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Abstract

Even though machine learning algorithms already play a significant role in data science, many current
methods pose unrealistic assumptions on input data. The application of such methods is difficult due
to incompatible data formats, or heterogeneous, hierarchical or entirely missing data fragments in the
dataset. As a solution, we propose a versatile, unified framework called ‘HMill’ (Hierarchical multi-
instance learning library) for sample representation, model definition and training, which addresses
the discussed problems and meets all requirements for a modern general-purpose instrument. We
review in depth the multi-instance paradigm for machine learning that the framework builds on
and extends. To theoretically justify the design of key components of HMill, we show an extension
of the universal approximation theorem to the set of all functions realized by models implemented
in the framework. The text also contains a detailed discussion on technicalities and performance
improvements in our implementation, which is published for download under the MIT License. The
main asset of the framework is its flexibility, which makes modelling of diverse real-world data sources
with the same tool possible. This is done with only minor changes in the pipeline and requires neither
further specialization nor performance compromises. Additionally to the standard setting in which a
set of attributes is observed for each object individually, we explain how message-passing inference
in graphs that represent whole systems of objects can be implemented in the framework. To support
our claims, we solve three different problems from the cybersecurity domain using the framework.
The first use case concerns IoT device identification from raw network observations. In the second
problem, we study how malicious binary files can be classified using a snapshot of the operating system
represented as a directed graph. The last provided example is a task of domain blacklist extension
through modelling interactions between entities in the network. In all three problems, the solution
based on the proposed framework achieves performance comparable to specialized approaches.

Keywords: multi-instance learning, cybersecurity, graph inference
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Abstrakt

I přesto, že algoritmy strojového učení již nyní hrají důležitou roli v oboru datových věd, většina
současných metod klade nerealistické předpoklady na vstupní data, anebo je jejich aplikace složitá
díky nekompatibilním datovým formátům či heterogenním, hierarchickým anebo chybějícím položkám
v datasetu. Jako řešení navrhujeme všestrannou, unifikovanou knihovnu s názvem ‘HMill’ (Hierarchical
multi-instance learning library) pro reprezentaci vzorků, definici modelů a jejich učení, která řeší
uvedené problémy a splňuje všechny požadavky pro moderní všeobecný nástroj. V práci se zabýváme
paradigmatem multi-instančního učení, ze kterého knihovna vychází a dále ho rozšiřuje. Abychom
také teoreticky odůvodnili ideje na kterých je nový přístup založen, ukazujeme rozšíření Univerzální
aproximační věty pro množinu funkcí realizovanou modely z knihovny. Dále práce obsahuje diskuzi o
technických detailech a optimalizaci konkrétní implementace, která je zveřejněná ke stažení pod licencí
MIT. Hlavní přínos nového přístupu spočívá v jeho flexibilitě, což umožňuje modelování rozličných
datových zdrojů stejným nástrojem, bez nutné specializace a bez kompromisů ve výkonosti naučených
modelů. Kromě klasického případu kdy pozorujeme množinu charakteristik každého objektu zvlášť
diskutujeme také, jak lze pomocí knihovny naimplementovat proceduru inference v grafech pomocí
posílání zpráv. Pro podporu našich tvrzení v práci řešíme tři rozdílné úlohy z domény počítačové
bezpečnosti. První úloha spočívá v identifikaci typu zařízení v Internetu věcí na základě surových
dat naměřených v síti a druhá v klasifikaci binárních souborů na základě informací v operačním
systému vyjádřených jako orientovaný graf. Poslední příklad se zabývá úlohou rozšiřování blacklistu
nebezpečných domén pomocí modelování interakcí mezi entitami v počítačové síti. Ve všech třech
úlohách dosáhl navrhovaný přístup přesnosti srovnatelné se specializovanými metodami.

Klíčová slova: multi-instanční učení, počítačová bezpečnost, inference na grafu
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Chapter 1

On challenges posed by modern data
sources

In recent years, the world has seen a tremendous number of successful applications of Artificial
intelligence (AI) to create value in different sectors. Specifically, in natural language processing, new
pre-trained language models [Devlin et al., 2018,Radford et al., 2018] significantly improved the
accuracy of systems for machine translation, question answering and text summarization. Due to recent
advances in speech synthesis [Van Den Oord et al., 2016,Amodei et al., 2016], virtual assistants no
longer have to rely on soundbanks to produce speech. In computer vision, older black and white movies
or photos can now be instantly enhanced through automatic color restoration [Iizuka et al., 2016]. We
have seen algorithms capable of plausible reenactment of famous people, synthesizing a completely
new video of their talk with precise lip-syncing given only audio as input [Suwajanakorn et al., 2017].
For the inverse task, lipreading models outperforming humans were also developed [Assael et al.,
2016]. There are many other fields, that currently employ AI techniques to achieve unparalleled results
and examples provided here are just a tip of the iceberg.

As impressive as the results oftentimes seem, all of the methods mentioned above are instances of
statistical machine learning subfield of AI, and the whole procedure can be simplified down to a few
basic steps. First, a model is initialized as an instance of a pre-defined parametrized family of functions
that is believed to accurately encompass an unknown distribution of the data. A suitable loss function is
then defined to bridge the gap between what a human would consider a well-performing system and
what can be rigorously expressed in a mathematical language. After that, observations are repeatedly
sampled from the dataset, and the model parameters are altered in such a way that the value of the
loss function decreases. Various methods differ in their choice of model architecture, loss function,
or training procedure, yet they all have one thing in common—they rely on huge datasets available
for their training and large-scale computation that has only recently become attainable. In his essay
called The Bitter Lesson [Sutton, 2019], Richard S. Sutton reflects, that “general methods that leverage
computation are ultimately the most effective, and by a large margin”. He points out that AI researchers
tend to build human knowledge of the domain into their systems, which reaps immediate reward,
but eventually plateaus and hinders further progress in the long term. Community is encouraged to
focus instead on developing general-purpose meta-methods capable of finding good approximations of
the complex world around us by themselves through computation and whose performance further
improves with more powerful hardware and larger datasets.

In history, there are many examples of a clash of these two methodologies. For two-player games
such as chess and Go, superhuman performance was achieved by employing massive state space search
and self-play [Campbell et al., 2002,Silver et al., 2018] after previous approaches based on special
structure and features of the game identified by humans faltered. In computer vision, researchers used
to define image features based on their belief of how the human mind works, which led, for instance,
to SIFT features [Lowe, 2001] or predictors based on edge detection technology. However, it turns out
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that a general low-level convolution operation used in convolutional neural nets coupled with large
training dataset and computation leverage was the only thing needed to outperform all prior methods
significantly [Krizhevsky et al., 2012].

Last decade saw unprecedented growth in the volume of available data, mainly thanks to an
expansion of the Internet and mobile devices as well as recent developments in Web technologies.
In 2013, it was estimated that the number of connected devices would increase three times by
2020, reaching more than 30 billion devices worldwide [ABI Research, 2013]. Facebook generates
four petabytes of new data every day, out of which 350 million are photos [Kit Smith, 2019], and
Twitter processes 500 million posts per day, leading to around 6 thousand tweets on average every
second [Internet Live Stats, 2020]. This trend is nowadays referred to as big data [Mark Beyer, 2012]
and is identified by three main characteristics—volume, velocity and veracity. It is a common belief that
with carefully implemented privacy measures, efficiently processed big data will benefit the whole
society in many ways, ranging from medical informatics to improved fraud detection and cybersecurity.
As the sudden surge of the remarkable AI breakthroughs was possible thanks to the increasing amount
of data available in the majority of application domains, many people maintain that the humanity is
on the verge of another industrial revolution, this time featuring information and knowledge as the
primary commodity. Unfortunately, we still lack utterly bulletproof policies for processing of personal
data and also sufficiently general methods to deal with the massive amount of data. In this thesis, we
address the latter issue and propose a unified framework for learning from diverse real-world data. The
following section goes into detail and elaborates further why we believe new approaches are needed.

1.1 Pitfalls of real-world datasets

Recently, many works discussed the promises of big data and how its properties present new challenges
for current Machine learning (ML) systems [Zhou et al., 2014b,Najafabadi et al., 2015, L’Heureux
et al., 2017,Dulac-Arnold et al., 2019,Amit et al., 2019,Malik, 2020]. What follows is a compiled
list of what we identified as potential problems for current pipelines and focused on in this thesis.
The emphasis is put on deep learning-based methods, however, most of the reasoning applies also to
different approaches to machine learning. We will use words object, individual, sample, or observation
to refer to all possible real-world entities (executable files, photos, domains) we are dealing with. We
provide specific examples mainly from the cybersecurity domain, which this work focuses on and from
which all tasks solved in the experiment sections originate.

1.1.1 Independence assumption

The classical statistical machine learning paradigm defines the so-called independent and identi-
cally distributed (i.i.d.) data assumption stating that there exists an underlying distribution from
which all data is independently sampled, and therefore all objects from the dataset are identically
distributed [Fukunaga, 1990,Webb, 2003, Bishop, 2006]. This is further utilized when obtaining
the train-test split of the data, where one part of the dataset is held out from the training phase and
evaluated on afterwards in order to estimate the generalizing capabilities of the model. Dynamic
real-world systems such as internet networks consist of a large number of interdependent actors,
which influence each other on a regular basis, thus reasoning about one individual without including
knowledge about others seems like a missed opportunity. Moreover, it is not clear how to disentangle
the interdependent system of objects of interest into the training and testing sets so that the true
distribution is preserved in both of them.

For example, consider a task of malicious domain classification, in which we observe a computer
network and attempt to pronounce each domain that users connect to as malicious or benign. One
of the possible approaches for solving this problem is to design a set of features describing a single
domain and train one of many off-the-shelf classifier implementations. Examples of such features are

2



CHAPTER 1. ON CHALLENGES POSED BY MODERN DATA SOURCES

n-gram based representation of the domain’s Uniform Resource Locator (URL) or data extracted from
the response to a WHOIS query. Nevertheless, a more accurate description of the domain will consider
other entities in the network. For instance, it is common that malicious software or malicious servers
themselves connect to Command and control (C&C) servers to receive further instructions. The fact
that an object in question connected to such server is a powerful indicator of maliciousness, hence
it seems sensible to also include information about outgoing connections to other domains and not
only features describing the object itself. Another example, where i.i.d. assumption does not hold, are
polymorphic variations of the same malware, hardware from the same vendor, or hosts in the same
network, all of which are very dependent. In all these examples, statistical guarantees provided under
a condition that i.i.d. assumption holds are rendered void.

On the other side of the spectrum are graphical models [Jordan, 2004], which aim to represent a
joint probability distribution p(X) of a set of random variables X = {X1, X2, . . . , Xn} describing all
n observed objects in the system. The distribution is encoded into a graph, whose vertices represent
random variables and edges relationships between them. To represent a real-world system as a
graphical model, for every sample we add a variable, which takes values depending on what we want
to learn (real numbers for regression tasks, discrete set of values for classification into a finite number
of classes, and so forth). Graphical models offer high modelling power at the cost of limited method
options for computing marginal probabilities or other inference problems. Exact inference algorithms
exist only for special classes of graphs [Baum and Petrie, 1966, Pearl, 1988], however, for general
graphs the inference is known to be NP-hard.

Ideally, the modern real-world data processing systems should be able to smoothly interpolate
between these two cases by including some knowledge about dependences between samples in order
to obtain high expressive power while keeping computational complexity and convergence speed low.

1.1.2 Feature engineering and sample representation

Most machine learning algorithms expect each sample to be represented as a real feature vector x ∈ R
n

in some real vector space of fixed (finite) dimension n. As n grows, the maximal possible representation
power and the capacity of models increase, nevertheless, the number of model parameters grows as well,
which may lead to overparametrization. This vector-of-fixed-size requirement may be too constraining.
To further illustrate this, we refer the reader to the discussion about sample interdependence in the
previous paragraph. Making a prediction about an object while including knowledge about other
objects it depends on means that the amount of information to convey to the model is an increasing
function of the number of such related objects. For an observation purely independent of others, this
number will be zero, however, in practice, this number may take value from a broad range of values
without any obvious upper bound. Therefore, fixing the dimension of the feature vector to some
constant seems too limiting.

Additionally, this formulation relies not only on the existence of mapping from samples to feature
vectors but also on the fact that we know it or are at least able to sufficiently approximate it. For instance,
when performing machine learning on images, it is apparent that the appropriate representations
consist of raw pixel values since this is the only input humans also receive and still identify images
reliably. Feeding raw observations straight to the model and letting it decide what information to
keep and what information to discard is the ideal situation, nevertheless, what is the suitable feature
mapping for a web domain or a mobile device? Regrettably, there is no universal answer nor any rule
of thumb specifying how to design feature mappings, as empirical evidence suggests that optimal
mappings are both data and problem dependent. Feature engineering is a process of discovering
discriminative features, which often includes a great deal of domain expertise, and is thus deemed as
one of the most time-consuming tasks in ML pipeline. If the domain knowledge is not sufficient, feature
selection [Somol et al., 2010,Tang et al., 2014] that aims to select the most relevant features comes to
rescue. Feature selection improves on a simple trial-and-error selection procedure by using statistical
measurements and tests. Even though feature selection may reduce the dimension of the feature
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vector, it becomes challenging in high dimensions due to spurious correlations. For a long time, the
reasonable guiding principle was to define the feature space large enough to properly discriminate, and
use feature selection to find a suitable subspace with low redundancy and noise in the data. In recent
times methods such as neural networks able to implicitly perform this selection appeared, however,
they are constrained in types of input data.

Many real-world sources of data exhibit signs of the concept drift, which occurs when the dis-
tribution of the data changes in time. As a result, a model can soon become obsolete and degrade
in performance, even though it performed well at the time of training. As the world evolves, there
will always be a danger of model aging, and because machine learning is designed to learn from past
experiences and not predict the future data distribution changes, we have to resort to retraining the
whole model. This is possible as long as the appropriate feature set does not change over time, and the
only change happens in underlying distribution over the selected features. Once some of the features
lose their relevance and on the other hand, other previously discarded features gain in importance,
sole model retraining does not help. This leads to an obvious requirement that the whole pipeline
should be able to adapt to such changes in a short time without human intervention in an automated
fashion.

A specific example, where we might encounter such problems, is a device identification task from
the Internet of Things (IoT) domain. In this problem, we aim to recognize a type of an IoT device
using a set of low-level measurements obtainable in the network. Apart from querying MAC and IP
addresses of the device, which can be encoded to a fixed size vector, it is recommended to observe the
behavior of the device on the network and scan all its opened ports, collect its responses to various
queries, and store information broadcasted by the device across the network. As different devices
may expose a different number of ports and provide different services, storing this information in
a vector of fixed length will likely lead either to overparametrization, when the vector dimension is
unnecessarily high, or information loss, if the dimension is not high enough. The other option is not to
describe each device as a flat vector, but rather utilize any existing data format capable of encoding
structure in observations. As we demonstrate later in this work, the JSON format is very well suited for
capturing information like a list of open ports or responses. Nevertheless, how to construct models
able to process such input?

Moreover, imagine a (hypothetical) scenario in which we discover that voice assistants of a certain
vendor always use the same rather unusual port for communication. In this case, one feature of a
classifier or just a rule in a rule-based system could be based on this fact and we would probably
achieve good performance. However, what if the vendor changes the implementation, or other devices
start using this port? In the worst example, all such specific rules or features lose relevance over time,
and need to be rewritten or completely redesigned again by a human. We further discuss the task of
device identification in Chapter 5.

The main takeaways of this discussion are that modern ML systems should cope with non-euclidean
data as input and be capable of automatic feature selection from the non-euclidean data in a way
neural networks do it for fixed-size vectors. We advocate the resulting model working on raw data
with little to no preprocessing or aggregation, as it is the case, for example, in the computer vision
domain. Of course, the input data eventually must be aggregated if models are to output only one or
several numbers, however, it should be decided by models that can effectively learn how and when
to do it in the pipeline as opposed to humans. This is possible with increasing compute and in line
with the discussion presented at the beginning of the chapter. In the end, dealing with the concept
drift in rapidly changing environments would be solved by fully automated end-to-end retraining of
the model on new data. Effectively, resources can be allocated to experimenting with many different
data sources, instead of focusing on how to transform them appropriately and/or modify existing
algorithms to handle their data formats.
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1.1.3 Scalability and composability

Another problem of growing importance is the combinatorial explosion in the size of datasets, which
are needed to describe complexities of real-world phenomena. For instance, by rearranging objects in
an image scene or adding occluding objects, current models are often confused [Wang et al., 2017]. A
lot of research effort has also been put into discovering adversarial samples and training models robust
to them [Yuan et al., 2017]. Even though humans are able to naturally adapt to such changes and
extrapolate outside of the training data, this appears not to be the case with the present state-of-the-art
models. Consequently, to solve this problem with current tools the training data should contain all
possible changes to visual context leading to exponentially large datasets.

At the beginning of this chapter, we mentioned that one of the characteristics of big data is its
massive volume, and one may be misled into thinking that enough data to solve these issues is or
eventually will be available. However, a lot of deceptive samples are observed with low probability
and on the other hand many ‘common’ samples, which the model predicted correctly, are of high
prevalence. Therefore, it is difficult to train accurate models with naïve random selection of training
samples in reasonable (finite) time. Methods for selecting more representative data have been studied,
for example, in [Vapnik and Izmailov, 2015], but they are not frequently used in practice.

Adversarially robust training methods have been recently proposed, which train models also on
synthetic adversarial samples. This is usually to ensure that small modifications of input, such as adding
random noise, do not change the prediction. Unfortunately, this is not a solution to the problem of
exponentially large dataset required to capture the intrinsically complex world.

One of the proposed solutions to this is making models hierarchical (composable) with the core
assumption that real-world complex structures are decomposable into smaller elementary substructures
at a finer level of granularity and one can reason about the world by deliberately combining and
dismantling blocks of information in a hierarchical way. By introducing this explicit, yet general purpose
requirement into the model architecture, it attempts to learn the structure too. It has already been
shown that deep learning architectures extract increasingly more complex abstract representations
of the data with each layer [Zhou et al., 2014a], however here we require an explicit decomposition
into structures and substructures. Thanks to the explicit structure, hierarchical models are easily
interpretable, less susceptible to adversarial samples and due to the decomposition, generating new
samples is more straightforward. Moreover, (sub)structures tailored for one problem can be further
reused in other problems.

Finally, even though hierarchical models allow to better learn real-world phenomena with a
smaller number of observations, a new problem of inherent introduction of bias by selecting a specific
hierarchical architecture arises. We address this problem in the rest of the thesis and claim that this
structure is often naturally encoded in the data itself.

1.1.4 Heterogeneous, hierarchical, and missing data

Dealing with heterogeneous data involves aggregating data from several different sources. Based on
the origin of heterogeneity, we distinguish the following two types [L’Heureux et al., 2017]:

Syntactic heterogeneity occurs when incoming data is not encoded in the same way or is of different
data types. Current models are not designed to cope with these syntactical differences and
perform poorly when asked to simultaneously process inputs of different encodings, such as
categorical and numerical data, together.

Semantic heterogeneity refers to the case when input data comes from different sources. We will
also refer to this as multi-modal data coming from diverse modalities. Because semantically
heterogeneous data has a different interpretation, the underlying distributions may be different,
leading to substantial differences in statistical properties of the data across the dataset.
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The recent adoption of Web technologies, where information is communicated in a hierarchically
structured way, led to the origin of various data interchange formats, such as the aforementioned
JavaScript Object Notation (JSON) or eXtensible Markup Language (XML). The ubiquity of data
formatted in this way also puts pressure on the current methods, which are not designed to process
hierarchical data. As opposed to imposing an explicit structure to the model, which was discussed in
the last paragraph, this does not introduce any prior on the form of the hypothesis, but rather provides
the opportunity to leverage information encoded both in the raw values as well as in structure of the
data, leading to more flexible representations of samples.

Finally, it is often the case that the data is not collected directly at its source. This happens
when the dataset is generated by a system, whose properties we want to learn, and is somehow
transformed before being observed resulting in information loss and/or addition of noise. Examples of
such transformation include irreversible compression, network transportation or data aggregation. A
specific case is when parts of the data are missing entirely. This usually occurs when fragments of the
data that are missing exist but are not observable, or there is a limited budget of time or resources for
obtaining the data. The case when the source of data can be queried at some cost for specific features
has been studied [Janisch et al., 2019, Janisch et al., 2020], however the task is different once the
source cannot be manipulated with and hence the observed data is fixed. Present approaches are
not developed with this phenomena in mind, and unprincipled, weakly justified ad-hoc solutions are
employed.

In the last part of this thesis, we show how a problem of uncovering additional malicious domains
in the computer network given a blacklist of existing threats can be solved by simply observing binary
relations between domains and other network actors. For example, we can have a binary relation
between domains and clients connected to the network, which encodes that a client has connected
to a domain. Alternatively, we can define a relation between domains and binary files that indicates
that a running instance of a binary has issued a request to a domain. Data of this type is fairly simple
to assemble, however, learning from it is not straightforward since binary relations described above
are inherently heterogeneous (following completely different distributions), emit weak signals due
to their simple definition, and sometimes a relation may not describe a domain at all due to missing
information.

To sum up, we add another requirement on modern ML approaches to our list, which is to accept
multi-modal heterogeneous data from different sources and at different levels of granularity, and still
automatically recognize and distill relevant knowledge. Modern algorithms should deal with imprecise
observations and missing data in a principled way.

1.1.5 Explainability and interpretability

In many application areas, the strong incentive is to build accurate ML models to help human operators
either by simplifying rule-based systems previously designed by hand, offloading the most repetitive
and time-consuming tasks, or leaving the human entirely out of the loop. Even though offloading work
from one’s shoulder by systems that have been repeatedly shown to perform better than humans in
many tasks seems tempting, there is a major caveat. Modern ML algorithms indicate the existence
of a tradeoff between interpretability and performance, with deep learning usually being the most
performant and at the same time the least interpretable of all. Another example are decision tree-based
models, which work with the prior assumption that the decisions can be made in a hierarchical manner
by asking simpler questions at each layer of the decision tree and gradually specifying the corresponding
output. This hierarchical decomposition is similar to what we justified in the previous paragraph, and
the output of a tree-based model is indeed a sequence of decisions similar to how humans reason,
however, it was discovered that random forests, which train an ensemble of decision trees together
with some randomization involved, outperform a single tree significantly [Amit and Geman, 1997]. At
the same time, an ensemble of decision trees is much less trivial to explain.

The Occam’s razor principle implies that methods able to appropriately explain their decisions in
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simple terms are more likely to generalize well beyond the training data since they seek less complex
patterns. Hence, insufficient explainability is currently one of the most criticized limitations of complex
models. There are industry sectors, for example, fraud detection systems, in which proper explanation
of the decision is crucial to verify system’s soundness and gain insights into the origin of potential
errors, thus regarding the model simply as a magical ‘black-box’ is not possible. Another exemplar
domain is cybersecurity, where a system for filtering out the majority of benign objects in question
and discovering threats would be very welcomed by network analysts. The trustworthiness of such
discoveries is notably increased if the system also provides an explanation of its decision.

To conclude, modern ML systems should strive to achieve explainability in a natural way while
keeping the performance high and retaining complexity. Therefore, we advocate approaches that are
able to consistently pinpoint and present the main reasons why the decision was made and filtering
out negligible nuances.

1.2 Thesis structure

This thesis is dedicated to introducing a versatile and theoretically justified framework called Hierarchi-
cal Multi-instance Learning Library (HMill) for data representation, model definitions and subsequent
training. The framework is built upon recent findings in deep learning and multi-instance learning
and addresses the aforementioned problems in a principled way. The second chapter revises prior
art on multi-instance learning starting from the earliest approaches and ending with the present-day
techniques, and provides further motivation for following the multi-instance paradigm. The third
chapter is the crux of this thesis, as the framework is formally introduced there and its theoretical
properties are investigated. More specific details together with implementation tricks follow in the
fourth chapter. In the rest of the thesis, we show how the framework can be used to model diverse and
complex data sources with properties discussed in this introductory chapter. Specifically, in the fifth
chapter, we deal with JSON documents, in the sixth chapter with graphs with heterogeneous nodes
and edges encoding interactions between objects, and in the seventh chapter with binary relations
encoded as several bipartite graphs. The thesis is concluded with a chapter containing reflection on
the importance of the framework in modern ML pipeline and a summary of our future directions.

We have chosen cybersecurity as our ‘playground’ domain since it presents all the challenges we
discussed—we deal with typically discrete information at large volumes most of which is irrelevant
or uninformative and no canonical and straightforward feature mappings are known. Moreover, we
observe whole systems (networks, the Internet, operating systems) of interdependent objects, and
the environments change rapidly in the presence of the concept drift. All of these phenomena make
the application of machine learning techniques complicated. In the course of the thesis, we introduce
three different real-world cybersecurity tasks we solved successfully with the framework. The first
problem considers IoT device identification, in which we aim to classify an IoT device into several
classes based on information available in the network. In the second problem, we classify binary files
in the personal computer based on a snapshot of the operating system represented in a graphical form.
The last and perhaps most specific use case, on the basis of which we entitled this thesis, is modelling
the computer network based only on interactions between objects in the network encoded in several
heterogeneous bipartite graphs. All experiments would not be possible without our cooperation with
Avast Software and Cisco Cognitive Intelligence companies, who kindly provided us with data for
experimental purposes.

As the main strength of the framework lies in its high modelling flexibility and overall versatility,
we assume that the proposed approach to data processing will unlock a new realm of possibilities mainly
for data from modern sources, for which we lack suitable technology so far. Taking into account the
fact that the framework is easy and straightforward to use, and pipelines for completely different tasks
(for instance three tasks solved here) are nearly identical, we are confident that the HMill framework
will find its use as a universal instrument in other domains.
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Chapter 2

Multi-Instance Learning

This chapter contains a review of prior art in multi-instance learning, which is essential for the rest of
this thesis.

Multi-instance learning (MIL) (or Multiple instance learning) is a novel machine learning paradigm
first introduced in [Dietterich et al., 1997]. As opposed to standard machine learning, where each
sample is represented by a fixed vector x of values, in MIL we describe each sample with a set of
vectors. In MIL nomenclature, this set is called bag and vectors it is composed of are called instances.
Instances live in an instance space X , which can, for example, be an n-dimensional Euclidean space.
Bags come from bag space B = PF (X ), where PF (X ) denotes all finite subsets of X . A bag b can be
therefore written down as b = {x ∈ X}x∈b. Each bag can be arbitrarily large and also empty, therefore
the size of bag b, which we will further write as |b|, can be zero or any natural number. Note that the
classical machine learning task is a special instance of the MIL problem, where for bag representation
b of each sample holds |b| = 1. Furthermore, it is also assumed that even though intrinsic labeling of
instances may exist, we observe and are interested in predicting only labels at the higher level of bags.
This defines one of the main challenges of MIL problems, which lies in recognition of common patterns
at the level of instances and their suitable subsequent aggregation at the bag level.

In this thesis, we focus classification problems, where bag labels come from a finite set C, to
simplify explanation and notation, however, all models can be modified to perform other tasks such
as regression as well. In MIL, instead of learning a predictor in the form f : Rn → C, models are
defined as f : B(X )→ C, in other words, the prediction can be written as f({x}x∈b). The difference
is visually demonstrated in Figure 2.1. Additionally, we will consider only supervised setting, in
which each sample in the dataset is attributed a label, and we will denote the available data by
D =

{
(bi, yi) ∈ B × C

∣∣ i ∈ {1, 2, . . . , |D|}
}
. We propose to use MIL formulation as a solution to

problems outlined in Chapter 1, mainly related to questions of sample representation.
One of the problems that MIL formulation naturally lends itself to is drug activity prediction

in biochemistry. The objective is to decide whether a drug molecule binds strongly to a target site
in a much larger protein molecule, which determines the potency of the drug. Unfortunately, drug
molecules may take different shapes, each with different binding strengths. Hence, positively tested
drug indicates that one of its molecule shapes successfully bound with the protein, contrary to the
negative test result, which means that none of the shapes in a drug sample bound. Moreover, in the
positive case, there is no way to determine which exact shape has strong binding potential. A reasonable
representation of a molecule is, therefore, a bag with each of its instances defining one of the possible
shapes. Another example, where MIL formulation can be applied, is the cybersecurity domain, which
we focus on in this thesis.

In pioneering works [Dietterich et al., 1997,Maron and Lozano-Pérez, 1998], the law of inheritance

was adopted, meaning that the whole bag is labeled with a certain label provided it contains an instance
with this label. This means, that a bag label can be inferred based on observing only one instance.
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Figure 2.1: Difference between standard machine learning and multi-instance learning.

For binary classification, this translates to a bag being pronounced as positive as long as it contains at
least one positive instance and negative otherwise. Nonetheless, this assumption was later relaxed, the
requirement on the existence of instance labels was dropped, and it is additionally expected that some
labels are inferable from not one but multiple instances only. Still, there may be plenty of instances in
the bag that bring little to no insight and can be discarded by the model. All approaches to solving
MIL tasks were categorized in [Amores, 2013] into three main paradigms—instance-space paradigm,
bag-space paradigm and embedded-space paradigm.

2.1 Instance-space paradigm

Instance-space (IS) paradigm appeared as the first approach to solving MIL problems. It is based on the
belief that all the information, which is required to make a decision, is specified locally with respect to
instances. Hence, no characteristics at the level of bags are needed in the learning algorithm. Assuming
that each instance can be attributed one class from a set CI , an instance-level classifier fI : X → CI is
learned separately and a bag label is constructed from responses of all its instances with a pre-defined
aggregating function g:

f(b) = g
(
{fI(x)}x∈b

)
(2.1)

Binary classification, where CI = {−1, 1} making arithmetics on the label values possible, is considered
in most of the early works on MIL problems. Note that contrary to known bag labels, instance labels may
not be directly observable and therefore further assumption of how instance and bag labels are related
must be made in order to infer fI . According to this relationship and the definition of aggregating
function g, we distinguish methods based on Standard assumption and Collective assumption.

2.1.1 Standard assumption

Standard assumption defines g as either max function g
(
{fI(x)}x∈b

)
= maxx∈b fI(x) or its approxi-

mation. This implies that a bag label is oftentimes inferable merely from a strong response of instance
classifier on one of its instances. For binary classification, this also includes the aforementioned
assumption that positive bags contain at least one positive instance and negative bags none. This
asymmetric condition is projected into methods via different handling of positive and negative samples.
In [Dietterich et al., 1997], authors demonstrate how the drug activity prediction problem described
above can be solved with instance-space MIL. Hypothesis fI takes form of an axis-parallel rectangle,
which is either shrunk or grown appropriately to include positive instances and exclude negative
instances, and g is defined as the standard max function.

