄 is an ordering defined as 𝑥 ⊑ 𝑦 ⇐⇒ 𝑥 ⊔ 𝑦 = 𝑦 where

– ⟨𝑄,⊑⟩ is a complete ⊔-semilattice,

• ⊤ ∈ 𝑄 is the supremum of ⟨𝑄,⊑⟩,

• ⊥ ∈ 𝑄 is the infimum of ⟨𝑄,⊑⟩— thus, ⟨𝑄,⊑⟩ is, in fact, a complete lattice,

• 𝜏 : 𝐼𝑛𝑠𝑡𝑟 ×𝑄→ 𝑄 defines the abstract transformers for specific instructions,

– 𝜏 must be monotone6 on 𝑄 for each instruction from 𝐼𝑛𝑠𝑡𝑟.

Using a so-called Galois connection [11, 12, 24, 30, 31, 34], one can ensure soundness of
abstract interpretation, i.e., the correspondence between the concrete semantics and its
abstract semantics can be formalised by a Galois connection (also referred to as a pair of
adjoined functions).

Definition 2.2.2 (Galois Connection). If 𝒫 = ⟨𝑃,⪯⟩ and 𝒬 = ⟨𝑄,⊑⟩ are partially-
ordered sets, then a quadruple 𝜋 = (𝒫, 𝛼, 𝛾,𝒬) is a Galois connection, written

⟨𝑃,⪯⟩
𝛾

�
𝛼
⟨𝑄,⊑⟩

iff 𝛼 : 𝑃 → 𝑄 and 𝛾 : 𝑄→ 𝑃 are monotone functions such that

∀𝑝 ∈ 𝑃 : ∀𝑞 ∈ 𝑄 : 𝛼(𝑝) ⊑ 𝑞 ⇐⇒ 𝑝 ⪯ 𝛾(𝑞)

where 𝑃 is the concrete domain and 𝑄 is the abstract domain. Furthermore, 𝛼 is an ab-
straction function, and 𝛾 is a concretisation function. Consequently, 𝛼(𝑝) is the abstraction
of 𝑝, i.e., the most precise approximation of 𝑝 ∈ 𝑃 in 𝑄, and 𝛾(𝑞) is the concretisation
of 𝑞, i.e., the most imprecise element of 𝑃 which 𝑞 ∈ 𝑄 can soundly approximate. A Galois
connection is illustrated in Figure 2.2.

If the abstraction and concretisation functions of the abstract interpretation form a Galois
connection, then applying the abstraction function and concretising the result back yield
a less (or equally) precise result. However, it is a safe (conservative) approximation. That
is, formally written, ∀𝑝 ∈ 𝑃 : 𝑝 ⪯ 𝛾(𝛼(𝑝)). Finally, the abstract interpretation may only
over-approximate the concrete semantics (i.e., it is sound) if for each concrete transformer
(instruction) 𝑖 : 𝑃 → 𝑃 from the instruction set 𝐼𝑛𝑠𝑡𝑟, the appropriate abstract transformer
𝜏 : 𝐼𝑛𝑠𝑡𝑟 × 𝑄 → 𝑄 respects the considered Galois connection, this is, ∀𝑝 ∈ 𝑃 : 𝛼(𝑖(𝑝)) ⊑
𝜏(𝑖, 𝛼(𝑝)).

6Assume two partially-ordered sets ⟨𝐸,⪯𝐸⟩ and ⟨𝐹,⪯𝐹 ⟩, and a function 𝑓 : 𝐸 → 𝐹 . 𝑓 is monotone iff
∀𝑥, 𝑦 ∈ 𝐸 : 𝑥 ⪯𝐸 𝑦 =⇒ 𝑓(𝑥) ⪯𝐹 𝑓(𝑦) [34].
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Figure 2.2: An illustration of a Galois connection

2.2.3 Fixpoint Approximation [11, 12, 24, 30, 31, 34]

Most program properties can be represented as fixpoints7. This reduces program analysis to
fixpoint approximation. The complete analysis of a program using abstract interpretation
can be then viewed as finding the least/greatest fixpoint of the equation 𝑄 = 𝜏(𝑄), where 𝑄
is a vector of abstract states and 𝜏 is an extension of 𝜏 to the whole program. This fixpoint
equation is then solved iteratively. Knaster-Tarski theorem [38] guarantees these fixpoints’
existence (provided that 𝜏 is monotone & complete lattices are considered).

The computation of the most precise abstract fixpoint is not generally guaranteed to termin-
ate, in particular, when a given program contains a loop (or recursion) and uses an infinite
domain (or even finite but very large). In order to enforce or accelerate the convergence,
the fixpoint is often over-approximated using the widening operator O. The approximation
may be later refined using the narrowing operator M. These two operators are defined be-
low. In practice, the analysis is usually done by iterating the abstract transformers over the
control-flow graph8 (CFG). The join operator ⊔ is applied at program locations where dif-
ferent branches come across. Moreover, the widening operator O is applied at loop junctions
(and afterwards, the narrowing operator M may be used).

Definition 2.2.3 (Widening). Assume the abstract interpretation from Definition 2.2.1.
The widening operator over the abstract domain 𝑄 is a binary operator O : 𝑄×𝑄→ 𝑄
such that ∀𝑥, 𝑦 ∈ 𝑄 : 𝑥 ⊔ 𝑦 ⊑ 𝑥O 𝑦, and for all increasing chains 𝑥0 ⊑ 𝑥1 ⊑ . . . , the
increasing chain defined by 𝑦0 = 𝑥0, . . . , 𝑦𝑖+1 = 𝑦𝑖O𝑥𝑖+1, . . . is not strictly increasing.
Note that the chain eventually stabilises since the result of O is an upper bound.

Definition 2.2.4 (Narrowing). Assume the abstract interpretation from Definition 2.2.1.
The narrowing operator over the abstract domain 𝑄 is a binary operator M: 𝑄×𝑄→ 𝑄
such that ∀𝑥, 𝑦 ∈ 𝑄 : 𝑦 ⊑ 𝑥 =⇒ 𝑦 ⊑ 𝑥 M 𝑦 ⊑ 𝑥, and for all decreasing chains 𝑥0 ⊒ 𝑥1 ⊒ . . . ,
the decreasing chain defined by 𝑦0 = 𝑥0, . . . , 𝑦𝑖+1 = 𝑦𝑖 M 𝑥𝑖+1, . . . is not strictly decreasing.
Note that the chain eventually stabilises since the result of M is a lower bound.

7Consider a function 𝑓 : 𝐿 → 𝐿 on a set 𝐿. A fixed point (or fixpoint) of 𝑓 is an element 𝑙 ∈ 𝐿 such
that 𝑓(𝑙) = 𝑙. The set of all fixpoints of 𝑓 is denoted as 𝐹𝑖𝑥(𝑓) = {𝑙 ∈ 𝐿 | 𝑓(𝑙) = 𝑙} [31].

8A control-flow graph (CFG) is a directed graph in which the nodes represent basic blocks of the
program, and the edges represent control-flow paths among them [1]. A basic block is a maximal sequence
of statements such that all transfers to it are to the first statement in the sequence, and all statements in
the sequence are executed sequentially [31].
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2.3 Facebook Infer — Static Analysis Framework

This section describes the principles and features of Facebook Infer. The description is
based on information provided at the Facebook Infer’s website9 and in [4].

Build System

Bugs

Java
C

C++
Obj-C

C#

Facebook Infer

Figure 2.3: Static analysis in Facebook Infer

Facebook Infer is an open-source10 static analysis framework, which can discover various
kinds of software bugs and which stresses the scalability of the analysis. The Facebook
Infer’s basic usage is illustrated in Figure 2.3. A more detailed explanation of its architec-
ture is given in Section 2.3.2. Facebook Infer is implemented in OCaml11 — a functional
programming language, also supporting imperative and object-oriented paradigms. Further
details about OCaml can be found in the book [28]. Infer has initially been a rather special-
ised tool focused on sound verification of the absence of memory safety violations, which
was first published in the well-known paper [7]. Once Facebook has purchased it, its scope
significantly widened and abandoned the focus on sound analysis only.

Facebook Infer can analyse programs written in the following languages: C, C++, Java,
Objective-C (and support for C# has been recently implemented [40]). Moreover, it is
possible to extend Facebook Infer’s frontend for supporting other languages. Currently,
Facebook Infer contains many analyses focusing on various kinds of bugs, e.g., Inferbo [42]
(buffer overruns); RacerD [5, 6, 17] (data races); and other analyses that check for some
forms of deadlocks and starvation, null-dereferencing, memory leaks, resource leaks, etc.
Since Facebook Infer is a relatively popular and open-source framework, many experimental
analysers arise pretty often. For instance, the promising experimental deadlock checker
L2D2 [26] has been implemented at FIT BUT not long ago.

2.3.1 Abstract Interpretation in Facebook Infer

Facebook Infer is a general framework for static analysis of programs, and it is based on
abstract interpretation. Despite the original approach taken from [7], Facebook Infer aims
to find bugs rather than perform formal verification. It is still possible to propose sound
and complete analyses in the framework. However, the majority of the checkers already
implemented in Facebook Infer are both unsound and incomplete.

9Facebook Infer’s website: https://fbinfer.com.
10Facebook Infer’s open-source repository at GitHub: https://github.com/facebook/infer.
11OCaml’s website: https://ocaml.org.
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It can be used to develop new sorts of compositional and incremental analysers quickly (both
intraprocedural and interprocedural [31]) based on the concept of function summaries. In
general, a summary 𝜒 represents a set of pre-condition/post-condition pairs for a function.
In particular, it records under which pre-condition a function can be performed leading
to a given post-condition. Formally, it can be described using Hoare triples [20], because
it can be viewed as a triple {𝑃} 𝑆 {𝑅}, where 𝑃 is a pre-condition, 𝑆 is a program (or
a single statement/command)12, and 𝑅 is a description of the result of the execution of 𝑆
(i.e., a post-condition). In theory, 𝑃 and 𝑅 are considered formulae in a suitable logic. The
triple may be interpreted as follows. Suppose 𝑆 is executed from a state satisfying 𝑃 , and
the execution of 𝑆 terminates. In that case, the program state after 𝑆 terminates satisfies 𝑅.
However, in practice, a summary is a custom data structure that may be used for storing
any information resulting from the analysis of particular functions. Usually, a summary
consists of the relevant parts of abstract states for a particular analysis.

Facebook Infer generally does not compute the summaries during the analysis along the
CFG as it is done in classical analyses based on the concepts from [32, 36]. Instead,
Facebook Infer performs the analysis of a program function-by-function along the call tree,
starting from its leaves (demonstrated later in Example 2.3.1). Therefore, a function is
analysed, and a summary is computed without knowledge of the call context. Then, the
summary of the function is used at all its call sites. It is needed to deduce under which pre-
conditions a function can produce post-conditions appropriate for the given analysis. Since
the summaries do not differ for different contexts, each function is analysed precisely once,
and the analysis becomes more scalable, but it can lead to a loss of accuracy. However, of
course, it is more troublesome to propose such a bottom-up analysis.

In order to create a new intraprocedural analyser in Facebook Infer, it is required to define
the following (the listed items are described in more detail in Section 2.2):

1. The abstract domain 𝑄, i.e., the type of abstract states.

2. The ordering operator ⊑, i.e., an ordering of abstract states.

3. The join operator ⊔, i.e., the way of joining two abstract states.

4. The widening operator O, i.e., the way how to enforce termination of the computation.

5. The transfer functions 𝜏 , i.e., transformers that take an abstract state as an input
and produce an abstract state as an output.

Furthermore, to create an interprocedural analyser, it is required to define additionally:

1. The type of function summaries 𝜒.

2. The logic for using summaries in transfer functions and the logic for transforming an
intraprocedural abstract state to a summary.

An important Facebook Infer’s feature, which improves its scalability, is the incrementality
of the analysis. It allows one to analyse separate code changes only, instead of analysing
the whole codebase. It is more suitable for extensive and variable projects where ordinary

12In Facebook Infer’s summaries considered as Hoare triples, 𝑆 is usually one function.
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analysis is not feasible. The incrementality is based on re-using summaries of functions for
which there is no change in them neither in the functions transitively invoked from them,
as shown in Example 2.3.1 later on.

2.3.2 Architecture of the Infer.AI Framework

The architecture of the abstract interpretation framework of Facebook Infer (Infer.AI) may
be split into three major parts, as demonstrated in Figure 2.4: the frontend, an analysis
scheduler (and the results database), and a set of analyser plugins.

Java
C

C++
Obj-C

Frontend

Scheduler + Results Database

Analyser Plugins

0101001
0000001
1111011
0010000

Function Summary

C#

Figure 2.4: The architecture of the Facebook Infer’s abstract interpretation framework [18]

The frontend compiles input programs into the Smallfoot Intermediate Language (SIL)
and represents them as a CFG. There is a separate CFG representation for each analysed
function. Nodes of this CFG are formed as SIL instructions. The SIL language consists of
the following underlying instructions:

• LOAD — reading into a temporary variable;

• STORE — writing to a program variable, field of a structure, or array;

• CALL — a function call;

• PRUNE e — the evaluation of an expression e in a condition, cycle, etc.

The frontend allows one to propose language-independent analyses (to a certain extent)
because it supports input programs to be written in multiple languages.
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The next part of the architecture is the scheduler, which defines the order of the ana-
lysis of single functions according to the appropriate call graph13. The scheduler also
checks if it is possible to simultaneously analyse some functions, allowing Facebook Infer

F1

F3

F2

F4

F5 F6

FMAIN

Figure 2.5: A call graph for an illus-
tration of Facebook Infer’s analysis pro-
cess [18]

to run the analysis in parallel.

Example 2.3.1. For demonstrating the order
of the analysis in Facebook Infer and its incre-
mentality, assume the call graph given in Fig-
ure 2.5. At first, leaf functions F5 and F6 are
analysed. Further, the analysis goes on towards
the root of the call graph — FMAIN, while con-
sidering the dependencies denoted by the edges.
This order ensures that a summary is available
once a nested function call is abstractly inter-
preted within the analysis. When there is a sub-
sequent code change, only directly changed func-
tions and all the functions up the call path are
re-analysed. For instance, if there is a change of
source code of function F4, Facebook Infer trig-
gers re-analysis of functions F4, F2, and FMAIN
only.

The last part of the architecture consists of analyser plugins. Each plugin performs some
analysis by interpreting SIL instructions. The result of the analysis of each function (func-
tion summary) is stored in the results database. The interpretation of SIL instructions
(commands) is made using the abstract interpreter (also called the control interpreter) and
transfer functions (also called the command interpreter). The transfer functions take a pre-
viously generated abstract state of an analysed function as an input, and by applying the
interpreting command, produce a new abstract state. The abstract interpreter interprets
the command in an abstract domain according to the CFG. This workflow is shown in
a simplified form in Figure 2.6.

2.4 Contracts for Concurrency

This section introduces the concept of contracts for concurrency [13, 37]. Examples and
listings in the section are pieces of programs written in the C language.

Respecting the protocol of a software module — that defines which sequences of functions
are legal to invoke — is one of the requirements for the correct behaviour of the module.
For example, a module that deals with a file system typically requires that a programmer
using this module should call a function open at first, followed by an optional number of
functions read and write, and at last, call a function close. A program utilising such
a module that does not follow this protocol is erroneous. The methodology of design by
contract [27] requires programs to meet such well-defined behaviours [37].

In concurrent programs, contracts for concurrency allow one — in the simplest case — to
specify sequences of functions that are needed to be executed atomically in order to avoid

13A call graph is a directed graph describing call dependencies among functions.
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Figure 2.6: The Facebook Infer’s abstract interpretation process [18]

atomicity violations. In general, contracts for concurrency specify sets of sequences of calls
called spoilers and sets of sequences of calls called targets. It is then required that no
target overlaps fully with any spoiler. A developer may manually specify such contracts
or automatically generate them by a program (analyser). These contracts can be used to
verify the correctness of programs as well as they can serve as helpful documentation.

Section 2.4.1 defines the notion of basic contracts for concurrency. Further, Section 2.4.2
defines contracts extended to consider the data flow between functions, where a sequence
of function calls must be atomic only if they handle the same data. Finally, Section 2.4.3
presents those mentioned above more general contracts for concurrency with spoilers and
targets, which essentially extend the basic contracts with some contextual information.

2.4.1 Basic Contracts for Concurrency

In [13, 37], a basic contract for concurrency is formally defined as follows. Let ΣM be
a set of all function names of a software module M. A contract is a set R of clauses,
where each clause 𝜚 ∈ R is a star-free regular expression14 over ΣM. A contract violation
occurs if any of the sequences expressed by the contract clauses are interleaved with the
execution of functions from ΣM. In other words, each sequence specified by any clause 𝜚
must be executed atomically. Otherwise, there is a violation of the contract. The number of
sequences defined by a contract is finite since the contract is a union of star-free languages.

14Star-free regular expressions are regular expressions that use only the concatenation operator and
the alternative operator (|), without the Kleene star operator (*).
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Example 2.4.1. Consider the following example from [13, 37]. Assume a module M im-
plementing a resizable array of integers with the following interface functions ΣM = {add,
contains, index_of, get, set, remove, size} defined as:

void add(int *array, int element)

bool contains(int *array, int element)

int index_of(int *array, int element)

int get(int *array, int index)

void set(int *array, int index, int element)

void remove(int *array, int index)

int size(int *array)

The module’s contract contains clauses R = {𝜚1, 𝜚2, 𝜚3, 𝜚4} such that:

(𝜚1) contains index_of
The execution of contains followed by the execution of index_of should be atomic.
Otherwise, the program may fail to get the index because after checking the presence
of an element in an array, it can be removed by some concurrent thread.

(𝜚2) index_of ( get | set | remove )
The execution of index_of followed by the execution of get, set, or remove should
be atomic. Otherwise, the received index may be outdated when applied to address
an array element because a concurrent modification of the array may shift the
element’s position.

(𝜚3) size ( get | set | remove )
The execution of size followed by the execution of get, set, or remove should be
atomic. Otherwise, an array may be empty when accessing it because of a concur-
rent change of the array. This can be an issue since a given index is not in a valid
range anymore (e.g., testing index < size).

(𝜚4) add index_of
The execution of add followed by the execution of index_of should be atomic.
Otherwise, the added element needs no longer exist in an array.

2.4.2 Contracts for Concurrency with Parameters

The above definition of basic contracts for concurrency is quite limited in some circum-
stances and can consider valid programs as erroneous (i.e., false alarms may be reported).
Hence, in this section, there is introduced an extension of basic contracts — contracts for
concurrency with parameters (defined in [13, 37]) — which takes into consideration the data
flow within function calls.
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Example 2.4.2. Consider the following example from [13, 37], given in Listing 2.1. There
is the function replace that replaces item a in an array by item b. The implementation of
this function comprises two atomicity violations:

1. when index_of is invoked, item a does not need to be in the array anymore; and

2. the acquired index can be obsolete when set is executed.

A basic contract could cover this scenario by the following clause:

(𝜚5) contains index_of set

It can be obtained from the composition of clauses 𝜚1 and 𝜚2. Nevertheless, this definition is
too restrictive because the functions are required to be executed atomically only if contains
and index_of have the same arguments array and element; index_of and set have the
same argument array; and the returned value of index_of is used as the argument index
of the function set.

1 void replace(int *array, int a, int b)
2 {
3 if (contains(array, a))
4 {
5 int index = index_of(array, a);
6 set(array, index, b);
7 }
8 }

Listing 2.1: An example of an atomicity violation with data dependencies [13, 37]

To respect function call parameters and return values of functions in contracts, the basic
contracts are extended by dependencies among functions in [13, 37] as follows. Function
call parameters and return values are expressed as meta-variables. Further, if a contract is
required to be respected exclusively if the same object emerges as an argument or as the
return value of multiple calls in a given call sequence, it may be denoted by using the same
meta-variable at the position of all these occurrences of parameters and return values.

Clause 𝜚5 can be extended as follows (repeated application of meta-variables X/Y/Z requires
the same objects 𝑜1/𝑜2/𝑜3 to be used at the positions of X/Y/Z, respectively; and the
underscore indicates a free meta-variable that does not restrict the contract clause):

(𝜚′5) contains(X, Y) Z = index_of(X, Y) set(X, Z, _)

Example 2.4.3. With the extension described above, it is possible to extend the contract
from Example 2.4.1 to capture the dependencies between function calls as follows:

(𝜚′1) contains(X, Y) index_of(X, Y)

(𝜚′2) Y = index_of(X, _) ( get(X, Y) | set(X, Y, _) | remove(X, Y) )

(𝜚′3) size(X) ( get(X, _) | set(X, _, _) | remove(X, _) )

(𝜚′4) add(X, Y) index_of(X, Y)
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2.4.3 Contracts for Concurrency with Spoilers

Interleaving a sequence of function calls from a contract clause (considering the basic con-
tracts for concurrency or contracts with parameters) with some function calls of a given
module can cause atomicity violations. At the same time, this is not the case for some other
function calls from the module. However, this is not possible to describe in the contracts
introduced so far. For instance, clause (𝜚1) contains index_of requires that this sequence
of calls must always be performed atomically, i.e., it does not matter which functions are
executed by other threads. Thus, interleaving the execution of this sequence with, e.g.,
remove or get is a contract violation. However, in effect, only the execution of remove may
be problematic, while the execution of get may not.

