
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

INDEXING OF BIG TEXT DATA AND SEARCHING IN
THE INDEXED DATA
INDEXACE ROZSÁHLÝCH TEXTOVÝCH DAT A VYHLEDÁVÁNÍ V ZAINDEXOVANÝCH DATECH

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. DAVID KOZÁK
AUTOR PRÁCE

SUPERVISOR Ing. JAROSLAV DYTRYCH, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2020



Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia
(DCGM)

Academic year 2019/2020

Master's Thesis Specification
Student: Kozák David, Bc.
Programme: Information Technology     Field of study: Information Systems
Title: Indexing of Big Text Data and Searching in the Indexed Data
Category: Web
Assignment:

1. Study indexing approaches and tools suitable for big data.
2. Get acquainted with MG4J tool and with semantically enriched data available in the

Knowledge Technology Research Group at FIT BUT.
3. Design a distributed system for indexing large textual data and semantic querying over

the data. Focus on defining appropriate interfaces between system components and on
the stability of the system as a whole.

4. Implement the designed solution and perform tests over the real big data.
5. Evaluate your work and create a brief poster presenting it.

Recommended literature:
According to the supervisor's recommendation

Requirements for the semestral defence:
Items 1 to 3.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Dytrych Jaroslav, Ing., Ph.D.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: May 20, 2020
Approval date: November 1, 2019

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/22961/2019/xkozak15 Strana 1 z 1



Abstract
The topic of this thesis is semantic searching over big textual data. The goal is to design
and implement a search engine that queries the semantically enhanced documents efficiently
and has a user friendly interface for working with the results. Firstly, state of the art
solutions along with their strengths and shortcomings are analyzed. Then a design for new
search engine is presented along with a specialized query language. The system consists of
components for indexing and searching the documents, management server, compiler for
the query language and two clients, web based and command line. The engine has been
successfully designed, developed and deployed and is available via the Internet. As a result
of that, the possibility of using of the semantic searching is available to a wide audience.

Abstrakt
Tématem této práce je sémantické vyhledávání ve velkých textových datech. Cílem je
navrhnout a implementovat vyhledávač, který se bude efektivně dotazovat nad sémanticky
obohacenými dokumenty a prezentovat výsledky uživatelsky přívětivým způsobem. V práci
jsou nejdříve analyzovány současné sémantické vyhledávače, spolu s jejich silnými a slabými
stránkami. Poté je přednesen návrh nového vyhledávače s vlastním dotazovacím jazykem.
Tento systém se skládá z komponent pro indexaci a dotazování se nad dokumenty, manage-
ment serveru, překladače pro dotazovací jazyk a dvou klientských aplikací, webové a kon-
zolové. Vyhledávač byl úspěšně navržen, implementován i nasazen a je veřejně dostupný na
Internetu. Výsledky práce umožňují široké veřejnosti využívat sémantického vyhledávání.

Keywords
search engine, semantic enhancement, MG4J, compiler, indexation, searching, annotation,
big data

Klíčová slova
vyhledávač, sémanticky obohacené texty, MG4J, překladač, indexace, vyhledávání, anotace,
big data

Reference
KOZÁK, David. Indexing of Big Text Data and Searching in the Indexed Data. Brno,
2020. MasterŠs thesis. Brno University of Technology, Faculty of Information Technology.
Supervisor Ing. Jaroslav Dytrych, Ph.D.



Rozšířený abstrakt
Tématem této práce je sémantické vyhledávání ve velkých textových datech. Výzkumná
skupina znalostních technologií (KNOT Ű Knowledge Technology Research Group) na
Fakultě informačních technologií Vysokého učení technického v Brně disponuje skupinou
nástrojů pro zpracování přirozeného jazyka, která umožňuje analyzovat dokumenty psané
v přirozených jazycích a přidávat k nim další metainformace. Tyto informace mohou být
buď syntaktické, jako například lemma slov a jejich pozice ve větě a odstavci, či sémantické,
například entity typu člověk či místo. Každá z těchto entit má svoji vlastní sadu atributů
dále rozšiřujících kontext dokumentu. Například u entity typu osoba nalezneme atributy
jméno, datum narození apod. Výstupem tohoto zpracování je velké množství textových
dat. Řádově mluvíme o milionech dokumentů zabírajících stovky GB místa na disku. Už
samo o sobě se jedná o velký kus dobře odvedené práce, nicméně tyto dokumenty jsou spíše
vhodné pro automatické zpracování než pro čtení člověkem. Navíc je jich takové množství,
že bez možnosti v těchto sémanticky obohacených datech rychle vyhledávat je jejich použití
omezeno. Cílem této práce je navrhnout a implementovat vyhledávač, který by se efek-
tivně dotazoval nad dokumenty a zároveň umožňoval využít v dotazech všechny dostupné
metainformace.

Několik vyhledávačů s podporou pro sémantické vyhledávání jako například Mimir či
Sketch Engine již bylo implementováno dříve. Jeden takový vyhledávač byl dokonce vyv-
inut interně uvnitř KNOT. Nicméně, žádný z nich nesplňoval požadavky kladené na nový
vyhledávač. Některé vyhledávače nepodporovaly entity s atributy, jiné byly zase až příliš
komplexní, zahrnující příliš mnoho dalších služeb, které pro tento účel nebyly potřebné.
Jejich využití by proto bylo těžkopádné. Vyhledávač dříve implementovaný členy KNOT
splňoval požadavky nejlépe, naneštěstí ale nebyl stabilní a jeho kód byl těžko udržovatelný.
Proto bylo rozhodnuto, že se vytvoří nový vyhledávač, ve kterém bude kladen důraz právě
na stabilitu a udržovatelnost.

V práci byl nejdříve proveden důkladný návrh vyhledávače jakožto distribuovaného
systému skládajícího se z komponent různých typů. Pro indexování a přípravu dat byla
navržena komponenta IndexBuilder, pro vyhodnocení dotazu komponenta IndexServer.
Tyto komponenty interně využívají pro indexování dokumentů MG4J – Managening Giga-
bytes for Java, proto v práci naleznete i sekci diskutující tuto knihovnu. Dotazy mohou
přijít ze dvou různých klientů. Prvním z nich je WebClient, tvořící primární uživatel-
ské rozhraní systému. Druhým je ConsoleClient, sloužící pro testovaní a automatizované
dotazování. Tyto komponenty jsou tvořeny z komplexní hierarchie modulů umožňujících
efektivně znovuvyužívat jejich funkcionalitu. V práci byly také navrženy čtyři různé datové
struktury pro přenos anotovaného textu mezi komponentami.

Pro dotazování nad sémanticky obohacenými texty je třeba speciálního dotazovacího
jazyka. Tento jazyk by měl být dostatečně expresivní, aby umožňoval dotazovat se s pomocí
všech dostupných metadat, ale zároveň by měl být jednoduchý na pochopení, aby s ním byli
schopní pracovat i lidé z jiných domén než informační technologie. Jako součást této práce
byl vyvinut jazyk Enticing Query Language (EQL), který by měl splňovat výše uvedené
požadavky. EQL rozšiřuje sémantiku vyhledávacího jazyka knihovny MG4J o dotazování
se nad entitami s atributy, globální omezení pro deĄnici vztahů mezi entitami a omezení
vyhledávání na konkrétní dokument. Vzhledem k širší sémantice bylo v rámci práce nutné
navrhnout vlastní vyhledávací algoritmy, které budou tato dodatečná omezení schopny
vyhodnotit. Tímto byla také otevřena cesta k úpravě způsobu vyhodnocení dotazů tak,
aby byly vráceny všechny kombinace výsledků, které se v dokumentu nacházejí. Překladač
tohoto jazyka byl plně integrován do infrastruktury vyhledávače.



Vyhledávač byl úspěšně navržen, implementován, testován a nasazen do provozu. Jádro
projektu bylo dále rozšířeno o monitorovací a administrativní infrastrukturu, konĄgurační
doménově speciĄcký jazyk, podporu pro asynchronní načítání výsledků a inteligentní vyh-
ledávací řádek zobrazující výsledky syntatických a sémantických kontrol. Platforma může
být dále rozšířena například přidáváním nových typů indexačních serverů, nativním mobil-
ním klientem či podporou pro dědičnost mezi entitami.



Indexing of Big Text Data and Searching in the
Indexed Data

Declaration
I hereby declare that this thesis was prepared as an original work by the author under the
supervision of Ing. Jaroslav Dytrych, Ph.D. The supplementary information was provided
by Doc. RNDr. Pavel Smrž, Ph.D. I have listed all the literary sources, publications and
other sources, which were used during the preparation of this project.

. . . . . . . . . . . . . . . . . . . . . . .
David Kozák
June 2, 2020

Acknowledgements
I would like to thank my supervisor, Ing. Jaroslav Dytrych, Ph.D., and Doc. RNDr. Pavel
Smrž, Ph.D for their professional help and guidance. I also want to thank Ing. Jan Doležal
for his guidance and support in the design process. Last but not least, I would like to thank
my parents for their neverending support.



Contents

1 Introduction 3

2 Indexing and searching inside search engines 4

2.1 Basic deĄnitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Techniques used in a search engine . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 MG4J Ű Managing Gigabytes for Java . . . . . . . . . . . . . . . . . . . . . 6

3 Semantic enhancement of natural languages 8

3.1 Basic deĄnitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Corpora processing tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 State of the art semantic search engines . . . . . . . . . . . . . . . . . . . . 12

4 Design of the search engine 16

4.1 Requirements analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
4.2 EQL Ű Enticing Query Language . . . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Component architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.4 Module architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.5 Transferring annotated text . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5 Used technology 32

5.1 Frontend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Implementation of the search engine 35

6.1 Eager result loading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Pagination and offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Enticing Query Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Encapsulating MG4J . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.5 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
6.6 Smart search bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
6.7 Enticing ConĄguration DSL . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

7 Testing and evaluation of the search engine 45

7.1 Types of tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.2 Overview of the testing module . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Testing the searching algorithms . . . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Performance measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5 Continuous Integration and Continuous Delivery . . . . . . . . . . . . . . . 48

1



8 Deployment of the search engine 49

8.1 Deployment scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.2 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.3 Management and monitoring infrastructure . . . . . . . . . . . . . . . . . . 50

9 Conclusion 53

Bibliography 55

A Contents of the included storage media 57

B Manual 58

B.1 Dependencies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.2 Build . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
B.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

C EQL Grammar 59

2



Chapter 1

Introduction

The topic of this thesis is semantic searching over big textual data. The Knowledge Technol-
ogy Research Group (KNOT)1 at the Faculty of Information Technology Brno University
of Technology (FIT BUT) has a Natural language processing (NLP) pipeline which can
analyse documents written in natural languages and add additional meta information to
them. Such information can be syntactic, such as lemma of the word or their position within
sentences and paragraphs, or semantic, such as entities like people and places. The output
of this pipeline is a big volume of textual data. It is already a great piece of work on its
own, but without the ability to query these semantically enhanced documents, their usage
is limited. The goal of this thesis is to design and develop a search engine that would query
the documents efficiently while allowing to use all the meta information in the queries.

A couple of search engines with support for semantic search such as Mimir or Sketch
Engine have been implemented before. One such engine has even been created internally
within KNOT2. However, none of those matched the requirements for the new engine. They
either did not provide support for entities with attributes or were way too complex for this
use case. The previous engine developed at KNOT was quite close, but unfortunately it
wasnŠt stable and the code was hard to maintain. ThatŠs why the decision was made to
create a new engine and design it with stability and maintainability in mind.

In order to query the semantic metadata, a special query language has to be used. This
language should be powerful enough to query all the entities inside semantically enhanced
documents but it should also be simple to understand, so that users from other domains can
use it as well. As a part of this thesis, such query language called EQL has been designed
and its compiler was integrated into the search engine infrastructure.

The structure of the text is as follows. The problem of searching and indexing is
described in the chapter 2. The process of semantic enhancement and its realization via
the Corpora processing pipeline is presented in the chapter 3. Various state of the art
semantic search engines along with their strengths and shortcomings are analyzed as well.
The chapter 4 presents the design of the new search engine called Enticing. The chapter 5
describes languages, libraries and frameworks used when developing Enticing. The chapter
6 contains more in-depth information about the platform. The chapter 7 describes how the
search engine was tested. The chapter 8 covers the deployment process. In the end, the
conclusion is given.