A Diverse Density (DD), introduced in [Maron and Lozano-Pérez, 1998], is defined in instance
feature space X as a measure of how many positive bags contain instances that are near the given
point and how distant are all instances from negative bags. Assuming that the underlying concept is a
single point t ∈ X in this space, one can find a hypothesis by maximizing DD, e.g. by gradient ascent.
This procedure yields a point, where many positive bags have at least one instance close by and at
the same time instances of negative bags are far away. Authors define a distance metric measuring
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closeness as the weighted Euclidean distance:

d(t,x) =

√√√√
D∑

i=1

si(ti − xi) (2.2)

where s is a vector of learned parameters. In [Dooly et al., 2001], authors extend DD together with
other methods to MIL on real-valued data. This is further being built on in [Zhang and Goldman,
2002], where authors combine this approach with Expectation-Maximization (EM) algorithm. The key
idea of EM-DD is to consider the instance responsible for a positive label of a bag a latent variable,
which is used in the EM algorithm. Given an initial hypothesis t in a feature space, EM-DD first selects
the instance most likely responsible for the bag label in E-step, and then uses it in M-step to change
hypothesis to maximize DD.

A different approach based on modifying the standard soft-margin Support Vector Machine
(SVM) [Cortes and Vapnik, 1995] formulation is presented in [Andrews et al., 2003]. Denoting the
binary label of a bag b as Yb = ±1, and the label of its instance x as yx = ±1, aggregating rule in the
form of Yb = maxx∈b yx can be reformulated as a set of linear constraints:

∑

x∈b

1 + yx
2

≥ 1 ∀b : Yb = 1

yx = −1 ∀b : Yb = −1, ∀x ∈ b
(2.3)

Instance labels yx are treated as unobserved integer variables subjected to the constraint (2.3). The
overall goal is to maximize the standard soft-margin on instances, leading to the following formulation
in the primal form:

minimize
(w,k,ξ,y)

1

2
‖w‖2 + C

N∑

i=1

ξi

subject to yxi
(〈w,xi〉+ k) ≥ 1− ξi, ∀i = 1, . . . , N

ξi ≥ 0 ∀i = 1, . . . , N
∑

xi∈b

1 + yxi

2
≥ 1 ∀b : Yb = 1

yxi
= −1 ∀b : Yb = −1, ∀xi ∈ b

(2.4)

where N denotes the number of all observed instances (over all bags). A byproduct is either a linear or
non-linear instance classifier depending on which kernel is used. Additionally, authors propose another
formulation, which maximizes the margin at the level of bags (see [Andrews et al., 2003] for details):

minimize
(w,k,ξ)

1

2
‖w‖2 + C

∑

b

ξb

subject to Ybmax
x∈b

(〈w,x〉+ k) ≥ 1− ξb, for each bag b

ξb ≥ 0 for each bag b

(2.5)

This formulation is useful when we are interested in classifying unseen bags rather than single instances.
A method for solving tasks with sparse bags, in which positive bags contain only few positive

instances, was devised in [Bunescu and Mooney, 2007]. Attempts to implement the predictor fI as a
neural networks were made as well, for instance in [Zhou and Zhang, 2002]. This approach defines
the aggregation g as the max function, which is non-differentiable. Alternative method was proposed

10
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in [Ramon et al., 2000], where fI is implemented as a feedforward neural network (weights are shared
across instances), g is a smooth maximum, andM is a real hyperparameter:

g
(
{fI(x)}x∈b

)
=

1

M
log

(
∑

x∈b

exp(MfI(x))

)
(2.6)

Other established machine learning methods besides neural networks and SVMs were adapted to deal
with MIL formulation as well, ranging from boosting [Auer and Ortner, 2004] to decision trees [Cheva-
leyre and Zucker, 2001,Blockeel et al., 2005].

2.1.2 Collective assumption

Methods in this subcategory expect all instances to inherit the label of the bag they belong to, which
better reflects characteristics of some real-world datasets. Hence, a training set for instance-level
classifier fI is built from instances together with labels of their corresponding bags. The most prominent
aggregation function g is the mean aggregation g

(
{fI(x)}x∈b

)
= 1

|b|

∑
x∈b fI(x), used for example

in [Frank and Xu, 2003], where probabilities of classes returned by classifier fI are averaged across all
instances in the bag. There is also a probabilistic perspective of the collective assumption, where a bag
is understood as a probability distribution p(x|b) over individual instances and we observe samples of
various sizes from this distribution. Under the collective assumption, a bag label c ∈ C is equal to the
expected class label of its instances:

p(c|b) = Ex∼p(x|b)p(c|x) =
∫

X
p(x|b)p(c|x)dx (2.7)

To make a prediction on an unknown bag, this integral is approximated by finite number of instances
it contains, which leads to p(c|b) ≈ 1

|b|

∑
x∈b p(c|x), which corresponds to mean aggregation function g

as defined above, as long as instance predictor fI provides class probabilities. Collective assumption is
further generalized to include weights wx ∈ R on individual instances specifying how much an instance
impacts the final bag label [Foulds and Frank, 2010,Mangasarian and Wild, 2008]. This is motivated
by an observation that instances in IS paradigm influence the bag label not only independently but also
unequally. Weighted collective assumption bridges the gap between the standard and the collective
assumptions, as if we set a constant value to wx, we get the collective assumption, and if we manage
to all negative instances value of zero and at least one positive instance positive value, we arrive at the
standard assumption.

Methods following collective assumption are more successful when knowledge is distributed across
the bag and therefore it is no longer possible to infer a bag label from one instance only. However, both
the standard and collective assumptions still provide limited possibilities, as is illustrated in Figure 2.2.

2.2 Bag-space paradigm

In comparison to the IS paradigm, where a decision is made by aggregating responses from instance-
level predictor fI by some pre-defined aggregation rule, methods from the Bag-space (BS) paradigm
first extract global information at the level of a bag using all its instances and then make a decision.
Hence, we drop the assumption of the existence of instance labels and infer only bag-level classifier
f : B → C. Since the bag space B is not an Euclidean space anymore, as is usually the case with instance
space X , the existing ML methods are hard to extend to process elements of B.

Most of the existing approaches following the BS paradigm therefore involve defining a distance

function d : B × B → R
+
0 returning a ‘distance’ between two bags. Once d is defined, off-the-shelf

methods based on distances are used, such as k-nearest neighbors [Dasarathy, 1991]. Moreover, it
is assumed that instance space X is equiped with a metric and therefore it is possible to measure a
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x

y

(a)

x

y

(b)

x

y

(c)

Figure 2.2: Examples of problems conforming to different MIL assumptions, all working with instance space
X = R

2. Bags with positive labels are drawn in red and bags with negative labels in blue: f(b) = 1, f(b) = −1.
In (a), the standard assumption is appropriate as all positive bags contain at least one positive instance. In (b),
the collective assumption holds as the majority of instances in bags retains the bag label, therefore the mean
aggregation is adequate. Finally, in (c), where negative bags contain instances of only one class, none of the
assumptions for IS paradigm holds and it is necessary to consider other paradigms that look on the whole bag
first. Note that an instance may be present in more than one bag at once.

distance between individual instances. To simplify notation in the following paragraphs, we narrow
this into an even stricter assumption on the existence of a norm ‖·‖ : X → R

+
0 . First example of such

distance is Earth Mover’s Distance [Rubner et al., 2000]:

d(b1, b2) =

∑
x1∈b1

∑
x2∈b2

lx1,x2
‖x1 − x2‖∑

x1∈b1

∑
x2∈b2

lx1,x2

(2.8)

This distance is motivated by a well-known transportation problem solvable by linear programming.
Intuitively, this distance gives an amount of work needed to transform one bag into another by ‘moving’
instances in instance space X . Coefficients l are obtained by solving the linear program corresponding
to this task.

Another two distances are proposed in [Wang et al., 2000a] and are based on Hausdorff distance

originally designed to measure distance between different subsets of the same metric space. The
minimal Hausdorff distance between two bags b1 and b2 is defined as a minimal distance between an
instance from b1 and an instance from b2:

d(b1, b2) = min
x1∈b1,x2∈b2

‖x1 − x2‖ (2.9)

Maximal Hausdorff distance on the other hand takes maximal such distance, which is equivalent to the
minimal number D such that each instance from one bag falls to a hyperball with radius D centered at
any instance from the other bag:

d(b1, b2) = max
x1∈b1

min
x2∈b2

‖x1 − x2‖ (2.10)

= inf
{
D ∈ R

+
0

∣∣ ∀x1 ∈ b1 : x1 ∈
⋃

x2∈b2

{y ∈ X | ‖x2 − y‖ ≤ D}
}

(2.11)

If the distance function d is also semi-positive definite, kernel-based methods like SVMs become
available as well. Given any kernel function k : X × X → R measuring the similarity between two
instances, a general kernel for MIL was suggested in [Gärtner et al., 2002]:

K(b1, b2) =
∑

x1∈b1,x2∈b2

kp(x1,x2) (2.12)
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where p ∈ N is a constant. Function K : B × B → R measures the distance between two bags in the
induced Hilbert space and meets all requirements for a kernel. Under the standard assumption, bag
kernel K also separates all bags in the kernel-induced space provided that instances are separable with
respect to kernel k. In another work, authors suggested mapping instances to an undirected graph and
using graph kernels afterwards [Zhou et al., 2008].

Last but not least, motivated by the aforementioned probabilistic interpretation of MIL, where
a bag is viewed as a random variable and the set of instances as a finite number of its realizations,
in [Muandet et al., 2012] an SVM-based method using probabilistic kernel [Christmann and Steinwart,
2010] was proposed.

2.3 Embedded-space paradigm

Methods following the Embedded-space (ES) paradigm directly define a vector space for bag represen-
tation and specify a mapping from each bag b ∈ B to this space. The most relevant global information
at the level of bags is therefore distilled explicitly to a vector representation, as opposed to the BS
paradigm, where it is extracted implicitly through the computation of distance function. Assuming
that the target vector space is Rm, m partial mappings φi : B → R (i = 1, . . . ,m) are defined and the
overall embedding φ : B → R

m can be written as:

φ(b) = (φ1(b), φ2(b), . . . , φm(b)) (2.13)

=
(
φ1({x}x∈b), . . . , φm({x}x∈b)

)
(2.14)

In another perspective, the summarization of relevant bag-level information is a point in a vector space
created as a Cartesian product of target spaces of all partial mappings φi. The purpose of mappings φi
is to extract and suitably aggregate information from all instances, therefore they are defined as:

φi(b) = g
(
{k(x)}x∈b

)
(2.15)

where k : X → R
m is some instance transformation and g : PF (Rm)→ R

m is aggregation function. Any
standard ML algorithm is then applied on the resulting embedded representation of bag samples to infer
bag-level classifier fB : Rm → C using dataset Des =

{
(φ(bi), yi) ∈ R

m×C
∣∣ i ∈ {1, 2, . . . , |D|}

}
. Using

the above definitions, the whole computational model for solving MIL problems in the ES paradigm
has the concise form f(b) = fB(φ(b)).

Different definitions of φ lead to an emphasis on a different type of information. In [Dong,
2006,Bunescu and Mooney, 2007], an average of all instances from the bag φ(b) = 1

|b|

∑
x∈b x was

used and in [Gärtner et al., 2002] a max-min mapping was proposed:

φ(b) =

(
min
x∈b

x1,min
x∈b

x2 . . . ,min
x∈b

xd,max
x∈b

x1,max
x∈b

x2 . . . ,max
x∈b

xd

)
(2.16)

Here, d denotes the dimension of instance space.
Unfortunately, these simple, hand-designed embeddings did not perform well as for example two

bags may have similar average of all their instances in spite of these instances having a completely
different structure. Therefore, newer methods use more complex rules that attempt to preprocess
instances first, identify important patterns in them in an unsupervised way and then obtain the
embedding taking these patterns into account. The embedding mapping then written in the form
of φ(b,V), where V = {θ1, . . . , θv}, θi ∈ Θ denotes a collection of abstract patterns identified in the
training set, usually referred to as a vocabulary. The mapping is constructed with respect to how
well instances in a specific bag follow their patterns. Vocabulary entries can be taken into account in
both k and g, for instance, function k is in many methods implemented as some kind of a distance
measure between an instance and the pattern. According to the definition of θi, how φ works with the
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vocabulary, and how φi defines the aggregation g, distance-based and histogram-based methods were
categorized in [Amores, 2013]. All of the following methods derive vocabulary from all instances in
the training set regardless of bags they come from, with the only exception being [Zhang and Zhou,
2008].

2.3.1 Distance-based methods

Distance-based methods identify a pattern θi as either a collection of instances or one representative
from X for all instances matching this pattern. The prominent way to obtain a vocabulary is by
means of unsupervised clustering. Partial mapping is defined in distance-based methods as φi(b) =
minx∈b d(x, θi), where d : X ×Θ→ R is a distance between instances and patterns. If the pattern is
defined with a single instance, d may be a metric on X . Hence, the embedding dimension m is in this
case equal to the number of patterns v. Clustering can be performed in a ‘hard’ way with K-means,
including a special case, where each instance observed in a training set forms one cluster, or in a ‘soft’
way with Gaussian Mixture Models. Examples of such methods include [Chen et al., 2006,Opelt et al.,
2006].

2.3.2 Histogram-based methods

Histogram-based methods measure how much a bag b matches pattern θi not by taking a distance
of its ‘closest’ instance, but by quantifying how likely are instances from b following the pattern θi,
in other words, φi(b) = 1

Z

∑
x∈b l(x, θi), where l : X × Θ → [0, 1] is a likelihood function and Z is a

normalizing constant assuring that
∑v

i=1 φi(b) = 1. For instance, provided each pattern in a vocabulary
is represented by one instance xθ, l(x, θ) can be defined as the likelihood that x falls into a bell curve
centered at xθ with parameter σ2:

l(x, θ) =
1√
2πσ2

e−
‖x−xθ‖

2σ2 (2.17)

Methods categorizable into the histogram-based approach for solving MIL problems are for exam-
ple [Sivic and Zisserman, 2003,Foulds, 2007,Van Gemert et al., 2010].

All approaches for MIL problems we discussed above require three components—a function operating
at the level of instances fI (be it a class predictor, an embedding or other mappings), a form of aggre-
gation or pooling g (which is either a part of embedding projection φi or a standalone building block),
and a bag-level classifier fB. One of the crucial ideas used in this thesis, published independently
in [Pevný and Somol, 2016,Edwards and Storkey, 2016], is to jointly optimize the whole pipeline.
This is achieved by a gradient-based optimization in conjunction with techniques of differentiable
programming. The only restriction this approach poses is that all three components—fI , g and fB
—need to be (at least piecewise) differentiable with respect to their parameters.

End-to-end training mitigates the need to consider how synergic all components are together when
designed separately. Instead, it implicitly identifies parts of the instance-space X where the difference
between probability distributions of instances of bags of different classes is largest and then uses this
information to discriminate. Vocabulary V is no longer manually designed and precomputed explicitly
in an independent process, but is rather encoded in parameters of fI and/or g and optimized together
with all other parameters in the model. All of this is done using bag labels only, in an unsupervised
way with respect to instances, simply put, no instance labeling is required. Example of such model
is sketched in Figure 2.3. In this case, instances are mapped through neural network fI(·; θI) with
parameters θI , aggregated with an element-wise aggregation g, such as mean or max, and finally
processed by another network fB(·; θB) to obtain prediction. Note that network fI is the same for each
instance, which means that weights θI are shared between computations involving different instances
and updated after the gradient is backpropagated through all instances.
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x1 ∈ R
n

x2 ∈ R
n

x|b| ∈ R
n

...

fI(x1; θI)

fI(x2; θI)

fI(x|b|; θI)

x̃1 ∈ R
m

x̃2 ∈ R
m

x̃|b| ∈ R
m

...

g
(
{x̃i}|b|i=1; θg

)
x̄ ∈ R

m fB(x̄; θB)

One vector per instance

One vector per sample

Figure 2.3: A neural network architecture for solving MIL tasks proposed in [Pevný and Somol, 2016].

This novel model design led to improved performance on both classical and real-world datasets, as
demonstrated for example in [Pevný and Somol, 2016, Pevný and Somol, 2017, Pevný and Dedič,
2020]. The model architecture from [Pevný and Somol, 2016] is illustrated in Figure 2.3.

Recently, a notion similar to MIL model formulation solved by jointly optimized embedding-space
approach also appeared under a different name Deep Sets [Zaheer et al., 2017].

To sum up, Multi-Instance learning has over the years seen many diffferent formulations, approaches
and diverse applications, ranging from biochemistry to computer security. We end our long journey
through the prior art with one notable conclusion: All best-performing models are composed from
three major components, an instance-level function, an aggregation, and a bag-level function, which
we will denote from now on by fI , g and fB, regardless of possible different use of the symbols in this
chapter. Vital method for the rest of this thesis is the one introduced in [Pevný and Somol, 2016].
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Chapter 3

HMill framework

In this chapter, we formally introduce the HMill framework and investigate its theoretical approximation
capabilities. First of all, we provide further motivation for the development of the tool.

3.1 Motivation

The most relevant reasons why the HMill framework was devised and prototyped are already outlined
in Chapter 1. Nevertheless, in this section we provide one more argument from the philosophical point
of view, this time using the well-known Iris dataset [Fisher, 1936]. The goal of this nowadays rather
‘toy’ problem is to predict the species of a flowering plant of the Iris genus from the measurements
of its sepals and petals. For each specimen, four measurements provided are usually interpreted as a
point in R

4, so that they can be input into various ML models operating on Euclidean spaces. This is
illustrated in Figure 3.11.

x = (x1, x2, x3, x4) f(x) =





Iris setosa

Iris virginica

Iris versicolor

extract

features

send to

a classifier

Figure 3.1: A depiction of the standard task associated with the Iris dataset. Four features x1, x2, x3 and x4
are extracted by measuring length and width of sepals and petals of the specimen. These measurements are
interpreted as a vector from R

4 and a classifier operating on that space is learned.

Even though sepals and petals of three species of Iris genus from the dataset do tend to have different
geometrical properties and even higher-bias models such as linear SVM achieve satisfactory results,
there are several fundamental flaws in this procedure. Firstly, if the specimen has more than one
flower2, how should we proceed? Should we take the average of measurements over all flowers or

1Due to unavailable assets, we used a different species in our illustrations for the demonstration purposes. The specimen
depicted here is Gladiolus, another member of the Iridicae family. We apologize to careful readers with advanced botanical
knowledge for potential confusion.

2To avoid potential confusion, here we use the term flowering plant for one specimen, which consists of a stem, some
leaves, and some flowers. In this regard, the term flower does not imply the specimen as a whole. We will refer to flowers
which have not blossomed as buds and to the rest as blooms.
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their maximum? Or minimum? Secondly, this way of species modelling does not reflect how humans
learned to recognise plants. Most of the time, a skilled botanist is able to identify a specimen not by
making use of any measuring device, but by visual or tactile inspection of its stem, leaves and blooms.
For different species, different parts of the plant may need to be examined for indicators. At the same
time, many species may have nearly identical-looking leaves or blooms, therefore, one needs to step
back, consider the whole picture, and appropriately combine lower-level observations into high-level
conclusions about the given specimen. Intuitively, if we want to develop artificial intelligence capable
of doing this task like humans do, we should provide it with the same input.

For instance, consider the depiction in Figure 3.2. We first logically split the plant into a stem,
three blossomed blooms and a bud. The stem is represented by vector xs encoding its distinctive
properties such as shape, color, structure or texture. Next, we inspect all blooms. Each of the blooms
may have distinctive discriminative signs, therefore, we describe all three in vectors xb1 ,xb2 ,xb3 , one
vector for each bloom. Finally, xu represents the only flower which has not blossomed. Likewise, we
could describe all leaves of the specimen if any were present. Here we assume that each specimen of the
considered species has only one stem, but may have multiple flowers or leaves. Hence, all blooms and
buds are represented as unordered sets of vectors as opposed to stem representation, which consists
of only one vector. Moreover, for simplicity, we decided to stop at the level of flowers and do not
decompose them further. Namely, we could as well describe a bloom as a set of vectors representing all
of its petals and one vector representing the only sepal. Last but not least, due to various reasons, some
collected specimens may have different amounts of flowers, or the flowers may be missing altogether.
Still, human botanists are able to identify the species in many cases. This implies that our system
should be able to tackle this kind of input as well.

f







xs

{xb1 ,xb2 ,xb3}
{xu}






 =





Iris setosa

Iris virginica

Iris versicolor

extract features

xs




xb1

xb2

xb3





{xu}

send to

a classifier

Figure 3.2: A more general representation of a specimen. In this case, we describe all components of the
specimen in a general way, dealing with different amounts of blooms and leaves. In this picture, the specimen
consists of a stem (olive), three blooms (navy) and one bud (green), which we describe in a hierarchical manner
(see text).

The representation we have presented encodes structure together with simple measurements in a
hierarchical manner, which is much more flexible than the representation from Figure 3.2. However,
this also introduces new challenges into the design of the classifier f . The example from this section,
together with discussion in Chapter 1 and benefits and drawbacks stemming from MIL formulation
introduced in Chapter 2, motivated the design of the HMill framework.
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3.2 HMill framework definition

The HMill framework describes how to build powerful hierarchical models with all the aforementioned
desirable properties. It defines both a rigorous, yet flexible high-level definition of the structure of
data operable by the framework and prescribes how to build models transforming such data. We
will call data structures and model topologies conforming to the following definitions HMill samples

and HMill models, respectively. HMill sample is an analogical term to sample or observation in the
standard setting. Both samples and models consist of nodes of multiple types, which are arranged to a
rooted directed tree that encodes the structure of the problem. Since in the framework, we think of
individual samples as trees, we will use terms ‘sample’, ‘sample tree’, or ‘tree representing a sample’
interchangeably. Furthermore, we call nodes comprising HMill sample trees data nodes, and nodes
from HMill model trees model nodes. When it is clear from the context, we will sometimes omit the
‘data’ or ‘model’ adjectives. To provide a precise mathematical definition of HMill models, we first need
to specify how HMill sample trees look like.

3.2.1 HMill sample

Each leaf of a sample tree stores raw low-level information, whereas inner data nodes combine
information from their subtrees at a higher level of abstraction. What follows is the description of three
abstract data node types with which the framework works and which constitute sample trees. After
that, we give a rigorous recursive definition of HMill sample tree, since only some of all possible trees
composed of HMill data nodes qualify as valid samples.

Array Node

ϕ1 = FALSE

ϕ2 = “Anna”

ϕ3 =



3.14
0
42




ϕ4 =

an( )

an( )

an( )

an( )

hoh

hn-gram

hi

hoh

Figure 3.3: Examples of information frag-
ments from several different fragment
spaces F , together with results of mapping
h in Euclidean vector space.

Array nodes are responsible for storing all raw low-level ob-
servations present in the sample. Because ‘observation’ is a
term usually used to denote a whole sample, we will refer to
observations made at the lowest levels of abstraction as infor-
mation fragments to avoid confusion. Following our botanical
example, fragments are vectors xs,xb1 ,xb2 ,xb3 and xu rep-
resenting components of the specimen at the lowest level of
decomposition. In HMill samples, array node is the only data
node type present in leaves of the sample tree.

Let F denote a space where all information fragments
ϕ carried by array nodes live. As indicated earlier, we aim to
process data of diverse formats, therefore F is rather loosely
defined and may vary a lot depending on the application and
also in which part of the tree the node is located. For example,
F may be a Euclidean space R

m, linear space over field Z2

consisting of all binary vectors of fixed length, or Σ∗, the set
of all strings over finite alphabet Σ. The only requirement
the framework imposes on F is the existence of a reasonable
representative mapping h from F to a Euclidean space R

n of
arbitrary dimension n.

We provide several details in Figure 3.3, although mapping h may be designed with respect
to a specific problem, nature of the data, and domain. First fragment ϕ1 is a simple binary value
(F1 = {TRUE, FALSE}), thus one-hot encoding hoh : {TRUE, FALSE} → R

2 is used. In the second
example, ϕ2 is a string (F2 = Σ∗) and hn-gram is implemented as a histogram of n-grams. Because ϕ3

is a three-dimensional vector (F3 = R
3), Euclidean mapping could be defined as identity hi. Finally,

in the case of ϕ4, which is a categorical variable with one of four colours (F4 = { , , , }), we
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use one-hot encoding hoh again. The examples of h presented here are one of the most trivial and of
course more complex mappings could be used as well, for instance, word2vec [Mikolov et al., 2013] or
GloVe [Pennington et al., 2014] word embeddings in the case of strings.

The main purpose of mapping h is to appropriately represent observed low-level fragments from
F in Euclidean domain which HMill models operate within. Therefore, h can be regarded as the first
preprocessing step. We will denote array nodes with data fragment ϕ ∈ F by an(ϕ;F , h). To avoid
notational clutter, we will sometimes use notation an(x), where x = h(ϕ) is already transformed
fragment, in cases where it is assumed that the transformation has already been made and its details
are irrelevant or clear from the context.

Bag Node

Bag node type is the pivotal data node of the framework and represents an analogy to a bag from multi-
instance learning. Therefore, bag nodes bring the great benefit of increased flexibility in modelling
arbitrarily large cardinalities in the data. Every bag node bn(b) consists of any set of elements (instances)
b =

{
t1, . . . , t|b|

}
, which may also be empty. From the graphical point of view, t1, . . . , t|b| are another

trees attached to the bag node as its children.3 If all trees ti are array nodes an(xi), where xi comes
from instance space X , the formulation is identical to the one in Chapter 2 and the sample tree
corresponding to bn(b) is equivalent to a bag sample in standard multi-instance learning. Therefore,
a bag from MIL is in HMill point of view considered a tree of depth 1 consisting of one bag node
with zero, one, or more array nodes (leaves) attached to it. Even though a lot of inspiration for the
framework came from the MIL domain, the HMill framework takes this notion even further and allows
elements ti to be further nested, as long as the structure of every element ti is the same.4

For example, each element ti could be another bag consisting of lower-level instances of a
different type, these instances themselves may be array nodes or may be further nested, and so forth.
In Figure 3.4 on the right, there is an illustration of one possible sample tree containing bag nodes.
Recall, that we require all instance subtrees of a bag node to have the same structure. Thus, every
instance of the highest-level bag representing the sample is itself considered a different type of bag,
which is same for all three children. Recursively, grandchildren must also have the same structure. This
is depicted by red isosceles triangles, which represent subtrees of possibly different fragments in leaves,
but the same structure overall. Note that only two levels of the tree are drawn in detail, however red
triangles may further correspond to arbitrarily deep subtrees.

Product node

pn(·, ·, ·, ·)

Figure 3.5: A drawing
of a product node with
four children.

Product node is the last data node type in the HMill framework. Its name is
inspired by Cartesian product, a non-commutative and non-associative mathe-
matical operation on two or more sets. Like Cartesian products combines, but
not irreversibly merges two sets, product nodes are meant to join data coming
from different, possibly heterogeneous sources. Let t1, . . . , tl, l ≥ 1 be different
HMill tree representations of the same sample. We denote product node by
pn(t1, . . . , tl). Contrary to a bag node, whose instances form an unordered
set, product nodes impose arbitrary but fixed ordering on their children. Also,
unlike bag nodes, product nodes aggregate information from different sources,
which may be modelled separately by (sub)trees of different structure and sizes.
This is suggested by different colors and areas of triangles. See Figure 3.5 for
illustration. For example, in product data node pn(t1, t2, t3, t4), t1 and t4 could
be array nodes, t2 another product node, and t3 a bag node with nested bags.

3This slightly abuses terminology from graph theory. In HMill parlance, ‘children’ are equivalent to ‘subtrees’. For instance,
bag node bn({t1, t2}) has two children t1 and t2.

4What it means for two trees to have the same structure will be formalized later.
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an( )

(a) Standard ML

bn({·, ·, ·})

an( ) an( ) an( )
(b) Multi-Instance ML

bn({·, ·, ·})

bn({}) bn({·, ·, ·}) bn({·})

(c) HMill sample

Figure 3.4: Examples of sample trees corresponding to what is considered an observation in different ML
paradigms. Single array node in (a) is equivalent to machine learning in Euclidean vector domains. The second
picture (b) illustrates how an observation in the form of bag from MIL paradigm is translated into the framework.
The central dot · suggests that an entire subtree takes this place and is depicted below rather than noted down.
The last illustration (c) sketches an HMill sample tree, where bags are nested. In the whole text, we use arrows

to signify children relationships when children are drawn (like in (b)) and dotted lines in cases when
the subtree is compressed (like in (c)). Arrows of the form are used in the rest of the text for all remaining
purposes.

Equipped with all three data node types, we may now return to the example presented at the be-
ginning of this chapter. See Figure 3.6. Recall, that we advocated representing a plant by means of
decomposition into several logical parts. In HMill terms, we encode all observations about the stem,
the only bud and all three blooms into array nodes. After that, we relate all blooms using a bag node.
The same is done for all buds, even though in this particular case, we work with the specimen with
only one bud. Hence, the corresponding bag node representing all buds contains only one instance.
Note that this representation would be applicable as well for cases where specimens have a different
number of buds, including zero. The structure of the sample tree would not change, only cardinalities
in the corresponding bag. The same applies to blooms. Having done the above, we obtain a unified
representation of the stem and all buds and blooms, and finally, we merge this heterogeneous data
using a product node. Because product nodes allow their children to have a different structure, array
nodes modelling the stem, buds, and blooms may be defined differently (in terms of fragment space F
and mapping h). Nevertheless, due to restriction imposed by bag nodes, we require all blooms to be
modelled by array nodes with same F and h, and the same applies to array nodes modelling buds.

an(xs)

an(xb1)

an(xb2)

an(xb3)

an(xu)

bn








an(xb1),

an(xb2),

an(xb3)








bn({an(xu)})

pn




an(xs),

bn








an(xb1),

an(xb2),

an(xb3)






,

bn({an(xu)})




Figure 3.6: Representation of the plant specimen from the beginning of the chapter in the HMill framework.
See text for details.
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Rigorous sample definition

For writing a definition for general HMill sample we lack one more useful notion of HMill schemata.
Schemata are nowadays standard in many data formats, including XML, JSON, BigQuery, or Protobuf.
They define how every valid file following the schema looks like in terms of its structure and data
types. In the HMill framework, we use schemata to define what it means for two (sub)trees to have the
same structure. While introducing a bag node, we mentioned that all instances in the bag cannot be
an arbitrary composition of data nodes, instead, they are required to have an identical structure. This
is formalized by using a schema. Since a schema is defined very similarly to HMill samples, we omit
technicalities here and resort to a vague description. Schemas in the framework are trees mirroring
the structure of sample trees. For each array data node the schema defines a specific fragment space
instance F ′ where the data lives together with a mapping h′ to Euclidean domain in an array schema

node as(F ′, h′). For each bag node the schema defines a bag schema node bs(s′) with a subschema
(subtree) s′ specifying a structure of instances. Finally, for each product node the schema defines a
product schema node ps(s1, . . . , sl) with one or more (possibly different) subschemata s1, . . . , sl, one
for each subtree of the product node. Hence, in schemata, every bag schema node has one child, every
product schema node has multiple children, and every array schema node is a leaf. For the same
reasons as in the case of array node, we will sometimes omit details for an array schema node and
denote it by as(Rn), where R

n is the target space of mapping h.

Definition 1 (Schema matching). We say that a sample tree t follows a schema s, or matches a schema

s, denoted by t ≡ s, provided the following conditions hold:

(array) If t = an(ϕ;F , h) for any ϕ ∈ F , then t ≡ s if and only if s = as(F , h). That is, t is an array

node using same fragment space F and mapping to Euclidean space h as s defines.

(bag) If t = bn({t1, . . . , tk}), then t ≡ s if and only if s = bs(s′) and ∀i ∈ {1, . . . , k} : ti ≡ s′. In
other words, all instances ti of the bag node follow the same (sub)schema s′.