The paper [13] proposes a solution to the above issue — an extension of the basic contracts
for concurrency with contextual information — allowing one to describe in which context
the contract clauses should be enforced. Each clause of the basic contract is now called
target. For each target, there is a set of so-called spoilers that restrict its application. That
is, a spoiler is a sequence of function calls that can violate its target. In the end, it has to
be ensured that each target is executed atomically w.r.t. its spoilers. Assuming the earlier
example, let contains index_of be the target clause. Then, a possible spoiler is remove.
The syntax for this description is as follows: contains index_of  remove.

Formally, let ΣM be a set of all function names of a software module M. Further, let R be
a set of target clauses, where each clause 𝜚 ∈ R is a star-free regular expression over ΣM.
Let S be a set of spoiler clauses, where each clause 𝜎 ∈ S is a star-free regular expression
over ΣM. Moreover, let ΣR ⊆ ΣM and ΣS ⊆ ΣM be the alphabets of function names used in
the target or spoiler clauses, respectively. Then, a contract is a relation C ⊆ R× S, which
states for each target the spoilers that can cause atomicity violations. One spoiler may
violate more than one target, and, on the contrary, one target may be violated by more
than one spoiler. A contract is violated iff any executed sequence expressed by a target
𝜚 ∈ R is completely interleaved with the execution of the sequence representing its spoiler,
i.e., 𝜎 ∈ C(𝜚). A target sequence 𝑟 is completely interleaved by a spoiler sequence 𝑠 iff
the execution of 𝑟 starts before the execution of 𝑠, and the execution of 𝑠 ends before the
execution of 𝑟. Partial interleavings of targets and spoilers are here not taken into account
as causing an error. However, if needed, this can be resolved by adding a new target
clause with an appropriate spoiler. Whether a sequence is executed before another one, is
defined using the so-called “happened before” relation ( hb−→) [23]. A complete interleaving is
illustrated in Figure 2.7a, and partial interleavings are shown in Figures 2.7b and 2.7c.

Example 2.4.4. With the extension of spoilers, the contract from Example 2.4.1 can
be refined with contextual information to refuse unsafe interleavings as follows (all other
interleavings, not described by spoilers, are deemed safe):

(𝜚′′1) contains index_of  remove | set

(𝜚′′2) index_of ( get | set | remove )  remove | set

(𝜚′′3) size ( get | set | remove )  remove

(𝜚′′4) add index_of  remove | set
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(c) Partial interleaving:
the contract is not violated
(𝑠 ended after 𝑟)

Figure 2.7: A contract violation demonstration with target and spoiler interleavings. In each
sub-figure, a thread 𝑡1 executes a target sequence 𝑟 = f g and a thread 𝑡2 executes a spoiler
sequence 𝑠 = x y. Consequently, the following contract is considered: f g  x y [29]

Lastly, it is possible to combine the extension of contracts for concurrency with spoilers
and with parameters. The following clause can demonstrate it:

Y = index_of(X, _) get(X, Y)  remove(X, _)

The clause requires sequences of index_of and get to be performed atomically, but only
when working with the same element X and index Y, and only w.r.t. the concurrent exe-
cution of remove. Note that the argument index of remove is not restricted because any
concurrent removal may produce an atomicity violation — by either removing an element
on index Y or by shifting its position.

24



Chapter 3

Atomer — Atomicity Violations
Detector

This chapter describes principles and limitations of the basic version of the Atomer static
analyser proposed as a module of Facebook Infer (introduced in Section 2.3) for finding some
forms of atomicity violations. Atomer was proposed and in detail described in the bachelor’s
thesis [18] of the author of this thesis. Therefore, naturally, the description in Section 3.2
is based on the mentioned thesis. Already existing solutions in this area (besides Atomer)
are discussed in Section 3.1. In particular, it deals with other existing approaches and tools
for finding atomicity violations, their advantages, disadvantages, features, availability, and
so on. In Section 3.3, there are discussed limitations and shortcomings of Atomer. Some of
the thoughts mentioned in this section are taken into consideration already in [18].

3.1 Related Work

Atomer is slightly inspired by ideas from [13, 37]. In these papers, there is described
a proposal and implementation of a static approach for finding atomicity violations of
sequences of function calls, which is based on grammars and parsing trees. Note that in the
paper [13], there is also described and implemented a dynamic approach for the validation.
The authors of these papers implemented a stand-alone prototype static analyser called
Gluon1 for analysing programs written in Java. To the best author’s knowledge, Gluon
is the only static analyser that tries to go in a similar direction as Atomer does. Gluon
led to some promising experimental results, but the scalability of Gluon was still limited.
Moreover, Gluon is no more actively developed, and it is not easy to use. Despite all
author’s efforts, it was not put into operation. Above that, the authors themselves note
that the code of Gluon is very ad hoc, and many things are hard-coded in it. These facts, in
fact, inspired the decision that eventually led to the implementation of the first version of
Atomer, namely, to get inspired by the ideas of [13, 37] but reimplement them in Facebook
Infer, redesigning it in accordance with the principles of Facebook Infer, which should make
the resulting tool more scalable. In the end, however, due to adapting the analysis to the
context of Facebook Infer, the implementation of Atomer’s analysis is significantly different

1Gluon is a tool that implements a static approach for finding atomicity violations of sequences of
function calls in Java programs. It is available at https://github.com/trxsys/gluon.
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from [13, 37], as is presented in Chapter 4 of [18]. Furthermore, unlike Gluon, a new
version of Atomer is capable of analysing a much wider range of programs because it also
supports other languages than Java, and it supports more advanced locking mechanisms.
On the other hand, Gluon implements extended contracts for concurrency (see Section 2.4.2)
that consider data flow within functions, while Atomer implements only the idea of basic
contracts for concurrency (see Section 2.4.1). These extended contracts should improve
the precision of the analysis. Nonetheless, it is the author’s future work to implement the
extended contracts in Atomer as well.

In Facebook Infer, there is already implemented an analysis called Lock Consistency Viola-
tion2. It is a part of RacerD [5, 6, 17]. This analysis finds atomicity violations in C++ and
Objective-C programs for reads/writes on single variables required to be executed atomic-
ally. Atomer is different; it finds atomicity violations for sequences of functions required
to be executed atomically. Moreover, Atomer tries to automatically determine which se-
quences should indeed be executed atomically.

3.2 Design of Atomer and Its Principles

Atomer concentrates on checking the atomicity of the execution of certain sequences of func-
tion calls, which is often required for concurrent programs’ correct behaviour. In principle,
Atomer is based on the assumption that sequences of function calls executed atomically
once should probably be executed always atomically.

The proposal of Atomer is based on the concept of contracts for concurrency described
in Section 2.4. In particular, the proposal considers the basic contracts described in Sec-
tion 2.4.1. Neither the contracts extended by parameters explained in Section 2.4.2 nor the
contracts extended by spoilers and targets described in Section 2.4.3 are taken into account.

In general, basic contracts for concurrency allow one to define sequences of functions re-
quired to be executed atomically, as explained in more detail in Section 2.4. Atomer is able
to automatically derive candidates for such contracts and then verify whether the contracts
are fulfilled. In other words, Atomer can both automatically derive those sequences that
are sometimes executed atomically as well as subsequently check whether they are indeed
always executed atomically. Both of these steps are done statically. The proposed analysis
is thus divided into two parts (phases of the analysis that are in-depth described in the
sections below and illustrated in Figure 3.1):

Phase 1: Detection of (likely) atomic sequences.

Phase 2: Detection of atomicity violations (violations of the atomic sequences).

This section provides a high-level view of the abstract interpretation underlying Atomer.
The concrete types of the abstract states (i.e., elements of the abstract domain 𝑄) and
the summaries 𝜒, along with the implementation of all necessary abstract interpretation
operators are stated in Chapter 4 of [18]. However, actually, the abstract states 𝑠 ∈ 𝑄 of
both phases of the analysis are proposed as sets. So, in fact, the ordering operator ⊑ is

2Lock Consistency Violation is an atomicity violations analysis implemented in Facebook Infer. It is
described at https://fbinfer.com/docs/all-issue-types#lock_consistency_violation.
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Figure 3.1: Phases of the analysis of the Atomer’s first version and the analysis high-level
process illustration [18]

implemented as testing for a subset (i.e., 𝑠 ⊑ 𝑠′ ⇐⇒ 𝑠 ⊆ 𝑠′, where 𝑠, 𝑠′ ∈ 𝑄), the join
operator ⊔ is implemented as the set union (i.e., 𝑠 ⊔ 𝑠′ ⇐⇒ 𝑠 ∪ 𝑠′), and the widening
operator O is implemented using the join operator (i.e., 𝑠O 𝑠′ ⇐⇒ 𝑠⊔ 𝑠′) since the domains
are finite. Furthermore, it is essential to note that the proposed analysis is neither sound
nor complete. Its goal is to effectively find bugs rather than formally verify the absence of
atomicity violations.

Function summaries are in the below sections reduced to the output parts only (post-
conditions 𝑅). The input parts of summaries (pre-conditions 𝑃 ) are in case of the proposed
analysis always empty because, so far, it is not necessary to have any pre-conditions for
analysed functions. Thus, in this case, Hoare triples — {𝑡𝑟𝑢𝑒} 𝑆 {𝑅}— are used, where 𝑆
is an analysed function, i.e., 𝑃 = 𝑡𝑟𝑢𝑒.

Listings in the below sections are pieces of programs written in the C language (assuming
lock/unlock functions for mutual exclusion to critical sections).

3.2.1 Phase 1 — Detection of Atomic Sequences

Before detecting atomicity violations may begin, it is required to have contracts for con-
currency introduced earlier. Phase 1 of Atomer is able to produce such contracts, i.e., it
detects sequences of functions that should be executed atomically. Intuitively, the detection
is based on looking for sequences of functions executed atomically, in particular, under
some lock, on some path through a program. The assumption is that if it is once needed to
execute a sequence atomically, it should probably be always executed atomically.

For a description of the analysis, it is first needed to introduce a notion of a reduced sequence
of function calls. Such a sequence denotes a sequence in which the first appearance of each
function is recorded only. This is needed to ensure finiteness of the sequences derived by
the analysis, and hence the analysis’s termination.
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The detection of sequences of calls to be executed atomically is based on analysing all paths
through the CFG of a function and generating all pairs (𝐴,𝐵) ∈ Σ* × Σ* (where Σ is the
set of functions of a given program) of reduced sequences of function calls for each path
such that: 𝐴 is a reduced sequence of function calls that appear between the beginning of
the function being analysed and the first lock; between an unlock and a subsequent lock;
or between an unlock and the end of the function being analysed. 𝐵 is a reduced sequence
of function calls that follow the calls from 𝐴, and that appear between a lock and unlock
(or between a lock and the end of the function being analysed). Thus, the abstract states
of the analysis are elements of the set 22

Σ*×Σ*
because there is a set of the (𝐴,𝐵) pairs for

each program path.

It would be more precise to generate longer sequences of type 𝐴1 ·𝐵1 ·𝐴2 ·𝐵2 · . . . instead
of the sets of the pairs (𝐴,𝐵). Nevertheless, it would be more challenging to ensure the
above longer sequences’ finiteness and the sets of these sequences’ finiteness. Moreover,
there would be a significantly larger state space explosion problem [39]. So, the proposed
representation of the sets of pairs of sequences has been chosen to compromise accuracy
and efficiency. However, the experiments described in Chapter 5 of [18] show that it needs
even more pronounced abstraction for appropriate scalability.

Formally, the initial abstract state of a function is defined as 𝑠𝑖𝑛𝑖𝑡 = {{(𝜀, 𝜀)}}, where 𝜀
indicates an empty sequence. To formalise the analysis of a function, let f be a called leaf
function. Further, let 𝑠g be the abstract state of a function g being analysed before the
function f is called. After the call of f, the abstract state will be changed as follows:

𝑠′g = {𝑝′ ∈ 2Σ
*×Σ* | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴′, 𝐵′) ∈ Σ* × Σ* | ∃ (𝐴,𝐵) ∈ 𝑝 :

[¬𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵)) ∧ (𝐴′, 𝐵′) = (𝐴,𝐵)] ∨ [𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵))

∧ [(𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴,𝐵 · f)) ∨ (¬𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴 · f, 𝐵))]]}}

where 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 is a Boolean function that determines whether a given (𝐴,𝐵) pair is the
most recent pair of sequences of the current program state for a given program path.
Furthermore, 𝑙𝑜𝑐𝑘 is a predicate indicating whether the current program state is inside an
atomic block. Further, let 𝑠g be the abstract state of a function g being analysed before
an unlock is called. After the unlock is called, a new (𝐴,𝐵) pair is created and labelled as
a current using the function 𝑠𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡 as follows:

𝑠′g = {𝑝′ ∈ 2Σ
*×Σ* | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴,𝐵) ∈ Σ* × Σ* |

[(𝐴,𝐵) = (𝜀, 𝜀) ∧ 𝑠𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵))] ∨ (𝐴,𝐵) ∈ 𝑝}}

Example 3.2.1. For an explanation of the computation of the sets of the pairs (𝐴,𝐵),
assume that a state of the analysis of a program 𝑃 is the following sequence of function
calls: f · g; and a state of the analysis of a program 𝑃 ′ is the following sequence of function
calls: f · g [m · n. The square brackets are used to indicate an atomic sequence (the closing
square bracket is missing in the case of the program 𝑃 ′, which means that the program
state is currently inside an atomic block). The computed abstract state for the program 𝑃
is 𝑠𝑃 = {{(f ·g, 𝜀)}}, and for the program 𝑃 ′, it is 𝑠𝑃 ′ = {{(f ·g, m ·n)}}. Now, if the next
instruction is a call of a function x, in the case of the program 𝑃 , the call will be added
to the first 𝐴 sequence, and in the case of the program 𝑃 ′, the call will be added to the
first 𝐵 sequence as follows: 𝑠𝑃 = {{(f · g · x, 𝜀)}}, 𝑠𝑃 ′ = {{(f · g, m · n · x)}}. Subsequently,
if the next step in the program 𝑃 is a lock call, the next function calls will be added to the
first 𝐵 sequence of the set 𝑠𝑃 . And if the next step in the program 𝑃 ′ is an unlock call, it
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will be created a new element of the first set of the set 𝑠𝑃 ′ , and the next function calls will
be added to the 𝐴 sequence of this element. Finally, if a function y is called, the resulting
sets will look like follows: 𝑠𝑃 = {{(f · g · x, y)}}, 𝑠𝑃 ′ = {{(f · g, m · n · x), (y, 𝜀)}}. Note
that the final sequences of function calls look like follows: f · g · x [y and f · g [m · n · x] y for
the programs 𝑃 and 𝑃 ′, respectively.

A summary 𝜒f ∈ 2Σ
* × Σ* of a function f is then a pair 𝜒f = (ℬ, 𝒞) where:

• ℬ is a set constructed such that it contains all the 𝐵 sequences that appear on pro-
gram paths through f, i.e., those computed within the (𝐴,𝐵) pairs at the exit of f.
Formally, ℬ = {𝐵′ ∈ Σ* | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵) ∈ 𝑝 : 𝐵 ̸= 𝜀 ∧ 𝐵′ = 𝐵}, where 𝑠f is
the abstract state at the end of the abstract interpretation of f. In other words, this
component of the summary is a set of sequences of atomic function calls appearing
in f.

• 𝒞 is a concatenation of all the 𝐴 and 𝐵 sequences with removed duplicates of function
calls. In particular, assume that the following set of (𝐴,𝐵) pairs is computed at the
exit of f: {(𝐴1, 𝐵1), (𝐴2, 𝐵2), . . . , (𝐴𝑛, 𝐵𝑛)}, then the result is the sequence 𝐴1 ·𝐵1 ·
𝐴2 ·𝐵2 · . . . ·𝐴𝑛 ·𝐵𝑛 with removed duplicates. Formally,

𝒞 = 𝑟𝑒𝑑𝑢𝑐𝑒(
⨀︁

𝐴𝐵 ∈𝐴𝐵

𝐴𝐵)

where 𝐴𝐵 = {𝐴𝐵 ∈ Σ* | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵) ∈ 𝑝 : 𝐴𝐵 = 𝐴 · 𝐵},
⨀︀

concatenates all
sequences of a set, and 𝑟𝑒𝑑𝑢𝑐𝑒 is a function that removes duplicates of function calls.
Intuitively, in this component of the summary, the analysis gathers occurrences of all
called functions within the analysed function obtained by a concatenation of all the 𝐴
and 𝐵 sequences. 𝒞 is recorded to facilitate the derivation of atomic call sequences
that show up higher in the call hierarchy. Indeed, while locks/unlocks can appear in
such a higher-level function, parts of the call sequences can appear lower in the call
hierarchy.

Example 3.2.2. For instance, the analysis of the function f from Listing 3.1 produces the
following sequences:

𝐴1⏞  ⏟  
x · x · y

𝐵1⏞  ⏟  
[a · b · b]

𝐴2⏞ ⏟ 
y · y

𝐵2⏞  ⏟  
[a · c]

𝐴3⏞ ⏟ 
y

𝐵3⏞  ⏟  
[a · a · c]

The functions a, b, c, x, y are not deeper analysed because it is assumed that these functions
are leaf nodes of the call graph. The strikethrough of the functions b, x, y denotes removing
already recorded function calls in the 𝐴 and 𝐵 sequences to get the reduced form. The
strikethrough of the entire sequence y [a · a · c] means discarding sequence already seen
before. For the above, the abstract state at the end of the abstract interpretation of the
function f is 𝑠f = {{(x · y, a · b), (y, a · c), (𝜀, 𝜀)}}. The derived summary 𝜒f for the
function f is 𝜒f = (ℬ, 𝒞), where ℬ = {a ·b, a ·c}, i.e., 𝐵1 and 𝐵2; and 𝒞 = x ·y ·a ·b ·c, i.e.,
the concatenation of 𝐴1, 𝐵1, 𝐴2, 𝐵2 from which duplicate function calls were removed.

Further, it is demonstrated how the results of the analysis of nested functions are used
during the detection of atomic sequences. When calling an already analysed function, one
plugs the sequence from the second component of its summary (i.e., the 𝒞 sequence) into the
most recent 𝐴 or 𝐵 sequence of all the program paths (where a program path corresponds to
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1 void f()
2 {
3 x(); x(); y();
4 lock(&L); // a . b
5 a(); b(); b();
6 unlock(&L);
7 y(); y();
8 lock(&L); // a . c
9 a(); c();

10 unlock(&L);
11 y();
12 lock(&L); // a . c
13 a(); a(); c();
14 unlock(&L);
15 }

Listing 3.1: A code snippet used for an illustration of the derivation of sequences of functions
called atomically

a single element of an abstract state, i.e., a set of the (𝐴,𝐵) pairs). In particular, assume
that (𝐴,𝐵) is the most recent pair of sequences of the program state of a path being
analysed. Subsequently, it is called a function f with a non-empty summary (i.e., 𝒞 ≠ 𝜀).
If the current program state of the analysed function is inside an atomic block, the analysis
will transform the pair (𝐴,𝐵) to a new (𝐴′, 𝐵′) pair as follows: (𝐴′, 𝐵′) = (𝐴,𝐵 · f · 𝒞).
Otherwise, (𝐴′, 𝐵′) = (𝐴 · f · 𝒞, 𝐵). In such cases where a summary is empty, i.e., there
are no function calls in a called function, or it is a leaf node of the call graph, just the
function name is appended to the most recent 𝐴 or 𝐵 sequences of all the program paths.
To formalise this process, let f be a called function that was already analysed, and the
second component of its summary is 𝒞. Further, let 𝑠g be the abstract state of a function g
being analysed before the function f is called. After the call of f, the abstract state will
be changed as follows:

𝑠′g = {𝑝′ ∈ 2Σ
*×Σ* | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴′, 𝐵′) ∈ Σ* × Σ* | ∃ (𝐴,𝐵) ∈ 𝑝 :

[¬𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵)) ∧ (𝐴′, 𝐵′) = (𝐴,𝐵)] ∨ [𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵))

∧ [(𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴,𝐵 · f · 𝒞)) ∨ (¬𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴 · f · 𝒞, 𝐵))]]}}

Example 3.2.3. This example shows how the function g from Listing 3.2 would be analysed
using the result of the analysis of the function f from Listing 3.1. The second component
of 𝜒f is 𝒞 = x · y · a · b · c. The analysis of the function g produces the following sequence:

x · f · x · y · a · b · c · z [f · x · y · a · b · c]

For the above, the abstract state at the end of the abstract interpretation of the function g
is 𝑠g = {{(x · f · y · a · b · c · z, f · x · y · a · b · c·), (𝜀, 𝜀)}}. The derived summary 𝜒g for the
function g is 𝜒g = ({f · x · y · a · b · c·}, x · f · y · a · b · c · z).
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1 void g()
2 {
3 x(); f(); z();
4 lock(&L); // f . x . y . a . b . c
5 f();
6 unlock(&L);
7 }

Listing 3.2: A code snippet used to illustrate the derivation of sequences of functions called
atomically with a nested function call (function f is defined in Listing 3.1)

Cases Where Lock/Unlock Calls Are Not Paired in a Function

For treating cases where lock/unlock calls are not paired in a function — as demonstrated
in Listing 3.3 — the following solution is implemented in the basic version of Atomer.