1https://www.fit.vut.cz/research/group/knot/
2http://knot.fit.vutbr.cz/projects.html

3

https://www.fit.vut.cz/research/group/knot/
http://knot.fit.vutbr.cz/projects.html


Chapter 2

Indexing and searching inside

search engines

This chapter describes the problem of indexing and searching in the context of search
engines. The section 2.1 contains basic deĄnitions used in the rest of the document. Typical
techniques used within search engines are described in 2.2. A search engine called MG4J is
presented in 2.3, as it is used internally within Enticing.

2.1 Basic deĄnitions

In this section, the basic terms used throughout the text are deĄned. Since this thesis is
a follow-up work of [14, 8], the terminology will be mostly identical as it was deĄned in [14]
with some modiĄcations and extensions.

Token

Token is a commonly used term in scientiĄc texts and itŠs deĄnition differs based on the
domain. For the purposes of this thesis, it can be deĄned as a sequence of non-whitespace
characters such as letters, numbers and special characters.

Index

The Oxford dictionary deĄnes it as an alphabetical list of names, subjects, etc. with
reference to the pages on which they are mentioned1.

In [14], they deĄned index as a structure allowing a faster access to a certain piece of
information without the need to process all the data. This deĄnition is well suited for this
thesis, so it will be adopted.

Indexing

Indexing can be deĄned as creating tables (indexes) that point to the location of folders, Ąles
and records. Depending on the purpose, indexing identiĄes the location of resources based
on Ąle names, key data Ąelds in a database record, text within a Ąle or unique attributes
in a graphics or video Ąle2. For our purposes, indexing will be used to describe the process

1https://www.lexico.com/en/definition/index
2https://www.pcmag.com/encyclopedia/term/44896/indexing

4

https://www.lexico.com/en/definition/index
https://www.pcmag.com/encyclopedia/term/44896/indexing


of creating all the metadata necessary to query the semanticaly enhanced documents. In
Enticing, indexing is performed as a preprocessing step before the services are started.

Searching

Searching can be deĄned as the process of looking up a certain piece of information using
a query. In this thesis, that piece of information will be snippets of texts from documents
and the query will be written in EQL.

Snippet

If a query matched a document, the result has to be presented to the user. One of the most
common forms of presenting search results are snippets. A snippet is a part of a document
that matched given query, possibly extended with some additional information about the
evaluation of the searching algorithm.

2.2 Techniques used in a search engine

This section focuses on some of the underlying principles, algorithms and data structures
that are used inside state of the art search engines, which are relevant for our purposes.

Inverted Indexes

An inverted index over a collection of documents contains, for each term of the collection,
the set of documents in which the term appears and additional information such as the
number of occurrences of the term within each document, and possibly their positions [18].
This data structure is used inside search engines to efficiently determine which documents
contain the speciĄed words.

Query expansion

Modern web search engines rely on query expansion, an automatic or semi-automatic mech-
anism that aims to rewrite the user intent (i.e., a set of keywords, maybe with additional
context such as geographical location, past search history, etc.) as a structured query built
upon a number of operators [5].

Tree based evaluation of the query

One of the most used data structures for representing a search query is a tree [14]. The
leaves represent keywords from the query and the intermediary nodes represent operators.
The searching algorithm can then proceed in the bottom up way as follows. First, all the
leaves of the tree are evaluated and the results are stored within them. Then their parents
are evaluated, combining results from their children. The execution proceeds all the way
to the root, which represents the whole query.

Semantic models of searching

The semantic of the structured query is given by the semantic model. The simplest one
is the boolean model, where only conjuctions, disjunctions, negations and keywords are
allowed. Unfortunately, this model does not provide any information regarding the fact

5



how the document was matched by the query. MG4J uses a different model, which is called
Minimal Interval Semantics. It uses intervals of natural numbers that are incomparable
towards inclusion to represent the semantics of a query. Each interval is a witness of the
satisĄability of the query, and deĄnes a region of the document that satisĄes the query [5].
After the bottom up algorithm Ąnishes, all intervals that are stored within the root of the
query represent a successful match.

Parallel execution

Since the amount of data that has to be processed for every query is huge, it is useful to
distribute the data to multiple servers (and possibly multiple collections on each server) to
paralelize the process. However, one must Ąnd the optimal degree of distribution, because
the cost of combining the results might eventually overcome the speed gain. And even
before the querying itself, the process of creating the indexes is time-consuming, therefore
it is better to split the inputs and do it in parallel.

2.3 MG4J Ű Managing Gigabytes for Java

This section introduces MG4J, a free full-text search engine for large documents written in
Java [4]. It is developed under the GNU Lesser General Public License3 at the University
degli Studi di Milano4. MG4J is used internally inside Enticing. The engine and the research
around it is an extensive topic that does not Ąt into the scope of one section. Therefore only
basic introduction and parts relevant for this thesis are covered. For additional information,
please refer to the manual [3].

MG4J has a query language with very expressive set of operators allowing to build com-
plex queries. These operators are implemented using new very efficient search algorithms
[3]. It supports searching over multiple indexes and combining the results. On top of that,
MG4J is open source, so it is possible to dive into the source code when the answers cannot
be found in the documentation. Unfortunately, it has no support for entities with attributes
and relationships between them. Nevertheless, the aforementioned properties make it a very
suitable backend for Enticing.

Indexing in MG4J works in a sequence of steps. The Ąrst one is scanning documents
and creating batches. Firstly, each document is given an identiĄer, as can be seen in the
table 2.1. Afterwards, all words within documents are given identiĄers, which can be seen
in the table 2.2. From two previous steps, triples (v, p, d) are created, where v stands for
an id of a word, d is an id of the document and p is a position within document. Example
of these triplets is given in the table 2.3. The inverted index is then created by sorting
these triplets based on the id of the word, which you can see in the table 2.4. The resulting
batches have to be merged again to create a full index [8].

3https://www.gnu.org/licenses/lgpl-3.0.en.html
4http://www.unimi.it/

6

https://www.gnu.org/licenses/lgpl-3.0.en.html
http://www.unimi.it/


IdentiĄer Document
0 I love you
1 God is love
2 Love is blind
3 Blind justice

Table 2.1: Document identiĄers

IdentiĄer Word
0 blind
1 god
2 i
3 is
4 justice
5 love
6 you

Table 2.2: Word identiĄers

Triples Word Document
(2,0,0) i I love you
(5,0,1) love I love you
(6,0,2) you I love you
(1,1,0) god God is love
(3,1,1) is God is love
(5,1,2) love God is love
(5,2,0) love Love is blind
(3,2,1) is Love is blind
(0,2,2) blind Love is blind
(0,3,0) blind Blind justice
(4,3,1) justice Blind justice

Table 2.3: Triplets before sorting

Word Locations
0 (blind) (0,2,2), (0,3,0)
1 (god) (1,1,0)

2 (i) (2,0,0)
3 (is) (3,1,1), (3,2,1)

4 (justice) (4,3,1)
5 (love) (5,0,1), (5,1,2), (5,2,0)
6 (you) (6,0,2)

Table 2.4: Inverted index

7



Chapter 3

Semantic enhancement of natural

languages

This chapter explains the topic of semantic enhancement. Related basic deĄnitions are
provided in 3.1. The section 3.2 describes how semantically enhanced documents are created
within KNOT. A comparison of three state of the art search engines with support for
semantic search is given in 3.3.

3.1 Basic deĄnitions

The key deĄnition in semantic enhancement is Semantic annotation. Semantic annota-
tions are metadata assigned to other data in order to increase their context and seman-
tics [14]. These annotations are usually derived from unstructured content using Natural
language processing and afterwards they are encoded in a structured format suitable for
semantic search [16].

Semantic search over documents aims to Ąnd information that is not based just on
the presence of words, but also on their meaning. It is gradually establishing itself as the
next generation search paradigm, which can better satisfy a wider range of information
needs, as compared to traditional full-text search. In the case of semantic search, what is
being indexed is typically a combination of words, formal knowledge typically expressed in
an ontology, and semantic annotations mentioning ontological concepts in the text [16].

3.2 Corpora processing tools

This section describes the corpora processing pipeline1 which is used within KNOT to create
semantically enhanced documents.

Input data

In [14, 8], the input data was CommonCrawl and Wikipedia. The English wikipedia pub-
lishes a dump2 of itŠs whole database every month, which can be used for various analysis,
statistic measurements, etc.

1http://knot.fit.vutbr.cz/corpproc/corpproc_en.html
2https://dumps.wikimedia.org/

8

http://knot.fit.vutbr.cz/corpproc/corpproc_en.html
https://dumps.wikimedia.org/


CommonCrawl3is a project that maintains an open repository of web crawl data.
For the practical part of this thesis, the data from Wikipedia was chosen, but in fact

any source of input data in the mg4j format can be used. The details of this format are
explained in the following subsection.

Stages of the pipeline

This section describes the stages of the processing pipeline along with their inputs and
outputs.

Verticalization

The input of verticalization can be a warc.gz archive, a dump of Wikipedia or a webpage in
the HTML format. A meaningful text is extracted from web pages using the tool Justext4.
During this step the HTML pages are parsed. The output of verticalization is a Ąle with
three columns, where each line describes one token. It still contains some XML tags, but
it is not a valid XML document anymore. The tags only serve as metainformation about
the text [8].

Deduplication

As the name suggests, the goal of deduplication is to remove duplicit pages and duplicit
pieces of text within pages [8]. The tool used for deduplication was inspired by a tool called
Onion5. The deduplication consists of two phases. In the Ąrst the URL of the document
is used to detect duplicit documents. If the URL is unique, the hash of the text of the
document is computed and compared with hashes of previously processed documents. If
the document passes this test, it is assumed to be unique. Then, the second stage is
performed in which the content of the document is checked for duplicities, again using
hashes. The output of this stage are Ąles in the same format, without the duplicities.

Tagging

In this stage a tool TreeTagger6 is used to identify parts of speech. The goal is to identify
the type of each token using a morphological analysis [8].

Parsing

This stage performs a syntactical analysis using a tool called MDParser7. Tokens are
enhanced with various syntactical information.

SEC

In the end, a tool called SEC is used, which identiĄes entities within documents. It was
developed by Jan Doležal in his MasterŠs thesis [7]. The output of this stage are Ąles in the
mg4j format described in the subsection 3.2. Some of the most frequently used searches

3https://commoncrawl.org/
4http://corpus.tools/wiki/Justext
5http://corpus.tools/wiki/Onion
6http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
7http://mdparser.sb.dfki.de/

9

https://commoncrawl.org/
http://corpus.tools/wiki/Justext
http://corpus.tools/wiki/Onion
http://www.cis.uni-muenchen.de/~schmid/tools/TreeTagger/
http://mdparser.sb.dfki.de/


are for people, locations, organisations, and other named entities [16]. Therefore this step
provides very useful pieces of information.

Mg4j Ąle format

This subsection describes the mg4j Ąle format, which is the output of the Corpora processing
pipeline. It is a token separated value (tsv) format, where each column has a well deĄned
meaning. ItŠs current format is deĄned in the table 3.1.

Number Name Description
1 position position within sentence
2 token the token itself
3 tag token type
4 lemma basic shape of the token
5 parpos token connected to current token
6 function function of the token within sentence
7 parword value of token identiĄed by parpos
8 parlemma the basic shape of the parword
9 paroffset offset between token and parpos
10 link source of the data
11 length number of tokens connected with this token
12 docuri uri of the document
13 lower token in lowercase
14 nerid id of the entity
15 nertag type of the entity

16-25 param0 Ű param9 entity attributes
26 nertype type of SEC/NER
27 nerlength length of the entity

Table 3.1: MG4J File format

Columns 16-25 are polymorphic. Their meaning differs based on the entity, which is
determined by the value in the nertag column. The exact meaning of the attribute columns
as of writing this section is deĄned in the table 3.2, but please note that the types of entities
and their attributes change over time.