(product) If t = pn(t1, . . . , tl), then t ≡ s if and only if s = ps(s1, . . . , sl′), l = l′, and ∀i ∈
{1, . . . , l} : ti ≡ si. That is, a matching (sub)schema si is defined for each child of t.

To phrase it differently, a sample follows a schema, if their tree representations are ‘isomorphic’.5 Note
that according to the definition above, empty bag nodes match every schema s that has bag node
as root. As a result, sample trees matching a schema follow the same schema even if we remove all
instances from some of its bag nodes. An empty bag can be regarded as containing zero instances of
an arbitrary type, and therefore we can match any schema in its instances. For example, if we obtained
a plant specimen with all blooms and buds fallen off, we represent it as pn(an(xs), bn({}), bn({}))
and it is still a valid sample following the same schema. A common schema for all possible specimens
observed in our botanical example, together with the two specific samples following it, is sketched in
Figure 3.7.

Not every sample tree consisting of array, bag and product data nodes is a valid sample from the
HMill point of view. For instance, a tree with a bag data node in its root and two subtrees following
different schemata is not a valid sample tree since we require all instances in bag data nodes to follow
the same schema. Schemata and valid samples relate to each other in a chicken-and-egg way—given a
schema, we can generate a lot of valid artificial samples matching it and on the other hand, given a
sufficient number of observed valid samples, we can deduce their schema (provided it exists). The
same applies to their definition, as one can be defined using the other. To avoid cyclic definition, we
have opted to first introduce the reader to sample trees in general, then define a schema and using

5Not isomorphic in a strict mathematical sense—we also need to consider node types and order of children of product
nodes and schema nodes. Moreover, because of an arbitrary number of instances in bag nodes, sample trees may have much
more nodes than the schemata they follow. In this case, bag nodes are matched with bag schema nodes bs(s′) by ‘copying’
entire subschema subtree s′ and trying to align it with every instance from the bag.
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ps(·, ·, ·)

as(Rds) bs(·)

as(Rdb)

bs(·)

as(Rdu)

(a)

pn(·, ·, ·)

an(xs) bn({·, ·, ·})

an(xb1) an(xb2) an(xb3)

bn({·})

an(xu)

(b)

pn(·, ·, ·)

an(xs) bn({}) bn({})

(c)

Figure 3.7: A schema corresponding to the botanical example, together with two examples of sample trees
following it. The olive, navy and green subtrees of the schema (a) encode representation for the stem, blooms
and buds, respectively. Array schema nodes in leaves specify in this example only target spaces Rds , Rdb , Rdu

of mappings h, which may be different for each of array schema nodes considered. In (b) there is the same
sample as in Figure 3.6 and in (c) there is a sample with all bags empty, which still follows the schema. Note
that according to definition, we require xs ∈ R

ds , xb1 ,xb2 ,xb3 ∈ R
db , xu, and ∈ R

du .

a schema, define a set of all valid sample trees. We will denote a set of all valid sample trees by T .
We consider a sample tree valid, if and only if there exists schema, that the tree matches. This can be
rewritten in the following recursive definition:

Definition 2 (Valid HMill sample). Set of all valid HMill samples T is defined recursively as follows:

(array node) Let F be an arbitrary fragment space, ϕ ∈ F its element, and h : F → R
m any mapping.

Then, for every array node t = an(ϕ;F , h) it holds t ∈ T .

(empty bag node) For every empty bag node t = bn({}) it holds t ∈ T .

(bag node) Let t1 ∈ T , t2 ∈ T , . . . , tk ∈ T , where k ≥ 1, be valid HMill samples and s a schema,

such that ∀i ∈ {1, 2, . . . , k} : ti ≡ s. Then, for every bag node t = bn
(
{ti}ki=1

)
it holds t ∈ T .

(product node) Let t1 ∈ T , t2 ∈ T , . . . , tl ∈ T , l ≥ 1, be valid HMill samples. Then, for every product

node t = pn(t1, . . . , tl) it holds t ∈ T .

all trees

T

Ts2

Ts3

Ts1

Figure 3.8: A relationship between T and
Ts.

We have defined samples applicable in the HMill framework to
be arbitrary tree structures following certain rules that can be
expressed in schemata. Although the definition above renders
many trees invalid, there is still a major portion of samples
left in T for modelling. Given a specific schema s, we will
denote Ts ⊆ T a subset of all valid samples matching the
schema. This is illustrated in Figure 3.8. Valid sample trees T
form a proper subset of all trees formable from array, bag and
product data nodes. Given schemata s1, s2 and s3, all trees
matching them Ts1 , Ts2 , and Ts3 , respectively, are subsets of
T . If schema s contains at least one bag schema node, there
is still an infinite number of sample trees in Ts following it.
Thus, modelling power remains high. The last missing puzzle
piece is to describe how HMill models transforming such data
are built.
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3.2.2 HMill model

HMill model trees are constructed in a way that reflects the structure of corresponding samples, or
more specifically, their schema s. Hence, one HMill model built by following a particular schema s
accepts any sample matching the schema from Ts. Models are made of model nodes, which represent
functions of different properties. Loosely speaking, given a sample tree, a model tree is first ‘aligned’
with it and all nodes are evaluated. Similarly to HMill samples, leaves of model trees are responsible for
processing specific, less abstract input, contrary to inner model nodes that function with more abstract
concepts derived from lower tree levels. The evaluation of the model is performed in a post-order-like
fashion, in other words, parents wait for input provided by their children before computation. The
root of the tree serves as the last building block that provides the model’s output.

From the mathematical point of view, HMill model nodes are hierarchically nested functions
forming a tree-structured computational graph, each of which outputs one vector given one sample.
However, different model nodes are allowed to produce vectors of a different dimension, even if they are
of the same model node type. All nodes are piecewise differentiable with respect to their parameters,
and all inner nodes in the tree are differentiable with respect to their input on top of that. Identically
to the case of samples or schemata, we also distinguish three main model node types with different
characteristics, which we will briefly introduce before formulating the rigorous definition.

Array Model

an( ) f

Figure 3.9: Application of am(f), where
f : R5 → R

9 to an array data node.

Array model, denoted by am(f), is the most basic type of
model node and performs the first transformation of raw
data in leaves of sample trees. We assume that mapping h on
data x ∈ F has already been used to obtain the Euclidean
representation of the data and stored in a corresponding ar-
ray node. Array model then applies a function f : Rm → R

n,
mapping input elements to some other Euclidean space of
dimension n. Even though any piecewise differentiable map-
ping is applicable for f , in this thesis, we use solely dense,
feedforward neural networks for their high approximation
capabilities.

Bag Model

In the same way as bag data nodes are inspired by data format in multi-instance learning, bag models
are motivated by solutions proposed to MIL problems, discussed in the previous chapter. Therefore,
each bag model can be regarded as a solver to specific MIL (sub)problem in the corresponding bag
node. The function implemented by a bag model node bm(fI , g, fB) is a composition of three functions
we will call instance model, aggregation and bag mapping. Given a bag data node bn({ti}ki=1), a bag
model is evaluated by first applying instance model fI on every subtree (instance) ti obtaining one
vector for each ti. This is followed by one or more element-wise aggregations g into a single vector
and finally transformation of this vector via fB. Instance model fI can be any valid HMill model with
an arbitrarily complex structure, accepting a valid HMill tree and producing a vector from R

m.
In the case when fI implements a transformation (or embedding) of instances living in a Euclidean

space, the bag model is identical to one proposed in [Pevný and Somol, 2016].6 However, the power of
HMill models lies in the hierarchical structure achieved by nesting models. Aggregation g takes all
k vectors produced by fI and applies element-wise aggregation, such as mean or max. In this thesis,
we will use a compound g that consists of one or more base element-wise aggregations concatenated

6In HMill parlance, fI in this case corresponds to a tree with one array model am(fI(·; θI)), where fI(·; θI) has the same
meaning as in Figure 2.3.
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together. If there are q such components, the dimensionality of output of g is qm. As the last step, bag-
level function fB is employed, which is a mapping from R

qm to R
d, where d is the output dimension of

the whole bag model node. If a bag model node is in the root of the tree and is the last node evaluated,
we set d to be the dimension of the desired output. In the case of classification, we would set d = |C|
and interpret outputs as logits of probabilities of classes. Otherwise, if a bag model is an inner node
in the model and therefore models only a subtree of the sample, we set d appropriately, so that all
distilled knowledge can be expressed in a vector from R

d. Again, we require piecewise differentiability
of all functions involved. In this work, we implemented bag mappings fB as one or more layers of a
feedforward neural network and g as a combination of four base aggregations, which we will elaborate
on later.

bn({·, ·, ·})

fI

fI

fI

g1

g2

fB

Figure 3.10: Application of bm(fI , [g1|g2], fB) on a bag data node sketched on the left. All instances are first
transformed to a vector from R

5 using instance model fI . Then, two elementwise aggregations g1 and g2 are
performed, and the results are concatenated into 2 · 5-dimensional vector. The last step is to apply bag mapping
fB , which in this case maps the result of aggregation from R

10 to R
3. If this bag model node is in the root of the

tree, the output dimension corresponds to the whole model’s output. For instance, this model could be used to
solve a classification problem where |C| = 3.

Product Model

Product model node pm(f1, . . . , fl, f) comprises l submodels f1, f2, . . . , fl, each of which is another
HMill model tree that processes one child of a corresponding product data node, and one more mapping
f . Contrary to a bag model node, which uses the same mapping fI for each of the children, here
f1, . . . , fl can be mutually different submodels. By applying all of them, we obtain l vectors of possibly
different lengths. Product model concatenates them together, that is to say, it obtains an element in
the Cartesian product of target spaces of f1, . . . , fl. This vector is transformed one more time with f .
The same reasoning about the output length as in the case of bag model nodes applies—we set the
dimension of the target space of f according to the position of the node in the tree and provided it is
in the root, according to the problem we intend to solve.
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pn(·, ·, ·, ·)

f1

f2

f3

f4

f

Figure 3.11: A depiction of how product model node pm(f1, f2, f3, f4) is applied to a corresponding product
data node picture on the left. First, mappings f1, . . . , f4 are applied to children. Since product data node may
merge subtrees of different structure (following different subschemata), submodels f1, . . . , f4 can be defined
differently and output vectors of a different dimension. In this case, we obtain vectors of dimension 2, 5, 3 and 4,
that are subsequently concatenated into a vector of size 14. Finally, mapping f is applied returning a vector
from R

9, which may serve as input to the parent of the model node or the output of the whole model.

Rigorous model definition

Before we provide a complete definition of HMill models, let us emphasize that even though we used
same letters n,m, or d to generally denote dimensionalities of target spaces in play, this does not imply
that each node of the same type maps its input to a space of same dimension (or uses spaces of the
same dimensionality for intermediate representations obtained by fI in the case of bag model nodes
or concatenation of f1, . . . , fl in the case of product model nodes). To finish this section, we provide a
recapitulation of how HMill models are structured and how they are applied with a higher degree of
mathematical rigor. We will useM to denote a space of all models valid from the HMill perspective.

Definition 3 (Model). A set of all valid HMill modelsM is defined as:

(array model) For any function f : Rn → R
m, where n,m ≥ 1, am(f) ∈M.

(bag model) Let fI : Ts → R
m, where s is any schema, be an HMill model from M, let g =

[g1|g2| . . . gq] be a concatenation of q element-wise aggregation functions, where gi : ∪∞k=1 (R
m)k →

R
m 7, and let fB : Rmq → R

d be an arbitrary function. Then, bm(fI , g, fB) ∈M.

(product model) Let f1 : Ts1 → R
m1 , f2 : Ts2 → R

m2 , fl : Tsl → R
ml be all models fromM, where

s1, . . . , sl are arbitrary schemata, and let f : RM → R
d, where M =

∑l
i=1mi, be any function.

Then, pm(f1, f2, . . . , fl, f) ∈M

Consider a set of samples Ts following a schema s. A model F ∈M defines for each array schema node
one array model node, for each bag schema node one bag model node and for each product schema
node one product model node. The next definition recapitulates, how HMill models are evaluated.

7(Rm)k = R
m × . . .× R

m

︸ ︷︷ ︸

k
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Definition 4 (Model evaluation). Given a schema s, a model F ∈M, and a sample t ∈ Ts, we evaluate
F (t) as follows:

(arrays) For F = am(f) and t = an(x) = an(h(ϕ)), F (t) = f(x) = f(h(ϕ)).

(bags) For F = bm(fI , [g1|g2| . . . |gq], fB) and t = bn({t1, . . . , tk}), F (t) = fB
(
[γ1|γ2| . . . |γq]

)
,

where γi = gi({fI(t1), . . . , fI(tk)} ∀i ∈ {1, . . . , q}.

(products) For F = pm(f1, . . . , fl, f) and t = pn({t1, . . . , tl}), F (t) = f
(
[f1(t1)| . . . |fl(tl)]

)
.

We return one last time to the example from the beginning of this chapter. In Figure 3.12, there
is a model tree for processing all samples following the schema from Figure 3.7. All HMill models
corresponding to the schema from Figure 3.7 will be structured identically, however, output dimensions
of inner mappings can be chosen arbitrarily. Figure 3.13 illustrates, how model evaluation is done
given one sample and one specific instance of a model.

pm(f1, f2, f3, f)

am(fs) bm(f bI , [g
b], f bB)

am(f b)

bm(fuI , [g
u], fuB)

am(fu)

Figure 3.12: An HMill model for processing samples following schema in Figure 3.7. Note how schema and
model trees are of the same structure. A product model node merges information from three different sources—
the stem (olive), blooms (navy), and buds (green). Since all specimens have one stem and we consider stems
further non-decomposable, simple array model is enough. On the other hand, we employ bag model nodes for
processing of blooms and buds, each of which having one array model for processing of instances.

In this section, we have described the key components of the HMill framework and how they are
used. We have defined elementary building blocks for observed samples, their schemata and models
transforming them in the form of array, bag and product data/schema/model nodes. The short and very
general pipeline suggest itself—collect the data, infer a schema from the data or specify it manually,
define a model with the same structure and schema, and finally train it. Due to the versatility of
an HMill sample, we are able to process data of complex hierarchical structure from diverse real-
world sources with little to no further preprocessing, which also means disposing of a procedure for
transforming structured data to fixed-size vectors, required in AutoML paradigms.
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an(xs)

an(xb1)

an(xb2)

an(xb3)

an(xu)

f b

f b

f b

fu

gb

gu

f bB

fuB

fs

f
Iris setosa

Iris virginica

Iris versicolor

Figure 3.13: Example from Figure 3.6 processed by a model depicted in 3.12. The stem is processed with array
model node am(fs) into its representation in R

6. All blooms are processed with bag mapping bm(f bI , [g
b], f bB),

where instance model f bI in this case consists of only one array model node am(f b). Hence, we can write down
the array model alternatively as bm(am(f b), [gb], f bB). All array node representations of blooms are transformed
with f bI first, that is, we apply f b on their vector representation. Then, aggregation consisting this time of only
one function gb is performed, and the resulting vector of size 4 is mapped to R

5 by f bB . We apply analogically bag
mapping bm(fuI , [g

u], fuB) = bm(am(fu), [gu], fuB) to all buds of the specimen, obtaining a vector of dimension 7.
Finally, we concatenate all partial results together and the resulting vector from R

18 is mapped with f to R
3.

This output is interpreted as the logarithm of odds of three classes from the problem and probabilities can be
obtained by applying softmax function.

3.3 Universal approximation theorem

The HMill models as defined previously in this chapter represent a new family of functions from
Ts to R

d for some schema s and d ∈ N. In the last section of this chapter we attempt to shed
light on approximation power of the family and thus justify its practical use. We first formulate the
universal approximation theorem for standard feedforward neural networks and then demonstrate
how it can be extended from real-valued functions on Euclidean spaces to real-valued functions
on compact sets of Borel probability measures as well as their Cartesian products, which corre-
sponds to input spaces HMill models are defined on. The following text is mainly based on results
from [Hornik, 1991,Leshno et al., 1991,Pevný and Kovařík, 2019]. We will also focus on approxi-
mating functions with values from real numbers R and not multi-dimensional mappings, as the results
can be trivially extended to them.

3.3.1 Universal approximation theorem for dense neural networks

From their inception, standard neural networks have been regarded as ‘black-box’ function approxima-
tors, which performed remarkably well, but for a long time there was little to none theoretical evidence
why. Two principal questions suggest themselves:

1. Given a function f : Rn → R and the space of all possible different network topologies and
parametrizations, how to find the best architecture and its parameters?

2. Assuming that we know the answer to this, how accurate the approximation can be and how
many functions can be approximated this way?

Universal approximation theorem gives an answer to the latter question and states that with certain
assumptions any continuous function on compact subset of Rn can be approximated to an arbitrary
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precision. There are several different formulation of the theorem—one of the earliest results in that
matter is from [Cybenko, 1989], where authors prove the theorem for a class of single-layer networks
with finite number of neurons and sigmoid activation function. Later, the same statement was proven to
hold for any non-polynomial activation function [Leshno et al., 1991]. The third different formulation
comes from [Hornik, 1991] and can be rephrased as follows:

Theorem 1. Let C(Rn) be a space of all real-valued continuous functions on R
n, n ∈ N. Then, for any

f ∈ C(Rn) and any ε ∈ R
+, there exists a function f̂ : Rn → R of the form:

f̂(x) =
d∑

i=1

αiσ(bi +
n∑

j=1

wi,jxj) (3.1)

where αi, bi, wi,j ∈ R and σ : R→ R is a non-polynomial continuous activation function, such that

sup
x∈Rn

∣∣∣f(x)− f̂(x)
∣∣∣ < ε (3.2)

In other words, the set of all functions of the form (3.1) is dense in C(Rn). The same holds for any
compact subset of Rn as well. This version of the theorem implies that a multi-layer architecture is
important for approximation of any continuous function, even though only one non-linearity is present.
Because solution to a lot of problems can be expressed as a function, the key insight of the universal
approximation theorem is that a neural network can in theory be used to solve any of these problems.

3.3.2 Universal approximation theorem for HMill models

Now we are ready to formulate analogy of the universal approximation theorem for models in the
HMill framework. We begin by formulating a general analogy of Theorem 1 for the embedded-space
paradigm (Section 2.3) approach to solving MIL problems. In HMill, this corresponds to sample trees
of depth one, as in Figure 3.4b, which are processed with bag model nodes. Recall that a bag with
instances from space X is considered a random variable distributed according to some probability
measure p on X , which is observed through a finite number of its realizations (instances). As a result,
we attempt to model function f not from domain X (e.g. Rn as in the previous paragraph), but rather
from probability measures on X , which involve integration over X (see (2.7) for one possible specific
example of such f). The following statements specify how neural networks for sufficient approximation
may look like:

Statement 1. Let X be a compact subset of Rn, PX a compact set of Borel probability measures on
X and C(PX ) a space of all real-valued continuous functions on PX . Any function f(p) ∈ C(PX )
can be approximated to an arbitrary precision by a bag model node f̂(p) = bm(fI , g(p), fB), where
fI : X → R

m is a non-linear neural network layer, fB : Rm → R is a stack of one non-linear and one
linear layer, and g(p) is an aggregation function of the form

g(p) =

∫

X
fI(x)dp(x) (3.3)

where integral operator
∫
is applied element-wise. That is, for any ε ∈ R

+, there exists a ‘bag-model’
function f̂ , such that

sup
p∈PX

∣∣∣f(p)− f̂(p)
∣∣∣ < ε (3.4)

28



CHAPTER 3. HMILL FRAMEWORK

Therefore, embedding-space paradigm for solving MIL problems is theoretically justified. This result is
a corollary of the more general theorem for any metric space X proven in [Pevný and Kovařík, 2019]:

Theorem 2. Let X be a metric space and PX be a compact set of Borel probability measures on X and

C(X ) and C(PX ) spaces of all continuous real-valued functions on X and PX , respectively. Finally, letM
be a dense subset of C(X ). Then, a set of functions f : PX → R of the form

f(p) =
d∑

i=1

αiσ


bi +

mi∑

j=1

wi,j

∫

X
fi,j(x)dp(x)


 (3.5)

where d,mi ∈ N, αi, bi, wi,j ∈ R, fi,j ∈M, and σ is a measurable non-polynomial function, is dense in

C(PX ).

From Theorem 1 we know that if we set fi,j to be an output of one neuron of a network of the
same form as (3.1), therefore mapping input from R

n to R, the set of all such functions is dense
in C(Rn). Furthermore, if any common continuous activation function, such as sigmoidal function
σ(x) = 1/(1 + exp(−x)) or tanh, is used in fI and fB, and both networks have the corresponding
topology, the Statement 1 immediately follows. Note that in this thesis we focus on cases where X is a
subset of Rn, however Theorem 2 is more general and applies for any space X endowed with a metric
and any set of probability measures PX as long as they form a set compact on X .

In practice, the integral in (3.3) cannot be evaluated as only a finite number of observations in
bag {xi}ki=1 is available. However, the aggregation can be estimated as

1

k

k∑

i=1

fI(xi) (3.6)

Because each sample {xi}ki=1 can be regarded as a mixture of Dirac measures, the theorem is applicable.
Furthermore, as all considered functions are continuous with compact support and therefore bounded,
the estimation error between aggregation (3.3) and its estimate (3.6) can be upper-bounded in each
dimension by Hoeffding’s inequality [Hoeffding, 1963].

To conclude, bag models as defined in HMill can approximate any function on a compact set of
measures on instance space R

n using integration (mean) as aggregation. We further elaborate on the
choice of aggregation function in the next chapter.

We have extended the universal approximation theorem for spaces of (Borel) probability measures, the
next step is to extend the theorem even further to functions on (finite) Cartesian products of compact
metric spaces. This justifies the definition of product model nodes in (3) and (4) as an appropriate
choice for modelling product data nodes representing the Cartesian products of multiple input spaces.
Recall that the input spaces do not have to be equal, for instance, one product node can model the
Cartesian product of a Euclidean space (array data node) and a space of Borel probability measures
defined on another Euclidean space (bag data node with array data node children).

Statement 2. Let T be a set containing all compact subsets of Rd for any d ∈ N, which is closed under
finite Cartesian products and for each X ∈ T it holds P(X ) ∈ T , where P(X ) is a space of all Borel
probability measures on X . Then, for every X ∈ T , a set of functions represented by HMill modelsM
is dense in space C(X ).
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The statement is a direct consequence of recursive application of Theorems 1 and 2 as well as the
following theorem from [Pevný and Kovařík, 2019]:

Theorem 3. Let X1, . . . ,Xl be compact metric spaces andM1, . . . ,Ml be sets of real-valued continuous

functions, such thatMi is dense inC(Xi) for each i = 1, . . . , l. Then, a set of functions f : X1×. . .×Xl → R

of the form

f(x1, . . . , xl) =

d∑

i=1

αiσ


bi +

l∑

j=1

wi,jfi,j(xi)


 (3.7)

where d ∈ N, αi, bi, wi,j ∈ R, fi,j ∈ Mi and σ is a measurable function, which is not an algebraic

polynomial, is dense in C(X1 × . . .×Xl).

Hence, under the assumption that bags represent probability distributions, the universal approximation
theorem holds for hierarchically defined input spaces (such as T from HMill) provided the suitable
activation functions and topology of neural network is used. The bound for error introduced by using
finite number of instances in bags can be again obtained using Hoeffding’s inequality.

All results presented here imply, that the design of the key components in the HMill framework
is well-founded. The rest of this thesis is dedicated to demonstrating our claims using three completely
different tasks and further discussion of the properties of HMill models.

30



Chapter 4

HMill framework technicalities

In the previous chapter, we provided general definitions and theoretical properties of the HMill frame-
work, whereas this section describes specific details. We will discuss rather technical issues concerning
the implementation of data representation, evaluation and gradient computation. To simplify ex-
periments, we implemented1 the proposed functionality in Julia programming language [Bezanson
et al., 2014] using the highly efficient automatic differentiation over a Static Single Assignment (SSA)
representation of programs [Innes, 2018a, Innes et al., 2018, Innes, 2018b]. The framework was
published as an open-source project Mill.jl [Pevný and Mandlík, 2018] under MIT license and we
encourage everyone to try examples presented there and apply HMill to their own data. Version 1.2.0

of the framework is also attached to this thesis.

4.1 Weighted bag nodes

The purpose of bag data nodes is to capture higher-level knowledge scattered in their instances.
Motivated by the weighted collective assumption described in 2.1.2, we introduce the concept of
weighted bag data nodes, an extension of standard bag data nodes. Weighted bag data nodes allow
instances in the bag to contribute to output to a different extent. This can be specified by assigning
a real weight wi ∈ R

+
0 to each instance, which is taken into account during aggregation. We denote

weighted bag nodes by bnw(bw), where bw =
{
(t1, w1), . . . , (t|b|, w|b|)

}
. Since this extension only adds

one data element to each bag node and modifies how aggregation g in bag model nodes is computed,
we could straightforwardly extend Definitions 1, 2, 3 and 4 to fit weighted bag node into the framework.
For brevity, we omit this and instead of rewriting all four definitions again, we elaborate on aggregation
functions in the next section, where we also illustrate how to take weights into account. As we show
later, a need for weights sometimes emerges naturally in many diverse problems.

One typical example is domains in which we observe bags with large cardinality. Recall that
instance t (in HMill world a subtree) can be interpreted as a realization of the random variable
represented by bag b. To compute statistics over the whole bag (for instance its class probabilities,
see (2.7)), we resort to the following estimate:2:

Et∼p(t|b)f(t) =

∫

T
p(t|b)f(t)dt ≈ 1

k

k∑

i=1

f(ti) (4.1)

where k is a size of observed bag b. If the unknown probability distribution p(t|b) of the random
variable has large support, a lot of samples of t are needed for accurate computation. If instances

1The public implementation is a joint effort of several people. At the time of writing this thesis, the author was responsible
for approximately 65% of all changes in the git repository.

2Here we expect that all assumptions from theorems in Section 3.3.2 hold and we have all the tools needed to integrate
over T .
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require a lot of resources to obtain or process, the evaluation of sum (4.1) using all instances in the
bag is still too expensive. In this case, importance sampling can be utilized. Importance sampling
approximates the expected value by sampling instances using different distribution r(t|b) and reweights
their contribution. Equation (2.7) can be expanded into:

Et∼p(t|b)f(t) =

∫

T
p(t|b)f(t)dt =

∫

T
r(t|b)p(t|b)

r(t|b)f(t)dt = Et∼r(t|b)

[
p(t|b)
r(t|b)f(t)

]
≈ 1

n

n∑

i=1

p(ti|b)
r(ti|b)

f(ti)

(4.2)
We can define r(t|b) ourselves and estimate p(t|b) from the data. Then, it is natural to represent this
bag as a weighted bag node with weights wi = p(ti|b)/r(ti|b) that are taken into account in bag model
nodes during computation. One of the examples, when importance sampling helps is when bags contain
two types of instances, one of which tends to be much more represented than the other one. Let us for
simplicity call these prevalent instances negative and rare instances positive. To accurately represent
the bag, we need to sample its instances in a way which follows the true distribution p(t|b) skewed
in favor of negative instances, and at the same time, positive instances are not underrepresented. In
this case, naïve uniform sampling leads to only a small number of positive instances in the sampled
set. With importance sampling, we can design r(t|b) to be higher for positive instances. Therefore,
the sampled set contains examples of both categories, and larger weights wi for negative sampled
instances correct the biased sampling procedure. More specific examples are provided later.

4.2 Aggregation functions

HMill gives the user a relatively free hand in defining model components. Recall that we have
implemented all transformations f in array and product model nodes as one or more feedforward
neural network layers. In the case of bag model nodes, bag mappings fB were implemented by
dense neural networks as well, however, the form of aggregation g is yet to be specified. As shown
in the last chapter, simple mean aggregation is sufficient in theory. Nevertheless, in our experience,
models using more types of aggregations than only mean perform better in practice. Aggregation in
HMill bag model node takes form of a concatenation g = [g1|g2| . . . gq] of q base aggregation functions
gi : ∪∞k=1 (R

m)k → R
m. Different choices of base aggregation gi, or their combinations, are suitable for

different problems. Nevertheless, because the input is interpreted as an unordered bag of instances,
every aggregation function should be invariant to permutation of its parameters and also should not
scale with increasing size of the bag.

In this section, several options for gi are proposed. All base aggregations proposed in this thesis
are element-wise operations—each element in the resulting vector is computed using only entries at the
same position in input. Given a set of vectors {x1, . . . ,xk}, gi would first select from all vectors their
element at the first index and compute one number from the resulting set of real numbers {x1, . . . , xk},
then all elements at the second index, and so forth. This way, we obtain m numbers, or in other words,
a vector from R

m, a space of the same dimension as is the size of vectors on input. For simplicity,
all the following formulas below represent computation of only one output dimension of each base
aggregation. We repeat the procedure q times for all base aggregations, which leads to the final result
in R

qm.
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4.2.1 Non-parametric aggregations

The most simple choices for base aggregation gi are max:

gmax({x1, . . . , xk}) = max
i=1,...,k

xi (4.3)

and mean:

gmean({x1, . . . , xk}) =
1

k

k∑

i=1

xi (4.4)

The motivation for either of this form of base aggregation function comes from the standard assumption
and the collective assumption introduced in Sections 2.1.1 and 2.1.2, respectively. However, let us
emphasize that in HMill instances may be represented not only by vectors in real vector spaces, but by
entire sample (sub)trees.

The max aggregation is suitable for cases when one instance in the bag may give evidence strong
enough to predict the label. This is oftentimes the case in the computer security domain, where signals
indicating the maliciousness are rather rare, yet usually strongly incriminating. On the other side of
the spectrum lies the mean aggregation function, which detects well trends identifiable globally over
the whole bag.

4.2.2 Parametric aggregations

Whereas non-parametric aggregations do not use any parameter, parametric aggregations represent
an entire class of functions parametrized by a real vector of parameters, which is learned during
training. In this thesis, we use two parametric aggregations—lse (log-sum-exp) [Kraus et al., 2015]
and p-norm [Gulcehre et al., 2014].

Log-sum-exp aggregation is parametrized by a vector of positive numbers r ∈ (R+)
m that specifies

one real parameter for computation in each output dimension and is computed as follows:

glse({x1, . . . , xk}; r) =
1

r
log

(
1

k

k∑

i=1

exp(r · xi)
)

(4.5)

Here, r denotes an element of r, corresponding to the dimension, where the result is being computed.
With different values of r, log-sum-exp behaves differently and in fact both max (4.3) and mean (4.4)
are limiting cases for lse:

lim
r→0

glse({xi}ki=1; r) = gmean({xi}ki=1) (4.6)

lim
r→∞

glse({xi}ki=1; r) = gmax({xi}ki=1) (4.7)

If r is very small, the output of the function approaches simple average (4.6), on the other hand, if
r is a large number, log-sum-exp becomes a smooth approximation of the max function (4.7). Since
computing the value of glse according to (4.5) may lead to numerical instabilities, the following equality
can be derived:

glse({xi}ki=1; r) = α+ glse({xi − α}ki=1; r) (4.8)

which holds for any r > 0 and α ∈ R.3 Therefore, to avoid overflow in summation of exponents, we
use α = maxi xi. Finally, to satisfy the constraint that parameters r are strictly positive, we represent
them as a vector of (unconstrained) real values ρ ∈ R

m. To evaluate glse, we re-parametrize with
ρ→ log(1 + exp(ρ)) (softplus function4) or any other transformation that maps from R to (0,∞).

