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Abstrakt

Automaticky memoizačńı systém - také softwarová cache - ukládá omezený
počet prvk̊u v paměti, které byly nedávno zpř́ıstupněny a zrychluje tak následný
př́ıstup k nim. Least-Recently-Used (LRU) je populárńı strategie nahrazováńı
prvk̊u pro hardwarovou a softwarovou cache. Nicméně, jej́ı paralelńı imple-
mentace má ńızkou škálovatelnost v d̊usledku přeskupováńı seznamu, které je
prováděno jak při vyhledáváńı tak při vkládáńı.

V této práci je představena nová paralelńı softwarová cache DeferredLRU,
která vycháźı z LRU strategie. Hlavńım ćılem návrhu byla škálovatelnost a efek-
tivńı využit́ı na mnoha-jádrových sýstémech. Toho bylo dosaženo použit́ım
jiného řešeńı ke sledováńı pořad́ı př́ıstupu k prvk̊um. Toto řešeńı podstatně
snižuje počet opětovných vložeńı prvk̊u do seznamu, což je hlavńım faktorem
zpomaleńı u běžné LRU cache.

Výkonnost a hit-rate DeferredLRU jsou citlivé na nastaveńı konfiguračńıch
parametr̊u. Dı́ky vyladělnému nastaveńı parametr̊u pro specifické vstupy byl
dosažen vyšš́ı hit-rate než u běžné LRU cache ve všech testovaných př́ıpadech.
Relativńı rozd́ıl byl až 7,8%.

Výkon DererredLRU byl porovnán s existuj́ıćımi alternativami, včetně
souvisej́ıćıh implementaćı cache z projekt̊u Intel TBB a Facebook HHVM.
Testované implementace cache byly hodnoceny až do 32 vláken (na 16 HW CPU
jádrech). Při 32 vláknech, DeferredLRU bylo rychleǰśı ve všech 16 testech.
Pokud byly př́ıstupy distribuovány mezi v́ıce malých cache z d̊uvodu lepš́ıho
paralelizmu (tzv. binning), DeferredLRU bylo rychleǰśı v 11 z 16 př́ıpad̊u
a ve zbylých 5 byl výkon bĺızko nejlepš́ımu pozorovanému výsledku. De-
ferredLRU s binning př́ıstupem bylo až 28,8 krát rychleǰśı na 32 vláknech ve
srovnáńı s jedno-vláknovým výkonem.

Kĺıčová slova LRU cache, memoizace, paralelńı datové struktury, paralelńı
výpočet, softwarová cache, souběžný výpočet, strategie nahrazováńı prvk̊u,
techniky lock-free programováńı, v́ıceprocesové systémy
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Abstract

An automatic memoization system — also known as a software cache — stores
a limited number of recently accessed elements and speeds up consequent
accesses to them. Least-Recently-Used (LRU) is a popular replacement policy
for hardware and software caches. However, its concurrent implementation
suffers from high contention due to the list reordering performed both on
lookup and insertion.

A novel LRU-inspired concurrent software cache, called DeferredLRU,
is presented in this thesis. The main goal of the design was to make it scalable
and suitable for many-core systems. These properties were achieved by using
a different approach to tracking item access order. This approach substantially
decreases the number of list reinsertions — the main factor of the contention
in a regular LRU cache.

DeferredLRU throughput and hit-rate are sensitive to the meta-parameter
setting. By fine-tuning meta parameters for specific inputs, it was possible
to achieve higher hit-rate than of a regular LRU cache for every tested input.
The relative difference was up to 7.8%.

DeferredLRU performance was compared to existing alternatives, including
corresponding caches from Intel TBB and Facebook HHVM projects. Tested
caches were evaluated with up to 32 threads (on a 16 HW cores CPU). In 32
threads evaluation, DeferredLRU was faster in all 16 tests. When accesses were
distributed among multiple smaller caches for better parallelism (this approach
is called binning), DeferredLRU was faster in 11 of 16 tests and was close to
best-performing caches in 5 other tests. DeferredLRU with binning was up to
28.8 times faster on 32 threads compared to single-threaded performance.

Keywords Cache eviction strategy, concurrent computing, concurrent data
structure, lock-free programming techniques, LRU cache, memoization, multi-
processing systems, parallel computing, software cache
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Introduction

Motivation

Modern computations and data processing rely heavily on caching systems.
Software cache [1] (SW cache) is a key-value storage used to speed up access
to commonly used or recently used elements in some domain.

Without caching, required values are recomputed or fetched from network
each time they are requested. With a SW cache, the values are stored in
memory once obtained. Later, the requested value is searched in memory
before being retrieved again. If it is found, the costly recomputation of this
value is omitted.

SW cache supports at least the following two operations: Lookup that
looks up a value by its key in memory and Insert that stores a new key-
value pair (while possibly evicting some existing element). Usually, they are
combined into one procedure that searches for the requested item, and in case
it is not found the item is recomputed and inserted into the SW cache.

Among numerous SW cache applications, there are systems for optimizing
server-side IO throughput [2,3] and distributed file systems [4,5]. Caching is
an integral part of the database systems in many ways: it is used for managing
disk buffering [6], server-side request caching, client-side ORMDB caches [7],
and many more. Memcached [8] and Redis [9] are popular general-purpose
caching solutions for modern network systems [10,11].

An automatic memoization approach is a form of caching that is primarily
used in algorithmization. This process is also denoted as tabling [12]. It was
first described in [13], and it is widely used in term rewriting [14], artificial
intelligence [15], and other scientific computations [16–18].

The SW cache is used when it is impractical or impossible to store all
the values in local memory. Its goal then is to store the most valuable elements.
Some stored elements must be evicted from the cache in order to free up space
for the insertion of a new one. SW caches differ by the replacement strategy
they use to choose such an element.

1



Introduction

The Least-Recently-Used (LRU) [19] is a simple replacement strategy. When
a replacement is required, the element that has not been accessed for the longest
time is chosen. It is achieved by keeping all elements in a linked list ordered
by the last access time. When an element in a cache is accessed, it is moved to
the head of the list. The element at the tail of the list is considered least recently
used, and it is chosen for eviction. The list is combined with a dictionary data
structure (usually, a hash table) for fast item lookup by key.

This implementation performs well in a sequential program, but adapt-
ing this data structure for a concurrent environment raises multiple issues.
One of the main flaws is the high contention on the list head since both
Lookup and Insert operations imply an insertion into the LRU list head.
When each thread attempts to access the same memory address, these accesses
are serialized. This limits the scalability of the whole cache.

What is more, it is hard to combine concurrent hash table and concurrent
linked list in a single system while preserving the correctness and scalability of
these data structures. There are known implementations for a doubly linked list
and concurrent hash table (see Section 2.3.1). However, special care should be
taken to avoid race conditions when combining them. For instance, an element
can be evicted from the list while it is searched in the hash table. The routine
that moves accessed elements to the list head must foresee this.

Contribution

An LRU-inspired concurrent SW cache, called DeferredLRU, is presented in
this thesis. It attempts to preserve LRU caching efficiency while making it
more suitable for a concurrent environment.

It uses a different approach to moving accessed elements to the head.
Instead of being moved immediately after each element lookup, they are
added to another linked list, called Recent list (in contrast to LRU list).
When the number of elements in the Recent list hits some threshold, a single
thread performs the PullRecent operation while other threads are still
able to perform lookups and insertions concurrently. PullRecent evicts
all the elements in the Recent list from the LRU list and reinserts them
into the head. The whole sublist is inserted in a single step. This trick
vastly decreases the total number of head insertions (making one insertion
per PullRecent, not per lookup), and therefore, it improves scalability.

PullRecent is done as a part of cache consolidation. In case the cache is
full, the consolidation stage also performs PurgeOld operation. PurgeOld
evicts some tail nodes to reuse them for storing new items. It is guaranteed
that only one thread performs consolidation at a time, and it is the only time
when nodes are removed from the LRU list. The only other operation that
is performed on the LRU list is the head insertion. These two facts allowed
the list synchronization to be greatly simplified and reduced (see Section 2.3.2).

2



Outline

In addition to that, the thesis contains a comprehensive performance evalu-
ation of DeferredLRU and compares it to existing concurrent LRU SW caches
under different workloads.

DeferredLRU puts the main focus on improving cache scalability with
a novel approach to updating the LRU list. The ideas presented in this thesis
can be used for implementing other scalable concurrent SW caches that are
based on more sophisticated replacement strategies (see Section 1.1) similarly
to how LRU is used as a building block in many of these strategies.

Outline

The thesis proceeds as follows. In Chapter 1, an overview of selected SW caches
and replacement strategies is presented. In Chapter 2, data structures and
algorithms necessary for understanding the DeferredLRU implementation are
introduced. In Chapter 3, several concurrent LRU SW caches are studied.
These caches are later used in the performance evaluation for comparison
with DeferredLRU cache. In Chapter 4, the DeferredLRU implementation is
introduced. In Chapter 5, an extensive performance evaluation of DeferredLRU
and other LRU containers is presented. It studies the effect of the DeferredLRU
meta parameters choice and compares cache throughput and hit-rate under
different workloads and with a varying number of threads. In Chapter 6,
the future improvements to DeferredLRU are discussed.

3





Chapter 1

Related Work

In recent years, the progress on SW caches has been made in two primary
directions: improving replacement strategy to make smarter evictions and
improve performance, especially for parallel applications.

1.1 Replacement strategies

Least-Recently-Used (LRU) [19] is a simple replacement strategy. It always
chooses to evict an element that has not been accessed for the longest time.
Least-Frequently-Used (LFU) is another base approach to node eviction.
It tracks the number of accesses to each element in the cache and evicts
the one that has the least number of accesses.

Bélády’s algorithm [20] is the most efficient replacement strategy. It dis-
cards entries that are not required for the longest time. However, to do
so, the algorithm would have to see the input ahead, which is not possible
with non-static inputs. Therefore, Bélády’s algorithm cannot be implemented
in reality. It is useful for evaluating other cache replacement strategies, as it
sets the best possible hit-rate that can be achieved with a given input.

LRU-K [19] attempts to find a balance between both LRU and LFU
approaches. It makes eviction decision based on last K accesses.

2Q [6] attempts to overcome an issue with inserted items that were not
referenced afterward. Such items unnecessary take up valuable caches capacity.
2Q maintains two queues (hence the name 2Q). On first access, items are
placed to the first FIFO queue. If an item is reaccessed before it is evicted, it is
promoted to the second LRU queue. By changing the ratio between the queue
capacities, it is possible to adjust eviction behavior.

Low Inter-reference Recency Set (LIRS) [21] uses the reuse distance metric —
number of other elements accessed between two consecutive references to
the given element. LIRS ranks entries in the cache based on the maximum of
reuse distances between last and second-to-last reference and distance between
the last access and current point in time.

5



1. Related Work

Adaptive replacement cache (ARC) [22] attempts to exploit both recency
and frequency of access locality. It maintains LRU and LFU caches and
a set of ghost-entries (meta-data of recently evicted items) for each of them.
The total cache capacity is dynamically divided between the two caches based
on the number of hits each cache receives. That is, if a particular workload
caches better with a frequency-based replacement strategy, the LFU cache
capacity is gradually increased and vice versa. The adaptation process is
continuous; therefore, ARC is able to capture changes in workload.

TinyLFU [23] is a cache admission policy. For a new element and a given
eviction candidate, it decides whether it worths performing the replacement.
It does so by considering access frequency that is tracked in a very economic
way based on Bloom filter theory [24]. W-TinyLFU [23] is a cache replacement
strategy that uses a combination of a small LRU cache and a much larger
SLRU cache with an embedded TinyLFU admission policy. Initially, elements
are written into the LRU cache and may be propagated to the SLRU cache
on subsequent accesses.

Hawkeye [25] cache replacement algorithm is based on a completely dif-
ferent idea than the previous caches. It approaches the replacement decision
as a binary classification problem. It executes Bélády’s algorithm on a history
of recent accesses to study the workload distribution and make predictions.

6



1.2. Concurrent caches

1.2 Concurrent caches

The demand for concurrent caching arises from the shift in CPU development
trends. Gordon E. Moore has predicted that the number of transistors doubles
every 2 years [27]. Figure 1.1 demonstrates that this statement remains correct
for the last 5 decades.

However, single-threaded performance trend is not keeping up with this
trend for the last 10 years. The overall performance is catching up by the num-
ber of logical cores, that has increased drastically even in consumer-grade
processors. Server processors have been having tens of cores for a long time,
and the counts approach hundreds rapidly.