Everything is unlocked at the end of a function, i.e., one virtually appends an unlock to the
end of the function if it is necessary. Then, for the function m from Listing 3.3, the atomic
section is virtually closed. Hence, there is detected an atomic sequence a. In particular,
the summary is as follows: 𝜒m = ({a}, a).

Moreover, all unlock calls not preceded by a lock are ignored. Thus, in the function n from
Listing 3.3, there are not detected any atomic sequences: 𝜒n = (∅, a).

1 void m()
2 {
3 lock(&L); // a
4 a();
5 }
6 void n()
7 {
8 a();
9 unlock(&L);

10 }

Listing 3.3: A code snippet used to illustrate treating cases where lock/unlock calls are not
paired in a function

The Results of Phase 1 The derived sequences of calls assumed to execute atomically —
the ℬ sequences — from the summaries of all analysed functions are stored into a file used
during Phase 2, which is described later on.

3.2.2 Phase 2 — Detection of Atomicity Violations

In the second phase of the analysis, i.e., when detecting violations of the atomic sequences
obtained from Phase 1, the analysis looks for pairs of functions that should be called
atomically (or just for single functions if there is only one function call in an atomic se-
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quence) and that are not executed atomically (i.e., under a lock) on some path through
the CFG. The pairs of function calls to be checked for atomicity are obtained as follows.
For each function f with a summary 𝜒f = (ℬ, 𝒞) from Phase 1 in a given program 𝑃 ,
where ℬ = {𝐵1, 𝐵2, . . . , 𝐵𝑛}, the analysis considers every pair (x, y) ∈ Σ×Σ of functions
that appear as a substring in some of the 𝐵𝑖 sequences, i.e., 𝐵𝑖 = 𝑤 · x · y · 𝑤′ for some
sequences 𝑤,𝑤′. Note that x could be 𝜀 (an empty sequence) if some 𝐵𝑖 consists of a single
function. All these “atomic pairs” are put into the set Ω ∈ 2Σ×Σ. More formally,

Ω = {(x, y) ∈ Σ× Σ | ∃ (ℬ, 𝒞) ∈ 𝑋𝑃 : ∃𝐵 ∈ ℬ : [|𝐵| = 1 ∧ (x, y) = (𝜀,𝐵)]

∨ [|𝐵| > 1 ∧ ∃𝑤,𝑤′ ∈ Σ* : 𝐵 = 𝑤 · x · y · 𝑤′ ∧ (x, y) ̸= (𝜀, 𝜀)]}

where 𝑋𝑃 ∈ 22
Σ*×Σ* is a set of all Phase 1 summaries of the program 𝑃 .

Example 3.2.4. For instance, assume that in Phase 1, there was analysed a function f. It
produced the summary 𝜒f = (ℬ, 𝒞), where ℬ = {a · b · c, a · c · d}, i.e., a set of sequences
of functions that should be called atomically. The analysis will then look for the following
pairs of functions that are not called atomically: Ω = {a · b, b · c, a · c, c · d}.

An element of this phase’s abstract state is a triple (x, y, 𝑉 ) ∈ Σ×Σ×2Σ×Σ×N where (x, y)
is a pair of the most recent calls of functions performed on the program path being explored,
and 𝑉 is a set of so far detected pairs that violate atomicity on particular lines of code.
Thus, the abstract states are elements of the set 2Σ×Σ×2Σ×Σ×N . Whenever a function f
is called on some path that led to an abstract state (x, y, 𝑉 ), a new pair (x′, y′) of the
most recent function calls is created from the previous pair (x, y) such that (x′, y′) = (y, f).
Further, when the current program state is not inside an atomic block, the analysis checks
whether the new pair (or just the last call) violates atomicity (i.e., (x′, y′) ∈ Ω∨(𝜀, y′) ∈ Ω).
When it does, it is added to the set 𝑉 of pairs that violate atomicity.

Formally, the initial abstract state (in this phase) of a function is defined as 𝑠𝑖𝑛𝑖𝑡 =
{(𝜀, 𝜀, ∅)}. To formalise the analysis of a function, let f be a called leaf function on
a line 𝑐 ∈ N. Further, let 𝑠g be the abstract state of a function g being analysed be-
fore the function f is called. After the call of f, the abstract state will be changed as
follows:

𝑠′g = {(x′, y′, 𝑉 ′) ∈ Σ× Σ× 2Σ×Σ×N | ∃ (x, y, 𝑉 ) ∈ 𝑠g : (x′, y′) = (y, f)

∧ [(¬𝑙𝑜𝑐𝑘 ∧ 𝑉 ′ = {(x′′, y′′, 𝑐′) ∈ Σ× Σ× N | (x′′, y′′, 𝑐′) ∈ 𝑉

∨ [((x′′, y′′) = (x′, y′) ∨ (x′′, y′′) = (𝜀, y′)) ∧ (x′′, y′′) ∈ Ω ∧ 𝑐′ = 𝑐]}) ∨ (𝑙𝑜𝑐𝑘 ∧ 𝑉 ′ = 𝑉 )]}

A summary of the second phase of the analysis —𝜒f ∈ 2Σ×Σ×N — of a function f is then
𝜒f = 𝒱, where 𝒱 is a set of pairs that violate atomicity within the function f. 𝒱 is
constructed such that it contains a union of all the 𝑉 sets that appear on program paths
through f. Formally, 𝒱 =

⋃︀
𝑉 ′ ∈𝑉 𝑉 ′, where 𝑉 = {𝑉 ′ ∈ 2Σ×Σ×N | ∃ 𝑝 ∈ 𝑠f : ∃ (x, y, 𝑉 ) ∈ 𝑝 :

𝑉 ̸= ∅∧𝑉 ′ = 𝑉 } and 𝑠f is the abstract state at the end of the abstract interpretation of f.

The analysis of functions with nested function calls and cases where lock/unlock calls are not
paired within functions are handled analogically as in Phase 1. For a detailed explanation,
see [18].

Example 3.2.5. To demonstrate the detection of an atomicity violation, assume the func-
tions f and g from Listing 3.4. The set of atomic sequences of the function f with the first
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phase’s summary 𝜒f = (ℬ, 𝒞) is ℬ = {a · b · c}, thus, Ω = {(a, b), (b, c)}. In the function g,
an atomicity violation is detected because the pair of functions b, c is not called atomically
on line 12, i.e., (b, c) ∈ Ω. Consequently, the derived summary 𝜒g for the function g for
the second phase of the analysis is 𝜒g = {(b, c, 12)}.

1 void f()
2 {
3 x();
4 lock(&L); // a . b . c
5 a(); b(); c();
6 unlock(&L);
7 y();
8 }
9 void g()

10 {
11 x();
12 b(); c(); // ATOMICITY_VIOLATION: (b, c)
13 y();
14 }

Listing 3.4: An example of an atomicity violation

The Results of Phase 2 The sets of pairs that violate atomicity — the 𝒱 sets — from
the summaries of all analysed functions are finally reported to the user.

3.3 Atomer’s Limitations

The basic version of Atomer has been proposed as it is detailed in Section 3.2. The first ver-
sion of the analyser has also been implemented in [18], and it works as expected. Moreover,
it can be used in practice to analyse various kinds of programs, and it may find real-world
atomicity related bugs. Nevertheless, there are still several limitations and cases where the
original version of Atomer would not work correctly, i.e., cases not addressed during the
original proposal. Some of these cases are briefly discussed already in [18] and further
described in [19].

So far, Atomer does not distinguish different lock instances used simultaneously in a pro-
gram. Only calls of locks/unlocks are identified, and the parameters of these calls — lock
objects — are not considered at all. Therefore, if there are several lock objects used, the
analysis does not work correctly. Although this may happen in real-life programs, insomuch
as one could have, e.g., another (smaller) atomic section inside a current atomic section
(this does not have to be evident at first because the inner atomic section could be, e.g.,
inside a nested function). For example,

. . . lock(L1); . . . lock(L2); . . . unlock(L2); . . . unlock(L1); . . .
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Another possibility is an alternating sequence of locks, e.g., two locks are locked at first,
and then, they are unlocked in the same order, i.e.,

. . . lock(L1); . . . lock(L2); . . . unlock(L1); . . . unlock(L2); . . .

Another limitation of Atomer’s basic version is that it supports only the analysis of programs
written in the C language that use PThread locks to synchronise concurrent threads. Of
course, in practice, many other types of locks for synchronisation of concurrent threads
or even synchronisation of concurrent processes are used. Although the first version of
Atomer can analyse C programs with other types of locks, these locks are not recognised
as locks. Thus, the analysis would not work as expected. It would definitely be helpful
also to analyse other languages than just C. As described in Section 2.3, Facebook Infer
is capable of analysing programs written in C, C++, Objective-C, Java, and C#. The
analysis algorithm could then be the same for all these languages because Facebook Infer’s
intermediate language is analysed instead of directly analysing the input languages. Again,
the first version of Atomer should be able to analyse the above languages, but it has not
been tested within [18]. However, most importantly, other languages may use very different
lock types, which would not be recognised. Examples of some advanced locking mechanisms
(not supported by the basic version of Atomer) are lock guards, re-entrant locks, or try-locks.

Regarding scalability, the basic version of Atomer can have problems with more extensive
and complex programs, as mentioned in [18] (problems with memory as well as problems
with the analysis time). The problem is working with the sets of (𝐴,𝐵) pairs of sequences
in the abstract states of Phase 1 and working with sequences of calls in the summaries of
this phase. It may be necessary to store many of these sequences, and they can be very
long (due to all different paths through the CFG of an analysed program). It may lead to
the state space explosion problem [39].

One of the main reasons that Atomer’s first version reports false alarms is that in critical
sections, in real-world programs, there are sometimes called generic functions that do not
influence atomicity violations (such as functions for printing to the standard output, func-
tions for recasting variables to different types, functions related to iterators, and whatever
other “safe” functions for particular program types). Often, to find some atomicity viola-
tions, it is sufficient to focus only on certain “critical” functions. In practice, another issue
is that in an analysed program, there can be “large” critical sections or critical sections in
which appear function calls with a deep hierarchy of nested function calls. All the above
cases may cause massive and “imprecise” atomic sequences that are the source of false
alarms.

The next source of false alarms is something that the author of this work calls local atomicity
violations. Imagine a function f that contains non-atomic calls of functions a, b, and these
functions should always be invoked atomically. Obviously, this is an atomicity violation.
However, suppose that f is called exclusively from atomic sections of other functions higher
in the call hierarchy. In this case, in effect, that is not a real atomicity violation (it can be
considered as a local atomicity violation within a single function, but globally, it is not). As
a consequence, a false alarm would be reported by the basic version of Atomer. In real-life
programs, this situation may be fairly common due to complicated call graphs.

Atomer considers only the basic contracts for concurrency, defined in Section 2.4.1. It is
pretty limited in some circumstances, and therefore, Atomer can report false alarms. The
basic contracts do not take into consideration the data flow within function calls. However,
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a better idea is to work with the assumption that a sequence of function calls must be
atomic only if it handles the same data. Assume that functions f, g are manipulating with
the same container C as follows: f(C); g(C);. These are called atomically. Somewhere
else — where f, g are not called atomically — it does not necessarily cause an atomicity
violation because they can be invoked with different arguments, which could be valid.
This behaviour corresponds to the extended contracts with parameters (see Section 2.4.2).
Another (more complex) limitation is that basic contracts do not consider any contextual
information. It would be more precise to consider as atomicity violations such sequences
that could be violated only by particular (“dangerous”) function calls, not by any calls.
For example, suppose that there is the following sequence of functions called atomically:
f(); g();. While somewhere else, these functions are not called atomically, it does not
necessarily cause that it is an atomicity violation because, in this particular context, none
of the “dangerous” functions can be executed by any concurrent thread. The extended
contracts with spoilers formally describe these scenarios in Section 2.4.3.

A remarkable problem (though it is not directly a problem of Atomer) is identifying whether
a reported atomicity violation is a real bug or whether it is just a false alarm. It could be
really challenging, especially in extensive real-life programs.

Solutions for some of the above issues and limitations are proposed in Chapter 4 and further
implemented in a new version of Atomer, detailed in Chapter 5.
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Chapter 4

Proposal of Enhancements for
Atomer

In this chapter, the author proposes solutions for some of the Atomer’s limitations stated
in Section 3.3. The solutions enhance the analysis’s precision and scalability. In order to
formally describe these enhancements, the notions and symbols introduced in Section 3.2
are used. Some of the enhancements were briefly discussed already in [19].

Section 4.1 proposes an optimisation of Atomer’s scalability. The following Sections 4.2,
4.3, 4.4 cover precision improvements, i.e., extensions of Atomer with additional features
that improve its ability to cope with cases that were not supported in the first version of
Atomer, and that can be seen in real-life code. Furthermore, Chapter 5 provides an overview
of the implementation of all the below improvements in a new version of Atomer.

In the following sections, to give an intuition, there are used listings with pieces of C pro-
grams (assuming lock/unlock functions for mutual exclusion to critical sections). In addi-
tion, there are used C++ and Java programs to illustrate the locking mechanisms in these
languages.

4.1 Approximation of Sequences by Sets

Regarding scalability, the basic version of Atomer can have problems with more extensive
and complex programs, which can manifest both in its time and memory consumption.
The problems arise primarily due to working with the sets of (𝐴,𝐵) pairs of sequences
of function calls in abstract states (during Phase 1). It may be necessary to store many
of these sequences, and they could be very long (due to all different paths through the
CFG of an analysed program). The author’s idea is to approximate these sets by working
with sets of (𝐴,𝐵) pairs of sets of function calls. Apart from representing the abstract
states of the first phase of the analysis, elements of these pairs do also appear in the first
phase’s summaries, and they are then used during Phase 2 as well. Thus, it is needed
to make a certain approximation in the summaries and their subsequent usage too. The
approximated phases of the analysis and their collaboration are illustrated in Figure 4.1
(one can compare that with the illustration of the first version of Atomer in Figure 3.1).
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Phase 1:
Detection of
Atomic Sets

Atomic Sets

Phase 2:
Detection of
Atomicity
Violations

C

Java

Reported
Atomicity
Violations

C++

Figure 4.1: An illustration of the phases of the Atomer’s analysis and the high-level analysis
process with an approximation of working with sequences by working with sets (moreover,
note that a new version of Atomer accepts programs also written in C++ and Java lan-
guages, which is described in Section 5.3)

In particular, the proposed solution is more scalable because the ordering of function calls
that appear in the pairs is not relevant anymore. Therefore, less memory is required because
different sequences of function calls can map the same set. The analysis is also faster since
there are stored fewer sets of function calls to work with. On the other hand, the analysis
is less accurate because the new approach causes some loss of information. In practice, this
loss of information could eventually lead to false alarms. However, the number of such false
alarms is typically not that high as this thesis’s experimental evidence shows. Moreover,
later, there are discussed some techniques that may rid of these false alarms.

4.1.1 Approximation with Sets in Phase 1

The detection of sequences of calls to be executed atomically now generates all (𝐴,𝐵) pairs
of sets of function calls for each path instead of pairs of sequences, i.e., (𝐴,𝐵) ∈ 2Σ×2Σ.
Here, 𝐴, 𝐵 are not reduced sequences (the notion of a reduced sequence is not needed
anymore) but sets. The purpose of the pairs is preserved. Hence, the abstract states are
elements of the set 22

2Σ×2Σ . In all the implemented algorithms and definitions, it is sufficient
to work with:

• sets 2Σ of functions, instead of sequences Σ* of functions;

• the empty set ∅, instead of the empty sequence 𝜀; and

• unions ∪ of sets, instead of the concatenation · of sequences.

The above implies that the initial abstract state of a function is changed to 𝑠𝑖𝑛𝑖𝑡 = {{(∅, ∅)}}.
During the analysis of a function g with an abstract state 𝑠g, when a leaf function f is called,
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the abstract state’s transformation is changed as follows:

𝑠′g = {𝑝′ ∈ 22
Σ×2Σ | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴′, 𝐵′) ∈ 2Σ × 2Σ | ∃ (𝐴,𝐵) ∈ 𝑝 :

[¬𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵)) ∧ (𝐴′, 𝐵′) = (𝐴,𝐵)] ∨ [𝑐𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵))

∧ [(𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴,𝐵 ∪ {f})) ∨ (¬𝑙𝑜𝑐𝑘 ∧ (𝐴′, 𝐵′) = (𝐴 ∪ {f}, 𝐵))]]}}

Further, when an unlock is called, a new (𝐴,𝐵) pair is created as follows:

𝑠′g = {𝑝′ ∈ 22
Σ×2Σ | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴,𝐵) ∈ 2Σ × 2Σ |

[(𝐴,𝐵) = (∅, ∅) ∧ 𝑠𝑒𝑡𝐶𝑢𝑟𝑟𝑒𝑛𝑡(𝑝, (𝐴,𝐵))] ∨ (𝐴,𝐵) ∈ 𝑝}}

Other algorithms (e.g., calling an already analysed nested function) are modified analogic-
ally.

Another approximation was made in the summaries. The first component of the summary
has to be changed to a set of sets of function calls because it is constructed from the 𝐵 items
from the abstract states, which are now sets. The second component of the summary can
be changed to a set of function calls because even before, it was a reduced sequence of all
the (𝐴,𝐵) pairs. Therefore, the ordering of function calls was significantly approximated
even so. Moreover, it is used to analyse functions higher in the call hierarchy where it
is appended to 𝐴 or 𝐵, which are now sets. Thus, it would make no sense to store it in
summaries as a sequence. Formally, the form of summaries 𝜒 changes from 2Σ

* × Σ* to
22

Σ×2Σ. In particular, a summary 𝜒f ∈ 22
Σ×2Σ of a function f is redefined as 𝜒f = (ℬ, 𝒞),

where:

• ℬ = {𝐵′ ∈ 2Σ | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵) ∈ 𝑝 : 𝐵 ̸= ∅ ∧ 𝐵′ = 𝐵}, where 𝑠f is the abstract
state at the end of the abstract interpretation of f.

• 𝒞 =
⋃︀

𝐴𝐵 ∈𝐴𝐵

𝐴𝐵, where 𝐴𝐵 = {𝐴𝐵 ∈ 2Σ | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵) ∈ 𝑝 : 𝐴𝐵 = 𝐴 ∪𝐵}.

Example 4.1.1. To illustrate the approximation of the analysis to sets, assume functions f
and g from Listing 4.1. Further, assume that a, b, x, y are leaf nodes of the call graph.
Before the approximation, when the analysis was working with sequences of function calls,
Phase 1 of the analysis produced the following abstract states and summaries while ana-
lysing the functions:

• 𝑠f = {{(x · y, a · b), (y · x, b · a), (𝜀, 𝜀)}}, 𝜒f = ({a · b, b · a}, x · y · a · b);

• 𝑠g = {{(y · x, b · a), (𝜀, 𝜀)}}, 𝜒g = ({b · a}, y · x · b · a).

Whereas, after the approximation, the produced abstract states and summaries are as
follows: 𝑠f = 𝑠g = {{({x, y}, {a, b}), (∅, ∅)}}, 𝜒f = 𝜒g = ({{a, b}}, {a, b, x, y}). They are
the same for both functions because there are the same locked/unlocked function calls; only
the order of calls differs.