10



en
ti

ty
pa

ra
m

0
pa

ra
m

1
pa

ra
m

2
pa

ra
m

3
pa

ra
m

4
pa

ra
m

5
pa

ra
m

6
pa

ra
m

7
pa

ra
m

8
pa

ra
m

9
p

er
so

n
ur

l
im

ag
e

na
m

e
ge

nd
er

bi
rt

hp
la

ce
bi

rt
hd

at
e

de
at

hp
la

ce
de

at
hd

at
e

pr
of

es
si

on
na

ti
on

al
it

y
ar

ti
st

ur
l

im
ag

e
na

m
e

ge
nd

er
bi

rt
hp

la
ce

bi
rt

hd
at

e
de

at
hp

la
ce

de
at

hd
at

e
ro

le
na

ti
on

al
it

y
lo

ca
ti

on
ur

l
im

ag
e

na
m

e
co

un
tr

y
ar

tw
or

k
ur

l
im

ag
e

na
m

e
fo

rm
da

te
b

eg
un

da
te

co
m

pl
et

ed
m

ov
em

en
t

ge
nr

e
au

th
or

ev
en

t
ur

l
im

ag
e

na
m

e
st

ar
td

at
e

en
dd

at
e

lo
ca

ti
on

m
us

eu
m

ur
l

im
ag

e
na

m
e

ty
p

e
es

ta
bl

is
he

d
di

re
ct

or
lo

ca
ti

on
fa

m
ily

ur
l

im
ag

e
na

m
e

ro
le

na
ti

on
al

it
y

m
em

b
er

s
gr

ou
p

ur
l

im
ag

e
na

m
e

ro
le

na
ti

on
al

it
y

na
ti

on
al

it
y

ur
l

im
ag

e
na

m
e

co
un

tr
y

da
te

ur
l

im
ag

e
ye

ar
m

on
th

da
y

in
te

rv
al

ur
l

im
ag

e
fr

om
ye

ar
fr

om
m

on
th

fr
om

da
y

to
ye

ar
to

m
on

th
to

da
y

fo
rm

ur
l

im
ag

e
na

m
e

m
ed

iu
m

ur
l

im
ag

e
na

m
e

m
yt

ho
lo

gy
ur

l
im

ag
e

na
m

e
m

ov
em

en
t

ur
l

im
ag

e
na

m
e

ge
nr

e
ur

l
im

ag
e

na
m

e

Table 3.2: Currently used entities and their attributes

11



Figure 3.1: Example of an mg4j file

An example of an mg4j Ąle can be seen in the Ągure 3.1.

3.3 State of the art semantic search engines

This section covers three state of the art search engines which support semantic search to
a various extent. Their strengths and shortcomings are analyzed, as these engines were
used as inspiration when designing Enticing.

Mimir

Mimir is a semantic search engine developed at the The University of Sheffield. It was
developed as a part of the Gate infrastructure for language engineering8. Using index
federation and cloud-based deployment, it can scale up to 150 millions documents [16]. It
supports hybrid queries that arbitrarily mix full-text, structural, linguistic and semantic
constraints [16]. It internally combines different indexing technologies. The full-text search
is done using MG4J and a triple store queried using SPARQL is then used for accessing
Linked Open Data resources. The overview can be seen in the Ągure 3.2.

Another interesting feature of Mimir is that it uses direct indexes in addition to the
widely used inverted indexes, in order to support both information discovery and informa-
tion seeking searches [16].

Queries in Mimir are trees, with compound query operators as intermediary nodes and
base queries as leaves. They are evaluated using a bottom up algorithm. During the
evaluation of the query, token query executors are created for each leaf. They gather all the
hits in the document. Then their parents are processed, performing compound operations

8https://gate.ac.uk/

12

https://gate.ac.uk/


on the intervals obtained by their children. This process is carried up all the way to the
root of the tree, which then contains intervals that match the whole query [16].

Mimir is a very powerful engine, even too powerful for our use case. Most of its func-
tionality is not necessary, therefore using it would be too heavyweight.

Figure 3.2: Mimir overview Taken from [16]

Sketch Engine

Sketch Engine is a tool for analyzing how languages work. It analyses large text corpuses
in order to Ąnd out what is typical and what is rare for a given language. It houses more
than 500 corpora in more than 90 languages [12].

It presents search results in three forms, word sketches, concordances or word lists.
The word sketch processes the wordŠs collocates and other words in its surroundings.

The results are organized into categories, called grammatical relations such as words that

13



serve as an object of the verb, words that serve as a subject of the verb, words that modify
the word [12].

Word lists serve display the frequency of each word in the documents.
From our perspective, the most interesting form of presenting the results are the con-

cordances. In this mode we can search words, phrases, tags, documents, etc. and display
them along with their context. An example can be seen in the Ągure 3.3.

Figure 3.3: SketchEngine Concordance view

Even though SketchEngine is an interesting piece of work that can be used for studying
languages, it was not designed to be a publicly available search engine. On the other hand,
some of its features, mainly the concordances, can be used by our search engine as well.

Previous system at FIT BUT

One semantic search engine was developed within KNOT. Its original author was Jan
Kouril9 and it was extended by Sergey Panov in [14] and Katarina Gresova in [8]. Its archi-
tecture was the following. There were two main components, Webserver and IndexDeamon.
IndexDeamon was able to index documents and query them. Webserver provided user in-
terface for the system. You can Ąnd a screenshot of the old user interface in the Ągure 3.4.
It was taken from [8] as the system is no longer in use.

For querying the documents, package Query along with a query language mg4j-eql was
developed in [14]. The Query package was created so that it could be used in various clients.
It was later integrated into the old webserver in [8]. K. Gresova also made several changes
to the webserver to make it more Ćexible. However, the original code was not written in
a maintainable way. And, as it typically happens with software products, its quality got
only worse over time. On top of that, its implementation was not fully Ąnished, because

9https://www.fit.vut.cz/person/ikouril/

14

https://www.fit.vut.cz/person/ikouril/


it was out of the scope for a bachelor thesis. And because of the maintainability issues, it
was hard to add the missing pieces of functionality or provide bug Ąxes. However, a lot of
ideas behind the old design could be reused in Enticing.

Figure 3.4: UI of the previous solution Taken from [8]

15



Chapter 4

Design of the search engine

This chapter covers the design of the search engine. The section 4.1 contains the requirement
analysis. The design of EQL is described in 4.2. In the section 4.3, components of the
platform are presented. The architecture of individual modules is given in 4.4. The section
4.5 covers the data structures designed for representing and transferring the annotated text.

4.1 Requirements analysis

This section contains the requirements analysis. Firstly, an informal speciĄcation is given.
Afterwards, a use case diagram is presented and described.

Search engine speciĄcation

Enticing is a search engine for querying semantically enhanced documents available in the
Knowledge Technology Research Group. Users are provided with a special query language
called Enticing Query Language (EQL) allowing them to query not just the text of the doc-
uments, but also metadata assigned to it. Such metadata can be syntactic, such as lemmas
of the words, parts of speech, positions within sentences and paragraphs, or semantic, such
as entities like people, places and events. These entities may have various attributes. For
example person might have attributes like name and birthdate. All these attributes can be
used inside queries. The exact format of metadata is dynamic and is to be given as a part
of the system conĄguration.

Documents are grouped into corpuses, such as Wikipedia and CommomCrawl. The
system supports multiple corpuses simultaneously and provides an easy way how to switch
between them.

Search results are presented as snippets, which are parts of the text of the documents
that match the given query. Every snippet can be repeatedly extended until the full docu-
ment length is reached. Alternatively, it is also possible to display the whole document in
a dialog window. Users can also navigate to the original source, from which the semantically
enhanced document was created. The metadata should be presented as tooltips.

Part of the solution is a user management system, which handles different types of users
with different privileges. Each user can save his search conĄguration, including the amount
of results per page. For each corpus, they can also select and save only a subset of the
metadata it provides.

16



User roles

In Enticing, users can have several roles. The roles are ordered and each of the more
privileged roles have some extra privileges on top of the previous ones.

• User Ű can only edit his own settings and select metadata for each corpus

• Corpus maintainer Ű can add, edit and delete corpus conĄgurations

• Admin Ű can manage user roles of other users

The text above can be summarized using the use case diagram shown in the Ągure 4.1.
It provides use cases from the speciĄcation above as well as a few other that were added
later during development.

4.2 EQL Ű Enticing Query Language

EQL is a language which can be used to query semantically enhanced documents on the
Enticing platform. The queries can be as simple as a few words, but also very complex,
containing logical operators, subqueries over multiple indexes or constraints further limiting
the results.

The rest of the section is structured as follows. First part is a practical guide that shows
how to use EQL. It starts with a simple query and gradually adds more operators to it to
satisfy the requirements. Then, a list of all operators that EQL supports is given along
with their description.

Practical guide

LetŠs start with a simple query, whose purpose will be to search for documents talking about
Bonaparte visiting Jaffa1. Most people would probably write a query like the following one.

Bonaparte visits Jaffa

For sure, this query is a good starting point, but there is quite a lot of place for im-
provement. First thing that one might be tempted to do is to relax the ordering of the
words, so that sentences like Jaffa visited by Bonaparte are matched as well. But since this
requirement is quite common, it is actually the default behavior. On the other hand, the
ordering of words can be enforced using the order operator. For some queries this might
be very useful. LetŠs consider the following one.

Gauguin < influenced < Picasso

This query will search for any document where these three words appear in the speciĄed
order. Sometimes it might be important for the words to stand next to each other. For
that, the sequence operator can be used.

"Gauguin influenced Picasso"

1It is a reference to a painting called Bonaparte Visiting the Plague Victims of Jaffa, see https://

en.wikipedia.org/wiki/Bonaparte_Visiting_the_Plague_Victims_of_Jaffa for more details.

17

https://en.wikipedia.org/wiki/Bonaparte_Visiting_the_Plague_Victims_of_Jaffa
https://en.wikipedia.org/wiki/Bonaparte_Visiting_the_Plague_Victims_of_Jaffa


Figure 4.1: Use case diagram

18



LetŠs go back to the original Bonaparte visits Jaffa now. Even though the order is not
important, it might be important for these words to appear close to each other. Without any
modiĄcation, the words can be anywhere within the document. To change that, Context

constraints can be used.

Bonaparte visits Jaffa ctx:par

Bonaparte visits Jaffa ctx:sent

These two queries require the words to appear in one paragraph or in one sentence,
respectively. LetŠs go with the latter option for now. Using just one verb might be a bit
too speciĄc. LetŠs add a second option, the verb explore. The or operator can be used for
that.

Bonaparte ( visits | explores ) Jaffa ctx:sent

Now the search would return documents containing words Bonaparte, Jaffa and either
visited or explored, or both. Note that the parenthesis are not necessary in this case. The
query Bonaparte visits | explores Jaffa ctx:sent has the same meaning, but the
Ąrst version might be a bit more explicit. Without the parenthesis, it might look like both
words on each side are part of the or, which is not the case. To change the precedence,
parenthesis can be used: (Bonaparte visits) | (explores Jaffa) ctx:sent.

LetŠs focus on the verbs again. There might be documents talking about Bonaparte
visiting Jaffa, but the shape of the verb visit can be different. For example it might be
written in the past tense. To match documents like that, index operator can be used.

So far the query used only the default index, which is token. This index contains words
from the original document. The metadata about words can be found in the other indexes.
For example, index lemma contains the lemma for each word.

Bonaparte lemma:visit|explore Jaffa ctx:sent

So far only basic indexes, logic operator and constraints were used. But the semantic
enhancement offers a lot more. In EQL, the query can contain entities instead of exact
words. For example, there might be a sentence talking about Bonaparte and Jaffa, but it
uses pronouns instead of the direct names. Using entities in the query, such sentences can
be matched as well.

person.name:Bonaparte lemma:visit|explore Jaffa ctx:sent

Word Bonaparte was replaced with entity person.name:Bonaparte. In this example
person and name are just another indexes that can be queried, just like lemma or token.
This query will be looking for an entity of type person whose name is Bonaparte. It is also
possible to look for any person using the index operator.

nertag:person lemma:visit|explore Jaffa ctx:sent

Nertag is an index that contains the type of the entity. Jaffa can be changed the same
way as Bonaparte.

person.name:Bonaparte lemma:visit|explore place.name:Jaffa ctx:sent

19



By applying a few operators, the resulting query became more generic and therefore it
matches more documents, while keeping the same requirements.

There is still one more group of operators to talk about, global constraints. To
illustrate what they are for, letŠs search for two artists and a relationship between them.
The skeleton of the query is artist influenced artist, but a few operators are needed
to make the query more generic.

nertag:person|artist < lemma:((influence|impact) | (pay < tribute))

< nertag:person|artist ctx:par

This query is looking for documents where there is an entity followed by a word or words
followed by an entity. Both entities should be of type person or artist. The text between
them must contain either a single word, whose lemma is either inĆuence or impact, or
Špay tributeŠ, again in any form thanks to using the lemma index. On top of that, this
whole query is limited to a single paragraph. But unfortunately, there is a problem. There
is no requirement that says that these two entities should be different. To express such
requirements, global constraints can be used. Firstly, parts of the query that should
be used within the constraint are identiĄed using the assignment operator, then the
constraint itself can be expressed.

influencer:=nertag:person|artist <

lemma:(influence|impact) | (pay < tribute) <

influencee:=nertag:person|artist ctx:par

&& influencer != influencee

The constraint above ensures that the two artist are different. Notice that no attributes
were speciĄed for the comparison. The default index for comparison is nerid, which contains
a unique identiĄer for each entity. It is possible to specify any attribute for comparison.