There are several SW caches that are suitable for a concurrent program.
C++ implementations of concurrent LRU cache can be found in the Intel
Threading Building Blocks library [28] and the Facebook HHVM project [29].
These implementations are studied in Chapter 3.

Agnes [30] presents another concurrent cache, called BagLRU. Inserted
items are accumulated in an “AgeBag” collection. When the AgeBag is full,
another one is allocated, and new items are written to it. When the cache
is full, the oldest AgeBag is emptied. Items that have been accessed since
the corresponding was full are added to a newer AgeBag. The other items
are evicted. Other concurrent cache implementations can be found in [31–33].
These implementations were written in Java. Therefore, they can not be
directly compared with existing DeferredLRU implementation.

Figure 1.1: 42 years of microprocessor trend data [26]
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Chapter 2

Background

In this chapter, the algorithms, data structures, and concepts that DeferredLRU
implementation is built upon are presented. At first, common data structures
like linked list or hash table are introduced. It is followed by an overview
of some approaches used in concurrent programming for ensuring thread
synchronization. Then, a survey of existing concurrent hash tables is presented.
Finally, a DeferredLRU-specific implementation of concurrent doubly linked
list is introduced.

2.1 Sequential data structures and algorithms

2.1.1 Singly linked list

Singly linked list is a basic data structure for maintaining a sorted sequence of
elements. It is built of nodes that consist of user data and a link to the next
node. In most implementations, the last node link points to a distinctive value
that is often denoted as NULL. List traversal stops when this value is reached.
Another common option is to set the last link node pointing to the very first
node. In this case, the list is called cyclic. The first linked list node is called
the list head. Respectively, the last node is called the list tail. All other nodes
can be reached from a head node. Usually, a linked list is handled by a link to
its head. Sedgewick [34] provides a detailed explanation of the linked list data
structure.

In comparison to other data structures, specifically arrays, linked list has
the following advantages:

• Nodes in a linked list can be reordered by merely reassigning their next
links. This allows O(1) element insertion and removal in the beginning
and middle of a linked list in contrast to O(N) for array (when inserting
into an array, all elements after the position of the insertion must be
shifted and there is N/2 such elements on average).

9



2. Background

• Consequently, this allows fast list slicing and joining operations. For in-
stance, appending one list at the end of another is just a matter of setting
the next link of the last node in one of the lists.

• Singly linked list has an overhead of one link per element, which is
more than the overhead of an array, but still less than many other data
structures.

• Linked list is a stable container, meaning that changing the order of list
elements would not invalidate any existing link to a node inside the list.

• Linked list can be intrusive, meaning that it can be embedded into another
structure. It is even possible to embed multiple linked lists in a single
structure. Then instances of this structure may be linked independently
through different lists while using the same memory placement.

• Linked lists can use a node pool for efficient memory reclamation. When
a node is removed from a list, it is added to a dedicated linked list, called
node pool, instead of deallocating the memory. The list is formed by
reusing an existing next link in the nodes. Later, when required, the node
is obtained from the node pool instead of allocating it in runtime.

Adding and removing nodes from a node pool is expected to be much
faster than using general memory management facilities. Some nodes
may be preallocated and added to a memory pool beforehand to avoid
initial allocations. Multiple lists of the same type may use a shared node
pool.

However, these advantages come at a cost. One of the main downsides of
a linked list is the absence of random access support. Accessing N-th node
generally requires to iterate all the way down from the corresponding list head
node. Moreover, traversing a linked list makes CPU cache futile. Since the next
node can be anywhere in memory, each access may result in a CPU cache miss,
pessimizing traversal performance. Finally, singly linked list does not allow
backward traversal as nodes have no information about their predecessors.
For the same reason, it is not possible to remove a node without knowing its
predecessor. The last two problems can be solved with a doubly linked list.

2.1.2 Doubly linked list

Doubly linked list is a data structure that is in many ways similar to a singly
linked list. However, instead of one link, each node in a doubly linked list
contains links to both its preceding and following nodes (usually referred to
as prev and next links). This modification allows doubly linked list to be
traversed in both directions (but direct access by index is still not possible).
Other than that, doubly linked list has the same advantages and disadvantages
as singly linked list (see Section 2.1.1). See [34] for additional information.
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2.1.3 Hash table

Hash table implements Dictionary abstract data type. It is capable of storing
key-value pairs and looking up a value by the corresponding key. Also, it
supports operations to add, update, and remove key-value pairs.

Internally hash table maintains an array of entries. It maps each key to
an index in this array. To map a possibly infinite space of keys to a finite
space of array indices, it uses a hash function [35]. A notable property of hash
table is that its lookup time complexity does not depend on the number of
items in it.

2.1.3.1 Hash collisions

In general case, the mapping cannot be injective, thus many keys are mapped
to the same array index. This is called a hash collision. The number of
collisions is controlled with a load factor. It is calculated as a maximum ratio
of the number of items to the capacity.

There are two main approaches to dealing with collisions. With closed
addressing, each entity in the hash table array is a linked list that contains all
collided keys. With open addressing hash table array directly stores key-value
pairs. A separate function for hash collision resolution is used. It generates
a sequence of indices that are probed until an empty element in the array is
found. If the sequence is (N, N + 1, N + 2, ...), such probing is called linear
probing. Sedgewick [34] explains these concepts in greater detail.

2.1.3.2 Cuckoo hash table

When using open addressing, it is unclear how may addresses are probed before
the searched key is found. Cuckoo hashing is a variant of the open addressing
hash table that guarantees the constant number of probes for lookup [36].

The insertion is performed as follows. For each key in the Cuckoo hash
table, two positions in the array are calculated using different hash functions.
These positions may be either in the same array or in two different arrays.
During the insertion, both positions are checked. If at least one of them is
empty, then it is chosen for insertion.

Otherwise, the collision is resolved by replacing one of the old elements
with the new one and pushing the replaced elements to its second position.
In case it is occupied as well, the element evicted in the previous step is written
to the slot and the replacement is repeated for the newly evicted key.

If no empty slot was found after performing a predefined number of such
replacements, the hash table is considered full, and it is rehashed.

Although insertion may result in a long chain of replacements, each key is
always placed into one of its two positions. Therefore, the Cuckoo hash table
allows a fast lookup, that has to check at most two memory locations.
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2.1.3.3 Hopscotch hash table

The Cuckoo hash table requires a few memory accesses on lookup. These ac-
cesses can be anywhere in memory and each access likely results in a CPU cache
miss. Hopscotch hash table [37] combines advantages of the Cuckoo hashing
and linear probing to minimize CPU cache misses.

Items are kept in an array of buckets. H consequent buckets form a group
of neighbors. Each bucket consists of a single slot for a key and the hop
information. When a collision occurs, the key is attempted to be placed in one
of the neighbor buckets. If the bucket is full, the hash table is rehashed.

The hop information is a bit array that has bits set for those positions
in the group, that are occupied by the collided items. E.g., with H = 6,
elements X, Y, and Z belong to the bucket 1. However, during collision
resolution, they have been written to buckets 1, 2, 4. In this case, hop
information equals to 110100. Hop information is used to speed up lookups.

2.1.3.4 Cache-line hash table

Another attempt to improve memory access patterns concerning the CPU
caching is made in CLHT [38]. It is based on a closed addressing. However,
each bucket contains a chain of arrays of keys instead of separate nodes. Each
array is of the same size as a CPU cache line. Therefore, each CPU cache
transaction allows us to load and traverse multiple keys.

2.1.4 LRU cache

A typical LRU implementation is based on a combination of a hash table
(for a fast element lookup) and a doubly linked list that keeps elements ordered
by their access order, i.e., recently accessed and just added elements are inserted
into the head and the least recently accessed elements are in the tail. Each
successful element lookup results in the corresponding node being moved to
the list head.

Figure 2.1 shows an example of LRU cache that contains 5 items (A, B,
C, D, E). This implementation uses a closed addressing hash table, although
other variants can be used as well. Item A has been accessed most recently.
In case item B is accessed, LRU list will contain items in the following order:
B, A, C, D, E. In case an eviction is performed, item E is removed from LRU
list and hash table as it is the last entry in the LRU list.

The important property of this approach is that lookup and insert opera-
tions have O(1) space and time complexity. The lookup consists of the hash
table lookup and optionally a linked list node removal and insertion. Insert
operation consists of insertion into the hash table and into the linked list
head. In the case of insertion into a full cache, another element also has to be
evicted. This adds a hash table removal and a linked list removal. Indeed, all
operations are O(1).
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Figure 2.1: LRU cache structure
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2.2 Approaches to synchronization in concurrent

programs

This section describes some general approaches to thread synchronization,
primitives that are used by these approaches, and common pitfalls that may
occur in concurrent programs.

2.2.1 Race conditions

As described in Section 1.2, the main advance in modern chip development
is made towards increased parallelism. Hence nowadays, many programs are
required to support multi-core execution, and so do their building blocks,
namely data structures and algorithms.

For most sequential codes that actively interact with memory, it stands
that executing them in parallel results in undefined behavior and often a pro-
gram crash too. When multiple threads access shared memory, they must
appropriately synchronize reads and writes to the memory. Therefore, the cor-
responding codes must be rewritten with concurrency in mind. In other
words, with the idea that other threads may execute any other viable code at
the same time.

It is easy to demonstrate the issues coming up with multi-threaded execu-
tion even with a simple function that increments an integer X. On a machine
instruction level, its implementation may look like in Algorithm 1. The im-
portant part is that the increment is performed in 3 steps: load current value
from memory, increment it, write it back to memory.

In case two threads make progress on the function simultaneously, it is
expected that X is incremented twice. However, due to the nature of concurrent
programming, the instructions of different threads may be executed in any
relative order. It may happen that on a global timeline, the instructions are
ordered the way it is shown in Table 2.1. One can see that both threads con-
currently read and increment the initial value of X. Therefore, after execution,
X is only incremented by 1. Such a circumstance is called a race condition.
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Algorithm 1 Integer increment

function Increment(X)
Load X to register
register ← register + 1
Write register to X

end function

Table 2.1: Integer increment race condition

Thread A Thread B X R0 R1

0 ? ?
Load X to R0 0 0 ?

Load X to R1 0 0 0
R1 ← R1 + 1 0 0 1
Write R1 to X 1 0 1

R0 ← R0 + 1 1 1 1
Write R0 to X 1 1 1

The ordering presented in Table 2.1 may appear unlikely to happen. How-
ever, in a similar test, where two threads incremented a shared variable 100000
times, the final value of the variable is 120937 instead of 200000. About 40% of
increments had been discarded due to the race condition in the code. In prac-
tice, it turns out that Murphy’s law [39] applies to concurrent programming
particularly well.

For eliminating the race condition discussed above, threads must be pre-
vented from incrementing the same value and overwriting each other changes.
Several approaches to such synchronization are presented in this section.

2.2.2 Mutual exclusion lock

Many concurrent data structures often rely on a mutual exclusion lock (mutex)
for ensuring thread synchronization. Mutex prevents a part of the algorithm
from being executed by multiple threads at the same time. Such a part is
usually called a critical section.

Mutex is supposed to be locked when entering the corresponding critical
section and unlocked upon exit. When some thread attempts to lock an already
locked mutex, it is suspended until the mutex is unlocked. Additionally, mutex
provides non-blocking TryLock operation that attempts to lock the mutex,
but the thread is not suspended if the mutex is locked already.

The 3-step number increment in Algorithm 1 is an example of a critical
section. It may be implemented with a proper mutex-based synchronization as
shown in Algorithm 2. In case of the ordering denoted in Table 2.1, thread B
would be suspended until A unlocks the mutex.
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Algorithm 2 Integer increment with mutex synchronization

function Increment(X , mutex)
Lock(mutex)
Load X to register
register ← register + 1
Write register to X
Unlock(mutex)

end function

Figure 2.2: Concurrent integer increment from 0 to 3200000000 with 32 threads
using different synchronization approaches
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2.2.3 Atomic operations

Many modern processors support atomic instructions [40,41]. These operations
are different from regular ones because they are executed in a single memory
transaction even though they consist of multiple memory loads and stores.
This means that other threads will either see the memory before the operation
starts or after it finishes, but never in some intermediate state.