4.1.2 Approximation with Sets in Phase 2

The detection of atomicity violations in Phase 2 then works almost the same way as before
the approximation. However, there is one difference. Before, the analysis implemented in
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1 void f()
2 {
3 x(); y();
4 lock(&L); // a . b -> {a, b}
5 a(); b();
6 unlock(&L);
7 y(); x();
8 lock(&L); // b . a -> {a, b}
9 b(); a();

10 unlock(&L);
11 }
12 void g()
13 {
14 y(); x();
15 lock(&L); // b . a -> {a, b}
16 b(); a();
17 unlock(&L);
18 }

Listing 4.1: A code snippet used to illustrate the proposed approximation of the first phase
of the analysis in a new version of Atomer using sets of function calls

the second phase looked for violations of atomic sequences obtained from Phase 1. Now,
atomic sets are obtained from Phase 1; hence, the detection of atomicity violations needs
to work with sets too. Again, the analysis looks for pairs of functions that should be called
atomically, while this is not the case on some path through the CFG. This algorithm is
identical to the algorithm before the approximation.

Nevertheless, it is needed to propose a new algorithm that derives the pairs of function calls
(from the atomic sets) to be checked for atomicity (i.e., the set Ω ∈ 2Σ×Σ). Intuitively, the
second phase of the analysis now looks for non-atomic execution of any pair of functions f,
g such that {f, g} is a subset of some set of functions that were found to be executed
atomically. In order to obtain the pairs, all possible pairs of functions are taken from
atomic sets from Phase 1, i.e., all 2-element variations. Formally, let 𝑃 be an analysed
program, and let 𝑋𝑃 ∈ 22

2Σ×2Σ be a set of all summaries of the program 𝑃 . Then, all the
atomic pairs (the first item of a pair may be empty if an atomic set consists of a single
function) are obtained as follows:

Ω = {(x, y) ∈ Σ× Σ | ∃ (ℬ, 𝒞) ∈ 𝑋𝑃 : ∃𝐵 ∈ ℬ : [|𝐵| = 1 ∧ (x, y) ∈ {𝜀} ×𝐵]

∨ [|𝐵| > 1 ∧ (x, y) ∈ 𝐵 ×𝐵 ∧ x ̸= y]}

Example 4.1.2. For example, assume that Phase 1 analysed a function f, which produced
the summary 𝜒f = (ℬ, 𝒞). Assume that before the approximation, a set of sequences of
functions that should be called atomically was as follows: ℬ = {a ·b ·c}. Then, the analysis
looked for the following pairs of functions that are not called atomically: Ω = {(a, b), (b, c)}.
Since the result of the first component of the summary was changed to the set ℬ of sets of
functions that should be called atomically as follows: ℬ = {{a, b, c}}, the analysis now looks
for the following pairs of functions that are not called atomically (all 2-element variations):
Ω = {(a, b), (a, c), (b, a), (b, c), (c, a), (c, b)}.
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4.2 Advanced Manipulation with Locks

The original version of Atomer does not distinguish different lock instances in a program.
Only calls of locks/unlocks are identified, and the parameters of these calls — lock objects —
are not considered. Thus, if there are several lock objects used, the analysis does not work
correctly.

In order to consider lock objects, it was proposed to distinguish between them using Face-
book Infer’s built-in mechanism called access paths [25], explained below. The analyser does
not perform a classical alias analysis, i.e., it does not perform a precise analysis for saying
when arbitrary pairs of accesses to lock objects may alias (such an analysis is considered
too expensive).

Access Paths The syntactic access paths [25] represent heap locations via the paths used
to access them, i.e., they have the form of an expression consisting of a base variable followed
by a sequence of fields. More formally, let 𝑉 𝑎𝑟 be a set of all variables that can occur in
a given program. Let 𝐹𝑖𝑒𝑙𝑑 be a set of all possible field names that can be used in the
program (e.g., structure fields). An access path 𝜋 from the set Π of all access paths is then
defined as follows:

𝜋 ∈ Π ::= 𝑉 𝑎𝑟 × 𝐹𝑖𝑒𝑙𝑑*

Access paths are already implemented in Facebook Infer. For instance, the principle of using
access paths is used in an existing analyser in Facebook Infer — RacerD [5, 6, 17] — for data
race detection. In general, no sufficiently precise alias analysis works compositionally and
at scale. That is the motivation for using access paths in Facebook Infer.

Given a pair of accesses to lock objects, to determine whether these locks are equal, it
is needed to answer the following question: “Can the accesses touch the same address?”.
Remarkably, according to the authors of [5], access paths alone almost convey enough
semantic information to answer the above question on their own. If two access paths are
syntactically equal, it is almost (but not quite) true that they must refer to the same
address. Syntactically identical paths can refer to different addresses if (i) they refer to
different instances of the same object, or (ii) a prefix of the path is reassigned along one
execution trace but not the other. These conditions cannot hold if an access path is stable,
i.e., if none of its proper prefixes appears in assignments during a given execution trace, then
it touches the same memory as all other stable accesses to the syntactic path. Therefore, the
access paths’ syntactic equality is a reasonably efficient way to say (in an under-approximate
fashion) that heap access touches the same address. Also, by using access paths, RacerD
detected many errors in real-world programs, proving that the use of access paths can reveal
real errors. This is why it was decided to use this principle to represent locks in Atomer.

During the analysis performed by Atomer (in both phases), each atomic section is identified
by an access path of the lock that guards the section; see Sections 4.2.1, 4.2.2. Because
syntactically identical access paths are used as the means for distinguishing atomic sections,
some atomicity violations could be missed (or some false alarms could be reported) due to
distinct access paths that refer to the same memory. However, the analysis’s precision is
still significantly improved this way while preserving its scalability, and the stress is anyway
put on finding likely violations, not on being sound.
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Another limitation of Atomer in its basic version is that it does not count with re-entrant
locks when a process can lock the same object multiple times without blocking itself, and
then it should unlock the lock object the same number of times. This approach is, in fact,
widespread, e.g., in Java, where so-called synchronised blocks are used, as demonstrates
Listing 4.2. These blocks are re-entrant by default. To consider re-entrant locks in the
analysis, the number of locks of individual lock objects is tracked in the abstract states of
both phases of the analysis. A lock is unlocked as soon as this number decreases to 0. Also,
an input parameter 𝑡 ∈ N was proposed to limit the upper bound to which the analysis
tracks precisely the number of times a given lock is locked. When this bound is reached,
the widening operator is used to abstract the number to any value bigger than the bound.
This is to ensure termination of the analysis. The idea of this upper bound limit comes
from the approach used in RacerD.

1 public synchronized void f() {
2 x();
3 synchronized (this) {
4 a();
5 synchronized (this) { b(); c(); }
6 d();
7 }
8 y();
9 }

Listing 4.2: An example of re-entrant locks in Java using the synchronized keyword, which
is implemented as a monitor. In the example, there are three locks used simultaneously
over the same object. The entire method f is synchronised, which implicitly uses this as
a lock object. Furthermore, the two synchronised blocks explicitly use the lock object this

4.2.1 Advanced Manipulation with Locks in Phase 1

Recall that the detection of sets of calls to be executed atomically is based on generating
the pairs (𝐴,𝐵) ∈ 2Σ × 2Σ. Now, these pairs are to be extended to store the access paths
and the number of locks of lock objects that guard calls executed atomically, i.e., the 𝐵
sets. Therefore, the (𝐴,𝐵) pairs are extended to tuples (𝐴,𝐵, 𝜋, 𝑙) ∈ 2Σ × 2Σ × Π × N⊤

where 𝜋 is an access path that identifies a lock object that locks the atomic section that
contains the calls from 𝐵, and 𝑙 is the number of locks of the lock identified by 𝜋. For the
clarity of the below description, let 𝜋 be just a base variable, i.e., 𝜋 ∈ Π ::= 𝑉 𝑎𝑟 ∪ {𝜀}.
Note that 𝜋 could also be 𝜀, which is a special case when there is no lock associated with
the (𝐴,𝐵) pair so far, i.e., 𝐵 is empty and a lock was not called yet. N⊤ denotes N ∪ {⊤},
where ⊤ represents a number larger than 𝑡. Thus, the abstract states are elements of the
set 22

2Σ×2Σ×Π×N⊤ .

The analysis works as follows. When a function is called, it is appended to the 𝐴 set of the
element without an associated lock, i.e., the element where 𝜋 = 𝜀. Besides, the function is
appended to the 𝐵 sets of all the elements that have associated some lock that is currently
locked, i.e., 𝜋 ̸= 𝜀 and 𝑙 > 0. When a lock is called, its identifier 𝜋𝑖 is associated with the
element without any lock associated with it, and the counter 𝑙 of this element is set to 1.
Then, 𝑙 is incremented in all the elements where 𝜋 = 𝜋𝑖 and 𝑙 > 0. Moreover, it is created
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a new empty element without a lock. Finally, when an unlock with the identifier 𝜋𝑖 is called,
𝑙 is decremented in all the elements where 𝜋 = 𝜋𝑖 and 𝑙 > 0. To formalise this process,
let 𝑖𝑛𝑐⊤ : N⊤→ N⊤ and 𝑑𝑒𝑐⊤ : N⊤→ N⊤ be functions for incrementing and decrementing
the number of locks of some lock objects w.r.t. the upper bound ⊤, respectively. These
functions are defined as follows:

𝑖𝑛𝑐⊤(𝑙) =

{︃
𝑙 + 1 for 𝑙 ̸= ⊤ and 𝑙 + 1 < 𝑡

⊤ otherwise
𝑑𝑒𝑐⊤(𝑙) =

⎧⎪⎨⎪⎩
𝑙 − 1 for 𝑙 ̸= ⊤ and 𝑙 − 1 ≥ 0

0 for 𝑙 = 0

𝑡− 1 otherwise, i.e., 𝑙 = ⊤

The initial abstract state of a function is changed to 𝑠𝑖𝑛𝑖𝑡 = {{(∅, ∅, 𝜀, 0)}}. During the
analysis of a function g with an abstract state 𝑠g, when a leaf function f is called, the
abstract state’s transformation is changed as follows:

𝑠′g = {𝑝′ ∈ 22
Σ×2Σ×Π×N⊤ | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴′, 𝐵′, 𝜋′, 𝑙′) ∈ 2Σ × 2Σ ×Π× N⊤ |

∃ (𝐴,𝐵, 𝜋, 𝑙) ∈ 𝑝 : [𝜋 = 𝜀 ∧ 𝑙 = 0 ∧ (𝐴′, 𝐵′, 𝜋′, 𝑙′) = (𝐴 ∪ {f}, 𝐵, 𝜋, 𝑙)] ∨ [𝜋 ̸= 𝜀

∧ ([𝑙 > 0 ∧ (𝐴′, 𝐵′, 𝜋′, 𝑙′) = (𝐴,𝐵 ∪ {f}, 𝜋, 𝑙)] ∨ [𝑙 = 0 ∧ (𝐴′, 𝐵′, 𝜋′, 𝑙′) = (𝐴,𝐵, 𝜋, 𝑙)])]}}

Further, when a lock identified by an access path 𝜋𝑖 is called, the abstract state changes as
follows:

𝑠′g = {𝑝′ ∈ 22
Σ×2Σ×Π×N⊤ | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴,𝐵, 𝜋, 𝑙) ∈ 2Σ × 2Σ ×Π× N⊤ |

(𝐴,𝐵, 𝜋, 𝑙) = (∅, ∅, 𝜀, 0) ∨ [(𝐴,𝐵, 𝜀, 0) ∈ 𝑝 ∧ 𝜋 = 𝜋𝑖 ∧ 𝑙 = 𝑖𝑛𝑐⊤(0)] ∨ [(𝐴,𝐵, 𝜋, 𝑙′) ∈ 𝑝

∧ 𝜋 ̸= 𝜀 ∧ [((𝑙′ = 0 ∨ 𝜋 ̸= 𝜋𝑖) ∧ 𝑙 = 𝑙′) ∨ (𝑙′ > 0 ∧ 𝜋 = 𝜋𝑖 ∧ 𝑙 = 𝑖𝑛𝑐⊤(𝑙′))]]}}

Furthermore, when an unlock identified by the access path 𝜋𝑖 is called, the abstract state
changes as follows:

𝑠′g = {𝑝′ ∈ 22
Σ×2Σ×Π×N⊤ | ∃ 𝑝 ∈ 𝑠g : 𝑝′ = {(𝐴,𝐵, 𝜋, 𝑙) ∈ 2Σ × 2Σ ×Π× N⊤ |

(𝐴,𝐵, 𝜋, 𝑙) = (∅, ∅, 𝜀, 0) ∨ [(𝐴,𝐵, 𝜋, 𝑙′) ∈ 𝑝 ∧ 𝜋 ̸= 𝜀

∧ [((𝑙′ = 0 ∨ 𝜋 ̸= 𝜋𝑖) ∧ 𝑙 = 𝑙′) ∨ (𝑙′ > 0 ∧ 𝜋 = 𝜋𝑖 ∧ 𝑙 = 𝑑𝑒𝑐⊤(𝑙′))]]}}

Other algorithms (e.g., calling an already analysed nested function) are changed analogic-
ally.

A summary 𝜒f ∈ 22
Σ × 2Σ of a function f is the same as earlier. Only access paths and

lock counters from abstract states are ignored. This is, 𝜒f = (ℬ, 𝒞), where:

• ℬ = {𝐵′ ∈ 2Σ | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵, 𝜋, 𝑙) ∈ 𝑝 : 𝐵 ̸= ∅∧𝐵′ = 𝐵}, where 𝑠f is the abstract
state at the end of the abstract interpretation of f.

• 𝒞 =
⋃︀

𝐴𝐵 ∈𝐴𝐵

𝐴𝐵, where 𝐴𝐵 = {𝐴𝐵 ∈ 2Σ | ∃ 𝑝 ∈ 𝑠f : ∃ (𝐴,𝐵, 𝜋, 𝑙) ∈ 𝑝 : 𝐴𝐵 = 𝐴 ∪𝐵}.

Example 4.2.1. Consider the function f from Listing 4.3. There are two lock objects L1
and L2, which are used simultaneously. Moreover, L2 is locked several times without unlock-
ing in between. Further, assume that a, b, c are leaf nodes of the call graph. After the exten-
sion described above, the produced summary is as follows: 𝜒f = ({{b}, {a, b, c}}, {a, b, c}).
Without the extension, the summary would be 𝜒′

f = ({{a}}, {a, b, c}). The reason is that
only the first locks/unlocks were detected. Other locks inside atomic sections and other un-
locks outside atomic sections were ignored. Moreover, the abstract state after the execution
of line 7 is as follows: 𝑠f7 = {{(∅, {a, b}, L1, 1), ({a}, {b}, L2, 2), ({b}, ∅, 𝜀, 0)}}.
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1 void f()
2 {
3 lock(&L1); // {a, b, c}
4 a();
5 lock(&L2); lock(&L2); // {b}
6 lock(&L2); unlock(&L2);
7 b();
8 unlock(&L2); unlock(&L2);
9 c();

10 unlock(&L1);
11 }

Listing 4.3: A code snippet used to illustrate the advanced manipulation with locks during
the first phase of the analysis

4.2.2 Advanced Manipulation with Locks in Phase 2

The pairs Ω of functions that should be called atomically are computed the same way as
earlier during the detection of atomicity violations in Phase 2. However, dealing with access
paths and re-entrant locks must, of course, be reflected in the second phase of the analysis
as well. For that, while looking for atomicity violations of pairs of function calls, from
now, the analysis stores (in addition to pairs of the most recent function calls (x, y) and the
set 𝑉 of pairs that have so far been identified as violating atomicity) all the most recent
pairs of function calls locked under individual locks. Hence, the abstract state element
gets the form (x, y, 𝑉, 𝜆) ∈ Σ × Σ × 2Σ×Σ×N × 2Σ×Σ×Π×N⊤ , where (x, y), 𝑉 are as before,
and 𝜆 is the set of the most recent function calls with their lock access paths and the
number of locks of lock objects of these locks. Thus, the abstract states are elements of the
set 2Σ×Σ×2Σ×Σ×N×2Σ×Σ×Π×N⊤ .

The analysis works as follows. When a function f is called on some path that led to an
abstract state (x, y, 𝑉, 𝜆), a new pair (x′, y′) of the most recent function calls is created
from the previous pair (x, y) such that (x′, y′) = (y, f). This pair is also stored in the locked
pairs 𝜆 if there are any locks currently locked. Further, it is checked whether the new pair
(or just the last call) violates the atomicity, and at the same time, the pair is not locked by
any of the stored locks (i.e., ((x′, y′) ∈ Ω∧@ (x𝜋, y𝜋, 𝜋, 𝑙) ∈ 𝜆 : (x𝜋, y𝜋) = (x′, y′))∨ ((𝜀, y′) ∈
Ω ∧ @ (x𝜋, y𝜋, 𝜋, 𝑙) ∈ 𝜆 : (x𝜋, y𝜋) = (𝜀, y′))). When the condition holds, the pair is added to
the set 𝑉 of pairs that violate atomicity. When a lock with an identifier 𝜋𝑖 is called, it is
created a new empty element of 𝜆 with this identifier, and the lock counter 𝑙 of this element
is set to 1. Furthermore, the lock counter 𝑙 of an element from 𝜆 with the access path 𝜋𝑖 is
incremented/decremented when a lock/unlock with the identifier 𝜋𝑖 is called, respectively.

More formally, the initial abstract state of a function is defined as 𝑠𝑖𝑛𝑖𝑡 = {{(𝜀, 𝜀, ∅, ∅)}}. To
formalise the analysis of a function, let f be a called leaf function on a line 𝑐 ∈ N. Further,
let 𝑠g be the abstract state of a function g being analysed before the function f is called.
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After the call of f, the abstract state will be changed as follows:

𝑠′g = {(x′, y′, 𝑉 ′, 𝜆′) ∈ Σ× Σ× 2Σ×Σ×N × 2Σ×Σ×Π×N⊤ | ∃ (x, y, 𝑉, 𝜆) ∈ 𝑠g : (x′, y′) = (y, f)

∧ 𝜆′ = {(x′𝜋, y
′
𝜋, 𝜋

′, 𝑙′) ∈ Σ× Σ×Π× N⊤ | ∃ (x𝜋, y𝜋, 𝜋, 𝑙) ∈ 𝜆 : (x′𝜋, y
′
𝜋, 𝜋

′, 𝑙′) =

(y𝜋, f, 𝜋, 𝑙)} ∧ 𝑉 ′ = {(x′′, y′′, 𝑐′) ∈ Σ× Σ× N | (x′′, y′′, 𝑐′) ∈ 𝑉 ∨ [((x′′, y′′) = (x′, y′)∨
(x′′, y′′) = (𝜀, y′)) ∧ (x′′, y′′) ∈ Ω ∧ 𝑐′ = 𝑐 ∧ @ (x𝜋, y𝜋, 𝜋, 𝑙) ∈ 𝜆′ : (x𝜋, y𝜋) = (x′′, y′′)]}}

Further, when a lock identified by an access path 𝜋𝑖 is called, the abstract state is changed
as follows:

𝑠′g = {(x′, y′, 𝑉 ′, 𝜆′) ∈ Σ× Σ× 2Σ×Σ×N × 2Σ×Σ×Π×N⊤ | ∃ (x, y, 𝑉, 𝜆) ∈ 𝑠g : (x′, y′, 𝑉 ′) =

(x, y, 𝑉 ) ∧ 𝜆′ = {(x𝜋, y𝜋, 𝜋, 𝑙) ∈ Σ× Σ×Π× N⊤ | (x𝜋, y𝜋, 𝜋, 𝑙) = (𝜀, 𝜀, 𝜋𝑖, 𝑖𝑛𝑐⊤(0))

∨ [(x𝜋, y𝜋, 𝜋, 𝑙
′) ∈ 𝜆 ∧ [(𝜋 ̸= 𝜋𝑖 ∧ 𝑙 = 𝑙′) ∨ (𝜋 = 𝜋𝑖 ∧ 𝑙 = 𝑖𝑛𝑐⊤(𝑙′))]]}}

Furthermore, when an unlock identified by the access path 𝜋𝑖 is called, the abstract state
is changed as follows:

𝑠′g = {(x′, y′, 𝑉 ′, 𝜆′) ∈ Σ× Σ× 2Σ×Σ×N × 2Σ×Σ×Π×N⊤ | ∃ (x, y, 𝑉, 𝜆) ∈ 𝑠g :

(x′, y′, 𝑉 ′) = (x, y, 𝑉 ) ∧ 𝜆′ = {(x𝜋, y𝜋, 𝜋, 𝑙) ∈ Σ× Σ×Π× N⊤ | 𝑙 > 0

∧ [(x𝜋, y𝜋, 𝜋, 𝑙
′) ∈ 𝜆 ∧ [(𝜋 ̸= 𝜋𝑖 ∧ 𝑙 = 𝑙′) ∨ (𝜋 = 𝜋𝑖 ∧ 𝑙 = 𝑑𝑒𝑐⊤(𝑙′))]]}}

A summary of the second phase of the analysis —𝜒f ∈ 2Σ×Σ×N — of a function f is the
same as earlier. Only the locked pairs 𝜆 with their access paths from abstract states are
ignored. This is, 𝜒f = 𝒱 =

⋃︀
𝑉 ′ ∈𝑉 𝑉 ′, where 𝑉 = {𝑉 ′ ∈ 2Σ×Σ×N | ∃ 𝑝 ∈ 𝑠f : ∃ (x, y, 𝑉, 𝜆) ∈

𝑝 : 𝑉 ̸= ∅ ∧ 𝑉 ′ = 𝑉 } and 𝑠f is the abstract state at the end of the abstract interpretation
of f.