... && influencer.name != influencee.name

In the end, one more example is given.

a:=nertag:person|artist < lemma:visit < b:=nertag:person|artist

place.name:Barcelona nertag:event^event.date:[1/1/1960..12/12/2012]

ctx:par && a != b

This query is looking for documents talking about one artist visiting another artist in
Barcelona during an event that happened between 1/1/1960 and 12/12/2012. The context
is limited to a single paragraph and global constraints are used to ensure that the two
artists are different. Notice that when specifying an event, nertag:event ^ event.date

was used. nertag:event requires that entity of type event has to be in the document while
event.date adds a speciĄc requirement on that event. This form is actually required inter-
nally while processing the query, but it is not necessary to do it explicitly, as the compiler
performs such rewrites on its own. For example place.name:Barcelona is compiled to
nertag:place ^ place.name:Barcelona. It was mentioned here to provide an opportu-
nity to introduce the alignment operator ^, which allows to express multiple requirements
over the same word or entity in the document.

20



Operators

The operators can be divided into four categories.

Basic operators

• Implicit and Ű A B Ű If no operator is speciĄed, and is chosen implicitly. That
means that all mentioned words have to be in the document, in any order.

• Order Ű A < B Ű A should appear before B, but they do not have to be next to each
other.

• Sequence Ű "A B C" Ű A, B and C have to appear in this order next to each other.

• And Ű A & B Ű Both A and B have to be in the document, in any order.

• Or Ű A | B Ű At least one of A, B has to be in the document.

• Not Ű !B Ű B should not be in the document.

• Parenthesis Ű (A | B) & C Ű Parenthesis can be used to build more complex logic
expressions.

• Proximity Ű A B ~ 5 Ű A and B should appear at most 5 positions apart.

Index operators

To work with meta information, one has to specify index for querying. That can be done
using the following operators.

• Index Ű index:A

Look for document, where value A is present at given index. For example, lemma:work

will match any document in which any word, whose lemma is work, appears, e.g. works,
working, worked, etc.

It is also possible to ask more complex queries such as index:A|B|C. Apart from another
index operator or entity operator, a query of any form can be used.

When working with entities, it is possible to query their attributes as well. Querying
all the people with name Picasso can be done using query person.name:Picasso.

If the index contains only integers or dates, range operator can be used to specify an
interval, such as date:[1/1/1970..2/2/2000] or person.age:[20..30].

• Align Ű index1:A ^ index2:B

The align operator allows to express multiple requirements over one word. For exam-
ple, it is possible to look for a noun, whose lemma is do. This query can be written as
pos:noun ^ lemma:do.

Context constraints

The default context for searching is the whole document. For more granular queries, it is
possible to add the following limitations to the query using a special index context or ctx,
both options work.

• Paragraph Ű ctx:par Ű Limits the query to one paragraph only.

• Sentence Ű ctx:sent Ű Limits the query to one sentence only.

21



Document constraints

It is also possible to limit the search to a single document or a group of them. This can be
done using a special entity called document or doc. Both options work.

• UUID Ű doc.uuid=’...’ Ű Limits the query to the document with speciĄed UUID.

UUID identiĄes the document internally, but it is not possible to determine it by looking at
the original document. The user knows it only after seeing the document meta information,
so he canŠt type it into his Ąrst query. To compensate for that, the title of the document
or its url can be used as well. But please note that these are not always unique, therefore
results from multiple documents matching the requirements might be returned.

Global constraints

Sometimes it is necessary to specify a relationship between multiple entities that canŠt be
expressed using the previous operators. One example might be searching for documents
talking about two artists inĆuencing each other. A simple query for that would be the
following.

nertag:artist < lemma:influence < nertag:artist

But there is a problem with this query. It might return irrelevant snippets, because
there is no requirement that the two artist should be different. This is where the global
constraints come into play. The global constraint is a predicate which is separated from the
query by the symbols &&. The constraint consists of one or more equalities and inequalities
connected using logical operators and, or, not and parenthesis, if necessary.

In order to use the global constraints, relevant parts of the query have to be identiĄed
Ąrst.

• Assignment Ű x:=A Ű Assign an identiĄer to a certain part of the query.

Afterwards, it is possible to write queries with global constraints.

1:=nertag:artist < lemma:influence < 2:=nertag:artist && 1.nerid != 2.nerid

To increase the readability, string identiĄers can be used instead of numbers.

influencer:=nertag:artist < lemma:influence < influencee:=nertag:artist

&& influencer.nerid != influencee.nerid

4.3 Component architecture

This section contains the high-level architecture of Enticing. It consists of 4 main compo-
nents. The diagram in the Ągure 4.2 presents these components along with their relation-
ships. Each of them will now be described.

Webserver

Webserver is the Ąrst and only component common users will interact with. It is also
the only one that is meant to be publicly accessible. All requests should pass through it
before being forwarded further into the system. It exposes an API that can be used by any

22



Figure 4.2: Components Components of the system

third-party service to submit a search query. It is bundled with a single page JavaScript
application that serves as a Graphical User Interface (GUI) of the system.

Apart from being the entry point for queries, WebserverŠs responsibilities also include
user management and search settings management.

ConsoleClient

Sometimes, especially for research purposes or testing, it is useful to submit a query from
the command line. ConsoleClient was designed for this use case. It allows to submit a list
of queries in a batch and collect all the results into a Ąle. It also has an interactive shell.
Queries can be sent to the Webserver, a group of IndexServers or just a single IndexServer.
ConsoleClient also supports making performance measurements.

IndexServer

IndexServer is a component that maintains a set of indexed documents and exposes an API
for querying them. This API should be accessible only internally, from the Webserver or
the ConsoleClient. It is not meant to be directly reachable from outside the system.

Internally, the set of documents is divided into collections. Each of these collections is
handled concurrently.

This component is meant to be deployed multiple times on multiple machines to handle
bigger text corpuses.

23



IndexBuilder

This component is a command line tool responsible for preprocessing documents and cre-
ating indexes that are later used by IndexServers. The process of indexing is both time
and resource consuming, thatŠs why it is handled separately and not directly from the
IndexServers.

4.4 Module architecture

Components described in the previous section consist of different modules, which can be
classiĄed into two groups. Library modules implement functionality shared across multiple
components. Executable modules contain component speciĄc logic. They group together
necessary library modules and produce jar archives that can be executed on the JVM. This
section describes the architecture of these modules. The dependencies between them are
visualized in the diagram in the Ągure 4.3.

Figure 4.3: Modules of the system

24



Library modules

First, individual library modules will be presented.

DTO

This is the central library module. It contains the domain logic shared by all components.
This includes but is not limited to the following.

• Data transfer objects (DTOs) to pass data between components.

• Functions transforming DTOs on each layer of the system.

• ConĄguration classes and related functions.

• Custom logging micro-library with support for remote logging.

• API classes for each component, which one component can use to communicate with
another.

WebClient

WebClient is a JavaScript single page application that provides a graphical user interface
over the API of the Webserver. It can be used to submit queries, manage search settings
and view search results. The Ćow between screens in the WebClient is described using the
screen diagram in the Ągure 4.4. It is bundled with the Webserver component, which serves
it on the root URL.

IndexLib

IndexLib is a module whose responsibility is to perform indexing and searching. It is built
on top of MG4J, which internally performs most of the operations. IndexLib provides an
MG4J-agnostic interface. The rest of the system should not be dependent on MG4J, so
that different search engines can be integrated easily. This module also contains search
algorithms used for matching documents using EQL. These algorithms already use the
MG4J-agnostic format, so that they can be used to evaluate results from different engines
in the future.

EqlCompiler

As the name suggests, EqlCompiler analyses and compiles EQL queries into the query
language used by MG4J. The process of compilation an EQL query is described in the
communication diagram in the Ągure 4.5. First, the text query is parsed using a generated
parser. Then the resulting parse tree is transformed into EQL Abstract Syntax Tree (AST).
Then the semantic analysis is performed. Equivalent MG4J query can then be generated
by traversing the AST. To integrate a different search engine, all that has to be done is to
provide an algorithm transforming the AST into the format used by the new engine.

QueryDispatcher

QueryDispatcher contains the implementation of an algorithm, which dispatches queries to
a given set of nodes in an iterative way until the wanted amount of snippets is collected or

25



MainScreen Login
login()

back(), home()

SignUp

signUp()back()
home()

SearchSettings
showSettings()

back(), home()

NewSettingsDialog

newSettings()
save(),close()

SearchResults

query() back(), home()

nextPage(), query(), context...

DocumentDialog

showDocument()

close()

Source
gotoSource()

UserSettings

userSettings()
back(), home()

Figure 4.4: WebClient screen diagram

Figure 4.5: EQL query compilation

26



no nodes can provide more. In each round, all remaining nodes are queried in parallel. The
pseudocode for the algorithm is the following.

def queryDispatcher(query,initialNodes,snippetCount):

snippets = []

nodes = initialNodes

while snippets.size < snippetCount and nodes.isNotEmpty():

results = await parallel_call(query,nodes)

nodes = []

for result in results:

if result.isSuccess and result.snippets.isNotEmpty():

snippets.addAll(result.snippets)

if result.offset:

nodes.add(NodeWithOffset(result.node,result.offset))

return snippets

It is possible to prove that this algorithm always terminates by exploring the conditions of
the while loop. It will evaluate to true if and only if the accumulated amount of snippets is
less than the wanted amount and there are still some nodes to query. The list of nodes to
query is always cleared inside the loop. New nodes are added to it only if they successfully
provided some results. Therefore the amount of snippets in each iteration either increases
or there will be no nodes for the next iteration. It can therefore be concluded that the
algorithm always terminates, because it either collects enough results or has no more nodes
to process.

This algorithm was intentionally designed to be generic with regards to how the nodes
are queried. Inside Enticing, there are two places where it is used. The Ąrst place is in the
Webserver or ConsoleClient, when dispatching queries to IndexServers. The second place
is in the IndexServer, when dispatching to individual collections. The Ćow of a single query
is visualized in the Ągure 4.6.

Executable modules

The description of the Webserver, IndexServer, ConsoleClient and IndexBuilder as com-
ponents was covered in 4.3. The corresponding executable modules contain the component
speciĄc business logic. As the name suggest, these components can be executed. Each of
them contains an entry point which starts the corresponding component.

4.5 Transferring annotated text

This section covers data structures used within Enticing to transfer annotated text of se-
mantically enhanced documents. Two different result formats are supported and both of
them can use 4 different text formats to transfer the actual text.

Result format

There are two supported result formats Ű snippet and identifier list. The meaning of snippet
has already been described in the chapter 2. Snippet is generally a very useful format,
but not for every use case. Sometimes all that is needed are speciĄc patterns within the
snippet. Identifier list was designed for this use case. It contains only the fragments that
were matched by given EQL identiĄers.

27



Figure 4.6: QueryFlow How a query Ćows through Enticing

28



Text format

Enticing supports four text formats, each of them is useful for different use case.

Plain text

Plain text is the simplest format. As the name suggest, it contains only the plain text from
the document, without any metadata. Sometimes it is really all that is needed. It can be
useful for the ConsoleClient, since showing metadata in the terminal is rather complicated.
It is also useful format for testing. Another advantage is that it is the most compact, so it
can come in handy when a lot of text has to be transferred over a slow network.

HTML

This format follows the structure of HTML Ąles. Each word that has metadata is wrapped
within a <span> tag and the metadata are encoded as attributes with preĄx eql. The
matched elements are wrapped within <b> tags. Its advantage is that there are many
tools supporting HTML Ąles, so it should be fairly easy to read its content. Its main
disadvantage is that it is the hardest to parse. Its properties make it a suitable format
when the content should have metadata (otherwise plain text is sufficient), but it should
also be displayed directly as a text Ąle, without any specialized graphical user interface.
An example is given below.

<b>

<span eql-word eql-position="10" eql-tag="NN"

eql-lemma="job" eql-parpos="12">

job

</span>

</b>

<span eql-word eql-position="11" eql-tag="VVZ"

eql-lemma="require" eql-parpos="10">

requires

</span>

String with annotations

In this format, the annotations are encoded as intervals over the plain text. The format
has four parts. Its structure will be presented using a simple example.

{

"text": "job requires expertise in..."