One of the basic atomic operations is AtomicCAS(A, C , value) (atomic
Compare-And-Swap). If the current value of variable A equals to the value of
variable C, A is set to value. Otherwise, the current value of A is written to C,
but A itself remains unchanged. The operation returns a true/false result that
tells whether value was written to A. The atomicity ensures that the value of A
cannot be changed concurrently after it was observed by a thread performing
AtomicCAS until this operation finishes. Full AtomicCAS semantic is
denoted in Algorithm 3.

Other common atomic operations are AtomicExch and FetchAndAdd.
AtomicExch(A, value) operation returns the current value of A, while atomi-
cally setting A to value. FetchAndAdd(A, value) fetches the current value
of A while incrementing A by value.

Many atomic operations can be expressed with AtomicCAS. For example,
AtomicExch implementation based on Compare-And-Swap is presented in
Algorithm 4.
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Algorithm 3 Atomic Compare-And-Swap

function AtomicCAS(A, C , value)
Output: returns TRUE if value has been written to A, FALSE otherwise

atomically
if A = C then

A ← value
return TRUE

else
C ← A
return FALSE

end if
end atomically

end function

Algorithm 4 Atomic Exchange

function AtomicExch(A, value)
Output: returns the last value of A before assignment

tmp ← A
repeat
until AtomicCAS(A, tmp, value)
return tmp

end function

Atomic operations are often used instead of critical sections with mutexes
because they may yield better performance. In a small test of incrementing
an integer 3200000000 times with 32 threads version with atomic operations is
2.2x times faster than the one with a mutex (see Figure 2.2). For details on
the test machine, see Chapter 5.

2.2.4 Coarse-grained synchronization

The simplest way to make any data structure thread-safe is to add a single
mutex that guards all its operations. This approach is a so-called coarse-
grained synchronization. The main advantage of it is its simplicity. Indeed, all
algorithms are the same with slight modification for mutex locking.

However, only one thread may operate on a data structure at a time. Hence,
the scalability is limited. If the data structure is the central component of
some computations, then running these computations on multiple cores would
show almost no speedup compared to a single-threaded run. The performance
often even degrades with the number of threads rising.
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2.2.5 Fine-grained synchronization

The scalability can be improved if the data structure operations are divided
into multiple independent critical sections. Then different threads can execute
the operations in parallel if they are in different critical sections. They still
may happen to enter the same critical section at the same time, in which case
one of them is suspended. However, this is not expected to happen too often.
This approach is called fine-grained synchronization.

In the case of LRU cache, each operation requires the accessed element to
be moved to the head of the LRU list. Therefore each thread enters the same
critical section (associated with the LRU list head) on every Lookup and
Insert operation. This limits the applicability of fine-grained synchronization
to LRU cache.

2.2.6 Binning

For some data structures, scalability can be improved by binning. The trick
is to allocate multiple smaller instances of a data structure — bins — and
to distribute concurrent accesses among them. The number of bins is to be
derived from the expected number of threads.

In application to SW cache, a binning adapter distributes keys uniformly
across all bins using a hash function. Since most SW caches internally use
a hash table, the binning adapter and the internal hash table must use different
hash functions.

Binning significantly improves scalability even with coarse-grained synchro-
nization (see Chapter 5). On the other side, it unpredictably affects cache
hit-rate, improving it in some cases and worsening in others (see Appendix B).
Also, it may have some side-effects like worse CPU caching (since multiple
SW caches combined have a larger memory footprint).

2.2.7 Lock-free programming

Lock-based design is prone to system-wide stalls in case a thread that is holding
a mutex is suspended (e.g., by the operating system scheduler). If a thread
never releases the lock, other threads may stall indefinitely long. For instance,
this may happen with priority inversion when the process scheduler keeps
granting time to high-priority threads that are impeded by a mutex locked by
a low-priority thread. Therefore, the system as a whole does not make progress
at all.

In contrast to this, a lock-free programming model guarantees system-wide
progress. That is, there is always at least one thread that can make progress
even if all other threads are suspended. In practice, this usually means avoiding
using mutexes and using atomic memory operations for thread synchronization
instead. Fraser [42] provides a more in-depth explanation of lock-freedom and
related concepts.
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2.2.8 ABA problem

ABA problem is a type of a race condition, that mostly happens in atomics-
based synchronization. It occurs when a thread relies on the assumption
that two consecutive reads from a specified memory location being equivalent
implies that the dependent data structure has not changed.

In reality, another thread may overwrite the checked variable multiple times,
make some other changes to the dependent data structure, and by coincidence,
write the initial value to the checked variable in the end. The first thread then
would not detect the occurred changes since the checked variable is effectively
the same. Consecutive operations performed by the thread results in undefined
behavior and likely in the data structure corruption.

ABA problem can be easily demonstrated with a naive linked list-based
lock-free stack implementation. Stack is a data structure with two basic
operations: Push adds objects to a stack, and Pop extracts them in reverse
(last in, first out) order.

The simple implementation presented in Algorithm 5 is prone to the ABA
problem, as shown in Table 2.2. One can see that after the execution finishes
stackHead points to invalid memory location.

Dechev et al. [43] introduce a technique for systematic ABA problem
avoidance and compare it with other existing approaches. DeferredLRU avoids
the ABA problem by putting specific constraints on the used lock-free data
structures that make it impossible to happen.

For example, a constraints that could prevent ABA problem in Algorithm 5
is to avoid using Pop operation at all. The ABA problem cannot emerge from
Push as this operation does not rely on the stack not being changed apart
from the stackHead variable itself. By using some other operation for resetting
the stack (see Section 4.1.6), the ABA problem can be avoided without using
any explicit ABA avoidance technique.
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Algorithm 5 Lock-free stack Push and Pop (prone to ABA problem)

1: global stackHead ← NULL
2: function Push(node)
3: repeat
4: currentHead ← stackHead ⊲ Atomic load
5: node.next ← currentHead
6: until AtomicCAS(stackHead, currentHead, node)
7: end function
8: function Pop
9: repeat

10: node ← stackHead ⊲ Atomic load
11: if node = NULL then
12: return NULL ⊲ Stack is empty
13: end if
14: nextNode ← node.next
15: until AtomicCAS(stackHead, node, nextNode)
16: return node
17: end function

Table 2.2: ABA problem in a lock-free stack

Thread A variables

Stack node nextNode

Initial state
stackHead→ X → Y → Z → NULL ? ?

Thread A executes Pop until being
suspended between lines 14 and 15
stackHead→ X → Y → Z → NULL X Y

Thread B executes Pop; reference to X becomes invalid
stackHead→ Y → Z → NULL X Y

Thread B executes Pop; reference to Y becomes invalid
stackHead→ Z → NULL X Y

Thread B executes Push and inserts X ′

New node X ′ happens to have the same address as X
stackHead→ X ′ → Z → NULL X ′ Y

Thread A finishes Pop
AtomicCAS on line 18 succeeds as the pointer value is the same
stackHead→ Y → ? ? ?
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2.3 Concurrent data structures and algorithms

2.3.1 Concurrent hash table

Hash table is a key data structure in numerous applications. There is a substan-
tial progress made towards fast concurrent implementations. Chen et al. [44]
and Maier et al. [45] present the most recent studies on concurrent hash tables.

Specifically, Chen et al. [44] conclude that there is no silver bullet: a concrete
hash table must be chosen depending both on the typical use case and the target
hardware (as the implementations often rely on specific hardware properties).

2.3.1.1 Fine-grained synchronization

As with other data structure, any hash table can be made concurrent using
a coarse-grained synchronization approach. However, due to the nature of
hash tables, accesses are usually distributed uniformly across all used memory.
It makes the hash table a good fit for a fine-grained synchronization.

Indeed, the fine-grained hash table implementation is straightforward.
Each bucket is associated with its mutex. Each thread locks the corresponding
mutex before accessing nodes. This way, different buckets can be accessed
concurrently. Considering the fact that hash tables usually contain many
buckets, the contention on each of them is expected to be low.

This design results in large memory overhead, since each mutex may take
up a considerable amount of memory (for instance, on Linux platform each
mutex takes up 40 bytes). It can be optimized by associating one mutex with
a group of buckets. With many groups, there is still enough independent
critical sections. At the same time, the memory overhead is divided across all
buckets in a group.

Locking mutex is an expensive operation. Therefore, such design usually
yields low per-thread performance. What is more, if many threads attempt to
access the same value at the same time, all the accesses are serialized. Never
the less, many concurrent implementations rely on this kind of lock-based
design. Other implementations are based on the lock-free design.

2.3.1.2 Concurrent Cuckoo hash table

Scouarnec [46] presents a scalable concurrent version of the Cuckoo hash
table, called Cuckoo++. It uses lock-based design with one lock per bucket.
Cuckoo++ attempts to omit a costly fetching of the secondary location by
using the following heuristics.

Firstly, it relies on an “optimistic approach” — it expects the element to
be found in its primary location and therefore it avoids memory prefetching
for the secondary one. Secondly, each primary location bucket has a Bloom
filter [24], that is able to detect, that the key is definitely not in the secondary
location without actually accessing it.
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2.3.1.3 Concurrent Hopscotch hash table

Herlihy et al. [37] describe both sequential and concurrent versions of the Hop-
scotch hash table. Concurrent Hopscotch also employs an optimistic partially
lock-free synchronization. Each bucket maintains its lock and a version number,
that is associated with all the keys mapped to the bucket (even if they are
placed into different buckets due to collisions). Insertions and evictions use
the lock for mutual synchronization and updates the version counter after
each change.

However, Lookup optimistically expects that the bucket is not changed
while it is accessed. It records the version number in the beginning and
compares it with a current value after the lookup. If the values are equal,
then the bucket has not been changed concurrently and the data is valid.
Otherwise, the operation is repeated on its slow path that considers concurrent
modifications.

2.3.1.4 Concurrent Cache-line hash table

There are two concurrent versions of CLHT [47]. The first one, called CLHT-LB,
uses lock-based synchronization. Each array of buckets contains an additional
lock, that is held when accessing the data.

The second version — CLHT-LF — is a lock-free hash table. It relies on
atomic version-data pairs for detecting concurrent changes. When the data is
modified, the version is increased. Then the updated pair is attempted to be
posted to the shared memory using AtomicCAS.

2.3.1.5 Implementations

These are existing high-performance hash table implementations [28,47–52].

DeferredLRU uses a simple closed-addressing fine-grained hash table (as de-
scribed in Section 2.3.1.1). The reason behind this is that the main focus was
put on the LRU list and Recent list synchronization. Using a simpler hash
table helped to avoid many bugs. The possibility of using a more sophisticated
concurrent hash table is a concern of future research.

2.3.2 Lock-free doubly linked list for DeferredLRU

Several DeferredLRU routines insert a node or a sublist into a doubly-linked
list head (elements are inserted into LRU list head to denote that they have
been accessed recently). In order to simplify such insertion, a dummy head
node is introduced, and inserting into LRU list head means inserting right
after this dummy head.

To make this operation efficient, a lock-free list insertion routine (see
Algorithm 6) has been developed for DeferredLRU. Note that single element
insertion is generalized to list insertion (since one list node is a list itself).
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Algorithm 6 Lock-free list after-head insertion

procedure DListAtomicInsert(head, first, last)
first.prev ← head
oldNext ← head.next
repeat

last.next ← oldNext
until AtomicCAS(head.next, oldNext, first)
oldNext.prev ← last

end procedure

The insertion is performed in the following steps:

1. The previous link to the first element is set to the head element (as it
follows the head after the insertion).

2. The next link to the head element is set to the first element, while its
previous value is written to the next link of the last element. Since this
operation cannot be performed atomically, it is done with a CAS loop
(using AtomicCAS operation).

3. The previous link to the old next element is updated.

This routine is not valid for a general concurrent doubly linked list, because
it may result in a corrupted list state if a concurrent removal is performed.
However, it is safe to use if the following constraints are ensured:

1. All insertions are performed only right after the head element.

2. No other thread may change the sublist that is currently being inserted.

3. No thread can remove an element if its previous link points to the list head.

It is critical to update the previous link of the old next element as the very
last step. This way the race condition when the old next element is concurrently
removed during the insertion is avoided. A node pointing to the head acts as
a virtual boundary. It divides the parts of the list that are affected by insertions
and by removals. It is prohibited to remove this node (see constraint 3). As
soon as the previous link is updated, all other links (namely, last.next) are
already correctly set up, and no other thread would update these nodes (as
insertions are performed right after the head, and only one thread may perform
a removal at a time). Therefore, from now, it is safe to remove this node.
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Chapter 3

Concurrent LRU Caches

There are several concurrent implementations of an SW cache based on the LRU
replacement strategy. The following implementations are chosen for comparison
with the DeferredLRU implementation.