Example 4.2.2. Consider the function g from Listing 4.4. There are two lock objects L1
and L2, which are used simultaneously. Further, assume that a, b are leaf nodes of the
call graph. Then, assume that the result of the first phase of the analysis is that the pair
(a, b) should be called atomically, i.e., Ω = {(a, b)}. Before the extension distinguishing of
multiple lock instances, the analysis would report an atomicity violation for these functions
(line 6). This is because the locks are not distinguished, and the unlock of L1 (line 5) would
unlock everything. On the other hand, after the extension, there are not reported any
atomicity violations because the pair is still locked using L2 (i.e., in Phase 2, it is produced
the following summary: 𝜒g = ∅). The abstract state of g after the execution of line 6 looks
as follows: 𝑠g6 = {(a, b, ∅, {(a, b, L2, 1)})}.

4.2.3 Lock Guards

Finally, support for so-called lock guard objects has been proposed. Lock guards are objects
associated with lock objects. One lock guard can be associated with multiple lock objects,
and one lock object can be associated with multiple lock guards. When a lock guard is
created, all lock objects associated with it are locked. When a lock guard is destroyed (usu-
ally, when a scope of variables is left), all lock objects associated with it are automatically
unlocked. Exceptionally, under certain circumstances, lock guards can be locked/unlocked
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1 void g()
2 {
3 lock(&L1); // {}
4 lock(&L2); // {a, b}
5 unlock(&L1);
6 a(); b();
7 unlock(&L2);
8 }

Listing 4.4: A code snippet used to illustrate the advanced manipulation with locks during
the second phase of the analysis

manually. Lock guards are widely used, especially in C++, but they are used, e.g., in Java
as well. To cope with them, the analysis has been extended such that they are also identified
by access paths. The association between a lock guard and lock objects is modelled as a pair
(𝜋𝑔, 𝐿) ∈ Π × 2Π, where 𝜋𝑔 is an access path that identifies the lock guard and 𝐿 is a set
of access paths that identify the lock objects associated with the guard identified by 𝜋𝑔.
In the abstract states of both phases of the analysis, the associations between lock guards
and lock objects are maintained as a set that is an element of the set 2Π×2Π , i.e., there is
a set of associations between lock guards and lock objects. Subsequent locks/unlocks of
lock guards are then interpreted as a sequence of locks/unlocks of lock objects associated
with these lock guards, respectively.

Example 4.2.3. Using Listing 4.5, it will be demonstrated how the analysis works with
lock guards. There are used two lock objects L1, L2. L2 is a re-entrant lock while L1 is not.
Besides, there are also two lock guards G1 and G2. On line 9, at the same time, the lock
guard G1 is associated with both L1 and L2, and the guard G2 is associated only with L2.
Conversely, the lock object L1 is associated only with G1, and L2 is associated with both G1
and G2. These associations are stored in the analysis’s abstract states as the (𝜋𝑔, 𝐿) pairs
in the following set: {(G1, {L1, L2}), (G2, {L2})}. For instance, when the scope of G1 is left,
the analysis abstractly interprets it as a sequence L1.unlock(); L2.unlock();.

4.3 Analysis’s Parametrisation

This section proposes solutions to reduce the number of false alarms reported by the basic
version of Atomer. In particular, it is done by parameterising the analysis by some inputs
provided by the user, i.e., in this case, the analysis does not have to be fully automatic.
Namely, the parametrisation aims to filter out functions and critical sections that cause
many reportings where most of them are very likely false alarms.

4.3.1 Specification of Critical Functions

One of the main reasons why Atomer in its first version reports false alarms is that, in prac-
tice, critical sections often interleave calls of functions that need to be executed atomically
with common functions that need not be executed atomically (such as functions for printing
to the standard output, functions for recasting variables to different types, functions related
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1 #include <mutex>
2 std::mutex L1; std::recursive_mutex L2;
3 void f()
4 {
5 std::scoped_lock G1(L1, L2); // {a, b, c}
6 a();
7 {
8 std::lock_guard<std::recursive_mutex> G2(L2); // {b}
9 b();

10 }
11 c();
12 }

Listing 4.5: An example of lock guards in C++. The entire function f is locked with lock
objects L1, L2 using std::scoped_lock, which is a type of lock guard that can lock multiple
lock objects at once (note that std::scoped_lock is available since C++ 17). However,
there is also an inner atomic section locked with L2 using std::lock_guard. L2 is, in effect,
locked twice — it is a re-entrant lock of a type std::recursive_mutex

to iterators, and various other “safe” functions). Often, to find real atomicity violations, it
is sufficient to focus on specific “critical” functions only.

For example, calls of constructor and destructor methods of classes do not lead to atomicity
violations. Therefore, these calls can usually be ignored. Unfortunately, in general, it is
not easy to differentiate between functions that should be set aside and functions to focus
on because this distinction is application-specific. Therefore, the author decided to rely on
the user to provide this information to the analysis. (Indeed, providing information of this
kind is not so exceptional, e.g., for developers of libraries. A similar approach has also been
chosen, e.g., in the ANaConDA dynamic analyser for concurrency issues [14], where the
user can use so-called hierarchical filters to specify functions that the analysis should not
monitor.) For this reason, the following input parameters of the analysis are proposed:

• a list of functions that will not be analysed,

• a list of functions that will be analysed (and all other functions will not be),

• a list of functions whose calls will not be considered, and

• a list of functions whose calls will be considered (and all other function calls will not
be).

In other words, it is possible to specify black-lists and white-lists of functions to analyse
and function calls to consider. It is also possible to combine these parameters, and they can
be enabled for individual phases of the analysis. In the implementation of this approach
mentioned in the following chapter, these parameters’ values are read from input text files
that contain one function name per line. Moreover, the implementation allows the user to
specify sets of functions using regular expressions (in that case, the line must start with the
letter R followed by whitespace).
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4.3.2 Limitation of a Size of Critical Sections

Another issue often causing false alarms is that some programs contain “large” critical sec-
tions or critical sections that include function calls with a deep hierarchy of nested function
calls. Both cases can cause massive and “imprecise” atomic sets that are the source of false
alarms. Indeed, such “large” and/or “deep” critical sections are likely to contain a number
of calls of functions that are not critical.

To resolve the “large” critical sections’ problem, the author proposes to parametrise the
analysis by a parameter 𝑑 ∈ N that limits the maximum length of a critical section to be
taken into account. During its first phase, the analysis then discards all (𝐴,𝐵) pairs where
|𝐵| > 𝑑, i.e., it removes pairs where the number of functions in the set 𝐵 (functions called
atomically) is greater than the limit 𝑑.

To get to the above proposal of dealing with deeply nested critical functions, recall that,
during the first phase of the analysis, when calling an already analysed nested function, the 𝒞
set (i.e., the set of all called functions within a function) from its summary is used. If there
is a deep hierarchy of nested function calls, the top level of the hierarchy uses function calls
from all lower-level functions, leading to “large” critical sections. To avoid this problem,
the summary 𝜒 = (ℬ, 𝒞) ∈ 22

Σ × 2Σ in Phase 1 is redefined as 22
Σ × 2N×2Σ , i.e., 𝒞 is no

longer a set of all functions called within an analysed function. It is a set of pairs where
each pair represents functions called at a particular level in the hierarchy of nested function
calls (0 means the top-level). For instance, the summary 𝜒f = (∅, {(0, {a, b}), (1, {x, y})})
of a function f means that there were called functions a, b in f and that there were
called functions x, y in functions one level lower in the call tree (i.e., in functions directly
invoked from f). During the analysis, the summaries are passed among functions in the
call hierarchy. Furthermore, the analysis uses a parameter 𝑟 ∈ N to limit the number of
levels considered during analysing nested functions.

More particularly, to derive these extended summaries, it is also needed to store in the
abstract states the information about in which levels appear which function calls. When
analysing a function f and a leaf function g is called, g is added to the level 0 of functions
called within f. Furthermore, when calling an already analysed function h, the functions
called at a level 𝑖 of h are appended into the appropriate 𝐴 or 𝐵 sets of f if 𝑖 < 𝑟. Finally,
the information about in which levels appear which function calls is passed from a lower-
level function to a higher-level function. In particular, if some function is called at a level 𝑖
of h, it is added to the level 𝑖 + 1 of the function f (which is one level higher) if 𝑖 + 1 < 𝑟.

Example 4.3.1. Assume functions x, y, z from Listing 4.6. Their summaries for the first
phase of the analysis are as follows: 𝜒z = (∅, {(0, {z1, z2})}), 𝜒y = (∅, {(0, {y1, y2, z}),
(1, {z1, z2})}), 𝜒x = (∅, {(0, {x1, x2, y}), (1, {y1, y2, z}), (2, {z1, z2})}). When the value of
the parameter 𝑟 is set to 1, the summary of the function x is reduced as follows: 𝜒′

x =
(∅, {(0, {x1, x2, y}), (1, {y1, y2, z})}).

1 void z() { z1(); z2(); }
2 void y() { y1(); y2(); z(); }
3 void x() { x1(); x2(); y(); }

Listing 4.6: A code snippet used to illustrate the limitation of considered nested functions
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4.4 Local/Global Atomicity Violations

The author of the thesis uses two notions — local and global atomicity violations — to dis-
tinguish two classes of “atomicity violations”. A local atomicity violation is when there is
an atomicity violation within the scope of a function being analysed. However, in effect,
it does not have to be an error in the context of the whole analysed program because the
entire function may always be locked when it is used. Thus, it is ensured that all instruc-
tions of the function are always executed atomically in the program. On the other hand,
when there is at least a single case of the function not being called atomically, it entails
that there exists a possibility of a real error, which is called a global atomicity violation.

In the first version of Atomer, local/global atomicity violations are not distinguished. All
atomicity violations are considered global ones. This is, of course, a source of false alarms.
In extensive real-world programs, local atomicity violations are quite common because calls
of some smaller functions are often included in atomic sections. Unfortunately, it can be
challenging to differentiate between local and global atomicity violations in such programs
due to complex call graphs.

Example 4.4.1. Consider Listing 4.7, where the functions x, y are leaf nodes of the call
graph. main is the top-level function that contains the calls of functions f and g. From
the first phase of the analysis, it is derived that the pair (x, y) should be called atomic-
ally because these functions are called in g, which is locked in main. In particular, the
first phase’s summary of main is 𝜒main = (ℬ, 𝒞) = ({{g, x, y}}, {(0, {f, g}), (1, {x, y})}),
and ∃𝐵 ∈ ℬ : {x, y} ⊆ 𝐵. During Phase 2, there are reported atomicity violations on
lines 1 and 2 due to non-atomic executions of the pair (x, y) within functions f and g,
respectively. Consequently, the second phase’s summaries of these functions are as follows:
𝜒f = {(x, y, 1)}, 𝜒g = {(x, y, 2)}. Nevertheless, while the violation in f is global, the viola-
tion in g is, as a matter of fact, local because g is called exclusively from main where it is
locked. Therefore, a false alarm is reported.

1 void f() { x(); y(); } // GLOBAL_ATOMICITY_VIOLATION: (x, y)
2 void g() { x(); y(); } // LOCAL_ATOMICITY_VIOLATION: (x, y)
3 void main()
4 {
5 f();
6 lock(&L); // {g, x, y}
7 g();
8 unlock(&L);
9 }

Listing 4.7: An example of so-called local and global atomicity violations

To identify local atomicity violations during Phase 2, the author proposes the following ap-
proach in a new Atomer’s version. First, two severities of the atomicity violation reporting
are defined:

• Warning for local atomicity violations and

• Error for (real) global atomicity violations.

48



In particular, the sets 𝑉 of pairs that violate atomicity in the abstract states and the
appropriate sets 𝒱 from the summaries are extended from 2Σ×Σ×N to 2Σ×Σ×N×𝒮 , where
𝒮 = Warning | Error.

When an atomicity violation within an analysed function is detected as earlier, it is labelled
as global, i.e., the Error severity is assigned to it. In the course of the analysis, the
information about the violations from function summaries (i.e., the pairs from 𝒱) are passed
from lower-level functions to higher-level functions along to the call tree. Once a nested
function call is performed inside an atomic section, all its violations are labelled as local,
i.e., the Warning severity is assigned to them. Finally, atomicity violations (both local as
well as global) are reported only from top-level functions, i.e., functions not called from
any other functions; thus, they cannot be called under a lock somewhere higher in the call
hierarchy.

Example 4.4.2. Consider Listing 4.7 again. The first analysis’s phase derived that the pair
(x, y) should be called atomically, as explained in Example 4.4.1. After extending Atomer
for distinguishing local and global atomicity violations, the second phase of the analysis
works as follows. First, functions f and g are analysed. This phase produces the following
summaries for these functions: 𝜒f = {(x, y, 1, Error)}, 𝜒g = {(x, y, 2, Error)}. These
violations must not be reported yet. Further, main is analysed. It receives summaries
from f and g. All violations from g are, however, labelled as local atomicity violations. As
a result, the summary of main is 𝜒main = {(x, y, 1, Error), (x, y, 2, Warning)}. In the end,
the reporting is made from main because it is the only top-level function. On line 1, there is
reported a global atomicity violation. On the contrary, it is reported just a warning (local
violation) on line 2 because the call of this function is locked in main.
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Chapter 5

Implementation of a New Version
of Atomer

This chapter discusses the implementation of a new version of Atomer. It summarises the
implementation of the whole analyser (i.e., it includes the implementation of the Atomer’s
basic version from [18], also described in Chapter 3) with a particular focus on the new
enhancements proposed in Chapter 4. Atomer is implemented as a module of Facebook Infer
introduced in Section 2.3. The implemented algorithms are illustrated using convenient
pseudocode and listings of simplified code written in OCaml, which is an implementation
language of Atomer and Facebook Infer. Sections 5.1 and 5.2 describe the implementation of
both phases of the analysis in more detail. Moreover, Section 5.3 outlines the implementation
of support for programming languages and locking mechanisms newly added to Atomer.

The implementation of both the basic version and the new version of Atomer is publicly
available at GitHub1. An installation and user manual are available in Appendix B. To-
gether with some examples, these manuals are also available in the attached memory media
of the thesis (see Appendix A) and in Atomer’s Wiki2. As it was already said, Atomer
is implemented in OCaml, which is a functional programming language. However, it also
allows using the imperative and object-oriented paradigms exploited in the Atomer’s imple-
mentation as well. Since the implementation of the first version of Atomer, Facebook Infer
was many times updated (in its Git repository, there are several new commits every day).
Due to maintaining Atomer up-to-date with Facebook Infer, and due to some refactoring
of Atomer itself, the code of the first version of Atomer since its first implementation is
considerably different.

Atomer itself is implemented in files in a directory infer/src/atomicity. In partic-
ular, the first phase of the analysis is implemented in AtomicSets.ml[i], and its ab-
stract domain 𝑄 is implemented in AtomicSetsDomain.ml[i]. The second phase is im-
plemented in AtomicityViolations.ml[i], and its abstract domain 𝑄 is implemented

1The implementation of a new version of Atomer at GitHub as an open-source repository: https:
//github.com/harmim/infer/tree/atomer-v2.0.0. The implementation of the first version is in a branch
atomicity. At the following address, there are available releases of both versions, including source code
and executable binaries (v1.0.0 is the basic version, and v2.0.0 corresponds to the new version): https:
//github.com/harmim/infer/releases.

2Atomer’s Wiki provides an installation and user manual together with some examples. It is available
at GitHub: https://github.com/harmim/infer/wiki.
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in AtomicityViolationsDomain.ml[i]. The phases are implemented as separate analys-
ers in Facebook Infer. The output of the first phase is the input of the second phase
(as earlier shown in Figure 4.1). These analysers are defined as modules of Facebook
Infer in infer/src/base/Checker.ml[i], and they are registered to the framework in
infer/src/backend/registerCheckers.ml. The analysers are enabled only by specific
command-line arguments; see the mentioned manuals.

Note that in the listings in the below sections, Domain refers to an abstract domain 𝑄 of
a particular phase of the analysis (the AtomicSetsDomain/AtomicityViolationsDomain
module for the first/second phase of the analysis, respectively). Then, Domain.t is a type
of abstract state of the particular phase. Furthermore, Domain.Summary.t is a type of
summary 𝜒 in the particular phase.

5.0.1 The Main Analysis Function

For both phases of the analysis, the analyser is implemented as an abstract interpreter using
the LowerHil module, which transforms Smallfoot Intermediate Language (SIL) instruc-
tions (mentioned in Section 2.3) into High-level Intermediate Language (HIL) instructions.
HIL instructions wrap SIL instructions and simplify their utilisation, i.e., it is an abstraction
over SIL. For representing functions, a filtered view of the forward CFG that skips excep-
tional control-flow paths is used. This type of CFG corresponds to the ProcCfg.Normal
module in Facebook Infer. The final analyser is created as a module Analyser using the
LowerHil.MakeAbstractInterpreter function.

1 let analyse_procedure data : Domain.Summary.t option =
2 (* Should be the analysis of this function skipped? *)
3 if f_is_ignored (Pdesc.get_pname data.pdesc) then None
4 else
5 let pre : Domain.t =
6 Domain.initial (* an initial abstract state (pre-condition) *)
7 in
8 (* Compute the final abstract state (post-condition). *)
9 match Analyser.compute_post data ~initial:pre with

10 | Some (post : Domain.t) ->
11 (* Convert the abstract state to a summary. *)
12 let summary : Domain.Summary.t = Domain.Summary.create post in
13 Some summary
14 | None -> Logging.die InternalError "Analysis failed."

Listing 5.1: The main analysis function for analysing individual functions in a given
program

The main analysis function analyse_procedure is implemented the same way for both
phases of the analysis (for Phase 1, it is implemented in the AtomicSets module, and for
Phase 2, it is implemented in the AtomicityViolations module). A simplified implement-
ation is given in Listing 5.1. Facebook Infer’s backend invokes this function for each function
in an analysed program. It computes a summary of the analysed function. At first, the
function checks whether the analysis of an analysed function should be ignored (line 3). It
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has to do with the specification of critical functions proposed in Section 4.3. The implement-
ation of that is covered in Section 5.0.4. Further, analyse_procedure computes the final
abstract state (post-condition) for the analysed function using the Analyser.compute_post
function (line 9). As a pre-condition, the initial abstract state Domain.initial from an
abstract domain is used. On line 12, the abstract state is appropriately converted to an
interprocedural function summary using Domain.Summary.create. Finally, this summary
is returned. The crucial parts are here the types Domain.t, Domain.Summary.t, and the
functions Domain.initial, Domain.Summary.create. These are different for individual
phases of the analysis. They are described in Sections 5.1, 5.2.