"annotations": {

"w-0": {

"content": {

"position": "10",

"tag": "NN",

"lemma": "job",

"parpos": "12"

}

}

29



},

"positions": [{

"annotationId": "w-0",

"match": {"from": 0, "size": 3},

"subAnnotations": []

}],

"queryMapping": [{"textIndex": {"from": 0, "size": 3},

"queryIndex": {"from": 0, "size": 1}}]

}

Text represents the actual text of the snippet. Annotations is a map of annotations, each
of them has a unique identiĄer. Positions describe the locations of these annotations. The
deĄnition of an annotation and its usage are separated to avoid unnecessary duplication.
This way, each annotation can be used multiple times. QueryMapping describes how the
query matched the document. This format is not very suitable for reading directly, but it is
much easier for automated parsing. Unfortunately, it is rather hard to generate. It requires
a lot of computation and object allocations. On top of that, the description by intervals
also has another bad property. When the text changes, all intervals starting from the point
of change all the way to the end of the snippet have to be updated. And this is exactly what
happens when the context is extended, so it is quite a common use case. Also, the rendering
pipeline in the frontend demands a different format, so post-processing in the browser is
necessary and it can be quite expensive. Exact measurements were not taken, but they
didnŠt even have to be. When multiple results arrived to the frontend, the slowdown was
so signiĄcant, that it was unacceptable. Therefore the text unit list format was designed as
a replacement. Since the format generating pipeline was already implemented, String with
annotations is still supported, but it is not used by the frontend anymore.

Text unit list

As mentioned in the previous subsection, this format was added later as a replacement for
String with annotations. It covers the same use case Ű transferring annotated text for client
apps to visualize Ű but compared to the previous one, it is even a bit easier to read it directly.
However, that is only a fortunate side effect. LetŠs describe its main features. Its structure
is visualized in the diagram in the Ągure 4.7. The text is a list of TextUnits, which can be
either a Word, an Entity or a QueryMatch. Entity can contain multiple words, QueryMatch
can contain multiple TextUnits. The advantages of the format are the following. It is very
close to the format used for analyzing documents in the IndexLib, therefore its creation is
a straightforward process. Changes in its structure are always local Ű they can be performed
without the need to update the rest of the document. And on top of that, this format is
suitable for the frontend without any transformations. It can be rendered directly as it is.
Its disadvantage is that it duplicates the entity information. However, the same technique
as in the previous format can be applied if the memory overhead becomes a problem. An
example is given below.

{

"content": [

{

"type":"queryMatch",

"subunits": [

30



{

"type": "word",

"content": ["10", "job", "NN", "job", "12"]

}

]

}, {

"type": "word",

"content": ["11", "requires", "VVZ", "require", "10"]

}

]

}

Figure 4.7: Text unit list class diagram

31



Chapter 5

Used technology

This chapter describes the programming languages, frameworks and libraries used when
building Enticing. Even though there are many components and modules in the project,
they can be divided into two groups, based on the environment in which they will be
deployed. Frontend technology is discussed in 5.1, backend in 5.2.

5.1 Frontend

Frontend components are supposed to run in a web browser. In particular, the WebClient
module falls within this category.

The mainstream language for developing web applications is JavaScript. However, its
dynamic nature makes it hard to develop complex systems and even for a simple one,
a static type system can be a great beneĄt [10]. Therefore, TypeScript1 was used instead.

According to the previous chapter, WebClient is a single page JavaScript web appli-
cation. Nowadays, there are many frameworks that help with building such applications.
Among those, React2 was chosen for its simplicity, performance and, last but not least, the
developer experience.

React is focused purely on the user interface. Therefore, another library called Redux3

was added for the state management. This combination is quite common nowadays, because
it provides a clean separation between UI and business logic and also it forces the developer
to think about the state of the app and its transitions [1].

TypeScript

TypeScript is a typed superset of JavaScript that compiles to plain JavaScript. Its goal is
not to replace the language, only to add a static type system to it. It is a proper superset,
meaning that any JavaScript program is a valid TypeScript program. The type system was
designed in such away to allow for gradual adoption. The typechecks are optional and all
warnings can be ignored if necessary. This allows developers to incrementally add types to
existing projects instead of doing it all at once, which would quite often not be feasible [10].

1https://www.typescriptlang.org/
2https://reactjs.org/
3https://redux.js.org/

32

https://www.typescriptlang.org/
https://reactjs.org/
https://redux.js.org/


React

React is a JavaScript library for building user interfaces (UI) that is developed and main-
tained by Facebook. It is declarative and component based. In the philosophy of React,
the view is a pure function of the state. Developers therefore only declare how the view
should be rendered based on the state and every time the state changes, the library trig-
gers the minimal necessary amount of re-rendering. The basic building blocks in React are
components, encapsulated reusable pieces of the user interface that manage their own state
or depend on the state of their parents. Complex user interfaces are created by composing
these components together [17].

Redux

Redux is a state container for JavaScript applications. Its idea is that the state should
be centralized, normalized and, most importantly, never changed directly. Instead, it is
protected inside a container, which allows read-only access and change detection. When
any component wants to change the state, it does so by dispatching an action. The actions
are received by reducers, pure functions that can produce a new state based on the action
and the old state [1].

CodeMirror

CodeMirror is a versatile text editor implemented in JavaScript for the browser [9]. It is
specialized for editing code and provides support for a lot of mainstream languages out of
the box. Fortunately for us, it also supports creating custom language modes. It is used
inside the WebClient for the ŤsmartŞ search bar. To integrate it with React, the library
React Codemirror4 was used.

5.2 Backend

Since the backend components should interact with MG4J, using a JVM-based language is
a necessity. Among those, Kotlin5 was chosen. It is fully interoperable with Java and it
provides many useful features such as data classes, extension methods, null safety and, last
but not least, full support for functional programming [6].

For developing web services, Spring Framework6 was used. It is the most popular
framework for building backend applications on the JVM [11].

For parsing the custom query language, Antlr7 parser generator was used.

Kotlin

Kotlin is a multiparadigm multiplatform programming language developed by JetBrains.
It supports both object oriented and functional programming and allows developers to mix
them to get the best from both worlds. Thanks to the fact that it can be compiled into JVM
bytecode, JavaScript and LLVM bitcode, it can be run on almost any platform. It originally
started as a replacement for Java. On one hand, JetBrains wanted more expressive language

4https://github.com/JedWatson/react-codemirror
5https://kotlinlang.org/
6https://spring.io/
7https://www.antlr.org/

33

https://github.com/JedWatson/react-codemirror
https://kotlinlang.org/
https://spring.io/
https://www.antlr.org/


having modern features such as data classes, extension methods, functions as types, etc.
On the other hand, they already had a big codebase written in Java, which they could not
abandon. Therefore they decided to create a new language which would have the features
they wanted, but which would be fully interoperable with Java, so that they could reuse
their existing libraries and tools [6].

Spring Framework

Spring originally started as a dependency injection framework and gradually became an
umbrella project consisting of a huge amount of subprojects handling different needs of
enterprise developers [11]. Inside Enticing, the following subprojects are used.

• Spring MVC Ű For creating REST interfaces.

• Spring Data Ű For connecting to the database.

• Spring Boot Ű For creating a standalone Spring based application with minimum
amount of conĄguration.

Antlr

Antlr is a parser generator created by Terence Parr. It allows developers to deĄne the syntax
of the language using a very expressive grammar, supporting iterations, left recursion and
even semantic predicates. The grammar is then compiled into a parser. Apart from the
parser itself, a visitor and a listener are created as well to allow developers to easily iterate
over the parse tree and transform it into custom data structures based on their needs [15].

34



Chapter 6

Implementation of the search

engine

This chapter focuses on the implementation of the search engine Enticing. The chapter
4 described the architecture of its core component and modules. This chapter extends it
and provides more technical details. It is divided into self contained sections, each of them
describing one part of the platform or one interesting piece of functionality that deserves
a deeper explanation. The section 6.1 discusses the implementation of eager result loading.
The topic of search result pagination and offsets is covered in 6.2. The section 6.3 dives
deeper into EQL and explains how the compiler and searching was implemented. The
process of encapsulation MG4J is described in 6.4. The design of the web user interface is
given in 6.5. Part of that interface is a smart search bar, whose implementation is discussed
in 6.6. Finally, Enticing conĄguration DSL is introduced in 6.7.

6.1 Eager result loading

For the testing scenario with only a few IndexServers, the QueryDispatcher algorithm de-
scribed in the previous chapter was working well. However, once that number increased1,
an unfortunate property of the algorithm became apparent. It waits for all servers to reply
before returning any result. The servers, on which the platform is deployed, are used for
other tasks as well, quite often computational intensive ones. And in the current settings,
one busy server causes all the results to be delayed, which is of course not acceptable.
Therefore the original implementation was extended to allow for eager result loading.

It was done in the following way. The algorithm now accepts a callback, which is
triggered every time new results arrive. This is the only change necessary in the QueryDis-
patcher and a rather simple one. The real difficulty is in sending the results to the client.
Two approaches were considered Ű pushing and pulling, each of them having different im-
plications on the resulting API.

In the pushing scenario, results are sent to the client as messages. This is of course
the cleanest solution, but it requires a channel from the server to the client through which
the data should be sent. It can be achieved using WebSockets2, which support full-duplex
communication between the server and the client. Unfortunately, WebSockets were not
included in the original design of the Webserver as their usage did not seem necessary.

1Currently, about 50 servers are used.
2https://cs.wikipedia.org/wiki/WebSocket

35

https://cs.wikipedia.org/wiki/WebSocket


Including them now would require signiĄcant effort on both client and server side and a lot
of code would have to be updated. ThatŠs why the solution was discarded as not feasible.
However, it is still possible to implement it later on as an extension.

In the pulling scenario, the client submits a query and then keeps asking for new results
in a loop, until everything is delivered. The client code is quite simple, but it requires a stor-
age for these temporary results on the server. It would be bad to put them in a database,
because they are ephemeral and a database is for persistent data. In the end, a simple cus-
tom in-memory cache was used. This cache is storing the data in a ConcurrentHashMap,
which is a Java thread safe map implementation. It has to be thread safe, because it will
be used from multiple threads. The callback of the QueryDispatcher stores the data to the
cache and the calls from the client remove them. Two important follow-up questions had
to be answered.

The Ąrst one is how to identify and remove old entries that were not retrieved. It can
happen for example because the user closes the page in the middle of submitting a query. If
no cleanup is performed, the map will keep growing until the program runs out of memory.
Therefore a timestamp was added to each entry and old entries are periodically removed.

The second one is what should be the keys for the cache. It has to be something that
will always be unique for a given user and it canŠt be his login, because queries can be sent
by anonymous users as well. The Ąrst considered approach was generating a UUID on the
server and sending it back to the client immediately. But that would change the old API,
which waited for all results. That was unwanted, the old approach is perfectly Ąne for the
ConsoleClient use case. Eager loading should be optional, not a default. There is no need
to trigger it for clients who do not need it. Therefore it was decided to push this option
downstream. If the client wants to use eager loading, it generates the unique id, includes
it in the query and then uses it when pulling results. The WebClient implementation
generates random UUIDs, so the collision chances are acceptably low.

6.2 Pagination and offsets

In a distributed environment with unpredictable delays, even a simple looking task like
pagination actually presents a challenge. Thanks to the distributed nature of the searching
in Enticing, the results from each IndexServer will likely come in different order every time.
And inside IndexServers, the same problem appears with results from collections. It is of
course possible to sort the results, but that does not play well with eager result loading
presented above. The results should be delivered as soon as possible and sorting them in
the GUI would result in an unpleasant glitch as the already visible results would have to be
shifted from time to time. Therefore, it was decided to accept the non-determinism rather
then to Ąght with it. As a result of that, the pagination information cannot be encoded in
the URL with deterministic outcomes. Even though the same results appear each time the
page is loaded, their order is likely to be different. This poses additional burden on the user,
because if he wants to share his results with someone else, he has to write a query that is
sophisticated enough to return only a few snippets. Document restrictions were originally
designed for this use case, but they turned out to be useful even outside of it.

Even the structure of the offset is actually quite complex. Normally, one integer is
sufficient. A careful reader might object that result size is also important and he is right.
However, the size is decided by the user of the system, therefore it does not have to be
encoded in the reply. The user knows it and can submit it with the next query. In our
scenario, even the simple offset into one collection actually has two parts Ű document offset

36



and result offset. The Ąrst one indicates which document to start from, while the second
indicates what should be the Ąrst returned snippet from the document. This offset is merged
with offsets from other collections, which yields a map-like structure for the IndexServer
offset. Then, on the webserver, each of these IndexServer offsets has to be merged again.
The resulting structure is then a map of a map of the collection offsets. Fortunately, it is
possible to completely hide this complex structure from the user. The API of the Websever
has two endpoints for querying. The Ąrst one is for submitting the query and the second
one is for requesting more results. The offset is stored in the HTTP session of the user.
The second endpoint does not need any parameters, because it can load everything from
the session.