3.1 LRU with mutex

A sequential LRU cache implementation can be easily adapted to a concurrent
environment using a coarse-grained synchronization approach (as described in
Section 2.2.4). A mutex is added to the cache structure. Each operation is
amended with a mutex locking in the function prologue and unlocking after
the operation.

With this setup, only one thread may access the cache at a time. On
the other side, hash table and LRU list operations are performed in a single
critical section. This greatly simplifies synchronization as there is no need
to consider inconsistencies, when a node is presented in one data structure,
but it is missing in the other one. It may be an acceptable trade-off between
scalability and implementation complexity for some applications.

3.2 ConcurrentLRU

In application to LRU cache, the fine-grained synchronization can be applied
as follows. Both cache components — the hash table and the linked list — are
replaced with their concurrent implementations. Different hash table buckets
can be accessed concurrently. Each hash table bucket has its mutex that
is locked when the bucket is accessed. LRU list elements can be accessed
in parallel as well. Since LRU operations like Lookup and Insert access
both components, they should be carefully synchronized and accessed in
a way that no deadlock occurs. Complete ConcurrentLRU implementation is
available at [53].
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Each LRU node has its independent lock that is used for synchronization
inside LRU list. In addition each node contains presence binary flags: one for
each hash table and LRU list. Using an actual mutex per node would be too
expensive, so the lock is encoded together with the presence flags and a hash
table pointer in a single 64 bit machine word using folly::PackedSyncPtr

from folly library [48]. It is guaranteed that node content can not change while
it is locked.

Insert consists of the following steps. At first, an empty node is obtained
(either from a node pool or from cache eviction in case it is full) and initialized
with new key-value pair. Then it is inserted into the LRU list. After this it is
attempted to be inserted into the hash table. This may fail in case another
node with the same key has been inserted already. In this case, the node is
attempted to be removed from LRU list (it could have been evicted by another
thread already), and then it is returned to the empty node pool.

Lookup consists of the following steps. The key is looked up in the hash
table. In case it is found, the corresponding key is attempted to be shifted
to the LRU list head. It may not be possible in case the node has been just
evicted from the LRU list.

3.3 Intel TBB LRU

Intel Threading Building Blocks [28] is a concurrent framework from Intel. “The
library provides a wide range of features for parallel programming, including
generic parallel algorithms, concurrent containers, a scalable memory allocator,
work-stealing task scheduler, and low-level synchronization primitives.” [28].

One of the containers that Intel TBB provides is a concurrent LRU cache.
Its design is based on a different variant of a coarse-grained synchronization.
Each thread records operations that it is willing to execute to a shared worklist
(aggregator in the Intel TBB terminology), but there is only one thread at
a time that executes these operations. Therefore, all operations on the data
structure itself are inherently sequential, and only the worklist has to be
synchronized. DeferredLRU uses a similar trick for maintaining Recent list
and schedule cache consolidations (see Section 4.3.1).

The worklist is implemented as a lock-free LIFO stack that is based on
a singly-linked list that supports concurrent head insertion and concurrent list
slicing.

The cache itself is implemented with the data types from C++ Stan-
dard Template Library. It uses a non-intrusive std::list for LRU list and
std::map for the item lookup.
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3.4 Facebook HHVM LRU

HHVM [29] is a virtual machine for faster Hack and PHP code execution
developed by Facebook. HHVM source code contains another concurrent LRU
cache implementation. Its design is based on coarse-grained synchronization
and binning (bins are named shards in the HHVM terminology).

Each shard is represented by a combination of a concurrent hash table
(HHVM LRU uses tbb::concurrent hash map from Intel TBB [28]) and a dou-
bly linked list with a mutex-based coarse-grained synchronization.

Lookup and Insert algorithms used in HHVM are presented in Algo-
rithm 7 and Algorithm 8. One particular trick that vastly improves scalability
is the fact that an accessed element is not always moved to the LRU list head

— if another thread has locked the LRU list mutex, the thread skips the move
entirely. This may result in sub-optimal cache hit-rate, but this allows Lookup
to be non-blocking.

Algorithm 7 Find element in HHVM cache

function Lookup(key)
hashNode, success ← FindKeyInMap(key)
if not success then

return NULL ⊲ The key was not found
end if

success ← TryLockLruListMutex()
if success then ⊲ Omit LRU node pull if unable to lock mutex

listNode ← hashNode.listNode ⊲ Each hash table node has
⊲ a reference to its list node

inList ← NodeIsInLruList(listNode)
if inList then ⊲ Node could have been evicted by another thread

EvictNodeFromList(listNode)
InsertToLruListHead(listNode)

end if
UnlockLruListMutex()

end if

return hashNode.value
end function
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Algorithm 8 Insert element into HHVM cache

function Insert(key, value)
listNode ← AllocateListNode()
listNode.key ← key
hashNode ← AllocateHashNode()
hashNode.value ← value
hashNode.listNode ← listNode

success ← InsertIntoMap(key, hashNode)
if not success then

Delete(hashNode)
Delete(listNode)
return FALSE

end if

if GetCurrentItemCount() ≥ GetMaxCacheSize() then
EvictNode()
evictionDone ← TRUE

else
evictionDone ← FALSE

end if

LockLruListMutex() ⊲ Execution may be suspended here
InsertToLruListHead(listNode)
UnlockLruListMutex()

if not evictionDone then
IncreaseCurrentItemCount()

end if

return TRUE
end function
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Chapter 4

DeferredLRU Design

In this chapter, a novel concurrent SW cache, called DeferredLRU, is pro-
posed. The reference implementation is available from its repository [54].

The main scalability-limiting factor for a concurrent LRU implementation
(see Section 3.1 and Section 3.2) is the high contention happening on the LRU
list head due to insertions performed on every Lookup and Insert.

DeferredLRU attempts to overcome the limitation. It avoids the contention
by deferring insertions and performing them in carefully scheduled bulks.
Accessed elements are stored in the so-called Recent list. DeferredLRU uses
a concurrent hash table for a fast element lookup and a doubly linked LRU
list for tracking access order.

An example of a DeferredLRU is depicted on Figure 4.1. It contains five
elements (A, B, C, D, E). Element A is added to the LRU list most recently.
Elements A, D, E are also added to the Recent list (element D is added last).

Figure 4.1: DeferredLRU structure
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4. DeferredLRU Design

4.1 Data structures

4.1.1 Cache structure

DeferredLRU uses the following instance variables:

• total capacity of the SW cache

• current number of elements in the SW cache

• number of elements in the Recent list

• head element of the LRU list

• tail element of the LRU list

• link to the head element in the Recent list

• dummy terminal of the Recent list

• link to the head element of the empty element pool

• array of the hash table buckets

• atomic flags for requesting PullRecent

• atomic flag for requesting PurgeOld

• cache consolidation mutex (see Section 4.3.1)

4.1.2 Node structure

Each DeferredLRU node contains the following fields:

• key, value — user data

• bucketNext — link used to form buckets in a hash table

• lruNext — link to a next node in the LRU list

• lruPrev — link to a previous node in the LRU list

• recentNext — link to a next node in the Recent list

4.1.3 Initialization stage

The total cache capacity is known beforehand and is fixed. Therefore memory
for all elements is preallocated during the initialization stage. DeferredLRU
does not perform any dynamic allocations after the initialization stage.
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4.1. Data structures

4.1.4 Empty element pool

Initially all elements are empty. They are stored in an empty element pool
— a singly linked list (reusing bucketNext link) of fresh nodes. When a new
element is requested, the head element is taken from the empty element pool.

Empty element pool head is a point of contention as it is accessed on every
insertion. Therefore, the insertion and removal routines should be scalable.
This is achieved with lock-free lists. Specifically, DeferredLRU reuses lock-free
list routines presented in [55] for managing empty element pool.

4.1.5 Hash table

DeferredLRU relies on a concurrent hash table with closed addressing as
described in Section 2.3.1.1. It is represented as an array of buckets where each
bucket is a head of a linked list. Each element key is mapped to its bucket.

Each hash table bucket has its own mutex. When a thread accesses
a bucket, it must lock the corresponding bucket lock. This way, unsafe
concurrent modifications of the bucket elements are avoided. What is more,
bucket elements can be safely accessed and their content can be retrieved
without any additional synchronization while a thread holds the bucket lock.

4.1.5.1 LRU list

DeferredLRU tracks element access order quite similarly to a typical LRU
cache. All elements are made into a doubly linked list, new elements are
added to the head, and the tail elements are considered least recently used.
The difference is in the way the accessed elements are moved to the head. When
an element is visited, the caller appends it to the Recent list (if the element
has not been added already) instead of immediately pulling the element to
the head.

4.1.6 Recent list

Recently accessed elements are added to the Recent list. It is a singly linked
list. Elements use recentNext link to form this list. DeferredLRU keeps a link
to the Recent list head (RH element on Figure 4.1) and the current number of
elements in it. Initially, the Recent list head points to some dummy terminal
(RD element on Figure 4.1). When the list is traversed, reaching this element
terminates the traversing loop.

If an element is not in the Recent list, its recentNext link is set to NULL
value. Later, when it is accessed, if the element is not yet in the Recent list, it
is added to it. Thanks to the dummy terminal even the first added element
has the link set to non-NULL value. With this approach, it is always possible
to check if an element is in the Recent list by testing if the recentNext link is
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4. DeferredLRU Design

Algorithm 9 Try insert node to Recent list

global recentListHead

procedure TryInsertToRecent(node)
if node.recentNext 6= NULL then

next ← recentListHead
repeat

node.recentNext ← next
until AtomicCAS(recentListHead, next, node)

end if
end procedure

NULL or not. The insertion in the singly linked list is performed atomically
with the AtomicCAS operation.

When the number of elements in the Recent list hits a certain threshold
(for instance, 10% of the total capacity; see Section 5.2), the PullRecent
operation is invoked. It extracts all elements in the Recent list from the LRU
list and reinserts them in the head.

4.2 Cache operations

In this section, the implementation of the main cache operations — Lookup
and Insert — is presented.

4.2.1 Lookup

The Lookup operation looks up a value by its key in the hash table. If found,
it ensures that the accessed element is added to the Recent list (as defined in
Section 4.1.6). If this causes the Recent list size to hit the threshold, the caller
triggers PullRecent (see Section 4.3.1).

The presented algorithm has two interesting properties. Firstly, if the searched
node is in Recent list, no updates to the Recent list or the LRU list has to be
performed. Therefore, accessing recent elements becomes even faster.

With the current implementation, each Lookup has to lock the hash table
which implies memory writes. However, there are more sophisticated hash
tables that supports write-free lookups (see Section 2.3.1). Combining such
hash table with DeferredLRU can improve cache scalability even more.

Secondly, accessing recent nodes does not increase Recent list size. There-
fore, if the input sequence converges to a small subset of values and the whole
subset fits into the Recent list, no costly PullRecent is performed.
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4.2. Cache operations

Algorithm 10 Find element in cache

function Find(key, result)
bucket ← MapKeyToBucket(key)
Lock(bucket) ⊲ Lock corresponding mutex
found, node ← search key in bucket list
if found then

result ← node.value
TryInsertToRecent(node)

end if
Unlock(bucket)

if Recent list list threshold is hit then
TriggerPull() ⊲ See Algorithm 12

end if

return found
end function

4.2.2 Insert

The Insert operation stores a new key-value pair in the cache. If the cache
is full, it evicts some existing elements by triggering PurgeOld. Then it
initializes an empty element and inserts it into the cache.

However, the key could have been inserted already by another thread. Then
the hash table insertion will fail and return False. In this case the allocated
node is returned to the empty element pool.

The element is inserted first into the hash table and then into the LRU
list (using the insertion described in Section 2.3.2). The reverse order would
result in a race condition, when the element may be evicted from the LRU list
before it has been inserted into its bucket.

However, doing the insertion in the presented order could also be flawed with
the following race condition. Thread T1 inserts an element X into its bucket.
Thread T2 accesses element X during Lookup and adds it to the Recent list.
Thread T3 starts PullRecent and tries to remove element X from the LRU
list, but element X is not there yet.