3Proofs of all three claims can be found in Appendix A (Statements 3, 5 and 6).
4Specifically, its stable implementation ρ → max(ρ, 0) + log1p(exp(−|ρ|)).
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Figure 4.1: Contours of glse(x1, x2; r) base aggregation defined in (4.5) for the case when k = 2 and r takes
different values. In case (a), where r → 0, lse aggregation is equivalent to the mean aggregation and in case (d),
lse is equivalent to max. Here, x axis represents values of x1 and y axis values of x2, however, as all aggregations
are invariant to permutations, contours would be the same even with swapped axes.
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Figure 4.2: A visual representation of
gp-norm(x1, x2; p, c) when k = 2, and
colors represent different values of p.
Here p = 1, p = 2, p = 5 and p →
∞ . For clarity, c is set to 0 and also
normalization 1/k is not used. The plot
represents a set of points (x1, x2) for
which gp-norm(x1, x2; p, 0) = 1.

Last aggregation is (normalized) p-norm, which is paramerized
by a vector of real numbers p, where ∀i ∈ {1, . . . ,m} : pi ≥ 1,
and another vector c ∈ R. It is computed with formula:

gp-norm({x1, . . . , xk}; p, c) =
(
1

k

k∑

i=1

|xi − c|p
) 1

p

(4.9)

Due to the parametric interpretation of both p and c, the p-norm
aggregation (4.9) also generalizes on several well-known cases
(for simplicity we assume here that c = 0):

gp-norm({xi}ki=1; p, 0) =





1
k

∑k
i=1|xi|, for p = 1√

1
k

∑k
i=1(xi)

2, for p = 2

maxi=1,...,k|xi|, for p→∞
(4.10)

Hence, for different values of p, p-norm (4.9) interpolates be-
tween the (normalized) ℓ1 norm and the ℓ∞ norm.5 Parameter
c allows to shift the origin for each coordinate. Figure 4.2 rep-
resents the behavior of the p-norm aggregation. Similarly to the
case of lse, for stable implementation we make use of equality:6

gp-norm({xi}ki=1; p, c) = β · gp-norm({xi/β}ki=1; p, c/β) (4.11)

which is valid for any β > 0, p ≥ 1, c ∈ R. Therefore, we set β = max{1,maxi|xi − c|}. Finally, to
satisfy the constraint that all elements of vector p are greater or equal to 1, we employ a similar trick
as in the case of the lse aggregation, this time using transformation ρ→ 1 + log(1 + exp(ρ)).

5For a proof for the case where p → ∞, see Statement 7 in Appendix A.
6A proof can be found in Appendix A, Statement 4.

34



CHAPTER 4. HMILL FRAMEWORK TECHNICALITIES

4.2.3 Weighted aggregations

Following the motivation in 4.1, we define the weighted versions of mean and p-norm aggregations:

gmean({(xi, wi)}ki=1) =
1

∑k
i=1wi

k∑

i=1

wi · xi (4.12)

gp-norm({xi, wi}ki=1; p, c) =

(
1

∑k
i=1wi

k∑

i=1

wi · |xi − c|p
) 1

p

(4.13)

Note that since one weight is defined for each instance in the bag, weights influence result identically
across output dimensions of g, whereas aggregation parameters r, p and c define one parameter for
each dimension and therefore may differ. The former case corresponds to altering a contribution of
the given instance to the aggregation output. The latter case on the other hand allows to aggregate
representations obtained from instance models differently according to dimension.

For instance, some elements of the instance representation are best aggregated with the mean
function and others with the max function. By considering r a learnable vector of parameters, a
suitable r can be inferred for each output dimension during training. To finish, since max and its
smooth approximation lse identify extreme phenomena across the bag, it is reasonable not to use
weights in their computation. Thus, weights are ignored:

gmax({(xi, wi)}ki=1) = gmax({xi}ki=1) (4.14)

glse({(xi, wi)}ki=1; r) = glse({xi}ki=1; r) (4.15)

4.3 Missing data

One detail that was deliberately left out in the description of the HMill framework is how it handles
incomplete or missing data. This phenomenon is nowadays ubiquitous in many data sources and occurs
due to various reasons—a high price of obtaining an observation, information being unreachable due
to privacy reasons, a gradual change in the definition of data being gathered, or a faulty collection
process, to name some examples. Regardless of the origin of missing data, it is wasteful to throw away
the incomplete observations altogether. Possibly missing labels gave rise to fields such as supervised,
semi-supervised and unsupervised learning.

The HMill framework helps to leverage knowledge hidden in incomplete observations, not labels.
Thanks to the hierarchical structure of both samples and models, we can still represent samples with
missing information fragments at various levels of abstraction. Problems of this type can be categorized
into three not necessarily separate types:

1. Missing information fragments in array nodes

2. Empty bag nodes

3. Whole data source missing in product nodes

One example of a sample tree with missing data is in Figure 4.3. In this particular example, information
fragment in an array node responsible for modelling stems (olive) is not observed, which is denoted by
the ∅ sign. The subtree modelling blooms (navy) is a bag node with no instances observed. The third
source of data—buds (green)—is missing altogether. According to our experience, the latter two cases
are more common than the first one. To incorporate missing data into the framework, we provide
model nodes with additional functionality to handle these situations and also declare sample trees
with missing data to match the same schema as their counterparts without incomplete information so
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that they can be processed with same structured models. Although this requires a slight modification
of Definitions 1, 2, 3 and 4, we will not delve into details and will instead explain, how models can be
extended to deal with missing data.

pn(·, ·, ·)

an(∅) bn({}) ∅

Figure 4.3: Example of a sam-
ple tree following schema in Fig-
ure 3.7 with missing data. In this
particular case all three possible
types of missing data appear.

Recall that any HMill model node can be interpreted as a function
from a set of sample trees following a certain schema Ts to R

m, where
m ∈ N. This means that during evaluation, each model node always
receives vectors of the same size from all of its children. To deal
with missing data, we introduce a vector of real parameters ψ into
each model node. For an array model node implementing a mapping
f : Rn → R

m, ψ hasm elements. During both training and evaluation
of the model, whenever the array model node encounters a missing
information fragment∅, instead of attempting to evaluate f , it returns
vector ψ.

For bag model nodes, ψ has the same dimensionality as the
output of aggregation g. If a bag is empty, we feed to bag model fB
the vector of default values ψ instead of aggregated instances.

In the case of product model node, we keep one vector ψi for each of its children. Whenever is the
i-th child missing, we provide the corresponding ψi as input to concatenation and further processing.
Since all these parameters are learned, this technique enables effortless processing of both samples
containing all information and samples with missing data, all at the price of a tiny increase in the
overall number of parameters. Note that even though the three distinguished cases of missing data
may seem equivalent, in fact, each of them represents different situations and results in a different
treatment.

For example, consider the sample from Figure 4.3, but at this time missing the middle branch
altogether. This would result in filling in default values from ψ2 at the level of the root. However, in
the current situation, we use ψ from the bag model node, which means that different default values
are used and also in this case they are futher processed by bag model fB . Therefore, a small change in
the sample results in an entirely different computation.

Parameters ψ can be either fixed or even learned during training. This requires a procedure for
computing gradients of the loss function for all learnable parameters in the model. This is the main
topic of the following section.

4.4 Gradient computation

As all functions composing models are defined to be (piecewise) differentiable, and the computational
graph is a tree, gradients with respect to all parameters can be computed by adaptation of the original
backpropagation algorithm [Rumelhart et al., 1986], which we describe in Algorithm 1. It proceeds
in a preorder fashion and for each model node in the tree computes a derivative of loss with respect
to the parameters of the node and also to its input. The derivative with respect to the input is used
subsequently by the children of the node. In step 8, we use a combination sum and chain rule
for aggregation functions and the standard backpropagation algorithm for neural network layers to
backpropagate through a given model node.

Note that this pseudocode is supposed to give a rough idea of how gradients are computed and
some details are omitted. For instance, because all instances in a bag data node are processed with
the same instance model in a corresponding bag model node, the parameters are shared. As a result,
gradients of all submodels that instance model consists of have to be appropriately aggregated over all
instances in the bag, for example, averaged in the case of mean aggregation. Also, if default vectors ψ
are used, Algorithm 1 has to be modified to change the control flow according to whether the default
values have been filled in or not. Delving further into details is beyond the scope of this thesis and we
refer the reader to the literature about differentiable programming and our implementation.
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Algorithm 1 Adaptation of original backpropagation algorithm [Rumelhart et al., 1986] to a tree-
structured computational graph.

1: procedure Backprop(s, F , L, t)
Input: a schema s, a model F : Ts → R

n constructed from s, a loss function L : Rn → R
+
0 , a sample

t ∈ Ts
Output: ∂L

∂θ
for all model parameters θ

2: evaluate F (t) and save inputs if (t) and outputs of (t) and of every model node f in F
3: compute ∂L

∂F (t)

4: q = {root(F )} ⊲ push the root model node to the queue
5: while |q| > 0 do
6: f ← pop(q) ⊲ pop one model node from the queue
7: Θf ← all parameters of f
8: compute ∂L

∂if (t)
and ∂L

∂θ
for all θ ∈ Θf using ∂L

∂of (t)
computed in the parent

9: ∀c ∈ children(t) : push(q, c)
10: end while
11: end procedure

4.5 Batching procedure

Nowadays, full Batch gradient descent, which computes gradients of model parameters using the whole
dataset in each iteration, is no longer employed for many problems. The reasons are twofold. Firstly,
iterating over all training samples requires a lot of time and is also considered inefficient given the
fact that many samples are very similar. Secondly, it is known that stochasticity in training procedure
improves performance. Instead of full Batch gradient descent, its stochastic variants are used—Stochastic

gradient descent, which selects7 one observation for every update, or Mini-batch gradient descent, which
interpolates between these two, by selecting a predefined number of observations from the dataset. We
have already defined how a single HMill sample looks like. In this section, we describe how to group
samples into (mini)batches and efficiently compute gradients with respect to the whole (mini)batch.

Two prominent guiding principles in modern scientific computing are array programming and a
static computational graph. Array programming refers to writing computer programs in a way that
facilitates the application of operations to multiple values at once, so that specialized vector instructions
in CPUs can be utilized. Regardless of whether the data are processed on GPU or on vector processors,
the focus is to group (possibly independent) data together and perform operations on it simultaneously.
For instance, computation of an output of a neural network can be expressed as a composition of
matrix-vector multiplications and elementwise application of activation functions. If matrix-matrix
multiplications are performed instead, a whole batch of samples can be run through the network at
once. This is much faster than feeding samples to the network one by one.

The second principle is to keep the computational graph as static as possible so that both high-level
optimizations at the level of computational graph and low-level optimizations in the compiler can be
utilized. A naïve approach to compute gradients with respect to each sample tree from the batch first
and summing the results violates both of these principles. Nevertheless, HMill offers a way to group
sample trees following the same schema into a single tree representing the whole batch in a manner
respecting both principles. In other words, as in the standard neural network case, all matrix-vector
operations can be transformed into matrix-matrix operations, and the computational graph is identical.

The high-level overview of the whole procedure is that all sample trees from the batch are first
horizontally overlapped and the data nodes in the same positions in the tree are merged into one. This
is possible due to the fact that all samples match the same schema and requires small extensions of all

7The selection is performed either by sampling or some deterministic procedure, such as iteration over the dataset.
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data node types so that they can carry more than one sample. All model nodes will instead of one
vector per sample return a matrix per multiple samples, in which outputs for samples are stored in
columns.

4.5.1 Array data nodes

In the case of an array data node, the modification is done in the same way as in the aforementioned
example, that is, instead of one vector representing the information fragment of the sample in the given
position in the tree, it carries multiple vectors concatenated into a matrix for multiple samples. This is
illustrated in Figure 4.4, where three array nodes representing three different samples are merged
together into one. Given an array data node and its matching model node, evaluation is performed in
the same way as in Figure 3.9, however, this time we input a matrix into function f . As a result, we
obtain not one vector, but a whole matrix, where each column corresponds to one sample.

4.5.2 Bag data nodes

an( )
an( )
an( )

an( )

Figure 4.4: Illustration of merging three ar-
ray data nodes representing three different
samples (drawn by different colors) into a
single array node.

Merging several bag data nodes together is possible thanks
to the following observation. Because all samples in the
batch follow the same schema, all instances from all sam-
ples in the batch are represented by trees that also follow the
same (sub)schema. This implies that all trees representing
instances can be collapsed into a single tree as well recur-
sively by following the same algorithm, and this observation
holds for any position of the bag node in the schema tree.
Hence, given a batch of samples, to merge a corresponding
bag data nodes together, we collect all instances from all
samples in the batch and apply the same algorithm. Put
differently, the bag node now has only one child, which
is a result of merging all instances of all samples it stores.
Moreover, we remember the indices of instances in order to
assign them to bags during evaluation.

For a specific example, refer to Figure 4.5, where a process of merging three bag nodes with
two, one and three instances in their bags is illustrated. As all instance trees (in this example trees
consisting of only one array node) follow the same schema, they can be collapsed into one tree. In this
case, this means that instead of six different array data nodes representing six different instances in
three bags, we have one array node, which becomes the only child and stores all information. Note,
that this child can also be another arbitrarily complex subtree—bag data node or product data node,
depending on the schema, however, thanks to the observation we made, it is always possible to merge
all instances of all samples into a single subtree. Therefore, the resulting bag data node always has
only one child after merge.

The evaluation of a merged node with a given bag model node is performed analogically to the
single sample case (Figure 3.10). We first use the instance model fI on the only child obtaining a
matrix, where each column stores a result of fI on the corresponding instance. In example in Figure 4.5,
we would get a matrix with the number of rows equal to the dimensionality of target space of fI and
six columns. Then, aggregation g is performed using the indices stored in the merged bag node, so
that instances belonging to the same bags are correctly aggregated together. We store the results into
a narrower matrix having as many columns as there are samples (in this case three) and apply bag
model fB on it, which may change the number of rows (the dimensionality of target space of fB), but
the number of columns stays the same.
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bn({·, ·})

bn({·})

bn({·, ·, ·})

an( )
an( )
an( )
an( )
an( )
an( )

an( )
an( )

an( )

bn(. . .)

an( )
IIIIII

Figure 4.5: Merging three bag nodes corresponding to different samples (drawn by different colors). See text
for details.

4.5.3 Product data nodes

Finally, if all samples in the batch follow the same schema, this also means that all product data nodes
at the same position in different sample trees have children that can be merged into one subtree for
all samples. In other words, even though children of a single product data node may match different
(sub)schemata and therefore they may not be combinable as is the case with bag nodes, we can merge
children across multiple sample trees provided that they follow the same (sub)schema. This is done by
merging all first children into a single tree, then all second children into a single tree, and so forth.
See Figure 4.6, where this procedure is applied to product data nodes from three different samples
with three children each. Children are grouped according to the (sub)schema they follow8 and all
groups are recursively collapsed into one subtree. The evaluation of a product model node is done in a
similar way as in Figure 3.11. We apply submodels f1, . . . , fl to children and obtain a matrix with as
many columns as there are samples for each child. In our specific example, we would obtain three
matrices with three columns and possibly different number of rows. Then, all matrices are vertically
concatenated and mapping f is applied, which leads to one column for each sample on the output.

pn(·, ·, ·)

pn(·, ·, ·)

pn(·, ·, ·)

pn(·, ·, ·)

Figure 4.6: Procedure of merging three different product nodes matching same schema in one. Here, the fill
colors indicate different (sub)schema that children follow (see Figure 3.5) and the same border colors represent
subtrees coming from the same sample.

8or equivalently by their order in product data node, since we have defined product nodes to impose ordering on their
children
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Applying this recursive procedure on any number of samples leads to a single tree, where all inter-
mediate representations are stored in one matrix. Static schema across the batch guarantees static
computational graph, and therefore the computation of gradients on the resulting tree is effective.
To simplify the explanation, we have assumed that there are no missing data present in any sample.
In practice, this is not true, and slightly more complex functionality is required. For instance, if any
of the bags is empty when merging bag data nodes together, we use the methodology described in
Section 4.3. Hence, the resulting bag data node remembers that this particular bag has zero instances
and when performing aggregation, the resulting column is filled with the default values.

Having read this and the previous chapter, the reader should now be familiar with sample repre-
sentation and model definition in HMill, as well as the technical details of its implementation. Should
the reader wish to learn even more, we recommend referring to our implementation [Pevný and
Mandlík, 2018]. The source code of version 1.2.0 of the framework is attached to the submission. In
the remaining chapters, we delve into the practical adoption of HMill.
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Chapter 5

Towards automated processing of
structured data

In this chapter, we demonstrate how the HMill framework lends itself to the processing of structured
hierarchical data. We mentioned in Chapter 1 that a majority of ML algorithms is applicable only to
fixed-size input, even though real-world data is hardly ever found in a form in which each observation
is described by a vector of fixed length. On the contrary, plenty of data appears naturally structured
as graphs or trees, with information being specified not only in nodes but also in the structure itself.
This brings higher flexibility when opting for formats in which the data is stored, however brings new
challenges to methods processing such input. We focus on such hierarchical formats in this part, and
in the remaining Chapters 6 and 7 on the processing of graphs.

Figure 5.1: Syntax diagram of a JSON value.

Specifically, we consider hierarchically structured data formats ubiquitous in today’s Internet communi-
cation, such as JSON and XML. We will demonstrate how these formats seamlessly integrate into the
framework and therefore how data stored in this way can be learned from. We will illustrate this on
JSON format in particular, however, everything applies to XMLs as well.

JSON is a lightweight, human-readable format designed for data exchange independently of the
programming language used. The standard1 defines three main structures (data types):

Values are the most general type of JSON structure and can be either primitive data types, such as
strings, numbers, booleans or nulls, or composite object or array types.

Objects are unordered collections of zero, one, or more key-value pairs, which abstract on dictionaries,
hash tables, or associative arrays in a modern programming language. Keys are defined as arbitrary
strings and values are JSON values.

Arrays are, contrary to objects, ordered lists of values, corresponding to standard arrays in program-
ming languages. Elements of JSON arrays can be any JSON values.

Apparently, JSON format provides higher expressive power for objects of interest, as the single-vector
representation can be encoded as JSON array with real numbers as its elements and constant size
across observations. Whereas JSON arrays are most of the time used to store elements with the same

1https://json.org
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(a) (b)

Figure 5.2: Syntax diagram of a JSON object (a) and a JSON array (b).

interpretation2, JSON object is a data type intended to accommodate multiple possibly heterogeneous
attributes with an arbitrary representation. Needless to say, thanks to the recursive definitions of JSON
data types, both arrays and objects can be further nested, creating complex composite structures
capable of capturing many real-world phenomena.

{

"mac": "80:5e:c0:41:ad:39",

"ip": "192.168.0.147",

"services": [

{

"port": 80,

"protocol": "tcp"

},

{

"port": 5353,

"protocol": "udp"

}

],

"device_class": "IP_PHONE",

}

Figure 5.3: Example of a JSON document.

An example of a valid JSON file storing information
about an IoT device is in Figure 5.3 and it is based on the
task we attempt to solve in the experiment section of this
chapter. The whole top-level object consists of data entries
specifying the MAC address and the IP address of the device,
services it provides and the class of the device, which in this
case serves as a label. As one device can expose multiple
ports and use different protocols for communication, we
model this as an array of objects, each specifying one service.
Every JSON value can be regarded as a node in a tree repre-
sentation of the document, with arrays and objects having
several children and primitive values, such as numbers or
strings, being leaves of the tree. Schemata representing
the graphical structure can be defined in a similar way as
in HMill, and therefore, JSON documents can be validated
against schemata.

In this thesis, we focus mainly on the classification
task with valid JSON documents or similar data formats as
input. Traditional approaches include rule-based systems or
flattening. Rule-based systems combine manually designed

simple rules based on domain knowledge with transformations of suitable subsets of data. Referring to
Figure 5.3, one example of such rule could be that the observed device is a phone as long as it uses
the UDP protocol on port 5353. Hence, rules, such as logical AND or OR help with dealing with JSON
arrays of arbitrary length. To increase the space of such rule-based hypotheses a transformation on the
appropriate subsets of the document can be defined or even learned.

For instance, in the previous example, we could collect all port-protocol pairs in documents
describing phones and infer a detector returning a score specifying how likely this pair appears in
the descriptions of phone devices. Then, a device would be classified as a phone if all of its elements
in "services" array reach score above a certain threshold. The rule-based approach to handling
tree-structured data in many ways resembles the instance-space paradigm for solving MIL problems
from Section 2.1 with all of its benefits and drawbacks. The main advantage of the rule-based approach
is that rules are easily interpretable, however, they require deep domain knowledge and can be very
difficult to design properly. Moreover, in the presence of the concept drift, rules may become quickly
obsolete, and sometimes, the language of simple rules may not even be expressive enough to reasonably
discriminate samples, especially for more complex structures.

2JSON standard though allows elements to be any JSON value.
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The flattening approach deals with hierarchical data by defining a procedure that yields a vectorized
representation of any given tree. This is convenient since a lot of well-researched ML algorithms can be
used with the resulting vector representation. One major disadvantage of this approach is that it does
not deal with complex variable structures in a principled way—as different tree-structured observations
may contain different amount of information (for instance by storing JSON arrays of different length),
transformation to a fixed-size vector can be either lossy if the size is too small, or wasteful if it is too
high.

The hierarchical nature of tree-structured data presents an opportunity to increase the capacity
of models by leveraging structural information from the data while keeping the number of parameters
sufficiently low. The prior art on models learning from both raw data in leaves and topologies of such
structures is scarce and existing methods use limiting assumptions, such as all leaves being present in
the same depth [Hammer et al., 2004,Zhang et al., 2018a], or the tree having a very specific structure,
such as syntactic parse trees in natural language processing [Irsoy and Cardie, 2014,Kokkinos and
Potamianos, 2017,Zhang et al., 2018b]. To the best of our knowledge, the only fully general approach
to end-to-end learning on hierarchical data is proposed in [Woof and Chen, 2020].

5.1 Modelling JSONs with HMill

To use HMill for learning from JSON documents, we need to make one mild assumption that all
documents in the dataset must be structured in the same way (in HMill parlance, they must follow the
same schema). Given a set of JSON documents D, this assumption, loosely speaking, translates to the
following conditions:

• Keys of every JSON object located at a certain position in the tree representation of any document
d ∈ D must come from a finite ‘super’ set. In other words, given a fixed position in the tree, we
know which keys can be encountered in this particular position before training procedure starts.

• Values corresponding to the same key of JSON objects located at the same position must have
the same structure for every document d ∈ D.

• JSON Arrays must be either empty or contain elements with the same structure. For a certain
position in the tree, elements of arrays of different documents from D must also have the same
structure.

The whole situation is analogical to the notion of HMill schema, which is defined and discussed in
Section 3.2.1. To demonstrate this condition on the example from Figure 5.3, if we wanted to train our
model on a set of multiple similar JSON documents D, we would require each one of them to contain
at the top level only key-value pairs with keys from set { "mac", "ip", "services", "device_class"
}, with every value corresponding to any key apart from services being represented as a string of
characters. Note that this does not imply that all documents fromD must have the same key sets—some
keys might be missing (see Section 4.3). All documents in D would further have either no services

key present, or its value would be an array of another type of JSON objects with keys from set {
"port", "protocol" } with values represented as an integer for ports and string for the protocol. Even
though the assumption of the common schema for all documents might seem limiting, according
to our experience, this is rarely the case. Despite the JSON standard being rather forgiving in how
the documents can be structured, when we observe documents from one specific data source or a
collection of data sources, they usually follow the same schema directly, or only a trivial transformation
is required.

Translating a JSON document to an HMill sample is straightforward. Each leaf of the tree with
primitive data type entries such as numbers, booleans, or strings is transformed into an array data node
an(h(. . .)), where h is a suitable mapping to some real vector space (see Section 3.2.1). Therefore,
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{

"mac": "80:5e:c0:41:ad:39",

"ip": "192.168.0.147",

"services": [

{

"port": 80,

"protocol": "tcp"

},

{

"protocol": "udp",

"port": 5353

}

],

}

an(h1("80:5e:c0:41:ad:39"))

an(h2("192.168.0.147"))

an(h3(80))
an(h4("tcp"))

an(h3(5353))
an(h4("udp"))

pn(·, ·)

pn(·, ·)

bn({·, ·})

pn(·, ·, ·)

Figure 5.4: A transformation of JSON document from Figure 5.3 into a valid HMill sample. See text for details.

the entry is converted to a vector of real numbers. Note that mapping h can be defined differently for
leaves at different positions in the tree, however, it is the same for leaves at the same position in the
tree across all documents. For instance, mapping h in an array node modelling IP addresses is the
same for all documents but may differ from a mapping used for MAC addresses.

To model JSON objects, we use product data nodes. Recall that given a particular position in
the tree, a finite set K of all keys used by JSON objects at this position is known. First, an arbitrary
ordering ≺ is imposed on all elements k ∈ K, for instance, trivial lexicographical order of key strings.
This way, we can assign a unique number from {1, . . . , |K|} to each key, according to its rank with
respect to ≺. This number is regarded as the index of the child (subtree) corresponding to the JSON
value stored with this key in the product node. This is merely a technical detail, stemming from
the fact that children of product data nodes can be semantically heterogeneous, however, key-value
pairs from JSON objects are originally unordered. Therefore, we need to define this arbitrary, yet
precise mapping from keys to children indices. As children of product data nodes do not have to match
the same schema, we can model heterogeneous values stored under different keys with an arbitrary
substructure. For instance, each of the mac, ip and services entries could be modelled by a different
subtree and therefore processed by submodels with variable topology.

Finally, JSON arrays are modelled as HMill bag data nodes by interpreting each homogeneous
entry in the array as an instance in the corresponding bag. Note that HMill handles empty arrays
as well as arrays of any length. The whole transformation is depicted in Figure 5.4. The root of the
resulting sample tree is a product data node, with the first two children being subtrees for modelling
IP and MAC addresses. The last child is a bag data node representing an array of elements from the
services field, each of which is another JSON object and is therefore modelled as another product
data node. Four distinct mappings h1, h2, h3 and h4 are defined for modelling different information
fragments (IP and MAC addresses, port and protocol). For specific examples of various mappings h,
refer to Figure 3.3. Also, as JSON object is unordered, the order of keys in the second element of
services arrays is changed so that each product node modelling entries in the array has submodel for
ports as the first child, and submodel for protocols as the second child.

The resulting pipeline for learning from JSON documents is not much different from the pipeline
in the current machine learning. We first collect the data, in this case, a collection of documents D
and deduce the schema. This can be done in an automated way, for instance with JsonGrinder.jl

library [Pevný and Račinský, 2019]. Then, a suitable model is defined according to the schema and
trained in an end-to-end fashion on both primitive types in leaves of the documents and the whole
topology. As models learn from the structure as well, a need for the tedious, trial-and-error design of a
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flattening procedure to encode the structure in a fixed-size vector is alleviated. Also, learning HMill
models from the data is more general than rule-based approaches, and a more complex hypothesis can
be learned, as aggregation functions in bag model nodes can easily substitute hand-written rules. We
believe that HMill will enable out-of-the-box learning from tree-structured data expressed as JSONs,
XMLs and other similar formats in tasks across variable domains and will help other researches with
processing data so far considered incompatible with current methods.

5.2 IoT device identification (use case)

The first of three use cases we will present throughout the thesis concerns IoT domain. IoT is a term
referring to a network of billions of existing devices in the Internet that communicate with each other
and collect and share data through special sensors. Thanks to advances in multiple disciplines and
cheaper manufacturing, the IoT network saw immense growth in the last decade and, for instance,
nearly half of the North American households have an Internet-connected television or a streaming
device [Kumar et al., 2019]. It is believed that IoT will benefit society across sectors, ranging from
health services and home automation for the elderly and disabled, to energy savings in ‘smart homes’.
However, The progress is hindered by security and privacy concerns and rightfully so—some of the
examples include up to 600 000 infected devices being used in massive Distributed Denial-of-Service
(DDoS) attacks by the infamous Mirai botnet [Antonakakis et al., 2017], or smart home devices being
compromised [Hernandez and Buentello, 2014,Kumar et al., 2018]. Thus, it is of utmost interest of
security companies and device vendors to turn their attention to the security of the IoT network and
develop suitable solutions.

In [Kumar et al., 2019], researchers from University of Illinois Urbana-Champaign, Stanford
University and Avast Software cooperated to conduct the first large-scale investigation and empirical
analysis of IoT devices in homes that are otherwise invisible in Internet scanning. Data was collected
by local subnet scanning manually initiated by users. One of the problems that emerge when the
network is scanned is an identification of the device type (TV, wearable, voice assistant, . . . ) using
only information obtained from the scan. In the following sections, we demonstrate how HMill helps
with solving this task.

5.2.1 Data description

The scan is performed by a tool called WiFi Inspector built into the antivirus client.3 First, the list of
candidates is generated using the ARP table and ARP, SSDP and mDNS scans of the network. Then,
additional knowledge about each candidate is gathered from both the network and the application
layer. Specifically, ports used for listening and protocols for communication are further scanned, as
well as DHCP, mDNS, SSDP and UPnP broadcasts made by the device. Two specific examples are
shown in Apendix B (Figures B.3 and B.2).

We worked with two specific datasets. The first dataset is publicly accessible and comes from the
Kaggle challenge4. It contains 57 906 documents for training and 77 777 documents for testing grouped
into |C| = 13 different classes. The schema of the training data as obtained from JsonGrinder.jl can
be found in Figure B.1 in Appendix B. All fields except of device_class, which contains the label, and
device_id, which is a unique identifier of the sample, can be used as input to the model. Describing
the data in full detail is beyond the scope of this thesis, and we refer interested readers to the Kaggle
competition description or the cited paper. A pie chart of the class distribution in the training data is in
Figure 5.5. The second dataset containing 8 816 documents for training, 99719 documents for testing,

3All data about devices is collected only for research purposes, sensitive information is anonymized or aggregated and
users are informed and can opt out anytime. See [Kumar et al., 2019] for further details about privacy policies.

4https://www.kaggle.com/c/cybersecprague2019-challenge/overview

45

https://www.kaggle.com/c/cybersecprague2019-challenge/overview


CHAPTER 5. TOWARDS AUTOMATED PROCESSING OF STRUCTURED DATA

and 13 classes was kindly provided by Avast. There is more information in its documents, such as TLS
cipher suites list or HTTP user agents, therefore the schema of this dataset is slightly different.

game console
4.12

surveillance

3.52

home automation

21.25

NAS

4.86

voice assistant

5.03
PC

11.51

audio

5.42

media box

10.47

generic IOT

5.11

IP phone

8.97

TV

9.87
printer

7.50
mobile

2.39

Figure 5.5: Distribution of class labels in the training
set of the dataset obtained from Kaggle. All ratios are
stated in percents.