1 let exec_instr (s : Domain.t) data : HilInstr.t -> Domain.t = function
2 | Call (Direct callee, params) (* the CALL instruction *)
3 (* Should be this function call ignored? *)
4 when f_is_ignored callee ~actuals:(Some params) -> s
5 | Call (Direct callee, params, loc) -> ( (* the CALL instruction *)
6 (* Does the call relate to the locking? *)
7 match ConcurrencyModels.get_lock_effect callee params with
8 (* Process locks/unlocks/lock guards. *)
9 | Lock locks ->

10 Domain.apply_locks (get_paths locks) s
11 | Unlock locks ->
12 Domain.apply_unlocks (get_paths locks) s
13 | GuardConstruct {guard; locks} ->
14 Domain.apply_guard_construct (get_path guard) (get_paths locks) s
15 | GuardDestroy guard ->
16 Domain.apply_guard_destroy (get_path guard) s
17 | NoEffect -> ( (* the call of a classical function *)
18 let s : Domain.t =
19 (* Process the called function. *)
20 Domain.apply_call ~fName:(Pname.to_string callee) loc s
21 in
22 (* Read a summary of an already analysed nested function. *)
23 match data.analyze_dependency callee with
24 | Some (summary : Domain.Summary.t) ->
25 (* Apply the summary to the abstract state. *)
26 Domain.apply_summary summary s
27 | None -> s (* leaf node *) ) )
28 | _ -> s (* Do nothing for other instructions. *)

Listing 5.2: The implementation of the abstract transformers (also called transfer functions)

5.0.2 Abstract Transformers

The abstract transformers 𝜏 : 𝐼𝑛𝑠𝑡𝑟×𝑄→ 𝑄 over an abstract domain 𝑄 (also called transfer
functions) are implemented almost the same way for both phases of the analysis. In gen-
eral, the abstract transformer takes an abstract state as its input and produces an abstract
state as an output while interpreting an instruction of an analysed program. The imple-
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mentation is illustrated in Listing 5.2. It is implemented using the exec_instr function
(in the AtomicSets/AtomicityViolations module for Phase 1/Phase 2, respectively). It
considers only function calls, i.e., instruction CALL. The abstract state remains unchanged
when other instructions are executed (line 28). On line 4, there is checked whether the
called function should be ignored (see Section 4.3). Otherwise, line 7 identifies calls re-
lated to locking. When the called function is some lock, Domain.apply_locks is called
to update the abstract state appropriately (line 10). When the call is a construction of
a lock guard, Domain.apply_guard_construct is used (line 14), etc. Note that besides the
cases used in the pattern matching shown in the listing, there are also processed GuardRe-
lease, GuardLock, and GuardUnlock for advanced manipulation with lock guards in the
actual implementation. The functions get_path/get_paths are used for acquiring access
paths of lock objects. The functions Domain.apply_locks and Domain.apply_unlocks
are implemented differently for both phases of the analysis. This implementation is de-
scribed in Sections 5.1, 5.2. However, the functions Domain.apply_guard_construct and
Domain.apply_guard_destroy are the same for both phases. Thus, they are explained
below. If the called function is not related to locking (line 17), the function call is inter-
preted in the abstract domain using Domain.apply_call. Further, line 23 tries to read
a summary of the called function. If it is not a leaf node of the call tree, its summary is
used to update the abstract state using Domain.apply_summary on line 26. The functions
Domain.apply_call, Domain.apply_summary are essential. Thus, they are introduced in
Sections 5.1, 5.2. Moreover, note that on line 5, there is a parameter loc of the called
function. It is the location of the call in the source program. It is used to identify the
location of an atomicity violation. Therefore, it is needed only in the implementation of
the abstract transformers for the second phase of the analysis.

When a lock guard is constructed, an abstract state is updated using the function Do-
main.apply_guard_construct illustrated in Algorithm 5.1. It first appends the association
of the lock guard with the underlying locks to the 𝑔𝑢𝑎𝑟𝑑𝑠 field of each element (program
path) of the abstract state. Then, all the underlying locks are immediately locked using
Domain.apply_locks, which is defined later. Both the lock guard and the underlying locks
are identified through access paths.

Algorithm 5.1: Updating an abstract state after the construction of a lock guard
Data: lock guard’s access path 𝜋𝑔 ∈ Π; access paths 𝐿 ∈ 2Π of locks associated

with 𝜋𝑔; abstract state 𝑠 ∈ Domain.t
1 def apply_guard_construct(𝜋𝑔, 𝐿, 𝑠):
2 for 𝑝 ∈ 𝑠 do 𝑝.𝑔𝑢𝑎𝑟𝑑𝑠← 𝑝.𝑔𝑢𝑎𝑟𝑑𝑠 ∪ {(𝜋𝑔, 𝐿)}; /* create a new guard */
3 return apply_locks(𝐿, 𝑠);
4 end

After the destruction of a lock guard, an abstract state is changed using the function Do-
main.apply_guard_destroy given in Algorithm 5.2. For each element of the abstract state,
it obtains locks associated with the lock guard being destroyed. This association is then
removed from the abstract state’s field 𝑔𝑢𝑎𝑟𝑑𝑠. Finally, the associated locks are unlocked
using the function Domain.apply_unlocks extended to apply unlock calls for a particular
program path only.
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Algorithm 5.2: Updating an abstract state after the destruction of a lock guard
Data: lock guard’s access path 𝜋𝑔 ∈ Π; abstract state 𝑠 ∈ Domain.t

1 def apply_guard_destroy(𝜋𝑔, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 𝐿← 𝑝.𝑔𝑢𝑎𝑟𝑑𝑠(𝜋𝑔); /* get associated locks */
4 𝑝.𝑔𝑢𝑎𝑟𝑑𝑠← 𝑝.𝑔𝑢𝑎𝑟𝑑𝑠 ∖ {(𝜋𝑔, 𝐿)}; /* remove the guard */
5 𝑠← apply_unlocks(𝐿, 𝑠, 𝑝);
6 end
7 return 𝑠;
8 end

5.0.3 Abstract Interpretation Operators

The abstract domains of both phases of the analysis are quite different. However, the
abstract interpretation operators of these domains are the same because for both phases, the
abstract states 𝑠 ∈ 𝑄 are sets of elements that represent an abstraction of program paths.
The implementation of the operators is shown in Listing 5.3. Note that t is a type of abstract
state. In fact, it is an alias for TSet.t, a module representing a set of structures where the
fields of these structures are defined differently in each phase of the analysis. Thus, each
phase defines its own TSet. Particular abstract interpretation operators (implemented in
Listing 5.3) are defined as follows:

• The ordering operator ⊑ (leq) is defined as follows. Let lhs be the left-hand side of
the operator and rhs the right-hand side. Then, lhs ⊑ rhs iff lhs is a subset of rhs.
In other words, 𝑠 ⊑ 𝑠′ ⇐⇒ 𝑠 ⊆ 𝑠′, where 𝑠, 𝑠′ ∈ 𝑄.

• The join operator ⊔ (join) is defined simply as the union of two abstract states, i.e.,
𝑠 ⊔ 𝑠′ ⇐⇒ 𝑠 ∪ 𝑠′.

• The widening operator O (widen) is defined as joining the previous and the next
abstract state since the domains are finite. In particular, 𝑠O 𝑠′ ⇐⇒ 𝑠 ⊔ 𝑠′.

1 (* lhs <= rhs if lhs is a subset of rhs. *)
2 let leq ~(lhs : t) ~(rhs : t) : bool = TSet.subset lhs rhs
3 (* Union of abstract states. *)
4 let join (s1 : t) (s2 : t) : t = TSet.union s1 s2
5 (* Join the previous and the next abstract state. *)
6 let widen ~(prev : t) ~(next : t) ~(num_iters : int) : t = join prev next

Listing 5.3: The implementation of the abstract interpretation operators

5.0.4 Specification of Critical Functions

In Section 4.3, there are proposed input parameters for specifying black-lists/white-lists of
functions to analyse or function calls to consider. The decision of whether a function is
analysed or a function call is considered is made in analyse_procedure (Listing 5.1) and

54



exec_instr (Listing 5.2), respectively. In particular, the function f_is_ignored imple-
ments the decision making whether a particular function is considered/ignored according
to the input parameters. These parameters may be combined. For example, one can allow
only specific functions to be analysed and ignore several selected function calls considered
during the analysis. Moreover, these parameters may be enabled for individual phases of
the analysis or specified differently for each phase. f_is_ignored is implemented in the
AtomicityUtils module.

The parameters’ values are read from input text files. How to enable the parameters (i.e.,
how to specify the file names of the input files using command-line arguments) is described
in the user manual. The input file should contain one function name to consider/ignore
per line. There may be empty lines, and line comments can be used with the character #.
Moreover, it is possible to specify sets of function names using regular expressions (in that
case, the line must start with the letter R followed by any number of whitespaces). The
syntax of the regular expressions corresponds to the OCaml’s regular expressions syntax3.
An example of such an input file is in Listing 5.4. Processing of input files is implemented
in the functions_from_file class in the AtomicityUtils module.

intValue # this is a comment¶
R [A-Z]+.*¶
¶
foo¶
Logger.log¶
R \(String\)?\.format¶
#this is another comment¶
R \(Int\|Float\)\.toString¶

Listing 5.4: An example of an input text file with a black-list/white-list of functions to
analyse or function calls to consider

5.0.5 Representation of Locks in Abstract States

In module AtomicityUtils, there is implemented a sub-module Lock for working with locks
in both phases of the analysis. The essential parts of the implementation are shown in List-
ing 5.5. Data of this module are of a type Lock.t, a pair of an access path (AccessPath.t)
of a lock object and the number of locks of this lock object, i.e., it corresponds to the (𝜋, 𝑙)
pairs of the abstract states in the proposal.

The bottom value of 𝑙 is 0; this is bot. The top value of 𝑙 is Config.atomicity_lock-
_level_limit; this is top. This value comes from the user (the default value is 5). This
corresponds to the ⊤ element (parameter 𝑡) from the proposal. How the user can set this
value is described in the user manual. Locking/unlocking of the lock is implemented such
that 𝑙 is incremented/decremented, respectively. It is crucial that it is implemented so
that 𝑙 remains within bounds [0, 𝑡] to ensure termination. The module also implements
other functions, e.g., a function that finds out whether the lock object is currently locked,
etc. However, other functions are not too interesting; thus, they are not shown in the
listing.

3The syntax of OCaml’s regular expressions: https://ocaml.org/api/Str.html.
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1 module Lock = struct
2 (* A lock’s access path with the number of times it has been acquired. *)
3 type t = AccessPath.t * int (* (𝑝, 𝑙) *)
4 (* The bottom value of 𝑙. *)
5 let bot : int = 0
6 (* The top value of 𝑙. *)
7 let top : int = Config.atomicity_lock_level_limit
8 (* Increases the value of 𝑙. *)
9 let lock ((p, l) : t) : t = if l = top then (p, l) else (p, l + 1)

10 (* Decreases the value of 𝑙. *)
11 let unlock ((p, l) : t) : t = if l = bot then (p, l) else (p, l - 1)
12 end

Listing 5.5: The implementation of a module that represents locks in abstract states

5.1 Phase 1 — Detection of Atomic Sets

The first phase of the analysis is enabled by a command-line argument --atomic-sets-
only (see the user manual for more details). The detected atomic sets by this phase (i.e.,
sets of functions expected to execute atomically) are printed into a text file, which is then
used as an input to the second phase. This section, in particular, explains the concrete
implementation of the abstract states and summaries. Moreover, it is outlined how they
are used during the analysis. The output of this phase is in more detail described in
Section 5.1.1.

Abstract State The implementation of the abstract state is illustrated in Listing 5.6.
The abstract state is of the type TSet.t (t is an alias for it). TSet itself is defined on
line 13. It is a module representing a set of structures p (lines 10–12). Each element
corresponds to a single program path. Fields of this structure are composed of the types
and modules defined on the lines above. Lines 15–21 define the initial abstract state. The
fields are as follows:

• calls: a set of function calls (a function call is a string), i.e., an element of 2Σ. It
captures function calls before a lock. When a lock is called, a new (𝐴,𝐵) pair is
created, and the calls set became the 𝐴 set.

• callsPairs: a set of the (𝐴,𝐵) pairs with associated locks, where a lock ℒ is of the
type Lock.t defined earlier. In fact, it is a set of the tuples (𝐴,𝐵, 𝜋, 𝑙), i.e., an element
of 22

Σ×2Σ×Π×N⊤ . These elements are considered currently locked, i.e., new function
calls are appended to the 𝐵 set.

• finalCallsPairs: a set of the (𝐴,𝐵) pairs that are “complete”, i.e., an element of
22

Σ×2Σ . These are the final pairs that were already unlocked (thus, the association
with a lock is not needed anymore). In the end, the final atomic sets are derived from
this field.

• allCalls: a list of sets of function calls, i.e., an element of 2N×2Σ . It is used to
capture which functions were called at which levels of the call hierarchy. Indices of
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the list represent individual levels (functions called in an analysed function are stored
at level 0, functions directly invoked from the analysed function are at level 1, etc.).
This field is used to limit the number of nested functions in critical sections using the
proposed parameter 𝑟.

• guards: a map Π→ 2N×Π. It maps a lock guard’s access path to a list of access paths
of associated locks. It can be viewed as a set of the pairs (𝜋𝑔, 𝐿) ∈ Π × 2Π from the
proposal. (An ordering in the list is ignored, and it is treated as a set. The list is
used because it simplifies the implementation in OCaml.)

1 module S = Set.Make(String) (* a set of strings *)
2 type ab = S.t * S.t (* (𝐴,𝐵) pair *)
3 module S_ab = Set.Make(struct type t = ab end) (* a set of (𝐴,𝐵) pairs *)
4 type ab_lock = ab * Lock.t (* (𝐴,𝐵) pair with a lock, i.e., (𝐴,𝐵, 𝜋, 𝑙) *)
5 module S_ab_lock = (* a set of the above *)
6 Set.Make(struct type t = ab_lock end)
7 module M_AP = Map.Make(AccessPath) (* a map where AccessPath is a key *)
8 type g = (* maps lock guards to a list of associated locks *)
9 AccessPath.t list M_AP.t (* (𝜋𝑔, 𝐿) where 𝜋𝑔 is a key and 𝐿 is a value *)

10 type p = (* an element of an abstract state *)
11 { calls: S.t; callsPairs: S_ab_lock.t; finalCallsPairs: S_ab.t
12 ; allCalls: S.t list; guards: g }
13 module TSet = Set.Make(struct type t = p end) (* a set of the above *)
14 type t = TSet.t (* a type of the abstract state (an alias for TSet.t) *)
15 let initial : t = (* the initial abstract state of a function f *)
16 TSet.singleton (* an "empty" element (initial program path of f) *)
17 { calls= S.empty (* an empty set *)
18 ; callsPairs= S_ab_lock.empty (* an empty set *)
19 ; finalCallsPairs= S_ab.empty (* an empty set *)
20 ; allCalls= [S.empty] (* an empty set at level 0 of f *)
21 ; guards= M_AP.empty (* an empty map *) }

Listing 5.6: A definition of the abstract state in Phase 1

The primary functions of the abstract domain that work with abstract states are ap-
ply_call, apply_locks, and apply_unlocks. In earlier Listing 5.2, there is shown how
these functions are utilised.

The function apply_call from Algorithm 5.3 demonstrates how an abstract state is up-
dated when some classical function is invoked. For example, note that on line 4, the called
function is appended to level 0 of the allCalls field. This is because the function is directly
invoked from the analysed function, which is level 0. Moreover, e.g., notice that on line 8,
the entire pair (𝐴,𝐵) is discarded when 𝐵 is greater than the parameter 𝑑. This is to rid
of “large” critical sections, as described in the proposal.

Furthermore, the implementation of the functions apply_locks and apply_unlocks is
illustrated using the algorithms from Appendix C, namely, Algorithms C.2 and C.1, re-
spectively.

57



Algorithm 5.3: Updating an abstract state after a call of a function
Data: called function f ∈ Σ; abstract state 𝑠 ∈ Domain.t; maximum length 𝑑 ∈ N

of a critical section
1 def apply_call(f, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 𝑝.𝑐𝑎𝑙𝑙𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠 ∪ {f};
4 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[0]← 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[0] ∪ {f}; /* 0 is the top-level */
5 for (𝐴,𝐵,ℒ) ∈ 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 do
6 𝐵 ← 𝐵 ∪ {f};
7 // rid of “large” critical sections
8 if |𝐵| > 𝑑 then 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 ∖ {(𝐴,𝐵,ℒ)};
9 end

10 end
11 return 𝑠;
12 end

Summary The implementation of the summary is given in Listing 5.7. It is of the type
Summary.t (lines 3–4). It is composed of the modules defined on the lines above and earlier
in Listing 5.6. The sub-module Summary also implements other functions not shown in the
listing. Some of these functions are defined later. The summary is a structure that consists
of the following fields:

• atomicFunctions: a set ℬ of sets of function calls, i.e., an element of 22
Σ . It captures

sets of functions called atomically within an analysed function.

• allCalls: a list of sets of function calls, i.e., an element of 2N×2Σ . The purpose of
this field is the same as the field allCalls of the abstract state, i.e., it is used to
capture which functions were called at which levels of the call hierarchy. It is recorded
to facilitate the derivation of atomic sets that show up higher in the call hierarchy.
This field can be view as the 𝒞 set from the proposal. However, it is extended to store
the number of the level in the call hierarchy in which the functions were called, as
proposed in Section 4.3.

1 module SS = Set.Make (S) (* a set of sets of strings *)
2 module Summary = struct
3 type t = (* a type of a summary *)
4 {atomicFunctions: SS.t; allCalls: S.t list}
5 end

Listing 5.7: A definition of the summary in Phase 1

The Summary module also implements the function create, which converts an intraproced-
ural abstract state to an interprocedural summary. This function is given in Algorithm 5.4.
Its application can be seen in Listing 5.1 provided formerly.

Moreover, when calling an already analysed function, its summary is used to update an
abstract state of an analysed function. This is done using the function apply_summary
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Algorithm 5.4: Converting an abstract state to a function summary
Data: abstract state 𝑠 ∈ Domain.t

1 def create(𝑠):
2 ℬ ← ∅;
3 𝒞 ← [];
4 for 𝑝 ∈ 𝑠 do
5 for (𝐴,𝐵) ∈ 𝑝.𝑓𝑖𝑛𝑎𝑙𝐶𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 do ℬ ← ℬ ∪ {𝐵};
6 for (𝑖, 𝐶) ∈ 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠 do
7 if ∃ 𝒞[𝑖] then 𝒞[𝑖]← 𝒞[𝑖] ∪ 𝐶 else 𝒞[𝑖]← 𝐶;
8 end
9 end

10 return {𝑎𝑡𝑜𝑚𝑖𝑐𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 = ℬ; 𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠 = 𝒞};
11 end

from Algorithm C.3 in Appendix C. On line 15, there is again used the parameter 𝑑 to
discard “large” critical sections. Another interesting part of the algorithm is the derivation
of nested functions executed within the called function (lines 4–10). Here, the parameter 𝑟
is used to limit the number of levels in the call hierarchy considered during analysing nested
functions. How the function apply_summary is used in the analysis is shown in Listing 5.2
discussed previously.

5.1.1 Output of Phase 1

An output of the first phase of the analysis are sets of functions that were identified as
those that are likely to be always executed atomically. The sets are given separately for
each function in which they were identified. They are derived from the summaries of all
analysed functions of a given program. At the end of the entire analysis, the sets are printed
into a text file atomic-sets in an exact format. Each line of the file contains a sequence of
detected atomic sets (separated by whitespace) within a particular function. A line starts
with the name of the function followed by a colon and whitespace. Thus, whitespaces
are significant. The set of atomic functions must be inside curly braces — a comma and
whitespace separate individual functions inside the set. Empty lines and line comments
(started with the character #) are ignored. Moreover, some statistical information about
the number of atomic functions is printed on the last line. Listing 5.8 includes an example
of such an output file.

functionA: {f1, f2, f3}¶
foo: {y, z}¶
bar_f: {a} {b, c}¶
¶
# Number of (analysed functions; atomic sets; atomic functions): (3; 4; 8)¶

Listing 5.8: An example of an output of the first phase of the analysis (atomic-sets file)

This file is an input file for the second phase of the analysis. However, it may be manually
edited by the user or created from scratch, but the format must be adhered to. The
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derivation of the atomic sets and their printing to the output file is implemented in the
print_atomic_sets function introduced in Algorithm 5.5.

Algorithm 5.5: Printing atomic sets from the summaries of all analysed functions
Data: all analysed functions 𝐹 ∈ 2Σ

1 def print_atomic_sets(𝐹):
2 for f ∈ 𝐹 do
3 𝜒← read_summary(f);
4 printf("%s: ", f);
5 // ’concat’ concatenates elements of a set using a delimiter
6 for 𝐵 ∈ 𝜒.𝑎𝑡𝑜𝑚𝑖𝑐𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 do printf("{%s} ", concat(𝐵, ", "));
7 print_newline();
8 end
9 print_stats(𝐹 );

10 end

5.2 Phase 2 — Detection of Atomicity Violations

The second phase of the analysis is enabled by a command-line argument --atomicity-
violations-only (see the user manual for further details). This phase detects atomicity
violations, i.e., violations of the atomic sets obtained from the first phase. The atomic
sets are read from the file atomic-sets, described in the previous section. Therefore, this
file must exist to run the second phase of the analysis successfully. This section covers
the implementation of the abstract states and summaries and their usage in this phase.
The output of this phase is a file containing reported atomicity violations, as discussed in
Section 5.2.1.

Algorithm 5.6: Deriving atomic pairs from atomic sets
Data: atomic sets ℬ ∈ 22

Σ

1 def create_atomic_pairs(ℬ):
2 Ω← ∅;
3 for 𝐵 ∈ ℬ do
4 𝐵𝑙𝑖𝑠𝑡 ← Set.elements(𝐵); /* convert a set to a list */
5 if |𝐵| = 1 then Ω← Ω ∪ {(𝜀,𝐵𝑙𝑖𝑠𝑡[0])};
6 else
7 for 𝑖← 0 to |𝐵| − 1 do /* create all 2-element variations */
8 for 𝑗 ← 𝑖 + 1 to |𝐵| − 1 do
9 Ω← Ω ∪ {(𝐵𝑙𝑖𝑠𝑡[𝑖], 𝐵𝑙𝑖𝑠𝑡[𝑗])} ∪ {(𝐵𝑙𝑖𝑠𝑡[𝑗], 𝐵𝑙𝑖𝑠𝑡[𝑖])};

10 end
11 end
12 end
13 end
14 return Ω;
15 end
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Atomic Pairs At the beginning of the second phase of the analysis, the input file is
processed. All atomic sets from this file are transformed into pairs stored in an internal
data structure Ω ∈ 2Σ×Σ, which is a set of pairs of function calls that stores pairs that
should be called atomically. Ω is globally accessible throughout the analysis.