6.3 Enticing Query Language

This section covers the implementation details of the EQL compiler.

Syntax and Semantic analysis

Almost every compiler consists of the following parts [2].

• Lexical analysis

• Syntax analysis

• Semantic analysis

• Optimizations (sometimes optional)

• Target code generation

EQL compiler is no exception to that rule. As mentioned earlier, Antlr is used for the
lexical and syntax analysis. However, the parse tree which Antlr returns after parsing is
too low-level for more advanced analysis and transformations that are done in the backend
of the compiler. Therefore a custom Abstract Syntax Tree was designed.

Taking inspiration from the Antlr itself, visitors and listeners were designed and im-
plemented to allow each step in the pipeline to easily traverse and modify the AST. The
difference between a visitor and a listener is that the visitor has to explicitly call itself on
the children of the current node to proceed. On the contrary, the listener consists of call-
backs that are automatically executed for each node in the AST. Both of these traversals
are useful, each for a different type of operation. Transformation from Antlr parse tree to
EQL AST is done using EqlAstGeneratingVisitor.

The next step in the pipeline is semantic analysis. Since there are many checks that
should be done and their number can increase over time, a Ćexible solution was necessary.
Here, the inspiration was taken from IntelliJ IDEA3, an open source IDE for Java and
Kotlin developed by JetBrains. Each semantic check is a subclass of EqlAstCheck. These
subclasses are forced to implement a method which takes as input a node in the AST,
symbol table and a few other useful objects. EqlAstCheck is generic and using its type
variable, subclasses can specify what type of AST node they should be run from. The
semantic analyzer takes a list of these checks as input, groups them by the type of node
and then traverses the AST of the query and runs appropriate checks for each node.

3https://github.com/JetBrains/intellij-community

37

https://github.com/JetBrains/intellij-community


Unfortunately, some of these checks depend on the execution of other checks. For
example, there is a check which veriĄes that all indexes and entities in the query are from
the corpus conĄguration. Then there are two checks for document restriction and context
restriction, which remove these pseudo nodes from the AST and save the information about
restrictions in the root node. If the validation check runs before the transformation checks,
it reports unknown index context and unknown entity document, since they are not part
of the corpus conĄguration. Similar dependencies appear for other combinations of checks.
To cope with that, the checks were grouped into phases. Each check, which is dependent on
the execution of another, is put into a later phase. After running each phase, the semantic
analyser looks for errors and proceeds only if none are found. This also allows for early
exit, since more sophisticated analysis is not necessary if simple semantic errors are found.

After the semantic analysis, the AST is ready to be used. The compiler instance, which
is integrated into the webserver, stops here, only returning errors that were encountered
back to the frontend. In the IndexServer, the AST is used in two places. The Ąrst one is
generating MG4J query, which is done using Mgj4QueryGeneratingVisitor. The second one
is in the postprocessing of the results, which is the topic of the following subsection.

EQL-based Searching Algorithms

Unfortunately, MG4J does not return a very precise description of how the query matched
the document. It only returns the overall intervals for each index. This is enough for
creating basic snippets, but not enough to highlight the parts of the snippets that were
matched by the query. Also, EQL has a concept of identiĄers, which should be highlighted
as well, but MG4J has no support for them. Therefore, after retrieving a document from
the SearchEngine, it is necessary to perform a post-processing to compute which parts
of the documents were matched by which nodes in the AST. This information is precise
enough to provide the highlighting, however the computation is time and space consuming.
It essentially requires to re-implement the searching functionality of MG4J, which is not an
easy task. On the other hand, it gives a chance to create more powerful semantics for the
query, which can be more complex than the underlying technology.

MG4J uses Minimal-Interval Semantics, which signiĄcantly reduces the number of re-
turned snippets and which allows them to use very efficient algorithms [5]. However, it
has drawbacks. Imagine a query about a place and a person. Now lets say that there is
a document containing three different people and three places and the intervals between
them overlap. MG4J would return only one interval connecting one person with one place,
but in Enticing, it is preferred to return all three combinations that occur, even though
they overlap. MG4J does not support that, but it will at least return the document and
then the post-processing generating all possible combinations can be performed. The con
of this solution is that the number of results can grow exponentially. To cope with that, it
was decided to limit the number of snippets per document.

6.4 Encapsulating MG4J

Even though MG4J is a useful and powerful library, a different indexing technology might
be chosen in the future. Therefore it is important to encapsulate MG4J as tightly as possible
and provide MG4J agnostic abstractions around it. This boundary consists of a set of inter-
faces and data transfer objects that can be found in the package c.v.f.k.e.index.boundary.
The core class of the IndexLib module, CollectionManager, which interacts with the in-

38



dexing library, only depends on the boundary classes from the package above. Therefore
the process of integrating new indexing library would consist only from implementing the
interfaces from the package above and initializing the CollectionManager with them.

The process of searching using a CollectionManager is visualized in the Ągure 6.1. First,
search query and offset are given to the CollectionManager. It delegates the request to the
SearchEngine, which is an interface providing methods for querying the collection. Docu-
ments are represented using an interface IndexedDocument. Results from the SearchEngine
are then given to the PostProcessor, which analyses the document using EQL searching
algorithms and Ąnds all interval matching the query. Previous two steps might be executed
in a loop until wanted amount of results is accumulated or there are no more document
matching the query. In the end, results are genereated using ResultCreator, which is re-
sponsible for transforming the document and the query-match information into the result
format speciĄed by the query.

Figure 6.1: Collection Manager Searching in a collection

39



6.5 User interface

Good user experience is a must these days. In this section, screenshots of the web frontend
are provided and the thought process behind the design is discussed.

The Ąrst screen user sees is the main page, which you can see in the Ągure 6.2. It was
inspired by the main page of Google4. It should be minimalistic, containing only the bare
minimum one needs to start searching, which is a search bar of course. One difference
between Google and Enticing is that in Enticing users can specify corpuses which should be
searched. It was decided to put this option into the main toolbar at the top of the screen,
so that is does not pollute the structure of the page, while still being easily accessible.

Figure 6.2: Main page

After a search query is submitted, the user is redirected to the search result page, which
you can see in the Ągure 6.3. This page uses the same toolbar as the main page. The search
bar is positioned right below it to allow users to submit another query quickly if necessary.
Search results presented as snippets follow. On the left of each snippet are buttons, which
can be used to extend its context, open full document, go to the original source or reduce
the search scope only to given document. Each of these buttons has an explanatory tooltip,
which pops up when user hovers over it. On the right is the content of the snippet.

The biggest challenge when presenting the results is displaying the metadata. All words
have metadata assigned to them and on top of that, some sequences of words represent
entities with attributes. It was decided to display the entities using different colors. User
can conĄgure which color to use for which type of entity in the settings. For displaying all
metadata, tooltips are used. These tooltips appear when user hovers over a word in the
snippet. An example of a tooltip with simple word can be seen in the Ągure 6.4 and an
example of an entity can be seen in the Ągure 6.5. A careful reader can notice that these

4https://www.google.com/

40

https://www.google.com/


F
ig

ur
e

6.
3:

S
e
a
r
c
h

r
e
s
u

lt
p

a
g

e

41



pictures are a bit transparent. This was done on purpose. These tooltips can take quite
a lot of space and this way the user still sees what is located under them.

Figure 6.4: Tooltip with a simple word

6.6 Smart search bar

Since EQL is a formal language with well-deĄned structure and semantics, giving the user
just a plain HTML input Ąeld seemed unsatisfactory. The feedback should be given while
typing the query. Syntax highlighting would be a good start, full syntax and semantic
analysis could follow. Autocomplete would also be great. The Ćow should seem similar to
writing a program using an IDE.

Unfortunately, there are not so many options for smart text editors in the browser. And
the ones that exist usually have some bad properties. They are either not for programming
or they support only syntax highlighting and nothing more or they are very old and hard
to use. The remaining editors actually do what is required, but they are way too complex
for a simple search bar.

After a while, it was decided to take inspiration at JetBrains again, particularly at the
way Kotlin Playgroud5 is implemented. Kotlin Playground is a minimalistic online IDE in
which users can experiment with Kotlin in their browser. Fortunately, it is open source6,
so the answers could be found by reading the source code. They are using an editor called
CodeMirror7. The Ąrst impression categorized it as option three from the list above Ű
old and hard to use. However, after a deeper analysis, it was fortunately discovered that
only the Ąrst part is true. Using it is actually quite easy. Syntax highlighting is only
a matter of providing regular expressions describing tokens. Syntax and semantic analysis
were a bigger challenge. Re-implementing the whole EQL compiler in JavaScript seemed
wrong, since it would be a lot of work and then two compilers would have to be maintained
instead of one. The inspiration was taken from the Kotlin Playground again, where they
were sending the code to the backend for analysis. This options allowed to use the existing
Kotlin implementation of the compiler and just expose it as an endpoint on the Webserver.
It of course introduces some delay, but the experience showed that it was acceptable. This

5https://play.kotlinlang.org/
6https://github.com/JetBrains/kotlin-playground
7https://codemirror.net/

42

https://play.kotlinlang.org/
https://github.com/JetBrains/kotlin-playground
https://codemirror.net/


Figure 6.5: Tooltip with an entity

Figure 6.6: Search bar displaying an error message

way it was managed to get syntax and semantic analysis reasonably fast. Example of
the searchbar displaying an error message can be seen in the Ągure 6.6. Unfortunately,
autocomplete was not implemented yet. CodeMirror supports it, so it can be a nice and
challenging follow-up work.

6.7 Enticing ConĄguration DSL

Kotlin has features which allow developers to create their own internal Domain SpeciĄc
Languages (DSLs). The advantage of using them is that they provide a higher level of
abstraction compared to pure Kotlin, which makes the resulting code easier to read and
therefore it improves the maintainability. Even though some of these abstractions can be
suitable even for general programming, one of the use cases, in which they really shine, are
conĄguration DSLs. These DSLs provide a more powerful alternative to XML or JSON
based conĄgurations. Any piece of Kotlin code can be used within them and the IDEs can
provide validation and autocomplete for them.

A custom DSL for Enticing was created which allows one to easily conĄgure the whole
platform in a way that should be readable even for a non-programmer. Example of a con-

43



Ąguration written using the DSL can be seen in the Ągure 6.7. Please note the syntax
highlighting and additional semantic information, which the IDE presents to the user for
free.

After the DSL was ready, the question became how to use it. ConĄguration is something
rather dynamic, so including it directly into the source code did not seem like a good option.
Fortunately, Kotlin has a scripting API, which handles this use case very well. Using this
API, a Ąle containing the conĄguration can be loaded by each component at runtime and
used to conĄgure it.

Figure 6.7: Example of Enticing Configuration DSL

44



Chapter 7

Testing and evaluation of the

search engine

This chapter covers methods used for testing and evaluation of the Enticing platform.
First, general overview of the types of tests that were used is given in 7.1. The section
7.2 describes the testing module, which contains the integration and performance tests of
the whole platform. The section 7.3 focuses on the tests of the EQL searching algorithms.
Results of the performance measurements are given in 7.4. In the end, the description of
the Continuous Integration and Continuous Delivery setup is presented in 7.5.

7.1 Types of tests

Since the project is very complex, multiple different types of tests were used together to
ensure its quality. Each module has its own unit tests verifying its functionality. When
unit testing individual units of code, it is sometimes necessary to mock the behavior of
their dependencies. For that, mocking libraries were used. Different modules are combined
together into components and integration tests verify the communication between them.
The searching algorithms were mostly veriĄed using functional tests, ensuring that correct
outputs are returned for speciĄed inputs. However, writing these functional tests is time
consuming, because for each tested query, one has to Ąnd suitable test documents and then
specify what should be matched. Therefore the number of these tests is limited. To increase
the conĄdence with the quality of the searching algorithms, a declarative DSL was created.
It can be run on any group of mg4j Ąles, veryfying that the returned results have declared
properties. More details about these tests will be given in the section 7.3. Performance
tests were implemented to measure the performance of the engine. They were very useful
when optimizing the search performance.

7.2 Overview of the testing module

The integration and performance tests were created in a special testing module. New
management module is used to start, monitor and kill components under test. For querying
the components, ConsoleClient module is used. This way the tests are done by using real
API calls, therefore the components are tested in a very realistic scenarios. However, these
tests are very expensive, therefore they are not included in the CI pipeline.

45



The Ąrst group of tests in the module are integration tests. Using them, the following
properties are veriĄed.

• After submitting a query, results are successfully returned.

• The structure of the results is correct.

• The results match the requirements speciĄed in the query.

• The same results are returned every time the same query is submitted.