Similarly to other problems tackled in the
computer security domain, identifying a device
type from JSON documents of this schema is triv-
ial for humans most of the time, however, de-
signing a system for automatic recognition is a
challenging task. Device labels can often be sim-
ply inferred from information in a single string
field in a JSON document, for instance, manufac-
turers often inform about the model name and
device specifications in responses to the aforemen-
tioned probes. Nevertheless, this is not always
the case and for some devices, their type can be
only deduced by inspection of their overall com-
munication interface and behavior. Moreover, the
domains of information fragments are typically
discrete (strings, categorical variables, or natural
numbers) and many fields may contain an empty
string or a key-value pair may not be specified at
all. This is due to protocols being unsupported on

the device side, timeouts or failures in the network or other reasons. Finally, most of the information
from JSON document is usually redundant and not required to make the correct decision.

5.2.2 Experimental results

Learning to classify IoT device type from JSONs is rather straightforward using the process described
in Section 5.1. We inferred a schema of the available documents and defined a hierarchical HMill
model. Mapping h in each array data node, where fragment space F contained strings of characters,
was defined to compute histograms of tri-grams, in cases, where there was only a handful of unique
string values (for instance ports, protocols, or manufacturers), we interpreted the field as a categorical
variable and used one-hot encoding, and in the remaining cases (integers, reals), h was set to identity.
To promote effortless processing of sample trees following an arbitrary schema, Mill.jl provides an
auxiliary procedure that helps with defining complex composite models. As arguments, it accepts
a schema and a prescription specifying topology of neural network components in HMill models
(mapping f in array model nodes, fB in bag model nodes, and f in product model nodes) and types
of aggregation functions g. For simplicity, we opted for all neural networks components to consist of
one feedforward layer with output dimension 50, dropout regularization [Srivastava et al., 2014] with
probability 0.5 and the tanh activation function. In every bag model node, we used a concatenation of
all four functions discussed in 4.2. Note that specifying output dimensions for mappings h in array
data nodes as well as for neural network components is enough to specify the whole model tree, since
the input dimension of every component can be deduced. The resulting model therefore mapped every
JSON document to a vector with dimension 50, which was followed by one final layer to obtain a vector
of size |C| and softmax transformation to obtain class probabilities conditioned on the input.
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In each experiment, the model was trained for 30 epochs (iterations over the whole training set) using
minibatches of size 100 and Adam5 optimizer [Kingma and Ba, 2014]. For each neural network layer,
the Glorot normal initialization [Glorot and Bengio, 2010] was employed for weights, and all biases
were initialized to zero. For a loss function, we used the standard multiclass cross entropy (also known
as multinomial logistic loss) on the conditional probabilities output by the model:

L(θ) = − 1

n

n∑

i=1

∑

c∈C

✶{c = ci} log p(c|di; θ) (5.1)

where n is the number of samples (documents) in the batch, di a representation of i-th document as
an HMill sample, ci its class label, and p(c|di; θ) the conditional probability of i-th document having
label c according to the model parametrized by θ.

After the training was finished, we measured the accuracy on the training set as well as averaged
F1 score over all classes. Measured over 10 runs with a different random seed, we reached accuracy
0.9709± 0.003 6 and F1 score 0.9582± 0.007 for the Kaggle dataset, which is on par with the winning
entry. Metrics measured on the second dataset are in Table 5.1. We compared the results to the system
described in [Kumar et al., 2019], which is deployed in Avast production. It consists of more than a
thousand rules written by experts and a machine learning-based predictor, each of which returns a
class prediction together with a confidence score. The overall prediction is then derived by combining
predictions of individual components. The ML-based part is implemented as an ensemble of classifiers as
described in the paper. This ensemble was recently replaced by a single model—one-vs-rest multiclass
adaptation of soft-margin SVM classifier [Cortes and Vapnik, 1995], with Radial Basis Function (RBF)
kernel (γ = 1/(2σ2) = 10−4) and regularization constant C = 105. It uses a manually designed set of
features extracted from JSON document, mainly from UPnP and mDNS. In the table, we present the
accuracy of the whole system, that is, expert rules together with an ML classifier, for both ensemble
and SVM-based implementation.

Table 5.1: Metrics measured on the testing set from the dataset obtained from Avast.

method accuracy F1 score

ensemble 0.878 -

SVM 0.925 -

HMill 0.969± 0.004 0.924± 0.006

It needs to be emphasized that due to the fact that datasets represent merely a fraction of devices in the
world, the results presented here are likely slightly skewed in comparison to the performance measured
in the production environment. Furthermore, accuracy may not be the most suitable metric if there are
different costs of misclassification for labels, or if we are most interested in a subset of high-confidence
predictions and do not want to measure accuracy on ‘hard’ samples. The fact that simple baseline HMill
models trained on raw data without any fine-tuning achieve competitive performance on both datasets
shows great promise. We assume that by further experimenting with model components (for example
adding layers to submodels in model nodes), even better results are attainable. This, however, is not
the goal of this thesis in which we aim to demonstrate the versatility of the framework on different
problems.

5with the default parameters α = 0.001, β1 = 0.9, β2 = 0.999 and ǫ = 10−8

6µ± σ notation specifies the average and the standard deviation over all runs.
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Chapter 6

HMill for graph inference

The previous chapter showed how the HMill framework can be used to learn from tree-structured data
together with one particular use case concerning solving the device identification problem. Yet, one of
the main requirements outlined in Chapter 1—dealing with the violated i.i.d. assumption—remains
unaddressed. As it was discussed before, independence between individual samples is in some tasks
rather unrealistic assumption, especially in the computer security domain. Two remaining use cases
of the framework in this thesis are prime examples of this. The first one concerns malicious binary
file classification at the end-user’s machine from a ‘snapshot’ of the state of the operating system. In
the last use case, we explore possibilities for second-level domain classification based on its behavior
in the network. Even though both tasks are essentially different problems with different data inputs,
they have one property in common—in the system, there are many objects of interest of the same type
(binaries in the former case and domains in the latter), all of which contribute to the developments in
the surrounding system.

To give a specific example, in the operating systems many binary files are being run at once, some
of them multiple times in different processes. Since processes may further install other binary files
and spawn or terminate other processes, the whole operating system is interconnected in a complex
way. To infer the maliciousness of a binary, we should take into account the maliciousness of other
binaries or processes in the system it interacted with. Nevertheless, the maliciousness of other objects is
unknown as well and deducing it corresponds to essentially the same task. Thus, the i.i.d. assumption
does not hold. In this chapter, we first briefly revise statistical frameworks and methodologies for
representing such complex real-world systems and then demonstrate how HMill is used to perform
inference in these systems. The final part of this chapter presents experiment results from the task of
binary file classification based on inference in a graph representation of the operating system.

6.1 Prior art

In the following text, we denote X = {X1, X2, . . . , Xn} a system of n objects we want to model, where
each Xi is regarded as a random variable taking values from some domain X , which depends on the
problem. For instance, if we want to classify objects into several classes, we define all variables to be
binary Xi ∈ {0, 1} in the case of binary classification, discrete-valued Xi ∈ {1, . . . , |C|}, where C is
a set of classes, for multi-class classification, and real-valued Xi ∈ R for regression tasks. Under the
independence assumption, it is enough to consider only marginals pi(Xi) since the joint probability
can be eventually computed using the product rule as p(X) =

∏n
i=1 pi(Xi). When this assumption does

not hold, we have no choice but to model the whole joint probability p(X), so that all dependences
between variables can be captured. It is often not the case that all random variables in X are mutually
dependent. This happens when X consists of several independent subsets of variables, or when there
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are pairs of variables that are conditionally independent1 of each other given some (smaller) subset of
variables in the model. Consequently, the joint probability distribution p(X) can be factorized into a
product of several terms (usually called factors), each computed from a subset of all variables:

p(X) =
∏

S⊆X

f(S) (6.1)

This is a generalization of the case when i.i.d. assumption holds, as we can have one factor for each of
the variables equal to its marginal probability pi(Xi).

6.1.1 Graphical models

Graphical models, or Structured probabilistic models, is an umbrella term for all models, where the
possible factorization is encoded into a graph, whose set of vertices are random variables and an edge
between two random variables indicates dependence. Therefore, the more (conditionally) independent
random variables are, the more efficient their representation as a graphical model is, compared to a
full description of probabilities in a table. According to the exact definition of factors f and the type of
the graph, graphical models can be further split into directed graphical models, referred to as Bayesian
networks [Pearl, 2013], and undirected models, known as Markov random fields [R. Kindermann,
1980, Jordan, 2004].

As opposed to Bayesian networks, where factors f are given by conditional distributions and
reflected in edges of a directed graph as depicted in Figure 6.1, an analogical procedure for undirected
graphs is not that straightforward. Intuitively, two random variables not connected by an edge should
be conditionally independent of each other given any separating subset.2 The corollary is that a
random variable is conditionally independent of any other variable in the graph, given all variables in
its neighborhood. This idea is theoretically justified in the Hammersley-Clifford [Hammersley, 1971]
theorem, which states that every strictly positive probability distribution can be factorized into a
product of potential functions defined over maximal cliques3 in the graph and vice versa, every function
represented as this product describes a valid probability distribution. Therefore, a factorization of
the probability distribution in a Markov random field is proportional to the product of non-negative
potential functions ψC defined on maximal cliques of the graph:

p(X) ∝
∏

C

ψC(XC) (6.2)

where XC is the set of variables in clique C. Potential functions do not have to integrate to one
and therefore are not proper probability distributions themselves, however, their normalized product
corresponds to a valid joint distribution:

p(X) =
1

Z

∏

C

ψC(XC) (6.3)

where Z =
∫
X

∏
C ψC(XC)dX is a normalizing constant, also referred to as a partition function.

Assume we are given a joint probability distribution p(X) represented as a graphical model and a
set of observed variables with known values XO = {x1, . . . , xl} ⊆ X. Denoting the remaining variables
to be inferred Y = X \ XO = {Y1, . . . , Yk}, one of the relevant tasks is to find the most probable
state Y ∗ = argmaxY p(Y |XO) = argmaxY p(Y,XO), that is, to perform maximum a posteriori (MAP)
inference. Another problem is to compute marginals p(Yi|X) for each i = 1, . . . , k. For a specific

1Random variables X and Y are said to be conditionally independent given a set of variables Z if p(X|Y, Z) = p(X|Z),
or equivalently, p(X,Y |Z) = p(X|Z)p(y|Z).

2The separating subset between two vertices x and y in the graph is a minimal set of other vertices such that x becomes
unreachable from y after the removal of the separating subset from the graph.

3Maximal clique is a maximal complete subgraph (adding another node from graph breaks the completeness property).
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Figure 6.1: Example of a Bayesian network and a Markov random field representing a system of five variables.
In (6.1a), there is a Bayesian network representing a probability distribution factorizable as p(a, b, c, d, e) =
p(a)p(b | a)p(c)p(d | b, c)p(e | d). In Bayesian networks, edges signify direct conditioning, that is, b is dependent
on {a}, d is dependent on {b, c}, and e is dependent on {d}. Additionally, e is conditionally independent of
all other vertices given its parent d, and d is conditionally independent of a given b and c. A representation of
a (different) probability distribution of five variables as a Markov random field is in (6.1b). This distribution
can be factorized as p(a, b, c, d, e) = 1

Z
ψ(a, b, c)ψ(b, c, d)ψ(b, e), where {a, b, c}, {b, c, d} and {b, e} are maximal

cliques in the graph. For example, e is conditionally independent of every other node given b, and a and d are
conditionally independent given their separating subset {b, c}.

loss function L : X × X → R, marginals can be then used to obtain the optimal Bayes classifier
for unobserved variables Y . Note that XO can be empty. For graphs without loops, the canonical
Belief propagation [Pearl, 1988] algorithm exists. Unfortunately, exact computation of either of these
probabilities and even evaluation of constant Z is a computationally intractable problem in the general
case when graphs may contain loops. In this case, approximation methods such as graph cuts [Kohli
and Torr, 2005] or Monte Carlo Markov chains [Wang et al., 2000b] can be utilized. A prominent
family of approximation algorithms for graphical models is the family of so-called message-passing

algorithms containing the standard Loopy belief propagation [Frey and MacKay, 1998,Kschischang
et al., 2001] algorithm also known as the sum-product algorithm. In message-passing inference,
messages representing local statistical information are iteratively exchanged between vertices, which
update their beliefs accordingly, until some convergence criterion is met. The key idea is that even
though messages are computed from a small neighborhood of each vertex, after a sufficient number
of iterations, information is spread across the entire graph and with appropriate message definitions,
marginals can be computed in each vertex separately.

There are several drawbacks in practical modelling and inference with graphical models. Namely,
one needs to suitably construct the graph and define potential functions, and algorithms for approximate
inference usually lack theoretical guarantees. In [Lin et al., 2015,Zheng et al., 2015,Schwing and
Urtasun, 2015] authors attempted to learn the definition of potential functions, however, this required
an introduction of another assumption, for instance, fixed number of neighbors of each vertex. Finally,
it has been shown in [Ross et al., 2011] that Loopy belief propagation and its variants can be regarded
as special cases of a general iterative scheme in which a sequence of interdependent local classifications
is performed. This suggests that not only potential functions but also messages themselves, which
are in Loopy belief propagation computed using explicit formulas, can be learned. The notion of
message-passing inference, where information encoded in the graph is repeatedly collected from
neighbors, aggregated and further propagated, together with the key insight that we can learn message
predictors, are main motivations for performing inference with HMill as explained later.
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6.1.2 Graph neural networks

Since graphs are a natural representation of many real-world phenomena occurring in biology, sociology,
computer security, or finance, research efforts have been turned to development of methods for effective
learning from such structures [Bronstein et al., 2016]. Graph neural network (GNN)s, first proposed
in [Scarselli et al., 2009], are an extension of classical feedforward and recurrent architectures to
graph input. The goal is to learn an embedding vector hG for the whole graph or a set of embeddings
{hv1 ,hv2 , . . . ,hvn} for each vertex vi of the graph. Depending on the application, this embedding
is further processed. Graph Convolutional Networks (GCNs) [Kipf and Welling, 2016] reflect the
structural dependences together with features from vertices by generalizing a convolution operation to
the graph domain, leading to the following update rule:

H(l+1) = σ
(
D̂− 1

2 ÂD̂− 1

2H(l)W (l)
)

(6.4)

where activationsH(0) in the first iteration are initialized with a matrix of featuresX, Â = A+ I is
the adjacency matrix of the graph with added loops, D̂ is a diagonal vertex degree matrix,W (l) is a
matrix of parameters in l-th layer, and σ is a non-linear activation function. By stacking multiple layers
of (6.4), information is aggregated from the graph, and hidden states of vertices are gradually refined.
GCNs belong to the family of spectral approaches, which utilize spectral representation of the graph as
proposed in [Bruna et al., 2013]. The disadvantage of spectral methods is that the parameters are
learned using a specific graph structure, and the model cannot be applied once the input graph is even
slightly perturbed.

Spatial approaches leverage spatiality in the graph and define graph convolution based on vertex
relations. GraphSAGE [Hamilton et al., 2017] is one of the first representatives of spatial methods,
which defines graph convolution as follows:

ht
v = σ

(
Wt · a

(
ht−1
v ,

{
ht−1
u , ∀u ∈ N (v)

}))
(6.5)

where a is a permutation-invariant aggregation function, and N (v) denotes the neighborhood of vertex
v. Note that in spatial approaches the central idea is to iteratively update hidden state hv at each node
v based on its neighborhood, which corresponds to the message-passing scheme. Indeed, in [Gilmer
et al., 2017], authors reformulated a handful of existing GNN architectures into a common general
message-passing-based framework. In [Yoon et al., 2019], it has been shown how GNNs can be utilized
to learn the messages from the original Loopy Belief Propagation algorithm and eventually outperform
it.

Lately, research efforts have been put into modelling a heterogeneous network, a graph with
multiple vertex and edge types. As it is the case with vanilla GNNs, to deal with this intrinsic property,
many different methods were proposed [Chang et al., 2015,Gui et al., 2016,Fu et al., 2017,Shi et al.,
2017,Dong et al., 2017,Zhang et al., 2018a,Sun et al., 2018,Fan et al., 2019,Wang et al., 2019].

Prior art on GNNs is vast and specialized approaches have been proposed for a particular task
being solved (vertex classification, graph embedding, et cetera), different graph types and sizes, and
whether the model should generalize to changes in the graph structure. We merely scratched the
surface of the family of GNNs and heterogeneous network modelling to provide motivation for the
HMill-based approach to inference described in the next section. We refer the reader to [Bronstein
et al., 2016] for a review of methods operating on non-Euclidean data and to [Zhang et al., 2018b,Zhou
et al., 2018,Zhou et al., 2018] for comprehensive reviews of GNNs.
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6.2 Modelling heterogeneous networks with HMill

In this section, we demonstrate how HMill models can be utilized to perform graph inference. In our
examples, we focus mainly on the task of vertex classification, however, the general idea can be easily
extended to other tasks. We show that models implemented in bag and product nodes are appropriate
for simulating a message-passing procedure, effectively adapting the framework for modelling of
not only tree-structured data but also complex interactions between samples encoded in a graph.
Ultimately, both vertices and edges can be described not by a fixed vector of features, which is assumed
in GNNs, but by any of the data types processable by HMill. Again, this is consistent with the fact that
the main contribution of the HMill framework is in its flexibility, which enables modelling of a wide
range of data sources.

In the following text, we assume a graph G = (V, E) to be a tuple consisting of a finite set of
vertices (nodes) V , and a finite set of edges E ⊆

(V
2

)
or E ⊆ V × V for undirected and directed graphs,

respectively. For a vertex v ∈ V, we will denote its neighboring vertices by N (v) = {u | {u, v} ∈ E} in
an undirected graph, and in a directed graph, we will distinguish two types of neighborhoods based on
the orientation of edges: N+(v) = {u | (u, v) ∈ E} and N−(v) = {u | (v, u) ∈ E}. Moreover, we will
call ‘k-step neighborhood’ the set of all vertices whose (unoriented) distance from v is less than or
equal to k. Furthermore, we can have multiple types of vertices and edges specified in finite sets TV
and TE , respectively. Mapping type(v) ∈ TV attributes the type to every vertex v ∈ V and, analogically,
mapping type(e) ∈ TE returns the type of each edge e ∈ E . Given a vertex v and the graph it comes
from, the task is to classify the vertex into one of the classes from set C. This task is the most general
one—for instance, we may be interested in classifying only vertices of a certain type tv ∈ TV , or given
labels of a subset of vertices in the graph inferring the labels of the rest, or a combination of both.
Examples are provided later.

As opposed to Euclidean domains, graph domains pose new challenges in data transformation.
For example, generalizing a convolution operation for graphs is not straightforward. In an image, the
neighborhood of each pixel contains a constant number of surrounding pixels, which can be ordered
by their relative position to the given pixel, whereas in graphs, number of neighboring vertices of a
vertex can be an arbitrary number, and neighbors are not ordered. Therefore, formulas for message
computation in a sound inference procedure should accept any number of arguments and should be
invariant to the permutation of the arguments.

The key idea of HMill-based message computation is that neighborhood N (v) of a node v ∈ V
can be considered a bag and each of vertices neighboring v can be regarded as an instance of this
bag. A message predictor can then be implemented using MIL paradigm, which guarantees that all
requirements for a message computation are fulfilled since a bag in a MIL problem is defined to be
an unordered, arbitrarily large set of instances. Thus, all existing knowledge about MIL models can
be applied. Formally, for a node v ∈ V, we construct an HMill bag data node bn(N (v)) and define
a message predictor using the framework. As we shall demonstrate in the next paragraphs, using
the HMill framework for graph inference should be regarded not as a specific method, but rather a
modelling toolkit for diverse types of input graphs, which due to its flexibility opens a new realm of
modelling choices.
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6.2.1 Unrolling the procedure

The standard message-passing procedure in GNNs goes as follows:

1. Hidden states h0
v are initialized for each vertex v in the graph

2. In each iteration t, hidden states ht
v of each vertex v are updated using a function taking hidden

states of vertices in N (v) from iteration t− 1 as input.

3. After performing k iterations, hidden states hk
v are processed in a ‘readout’ phase. This usually

involves classification of vertices based on their states, or somehow aggregating hidden states of
all vertices in the graph to produce a representation of the whole graph.

Each iteration is computed synchronously in the sense that hidden states of all vertices are updated at
once. The main advantage of this approach is that intermediate results can be reused and, therefore,
no redundant computation is performed. Rather than this graph-centric point of view, we advocate
a different, node-centric perspective in this work. We assume that a single vertex is one sample
(observation) in machine learning terms, and the graph is only queried for information characterizing
the vertex. Let us emphasize that ‘unrolling’ a computation on a single vertex in this way does
not contradict the dependence claim from the beginning of this chapter. We will still be able to
infer knowledge (for instance a class label) about all vertices in the graph taking into account their
interactions with other vertices. The aforementioned perspective only demonstrates that inference on
different vertices in the graph can be considered a completely independent procedure and computed
as such at the price of limited reuse of intermediate results.

See Figure 6.2 for a specific example, where for simplicity, we show only one step of message-
passing inference. On the left, there is an illustration of how one step of message-passing inference
is carried out in an undirected graph. Messages, which we universally denote by µ, are sent in both
directions across each edge. This way, we can compute a new hidden state in each vertex in the
graph by aggregating information from 1-step neighborhood. Equivalently, the new hidden states can
be computed for each vertex ‘independently’ from smaller subgraphs of the original graph, which is
illustrated for three specific vertices on the right.

Assume a vertex v, which we will also refer to as the ‘current vertex’, for which we want to run the
inference procedure using the graph as a source of information. This information may include features
defined in the vertex itself or in its incident edges, or similar knowledge derived from other vertices in
the graph, which are locally connected to the node, directly with an edge or longer path. In this manner,
we can consider a ‘hidden state’ ht

u of a node u located close to v in the graph, as a ‘feature’. The fact
that these types of features derived from the vertex or its neighborhood are inherently heterogeneous,
differently structured, and some of them recursively computed, directly motivates the use of HMill for
their processing. In the following text, we explain how this can be done, and two more specific use
cases are presented afterwards.

First, assume that v and all vertices in its neighborhood N (v) are described as fixed size vectors h.
We construct a bag data node bn({an(hu) | u ∈ N (v)}) containing as many instances as is the degree
of v. Due to the properties of bags in MIL paradigm, we can obtain such bag data node for every node
in the graph and all of them will follow the same schema. Thus, we can define a single model for
processing all of them. In the HMill framework, bag model nodes consist of an instance model fI ,
an aggregation function g and a bag model fB. In this case, fI would be responsible for the initial
transformation of vector representation of neighboring vertices, g would output a single vector, and fB
would perform the final transformation.

The first modelling choice is how to include representation of vertex v itself to the computation.
We elaborate on this later. The described HMill-based inference procedure using v and its 1-step
neighborhood N (v) is equivalent to performing one step in the message-passing scheme. Recall that
an instance model fI can be any valid HMill model. By a recursive argument, if we define fI to be
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Figure 6.2: A depiction of how a message-passing-based inference can be unrolled. Arrows µ signify the flow
of information (messages). Three random vertices u, v and w from the graph on the left are highlighted, and the
1-step neighborhood of vertex v is shown as well. The equivalent and independent procedures for the hidden
state computation are illustrated on the right. See text for details.

itself a bag model node with the same architecture as in the 1-step case, the overall model performs
two-step message-passing procedure. Since every HMill model returns a vector, fI would also return a
vector for each neighbor (instance) and the rest of the computation in g and fB remains the same.
Therefore, with HMill we can implement a message-passing procedure with an arbitrary number of
steps. The depth of the model and resulting tree sample representations will be k + 1, where k is the
number of steps.

6.2.2 Modelling vertices

Vertex v itself and other nodes in the graph may be described by a vector of features or raw data
encoded in different data types, or a combination of both. One of the main advantages of using
HMill-based inference is that a node description can be provided as an arbitrarily complex structure,
for instance, a JSON document. The inference procedure with a complex description of vertices can be
split broadly into two abstract parts—in the first one, important knowledge is distilled from each node,
and in the second part, it is distributed across the graph and combined with data in other vertices. We
have already demonstrated how hierarchical structures are modelled with HMill in Chapter 5. Thanks
to the fact that message-passing inference itself can be implemented with HMill models as well, the
whole computation seamlessly integrates into the framework. With the reasonable assumption that
node representations all match the same schema, the whole inference procedure for one node can be
implemented as a single HMill model, which can be trained in an end-to-end manner. Encoding of the
type(v) into the node’s representation is also possible either trivially as a one-hot encoded vector, or as
some more complex encoding.

We have shown that information from the neighborhood of vertex v can be aggregated with a
bag model node to compute a message, however, how is a representation of the vertex itself added
to computation is yet to be specified. This is done with an HMill product node, whose children are
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one bag node describing the neighborhood and one other data node for vertex representation, whose
type depends on the data type of v’s description—array node if v is described by only a vector of
features, or more complex data nodes in other cases. In other perspective, knowledge stored in the
neighborhood of v can be regarded as just another deep subtree in product node representation of
v. In JSON parlance, this is equivalent to adding another key-value pair into the JSON object that
describes v.

Refer to Figure 6.3 for a depiction of this process. Node v, together with its 1-step neighborhood
of six vertices, is drawn on the far left and right sides. In both cases, the neighborhood of v is modelled
by a bag node with six instances in this particular case, each of which is described further by an
arbitrarily complex HMill sample tree, depicted by a blue subtree. This subtree can describe not only
the neighboring node itself (for instance its features) but its neighborhood as well. In the left picture,
v is described by a feature vector, whereas in the right one, we used a red subtree signifying that in
fact any valid HMill (sub)tree can be used to describe v.

Finally, direct feedback is a phenomenon that occurs when an output of a vertex is influenced by
the vertex itself due to information being propagated in several iterations. For instance, consider an
edge {v, u} ∈ E . If we want to infer a label for v, according to the inference procedure we first evaluate
results of fI on all vertices in N (v) and then aggregate them. However, if more steps are performed
and therefore an intermediate result on vertex u is computed from its neighborhood as well, it holds
that v ∈ N (u), and output from vertex v will be influenced twice by its representation. Depending on
the domain, this may be desirable or not. In HMill-based inference, this can be easily remedied by
redefining a bag representing u to contain vertices N (u) \ v.

v

N (v)

pn(·, ·)

an( ) bn({ ,
. . .

, )}

(a) feature vector

v

N (v)

pn(·, ·)

bn({ ,
. . .

, )}

(b) HMill subtree

Figure 6.3: An illustration of how information about current node v, which receives the message, is added to
its representation using a product data node. The information (features) describing v can be in the form of a
feature vector (a) or a more complex HMill representation (b). The fact that a vertex in the graph is described
by an HMill compatible structure is illustrated with an arrow . The types of arrowheads used for different
purposes is consistent with the rest of the thesis—for graph edges, we use , for illustrating parent-children
relation in sample and model trees or , and are used as generic pointers. See text for details.

6.2.3 Modelling edges

In some applications, most useful information is stored not in vertices themselves, but in relationships
between them signified by edges. Analogically to vertices, each edge can be represented by a more
or less complex HMill structure. Instead of regarding each neighbor u ∈ N (v) as an instance, we
can consider the relationship {u, v} an instance and include information about the relationship {u, v}
instead of about u only. If both u and {u, v} are important, bag instances can be defined as a tuple
(u, {u, v}). The most straightforward way to represent such instance is by a product data node with
two subtrees, one for u and one for {u, v}.

Graph edges of different types, or directed edges, which are just a special case of the former, or
both, can be modelled in different ways. The more naïve option is to use one-hot encoding on the
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type of an edge and add this to the representation of {u, v}. Another way is to model each type of
edges separately. This corresponds to constructing |TE | bags (2|TE | if graph edges are both typed and
directed), one for each type of edges. For each edge type τ ∈ TE , we will include only neighbors
connected with the edge of type τ into the bag. In other words, for each τ ∈ TE , we define one bag
bτ = {u | u ∈ N (v), type({u, v}) = τ}. Which way is more suitable again depends on application and
specific examples are provided later.

In Figure 6.4, we sketch the latter option. The situation is similar to one depicted in Figures 6.3a
and 6.3b, however, in this case the graph being modelled is oriented. This means that we deal with
two types of edges with a possibly different interpretation. Thus, we use two different bag nodes,
one for incoming and one for outcoming edges. Recall, this implies that each incoming edge will be
modelled with the same (sub)model tree and the same applies to outcoming edges. However, the
parameters will not be shared between incoming and outcoming edges. In the picture, we use golden
and blue subtrees to illustrate a representation of incoming and outcoming relations in a general way,
nevertheless, both representations can be defined as equal. Note, that these subtrees can be used to
describe not only the neighboring node u but also the relationship (v, u) or (u, v), which is depicted
schematically in the figure.

v

N−(v)

N+(v)

pn(·, ·)

bn({ , , )} bn({ , , )}
(

),

( ),

Figure 6.4: One possible way of dealing with multiple edge types. In this particular case, edge types correspond
to incoming and outcoming edges with respect to current node v. See text for details.

6.2.4 Training the model

Refer to Figure 6.5 for a specific example of how message-passing inference can be translated into
HMill. For simplicity, we assume that no information about edges themselves is known, however, each
node is described by a vector of features. The figure shows how HMill sample for implementing two
steps of message-passing inference looks like. First, each of the vertices a, b, and c is described by
a product node merging feature vector representing the vertex and information obtained from its
neighborhood, which is stored in a bag node. Then, we store all three product data nodes into another
bag data node, which is merged with feature vector of v. Note that all bag node definitions are valid,
as the product data node representation of vertices in N (v) follow the same HMill schema.

As the whole model is a single HMill model, it can be trained in an end-to-end fashion. Thus,
processing of the data in vertices and edges is optimized jointly with a message-passing part. If the
node-centric perspective on message-passing inference is used, the standard training procedure can be
employed. One or more graphs are collected, and in each iteration of the training loop, several vertices
are sampled to form a minibatch, the unknown quantity (for instance a label) is inferred, and errors
are backpropagated through the model according to Algorithm 1. Due to the fact that HMill offers a
principled way of dealing with missing data at different levels of abstraction (Section 4.3), the only
requirement on the data is that HMill subtrees describing vertices (or edges) must follow the same
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Figure 6.5: HMill sample tree extracted from the neighborhood of vertex v for performing 2-step message-
passing inference in a graph, where vertices are described by vectors of features. The original subgraph induced
by vertices in the 2-step neighborhood of v is depicted in (a). The picture (b) in the middle shows the same
subgraph, where feature vectors of dimension 4 describing vertices are drawn, together with arrows illustrating,
how information is transferred in each of two steps. The uppermost horizontal edge is not present in (b), since
more than 2 inferential steps would be required to reach it. The final sample tree, drawn aligned with the original
subgraph to facilitate comparison, is in the third figure (c). For bag node representations of neighborhoods of
vertices a, b, and c, we used the batch version to save space (see Section 4.5). See text for details.

schema. The framework elegantly deals with other possible discrepancies in the data, such as missing
information on vertices or edges or empty neighborhoods.