To avoid this, the partially inserted element is prevented from being added to
the Recent list by temporally assigning some non-NULL value to its recentNext
link before inserting it to the cache. This way, the node can not be added to
the Recent list (since it seems like it is already in the list). Also it can not be
evicted neither with PullRecent (since it is not in the actual Recent list)
nor with PurgeOld (again, it seems like the element in the list already, thus
it is skipped). After the insertion is complete, the recentNext link is reset to
NULL allowing it to be processed normally.

31



4. DeferredLRU Design

Algorithm 11 Insert key-value pair into cache

global hashtable
global lruHead
global emptyPoolHead

procedure Insert(key, value)
node ← AcquireEmptyNode() ⊲ from node pool
node.key, node.value ← key, value

node.recentNext ← Recent list terminal
inserted ← HTableInsert(hashtable, node)

if inserted then
DListAtomicInsert(lruHead, node, node)
node.recentNext ← NULL

else ⊲ The same key is in hash table already
DisposeNode(node) ⊲ Return node to node pool

end if
end procedure

4.3 Auxiliary operations

4.3.1 Cache consolidation

Cache consolidation is responsible for updating the cache structure to reflect
recent element accesses. At most one thread is allowed to perform it at a time.
The consolidations includes two optional stages:

• PullRecent resets and processes the Recent list. It is triggered when
the size of the Recent list grows beyond the threshold.

• PurgeOld that evicts a portion of the least recently used elements from
the LRU list and puts them in the empty element pool. It is triggered
when a new element is attempted to be inserted, but the cache is full.

The cache consolidation routine is triggered when any of PullRecent and
PurgeOld stages is triggered. The triggering is thread-safe and non-blocking.
It is similar for both stages.

The triggering is performed in two steps. At first, an atomic binary flag
(there is one for PullRecent and one for PurgeOld) is raised, signaling that
the corresponding operation was requested when a consolidation is performed.
Then the triggering thread attempts to perform the consolidation by itself. It
tries to lock a mutex (using TryLock operation) that guards the consolidation.
If locking is successful, the consolidation is performed.

32



4.3. Auxiliary operations

Algorithm 12 Cache consolidation

global pullFlag
global purgeFlag
global consolidationLock ⊲ Mutex

procedure TriggerPull()
pullFlag ← TRUE
Consolidate()

end procedure

procedure TriggerPurge()
purgeFlag ← TRUE
Consolidate()

end procedure

procedure Consolidate()
if TryLock(consolidationLock) then

if pullFlag = TRUE then
PullRecent()
pullFlag ← FALSE

end if
if purgeFlag = TRUE then

PurgeOld(purgeCount)
purgeFlag ← FALSE

end if
Unlock(consolidationLock)

end if
end procedure

The opposite case means that another thread is already performing con-
solidation at the moment. In case of triggering PullRecent, no additional
actions are required. It is not critical that nodes would be pulled later. From
now every thread that adds a node to the Recent list attempts to trigger
the consolidation. The first one to do so after the current consolidation is
finished would perform the next consolidation cycle.

However, Insert cannot proceed without an empty element. Therefore,
the thread would spin in a loop waiting for either the consolidating thread to
put a new element to the empty element pool or the current consolidation to
finish, so that it can perform another one by itself.
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4. DeferredLRU Design

Figure 4.2: PullRecent execution
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4.3. Auxiliary operations

(e) Concurrently add node B to the Recent list
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4. DeferredLRU Design

Algorithm 13 Pull recently accessed node to front

global recentHead
global lruHead

procedure PullRecent()
T ← Recent list list dummy terminal
currentRecentList ← AtomicExch(recentHead, T )
localList ← empty doubly linked list

for all n ← elements in currentRecentList do
if n.lruPrev 6= lruHead then

Evict n from LRU list list
Insert n in the end of localList

end if
n.recentNext ← NULL

end for

first, last ← localList.first, localList.last
DListAtomicInsert(listHead, first, last)

end procedure

4.3.2 PullRecent operation

PullRecent (Algorithm 13) is responsible for reordering accessed nodes
in the Recent list. A step-by-step application of the algorithm is depicted
in Figure 4.2.

PullRecent takes the slice of the Recent list and resets the list, as
shown in Figure 4.2b. It does so atomically using the AtomicExch operation
(see Section 2.2.3).

The slice is traversed by following the recentNext link until the Recent list
dummy terminal (see Section 4.1.6) is reached. The nodes in the slice are
removed from the LRU list and joined in a temporal list (see Figure 4.2c and
Figure 4.2g). The recentNext links of the traversed nodes are reset.

Finally, this temporal list is inserted into the LRU list head (see Figure 4.2h)
using the algorithm described in Section 2.3.2.

A node next to the LRU list head is skipped in order to satisfy the list
insertion constraints, introduced in Section 4.1.5.1 (An element must not
be removed if its lruPrev link points to the LRU list head). As shown in
Figure 4.2d, node A is not removed from the list because it follows the head.
The recentNext link of A is reset the same as for other nodes.

During PullRecent, other threads are still able to perform Lookup and
Insert operations. The accessed nodes can be added to the Recent list as
usual (see Figure 4.2e).
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4.3. Auxiliary operations

What is more, it is safe to add nodes that are currently being processed
by PullRecent. As shown in Figure 4.2f, node D is added to the Recent
list, while not being a part of the LRU list. This is correct because nodes may
only be evicted during the cache consolidation process, and no other thread
would start another consolidation until the current one is finished.

It is worth noting that all recent nodes are inserted in a single step.
The total number of head insertions is NInsert + NPullRecent, while in a regular
LRU cache, it is NInsert +NLookup. The upper bound for NPullRecent is shown in
Equation 4.1. The reduction of head insertions is the main reason for improved
DeferredLRU scalability.

Each Lookup either increases the Recent list size by one (when the searched
node is not in the Recent list yet) or does not change it. Recent list capac-
ity — CRecent list — is usually set as a fraction of total cache capacity, thus
CRecent list ≫ 1. PullRecent is executed each time Recent list is full. This
implies Equation 4.1. Note that accessing only the nodes that are in the Recent
list results in no PullRecent performed at all.

NPullRecent ≤
NLookup

CRecent list

≪ NLookup (4.1)

4.3.3 PurgeOld operation

PurgeOld evicts a number of the least recently used elements and puts them
into the empty element pool so that they can be reused for further insertions.
This is done by traversing the LRU list backward. Every element is removed
first from the hash table and then from the LRU list (see Algorithm 14).
However, some of these elements could have been accessed recently and,
therefore, added to the Recent list. These elements are skipped.

Figure 4.3: PurgeOld execution
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4. DeferredLRU Design

Algorithm 14 Evict least recently accessed nodes to the empty node pool

global emptyPoolHead
global lruTail

procedure PurgeOld(targetCount)
evictedCount ← 0
node ← lruTail.lruPrev
if node = lruHead then

return ⊲ List is empty
end if

while evictedCount < targetCount do
next ← node.lruPrev
if next = lruHead then

return ⊲ Traversed complete LRU list
end if

removed ← HTableRemoveNonrecent(node)
if removed then

Evict node from LRU list
Delete node key and value DisposeNode(node)
evictedCount ← evictedCount + 1

end if

node ← next
end while

end procedure

Figure 4.3 demonstrates the execution of PurgeOld. The target count is
set to 2. The first node before the LRU list tail node — B — is evicted first.
Although node C is the second node from the end, it is skipped as it is a part
of the Recent list. As a result, nodes A and B are evicted.

The detection is of the recent nodes is done in two steps. At first,
the recentNext link is checked to determine if the element is in the Recent list.
Then the corresponding bucket is locked, and the element is searched in it to
be removed. When found, its link is rechecked as it could have been changed
between the first check and the bucket being locked (it cannot be changed
after the bucket is locked). If the element has just been accessed, it is skipped,
and the traversal goes on.
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Chapter 5

Performance Evaluation

DeferredLRU is compared to existing alternatives using a benchmark program,
that is capable of evaluating SW caches under different workloads and with
varying number of threads. The performance evaluation focuses mainly on
these aspects: throughput, hit-rate, and scalability.

Throughput corresponds to the number of operations made in unit of time.
It is measured in millions of operations per second (MOp/s).

Hit-rate is a metric for evaluating caching efficiency. It is defined as
a proportion of successful key lookups (cache hits) to all lookups.

Scalability tells how well cache maintains its throughput with rising number
of threads. Scalability is evaluated as an increase of throughput with many
threads compared to a single thread. This increase is denoted as speedup in
this chapter.

This chapter proceeds as follows. Firstly, the test environment is described.
Then the influence of DeferredLRU meta-parameters on its performance is
analyzed. After this the results of the performance evaluation are presented.
Finally, DeferredLRU is evaluated by integrating it in the actual application
LSU3shell [18, 56] that heavily relies on the relevant SW caching.

5.1 Test setup

The benchmark application [53] allocates a cache with a given capacity and
starts the requested number of threads. Each thread queries the cache with
a sequence of keys. All results presented in this chapter have been collected
without cache warmup.

The benchmark was done on the following machine: Intel® Xeon® Skylake
CPU (16 HW cores @2.00GHz), 28 GB RAM, Ubuntu 18.04, GCC 7.3.0.
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5. Performance Evaluation

5.1.1 Data traces

For simulating realistic usage conditions, the sequences of cache requests are
defined with data traces. These traces represent either memory accesses or
network accesses of some real-world system. They have been used for evaluating
state-of-art caching algorithms [22].

In addition, a synthetically generated data trace with Zipfian distribu-
tion [57] is used. [58] shows that a series of web requests from a fixed user
community tends to have a Zipfian distribution. Since web requests caching
is one of the major SW cache applications, this trace is relevant for cache
performance evaluation.

The following traces are used:

DS1 [59] — disk operations of a database server running an ERP application.
It has been used in [22,23]. Available from [60].

OLTP — accesses to a CODASYL database. It has been used in [6,19,22,23,
33]. Available from [60].

P4, P8 [61] — disk operations of Windows NT workstations. It has been
used in [22,23]. Available from [60].

S3 [22] — disk read accesses recorded on a search engine serving web search
requests. It has been used in [22,23]. Available from [60].

Wiki [62] — “a trace of 10% of all user requests issued to Wikipedia (in all
languages)” [62] during the period between September and October 2007.
It has been used in [23]. Available from [63].

YouTube — “a collection of traces from a campus network measurement on
YouTube traffic. This collection contains trace data about user requests
for specific YouTube content” [64]. It has been used in [23]. Available
from [64].

Zipf — generated trace. Key frequency distribution follows Zipfian distribu-
tion [57] with parameter α = 0.9.

Table 5.1 gives an insight on statistical distribution of keys in the traces.

Each trace test is named with a trace name and a fraction that denotes
the capacity of the cache relatively to the count of unique keys in the trace,
e.g. Wikipedia 1/10 means that cache capacity equals to 7913592/10 = 791359.
For most tests, fractions 1/10 and 1/1000 used, but for the smaller traces
the capacity has been capped at 4096 items.
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5.1. Test setup

Table 5.1: Data traces for performance evaluation

Trace N K N/K M∆ µ∆ σ∆ RSD∆

DS1 43704979 10516352 4.16 9002656 8123029 4450575 0.55
OLTP 914145 186880 4.89 2262 35218 90727 2.58
P4 19776090 5146832 3.84 371407 1307707 2289736 1.75
P8 42243785 977545 43.21 127948 441308 1461535 3.31
S3 16407702 1689882 9.71 837178 1259440 1386920 1.10
Wikipedia 86748777 7913592 10.96 2034 1508350 5651933 3.75
YouTube 1463644 493121 2.97 11728 99979 193047 1.93
Zipf 1000000 91356 10.95 4732 48913 105768 2.16

1 N — total number of queries
2 K — number of unique keys
3 ∆ — series of repetition intervals (that is, given key K, number of other

keys between two consecutive occurrences of K)
4 M∆ — median of repetition intervals
5 µ∆ — average repetition interval
6 σ∆ — standard deviation of repetition interval
7 RSD∆ := σ∆

µ∆
— relative standard deviation of repetition interval

5.1.2 Evaluated SW caches

The benchmark compares the performance of the following LRU SW caches
(the abbreviations given in parentheses denote short cache aliases):

DeferredLRU (DLRU) — the concurrent cache, presented in this paper.

Binned DeferredLRU (B-DLRU) — a binned version of DLRU.

LRU (LRU) — a basic implementation of a LRU cache, based on a hash table
and a doubly linked list. It relies on a coarse-grained synchronization as
described in Section 3.1.