• Pagination works as expected. Making one big query or adequate amount of small
ones should produce the same results.

The tests are generic with respect to the querying mechanism. This way, the same suite
can be executed on three layers Ű IndexServer, QueryDispatcher and Webserver.

The second group are performance tests. In these, the queries are submitted multiple
times and the time of their execution is measured. It is then possible to compute the average
value, the deviance, min, max, etc. These tests can be performed on the three different
layers mentioned above.

7.3 Testing the searching algorithms

One of the biggest challenges when testing the platform was testing the searching algorithms
based on EQL. They form the very core of the search engine functionality and therefore
their correctness is of the highest importance. Since the interactions in the search engine
are very tightly coupled, it was decided to create functional tests verifying that correct
outputs are produced for given inputs. The tests can be categorized into two groups.

Tests performed on dummy documents

In these tests, the documents are handcrafted to contain speciĄed keywords and then they
are send to the search engine. Since the documents were created manually, it is exactly
known what results should be returned, therefore it is easy to check them. However, the
setup phase of these tests is very time consuming, therefore their amount is limited.

DSL-based tests performed on real data

Another option is to use real mg4j Ąles for the tests. The advantage of this approach is that
the inputs are real documents, therefore the tests are more realistic. The disadvantage is
that it is necessary to read the documents beforehand to know what kind of results should
be expected.

To automate this process, another DSL was created. It allows one to declare what
properties should hold for every result returned for a given query. A small test engine was
then implemented, which queries given set of documents and and then veriĄes that the
results given by the CollectionManager are valid. This of course does not guarantee that
all results are returned, but it at least guarantees that the returned results are meaningful.
These tests can also be scaled very easily simply by adding more mg4j Ąles as input.
Example of one test written using this DSL is given below.

46



@DisplayName("That Motion three")

@Test

fun simpleQuery() = forEachMatch("That Motion three") {

forEachInterval("all three words should be there") {

val text = textAt("token", interval)

verify("that" in text) { "’that’ should be in ’$text’" }

verify("motion" in text) { "’motion’ should be in ’$text’" }

verify("three" in text) { "’three’ should be in ’$text’" }

verifyLeafCount(3)

}

}

7.4 Performance measurements

Apart from the correctness itself, performance is very important. Users expect search
results to be delivered fast and therefore the whole system has to be optimized to satisfy
that. In order to perform any optimizations, measurements have to be taken Ąrst, to make
sure that the optimizations work as expected.

The Ąrst measurements were taken in the end of March 2020. Their results are presented
in the table 7.1. The duration of querying one IndexServer was measured, as it is the most
important use case to optimize. Wanted amount of snippets was 20. Tested IndexServer
instance was deployed on KNOT server knot01.fit.vutbr.cz. This server has Intel Xeon E5-
2630 2.3 GHz processor with 15MB cache and 6 cores. Total ram size is 65536 MB. The
IndexServer instance was handling 10 mg4j Ąles, which together had 2.9 GB and contained
24371 documents. A list of queries was created and then submitted 100 times, taking the
average, deviation, min and max value. The testing started with simple single word queries,
which were then combined together using logical operators. In the end, context restrictions
and global constraints were added. Contrary to what was expected, more complex queries
were not always signiĄcantly slower. The number of occurences of searched terms and their
locations played a signiĄcant role as well. For example, there were only 1285 matches of
the word water, but there were more than 10000 entities of type person. Therefore less
documents had to be iterated when providing 20 results. You can also notice a signiĄcant
slowdown in the query water nertag:person nertag:location ctx:sent. The author initially
thought that it was because the context restrictions operators were not very optimized, but
the second measurements showed otherwise.

The second measurements were taken in the middle of May 2020. You can see their
results in the table 7.2. The same server and the same set of documents were used. However,
there were a lot minor updates of the searching algorithms in the meantime, which targeted
both bugs and performance issues. The context restriction evaluation was updated as well.
As you can see, the searching became faster, but the difference is unfortunately not as big
as the author hoped, especially for the query water nertag:person nertag:location ctx:sent.
It seems that even though new context restriction evaluation had a positive impact, a lot
of documents have to be processed to provide snippets, which slows down the search.

It is also important to note that other processes are running on the tested server, which
inĆuences the results. On top of that, the whole end to end time for each query is measured,
which is also a subject to a lot of noise from the environment. On the other hand, this
way of testing is as close to what the user experiences as possible. However, it might be

47



EQL Query Average[ms] Deviation[ms] min[ms] max[ms]

water 711.4 65843.12 337 1823
nertag:person 155.4 2263.76 104 421
nertag:location 177.73 24321.48 93 835
water nertag:person 503.0 35445.24 355 1259
water nertag:person ctx:sent 423.15 8891.11 321 771
nertag:person nertag:location 130.24 1919.32 96 433
nertag:person nertag:location ctx:sent 287.09 2490.72 220 463
water nertag:person nertag:location 453.82 14603.47 331 1056
water nertag:person nertag:location ctx:sent 4317.23 16767.16 4071 4828
nertag:person nertag:person 119.28 1071.40 96 403
nertag:person nertag:person ctx:sent 124.48 828.09 100 330
a:=nertag:person b:=nertag:person 117.31 699.074 97 287
a:=nertag:person b:=nertag:person ctx:sent 130.61 667.64 104 247
a:=nertag:person b:=nertag:person && a.url != b.url 126.33 801.48 98 263
a:=nertag:person b:=nertag:person ctx:sent && a.url != b.url 353.91 10034.46 250 801

Table 7.1: Results of the Ąrst performance measurements

EQL Query Average[ms] Deviation[ms] min[ms] max[ms]

water 191.41 196.86 118 2033
nertag:person 35.46 52.47 22 546
nertag:location 33.43 30.50 23 313
water nertag:person 303.10 122.36 220 1071
water nertag:person ctx:sent 149.35 108.73 93 846
nertag:person nertag:location 41.10 37.48 24 298
nertag:person nertag:location ctx:sent 154.03 42.00 116 349
water nertag:person nertag:location 787.29 105.52 657 1030
water nertag:person nertag:location ctx:sent 4016.33 147.78 3860 5075
nertag:person nertag:person 30.72 25.89 23 286
nertag:person nertag:person ctx:sent 42.69 20.67 31 163
a:=nertag:person b:=nertag:person 33.81 15.44 24 113
a:=nertag:person b:=nertag:person ctx:sent 44.62 19.85 31 220
a:=nertag:person b:=nertag:person && a.url != b.url 34.73 17.22 24 138
a:=nertag:person b:=nertag:person ctx:sent && a.url != b.url 306.94 74.51 254 776

Table 7.2: Results of the second performance measurements

beneĄcial to create a suite of performance tests targeting just the searching algorithms in
isolation in the future.

Also, please note that the system is still being developed, so the results presented here
might not be aligned with the performance you are experiencing when using Enticing.
Hopefully, the system will be even faster by the time you experiment with it.

7.5 Continuous Integration and Continuous Delivery

Since running the tests became more and more time consuming after a while, a Continous
Integration (CI) was conĄgured for the GitHub repository of the project. After every
commit to the master and release branches, the full test suite is run remotely. The CI was
setup using CirlceCI1.

1https://circleci.com/

48

https://circleci.com/


Chapter 8

Deployment of the search engine

This chapter covers the deployment of the platform. In a system with more than 50 servers
involved, deploying, monitoring and logging efficiently becomes a real challenge. The section
8.1 covers the deployment scripts that were used in the beginning. Custom logging library
that was developed as a part of this project is introduced in 8.2. Finally, the section 8.3
introduces the management module that was added as an extension of the platform. Once
the platform was successfully deployed, it was presented at Excel@FIT 20201, where it
received an Expert Panel Award [13].

8.1 Deployment scripts

The Ąrst chosen approach for deployment were command line scripts. The high level func-
tions orchestrating the execution were written in Python 3, the low level interactions were
written in Bash. The main script loaded its conĄguration from .ini Ąle and then executed
actions speciĄed as command line Ćags.

This approach was working well for a while, mainly because the number of running
components was rather small. However, once that number increased, the drawbacks of this
solution became more and more visible. It gave no feedback about the current state of the
platform. If something had gone wrong, it would be good to be notiĄed about that. And
even better, automatic error recovery should be used whenever possible.

Another problem was testing. These scripts started expensive computations on a large
amount of servers. Therefore it was important to test them properly. For the Python scripts,
unit tests were written, but they could not be run from the CI pipeline. The developer had
to start them manually every time and it was of course easy (and sometimes tempting) to
forget about that. And testing the shell scripts presented even bigger challenge.

The .ini Ąle was also a bit problematic. It essentially contained the same information as
given in the Enticing conĄguration script. So some unfortunate redundancy was involved.
It would be much better to load the conĄguration from the well-tested statically typed
Kotlin DSL instead of duplicating it in this Ąle. But loading Kotlin code into Python script
is of course quite complicated.

For the reasons stated above, the decision was made to create a more robust deployment
solution, preferably in Kotlin, so that the already implemented business logic could be
reused whenever possible.

1http://excel.fit.vutbr.cz/

49

http://excel.fit.vutbr.cz/


8.2 Logging

It is important to gather all relevant information about the execution of the components,
but not to get overwhelmed with them. Also, from the software engineering perspective, it
is important not to pollute the client code with too many logging speciĄc calls, as it hurts
the readability and maintainability. Basic Java logging solutions usually allow developers to
conĄgure the level of logs per classes, but they provide support neither for remote logging,
nor for performance measurements. Therefore they were not usable for our purpose. A cus-
tom logging library was written instead. This library conĄgures itself from the Enticing
conĄguration DSL and has three types of supported destinations for log messages Ű stdout,
Ąle and a remote server. Each of these destinations can have different Ąlters regarding log
importance. Also, a support for performance measurements was added.

The main abstraction of this library is a LoggerFactory, which creates individual Log-
gers. A Logger can either be created with a speciĄed name or its name can be inferred
automatically from the surrounding class. Using a Logger instance, a function can write
logs of various importance using the typical API and on top of that, it can wrap any piece
of code and measure its execution. Internally, the logs are Ąltered and dispatched to all
conĄgured destinations.

8.3 Management and monitoring infrastructure

As the number of used servers increased, a need for a management component became
apparent. It was very easy to loose track about which components were running on which
servers and what was their current state. Therefore a management server was designed
and implemented as another component written in Kotlin. This server receives important
logs from all other components, so that the system administrators can easily monitor and
manage the system from one place.

Each component of the system is given a URL to the management system. Once it is
started, it registers itself and then starts sending heartbeats periodically. These heartbeats
also contain information about the server the component is running on. During registration,
static information such as the number of cores and the RAM size is sent. Then, current
CPU and RAM usage is sent in each heartbeat message. As an example of the GUI, the
table with running components can be seen in the Ągure 8.1.

Apart from the monitoring purposes, this server can also start and kill components.
In the future, it can be extended to perform other maintenance tasks, some of them long-
running, such as the distribution of mg4j Ąles and their indexing. These long running tasks
are modelled as commands and executed via special subsystem.

To allow for easier deployment of new versions of the platform, the management also
supports its own Continuous Deployment pipeline, whose goal is to make the deployment
as smooth as possible. It is possible to submit a build command, whose result are new jar
Ąles that can be used to start components. Screenshot of the running build can be seen in
the Ągure 8.2.

This management server consists of three modules. The Ąrst one is management-core,
which contains support for executing commands that start, monitor and kill other com-
ponents of the platform. It can also be started as a command-line tool working in a very
similar way to the previous solution based on Python scripts. But thanks to the fact that
it is a Kotlin module, it can use the Enticing conĄguration script instead of the redundant

50



Figure 8.1: List of running components in the management server

Figure 8.2: Running build command

51



.ini Ąle. On top of that, it can be tested thoroughly and these tests can be included in the
CI pipeline.

The second module, management-server, provides a REST interface over the core mod-
ule supporting all the operations described above. It also persists currently known servers
and components to the database, along with their heartbeats and logs. It was developed
as a Spring Boot application. It also contains a command subsystem for execution and
monitoring of commands submitted from the GUI.

The last module, management-frontend, contains a JavaScript single page application
which serves as the GUI of the component. It was written in Typescript using React &
Redux.

52



Chapter 9

Conclusion

The topic of this thesis was semantic searching over big textual data. The Knowledge
Technology Research Group (KNOT)1 at the Faculty of Information Technology Brno Uni-
versity of Technology (FIT BUT) has a Natural language processing (NLP) pipeline which
can analyse documents written in natural languages and add additional meta information
to them. Such information can be syntactic, such as lemma of the word or their position
within sentences and paragraphs, or semantic, such as entities like people and places. The
output of this pipeline is a big volume of textual data. It is already a great piece of work
on its own, but without the ability to query these semantically enhanced documents, their
usage is limited. The goal of this thesis was to design and develop a search engine that
would query the documents efficiently while allowing to use all the meta information in the
queries.