One concern about working with any method for learning from graphs is limited scalability. The
number of vertices in a k-step neighborhood of a vertex grows exponentially, and with increasing k
gradient computation quickly becomes infeasible. This is still an open problem [Wu et al., 2019],
however, it can be partially remedied by sampling. One possible solution is to employ a variant
of importance sampling, which in HMill is easily done by replacing bag data nodes representing
neighborhoods with their weighted variants (Section 4.1). For instance, in problems from the computer
security domain, positive signs of malicious activity can be sometimes observed sparsely, however, they
convey the most useful information. In this case, the sampling procedure can be designed to be biased
towards malicious observations. The specific examples are provided later in this chapter and in the
next one. In our experience, the performance gain achieved by increasing the number of steps k in the
inference procedure quickly saturates. A pleasant side-effect of sampling from bags (neighborhoods) is
an introduction of stochasticity into learning, which is known to be beneficial for optimization with the
gradient descent class of algorithms.

6.2.5 Differences to GNNs

We have shown how the HMill framework can be extended to perform message-passing inference
in graphs, using bag nodes to model neighborhoods and product nodes to merge heterogeneous
information. The resulting method retains all favorable properties of the message-passing computation
scheme while offering several additional benefits. Due to the fact that universal function approximators
are used instead of analytical closed-form expressions for message computation, the space of all
inferable hypotheses becomes larger. At the same time, the method does not require specifying a family
of functions for message computation, avoiding potential approximation error stemming from selecting
a wrong family. The HMill-based inference, as well as GNNs, assumes that a subgraph induced by
k-step neighborhood contains all relevant information and that the further a node or edge is located in
the graph, the less important it is. The proposed inference method starts at the most distant vertices
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and proceeds towards v, in each step using bag and product model nodes to aggregate and merge
distilled knowledge relevant for inferring the class label or other unknown quantity. Upon closed
inspection, it turns out that in comparison to how GNNs operate, our method uses a slightly different
computational model, parameters are shared at different locations, and different overall philosophy to
the graph inference is adopted. Whereas GNNs drew most inspiration from recurrent networks with
each layer estimating graph convolution operation, which leads to powerful, but hard-to-scale models,
the HMill-based approach regards the graph merely as a knowledge database for querying information
about vertices and their relationships. Hence, both approaches are suitable for different circumstances.

As the main goal of the framework is to unlock new possibilities in the processing of raw data,
the scalability and modelling flexibility are two of the main concerns. Specifically, in this thesis, we
provide examples of use cases from the computer security domain, where graphs are huge and node
degrees come from a wide range of values. In our opinion, bag nodes are the perfect candidate for
modelling neighborhoods, which in most graphs observed in real-world scenarios follow a power law
distribution, and described bag sampling schemes make inference tractable. Moreover, the alternative
node-centric view to inference enables straightforward parallelization as inferring unknown values
for vertices can be considered independent. Also, because a single value can be inferred at the time,
sampling techniques at the level of batches are possible. For instance, if we want to perform binary
classification of vertices in graphs, where the vast majority of vertices are positive, it is still possible
to construct balanced minibatches for training. Another benefit is that a problem of missing data at
different levels is solved in the HMill framework in a principled way and any heterogeneity in the
graph, such as different vertex and edge types can easily be modelled with product nodes.

Finally, thanks to the modelling flexibility of HMill in general, complex descriptions of vertices
and edges can be integrated and the resulting model is still one HMill model, which means that the
inference procedure together with the processing of representations is optimized jointly. We believe
that due to little requirements imposed on the input graphs in terms of size, degree distributions and
structure, the proposed approach is versatile enough for utilization in many potential applications.

6.3 Behavior-based malware classification in graphs (use case)

An integral component in any antivirus software is a capability to recognize and protect users from
malicious programs. Nowadays, harmful software takes many forms. Trojans allow unauthorized
access to computers, worms spread themselves over many machines, ransomware programs encrypt the
whole hard drive of the user and demand payment in exchange for decryption secret, spyware records
sensitive information like passwords, and finally, adware programs generate revenue by displaying
an advertisement on the screen. These examples are just a few of many types of existing malware.
Current technologies designed for defense can be generally categorized into two categories.

Traditional signature-based mechanisms rely on extracting a predefined ‘signature’ from the
inspected file and comparing it to a known database of threats. A signature could be based for instance
on MD5 or SHA1 hash of the whole executable or its part in the most trivial case. The advantages
of the signature-based approach is low false positive rate, and, due to its simplicity, high detection
speed, crucial characteristics of any antivirus software. On the other hand, once a new threat appears,
anti-malware solution providers have to generate its signature and distribute it to clients. Oftentimes,
this leads to blacklists becoming outdated and users being vulnerable to the evolved malware for a
period of time. The Cisco 2017 Annual CyberSecurity Report [Cisco Systems, 2017] states that 95% of
all analyzed malware files were not even a day old, which indicates that obsolete signature databases
are more the rule than the exception. Moreover, a great deal of resources is required to keep blacklist
databases updated all the time. More sophisticated malware makes use of encrypted or polymorphic
code segments, which makes signature generation very hard, since many executables with the same
behavior but different signatures can be generated.

58



CHAPTER 6. HMILL FOR GRAPH INFERENCE

These issues can be addressed by designing a rule-based system or a machine-learning system that
takes into account the structure of the file or the behavior of the program. In static analysis, dangerous
attributes are sought after within the structure of the executable, its code or its other properties,
whereas in dynamic analysis, the executable is run and observed in a sandboxed environment. For
this reason, this complementary approach to signature-based is usually referred to as behavior-based.
Once suspicious behavior is detected, the antivirus may remove some important permissions of the
program or stop the execution altogether. Different aspects of the program’s behavior can be observed,
for example, changing register values, installing rootkits, accessing specific files or services, locking
the executable from removal, disabling security controls, registering the executable for autostart,
attempting to detect and evade sandbox, and so forth. Behavior-based techniques effectively tackle all
of the signature-based approach flaws, as malicious behavior is the defining feature of all malware
and is therefore difficult to conceal. Two programs with different signatures but identical behavior are
treated in the same way as well. Furthermore, this approach detects new malware families, which
might be programmed in a completely different way, but exhibit the same behavior as known malware.
The downside of behavior-based methods is that they are usually slower.

In some cases, malware programs can resist detection and removal by spawning two processes
that restart each other, should one of them get killed. In other cases, malware activities are exhibited
not by a single process, but a group of processes that may not all be instances of the same executable.
Malware is usually first installed with a dropper program, the malicious action is performed by another
program, and both can use additional modules. For instance, Windows hooks play a major role in most
of keyboard logger programs, and droppers that install this malware have an extra dynamically linked
library or dll file [Williamson and Gorelik, 2014b]. As a result, malware activities can be hard to detect
when all the components are examined independently. This motivates the use of a graph structure to
encode the overall behavior in the system for the detection.

6.3.1 Data description

For the experiment presented in this chapter, we once again partnered with Avast researchers to try
HMill-based graph inference on real-world data from clients. Specifically, we focus on the Windows
operating system, which is installed on a bulk of clients. As described in patents [Williamson and
Gorelik, 2014b,Williamson and Gorelik, 2014a], the Avast client keeps a regularly updated snapshot
of the operating system for the detection purposes, which is encoded as a graphical structure called
Identity Protection (IDP) graph.

The graph consists of two types of vertices representing executable files and processes, therefore
TV = [EXECUTABLE, PROCESS]. Executable vertices correspond to executable files in the system that
have been run, and are identified by the full file path. Therefore, multiple copies of the same file will
result in multiple vertices in the graph. Process vertices represent all processes which either run in
the system or spawned another process that is still running. Executable files and their processes are
represented separately, because different processes may behave differently, for example when foreign
code is injected into a running process.

Multiple types of graph edges encode events that occurred in the system measured from the
Windows kernel and other sensors. Edge types (relationships) are summarized in Table 6.1. Note that
the table contains only the most relevant relationships published in the aforementioned patents, which
is a proper subset of all 24 types of edges.

Moreover, each vertex in the graph is described by an XML document storing additional multimodal
information. So far, we have described only how JSON documents are processed with the HMill
framework. Even though XML documents are processed analogically, in this case, documents can
be directly converted to JSONs, thus one can think of this as a preprocessing step and then apply
exactly the same procedure defined previously for JSON documents. An HMill schema of the vertex
description inferred from the training data can be found in Figure C.6 in Appendix C. It includes
a unique "id", a fully qualified "name", a "size" of the file in bytes, a "sha256" hash, information
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Table 6.1: Edge types (relationships) TE used in IDP graphs that were published in [Williamson and Gorelik,
2014b].

name participants interpretation

INSTALLS p e Process p wrote an executable e to disk.

SPAWNS p1 p2 Process p1 started another process p2.

INSTANCE OF e p Process p is an instance of executable e.

REGISTERS p e Process p stored some configuration data about executable e,
for instance a registry key causing reboot survival.

CODE INJECT p1 p2 Process p1 caused process p2 to run foreign code.

KILLS p1 p2 Process p1 attempted to kill another process p2.

about "connections" made, "named_objects" used, or registry operations ("regops") performed for
executables, and finally, a set of ‘characteristics’. Characteristics are binary predicates measured by
means of static and dynamic analysis of the given executable or process designed to discriminate
between malicious and clean software. For this experiment, we used a set of 164 such characteristics.
Refer to Table C.1 in Appendix C for specific examples. Some information is specified only for one
type of vertices, for instance, it does not make sense to define a size of a process node. The same
holds for characteristics, therefore, ternary logic with values {TRUE, FALSE, UNKNOWN} is used for their
specification.

In Appendix C, we provide Figure C.1 sketching how the shape of one weakly connected component
of an IDP graph looks like. Also, in Figures C.2 and C.4 we show specific instances of subgraphs, the
first one coming from an operating system without infection and the other one from an infected system.
For even more details, please refer to the patents cited above.

6.3.2 Experimental settings

For experimental purposes, we obtained a labeled, anonymized dataset consisting of around 4 · 105
anonymized graphs collected from Avast clients during February and March 2020. The goal was
to classify a subset of approximately 7, 9 · 106 executable nodes present in graphs into a malicious
or benign class based on only information encoded in the graph. We did not attempt to classify all
executable vertices in graphs since some of them are signed by trusted companies and are therefore
considered clean and ignored by the antivirus client.

In this experiment, we demonstrate that the main strength of the HMill framework lies in its
modelling flexibility. We defined three types of increasingly more complex models operating with
different amounts of information, all depicted in Figure 6.6. Assume we want to classify an executable
vertex v.

The first model (Figure 6.6a) m1 processes only characteristics of v encoded into a vector of
length 2 · 164 with one-hot encoding4. It is defined as a standard feedforward neural network with
two hidden layers of 300 neurons with ReLu activation function and 2 output neurons, one for each
class. A similar model is deployed in Avast pipeline as well. In HMill terminology, m1 is a single array
model node am(f), where f is the mapping implemented by the network.

The second modelm2 (Figure 6.6b), defined as an HMill product model node, uses all information
available on v, which is summarized in the schema in Figure C.6. Thus, it contains a subtree of depth

4We used two ‘bits’ per each characteristic. We set the first bit if the characteristic is TRUE, the second one if it is FALSE,
and neither if it is UNKNOWN.
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one for modelling characteristics as well, with the same structure asm1.5 In the figure, this is indicated
with a golden frame. Other than that, a product model node m2 contains a child for every key of the
aforementioned schema, with the exception of id, node_type6 and sha256. For sizes in the size field,
we used mapping x 7→ log(1 + x). The procedure for constructing an HMill sample tree for m2 from
an XML document is the same as used in the device identification problem from Section 5.2.2—we
used histograms of tri-grams for modelling string values, and one-hot encoding for the representation
of categorical variables. An HMill model tree was built so that every neural network component in
model nodes has the output dimension of 50 if not specified otherwise, in exactly the same way as in
Section 5.2.2.

Last model m3 implements a 1-step message-passing inference as described in this chapter,
therefore, apart from data about v, it also utilizes information stored in 1-step neighborhood N (v) of
the vertex in the graph. This was implemented exactly as described in Section 6.2.3. The children
(subtrees) of the topmost product model node ofm3 consist of three sets—one for modelling data stored
in the vertex itself, which is the same architecture as in m2 (marked with a blue box in Figure 6.6c),
and two bag model nodes for modelling incoming and outcoming edges. For each sample, every edge
(instance in one of the corresponding bag data nodes) is represented as the one-hot encoded edge type
and the description of the neighbor, merged together in a product data node. The neighbor description,
in the figure depicted as a purple subtree, was implemented using the same architecture as for the
description of v, note however that model parameters are not shared. Consequently, model m3 can
infer the label not only from the information known about the executable vertex itself but also from
how the file (or its process instances) relates to other entities in the whole system. Since both process
and executable vertices may be present in N (v), we include a one-hot encoded vertex type into all
neighbor representations. Again, all neural network component architectures were defined using the
simple rule described above for the case of m2. We used ReLu non-linearity everywhere, except of last
layers of instance models in bag model nodes, where we used the tanh activation function since in our
experience it performs better with subsequent aggregations. The very last layer in the root of every
model tree was followed by a softmax layer to obtain class probabilities.

am(f)

(a) m1

pm(. . .)

am(f) · · ·

(b) m2

pm(. . .)

am(f) · · · bm(. . .)

pm(. . .)

am(. . .)

bm(. . .)

pm(. . .)

am(. . .)

(c) m3

Figure 6.6: Three different models used in experiments. Golden and blue rectangles indicate that the same
architecture (schema) was used for the model. However, inner neural network components may have different
numbers of neurons in the last layer. For example, modelm1 (a) has 2 neurons in the last layer of f , one for each
class. (Sub)model in the golden subtree in m2 does not output 2 values, as the output is transformed further in
the model.

5In fact they differ in a minor detail that 300 neurons were used in the last layer instead of 2 as in the case of m1, since
the output it is used further in the model.

6Modelling node types does not make sense in this context since all modelled vertices are executables.
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In some cases, vertex v has a high number of neighbors. This happens, for example, when a ransomware
program spawns a lot of processes to perform data encryption. As most of the time all of these processes
have the same attributes, it is enough to inspect a small subset of them. Therefore, to save time, we
employed an importance sampling scheme and instance weighting described in Section 4.1. We include
into both bag data nodes describing incoming and outcoming edges of vertex v at maximum K = 100
neighbors connected with the edge of the same type. This way, all sparsely represented relationships
are placed in the bag every time, however neighbors connected to v with a common edge type are
sampled.

A 15% proportion of all 4 · 105 graphs in the dataset was left out for testing. We counted 8 · 105
positive vertices out of 6 ·106 vertices in the training graphs and 1, 5 ·105 positive vertices out of 1.2 ·106
in the graphs held out for testing. All models were trained in the exact same way, performing one epoch
(iteration over the whole training set) using minibatches of size 100 and Adam optimizer [Kingma and
Ba, 2014] with the default parameters. Weights in each neural network layer were initialized with the
Glorot normal initialization [Glorot and Bengio, 2010], and all biases were initialized to zero. Loss
function was weighted binary cross entropy:

L(θ) = − 1

n

n∑

i=1

w1yi log p(1|vi; θ) + w0(1− yi) log p(0|vi; θ) (6.6)

where n is the number of classified vertices in the batch, vi HMill representation of i-th vertex in the
batch, yi ∈ {0, 1} its binary label, and p(1|vi; θ) conditional probability of i-th vertex being malicious
according to the model parametrized by θ. Note, that p(0|vi; θ) = 1 − p(1|vi; θ) for each i. Weights
w0 and w1 are real numbers, specifically, we used w1 = 0.1 and w0 = 0.9 to express that we prefer
false-negative to false-positive errors.

6.3.3 Experimental results
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Figure 6.7: Description of the performance of models
m1, m2 and m3 with a Precision-Recall (PR) curve.

A canonical way to compare the performance of
several binary classifiers in the presence of imbal-
anced classes is to plot a PR curve or a Receiver

Operating Characteristic (ROC) curve. The stan-
dard scalar metrics computed from a confusion
matrix require a specific threshold value for their
computation. PR and ROC curves enable us to
study values of such scalar metrics for multiple
threshold values simultaneously. PR curve cap-
tures a tradeoff between recall and precision, two
inversely related quantities. ROC curve describes
how true positive rate (recall) and false positive

rate change for different values of the threshold.
To express the performance with a single

number taking into account multiple thresholds,
we can measure the area under such curves.
This gives rise to Area under Precision-Recall
curve (AUPRC) and Area under Receiver Operat-
ing Characteristic curve (AUROC) metrics, which
both range from zero to one. Even though this
is a convenient way to quantify the performance, the values of AUPRC and AUROC may sometimes
be misleading. Depending on the circumstances, different parts of the curves may be of different
significance. For instance, in the cybersecurity domain, false positives are much less desirable than false
negatives. Usually, high enough threshold values are selected to keep false positive rate sufficiently low,
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and precision sufficiently high. This corresponds to rather small regions in both curve types, however,
AUPRC and AUROC are evaluated using the whole curve. For the same reason, we include an ROC
curve with a logarithmic x-axis (false positive rate). All curves drawn in this work are made of one
hundred points with x-values sampled uniformly from the linear (or logarithmic) scale and y-values
obtained with linear interpolation.

We trained all three aforementioned types of model m1, m2, and m3, and evaluated their per-
formance. The resulting PR curve is drawn in Figure 6.7, and ROC curve with linear and logarithmic
scale of x-axis is in Figure 6.8. Perhaps not surprisingly, the more information the model processes,
the better results it achieves. By inspecting a 1-step neighborhood of the vertex corresponding to an
executable implemented in modelm3, we were able to attain high true positive rate while keeping false
positive rate low. We could not achieve this with model m2, which processes only an XML document
description of the vertex. This makes model m3 much more useful in practice than m2, despite the
little difference in the AUROC metric.

This experiment confirms that simply using more data leads in most cases to better results. All
three models m1, m2 and m3 were designed as ‘baseline’ and architectures and training procedure
can surely be improved. However, unutilized data sources are often the low-hanging fruit. Thanks to
HMill, modelling of such sources is straightforward.
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Figure 6.8: ROC curve corresponding to models m1, m2 and m3 used in the experiment. We provide both
variants with linear (a) and logarithmic (b) scale of x-axis.
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Chapter 7

Modelling interactions in heterogeneous
networks

In this next-to-last chapter, we present one last and the most specific use case, where the HMill
framework comes in handy. In this problem, very little is known about objects of interest themselves.
Instead, interactions between objects are provided in several bipartite graphs specifying binary relations
between objects. Thus, we move from a purely ‘feature-based’ approach presented in Chapter 5 and
also in Chapter 6 to learning merely from relations between objects. The two approaches, each with
its own advantages and flaws, are to some extent orthogonal and can be combined as we discuss later.
To empirically test the proposed method, we investigate the task concerning an extension of a blacklist
of malicious computer domains based on their interactions with other entities in the network. In the
last part of the chapter, we present the results of the experiments on the data provided by researchers
from Cisco Cognitive Intelligence.

In the domain of network security analysis, the focus is shifted from the level of individual client
machines to whole networks of clients and their protection by detecting and neutralizing malicious
activities happening in the network. Being able to decide for any entity (IP address, domain, email) in
the network whether it is safe for communication or not is a crucial requirement for implementing
passive security measures in the first line of defense, for instance, simply blacklisting known threats.
However, keeping such blacklist updated is a difficult task for the same reasons we listed earlier when
discussing malware signature databases—due to the quick growth of the number of existing threats, it
is nearly impossible to keep lists up to date manually. Therefore, methods for the automatic extension
of blacklists with uncovered threats are researched.

7.1 Prior art

Prior art on the problem of blacklist extension can be broadly split into two fundamental approaches. In
classifier-based approach [Zhang et al., 2008,Antonakakis et al., 2010,Bilge et al., 2011], blacklists are
used to obtain labels for training a classifier for determining the maliciousness of unseen objects in the
future. One of the most constraining assumptions to achieve good performance is having high-quality
training data. It is known that public blacklists are oftentimes incomplete due to the delay in their
updates or the fact that some existing threats have not been discovered yet. If all entities not present in
the blacklist are labeled positive in the training phase, the classifier will be inevitably shown samples
with an incorrect label.

The second approach is graph-based [Coskun et al., 2010, Philips et al., 2012, Carter et al.,
2014, Oprea et al., 2015, Rezvani et al., 2015, Ahuja et al., 2019] which assumes that malicious
activities are localized in a graph, forming communities with sharp boundaries [Collins et al., 2007,Yu
et al., 2010]. Methods following this approach build a graph representation of relations between
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objects such that graph analysis algorithms can be utilized to extend knowledge from the blacklist.
High malicious score is first initialized in vertices corresponding to objects found in the blacklist,
which are referred to as seeds or tips, and afterwards propagated through the graph using formulas
involving the maliciousness of the neighbors and weights defined on edges. After some number of steps,
vertices with highest malicious scores that are not present in the blacklist are returned as candidates
for blacklist extension. As a result, no data apart from relations themselves are collected. This is
useful in situations when data is inaccessible or expensive to obtain. On the other hand, to the best
of our knowledge, algorithms for propagating the maliciousness through graphs use fixed formulas
for propagation, cannot use complicated representations of relations, and have few to none tunable
parameters. For instance, the most popular Probabilistic threat propagation (PTP) algorithm [Carter
et al., 2013,Carter et al., 2014], which we further elaborate on below, propagates malicious scores in
the form of scalar values throughout a graph with scalar weights on edges. Definition of edge weights
is the only parameter of the method together with a number of steps performed. The small number of
parameters limits the use of methods for different problems, as the algorithms are oftentimes tailored
to perform a particular task on a specific dataset and may not be robust to changes in the application
domain.

The graph-based approach to blacklist extension is similar to the inference problem in probabilistic
graphical models we described in the previous chapter and in fact some methods are built on the
same ideas [Carter et al., 2013,Carter et al., 2014,Manadhata et al., 2014]. However, the possibility
of using GNNs for the task has not been studied for two main reasons—their high computational
complexity coupled with characteristically large size of graphs observed in the domain, and a lack
of public datasets. Therefore, the cybersecurity domain requires different techniques, despite many
similarities in the task at hand.

We end this section by reviewing a PTP algorithm [Carter et al., 2013,Carter et al., 2014], which
is a canonical graph-based algorithm used in cybersecurity. Given an undirected graph, it estimates the
probability P (vi) of a vertex vi being malicious from its connection to other vertices and from a set of
known malicious vertices, which are assumed to come from the blacklist, using the following equation:

P (vi) =
∑

vj∈N (vi)

wijP (vj |vi = 0), (7.1)

where wij are positive edge weights assumed to be normalized to one,
∑

j wij = 1. Conditioning the
threat to Xi = 0 avoids unwanted direct feedback of the vertex to itself. Since exact solving of (7.1)
is generally intractable for larger graphs, authors propose a message-passing algorithm for finding
an approximate solution. It initializes P 0(v) to one for vertices in the blacklist and zero for vertices
outside of it, and updates the solution in each iteration as

P t(vi) =
∑

vj∈N (vi)

wij(P
t−1(vj)− Ct−1(vi, vj)), (7.2)

where Ct−1(vi, vj) is the portion of P t−1(vj) propagated from vertex vi in the previous step. In each
iteration, P (v) for the blacklisted vertices is set to 1 again to reinforce the signal.

In [Kazato et al., 2016], PTP was successfully used to infer malicious domains from a bipartite
DNS graph. To the best of our knowledge, the most scaled and comprehensive use of PTP is in [Jusko,
2017], where it was used for malicious domain discovery and successfully implemented in the pipeline
of Cisco Cognitive Intelligence products. Unlike in most prior art, the problem of constructing the
graph from binary relations and setting weights to edges is discussed in [Jusko, 2017]. We consider
methods from [Jusko, 2017] state of the art and compare the proposed method to them.
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7.2 Method description

Our method for blacklist detection is based on recent progress in both cybersecurity and machine
learning. All bipartite graphs representing relations on the input are first transformed into unipartite
graphs and message-passing inference with HMill models is performed afterwards. Since messages are
learned, this leads to more general procedure and unlocks possible applications outside of the domain
as well, because the algorithm can be optimized for a particular problem and circumstances. This
part of the thesis describes an extension of our work presented in [Mandlík, 2018], where we learned
messages for inference algorithm using only one bipartite graph on the input. In this thesis, we expand
the method to work with several bipartite graphs with heterogeneous vertices and edges. Also, thanks
to HMill, the introduction of a rather complicated method seems natural. Since the resulting model is
implemented as an HMill model and raw data (features) can be therefore specified in both vertices
and edges, the method effectively bridges the gap between the classifier-based and the graph-based
approaches. We elaborate on this matter later after the method is explained.

7.2.1 Input

Formally, the method expects n undirected bipartite graphs (G1,G2, . . . ,Gn), where Gi is a tuple
(Ai ∪ Bi, Ei). Here, all vertices are split into two disjunct sets Ai and Bi, such that for all i = 1, . . . , n
and all {u, v} ∈ Ei, it holds u ∈ Ai and v ∈ Bi. Each vertex in the graph represents a specific object
of some type in real-world. For instance, in the cybersecurity domain, a vertex may correspond to
a second-level domain (SLD), a client, an IP address, an email address, and so forth. Moreover, we
assume that one vertex set in each of the graphs contains vertices of the same constant type, that is,
each vertex setAi is a subset of some superset A and type(v) is constant for each v ∈ A. It may happen
that some vertex v ∈ A is present in two different bipartite graphs, in other words, Ai ∩ Aj 6= ∅. For
vertices in second partites we only assume that for each i, type(v) is constant across all vertices in
Bi, however, this type may vary with different i. Each edge represents some relationship between
two objects corresponding to its incident vertices, and each graph Gi may differ in a definition of the
relationship in real-world.

In Figure 7.1, there is an example of two such bipartite graphs that can be used to describe the
behavior of entities in a network. In this example, left vertex sets of both graphs contain vertices
representing SLDs appearing in network traffic. The right set in the first graph comprises clients
connected to the network (computers, smartphones, printers, and others), and each edge {d, c}
encodes the fact, that a client c connected to a domain d during the time when the network was
observed. In the second graph, the other set represents individual binary files identified by their hashes,
and each edge {d, b} indicates that a process instance of b has issued a request to a domain d.

Additionally, we assume that a blacklist of malicious objects L ⊆ A is available. In our example,
this means that we know some domains in graphs exhibit malicious activity. The task is to discover
additional domains that are not present in list L, based on the behavioral information encoded in input
bipartite graphs.
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Figure 7.1: Example of two bipartite graphs, a domain-client graph G1 (a) and a domain-binary graph G2 (b),
that can be used to describe the behavior of entities in a network. Clients are identified by a four-character-long
identifier and binary files by their sha256 hash (shortened in the figure). See text for further details.

7.2.2 Graph transformation

In the next step, each graph Gi = (Ai,Bi), is transformed to a unipartite transformed graphGi = (Ai, Ei)
with vertices equal to vertices in the left vertex set Ai and edges constructed with the following rule:

{u, v} ∈ Ei ⇐⇒ ∃b ∈ Bi : {{u, b}, {v, b}} ⊆ Ei, (7.3)

for all u, v ∈ Ai. Thus, in the domain-client graph example, the transformed graph contains an
edge between two domains if and only if there exists a client that communicated with both of them.
Analogically, in the domain-binary graph, each edge represents that at least one binary file issued a
request to both domains involved. The semantics of this transformation were already discussed in [Liu
et al., 2014,Jusko, 2017,Manadhata et al., 2014]. For example, when a computer is infected over a
network, the malicious file is downloaded from some server. Once the malware becomes active, the
vital step for attackers is to establish a communication channel to the infected machine. This usually
means contacting another server, which is called a command-and-control (C&C) server. As the infected
client connected to both servers, an edge connecting them together appears in the transformed graph.
The transformation of the domain-client and domain-binary graphs from Figure 7.1 can be found in
Figure 7.2.

7.2.3 Message-passing phase

After performing graph transformation on all n bipartite graphs, we are left with n-tuple (G1, . . . , Gn),
where each Gi is a unipartite graph of vertices of a single type, in our case SLDs. Assume that we
want to infer an unknown quantity for a vertex v ∈ A, for example, estimate the probability of v
being malicious. In each of the n transformed graphs, we perform k-step HMill-based message-passing
inference centered in the current vertex v exactly in the same way as described in the previous chapter.
Recall that neighborhoods are modelled with (weighted) bag model nodes and knowledge extracted
from heterogeneous multi-modal sources is merged together with product model nodes. In this case,
however, we are dealing with not one, but n graphs at once. This is again easily solved with the
framework—as inference in each of the transformed graphs is implemented by an HMill model, we
create a product model node as a new root of the model tree with each of the n inferential models
as its child. Recall that when evaluated, each HMill model returns a vector. We can therefore regard
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Figure 7.2: Examples of graph transformation performed on both graphs from Figure 7.1. Each client and
binary file creates a clique in the transformed graph of the same cardinality as its degree in the original bipartite
graph. Consequently, b1 and b5 in (b) do not contribute at all. Each edge in transformed graphs is labelled with
all clients/binaries that caused its appearance.

evaluation of the resulting product model node as first distilling a vector describing interactions of v in
each of the available relations and merging them afterwards to obtain a result.

The process of how a sample tree is obtained for our case where n = 2 is sketched in Figure 7.3.
Given a vertex v for prediction, all input bipartite graphs are transformed to unipartite graphs. The
neighborhood of v in each graph is represented in n bag data nodes, which are merged together with a
product data node afterwards. Again, each instance in these bag data nodes represents one edge {u, v}
in the transformed graph, which is depicted with different colors in the figure. Since u is also a part of
this adjacency relation, we could describe the edge (instance) in the bag node as a deeper subtree and
perform multiple-step inference, as explained in the last chapter. Also, information (features) on both
vertices and edges can be included, which we have already discussed as well.

v
G1 7→ G1

v bn({

})

{ }, ,v

{ }, ,v

{ },v

v
G2 ← [ G2

vbn({ }){ },v

pn(. . .)

Figure 7.3: A process of obtaining an HMill sample tree for a specific vertex v. Neighbors of v in unipartite
graphs are colored. We do not show the whole transformed graph, but only its subgraph induced by vertices
in the neighborhood of v. This example shows the same graphs as examples in Figures 7.1 and 7.2. Vertex v
corresponds to albertlee.biz domain, aliased as d4 and d3 in Figure 7.2. See text for details.

In this section, we show how to deal with circumstances when no additional information about vertices
and edges is known, and input to the method comprises only n bipartite graphs representing binary
relations between vertices. To describe edge {u, v}where u, v ∈ Ai in transformed graphGi, we can use
any information about u, v or the edge itself. Recall, that when performing the graph transformation,
all vertices from Bi causing an edge to appear can be stored, as illustrated in Figure 7.2. Nonetheless,
in this setting, no external information about u, v, or any vertex from Bi is available. For this purpose,
we designed a set of graphical features that can be directly computed from bipartite graphs and
their transformations. They are summarized in Table 7.1 and can be either precomputed during the

68



CHAPTER 7. MODELLING INTERACTIONS IN HETEROGENEOUS NETWORKS

construction of a transformed graph, or computed on demand in linear time with respect to the number
of vertices in a bipartite graph at worst. All features apart from label of the neighbor obtained from
the blacklist v ∈ L, which is binary, are in range [1,∞), and are further transformed with mapping
x 7→ log(x) + 1. For the label, we used one-hot encoding. This feature mapping is an example of
mapping h as explained in Section 3.2.1, which in this case maps from edges in a transformed graph
to a Euclidean space of dimension 9.