Binned LRU (B-LRU) — a binned version of LRU.

Concurrent LRU (conLRU) — LRU cache with a fine-grained synchroniza-
tion as described in Section 3.2. The scalability is limited by the thread
contention on the LRU list head.

Binned Concurrent LRU (B-conLRU) — a binned version of conLRU.

TBB LRU (TBB) [28] — concurrent LRU cache from Intel TBB library
(see Section 3.3).

HHVM LRU (HHVM) [29] — concurrent LRU cache from Facebook HHVM
project (see Section 3.4). It uses binning internally.
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5. Performance Evaluation

Since binning (see Section 2.2.6) is a general approach, that is compatible
with any cache data structure, it is not evaluated as a separate cache, but
rather several implementations (including DeferredLRU) are combined with
binning and evaluated once again. Containers that are not binned, are called
singular in this section. Binning vastly improves cache scalability, therefore
binned caches are compared separately.

5.2 Meta-parameter choice

DeferredLRU depends on two meta-parameters that can be tuned for better
performance. These are pull threshold and purge threshold.

The pull threshold determines the maximum size of the Recent list. A higher
value results in fewer costly PullRecent operations. On the other hand,
with smaller values, node ordering is closer to the exact LRU order.

The purge threshold determines how many nodes are evicted during
PurgeOld. The larger it is, the more potentially useful entries are evicted.
But this also means that time-consuming PurgeOld is called less often, and
consecutive insertions are also faster (because there are some free nodes in
the empty element pool).

In order to find out how these parameters affect the DeferredLRU perfor-
mance, the cache has been evaluated with a different combination of pull and
purge thresholds (each ranging from 0.001 to 0.9). The evaluation has been
done with 1 and 32 threads and with the following traces: Wikipedia 1/10,
Wikipedia 1/1000, P4 1/10, P4 1/1000, P8 1/10, P8 1/238.

These traces were selected because they represent different key distributions.
Based on Table 5.1, P4 has few repetitions per key (low N/K value), while P8
shows the opposite property — it has most repetitions per key among all used
traces. The Wikipedia trace has an average N/K value, but it contains many
local bursts of same key occurrences — M∆ for this trace is 2034, while for P4
and P8, this value is 371407 and 127948 respectively.

The notation a|b (where a and b are the pull threshold and the purge thresh-
old, respectively) is used thereafter to denote a meta-parameter combination.

Heatmaps are chosen for presenting the enormous amount of the gathered
data: Figure 5.1 and Figure 5.2 display throughput and hit-rate values for each
combination of trace and thread count. Red and green colors denote lower
and higher values, respectively. Appendix A provides all measured data in
textual form.

5.2.1 Throughput evaluation

Throughput measurements show consistently low results in the lower-left area
of the plots — around 0.4|0.001 and 0.9|0.01. All the peak values are in the area
over the main diagonal.
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5.2. Meta-parameter choice

With the single-thread measurements, the highest throughput is achieved
with parameters set between 0.001|0.9 and 0.4|0.9 for the 5 of 6 traces. However,
P8 1/10 peaks at 0.001|0.001.

With 32 threads, the overall trend is the same. The area with a purge
threshold greater than 0.4 is optimal, while the best pull threshold setting
is different for each trace. P8 1/10 peak is also shifted towards higher purge
threshold values compared to the single-threaded results. On the other hand,
the P4 1/10 peak is shifted towards 0.001|0.001 in contradistinction to the other
traces.

5.2.2 Hit-rate evaluation

There is a clear trend in the hit-rate results. The highest value is achieved with
a high pull threshold and a low purge threshold. Oddly enough, this is the area
with the lowest throughput. Therefore, setting DeferredLRU parameters is
a trade-off between the overall cache throughput and the hit-rate. For instance,
for the single-threaded P8 1/238 trace test, the hit-rate plot appears to be
an almost exact inversion of the throughput plot.

In the single-thread measurements, the pull and purge thresholds have
a comparable effect on the resulting hit-rate. P4 1/10, P4 1/1000, and P8 1/10
depend more on the purge threshold being less than 0.4, while Wikipedia 1/1000
and P8 1/238 hit-rates are mostly determined by the pull threshold.

However, with the parallel evaluation, the pull threshold becomes the main
factor for the hit-rate in 5 of 6 tests. P4 1/10 is the only trace in which
the hit-rate is mainly influenced by the purge threshold in both tests. It is
also the only trace that yields high throughput with lower purge throughput
values in the 32 threads test.

5.2.3 Conclusion

General trends in throughput and hit-rate data are inverted to some extent.
The following reasoning is based on the parallel evaluation, which is the primary
use case for DeferredLRU.

The hit-rate mostly peaks around 0.9|0.01 and degrades rapidly with lower
pull threshold values. Except for the P4 1/10 trace, the hit-rate depends
weakly on the purge threshold. In most cases, the throughput is optimal with
the pull threshold less than 0.4 or the purge threshold greater than 0.1.

In general, both throughput and hit-rate greatly depend on selected meta-
parameter values. An optimal setting can be found empirically. DeferredLRU
should be evaluated with different combinations of the thresholds, and the most
suitable one should be used.
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Figure 5.1: DeferredLRU throughput with different pull and purge thresholds
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5.2. Meta-parameter choice

Figure 5.2: DeferredLRU hit-rate with different pull and purge thresholds
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5. Performance Evaluation

5.3 Hit-rate

When PullRecent is performed, items in the Recent list are reinserted into
the LRU list not in the exact LRU order, but rather in the order of adding
them into the Recent list list after the previous PullRecent. This order
may potentially result in a different cache hit-rate.

In order to assert that DeferredLRU performs as well as a regular LRU
cache, the best-achieved hit-rate for each test from Section 5.2 is compared to
the hit-rates achieved by LRU and HHVM.

The results are presented in Table 5.2. DeferredLRU replacement strategy
achieves better hit-rate than a regular LRU scheme in every test, exceeding
the former by up to 7.8% (relatively). However, to achieve such superiority,
the cache has to be fine-tuned for a particular input.

In some tests (for instance, P4 1/1000), hit-rate differs significantly for
1 and 32 threads. This happens because, in multi-threaded tests, worker threads
replay the trace independently and at a different pace. Therefore, the cache is
queried with different trace subsequences at the same time. This mixes up and
nullifies local trace anomalies that are effective in a single-threaded test, like
a short burst of occurrences of some key or scanning sequences (when many
consequent keys are requested once).

Table 5.2: Hit-rate comparison

Cache

Trace Threads DeferredLRU LRU HHVM

Wikipedia 1/10 1 85.98% 82.72% 82.84%
32 85.90% 83.77% 82.18%

Wikipedia 1/1000 1 61.25% 56.87% 56.91%
32 61.78% 57.10% 56.36%

P4 1/10 1 49.98% 48.29% 48.17%
32 49.68% 43.46% 47.87%

P4 1/1000 1 3.54% 3.41% 3.41%
32 1.10% 0.74% 0.62%

P8 1/10 1 53.66% 50.63% 50.37%
32 55.19% 49.17% 45.98%

P4 1/238 1 0.43% 0.34% 0.32%
32 0.87% 0.65% 0.69%
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5.4. Performance

5.4 Performance

The results of the primary performance evaluation are discussed in this section.
Complete benchmark data is available in Appendix B. Tables 5.3 and 5.4
present data for the subset of traces for better perception.

The concurrent SW caches presented in Section 5.1.2 are evaluated with
each data trace and a variable number of threads. For each run, throughput
and hit-rate values are recorded. In order to obtain more precise data, each
run is repeated 3 times, and then the results are averaged.

The following DeferredLRU meta-parameter settings are considered based
on the evaluation in Section 5.2: DeferredLRU 0.001|0.1 performs well for
traces similar to P4 1/10; DeferredLRU 0.1|0.7 is threshold optimal in most
tests; DeferredLRU 0.99|0.99 is found to be competitive in both throughput
and hit-rate tests. The setting 0.99|0.99 is chosen over 0.9|0.9 basing on another
series of measurements that were accidentally lost during the experimentation.

5.4.1 Singular caches

In this section, benchmark measurements for the singular caches are analyzed.
An excerpt of the singular measurements is presented in Table 5.3.

5.4.1.1 Hit-rate

In the single-threaded evaluation, DeferredLRU shows greater or equal hit-rate
than the other caches. In 9 of 16 tests, at least one of the DeferredLRU
configurations achieves comparable results with other caches; the difference is
within 2%.

However, DeferredLRU 0.99|0.99 performs significantly better in some
other tests. It achieves up to 4.3 times higher (S3 1/10 test) hit-rate than all
other tested cached in 7 of 16 tests (DS1 1/10, P8 1/238, S3 1/10, S3 1/412,
Wikipedia 1/1000, Zipf 1/10, and Zipf 1/22). Due to some data dependencies,
the non-trivial DeferredLRU eviction order happens to catch more useful ele-
ments in these traces. At the same time, DeferredLRU 0.99|0.99 demonstrates
very low hit-rate in some other tests (it has almost 2 times lower hit-rate in
the P4 1/1000 test). An investigation of the nature of these anomalies is a part
of future research.

With 32 threads, the hit-rate trend is similar, although abnormally high hit-
rate of DeferredLRU is achieved in 8 of 16 tests. When comparing the difference
between 1 and 32-threaded tests for each cache separately, DeferredLRU hit-
rates change more favorably than the hit-rate of the other caches for the higher
number of threads. Going from 1 to 32 threads, DeferredLRU achieves higher,
same, and lower hit-rates in 8, 2, and 6 tests, respectively. For other caches,
these counts are 4, 5, and 7, respectively.
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5. Performance Evaluation

5.4.1.2 Throughput

In single-threaded tests, the simple LRU cache shows the highest throughput
most of the time. ConcurrentLRU and TBB LRU perform all the same
operations that LRU does plus additional synchronization overhead. As a result,
LRU is up to 3 times faster than ConcurrentLRU, and up to 4 times faster
than TBB LRU. ConcurrentLRU outperforms TBB LRU in 13 of 16 tests.

In every test, there is at least one of the DeferredLRU configurations that
is faster than ConcurrentLRU and TBB LRU. In the DS1 1/10 and Wikipedia
1/10 tests, DeferredLRU even outperforms LRU despite more complex insertion
and lookup routines. The possible reason for this is the fact that DeferredLRU
performs fewer memory-writes for recently accessed items (see Section 4.2.1).

DeferredLRU is the fastest singular SW cache in all parallel tests. It is
the only singular cache that achieves higher throughput with multiple threads
(in P4 1/10, P8 1/10, Wikipedia 1/10, and Zipf 1/10 tests).

Of the evaluated DeferredLRU configurations, DeferredLRU 0.001|0.1 is
the fastest one in 13 of 16 single-threaded tests. DeferredLRU 0.99|0.99 is
the slowest one in all tests except DS1 1/10, where it achieves the highest
throughput, even outperforming the simple LRU cache.

In the parallel evaluation, the trend is different. Each configuration outper-
forms the others in some tests. DeferredLRU 0.001|0.1, DeferredLRU 0.1|0.7,
and DeferredLRU 0.99|0.99 achieve the highest throughput values in 5, 4,
and 7 tests, respectively. This supports the conclusion of Section 5.2 that
the optimal choice of metaparameters depends on the input data.

5.4.2 Binned caches

In this section, benchmark measurements for the binned caches are analyzed.
An excerpt of the binned measurements is presented in Table 5.4.

It is worth noting that with binning, the DeferredLRU thresholds are
scaled by the binning factor that is 64 for this evaluation. For instance,
the effective configuration for DeferredLRU 0.99|0.99 is 0.015|0.015. This
is the reason for the uniformity in hit-rate and throughput results between
different DeferredLRU configurations.

5.4.2.1 Hit-rate

Hit-rate values are more consistent in the binned evaluation between different
caches. In most tests, the difference between DeferredLRU and other caches
hit-rate is not more than 5% (relatively).

In OLTP 1/45, P8 1/10, and both Zipf tests, DeferredLRU achieves lower
hit-rate than the other caches. This is consistent with the performance of
DeferredLRU 0.001|0.1 in the singular evaluation. On the other hand, in
DS1 1/10 and DS1 1/1000 tests, DeferredLRU shows significantly higher
hit-rate.
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5.5. Conclusion

5.4.2.2 Throughput

In the single-threaded evaluation, LRU is faster than the other caches in 15 of
16 cases due to less synchronization overhead. In these tests, DeferredLRU
consistently achieves 2/3 of the LRU performance.