The transformation from sets to pairs is done using the function create_atomic_pairs
as demonstrated in Algorithm 5.6. In particular, to obtain the pairs, all possible pairs of
functions are taken from the atomic sets, i.e., all 2-element variations (lines 7–11). Besides,
notice that single functions may also be considered when an atomic set contains only one
function call (line 5).

1 type xy = string * string (* (x, y) pair *)
2 type xy_lock = xy * Lock.t (* (x, y) pair with a lock, i.e., (x, y, 𝜋, 𝑙) ∈ 𝜆 *)
3 module S_xy_lock = (* a set of the above *)
4 Set.Make(struct type t = xy_lock end)
5 type severity = Warning | Error (* severity 𝒮 of an atomicity violation *)
6 type v = (* a pair that violates atomicity, i.e., (x, y, 𝑐, 𝑆) ∈ 𝑉 *)
7 xy * int * severity
8 module S_v = Set.Make(struct type t = v end) (* a set of the above *)
9 type p = (* an element of an abstract state *)

10 { lastPair: xy; violations: S_v.t; lockedLastPairs: S_xy_lock.t
11 ; guards: g }
12 module TSet = Set.Make(struct type t = p end) (* a set of the above *)
13 type t = TSet.t (* a type of the abstract state (an alias for TSet.t) *)
14 let initial : t = (* the initial abstract state of a function f *)
15 TSet.singleton (* an "empty" element (initial program path of f) *)
16 { lastPair= ("", "") (* an empty pair *)
17 ; violations= S_v.empty (* an empty set *)
18 ; lockedLastPairs= S_xy_lock.empty (* an empty set *)
19 ; guards= M_AP.empty (* an empty map *) }

Listing 5.9: A definition of the abstract state in Phase 2

Abstract State The implementation of the abstract state is illustrated in Listing 5.9. The
abstract state is of the type TSet.t (t is an alias for it). TSet itself is defined on line 12.
It is a module representing a set of structures p (lines 9–11). Each element corresponds to
a single program path. Fields of this structure are composed of types and modules defined
on the lines above (some types are defined already in the previous section). Lines 14–19
define the initial abstract state. The fields are as follows:

• lastPair: a pair of function calls, i.e., Σ×Σ. It captures the (x, y) pair of the most
recent calls of functions performed on a program path being explored. It is used for
detecting whether this pair violates atomicity.

• violations: the set 𝑉 of so far detected pairs that violate atomicity on particular
lines of code with the severity of the violation, i.e., an element of 2Σ×Σ×N×𝒮 . In the
end, this set is used for reporting atomicity violations.
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• lockedLastPairs: the set 𝜆 of the most recent function calls with their locks, where
a lock ℒ is of the type Lock.t. In fact, it is a set of tuples (x, y, 𝜋, 𝑙), i.e., an element
of 2Σ×Σ×Π×N⊤ . This set is used for checking whether the last pair is locked.

• guards: the same object as in the first phase of the analysis, i.e., a map Π → 2N×Π.
It maps a lock guard’s access path to a list of access paths of associated locks. It can
be viewed as a set of the pairs (𝜋𝑔, 𝐿) ∈ Π× 2Π from the proposal.

The main functions of this phase’s abstract domain that work with abstract states are
apply_call, apply_locks, and apply_unlocks. Earlier, in Listing 5.2, there is shown
how these functions are applied.

The function apply_call from Algorithm 5.7 demonstrates how an abstract state is up-
dated when some classical function is invoked. At first, this function pushes the called
function to the lastPair field and all locked pairs in the filed lockedLastPairs (lines
4–9). Then, it is checked whether there are any new atomicity violations (lines 12–18).
Note that on lines 13 and 17, the created violations are labelled as Error. Thus, they
are considered as global atomicity violations so far. Later in the analysis — when analysing
functions higher in the call hierarchy — these violations might be changed to Warning if
this function is invoked under a lock. This is further described later on.

Algorithm 5.7: Updating an abstract state after a call of a function
Data: called function f ∈ Σ; actual line of code 𝑐 ∈ N; abstract state

𝑠 ∈ Domain.t; atomic pairs Ω ∈ 2Σ×Σ

1 def apply_call(f, 𝑐, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 // ’snd’ returns the second element of a pair
4 𝑝.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟 ← (snd(𝑝.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟), f); /* push f to the last pair */
5 for (xℒ, yℒ,ℒ) ∈ 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 do
6 // push f to all the locked pairs
7 xℒ ← yℒ;
8 yℒ ← f;
9 end

10 (x, y)← 𝑝.𝑙𝑎𝑠𝑡𝑃𝑎𝑖𝑟;
11 // check atomicity violation
12 if (x, y) ∈ Ω and @ (x, y,_) ∈ 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 then
13 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠← 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∪ {(x, y, 𝑐, Error)};
14 end
15 // check violation also for a single function
16 if (𝜀, y) ∈ Ω and @ (_, y,_) ∈ 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 then
17 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠← 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∪ {(𝜀, y, 𝑐, Error)};
18 end
19 end
20 return 𝑠;
21 end

Furthermore, the apply_locks and apply_unlocks functions’ implementation is illustrated
using the algorithms from Appendix C, namely, Algorithms C.5 and C.4, respectively.
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Summary The implementation of the summary in this phase of the analysis is given in
Listing 5.10. It is of the type Summary.t (line 2). It is composed of the modules defined
earlier in Listing 5.9. The sub-module Summary also implements other functions not shown
in the listing. Some of these functions are defined later. The summary is a structure that
contains the following fields:

• violations: the set 𝒱 of all detected pairs that violate atomicity on particular lines of
code with the severity of the violation, i.e., an element of 2Σ×Σ×N×𝒮 . It is constructed
from the sets 𝑉 of an abstract state of a given function.

1 module Summary = struct
2 type t = {violations: S_v.t} (* a type of a summary *)
3 end

Listing 5.10: A definition of the summary in Phase 2

The Summary module also implements the function create, which converts an intraproced-
ural abstract state to an interprocedural summary. This function is given in Algorithm 5.8.
It simply takes atomicity violations from an abstract state and puts them into a single set.
An application of this function can be seen in Listing 5.1 provided at the beginning of this
chapter.

Algorithm 5.8: Converting an abstract state to a function summary
Data: abstract state 𝑠 ∈ Domain.t

1 def create(𝑠):
2 𝒱 ← ∅;
3 for 𝑝 ∈ 𝑠 do 𝒱 ← 𝒱 ∪ 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠;
4 return {𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 = 𝒱};
5 end

Furthermore, when calling an already analysed function, its summary is used to update an
abstract state of an analysed function. This is done using the function apply_summary from
Algorithm C.6 in Appendix C. The algorithm works as follows. When the abstract state is
considered inside an atomic block, all atomicity violations from the summary of the called
function are passed to atomicity violations of the abstract state as warnings (lines 8–10).
Otherwise, they are passed unchanged (line 5). This means that global atomicity violations
may be changed to local atomicity violations of the called functions. As a consequence, these
local atomicity violations will be reported as warnings, as discussed in the next section.
How the function apply_summary is used in the second phase of the analysis is shown in
Listing 5.2.

5.2.1 Output of Phase 2

An output of the second phase of the analysis is the final reported atomicity violations.
The violations are printed to the standard output. Moreover, they are stored in both plain
text format (infer-out/report.txt) and JSON format (infer-out/report.json). An
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example of text output is provided in Listing 5.11. Notice that in JSON format, there are
available more information about reported violations, e.g., an error trace.

#0
analysed_program.c:36: error: Atomicity Violation

Atomicity Violation! - Functions ’foo’ and ’bar’ should be called atomically.
34. void do_something()
35. {
36. foo(); bar();

^
37. }
38.

#1
analysed_program.c:58: warning: Local Atomicity Violation

Local Atomicity Violation! - Functions ’x’ and ’y’ should be called atomically.
56. if (x() > 6)
57. {
58. y(args);

^
59. }
60.

Found 2 issues
Issue Type(ISSUED_TYPE_ID): #

Local Atomicity Violation(ATOMICITY_VIOLATION_WARNING): 1
Atomicity Violation(ATOMICITY_VIOLATION_ERROR): 1

Listing 5.11: An example of an output of the second phase of the analysis (report.txt file)

The process of reporting atomicity violations is implemented using the function from Al-
gorithm 5.9. As line 3 indicates, atomicity violations are reported only from top-level func-
tions of the call tree. These functions also contain atomicity violations from lower levels,
because the summaries are passed upwards along the call tree during the analysis. An error
is reported a little differently for local and global violations (lines 6–9). The reporting itself
is implemented using the Reporting module provided by the Facebook Infer framework.

5.3 Support for New Languages and Locks

Besides all the proposed and implemented extensions described in the previous section-
s/chapters, Atomer was extended to support analysis of C++ and Java programs that the
first version of Atomer did not support. As already said in Section 2.3, in general, Facebook
Infer can analyse programs written in C, C++, Java, Objective-C (and C# [40]). The Face-
book Infer’s frontend compiles input program into the SIL language and represents them
as a CFG. Individual analyses are then performed on SIL. It is thus possible to extend
the frontend for supporting other languages. However, in practice, there are not negligible
differences among the ways programs from different languages look like in SIL. Therefore,
individual non-trivial analysers have to be adapted for specific languages.
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Algorithm 5.9: Reporting atomicity violations from the summaries of all analysed
functions

Data: all analysed functions 𝐹 ∈ 2Σ

1 def report_atomicity_violations(𝐹):
2 for f ∈ 𝐹 do
3 if is_top_level(f) then
4 𝜒← read_summary(f);
5 for (x, y, 𝑐,𝒮) ∈ 𝜒.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
6 switch 𝒮 do
7 case Error do report_global_violation(x, y, 𝑐);
8 case Warning do report_local_violation(x, y, 𝑐);
9 end

10 end
11 end
12 end
13 end

The basic version of Atomer supported only C language using PThread mutex locks. The
new version of Atomer was adjusted to support also other C locks and even more com-
plicated mutual exclusion C++ and Java mechanisms. Facebook Infer’s built-in modules
implemented in infer/src/absint/ConcurrencyModels.ml[i] are used to identify locks
for different languages. Mainly, the function get_lock_effect is used. The particular
usage of the function can be seen in Listing 5.2 at the beginning of the chapter.

In the new version of Atomer, the ConcurrencyModels module has been significantly ex-
tended to support a broader range of locks. Most importantly, there is significantly better
and more accurate work with lock guards (and their locking strategies) and support for
re-entrant locks. Further, there is new/extended support, e.g., for read/write locks, timed
locks, shared locks, spinlocks, locking multiple locks at once using special functions, etc. In
particular, the following locking mechanisms are supported in the new version of Atomer:

• all C/C++ locks from the pthread.h4 library, including, e.g., spinlocks;

• C++ locks (guards) from standard libraries std::mutex and std::shared_mutex5,
including, e.g., C++ 17 scoped_lock or shared_mutex;

• C++ locks (guards) from libraries of Apache Thrift6, Boost7, and Facebook Folly8;

• Java locks from the standard package java.util.concurrent.locks9; and

• Java lock guards (monitors), i.e., synchronised blocks and methods using the syn-
chronized keyword.

4POSIX thread C/C++ library pthread.h: https://pubs.opengroup.org/onlinepubs/9699919799/
basedefs/pthread.h.html.

5Standard C++ multi-threading libraries: https://en.cppreference.com/w/cpp/thread.
6C++ framework Apache Thrift: https://thrift.apache.org.
7Third party C++ library Boost: https://www.boost.org.
8Third party C++ library Facebook Folly: https://github.com/facebook/folly.
9Java (SE 11) package java.util.concurrent.locks: https://docs.oracle.com/en/java/javase/11/

docs/api/java.base/java/util/concurrent/locks/package-summary.html.
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Chapter 6

Experimental Evaluation of the
New Version of Atomer

This chapter is devoted to testing and experimentally evaluating the new version of Atomer
as proposed and implemented in Chapters 4 and 5, respectively. Each Atomer’s enhance-
ment/extension was tested independently as soon as it had been implemented. It was tested
on suitable programs created for testing purposes and inspired by test programs from [18].
Section 6.1 includes the evaluation of analysis scalability. Further, Section 6.2 shows exper-
iments performed on test programs derived from the static analyser Gluon. Furthermore,
Section 6.3 is about an experimental evaluation of the new version of Atomer on pub-
licly available real-life complex programs. Finally, Section 6.4 concludes the experimental
evaluation and discusses future work.

6.0.1 Testing on Hand-Crafted Examples

The correct behaviour of the first version of Atomer was already tested in [18] on a synthetic
test suite containing C programs that use PThread locks. Test programs from this test suite
include sequences of function calls inside and outside atomic blocks, not paired lock/unlock
calls, iteration, selection, and nested function calls inside atomic sections. The programs
were designed to check all essential aspects of Atomer’s analysis, i.e., to check whether
various parts of the abstract domains work well w.r.t. the proposal.

The implementation of the new version of Atomer was, at first, tested on the test suite
from [18]. However, the reference outputs for these test programs were modified to ad-
apt the newly implemented features. For instance, the approximation of working with
sequences of function calls by working with sets of function calls had to be reflected in the
reference outputs. Further, new test programs were derived from those in [18], and they
were changed in order to check all aspects of the extensions and enhancements implemented
in the new version of Atomer. During testing, various kinds of different lock mechanisms
for C/C++/Java were used.

This way, the correct functioning of the analysis of Atomer’s new version has been validated
(w.r.t. the proposal). All of these testing programs are available on the attached memory
media; see Appendix A.
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6.1 Scalability Benchmark

The scalability of the analysis has been tested on a subset of a publicly available bench-
mark from [21]. It consists of real-life low-level complex concurrent C programs derived
from the Debian GNU/Linux distribution. The entire benchmark was initially used for
an experimental evaluation of Daniel Kroening’s static deadlock analyser for C/PThreads
implemented in the CPROVER framework. However, it can also be used for the evaluation
of Atomer’s scalability. For the evaluation, 7 programs with deadlocks and 54 deadlock-free
programs (806,431 lines of code in total) were used. Unfortunately, the author of the thesis
is not aware of any benchmark suite of a similar kind aiming at errors in atomicity.

The experiments1 were run in a Docker container on Windows 10 (WSL 2) with a 3.3 GHz
Intel© Core™ i5-2500K 64-bit processor and 6 GB RAM running the Debian GNU/Linux
x86-64 10.9 (Buster) operating system. Table 6.1 shows aggregated results of the evaluation.
In the table, there are average and total times of analyses for both phases of the analysis for
both the basic version of Atomer (Atomer v1.0.0, i.e., the version before the approximation
with sets proposed in the thesis) and the new version (Atomer v2.0.0, i.e., the version after
the approximation). Also, the table shows the number of timeouts of individual analyses
where the timeout ⊤ was set to 10 minutes. It is evident that, on average, the new version
of Atomer is about two times faster.

Table 6.1: Aggregated results of the evaluation of Atomer’s analysis scalability

Atomer v1.0.0 Atomer v2.0.0
Phase 1 Phase 2 Phase 1 Phase 2

Average Time (s) 70.98 109.11 37.96 50.93
Total Time (s) 4,117 5,892 2,164 2,750
Timeouts 4 9 3 4

For a closer look, Table 6.2 provides an overview of analyses’ times for selected programs
from the benchmark. In addition, the table also contains tgrep and sort from GNU Core
Utilities that also use PThreads. It can be seen that the approximation decreased the
analysis time a lot for some of these programs. Nonetheless, in one case, the timeout was
also exceeded in the new version of Atomer. This shows that the analysis may still take
a quite long time in some cases even after the approximation. The reason is that, in these
low-level programs, there are vast and complicated functions (thousands of lines of code)
that contain in-lined code.

6.2 Evaluation on Programs Derived from Gluon

Gluon is a prototype tool for static analysis of contracts for concurrency in Java pro-
grams developed in [13, 37] (also discussed in Section 3.1). The functionality of Gluon
was validated by its authors on a set of small benchmarking programs with known atom-
icity violations, which can be seen as contract violations. These programs were adapted
from [2, 3, 41], where they are typically used to evaluate atomicity violation detection meth-

1Performed scalability experiments are available at GitHub: https://github.com/harmim/vut-dip/
tree/master/benchmarks/scalability.
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Table 6.2: Individual results of the evaluation of Atomer’s analysis scalability (⊤ > 600 s)

Program LOC
Atomer v1.0.0 Atomer v2.0.0

Phase 1 Phase 2 Phase 1 Phase 2
Time (s) Time (s) Time (s) Time (s)

btscanner 2.1 9,142 ⊤ N/A 47.33 69.04
daemon (libslack) 0.6.4 42,857 280.75 40.85 11.40 10.43
crossfire-client-gtk2 1.71 41,185 1.74 ⊤ 1.71 14.58
c-icap 0.4.2 39,254 154.86 20.70 2.37 6.14
hmmer2 (hmmcalibrate) 2.3.2 38,301 109.79 ⊤ 10.07 ⊤
towitoko 2.0.7 12,339 38.23 77.50 2.27 10.69
mesa-demos 8.3.0 2,424 397.10 ⊤ 46.50 5.83
openscap 1.2.8 14,219 4.12 ⊤ 0.83 3.57
tgrep 1 3,190 240.36 ⊤ 0.92 0.74
sort (GNU Coreutils) 7,523 5.33 0.39 1.49 0.91

ods. In [13, 37], these programs were appropriately redesigned, and the necessary contracts
for each program were created.

Moreover, in [13], to validate a dynamic approach for contract violations, a subset of the
benchmarking programs was rewritten to a C++ version. This subset was also used to
validate the new version of Atomer. Validation results2 are given in Table 6.3. The table
shows the number of atomicity violations that can really occur in a given program (Real
Atomicity Violations), the number of the real violations that were found by the new version
of Atomer (True Positives), and the number of false positives (False Positives).

Table 6.3: Atomer’s validation results on test programs derived from Gluon [13, 37]

Benchmark LOC Real Atomicity True False
Violations Positives Positives

Account [41] 56 1 1 0
Coord03 [2] 119 1 1 0
Coord04 [3] 55 1 1 0
Local [2] 30 1 1 0
NASA [2] 97 1 1 0

The experiments were performed such that the contracts from [13] were manually given to
the second phase of Atomer’s analysis as atomic sets. As the table shows, Atomer detected
all known atomicity violations with the absence of false positives. Times of the analysis are
not included in the table because all the programs were analysed in less than a second.

Furthermore, the author of this thesis created a correct version of each benchmark, i.e.,
a version where atomicity violations are fixed by adding appropriate locks. Then, it was
shown that the first phase of the new version of Atomer was able to derive suitable con-
tracts automatically. Subsequently, Atomer found no atomicity violations in such corrected
programs.

2Experiments on validation programs derived from Gluon: https://github.com/harmim/vut-pp1/
tree/master/testing-programs/contracts-first-experiments-atomer.
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6.3 Experiments with Real-Life Programs

Since the new version of Atomer supports analysis of Java programs, two open-source real-
life extensive (both ∼250, 000 lines of code) Java programs were analysed — Apache Cas-
sandra3 3.11 and Apache Tomcat4 8.5. In [13], there were reported several atomicity-related
bugs in these programs. It turned out that the reported bugs were real atomicity violation
errors, and they were later fixed.

When Atomer first analysed these programs (at that time, without most of the exten-
sions presented in this thesis), the bugs were successfully rediscovered, but quite some
false alarms were reported. However, after all the improvements proposed in the thesis
were implemented, the number of false alarms was significantly reduced. In particular, the
support for re-entrant locks increased the analysis’ precision a lot because these types of
locks appear pretty often in these programs. Moreover, many “large” atomic sections in
these programs dramatically increase the number of reported false alarms. Therefore, the
parameters of the analysis presented in the thesis were used. In particular, the maximum
length of critical sections was limited with the parameter 𝑑 set to 20, and the number
of levels considered during analysing nested functions was limited with the parameter 𝑟
set to 10. Further, also using the parametrisation of the analysis, several “non-critical”
functions were ignored during the analysis (e.g., String.format, *.toString, *.toArray,
Log.debug, Integer.valueOf, etc.).