Table 7.1: Specification of graphical features used in experiments to describe edge {u, v}, where v is the current
vertex for inference. G and G denote bipartite and transformed graphs, and NG(v) and NG(v) neighborhoods of
v in G and G, respectively.

feature definition property of

|NG(v)| v

|NG(v)| v

|NG(u)| u

|NG(u) ∩NG(v)| {u, v}

|NG(u) ∪NG(v)| {u, v}

|NG(u) ∩ NG(v)|/|NG(u) ∪ NG(v)| {u, v}

|NG(u)||NG(v)| {u, v}

u ∈ L u

7.2.4 Method merits

Using the method, we are able to learn merely from the behavior of the objects of interest in any system
(e.g. computer network). This is done by a set of simple and efficiently computable features, which
are obtained simply from input graphs representing interactions. We claim that this ‘relation-based’
representation generalizes better as well and adapts well in rapidly changing environments. In the
experiments below, we add more relations than only domain-client and domain-binary relations. Besides
others, we also used domain-TLS authority, which assigns to each SLD a certificate authority that issued
its TLS certificate. One possibility to model the fact that an SLD uses a certificate issued by an authority
is to use one-hot encoding. However, this may lead to overparametrization once the set of authorities
becomes too large. Moreover, this approach also does not allow for the future, when new authorities
may arise—to capture this occurrence, one needs to either resize the one-hot encoded vector, thus
having to retrain all models on new data, or unify all entities arising in the future into one class, which
leads to information loss. Also, if the adversary changes the authority for their malicious domains, but
everything else stays the same, the model will obtain a different input in the feature-based approach.
Instead, if relations are modelled, the transformed graph will in this case contain a clique consisting of
all SLDs with a certificate obtained from the same authority. If the adversary changes the authority
used, the clique remains intact.

With the proposed approach, one can smoothly transition between two different approaches to
learning, the first one based on collecting ‘hard’ data about entities in the form of features (or structured
raw data in case of HMill), and the second one based on simply describing relationships between
entities. Both approaches can be arbitrarily combined using the same tools from the framework,
independently on the circumstances and the nature of available data. For example, in the computer
security domain, informative features are either hard to define or unobservable, however, as discussed
later, binary relations are easily obtainable and require no feature engineering. If on the other hand,
information about vertices or edges is available, modelling structured data with HMill is simple, as
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discussed earlier. Also, the issue of missing data, which in this case can happen, when the current
vertex v is not present in some of input bipartite graphs, is solved. All these properties lead to a richer
and more accurate description of the application domain and consequently, higher accuracy of learned
models.

Finally, due to the fact that a bag may contain an arbitrary number of instances, the method
is designed to deal with any degree distribution in the graph. This is a substantial difficulty in the
transformed graphs, where the size of the neighborhood of a domain varies greatly for different vertices.
For instance, frequently visited SLDs are neighbors of a majority of vertices in the transformed domain-
client graph. Thanks to the relative simplicity of graphical features and their effective computation,
together with the possibility to use importance sampling technique, a (weighted) bag data vertex
representation of neighborhoods are obtained fast, and we can perform inference on graphs with a
large number of vertices and edges.

In our previous work [Mandlík, 2018], we consider a less general setting, where only one bipartite
graph is on the input (n = 1), whereas here, we extend this approach to work with multiple graphs. On
the other hand, the cited work provides more details on a domain-specific graph pruning techniques
and evaluation methodology, both applicable here as well.

7.3 Modelling Internet communication (use case)

In this section, we demonstrate how the proposed method performs on the real-world task of extending
a known blacklist of (second-level) domains by modelling Internet communication. The problem
specifics are huge input bipartite graphs, heavy-tailed degree distributions in transformed graphs, and
a very low ratio of positive domains with respect to the total number.

7.3.1 Data description

The data was kindly provided by Cisco Cognitive Intelligence and describes relations between (second-
level) domains and other network entities in several bipartite graphs. Three following relations, two
of which were used for the examples above, were collected from a subset of anonymized web proxy
(W3C) logs processed by Cisco Cognitive Intelligence1, and Cisco AMP telemetry2:

• domain-client — an edge signifies that a client has communicated with (issued an HTTP/HTTPS
request to) the domain.

• domain-binary — an edge indicates that a process has communicated with a given domain.

• domain-IP address — an edge signifies that the domain hostname was resolved to the IP address
using DNS.

These relations are of the many-to-many (M2M) cardinality type meaning that one domain may be
connected with an edge to multiple clients/binaries/IPs and vice versa. All bipartite graphs representing
these relations were constructed from interactions observed during one week. Bipartite graphs collected
during the same week were linked into the same dataset, and we identify them by a starting date of
the time window. Hence, here we call a ‘dataset’ a collection of bipartite graphs, each for one relation.
During three months of year 2019, we assembled twelve datasets altogether—05-23, 06-03, 06-10,
06-17, 06-24, 06-26, 06-27, 07-01, 07-08, 07-15, 07-22 and 07-29. The model was first trained on
a subset of these dates, and then labels were inferred for domains from the remaining dates and
the performance was evaluated. Specifically, we used 06-10, 06-27 and 07-22 for testing, 06-24 for

1https://cognitive.cisco.com
2https://www.cisco.com/c/en/us/products/security/advanced-malware-protection/index.html
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validation, and the rest for training. The datasets were further enriched with following three relations
(bipartite graphs) extracted from fields in (the latest) TLS certificate issued to the domain3:

• domain-TLS issuer — a relation connecting domains to the issuer of the TLS certificate. The
cardinality type is many-to-one (M2O) and therefore the transformed graph contains a fully
connected component for each of the issuers.

• domain-TLS hash — a M2O relation connecting a domain to the hash of the TLS certificate. In
the transformed graph, domains using the same certificate are connected.

• domain-TLS issue time — domain and the time when validity period of the certificate starts,
stored as a Unix timestamp.

Lastly, we also leveraged information publicly available in WHOIS registries, and extracted relations
domain-WHOIS email, domain-WHOIS nameserver, domain-WHOIS registrar name, domain-WHOIS

country, domain-WHOIS registrar id, and domain-WHOIS timestamp. All of these are of the M2O
cardinality type. For further information, please refer to the WHOIS specification.

Thus, we had twelve datasets altogether, each containing eleven bipartite graphs. All relations
used in our experiments are summarized with several examples in Table D.4 in Appendix D. To gain
an idea about the size of the input graphs, we provide Tables D.1 and D.2 in Appendix D. On average,
the bipartite graphs we are dealing with contain around 7 · 106 vertices and 3 · 108 edges. On the first
three relations mentioned (domain-client, domain-binary and domain-IP), the pruning preprocessing
step was performed as described in [Mandlík, 2018].

A blacklist of malicious domains, L, was also provided by Cisco Cognitive Intelligence. At the
time of data collection, the blacklist tracked 335 malicious campaigns, each representing a different
threat type, such as ransomware, trojans or click frauds. For each dataset, we used the current version
of blacklist available at the time to reflect the real situation. Around five hundred domains from the
blacklist were observed during each of the weeks: this is due to the fact that many domains did not
appear in any communication during the week-long time window. All domains outside of the blacklist
were considered benign. Precise numbers of malicious domains in each of the datasets together with
ratios to all observed domains are listed in Table D.3 in Apendix D.

7.3.2 Experimental setting

For this experiment, we have decided to train a model for performing only one-step inference in each of
the transformed graphs. Firstly, in cybersecurity transformed graphs are dense with a lot of cliques due
to vertices of large degrees in bipartite graphs. As a result, neighborhoods of vertices in the transformed
graph are huge, and it is possible to traverse between two arbitrary vertices in several hops. It has also
been discussed in [Yu et al., 2010] that malicious entities in computer networks tend to form dense
communities. For these reasons, we believe that one-step inference is sufficient for this task and leave
the exploration of multi-step inference for future work. Secondly, the model for one-step inference in
this task has a less complicated structure compared to models for both previous use cases in this thesis.
This enables us to further investigate to which extent the results depend on the architecture of inner
neural network components, which we have so far always defined using a trivial procedure.

Every sample tree was constructed in the same way as illustrated in Figure 7.3. A product data
node is used to merge together multi-modal information contained in transformed graphs. Each
instance in a bag-data-node representation of neighborhoods is described by an array data node with a
vector of real-valued features from Table 7.1. As a result, every sample tree and also every corresponding
model tree has a depth of three. Let us now turn our attention to the model’s architecture. Recall that
the topmost product model node in the corresponding model will consist of eleven model (sub)trees,
each for processing one of the transformed graphs, and one more mapping we denote here by f that is

3more specifically one of its hostnames
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applied on the concatenation of results from each of the submodels. This is illustrated in Figure 7.4.
Each of the submodels f (1)pm, f

(2)
pm, . . . , f

(11)
pm itself is a bag model node, consisting of an instance model

f
(i)
I , an aggregation function g(i) and a bag model f (i)B . Instances models f (i)I are in this case array

models for the initial transformation of graphical features with neural-network mappings f (i)am.
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Figure 7.4: A tree structure of models used in this use case. Colors distinguish distinct submodels. See text for
details.

For simplicity, we have defined all bag model nodes f (i)pm in the same way. This means that all f (i)am and
f
(i)
B are neural-network components with constant architecture across different indexes i. However,
parameters are not shared so that each bag model node can learn different representations. We
constructed three distinct models—a ‘baseline’ model mb, a ‘wider’ model mw, and a ‘deeper’ model
md. Numbers of neurons in layers of components f (i)am and f (i)B for each i, as well as f in the topmost
product model node, are in Table 7.2. For activation functions, we used again tanh in last layers before
aggregations g(i), and ReLu otherwise. For aggregations g(i), we used a concatenation of all four
functions presented in Section 4.2.

Table 7.2: Numbers of neurons in models mb, mw and md. Each number in tuples represent one feedforward
layer with the given number of neurons. The length of the tuple specifies a number of layers in the component.
Note that all neural-network components f (i)am contain 9 input neurons, which corresponds to an input dimension
for edge (instance) representation. Also, the first layer of f (i)B contains four times as many neurons as the last
layer of f (i)am, which is due to a concatenation of four aggregation functions. The input layer of f is eleven times
wider than the output layer of f (i)B , because there are eleven relations altogether.

model f
(i)
am f

(i)
B f

mb (9, 30, 30) (120, 60, 20) (220, 100, 2)

mw (9, 60) (240, 120) (1320, 2)

md (9, 15, 15, 15, 15) (60, 60, 30, 20) (220, 60, 60, 2)

For various reasons, it may happen that for a particular domain some relations are not available at all,
or the domain has no neighbors in some of the transformed graphs. This leads to empty bags, which we
handle as described in Section 4.3. On the other hand, as some of the bags may be very large (millions
of instances), we also employed a sampling procedure (Section 4.1). Because positive domains usually
emit a stronger signal, and there is also a very low number of malicious domains in input graphs, we
include all edges incident to positive vertices to the bag representing the neighborhood of v. From
instances corresponding to edges incident to a negative neighbor of v, we sample K instances without
replacement and put them to the bag as well. Of course, all instances are appropriately reweighted
again. In all experiments presented here, we set K = 100.
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We used weighted binary cross entropy (6.6) for loss function, Adam [Kingma and Ba, 2014] optimizer
with the default parameters, the Glorot normal initialization [Glorot and Bengio, 2010] for weights,
and zero initialization for biases. During training, we first loaded one of the eight datasets (dates)
for training into the memory, and sampled one thousand balanced minibatches each containing 256
vertices (sampled without repetition). After all minibatches were processed by the model, we loaded
another dataset and repeated the whole process, until this was done for each of the training datasets
five times.

Evaluation metrics

Recall that the primary goal of the proposed method is to find unknown malicious domains not
present in the blacklist L. To simulate this goal as realistically as possible, one has to be aware of the
interdependence between domains while splitting the blacklist into a part disclosed to the classifier
and a part tested on. Moreover, the split should reflect the situation in real-life, when some recently
registered or simply hard-to-detect domains are not in the blacklist, but appear on the input. As
malicious domains tend to group into dense clusters (communities) of the same family (malware
campaign), it is less complicated to merely extend a cluster of known domains than to discover a
completely unknown family. Taking all of the above into account, we use the following procedure to
evaluate performance. Once the training on the whole blacklist is finished, we first randomly split
domains in each blacklist cluster into k disjunctive parts of approximately the same size. Then, the
whole blacklist is divided into k folds, always using one of the parts for every threat category. This
yields k disjunctive folds and every threat category is represented equally frequently in each of the
folds.

The accuracy of the method is estimated from k separate inference runs in each of which one of
the folds is left out and the remaining k − 1 folds are used as tips (seeds). With this procedure, we
obtain an estimate of the maliciousness for all domains in the blacklist—the estimate is taken from the
only inference run when the domain was not seeded. For domains that are not in the blacklist and
therefore treated as benign, k estimates of the maliciousness are acquired, one from each of k runs.
These were aggregated with maximum function, which corresponds to the worst case. Eventually, each
domain is assigned a single scalar value, which can be subsequently used in the standard evaluation of
the performance of a binary classifier. Here, this is realized with PR and (log) ROC curves. For more
elaborate discussion on evaluation in these circumstances and blacklist seeding procedure, please refer
to [Mandlík, 2018].

7.3.3 Experimental results

We will now present the results we achieved with our models mb, mw, md in different circumstances.
The experimental setting (training procedure, hyperparameters, initialization and others) is the same
in every section unless stated otherwise. Recall, that we used eight datasets (dates) for training and
three for testing. For every model and every dataset, we plot a PR curve and an ROC curve with
logarithmically scaled x-axis. We do not show ROC curves with linear x-axis, as in this problem they
offer little to none insight. However, both AUPRC and AUROC are provided. Full results can be found
in Appendices D.1, D.2, D.3, and D.4.
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Comparison to PTP

In the first experiment, we compare to the PTP method. We used the implementation from the Cisco
Cognitive Intelligence pipeline, which performs 20 iterations of the algorithm. Further details are
in [Jusko, 2017]. The PTP method expects only on a single (bipartite) graph and no extensions for
multiple input graphs are known. To achieve a fair comparison, we used in this experiment only the
domain-client bipartite graph, even though the ability to handle more such graphs is one of the main
advantages of the proposed HMill-based approach. For this purpose, we define another three models
mB, mW , and mD, which are built in the same way as mb, mw and md, respectively, however, their
topmost product model node contains only one child for the domain-client graph processing instead
of the original eleven children.

Judging from the results listed in Table D.5 and Figures D.1 and D.2 , it is safe to say that the
proposed method performs at least as well as the PTP algorithm and even surpasses it by a larger
margin in some cases. Note, however, that as we explained in Section 6.3.3, the difference (measured
by the AUPRC metric) between the best-performing modelmW and other models is not that significant,
since a lot of area is measured in rather irrelevant parts of the plotted curve. The differences in the
AUROC are minuscule. We further discuss the influence of ‘baseline’, ‘wide’, and ‘deep’ architectures in
the next section.

Additional relations

In Table D.6 and Figures D.3 and D.4 , we present the results of the HMill-based inference performed
by models mb, mw and md, this time using all eleven relations. For evaluation, we used only domains
from the domain-client graph, using the remaining ten relations merely to enrich information about
these domains. This way, we can compare the results to the instance of the experiment presented in the
previous section. Nevertheless, with the proposed method we can obtain estimates of the maliciousness
for every domain ever observed (denoted above by A), since when a domain is not present in the
domain-client graph (or any other graph), we treat this information as a missing value and HMill
copes with it.

With more data, models perform approximately three times better than before in terms of the
AUPRC metric. This confirms again, that a quick performance boost can be oftentimes attained merely
by feeding more data to the model, which HMill excels at. Despite the fact, that the wider architecture
mw helped in the previous experiment, here we observe that the width of the layers plays little to
no role as mb and mw perform more or less the same. On the other hand, when a higher number of
thinner layers is employed, the performance severely decreases.

Fewer datasets trained on

To assess the generalizing capabilities of the method and also its resilience to the potential concept drift,
in this experiment, we trained the models exactly in the same way, however, with less data. Specifically,
we sorted the datasets by date and used only the first D of them for training, where D ∈ {1, 3, 5, 8}.
Thus, in the first instance we train the model on the data observed during only week (05-23) and in
the last instance on all of the data available. Because the testing dates are dispersed over the whole
range of considered dates, this enables us to study the decline in the models’ performance over time
(aging). In each of the examples, the training procedure was prolonged appropriately so that the total
number of sampled minibatches remained the same as in the case when we iterate over all training
datasets five times. We used only ‘baseline’ model mb in this experiment for simplicity. Results are
presented in Table D.7 and Figures D.5 and D.6 . We can see that in this case, even a lower number
of datasets is sufficient to learn a reasonable model, probably because the network traffic observed
during different weeks is highly correlated, and the concept drift present in the data (if any) is not
significant enough to alter the performance.
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Grill test

In spite of being one of the defining characteristics of the proposed method, the ability to learn messages
and the whole inference procedure actually introduces one additional concern. When the same domain
appears in both the data for training and the data for testing, the methods that employ learning
may come up with a model that simply memorizes the domains in the training set, gaining an unfair
advantage. This does not happen with methods that do not contain a training phase, such as PTP, since
the formulas involved are fixed, regardless of the input data. Even though it is certainly not possible to
be able to fully differentiate between all distinct domains, as the mapping to the representation in
the form of several bipartite graphs is noisy and thus not injective (also, the same domain will have
different neighborhoods in graphs corresponding to different dates), this phenomena may still occur
to some extent.

To investigate further whether this occurs in our case, we carried out one more experiment, where
we leveraged a technique from [Grill and Pevný, 2016], which we refer to here as Grill test. First, we
sampled a subset of malicious domains from the blacklist proportionally to the size of each cluster.
During the training phase, we consider these domains benign so that the model cannot memorize them
specifically. For evaluation, we use all negative domains as before, however, only positive domains
that the model did not see during training are picked (around one tenth of all positive domains in the
dataset). This way, we make sure that a specific malicious domain is first seen during the testing phase.
Moreover, adding noise to labels by inverting some positive domains in the blacklist during training
simulates the situation, when some positive domains are undiscovered and thus not present in the
blacklist, but they are observed.

Again, for simplicity, we did this procedure only for the baseline model mb. We trained it in the
Grill test ‘mode’ and compared it on all three testing datasets to the case when mb is trained on (and
evaluated) on all domains. Unsurprisingly, the performance drops, as can be seen in Table D.8 and
Figures D.7 and D.8 . Nevertheless, let us emphasize that with Grill test, both training and testing
data follow the different distributions and therefore, the task being solved is slightly different.

In this chapter, we showed that it is possible to estimate the maliciousness of the domain merely
from its behavior in the network. The proposed solution implemented with the HMill framework and
the popular PTP algorithm performed comparably when on only one relation was used. Nonetheless,
the HMill-based solution achieved approximately three times better results with more input data.
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Chapter 8

Conclusion and future work

8.1 Tying loose ends together

In this thesis, we proposed a novel general-purpose machine learning framework for sample repre-
sentation and model definition based on the multi-instance learning paradigm. The main defining
characteristic of the HMill framework is its versatility. It excels at modelling data sources with attributes
typical for real-world data, such as heterogeneity, incompleteness and hierarchical structure, elegantly
dealing with all of them. As a result, raw observations can be input into models with little to no
preprocessing required. HMill models are able to discover relevant and informative features and extract
them at different levels of abstraction, which effectively mitigates the need to design a mapping from
complex input data types to vectors, with which the majority of current ML methods operate. In our
opinion, valuable domain expertise should be used to decide what discriminative data to collect and
feed to the models instead of how to do it, and the framework helps with that.

Moreover, we investigated the approximation capabilities of the framework at the theoretical level.
We showed that the design of the framework is well-founded by extending the Universal approximation
theorem to functions realized by the HMill model nodes. Thanks to the explicit structure of HMill
model trees derived directly from input data in the form of a schema, learned models are natural to
interpret and decisions easier to explain. We also discussed how HMill models deal with missing data,
how effective sampling techniques can be leveraged to make inference scalable, and how effective
minibatching is implemented.

We have demonstrated the flexibility of the framework in three different tasks from the computer
security domain, which gained notoriety for containing many problems that are not solvable by machine
learning methods in a straightforward manner. The prime example are data-serialization formats used
for information exchange over the Internet, such as XML or JSON documents, which may be structured
in a complex, hierarchical way. Specifically, we attempted to solve the IoT device identification problem,
in which every IoT device is described by a JSON document containing data that can be queried in the
network.

Furthermore, we have also shown how to learn from graphs containing dependent observations
and how to implement HMill-based message-passing graph inference using bag nodes for neighborhood
representation. This was accompanied by the practical example of how executable files can be classified
as malicious or benign from the snapshot of the operating system represented as a graph. In this
example, both vertices and edges in the graph stored useful information, which in the vertex case was
encoded as an XML document. We demonstrated that the processing of features on edges and vertices
as well as the message-passing procedure can be jointly optimized and tailored to the corresponding
problem as a single HMill model.

In the last part of the thesis we discussed the task, in which no data is observable in vertices or
edges, and the only available information is in the structure of the graph. We then investigated the
real-world task of blacklist extension based on the behavioral patterns in the network. This represents
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a different approach to the problem, in which we describe interactions between observed entities,
rather than attributes of individuals. With the framework, both approaches can be fluently transitioned
between.

In all three tasks, ‘baseline’ HMill models achieved comparable or even better performance
than current specialized algorithms, which suggests that high modelling flexibility is not traded for
compromises in performance. The only downside is the relatively high computational complexity of
training caused by demanding gradient computation in possibly deep and broad model trees. We note
that this issue is of little concern with ever-increasing computing power.

To conclude, we firmly believe that the flexibility in modelling coupled with the straightforward
out-of-the-box application of the framework will enable application in problems, where current methods
may have struggled.

8.2 Future work

Since feature selection and decision explaining are considered two tasks similar in many regards, and
we have shown that HMill deals with the former one well, we believe that explanations for HMill
models are possible. Although explainability is not specifically addressed in this text, we assume that
the hierarchical structure of the model and the fact that it has to learn to extract relevant information
in each layer of the tree makes precise explanations feasible. Also, as models from the framework can
process raw data, the outputs can be explained directly using data from the input-level as well as from
higher-level representations. If a model is trained on manually extracted features, this opportunity is
lost. Moreover, in some cases, explaining at the lowest level may be much more useful. Consider the
IoT device identification task. We could produce an explanation of a device type prediction involving a
specific protocol being used at a specific port, which seems reasonable. However, this is not possible if
this information is somehow flattened into a feature vector beforehand.

Other than that, we would like to investigate further, how the performance increases once we make
more than one step in graph inference, and how the exponential growth in sizes of the neighborhood
can be tackled. One possible approach is to use attention mechanisms [Bahdanau et al., 2014,Vaswani
et al., 2017,Ilse et al., 2018] in an aggregation function in bag model nodes, which would allow models
to first examine many neighbors and pay attention to those which seem most relevant.

In spite of competitive performance achieved in all three tasks, the models presented here are
rather basic and do not make use of any recent discoveries in deep learning, for example, residual
learning [He et al., 2015] or batch normalization layers [Ioffe and Szegedy, 2015]. This presents
another possible research direction for the future.

Last but not least, we aim to apply the HMill framework on other datasets not from the cyberse-
curity domain alone.
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Appendix A

Proofs

Statement 3. For any k ∈ N, α ∈ R, any r > 0 and all xi ∈ R, it holds

glse({x1, . . . , xk}; r) = α+ glse({x1 − α, . . . , xk − α}; r)

where

glse({x1, . . . , xk}; r) =
1

r
log

(
1

k

k∑

i=1

exp(r · xi)
)
.

Proof.

glse({xi}ki=1; r) =
1

r
log

(
1

k

k∑

i=1

exp(r · xi)
)

=
1

r
log

(
1

k

k∑

i=1

exp(r · (xi + α− α))
)

=
1

r
log

(
exp(rα)

1

k

k∑

i=1

exp(r · (xi − α))
)

=
1

r
log exp(rα) +

1

r
log

(
1

k

k∑

i=1

exp(r · (xi − α))
)

= α+
1

r
log

(
1

k

k∑

i=1

exp(r · (xi − α))
)

= α+ glse({xi − α}ki=1; r)

Statement 4. For any β > 0, p ≥ 1, and c ∈ R, it holds

gp-norm({x1, . . . , xk}; p, c) = β · gp-norm({x1/β, . . . , xk/β}; p, c/β)

where

gp-norm({x1, . . . , xk}; p, c) =
(
1

k

k∑

i=1

|xi − c|p
) 1

p

.

Proof.

gp-norm({xi}ki=1; p, c) =

(
1

k

k∑

i=1

|xi − c|p
) 1

p

=

(
1

k

k∑

i=1

βp

βp
|xi − c|p

) 1

p

= β ·
(
1

k

k∑

i=1

∣∣∣∣
xi − c
β

∣∣∣∣
p
) 1

p

= β · gp-norm({xi/β}ki=1; p, c/β)

Statement 5. For any k ∈ N and all xi ∈ R, it holds

lim
r→0

glse({x1, . . . , xk}; r) = lim
r→0

1

r
log

(
1

k

k∑

i=1

exp(r · xi)
)

= gmean({x1, . . . , xk}) =
1

k

k∑

i=1

xi.
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Proof.

lim
r→0

1

r
log

(
1

k

k∑

i=1

exp(r · xi)
)

L’Hospital’s,

Rule
= lim

r→0

∑k
i=1 xi exp(r · xi)∑k
i=1 exp(r · xi)

=
1

k

k∑

i=1

xi

Statement 6. For any k ∈ N and all xi ∈ R, it holds

lim
r→∞

glse({x1, . . . , xk}; r) = lim
r→∞

1

r
log

(
1

k
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i=1

exp(r · xi)
)

= gmax({x1, . . . , xk}) = max
i=1,...,k

xi.

Proof. Using Statement 3
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log(exp(1))
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Statement 7. For any k ∈ N, c ∈ R and all xi ∈ R, it holds

lim
p→∞

gp-norm({x1, . . . , xk}; p, c) = max
i=1,...,k

|xi − c|

where

gp-norm({x1, . . . , xk}; p, c) =
(
1

k
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|xi − c|p
) 1
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.

Proof. Assume that x̃ = max
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|xi − c|. Then for p ≥ 1,
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Using the squeeze theorem

lim
p→∞

(
1

k

) 1

p

x̃ = x̃ ≤ lim
p→∞

gp-norm({xi}ki=1; p, c) ≤ lim
p→∞

x̃ = x̃
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APPENDIX B. IOT DEVICE IDENTIFICATION (USE CASE)

[Dict, 57 906]

device_class: [String, 57 906, 13]

device_id: [String, 57 906, inf]

dhcp: [List, 13 505]

[Dict, 13 505]

classid: [String, 9 927, 112]

paramlist: [String, 13 277, 138]

ip: [String, 57 906, 9 499]

mac: [String, 57 906, 173]

mdns_services: [List, 30 880]

[String, 76 845, 359]

services: [List, 53 859]

[Dict, 281 555]

port: [Int64, 281 555, 1 125]

protocol: [String, 281 555, 2]

ssdp: [List, 25 350]

[Dict, 394 328]

location: [String, 394 328, inf]

method: [String, 394 328, 1]

nt: [String, 394 328, inf]

server: [String, 394 328, 1 068]

st: [String, 394 328, inf]

user_agent: [String, 394 328, 475]

upnp: [List, 22 881]

[Dict, 35 616]

device_type: [String, 35 616, 96]

manufacturer: [String, 35 261, 183]

model_description: [String, 22 382, 706]

model_name: [String, 35 359, 2 913]

services: [List, 35 616]

[String, 78 924, 141]

Figure B.1: A (shortened) schema deduced from 57 906 training JSON documents for the device identification
task from the dataset downloaded from Kaggle. Each entry is accompanied by at most two numbers. The first
one specifies the number of times the entry was updated summed over all samples (for a single sample, this
can range from zero in case of missing values to any natural number in the presence of arrays) and the second
number is the number of unique values of the given field for identification of categorical variables. This is not
measured for composite entries, such as dictionaries (JSON objects) or lists (JSON arrays). If there are too many
unique values, JsonGrinder.jl stops the count to save memory and represents this with inf. From this schema
we can learn, for example, that only device_class, device_id, ip and mac fields are specified for every sample,
that dhcp entry (if specified) always contains an array of a single element, and all JSON arrays representing
ssdp scans consist of JSON objects with no missing keys.

82



APPENDIX B. IOT DEVICE IDENTIFICATION (USE CASE)

{

"mac": "fc:fc:48:3b:a4:46",

"ip": "192.168.0.6",

"services": [

{

"port": 9,

"protocol": "udp"

},

{

"port": 5353,

"protocol": "udp"

},

{

"port": 52125,

"protocol": "tcp"

}

],

"dhcp": [

{

"paramlist": "1,121,3,6,15,119,252",

"classid": ""

}

],

"ssdp": [

{

"st": "urn:schemas-upnp-org:service:WANIPConnection:1",

"nt": "M-SEARCH",

"location": "",

"server": "",

"user_agent": "",

"method": ""

},

{

"st": "urn:schemas-upnp-org:service:WANPPPConnection:1",

"nt": "M-SEARCH",

"location": "",

"server": "",

"user_agent": "",

"method": ""

}

],

"device_class": "MOBILE",

"device_id": "eaf88ecc-9e6d-404b-ac8c-de7aef6fd99d",

"mdns_services": [

"_homekit._tcp.local."

]

}

Figure B.2: An example of one observation for the device identification task.
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{

"mac": "00:24:be:9b:3b:28",

"ip": "192.168.178.5",

"services": [

{

"port": 52323,

"protocol": "tcp"

}

],

"upnp": [

{

"model_name": "KDL-40Z5800 ",

"manufacturer": "Sony Corporation",

"device_type": "urn:schemas-upnp-org:device:MediaRenderer"

,

"services": [

"urn:upnp-org:serviceId:RenderingControl",

"urn:upnp-org:serviceId:ConnectionManager",

"urn:upnp-org:serviceId:AVTransport"

]

}

],

"ssdp": [

{

"st": "",

"nt": "upnp:rootdevice",

"location": "http://192.168.178.5:52323/dmr.xml",

"server": "RTOS/1.0 UPnP/1.0 KDL-40Z5800 /1.7",

"user_agent": "",

"method": ""

},

{

"st": "",

"nt": "urn:schemas-upnp-org:service:RenderingControl",

"location": "http://192.168.178.5:52323/dmr.xml",

"server": "RTOS/1.0 UPnP/1.0 KDL-40Z5800 /1.7",

"user_agent": "",

"method": ""

},

{

"st": "",

"nt": "urn:schemas-upnp-org:device:MediaRenderer",

"location": "http://192.168.178.5:52323/dmr.xml",

"server": "RTOS/1.0 UPnP/1.0 KDL-40Z5800 /1.7",

"user_agent": "",

"method": ""

},

{

"st": "",

"nt": "urn:schemas-upnp-org:service:ConnectionManager",

"location": "http://192.168.178.5:52323/dmr.xml",

"server": "RTOS/1.0 UPnP/1.0 KDL-40Z5800 /1.7",

"user_agent": "",

"method": ""

}

],

"device_class": "TV",

"device_id": "a94a8267-29f8-4bde-b97b-7d89ad8b3586"

}

Figure B.3: An example of one observation for the device identification task.
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Appendix C

Behavior-based malware classification in
graphs (use case)

Figure C.1: A drawing of the largest (weakly) connected component in one of the IDP graphs from the training
set. For demonstration purposes, we cherry-picked one of the smallest graphs with a smaller number of nodes
and smaller degree values. Blue squares represent executable nodes and red circles process nodes. This figure
should provide a rough idea of the structure of IDP graphs. For a more detailed description of smaller subgraphs,
refer to Figures C.2 and C.4. Process nodes with large degrees in the middle of most prominent ‘clusters’ in this
particular graph correspond to explorer.exe (left) and services.exe (right) processes.
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APPENDIX C. BEHAVIOR-BASED MALWARE CLASSIFICATION IN GRAPHS (USE CASE)

…\SOCIALCLUBHELPER.EXE

1

…\SOCIALCLUBHELPER.EXE

2

…\WMIC.EXE

3

…\WMIC.EXE

4

…\DISCORDHOOKHELPER64.EXE

5

…\DXDIAG.EXE

6

…\SOCIALCLUBHELPER.EXE

7

…\GTA5.EXE

8

…\WMIC.EXE

9

…\LAUNCHER.EXE

10

…\ROCKSTARSERVICE.EXE

11

…\SOCIALCLUBHELPER.EXE

12

…\LAUNCHER.EXE

13

…\SOCIALCLUBHELPER.EXE

14
…\DISCORDHOOKHELPER64.EXE

15

…\PLAYGTAV.EXE

16

…\WMIC.EXE

17

…\DISCORD.EXE

18

…\CONHOST.EXE

19

…\GTA5.EXE
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{

"id": 15403,

"name": "C:\WINDOWS\SYSTEM32\WBEM\WMIC.EXE",

"size": 88576,

"sha256": "96bec6. . .",

"node_type": "EXECUTABLE",
...