HHVM achieves the highest throughput in the Wikipedia 1/10 test. At
the same time, it scales worse than the other caches on this workload and
shows one of the lowest throughputs with 32 threads.

Due to better scalability, DeferredLRU achieves significantly higher through-
put in the parallel tests compared to the single-threaded evaluation. It outper-
forms all other caches in 11 of 16 tests. In the Zipf 1/10 test, DeferredLRU
performs about 2.8 times faster than other caches. The supremacy is on a par
with the singular evaluation, where DeferredLRU is 2.5 times faster than LRU.

In DS1 1/10, DS1 1/1000, P4 1/1000, P8 1/238, and YouTube 1/120,
DeferredLRU is slower than LRU by up to 20%. However, DeferredLRU
achieves a much higher speedup in these tests. This hints that DeferredLRU
performs faster than LRU with even more threads.

For instance, in the DS1 1/10 test, the speedup between 16 and 32 threads is
1.76x for DeferredLRU and 1.38x for LRU. ConcurrentLRU achieves the highest
1-to-32-threads speedup in this test. It is slightly higher than the speedup of
DeferredLRU (23.2x and 22.1x, respectively). However, its throughput is about
25% less than what DeferredLRU achieves. Most probably, ConcurrentLRU is
not able to compete with DeferredLRU with a higher number of threads.

Figure 5.3 and Figure 5.4 show how throughput changes with an increasing
number of threads for different SW caches. It is to see that DeferredLRU
scales more steadily than other caches.

5.5 Conclusion

The evaluation presented in this chapter supports the statement that De-
ferredLRU scales better than the existing alternatives while being able to
deliver comparable hit-rate and single-threaded performance.
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5. Performance Evaluation

Table 5.3: Singular cache performance

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

DS1 DLRU 0.001|0.1 3.25% 4.90% 1.95 0.89 0.85 0.44
1/10 DLRU 0.1|0.7 3.32% 5.52% 2.32 0.88 0.84 0.36

DLRU 0.99|0.99 6.73% 12.00% 3.62 0.90 0.84 0.23
LRU 3.43% 5.58% 3.07 0.73 0.67 0.22
conLRU 3.55% 3.64% 1.56 0.66 0.50 0.32
TBB 3.44% 3.51% 2.09 0.48 0.30 0.14

OLTP DLRU 0.001|0.1 50.63% 32.51% 6.59 1.28 1.20 0.18
1/45 DLRU 0.1|0.7 46.00% 33.33% 7.26 1.31 1.24 0.17

DLRU 0.99|0.99 46.44% 41.99% 5.44 1.41 1.40 0.26
LRU 51.27% 32.58% 10.66 0.94 0.82 0.08
conLRU 51.27% 34.63% 5.42 0.75 0.56 0.10
TBB 51.27% 43.45% 2.93 0.84 0.52 0.18

P4 DLRU 0.001|0.1 47.55% 47.43% 1.84 1.53 1.43 0.78
1/10 DLRU 0.1|0.7 41.66% 42.73% 1.95 1.39 1.32 0.68

DLRU 0.99|0.99 45.75% 44.83% 0.80 1.35 1.29 1.60
LRU 48.38% 42.84% 2.97 0.89 0.79 0.27
conLRU 48.34% 46.68% 1.68 0.86 0.61 0.36
TBB 48.16% 45.94% 1.85 0.51 0.32 0.17

P8 DLRU 0.001|0.1 48.99% 49.84% 3.54 1.69 1.54 0.44
1/10 DLRU 0.1|0.7 37.52% 50.93% 3.13 1.68 1.56 0.50

DLRU 0.99|0.99 51.06% 56.10% 1.04 1.78 1.67 1.61
LRU 50.62% 48.61% 8.45 1.08 0.93 0.11
conLRU 50.59% 51.01% 3.11 0.87 0.63 0.20
TBB 50.43% 50.34% 1.95 0.61 0.38 0.20

Wikipedia DLRU 0.001|0.1 82.72% 82.64% 2.24 5.24 3.89 1.74
1/10 DLRU 0.1|0.7 79.72% 83.09% 2.77 5.82 4.22 1.52

DLRU 0.99|0.99 83.92% 85.10% 1.43 5.13 4.30 3.01
LRU 82.92% 82.91% 2.40 0.90 0.78 0.33
conLRU 82.47% 83.03% 1.52 0.98 0.75 0.49
TBB 83.81% 84.12% 0.83 0.43 0.29 0.35

Zipf DLRU 0.001|0.1 58.55% 59.40% 7.39 2.01 1.97 0.27
1/10 DLRU 0.1|0.7 54.14% 60.28% 7.79 2.13 1.98 0.25

DLRU 0.99|0.99 66.86% 65.03% 1.83 2.41 2.21 1.20
LRU 59.26% 59.22% 9.88 0.97 0.88 0.09
conLRU 59.26% 59.20% 5.35 0.89 0.69 0.13
TBB 59.26% 59.25% 2.39 0.87 0.53 0.22
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5.5. Conclusion

Table 5.4: Binned cache performance

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

DS1 B-DLRU 0.001|0.1 3.95% 8.36% 1.00 12.45 21.83 21.75
1/10 B-DLRU 0.1|0.7 3.95% 8.31% 1.00 12.54 22.05 22.07

B-DLRU 0.99|0.99 3.93% 8.10% 1.00 12.48 21.86 21.79
B-LRU 3.63% 6.87% 1.53 19.0926.32 17.20
B-conLRU 3.33% 5.91% 0.69 10.97 16.11 23.23
HHVM 3.41% 5.76% 1.10 8.91 10.53 9.55

OLTP B-DLRU 0.001|0.1 48.49% 32.27% 6.16 26.8237.10 6.02
1/45 B-DLRU 0.1|0.7 48.49% 32.36% 6.17 26.83 36.92 5.98

B-DLRU 0.99|0.99 48.49% 32.35% 6.17 26.71 36.69 5.95
B-LRU 51.13% 34.79% 9.42 27.11 34.45 3.66
B-conLRU 51.14% 33.32% 5.12 16.47 20.30 3.96
HHVM 51.22% 32.78% 4.75 16.11 17.20 3.62

P4 B-DLRU 0.001|0.1 47.98% 46.67% 1.37 23.38 39.35 28.77
1/10 B-DLRU 0.1|0.7 47.98% 46.79% 1.37 23.6739.35 28.82

B-DLRU 0.99|0.99 48.21% 46.63% 1.38 23.68 39.27 28.52
B-LRU 48.04% 36.65% 2.14 26.66 32.54 15.17
B-conLRU 48.20% 46.26% 1.07 17.34 22.67 21.09
HHVM 47.88% 47.90% 1.47 12.72 15.61 10.58

P8 B-DLRU 0.001|0.1 49.19% 44.41% 3.19 31.30 43.96 13.79
1/10 B-DLRU 0.1|0.7 49.20% 44.43% 3.18 30.9844.06 13.85

B-DLRU 0.99|0.99 49.19% 44.40% 3.17 30.96 44.02 13.88
B-LRU 50.58% 46.19% 6.08 36.04 41.07 6.75
B-conLRU 50.49% 46.28% 2.62 22.13 26.77 10.22
HHVM 50.40% 46.02% 1.94 16.97 18.60 9.58

Wikipedia B-DLRU 0.001|0.1 82.71% 81.81% 2.38 35.71 55.12 23.12
1/10 B-DLRU 0.1|0.7 82.73% 81.80% 2.36 35.3557.04 24.18

B-DLRU 0.99|0.99 82.71% 81.78% 2.38 35.72 56.98 23.98
B-LRU 82.99% 82.21% 2.33 24.02 31.75 13.63
B-conLRU 82.44% 82.39% 1.46 18.19 24.45 16.69
HHVM 82.92% 82.14% 2.40 20.06 25.53 10.65

Zipf B-DLRU 0.001|0.1 57.86% 57.95% 6.94 36.59 51.12 7.37
1/10 B-DLRU 0.1|0.7 57.86% 57.94% 6.97 36.11 50.75 7.28

B-DLRU 0.99|0.99 57.86% 57.95% 7.00 35.8151.24 7.33
B-LRU 59.22% 59.18% 8.98 25.38 18.20 2.03
B-conLRU 59.22% 59.17% 5.16 9.22 4.24 0.82
HHVM 59.26% 58.90% 4.74 18.84 21.72 4.58
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5. Performance Evaluation

Figure 5.3: Performance on Wikipedia 1/1000 trace
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Figure 5.4: Performance on P4 1/1000 trace
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5.6. LSU3shell

5.6 LSU3shell

In addition to the synthetic evaluation, DeferredLRU performance was mea-
sured on the real application LSU3shell [18,56] that heavily relies on memoiza-
tion.

The LSU3shell is a highly scalable parallel code that implements an inno-
vative many-body technique, dubbed symmetry-adapted no-core shell model
(SA-NCSM), for modeling the structures of atomic nuclei from first principles.
It solves the Schrödinger equation for a system of strongly interacting nucleons
by casting it into the matrix eigenvalue problem.

The following caches are evaluated: Hash Table (as a baseline), De-
ferredLRU, Binned LRU, Binned Concurrent LRU, and Binned DeferredLRU.
For DeferredLRU, pull and purge thresholds are set to 0.9 and 0.6 respectively.
In this test the cache capacity has been set to be high enough to keep all
elements at once. Hash Table serves as a cache without eviction strategy. It
sets the lower bound on possible application running time.

LSU3shell relies on memoization of dynamically-sized values. A De-
ferredLRU extension that respects both item count and their cumulative
size has been developed for this test, but it is impossible to do so with third-
party caches without code rewriting. It is not possible to include HHVM LRU
and TBB LRU caches for comparison.

Averaging results of multiple runs in Table 5.5 shows that LSU3shell with
Binned DeferredLRU runs about 5% faster than its original implementation
with a regular LRU cache and is almost as fast as the baseline.

Table 5.5: LSU3shell running time with different caches [s]

Threads
Cache 16 32

Hash table (baseline) 1297 936
DLRU 1430 986
B-DLRU 1402 943
B-LRU 1471 985
B-conLRU 1559 1088
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Chapter 6

Recommendations for

Future Work

The presented study of DeferredLRU and its implementation leaves room for
additional experiments and possible improvements. The following concerns
may be addressed in future research.

6.1 Write-free cache lookup

Memory writes are generally more expensive than memory reads. A cache that
allows write-free accesses to recent elements should perform much better than
a regular one. The difference caused by the more efficient memory access may
be more considerable in real complex applications than in benchmarks.

As mentioned in Section 4.2.1, DeferredLRU performs no memory writes in
LRU list and Recent list for items that are in the Recent list already. However,
with the current design, each access still involves hash table locking (that writes
memory).

The sequential version of DeferredLRU requires no hash table synchro-
nization. Therefore, it already provides write-free access to the recent items.
The performance of this implementation should be evaluated against regular
sequential caches.

The Hopscotch [50] and CLHT-LF [47] hash tables provide concurrent write-
free Lookup operation. Embedding one of these hash tables into DeferredLRU
may result a concurrent SW cache that performs no memory writes during
lookup that for the recent items. It may yield a significant performance gain.
To the best of the author’s knowledge, it would be the first general-purpose
concurrent SW cache with this property.
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6. Recommendations for Future Work

6.2 Improved eviction strategy

Although DeferredLRU eviction strategy is similar to LRU, it has slightly
different properties that result in a superior hit-rate (see Section 5.3). The strat-
egy should be studied more thoroughly, especially with respect to the meta
parameter value.

The principle of deferring node removals can be used to build more so-
phisticated eviction strategies (such as those described in Section 1.1). Many
of them are based on a variation of LRU cache that can be replaced with
a scalable DeferredLRU implementation.

6.3 Improved hash table design

The implementation presented in Chapter 4 relies on a simple lock-based
concurrent hash table. The possibility of using a more sophisticated, possibly
lock-free design should be investigated. Such design may yield better scalability,
although the cooperation with the concurrent LRU list may become more
complex.

The hash table in DeferredLRU uses basic open hashing (see Section 2.1.3).
This involves traversing a linked list of nodes on each hash table lookup,
insertion, and removal. Since nodes are randomly distributed in memory, such
design has a negative impact on the CPU cache. There are hash tables that
show better memory access locality [36, 37, 46, 65, 66]. Using advanced hash
table may improve both single-threaded and concurrent cache throughput.