With all these Atomer’s extensions, when analysing one of the source files of Tomcat where
a real atomicity violation was reported before (i.e., org.apache.catalina.core.Stan-
dardContext — this package itself contains 6,684 lines of code, and the packages it de-
pends on, that must have been analysed too, contain tens of thousands lines of code),
the number of reported errors decreased from ∼800 to 228. Then, when analysing one of
the source files of Cassandra where a real atomicity violation was reported before (i.e.,
org.apache.cassandra.streaming.StreamSession — this package itself contains 1,014
lines of code, and the packages it depends on, that must have been analysed too, con-
tain tens of thousands lines of code), the number of reported errors decreased from ∼700
to 112.

Obviously, most of the previously reported errors were false alarms. However, it is still
challenging to say which of these errors are real atomicity violations. Indeed, the author
suspects some of the warnings correspond to real errors, but so far, he has not managed to
confirm that.

6.4 Summary of the Evaluation and Future Work

Using small hand-crafted programs, it was successfully validated that the implemented new
version of Atomer works correctly w.r.t. the proposal. This validation includes all scalab-
ility/precision enhancements as well as support for other programming languages and ad-
vanced locking mechanisms that were not supported in the first version of Atomer.

3Open-source NoSQL database system Apache Cassandra: https://cassandra.apache.org.
4Open-source Java HTTP web server Apache Tomcat: https://tomcat.apache.org.
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Scalability testing in Section 6.1 shows that the new version of Atomer can analyse quite
extensive real-life low-level programs in a reasonable time. Moreover, it was proven that the
new version of Atomer is significantly faster than the first version implemented in [18]. This
improvement is caused by the approximation of working with sequences of function calls by
working with sets of function calls. Regarding performance, Atomer may be directly usable
for large real-life projects. However, the performance of Atomer strongly depends on the
size of critical sections (i.e., the number of function calls inside critical sections). Thus, it
is needed to filter out “large” critical sections using the proposed parameters in some cases.

Sections 6.2 and 6.3 demonstrate that the new version of Atomer can also reveal real
atomicity-related bugs in C++ and Java programs. In the case of the complicated and
large Java programs from Section 6.3, it was shown that the accuracy of the new version
of Atomer was significantly improved. However, unfortunately, quite some false alarms are
still reported along with real errors. It can be demanding to properly classify which of the
reported errors are real errors and which are false alarms. The number of false alarms can
make the analysis unusable on some kinds of real-world programs. But still, it is possible
to find appropriate values of the proposed parameters for a particular program to obtain
good results. For instance, in this way, one can specify several specific “critical functions”
that Atomer should focus on. This should often lead to much better results.

The above implies that future work will focus mainly on further improvements of the ac-
curacy of the analysis. Besides, the analysis results may be used as an input for dynamic
analysis, checking whether the atomicity violations are real errors. For example, one could
use the ANaConDA [14] dynamic analyser, which uses noise-based testing with extrapol-
ated checking for violations of contracts for concurrency. ANaConDA could be instructed
to concentrate its analysis and noise injection to those sets whose atomicity was found
broken by Atomer. Furthermore, it seems promising to consider formal parameters of fun-
ctions/methods involved in the contracts and distinguish the context of called functions
during the analysis to reduce false alarms.

Another exciting idea is to use machine learning to learn appropriate values of the analysis’
parameters (introduced in this thesis) for particular programs. Automation of the analysis
can be preserved using this approach, and the precision of the analysis may be high enough
(however, the precision would highly depend on training data). Another solution to reducing
the number of false alarms is to do some statistical ranking of reported errors and display
only the most critical errors to the user.

Finally, during experimenting with Tomcat, the author of this thesis found out that several
reported errors were due to calling functions with parameters that were local variables (i.e.,
non-shared variables). These cases cannot lead to real atomicity violations. Therefore, it
would be helpful to statically identify whether function parameters are shared variables. If
they are not, calls of such functions should be ignored.
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Chapter 7

Conclusion

The thesis started by describing the principles of program analysis with a focus on static
analysis and abstract interpretation. Further, Facebook Infer was described — a concrete
static analysis framework that uses abstract interpretation. Next, there were described
contracts for concurrency. The major part of the thesis then aimed to describe the static
analyser Atomer1 — proposed and implemented within the author’s bachelor’s thesis [18] —
designed as a Facebook Infer’s module for detection of atomicity violations in multi-threaded
programs. Its limitations were described, and thereafter, various extensions and improve-
ments aiming at the described limitations were proposed and implemented. Lastly, the
experimental evaluation of the new features and improvements was discussed together with
possible future work.
The first version of Atomer works on the level of sequences of function calls. It is based on
the assumption that sequences of function calls executed atomically once should probably
be executed always atomically, and it naturally works with sequences of calls. In the
thesis, to improve scalability, the use of sequences was approximated by sets. Furthermore,
several new features were implemented, e.g., support for C++ and Java, including various
advanced kinds of locks these languages offer (such as re-entrant locks or lock guards); or
a more precise way of distinguishing between different lock instances. Moreover, the analysis
has been parametrised, so the user can provide some input values to the analysis to make
the analysis more accurate.
The introduced enhancements were successfully tested and experimentally evaluated also on
extensive real-life software where real bugs were successfully rediscovered. It turned out that
such innovations improved the accuracy and scalability of the analysis significantly. How-
ever, Atomer’s accuracy can be further increased. There are still some other improvements
and ideas to work on, for instance, considering formal parameters of functions/methods
involved in the contracts and distinguishing the context of called functions; or combinations
with a dynamic analysis. Another interesting idea is to use machine learning to learn ap-
propriate values of the analysis’ parameters for particular programs. Further, it is needed
to perform more experiments on real-life programs to find and report new bugs.
It is expected that the work on this project will continue within the VeriFIT group at FIT
BUT. The preliminary results of the thesis were presented at the Excel@FIT’21 conference,
where it won two awards.

1The implementation of a new version of Atomer is available at GitHub as an open-source repository:
https://github.com/harmim/infer/tree/atomer-v2.0.0.
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Appendix A

Contents of the Attached Memory
Media

This appendix lists the contents of the attached memory media. In particular, the attached
memory media contains the following:

• /xharmi00-thesis-2021.pdf

– This thesis in PDF format.

• /thesis-latex/

– LATEX source files of the thesis.
– It can be compiled into PDF format using pdflatex and bibtex with the make

command (Makefile is included). However, the attached PDF file has been
compiled in Overleaf.

• /README.md, /README.html

– Files containing (among other things) an installation and user manual. It is
available in both Markdown and HTML formats.

• /src/

– The source code of the Facebook Infer framework with the Atomer plugin.
– Atomer is “hooked” in several files of the framework. Nevertheless, the majority

of the implementation is located in the sub-directory infer/src/atomicity/.

• /infer-linux-x86-64-atomer-v2.0.0/

– Compiled Facebook Infer with the new version of Atomer (v2.0.0). It has been
compiled on the Debian GNU/Linux x86-64 10.9 (Buster) operating system.

– Executable binaries are available in the sub-directory bin/.

• /examples/

– Some example programs with reference outputs of the analysis. These programs
have been used for experimental testing of the correctness of the analysis.
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Appendix B

Installation and User Manual

This appendix serves as an installation and user manual. An extended manual (together
with some examples) can be found at Atomer’s Wiki (https://github.com/harmim/infer/
wiki) and on the attached memory media (see Appendix A).

Further, it is assumed that the working directory contains all the files from the attached
memory media, as described in Appendix A. If not, the /src/ directory may be cloned
using git through SSH or HTTPS using one of the following commands:

git clone git@github.com:harmim/infer.git --branch atomer-v2.0.0
--single-branch --depth 1 --recurse-submodules src

git clone https://github.com/harmim/infer.git --branch atomer-v2.0.0
--single-branch --depth 1 --recurse-submodules src

Alternatively, it can be downloaded using curl as follows:

curl -sL
https://github.com/harmim/infer/archive/refs/tags/atomer-v2.0.0.tar.gz
| tar -xz

mv infer-atomer-v2.0.0 src

If the /infer-linux-x86-64-atomer-v2.0.0/ directory containing executable binaries is
not present, it can be downloaded using curl as follows:

mkdir infer-linux-x86-64-atomer-v2.0.0
curl -sL

https://github.com/harmim/infer/releases/download/atomer-v2.0.0/infer-atomer-v2.0.0.tar.xz

| tar -xJ -C infer-linux-x86-64-atomer-v2.0.0

Installation Manual

In the /infer-linux-x86-64-atomer-v2.0.0/ directory, there is Facebook Infer with
Atomer already compiled. Thus, it can be directly used. In the sub-directly bin/, there
are executable binaries. Manual pages can be found in the sub-directory share/man/. The
binaries have been compiled for the Debian GNU/Linux x86-64 10.9 (Buster) operating
system. It can be installed system-wide using the following commands:
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PATH="infer-linux-x86-64-atomer-v2.0.0/bin:$PATH"
MANPATH="infer-linux-x86-64-atomer-v2.0.0/share/man:$MANPATH"

Another option is to build Atomer from the source or to run it in Docker. These options
are discussed in the following sections. Running pre-compiled binaries in Docker is
a recommended and quick method.

Building Atomer from the Source

Building Atomer from the source may be very time-consuming.

At first, it is required to install Facebook Infer’s dependencies and then to compile Facebook
Infer with Atomer. Here are the prerequisites to be able to compile Facebook Infer with
Atomer on Linux:

• opam ≥ 2.0.0,

• pkg-config,

• Java (only needed for the Java analysis),

• gcc ≥ 5.X or clang ≥ 3.4 (only needed for the C/C++ analysis),

• autoconf ≥ 2.63,

• automake ≥ 1.11.1,

• cmake (only needed for the C/C++ analysis).

See /src/docker/atomer-v2.0.0/Dockerfile for inspiration on how to install the de-
pendencies on Linux. It includes the dependencies needed to build Facebook Infer with
Atomer on Debian 10 (Buster).

The installation of Facebook Infer with Atomer can be done using the following commands:

cd src
./build-infer.sh
sudo make install

The official Facebook Infer’s installation manual (which also includes instructions for other
operating systems) can be found at https://github.com/harmim/infer/blob/atomer-
v2.0.0/INSTALL.md.

Facebook Infer with Atomer now should be installed system-wide. Executable binaries are
located in /src/infer/bin/.

Running Atomer in Docker

Alternatively, Facebook Infer with Atomer can be easily built and run in Docker. The
installation is much simpler and faster. At first, it is needed to install Docker Engine. It is
available on a variety of Linux platforms, macOS, and Windows 10. Get it and follow the
instructions from https://docs.docker.com/engine/install.
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The first option is to build Facebook Infer with Atomer from the source in Docker. There
is prepared a Docker image for it. Building the image can take a few hours. The image is
based on Debian Linux. After running a container built from this image, Facebook Infer
with Atomer will be compiled and installed system-wide in the container. The image can
be built and the container run using the command below:

./src/docker/atomer-v2.0.0/run.sh # there is also run.bat for Windows

The second option is to run pre-compiled binaries of Facebook Infer with Atomer in Docker.
There is prepared another Docker image for it. Building the image can take, at most, a few
minutes. The image is based on Debian Linux as well. After running a container built
from this image, binaries of Facebook Infer with Atomer will be downloaded and installed
system-wide in the container. The image can be built and the container run using the
command below:

./src/docker/atomer-v2.0.0-bin/run.sh # there is also run.bat for Windows

User Manual

This section assumes that Facebook Infer with Atomer is installed system-wide and execut-
able by the command infer.

In general, to analyse a C/C++ program with Facebook Infer, it can be done using the
following command (for a single source file):

infer -- gcc -c source_file.c

Java programs can be analysed using the following command:

infer -- javac source_file.java

Another option is to analyse the entire project with Makefile using the following:

infer -- make <target>

For advanced usage, see https://fbinfer.com/docs/infer-workflow. Many other build
systems may be used; see https://fbinfer.com/docs/analyzing-apps-or-projects.

Atomer is deactivated by default. The analysis has to be executed twice (it has two phases).
Each phase runs with a different command-line argument. The first phase derives sets of
functions that should be executed atomically into a file atomic-sets. The second phase
then detects atomicity violations according to this file. So, the analysis can be triggered
using the following commands:

infer capture -- gcc -c source_file.c
# Without the ’-only’ suffix, it is triggered with other Infer’s analyses.
infer analyze --atomic-sets-only # --atomic-sets
infer analyze --atomicity-violations-only # --atomicity-violations

To analyse Java programs, use the following commands:

infer capture -- javac source_file.java
infer analyze --atomic-sets-only # --atomic-sets
infer analyze --atomicity-violations-only # --atomicity-violations
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Input Parameters

The following parameters may be used when running the infer analyze command:

--atomicity-ignored-function-calls path

– Specify a file with function names (one function name per line; considered as
a regular expression if the line starts with R followed by whitespace, an exact
match otherwise) whose calls should be ignored during the analysis.

--atomicity-ignored-function-analyses path

– Specify a file with function names (one function name per line; considered as
a regular expression if the line starts with R followed by whitespace, an exact
match otherwise) whose analysis should be ignored during the analysis.

--atomicity-allowed-function-calls path

– Specify a file with function names (one function name per line; considered as
a regular expression if the line starts with R followed by whitespace, an exact
match otherwise) whose calls should be allowed during the analysis. Other func-
tions will be ignored.

--atomicity-allowed-function-analyses path

– Specify a file with function names (one function name per line; considered as
a regular expression if the line starts with R followed by whitespace, an exact
match otherwise) whose analysis should be allowed during the analysis. Other
functions will be ignored.

--atomic-sets-locked-functions-limit int

– Specify the maximum number of function calls that could appear in a critical
section in the first phase of the analysis. Critical sections with more function
calls will be ignored. This is the parameter 𝑑. The default value is 20.

--atomic-sets-functions-depth-limit int

– Specify the maximum depth in the hierarchy of function calls to which func-
tion calls will be considered during the first phase of the analysis. This is the
parameter 𝑟. The default value is 10.

--atomicity-lock-level-limit int

– Specify the maximum expected level of ownership over the same lock object. An
over-approximation of the number of times the lock has been acquired. This is
the parameter 𝑡. The default value is 5.

For more information about the input parameters and other helpful parameters, see man
infer or man infer-analyze.
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Appendix C

Atomer’s Implementation
Algorithms

This appendix provides an overview of some of the implementation algorithms of the new
version of Atomer. These algorithms are either too long or not that important to be placed
in the main content of the thesis.

Phase 1 — Detection of Atomic Sets

This section deals with algorithms related to the first phase of the analysis.

Algorithm C.1: Updating an abstract state after an unlock
Data: access paths 𝐿 ∈ 2Π of locks being unlocked; abstract state 𝑠 ∈ Domain.t

1 def apply_unlocks(𝐿, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 for (𝐴,𝐵,ℒ) ∈ 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 do
4 if ℒ.𝜋 ∈ 𝐿 then /* unlock an existing lock */
5 ℒ ← Lock.unlock(ℒ);
6 if ¬Lock.is_locked(ℒ) then
7 // the lock is “completely” unlocked
8 𝑝.𝑓𝑖𝑛𝑎𝑙𝐶𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑓𝑖𝑛𝑎𝑙𝐶𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 ∪ {(𝐴,𝐵)};
9 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 ∖ {(𝐴,𝐵,ℒ)};

10 𝑝.𝑐𝑎𝑙𝑙𝑠← ∅;
11 end
12 end
13 end
14 end
15 return 𝑠;
16 end
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Algorithm C.2: Updating an abstract state after a lock
Data: access paths 𝐿 ∈ 2Π of locks being locked; abstract state 𝑠 ∈ Domain.t

1 def apply_locks(𝐿, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
4 for 𝜋 ∈ 𝐿 do
5 𝑙𝑜𝑐𝑘𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
6 for (𝐴,𝐵,ℒ) ∈ 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 do
7 if 𝜋 = ℒ.𝜋 then /* lock an existing lock */
8 𝑙𝑜𝑐𝑘𝑒𝑑← 𝑡𝑟𝑢𝑒;
9 ℒ ← Lock.lock(ℒ);

10 end
11 end
12 if ¬𝑙𝑜𝑐𝑘𝑒𝑑 then /* create a new lock */
13 𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑒𝑑← 𝑡𝑟𝑢𝑒;
14 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 ∪ {(𝑝.𝑐𝑎𝑙𝑙𝑠, ∅, Lock.create(𝜋))};
15 end
16 end
17 if 𝑙𝑜𝑐𝑘𝐶𝑟𝑒𝑎𝑡𝑒𝑑 then 𝑝.𝑐𝑎𝑙𝑙𝑠← ∅;
18 end
19 return 𝑠;
20 end

Algorithm C.3: Updating an abstract state with a summary of a called function
Data: summary 𝜒 ∈ Domain.Summary.t of a called function; abstract state

𝑠 ∈ Domain.t; maximum length 𝑑 ∈ N of a critical section; the number
𝑟 ∈ N of levels for the consideration of nested calls

1 def apply_summary(𝜒, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 𝑛𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑙𝑙𝑠← ∅;
4 for (𝑖, 𝐶) ∈ 𝜒.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠 do /* get nested calls from lower-levels */
5 if 𝑖 + 1 < 𝑟 then /* move the calls one level lower */
6 if ∃ 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[𝑖 + 1] then 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[𝑖 + 1]← 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[𝑖 + 1] ∪ 𝐶;
7 else 𝑝.𝑎𝑙𝑙𝐶𝑎𝑙𝑙𝑠[𝑖 + 1]← 𝐶;
8 end
9 if 𝑖 < 𝑟 then 𝑛𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑙𝑙𝑠← 𝑛𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑙𝑙𝑠 ∪ 𝐶;

10 end
11 𝑝.𝑐𝑎𝑙𝑙𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠 ∪ 𝑛𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑙𝑙𝑠;
12 for (𝐴,𝐵,ℒ) ∈ 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 do
13 𝐵 ← 𝐵 ∪ 𝑛𝑒𝑠𝑡𝑒𝑑𝐶𝑎𝑙𝑙𝑠;
14 // rid of “large” critical sections
15 if |𝐵| > 𝑑 then 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑐𝑎𝑙𝑙𝑠𝑃𝑎𝑖𝑟𝑠 ∖ {(𝐴,𝐵,ℒ)};
16 end
17 end
18 return 𝑠;
19 end
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Phase 2 — Detection of Atomicity Violations

This section deals with algorithms related to the second phase of the analysis.

Algorithm C.4: Updating an abstract state after an unlock
Data: access paths 𝐿 ∈ 2Π of locks being unlocked; abstract state 𝑠 ∈ Domain.t

1 def apply_unlocks(𝐿, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 for (x, y,ℒ) ∈ 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 do
4 if ℒ.𝜋 ∈ 𝐿 then /* unlock an existing lock */
5 ℒ ← Lock.unlock(ℒ);
6 if ¬Lock.is_locked(ℒ) then
7 // the lock is “completely” unlocked
8 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 ∖ {(x, y,ℒ)};
9 end

10 end
11 end
12 end
13 return 𝑠;
14 end

Algorithm C.5: Updating an abstract state after a lock
Data: access paths 𝐿 ∈ 2Π of locks being locked; abstract state 𝑠 ∈ Domain.t

1 def apply_locks(𝐿, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 for 𝜋 ∈ 𝐿 do
4 𝑙𝑜𝑐𝑘𝑒𝑑← 𝑓𝑎𝑙𝑠𝑒;
5 for (x, y,ℒ) ∈ 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 do
6 if 𝜋 = ℒ.𝜋 then /* lock an existing lock */
7 𝑙𝑜𝑐𝑘𝑒𝑑← 𝑡𝑟𝑢𝑒;
8 ℒ ← Lock.lock(ℒ);
9 end

10 end
11 if ¬𝑙𝑜𝑐𝑘𝑒𝑑 then /* create a new lock */
12 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠← 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠∪{(𝜀, 𝜀, Lock.create(𝜋))};
13 end
14 end
15 end
16 return 𝑠;
17 end
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Algorithm C.6: Updating an abstract state with a summary of a called function
Data: summary 𝜒 ∈ Domain.Summary.t of a called function; abstract state

𝑠 ∈ Domain.t
1 def apply_summary(𝜒, 𝑠):
2 for 𝑝 ∈ 𝑠 do
3 if 𝑝.𝑙𝑜𝑐𝑘𝑒𝑑𝐿𝑎𝑠𝑡𝑃𝑎𝑖𝑟𝑠 = ∅ then /* outside an atomic section */
4 // take summary violations unchanged
5 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠← 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∪ 𝜒.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠;
6 else /* inside an atomic section */
7 // take summary violations as warnings
8 for (x, y, 𝑐, 𝑆) ∈ 𝜒.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 do
9 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠← 𝑝.𝑣𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑠 ∪ {(x, y, 𝑐, Warning)};

10 end
11 end
12 end
13 return 𝑠;
14 end
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