}

{

"id": 256159,

"name": "C:\WINDOWS\SYSTEM32\DXDIAG.EXE",

"size": 0,

"sha256": "",

"node_type": "PROCESS",
...

}

Figure C.2: One of the (weakly) connected components of an IDP graph representation of the system. Red
rectangles with rounded corners represent processes, and blue rectangles represent executable files. The
document icon signifies that each vertex is further described by an XML document. For two nodes (number
6 and 17), the documents are shown specifically. To remain consistent with the rest of the thesis, we use the
equivalent JSON representation of these documents (see Section 6.3.1). Fully qualified names are in Figure C.3.
This connected component captures a launch of the Grand Theft Auto 5 computer game. In this case, there is
no ongoing malicious activity—INJECT relationships usually signify the presence of an external (anti)cheat tool.
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1 C:\PROGRAM FILES\ROCKSTAR GAMES\SOCIAL CLUB\SOCIALCLUBHELPER.EXE

2 C:\PROGRAM FILES\ROCKSTAR GAMES\SOCIAL CLUB\SOCIALCLUBHELPER.EXE

3 C:\WINDOWS\SYSTEM32\WBEM\WMIC.EXE

4 C:\WINDOWS\SYSTEM32\WBEM\WMIC.EXE

5 C:\USERS\ANNA\APPDATA\ROAMING\DISCORD\0.0.305\MODULES\DISCORD_HOOK\F01471E655\DISCORDHOOKHELPER64.EXE

6 C:\WINDOWS\SYSTEM32\DXDIAG.EXE

7 C:\PROGRAM FILES\ROCKSTAR GAMES\SOCIAL CLUB\SOCIALCLUBHELPER.EXE

8 D:\STEAM\STEAMAPPS\COMMON\GRAND THEFT AUTO V\GTA5.EXE

9 C:\WINDOWS\SYSTEM32\WBEM\WMIC.EXE

10 C:\PROGRAM FILES\ROCKSTAR GAMES\LAUNCHER\LAUNCHER.EXE

11 C:\PROGRAM FILES\ROCKSTAR GAMES\LAUNCHER\ROCKSTARSERVICE.EXE

12 C:\PROGRAM FILES\ROCKSTAR GAMES\SOCIAL CLUB\SOCIALCLUBHELPER.EXE

13 C:\PROGRAM FILES\ROCKSTAR GAMES\LAUNCHER\LAUNCHER.EXE

14 C:\PROGRAM FILES\ROCKSTAR GAMES\SOCIAL CLUB\SOCIALCLUBHELPER.EXE

15 C:\USERS\ANNA\APPDATA\ROAMING\DISCORD\0.0.305\MODULES\DISCORD_HOOK\F01471E655\DISCORDHOOKHELPER64.EXE

16 D:\STEAM\STEAMAPPS\COMMON\GRAND THEFT AUTO V\PLAYGTAV.EXE

17 C:\WINDOWS\SYSTEM32\WBEM\WMIC.EXE

18 C:\USERS\ANNA\APPDATA\LOCAL\DISCORD\APP-0.0.305\DISCORD.EXE

19 C:\WINDOWS\SYSTEM32\CONHOST.EXE

20 D:\STEAM\STEAMAPPS\COMMON\GRAND THEFT AUTO V\GTA5.EXE

Figure C.3: Fully qualified names of executables and processes in Figure C.4. Generic username "ANNA" was
used for anonymization of the original user.
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…\SIBIN

1

…\TRZB5BC.TMP

2

…\TRZ9A62.TMP

3

…\TRZ43CD.TMP

4

…\INSTALLS.EXE

5

…\FBX1.DAT

6

…\TRZB5BC.TMP

7

…\CMD.EXE

8

…\TRZ43CD.TMP

9

…\INSTALLS.EXE

10

…\TRZ5F1A.TMP

11

…\CBFIV.EXE

12

…\SIBIN

13

…\LSASS.EXE

14

…\TRZAA8.TMP

15

…\TRZDB75.TMP

16

…\LSASS.EXE

17

…\SERVICES.EXE

18

…\LSASS.EXE

19

…\ABFIV.EXE

20

…\TRZ5EE9.TMP

21

…\INSTALLS.EXE

22

…\TRZAA8.TMP

23

…\SI.EXE

24

…\TRZ7003.TMP

25

…\TRZ6F55.TMP

26

…\TRZ5F1A.TMP

27

…\TRZ8C57.TMP

28

…\TRZ6F55.TMP

29

…\CBFIV.EXE

30

…\CONHOST.EXE

31

…\TRZ7003.TMP

32

…\SI.EXE

33

…\INSTALAR BF5A5.EXE

34

…\TRZE153.TMP

35

…\INSTALAR BF5A5.EXE

36

…\GWP2.SYS

37

…\INSTALLS.EXE

38

…\LSASS.EXE

39

…\TRZ9A62.TMP

40

…\TRZ8C57.TMP

41

…\CMDS.BAT

42

…\SI.EXE

43

…\SI.EXE

44

…\TRZ5EE9.TMP

45

…\TRZE153.TMP

46

…\TRZDB75.TMP

47
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Figure C.4: One (weakly) connected component of an IDP graph representation of a system most probably
infected through EternalBlue exploit. Red rectangles with rounded corners represent processes, and blue
rectangles represent executable files. The document icon signifies that each vertex is further described by an
XML document. Fully qualified names are in Figure C.5. In this specific example, malicious payload is present in
node number 19. The binary mimicks the standard Local Security Authority Subsystem Service (LSASS)

system file. However, the malicious binary is stored in a different directory than %WINDIR%\System32.
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1 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\SIBIN

2 C:\PROGRAM FILES\BLOK FREE 5\TRZB5BC.TMP

3 C:\PROGRAM FILES\BLOK FREE 5\TRZ9A62.TMP

4 C:\PROGRAM FILES\BLOK FREE 5\TRZ43CD.TMP

5 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\INSTALL.EXE

6 C:\WINDOWS\SYSTEM32\FBX1.DAT

7 C:\PROGRAM FILES\BLOK FREE 5\TRZB5BC.TMP

8 C:\WINDOWS\SYSTEM32\CMD.EXE

9 C:\PROGRAM FILES\BLOK FREE 5\TRZ43CD.TMP

10 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\INSTALL.EXE

11 C:\PROGRAM FILES\BLOK FREE 5\TRZ5F1A.TMP

12 C:\PROGRAM FILES\BLOK FREE 5\CBFIV.EXE

13 C:\PROGRAM FILES\BLOK FREE 5\SIBIN

14 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\LSASS.EXE

15 C:\PROGRAM FILES\BLOK FREE 5\TRZAA8.TMP

16 C:\PROGRAM FILES\BLOK FREE 5\TRZDB75.TMP

17 C:\WINDOWS\SYSTEM32\1052\LSASS.EXE

18 C:\WINDOWS\SYSTEM32\SERVICES.EXE

19 C:\WINDOWS\SYSTEM32\1052\LSASS.EXE

20 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\ABFIV.EXE

21 C:\PROGRAM FILES\BLOK FREE 5\TRZ5EE9.TMP

22 C:\PROGRAM FILES\BLOK FREE 5\INSTALL.EXE

23 C:\PROGRAM FILES\BLOK FREE 5\TRZAA8.TMP

24 C:\WINDOWS\SYSTEM32\SIBF5\SI.EXE

25 C:\PROGRAM FILES\BLOK FREE 5\TRZ7003.TMP

26 C:\PROGRAM FILES\BLOK FREE 5\TRZ6F55.TMP

27 C:\PROGRAM FILES\BLOK FREE 5\TRZ5F1A.TMP

28 C:\PROGRAM FILES\BLOK FREE 5\TRZ8C57.TMP

29 C:\PROGRAM FILES\BLOK FREE 5\TRZ6F55.TMP

30 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\CBFIV.EXE

31 C:\WINDOWS\SYSTEM32\CONHOST.EXE

32 C:\PROGRAM FILES\BLOK FREE 5\TRZ7003.TMP

33 C:\WINDOWS\SYSTEM32\SIBF5\SI.EXE

34 C:\USERS\BOB\DESKTOP\INSTALAR BF5A5.EXE

35 C:\PROGRAM FILES\BLOK FREE 5\TRZE153.TMP

36 C:\USERS\BOB\DESKTOP\INSTALAR BF5A5.EXE

37 C:\PROGRAMDATA\GWP2.SYS

38 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\INSTALL.EXE

39 C:\WINDOWS\SYSTEM32\1052\LSASS.EXE

40 C:\PROGRAM FILES\BLOK FREE 5\TRZ9A62.TMP

41 C:\PROGRAM FILES\BLOK FREE 5\TRZ8C57.TMP

42 C:\USERS\BOB\APPDATA\LOCAL\TEMP\BFVINS\CMDS.BAT

43 C:\WINDOWS\SYSTEM32\SIBF5\SI.EXE

44 C:\WINDOWS\SYSTEM32\SIBF5\SI.EXE

45 C:\PROGRAM FILES\BLOK FREE 5\TRZ5EE9.TMP

46 C:\PROGRAM FILES\BLOK FREE 5\TRZE153.TMP

47 C:\PROGRAM FILES\BLOK FREE 5\TRZDB75.TMP

Figure C.5: Fully qualified names of executables and processes in Figure C.4. Generic username "BOB" was
used for anonymization of the original user.
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APPENDIX C. BEHAVIOR-BASED MALWARE CLASSIFICATION IN GRAPHS (USE CASE)

[Dict, 7 886 274]

id: [Int64, 7 886 274, inf]

name: [String, 7 886 274, inf]

size: [Int64, 7 886 274, inf]

sha256: [String, 7 886 274, inf]

node_type: [String, 7 886 274, 2]

connections: [List, 7 886 274]

[Dict, 1 482 414]

mac: [String, 1 482 414, inf]

domain: [String, 1 482 414, inf]

port: [Int64, 1 482 414, 3512]

protocol: [String, 1 482 414, 2]

url: [String, 1 482 414, inf]

named_objects: [List, 7 886 274]

[Dict, 1 388 206]

event_type: [String, 1 482 414, 1573]

name: [String, 1 482 414, inf]

regops: [List, 7 886 274]

[Dict, 3 623 007]

flags: [Int64, 1 482 414, 2]

operation_type: [Int64, 1 482 414, 3]

id: [Int64, 1 482 414, 214]

value_data: [String, 1 482 414, inf]

value_name: [String, 1 482 414, inf]

value_type: [String, 1 482 414, 6]

SURVIVE_REBOOT: [String, 7 886 274, 3]

IS_SHADOW: [String, 7 886 274, 3]

...

KEYLOGGER_HOOK: [String, 7 886 274, 3]

Figure C.6: A (shortened) schema inferred from 7 886 274 vertices present in graphs in the dataset. See Figure B.1
for the exact interpretation of the format. From the schema we can deduce that missing data is not an issue
for IDP graphs, since all top-level entries are updated same number of times. The keys describing individual
characteristics are shortened for brevity.
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APPENDIX C. BEHAVIOR-BASED MALWARE CLASSIFICATION IN GRAPHS (USE CASE)

Table C.1: Examples of characteristics extracted from patents [Williamson and Gorelik, 2014a,Williamson and
Gorelik, 2014b]. Note that some characteristics function as controls for the whole engine. We filtered these out.

name description

SURVIVE_REBOOT The executable is configured to automatically restart. Malicious programs
generally need to survive reboot in order to be effective at stealing information
from the user.

WINDOW_NOT_VISIBLE The executable does not display a window on the screen. This implies that
the program is trying to prevent user from seeing its activity.

PROCESS_IS_HIDDEN The process is hidden from the Windows Task Manager. A malicious program
can use this technique to remain hidden from the user.

SMALL_IMAGE_SIZE The size of the executable file image is very small. Malicious programs try to
be stealthy, and one way to remain invisible is to minimize the impact on the
underlying system.

WRITES_TO_WINDIR The executable attempted to write to the Windows directory. Often, mali-
cious programs install themselves in the Windows directory, as that directory
contains many executables, and it is easy to remain unnoticed there.

WRITES_TO_PGM_FILES The executable attempted to write to the Program Files directory. Some
malicious programs (particularly adware) install themselves in this directory.

EXEC_FROM_CACHE The executable is executed from a cached area.

EXEC_FROM_WINDIR The executable is executed from the Windows directory.

EXEC_FROM_PGM_FILES The executable is executed from the Program Files directory.

IS_SHADOW The executable has the same name as a legitimate executable. This is evidence
of a common mechanism that trojans and other malicious code use to hide
themselves on a computer.

P2P_CODE_INJECTION The executable attempted to inject code into the address space of another
process. This is generally evidence of malicious activity as the injected code
could be the malicious payload or a rootkit trying to hide the real malicious
process from detection.

TURNS_OFF_FIREWALL The executable attempted to turn off the Windows firewall.

HAS_DOUBLE_EXTENSION The file name of the executable has a double extension. Windows is configured
by default to hide known file extensions and this might fool an unsuspecting
user into opening a harmful executable.

TERMINATE_PROCESS The executable terminates another running process. Some malicious pro-
grams attempt to terminate security programs (such as anti-virus, anti-
spyware) running on the machine in order to avoid detection.

KEYLOGGER_HOOK The executable attempted to install a keylogger by a legitimate mechanism.
Malicious programs install keyloggers to capture keystrokes and steal logins,
passwords and credit card numbers.

MODIFIES_HOSTS_FILE The executable attempted to modify the hosts file.

MODIFIES_AUTOEXEC_BAT The executable attempted to modify the autoexec.bat file.

MODIFIES_CONFIG_SYS The executable attempted to modify the default set of drivers loaded at
startup time.

INSTALLED_VIA_IM The executable was installed by an instant messaging program.

INSTALLED_VIA_EMAIL The executable was installed via an email reader.

INSTALLED_VIA_BROWSER The executable was installed by a browser.
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Appendix D

Modelling Internet communication (use
case)

Table D.1: Sizes of vertex sets sorted by date, when bipartite graphs were observed. Here, Ad in the second
column denotes all vertices assembled from all bipartite graphs. The rest of the columns specify sizes of ‘right’
sets in bipartite graphs. Bc denotes clients, Bb binary files, BIP IP addresses, Bta TLS issuer authorities, Bth
TLS certificate hashes, Bti TLS issue times, Bwe WHOIS entry emails, Bwn WHOIS nameservers, Bwr WHOIS
registrar names, Bwc WHOIS country, Bwi WHOIS registrar id, and finally, Bwt WHOIS timestamp.

date |Ad| |Bc| |Bb| |BIP | |Bta| |Bth| |Bti| |Bwe| |Bwn| |Bwr| |Bwc| |Bwi| |Bwt|
05-23 710 167 3 419 758 245 999 2 357 441 6 217 374 531 160 343 18 537 15 972 1 111 160 959 901
06-03 631 828 3 151 105 232 507 2 247 940 5 631 337 558 142 944 16 442 14 803 989 157 849 901
06-10 644 868 3 140 231 236 052 2 268 276 5 745 348 298 148 844 16 834 14 913 969 160 833 904
06-17 630 532 3 114 985 242 696 2 305 323 5 618 340 934 145 032 16 808 14 973 945 161 806 904
06-26 648 960 3 175 500 238 535 2 316 943 5 732 350 155 149 609 17 519 15 454 954 160 805 902
06-27 616 958 3 106 120 240 931 2 256 445 5 484 334 996 142 453 16 468 14 942 909 158 763 901
07-01 613 601 3 055 840 240 909 2 277 775 5 433 332 991 141 471 16 373 14 866 894 157 743 897
07-08 557 253 2 894 017 224 571 2 117 016 5 077 307 541 129 249 14 319 13 756 810 160 665 890
07-15 608 327 2 943 900 241 631 2 222 769 5 504 330 853 140 718 16 168 14 834 861 158 717 899
07-22 600 814 2 929 311 239 520 2 193 113 5 423 326 592 138 604 16 214 14 764 842 156 693 898
07-29 588 039 2 873 682 237 436 2 162 197 5 194 320 663 135 980 15 785 14 475 806 150 656 898

Table D.2: Numbers of edges in bipartite graphs sorted by date, when the graph was observed. The meaning of
the abbreviations in subscripts is the same as in Table D.1. Note that TLS issuer authority, TLS certificate hash
and TLS issue time contain the same number of edges for each of the dates. This is not caused by a typo, but by
the fact, that these three relation types, if obtainable, were obtained together.

date |Ec| |Eb| |EIP | |Eta| |Eth| |Eti| |Ewe| |Ewn| |Ewr| |Ewc| |Ewi| |Ewt|
05-23 334 320 003 4 073 050 9 314 998 465 879 465 879 465 879 44 613 122 231 42 804 39 506 46 589 46 603
06-03 292 659 940 3 639 635 8 356 254 419 035 419 035 419 035 38 974 108 077 37 349 34 538 40 690 40 704
06-10 299 532 603 3 785 134 8 902 097 430 878 430 878 430 878 39 766 110 423 38 213 35 321 41 543 41 555
06-17 293 466 696 3 813 715 8 803 587 420 926 420 926 420 926 39 322 109 466 37 741 34 906 41 072 41 088
06-26 306 114 224 3 846 992 9 141 868 431 772 431 772 431 772 41 035 114 242 39 370 36 328 42 832 42 845
06-27 291 065 433 3 821 056 8 740 732 412 836 412 836 412 836 38 296 107 202 36 775 33 943 39 996 40 009
07-01 285 920 746 3 789 277 8 649 546 410 419 410 419 410 419 37 797 106 055 36 256 33 520 39 480 39 494
07-08 251 616 117 3 361 849 7 917 765 376 934 376 934 376 934 33 028 936 23 317 36 292 40 345 25 345 34
07-15 278 227 235 3 693 630 8 869 060 406 339 406 339 406 339 37 536 105 356 36 008 33 288 39 180 39 193
07-22 278 975 786 3 765 391 8 627 468 400 566 400 566 400 566 37 407 104 908 35 844 33 015 39 017 39 031
07-29 274 507 944 3 701 055 8 475 127 392 479 392 479 392 479 36 473 102 514 35 002 32 228 38 021 38 034
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APPENDIX D. MODELLING INTERNET COMMUNICATION (USE CASE)

Table D.3: Numbers of malicious domains in each of the datasetes. In the first row, there is the number of
domains that are both in the blacklist and in the observed dataset, and in the second row, we give the ratio of
the number of blacklisted domains to the total number of domains in the dataset.

05-23 06-03 06-10 06-17 06-24 06-26 06-27 07-01 07-08 07-15 07-22 07-29

|L ∩ A| 656 578 535 557 538 557 552 555 512 557 577 548
|L ∩ A|/|A| 0.924‰ 0.915‰ 0.830‰ 0.883‰ 0.865‰ 0.858‰ 0.895‰ 0.904‰ 0.919‰ 0.916‰ 0.960‰ 0.932‰

Table D.4: All relations used in our experiments, with their cardinality type and several examples of specific
relation pairs (edges in a bipartite graph). Each edge is specified as (u; v) to avoid confusion as commas may be
used in u or v. M2M stands for many-to-many and M2O for many-to-one cardinality type. Longer names are for
shortened using ellipsis (. . . ).

name (domain-*) card. type examples

*-client M2M
(tottenhamhotspur.com; S8g)
(loanstreet.com.my; 2Pu3)
(healthlabtesting.com; 2WLu)

*-binary M2M
(kotonoha-jiten.com; 15CBF8...)
(wonderslim.com; B41781...)
(pythonprogramming.net; CF6ACB...)

*-IP address M2M
(quickpayportal.com; 208.78.141.18)
(jobwinner.ch; 217.71.91.48)
(tottenhamhotspur.com; 104.16.54.111)

*-TLS issuer M2O

(cratejoy.com; CN=Amazon, OU=Server CA 1B, O=Amazon, C=US)
(creative-serving.com;
CN=COMODO RSA Domain Validation Secure Server...)

(healthlabtesting.com; CN=Symantec Class 3 Secure Server CA...)

*-TLS hash M2O
(timeoutdubai.com; 90c093...)
(boomerang.com; e577e6...)
(quickpayportal.com; 85bdd8...)

*-TLS issue time M2O
(jobwinner.ch; 1496041693)
(healthlabtesting.com; 1445558400)
(flatmates.com.au; 1502150400)

*-WHOIS email M2O

(unstableunicorns.com; unstableunicorns.com@*sbyproxy.com)
(albertlee.biz; abuse@godaddy.com)
(crowneplazalondonthecity.com;
crowneplazalondonthecity.com@*sbyproxy.com )

*-WHOIS nameserver M2O
(grd779.com; ns2.hover.com)
(celeritascdn.com; lady.ns.cloudflare.com)
(smeresources.org; ns-495.awsdns-61.com)

*-WHOIS registrar name M2O
(unblocked.how; eNom, Inc.)
(rev-stripe.com; Amazon Registrar, Inc.)
(chisaintjosephhealth.org; Register.com, Inc.)

*-WHOIS country M2O
(thefriscostl.com; CANADA)
(getwsone.com; UNITED STATES)
(notify.support; PANAMA)

*-WHOIS registrar id M2O
(lo3trk.com; 468)
(watchcrichd.org; 472)
(bozsh.com; 1479)

*-WHOIS timestamp M2O
(unblocked.how; 15293)
(comicplanet.net; 15159)
(unpublishedflight.com; 15553)
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APPENDIX D. MODELLING INTERNET COMMUNICATION (USE CASE)

D.1 Comparison to PTP

Table D.5 : Values of the AUPRC and the AUROC metrics for three HMill-based models and the PTP algorithm,
rounded to 4 decimal places. Results on all three testing datasets are displayed and correspond to curves in
Figures D.1 and D.2 . The greatest number in every column is written in bold.

06-10 06-27 07-22

AUPRC AUROC AUPRC AUROC AUPRC AUROC

PTP 0.1561 0.9621 0.1243 0.9584 0.1442 0.9544

mB 0.1242 0.9579 0.1561 0.9590 0.1544 0.9545

mW 0.2248 0.9560 0.2402 0.9663 0.2220 0.9574

mD 0.1684 0.9557 0.1912 0.9667 0.2047 0.9580
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Figure D.1 : PR curves comparing the performance of three HMill-based models mB , mW and mD to the PTP
algorithm. Three figures are plotted, each corresponds to one of the testing datasets.
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Figure D.2 : ROC curves comparing the performance of three HMill-based models mB , mW and mD to the PTP
algorithm. Three figures are plotted, each corresponds to one of the training datasets. The logarithmic scale is
used for x-axis.
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APPENDIX D. MODELLING INTERNET COMMUNICATION (USE CASE)

D.2 Additional relations

Table D.6 : Values of the AUPRC and the AUROC metrics for three HMill-based models, rounded to 4 decimal
places. Here, all eleven relations are employed. Results on all three testing datasets are displayed and correspond
to curves in Figures D.3 and D.4 . The greatest number in every column is written in bold.

06-10 06-27 07-22

AUPRC AUROC AUPRC AUROC AUPRC AUROC

mb 0.6419 0.9884 0.6905 0.9899 0.6595 0.9880

mw 0.6422 0.9840 0.6823 0.9818 0.6590 0.9804

md 0.4498 0.9780 0.5031 0.9831 0.4719 0.9796
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Figure D.3 : PR curves comparing the performance of three HMill-based modelsmb,mw andmd when all eleven
relations are used. Three figures are plotted, each corresponds to one of the testing datasets.
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Figure D.4 : ROC curves comparing the performance of three HMill-based models mb, mw and md when all
eleven relations are used. Three figures are plotted, each corresponds to one of the training datasets. The
logarithmic scale is used for x-axis.
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D.3 Fewer datasets trained on

Table D.7 : Values of the AUPRC and the AUROC metrics rounded to 4 decimal places for the baseline HMill
model mb, in cases, where a different number of datasets is used. Specifically, in the first row, we used only the
first dataset (date 05-23), in the second row the first three of them and first five in the next row. In the last row,
there is a performance of the model trained on all available training datasets, which is the identical setting to the
one in Section 7.3.3. Hence, the first row is identical to the first row in Table D.6 . Results on all three testing
datasets are displayed and correspond to curves in Figures D.5 and D.6 . The greatest number in every column
is written in bold.

06-10 06-27 07-22

AUPRC AUROC AUPRC AUROC AUPRC AUROC

mb (1 dataset) 0.6933 0.9739 0.7005 0.9796 0.6708 0.9750

mb (3 datasets) 0.6834 0.9825 0.7030 0.9843 0.6753 0.9810

mb (5 datasets) 0.6381 0.9762 0.6760 0.9839 0.6363 0.9774

mb (8 datasets) 0.6419 0.9884 0.6905 0.9899 0.6595 0.9880

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

PR curve (06-10)

mb (1 dataset)
mb (3 datasets)
mb (5 datasets)
mb (8 datasets)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

PR curve (06-27)

mb (1 dataset)
mb (3 datasets)
mb (5 datasets)
mb (8 datasets)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Recall

P
re
ci
si
on

PR curve (07-22)

mb (1 dataset)
mb (3 datasets)
mb (5 datasets)
mb (8 datasets)

Figure D.5 : PR curves comparing the performance of the ‘baseline’ HMill model mb, when a different number
of datasets is used for training. Three figures are plotted, each corresponds to one of the testing datasets.
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Figure D.6 : ROC curves comparing the performance of the ‘baseline’ HMill model mb, when a different number
of datasets is used for training. Three figures are plotted, each corresponds to one of the training datasets. The
logarithmic scale is used for x-axis.
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D.4 Grill test

Table D.8 : Values of the AUPRC and the AUROC metrics rounded to 4 decimal places, for the baseline HMill
model mb with and without Grill test. The first row is identical to the first row in Table D.6 . Results on all three
testing datasets are displayed and correspond to curves in Figures D.7 and D.8 . The greatest number in every
column is written in bold.

06-10 06-27 07-22

AUPRC AUROC AUPRC AUROC AUPRC AUROC

mb 0.6419 0.9884 0.6905 0.9899 0.6595 0.9880

mb (Grill) 0.4503 0.9509 0.4745 0.9662 0.4735 0.9593
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Figure D.7 : PR curves comparing the performance of the ‘baseline’ HMill model mb, when the Grill test is (not)
used. Three figures are plotted, each corresponds to one of the training datasets.

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate (log)

T
ru
e
p
os
it
iv
e
ra
te

log ROC curve (06-10)

Grill mb
mb

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate (log)

T
ru
e
p
os
it
iv
e
ra
te

log ROC curve (06-27)

Grill mb
mb

10−6 10−5 10−4 10−3 10−2 10−1 100
0

0.2

0.4

0.6

0.8

1

False positive rate (log)

T
ru
e
p
os
it
iv
e
ra
te

log ROC curve (07-22)

Grill mb
mb

Figure D.8 : ROC curves comparing the performance of the ‘baseline’ HMill model mb, when the Grill test is
(not) used. Three figures are plotted, each corresponds to one of the training datasets. The logarithmic scale is
used for x-axis.
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Acronyms

A

AI Artificial intelligence [1, 2]

ARP Address Resolution Protocol [45]

AUPRC Area under Precision-Recall curve [62, 73, 74, 94–97]

AUROC Area under Receiver Operating Characteristic curve [62, 63, 73, 74, 94–97]

B

BS Bag-space [11, 13]

C

C&C Command and control [3]

D

DD Diverse Density [9, 10]

DDoS Distributed Denial-of-Service [45]

DHCP Dynamic Host Configuration Protocol [45]

DNS multicast Domain Name System [70]

E

EM Expectation-Maximization [10]

ES Embedded-space [13]

G

GNN Graph neural network [51, 52, 57, 58, 65]

H

HMill Hierarchical Multi-instance Learning Library [7, 16–33, 35–37, 40–48, 50–64,
66–69, 74–77, 94–97]

HTTP Hypertext Transfer Protocol [45, 70]

HTTPS Hypertext Transfer Protocol Secure [70]

I

i.i.d. independent and identically distributed [2, 3, 48, 49]

IDP Identity Protection [59, 60, 85–87, 89]

IoT Internet of Things [4, 42, 45, 46, 76]

IP Internet Protocol [4, 42, 44, 66, 70, 92, 93]

IS Instance-space [9, 11, 12]

J

JSON JavaScript Object Notation [6, 7, 21, 41–47, 54, 55, 59, 76, 82, 87]

L
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Acronyms

LSASS Local Security Authority Subsystem Service [89]

M

M2M many-to-many [70, 93]

M2O many-to-one [71, 93]

MAC Media Access Control [4, 42, 44]

MAP maximum a posteriori [49]

mDNS multicast Domain Name System [45, 47]

MIL Multi-instance learning [8–15, 17, 19, 20, 23, 28, 29, 42, 52, 53]

ML Machine learning [2–4, 6, 7, 11, 13, 16, 20, 41, 43, 47, 76]

P

PR Precision-Recall [62, 63, 73, 94–97]

PTP Probabilistic threat propagation [65, 74, 75, 94]

R

RBF Radial Basis Function [47]

ROC Receiver Operating Characteristic [62, 63, 73, 94–97]

S

SLD second-level domain [66, 67, 69, 70]

SSA Static Single Assignment [31]

SSDP Simple Service Discovery Protocol [45]

SVM Support Vector Machine [10–13, 16, 47]

T

TLS Transport Layer Security [45, 69, 71, 92, 93]

U

UPnP Universal Plug and Play [45, 47]

URL Uniform Resource Locator [3]

X

XML eXtensible Markup Language [6, 21, 41, 45, 59, 61, 63, 76, 87, 89]
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