Firstly, the topic of indexing and searching inside search engines was introduced. Then
MG4J2, a search engine used internally in the resulting infrastructure, was discussed. Af-
terwards, followed the topic of semantic enhancement of natural languages. The corpora
processing pipeline3 used within KNOT to create semantically enhanced documents was
described. Several state of the art search engines with support for semantic search have
been analyzed along with their strengths and shortcomings.

After providing an overview of related theory, the design of the new search engine called
Enticing was presented. It is a distributed system consisting of multiple components. The
most important ones are the IndexServer for maintaining and querying slices of the data
and the Webserver for dispatching requests to IndexServers and presenting results to the
user. Each of these components consists of several modules with well-deĄned interfaces.

These components were designed to be deployed as separate processes on different
servers. Therefore, the system handles most of possible exceptions in its components with-
out shutting down totally and at least partial results are presented to the user whenever
possible. On the other hand, it was necessary to design, implement and test the system very
carefully, as the distributed nature created a lot of challenges. Some of the most interesting
ones were discussed.

In order to query the semantic metadata, new query language called EQL (Enticing
Query Language) was designed. This language is powerful enough to query all the entities
inside semantically enhanced documents but also simple to understand, so that users from

1https://www.fit.vut.cz/research/group/knot/
2http://mg4j.di.unimi.it/
3http://knot.fit.vutbr.cz/corpproc/corpproc_en.html

53

https://www.fit.vut.cz/research/group/knot/
http://mg4j.di.unimi.it/
http://knot.fit.vutbr.cz/corpproc/corpproc_en.html


other domains can use it as well. A compiler for EQL was implemented and integrated into
the platform, which also included creating specialized searching algorithms based on EQL.

The platform was tested thoroughly, both for correctness and for performance, and then
successfully deployed. The resulting system is now publicly available via the Internet4. It
was presented at Excel@FIT 20205, where it received an Expert Panel Award. At the
time of writing this text, it is running stable for days without any signiĄcant issues. The
core was further extended by adding a monitoring infrastructure, maintenance system,
conĄguration DSL, support for eager result loading and a smart search bar with syntax and
semantic validation. It can be further extended by adding support for inheritance between
entities, new types of IndexServers, for example backed by a neural network based question
answering model, or by adding a native mobile client. Another interesting extension might
be autocomplete support for the smart search bar.

4At the time of writing this thesis, it was deployed at http://athena10.fit.vutbr.cz:8080/
5http://excel.fit.vutbr.cz/

54

http://athena10.fit.vutbr.cz:8080/
http://excel.fit.vutbr.cz/


Bibliography

[1] Abramov, D. et al. Redux – A Predictable State Container for JS Apps [online].
2020 [cit. 2020-03-05]. Available at: https://redux.js.org/.

[2] Aho, A. V., Sethi, R. and Ullman, J. D. Compilers principles, techniques, and
tools. Reading, MA: Addison-Wesley, 1986.

[3] Boldi, P. and Vigna, S. Mg4j (big) The Manual. [cit. 2020-03-20]. Available at
http://mg4j.di.unimi.it/man-big/manual.pdf.

[4] Boldi, P. and Vigna, S. MG4J: high-performance text indexing for Java [online].
2005 [cit. 2020-03-15]. Available at: http://www.mg4j.di.unimi.it/.

[5] Boldi, P. and Vigna, S. Efficient optimally lazy algorithms for minimal-interval
semantics. In: Theoretical Computer Science. Dipartimento di Informatica,
Università degli Studi di Milano, Italy: [b.n.], 2016, p. 8Ű25. ISSN 0304-3975.

[6] Breslav, A. et al. Kotlin programming language [online]. 2020 [cit. 2020-03-27].
Available at: https://kotlinlang.org/.

[7] Doležal, J. Komponent pro sémantické obohacení. Brno, CZ, 2018. Master Thesis.
Vysoké učení technické v Brně, Fakulta informačních technologií. Available at:
https://www.fit.vut.cz/study/thesis/7848/.

[8] Grešová, K. Searching Semantically Annotated Texts. Brno, 2018. BachelorŠs thesis.
Brno University of Technology, Faculty of Information Technology.

[9] Haverbeke, M. et al. CodeMirror [online]. 2020 [cit. 2020-03-09]. Available at:
https://codemirror.net/.

[10] Hejlsberg, A. et al. TypeScript – JavaScript that scales [online]. 2020 [cit.
2020-04-03]. Available at: https://www.typescriptlang.org/.

[11] Hoeller, J., Deleuze, S., Long, J. et al. Spring Framework [online]. 2020 [cit.
2020-03-21]. Available at: https://spring.io/.

[12] Kilgarriff, A., Rychlý, P., Jakubíček, M. et al. SketchEgine [online]. [cit.
2020-03-23]. Available at: www.sketchengine.eu.

[13] Kozak, D. Enticing Ű Semantic Search Engine. Excel@FIT 2020. 2020, [cit.
2020-06-01]. Available at: http://excel.fit.vutbr.cz/submissions/2020/019/19.pdf.

[14] Panov, S. Indexing and Searching Semantically Annotated Texts. Brno, 2017.
BachelorŠs thesis. Brno University of Technology, Faculty of Information Technology.

55

https://redux.js.org/
http://mg4j.di.unimi.it/man-big/manual.pdf
http://www.mg4j.di.unimi.it/
https://kotlinlang.org/
https://www.fit.vut.cz/study/thesis/7848/
https://codemirror.net/
https://www.typescriptlang.org/
https://spring.io/
www.sketchengine.eu
http://excel.fit.vutbr.cz/submissions/2020/019/19.pdf


[15] Parr, T. et al. ANTLR [online]. 2020 [cit. 2020-03-12]. Available at:
https://www.antlr.org/.

[16] Tablan, V., Bontcheva, K., Roberts, I. and Cunningham, H. Mímir: an
Open-Source Semantic Search Framework for Interactive Information Seeking and
Discovery. Journal of Web Semantics. 2014. Available at:
http://dx.doi.org/10.1016/j.websem.2014.10.002.

[17] Vaughn, B., Abramov, D., Gannaway, D. et al. React – A JavaScript library for
building user interfaces [online]. 2020 [cit. 2020-03-05]. Available at:
https://reactjs.org/.

[18] Vigna, S. Quasi-succinct indices. In: Proceedings of the 6th ACM International
Conference on Web Search and Data Mining. Rome, Italy: ACM, 2013, p. 83Ű92.
ISBN 978-1-4503-1869-3.

56

https://www.antlr.org/
http://dx.doi.org/10.1016/j.websem.2014.10.002
https://reactjs.org/


Appendix A

Contents of the included storage

media

The storage media contains a clone of the project git repository at the time of submitting
the thesis1, text of the thesis and a poster. The structure is as follows.

root

repository..............................................Enticing git repository
bin.................................Scripts for starting individual components
console-client ....................................... ConsoleClient module
data...................................................Input data for testing
deploy ........................................ Deployment conĄguration Ąles
documentation.....................................High-level documentation
dto.........................................................Core dto module
eql-compiler...........................................Eql-compiler module
index-builder ......................................... IndexBuilder module
index-lib..................................................IndexLib module
index-server ........................................... IndexServer module
lib....................Compiled components as jar archives and dependencies
management-core...................................Management core module
management-frontend..........................Management frontend module
management-service.............................Management service module
query-dispatcher..................................QueryDispatcher module
scripts.........................................Original management scripts
testings...................................Integration and performance tests
webserver-frontend ............................. Webserver frontend module
webserver ................................................ Webserver module
README.md..................................................Main readme Ąle

thesis

thesis-pc.pdf..............................PDF version for reading on a PC
thesis-print.pdf .................................. PDF version for printing
source ......................... Directory with LATEX source Ąles of this thesis

poster

poster.pdf........................................PDF version of the poster
source ......................... Directory with LATEX source Ąles of the poster

1Up to date version can be found on GitHub at https://github.com/d-kozak/enticing

57

https://github.com/d-kozak/enticing


Appendix B

Manual

B.1 Dependencies

To build and run the components, following dependencies are needed.

• Java Ű version 1.8 or higher

• Gradle Ű version 5.3.1 or higher

B.2 Build

To build the project, you can either use a script Ąle in the bin folder or use gradle command
directly. Both of the options below will work.

./bin/build

gradle buildAll

B.3 Testing

Unit tests

To run the unit tests, gradle can be used.

gradle clean test --info

Integration and performance tests

These tests are very expensive to run and cannot be performed from the CI pipeline, thatŠs
why they are disabled by default. To run them, open the testing module in the IDE of your
choice and select wanted tests manually.

58



Appendix C

EQL Grammar

This chapter contains the grammar of EQL written in the Antlr4 format1.

grammar Eql;

root: queryElem (CONSTRAINT_SEPARATOR constraint)? EOF;

queryElem:

IDENTIFIER COLON EQ queryElem #assign

| NOT queryElem #notQuery

|(RAW |IDENTIFIER | ANY_TEXT | interval) #simpleQuery

| IDENTIFIER COLON queryElem #index

| IDENTIFIER DOT IDENTIFIER COLON queryElem #attribute

| queryElem EXPONENT queryElem #align

| PAREN_OPEN queryElem PAREN_CLOSE proximity? #parenQuery

| queryElem booleanOperator queryElem proximity? #booleanQuery

| queryElem LT queryElem proximity? #order

| QUOTATION queryElem+ QUOTATION #sequence

| queryElem queryElem proximity? #tuple

;

proximity : SIMILARITY IDENTIFIER ;

interval: BRACKET_OPEN (ANY_TEXT|IDENTIFIER) DOUBLE_DOT

(ANY_TEXT|IDENTIFIER) BRACKET_CLOSE;

constraint: booleanExpression;

booleanExpression:

comparison #simpleComparison

| NOT booleanExpression #notExpression

| PAREN_OPEN booleanExpression PAREN_CLOSE #parenExpression

| booleanExpression booleanOperator booleanExpression #binaryExpression

;

1See https://www.antlr.org/ for details

59



comparison: reference comparisonOperator referenceOrValue;

referenceOrValue: reference | nestedReference;

reference: IDENTIFIER (DOT nestedReference)?;

nestedReference: IDENTIFIER | RAW;

booleanOperator: AND | OR ;

comparisonOperator: EQ | NE | GT | GE | LT | LE ;

RAW: [’]~[’]+[’];

CONSTRAINT_SEPARATOR: ’&&’;

COLON:’:’;

DOUBLE_DOT:’..’;

DOT: ’.’;

EQ: ’=’;

NE: ’!=’;

GT: ’>’;

GE: ’>=’;

LT: ’<’;

LE: ’<=’;

EXPONENT: ’^’;

SIMILARITY:’~’;

SENT: ’_SENT_’;

PAR: ’_PAR_’;

NOT: ’!’;

AND: ’&’;

OR: ’|’;

PAREN_OPEN : ’(’;

PAREN_CLOSE : ’)’;

BRACKET_OPEN: ’[’;

BRACKET_CLOSE: ’]’;

MINUS:’-’;

QUOTATION: ’"’;

IDENTIFIER: [_]?[a-zA-Z0-9][a-zA-Z0-9_]*;

ANY_TEXT: ~[ !"’\u005B\u005D\t\r&|=<>:.()*^-]+[*]? ;

/** ignore whitespace */

WS : [ \t\r] -> skip;

60


	Introduction
	Indexing and searching inside search engines
	Basic definitions
	Techniques used in a search engine
	MG4J – Managing Gigabytes for Java

	Semantic enhancement of natural languages
	Basic definitions
	Corpora processing tools
	State of the art semantic search engines

	Design of the search engine
	Requirements analysis
	EQL – Enticing Query Language
	Component architecture
	Module architecture
	Transferring annotated text

	Used technology
	Frontend
	Backend

	Implementation of the search engine
	Eager result loading
	Pagination and offsets
	Enticing Query Language
	Encapsulating MG4J
	User interface
	Smart search bar
	Enticing Configuration DSL

	Testing and evaluation of the search engine
	Types of tests
	Overview of the testing module
	Testing the searching algorithms
	Performance measurements
	Continuous Integration and Continuous Delivery

	Deployment of the search engine
	Deployment scripts
	Logging
	Management and monitoring infrastructure

	Conclusion
	Bibliography
	Contents of the included storage media
	Manual
	Dependencies
	Build
	Testing

	EQL Grammar