6.4 Additional evaluation

DeferredLRU meta parameters setting has a considerable effect on the cache
throughput and hit-rate. Furthermore, optimal values differ from trace to
trace. There is no single best option for all cases. It should be investigated
whether there is any direct dependence between the input data properties and
the meta parameters effect and whether it is possible to adapt these parameters
in runtime automatically.

Caffeine [33] is a concurrent TinyLFU-based cache implemented in Java. It
provides a versatile multi-threaded benchmark that compares several state-of-
art caches. With a DeferredLRU Java implementation, it would be possible to
evaluate DeferredLRU using this benchmark and gain additional performance
data.
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Conclusion

A SW cache is used to omit repeating computations by storing values in
memory. With a limited memory, it tries to remember only the most relevant
elements. LRU is a simple strategy for choosing such elements.

Concurrent LRU implementations does not scale very well with multiple
threads. DeferredLRU is a novel data structure for software caching that has
better performance than LRU on many-thread systems thanks to a different
approach to moving accessed elements. They are recorded in a helper list and
moved in a batch when the list grows past some threshold. This trick lowers
thread contention on the LRU list head.

The extensive performance evaluation of the DeferredLRU implementation
and other concurrent caches is presented in Chapter 5.

At first, the reasoning on setting the DeferredLRU meta-parameters — pull
threshold and purge threshold — is provided. It was found out that the optimal
settings depend on input data. What is more, setting these meta-parameters
provides a trade-off between cache throughput and hit-rate. In most tests,
there was no single configuration that achieved both maximum throughput
and hit-rate.

Then the results of the primary evaluation are discussed. The caches
were evaluated with 16 different benchmark configurations and for 1, 16, and
32 threads. DeferredLRU achieved comparable and, in some tests, significantly
higher hit-rate than LRU. While single-threaded throughput is lower than it is
of LRU, with a higher number of threads, DeferredLRU achieved the highest
performance of most tests.

Finally, DeferredLRU performance was evaluated by embedding it into
LSU3shell parallel scientific application. With DeferredLRU, the execution time
has been improved by about 5% compared to a simple LRU implementation.

Chapter 6 discusses the possible ways to improve DeferredLRU. The two
main options are to use a more sophisticated hash table or to employ an ad-
vanced replacement strategy.
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[20] Bélády, L. A. A Study of Replacement Algorithms for Virtual-Storage
Computer. IBM Systems Journal, volume 5, 1966: pp. 78–101.

[21] Jiang, S.; Zhang, X. F. LIRS: An Efficient Low Inter-reference Recency
Set Replacement to Improve Buffer Cache Performance. 1 2002, pp. 31–42,
doi:10.1145/511399.511340.

[22] Megiddo, N.; Modha, D. S. ARC: A Self-Tuning, Low Overhead Replace-
ment Cache. In Proceedings of the 2nd USENIX Conference on File and
Storage Technologies, FAST ’03, USA: USENIX Association, 2003, p.
115–130, doi:10.5555/1090694.1090708.

[23] Einziger, G.; Friedman, R.; et al. TinyLFU: A Highly Efficient Cache
Admission Policy. ACM Trans. Storage, volume 13, no. 4, Nov. 2017, ISSN
1553-3077, doi:10.1145/3149371. Available from: https://doi.org/10.1145/
3149371

[24] Bloom, B. H. Space/Time Trade-Offs in Hash Coding with Allowable
Errors. Commun. ACM, volume 13, no. 7, July 1970: p. 422–426, ISSN
0001-0782, doi:10.1145/362686.362692. Available from: https://doi.org/
10.1145/362686.362692

[25] Jain, A.; Lin, C. Back to the Future: Leveraging Belady’s Algorithm for
Improved Cache Replacement. In Proceedings of the 43rd International
Symposium on Computer Architecture, ISCA ’16, IEEE Press, 2016, ISBN
9781467389471, p. 78–89, doi:10.1109/ISCA.2016.17. Available from: https:
//doi.org/10.1109/ISCA.2016.17

[26] 42 Years of Microprocessor Trend Data. Accessed 2/1/2020. Available
from: https://www.karlrupp.net/2018/02/42-years-of-microprocessor-
trend-data/

[27] Moore, G. Cramming more components onto integrated circuits. Solid-
State Circuits Newsletter, IEEE, volume 11, 10 2006: pp. 33–35, doi:
10.1109/N-SSC.2006.4785860, reprinted from Electronics, volume 38, num-
ber 8, April 19, 1965, pp.114 ff.

[28] Intel Threading Building Blocks library. Accessed 29/12/2019. Available
from: https://software.intel.com/en-us/intel-tbb

[29] HHVM – Virtual machine for Hack and PHP. Accessed 29/12/2019.
Available from: https://github.com/facebook/hhvm

61

https://doi.org/10.1145/170036.170081
https://doi.org/10.1145/3149371
https://doi.org/10.1145/3149371
https://doi.org/10.1145/362686.362692
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/ISCA.2016.17
https://doi.org/10.1109/ISCA.2016.17
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2018/02/42-years-of-microprocessor-trend-data/
https://software.intel.com/en-us/intel-tbb
https://github.com/facebook/hhvm


Bibliography

[30] BagLRU: A High Performance Multi-Threaded LRU Cache. Accessed
29/12/2019. Available from: https://www.codeproject.com/Articles/
23396/A-High-Performance-Multi-Threaded-LRU-Cache

[31] eBay Tech Blog: High-Throughput, Thread-Safe, LRU Caching. Accessed
29/12/2019. Available from: https://tech.ebayinc.com/engineering/high-
throughput-thread-safe-lru-caching/

[32] Guava: Google Core Libraries for Java. Accessed 29/12/2019. Available
from: https://github.com/google/guava

[33] Caffeine: A high performance caching library for Java 8. Accessed
29/12/2019. Available from: https://github.com/ben-manes/caffeine

[34] Sedgewick, R.; Wayne, K. D. Algorithms. Addison-Wesley, fourth edition,
2011, ISBN 9780321573513.

[35] Knott, G. D. Hashing functions. The Computer Journal, volume 18, no. 3,
1 1975: pp. 265–278, ISSN 0010-4620, doi:10.1093/comjnl/18.3.265, http://
oup.prod.sis.lan/comjnl/article-pdf/18/3/265/1138029/180265.pdf. Avail-
able from: https://doi.org/10.1093/comjnl/18.3.265

[36] Pagh, R.; Rodler, F. F. Cuckoo hashing. Journal of Algorithms, volume 51,
no. 2, 2004: pp. 122–144, ISSN 0196-6774, doi:https://doi.org/10.1016/
j.jalgor.2003.12.002. Available from: http://www.sciencedirect.com/
science/article/pii/S0196677403001925

[37] Herlihy, M.; Shavit, N.; et al. Hopscotch Hashing. In Proceedings of
the 22nd International Symposium on Distributed Computing, DISC
’08, Berlin, Heidelberg: Springer-Verlag, 2008, ISBN 9783540877783,
p. 350–364, doi:10.1007/978-3-540-87779-0 24. Available from: https:
//doi.org/10.1007/978-3-540-87779-0 24

[38] David, T. A.; Guerraoui, R.; et al. Designing ASCY-compliant Con-
current Search Data Structures. 2014: p. 23. Available from: http:
//infoscience.epfl.ch/record/203822

[39] ”Murphy’s Law”, The Merriam-Webster.com Dictionary. Accessed
29/12/2019. Available from: https://www.merriam-webster.com/
dictionary/Murphy%27s%20Law

[40] Intel® 64 and IA-32 Architectures Developer‘s Manual. Accessed
14/1/2020. Available from: https://www.intel.com/content/www/us/en/
architecture-and-technology/64-ia-32-architectures-software-developer-
vol-2b-manual.html

[41] Arm® Architecture Reference Manual Armv8. Accessed 14/1/2020. Avail-
able from: https://developer.arm.com/docs/ddi0487/latest

62

https://www.codeproject.com/Articles/23396/A-High-Performance-Multi-Threaded-LRU-Cache
https://www.codeproject.com/Articles/23396/A-High-Performance-Multi-Threaded-LRU-Cache
https://tech.ebayinc.com/engineering/high-throughput-thread-safe-lru-caching/
https://tech.ebayinc.com/engineering/high-throughput-thread-safe-lru-caching/
https://github.com/google/guava
https://github.com/ben-manes/caffeine
http://oup.prod.sis.lan/comjnl/article-pdf/18/3/265/1138029/180265.pdf
http://oup.prod.sis.lan/comjnl/article-pdf/18/3/265/1138029/180265.pdf
https://doi.org/10.1093/comjnl/18.3.265
http://www.sciencedirect.com/science/article/pii/S0196677403001925
http://www.sciencedirect.com/science/article/pii/S0196677403001925
https://doi.org/10.1007/978-3-540-87779-0_24
https://doi.org/10.1007/978-3-540-87779-0_24
http://infoscience.epfl.ch/record/203822
http://infoscience.epfl.ch/record/203822
https://www.merriam-webster.com/dictionary/Murphy%27s%20Law
https://www.merriam-webster.com/dictionary/Murphy%27s%20Law
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2b-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2b-manual.html
https://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-2b-manual.html
https://developer.arm.com/docs/ddi0487/latest


Bibliography

[42] Fraser, K. Practical lock-freedom. Technical report UCAM-CL-TR-579,
Computer Laboratory, University of Cambridge, Feb. 2004.

[43] Dechev, D.; Pirkelbauer, P.; et al. Understanding and Effectively Pre-
venting the ABA Problem in Descriptor-Based Lock-Free Designs. In
2010 13th IEEE International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing, May 2010, ISSN 2375-5261,
pp. 185–192, doi:10.1109/ISORC.2010.10.

[44] Chen, Z.; He, X.; et al. Concurrent hash tables on multicore ma-
chines: Comparison, evaluation and implications. Future Generation
Computer Systems, volume 82, 2018: pp. 127–141, ISSN 0167-739X,
doi:https://doi.org/10.1016/j.future.2017.12.054. Available from: http:
//www.sciencedirect.com/science/article/pii/S0167739X17317715

[45] Maier, T.; Sanders, P.; et al. Concurrent Hash Tables: Fast and General(?)!
ACM Trans. Parallel Comput., volume 5, no. 4, Feb. 2019, ISSN 2329-4949,
doi:10.1145/3309206. Available from: https://doi.org/10.1145/3309206

[46] Scouarnec, N. L. Cuckoo++ Hash Tables: High-Performance Hash Ta-
bles for Networking Applications. CoRR, volume abs/1712.09624, 2017,
1712.09624. Available from: http://arxiv.org/abs/1712.09624

[47] CLHT. Accessed 4/1/2020. Available from: https://github.com/LPD-
EPFL/CLHT

[48] Folly: Facebook Open-source Library. Accessed 29/12/2019. Available
from: https://github.com/facebook/folly

[49] libcuckoo: A high-performance, concurrent hash table. Accessed 4/1/2020.
Available from: https://github.com/efficient/libcuckoo

[50] Hopscotch Hashing - C++ Concurrency Package. Accessed 4/1/2020. Avail-
able from: https://sites.google.com/site/cconcurrencypackage/hopscotch-
hashing

[51] junction: Concurrent data structures in C++. Accessed 4/1/2020. Avail-
able from: https://github.com/preshing/junction

[52] growt: a header only library offering a variety of dynamically grow-
ing concurrent hash tables. Accessed 4/1/2020. Available from: https:
//github.com/TooBiased/growt

[53] Kroilov, V. DeferredLRU benchmark application. Accessed 29/12/2019.
Available from: https://github.com/metopa/lru benchmark

[54] Kroilov, V. DeferredLRU - Highly scalable concurrent cache. 2019, accessed
29/12/2019. Available from: https://metopa.github.io/deferred%5Flru/

63

http://www.sciencedirect.com/science/article/pii/S0167739X17317715
http://www.sciencedirect.com/science/article/pii/S0167739X17317715
https://doi.org/10.1145/3309206
1712.09624
http://arxiv.org/abs/1712.09624
https://github.com/LPD-EPFL/CLHT
https://github.com/LPD-EPFL/CLHT
https://github.com/facebook/folly
https://github.com/efficient/libcuckoo
https://sites.google.com/site/cconcurrencypackage/hopscotch-hashing
https://sites.google.com/site/cconcurrencypackage/hopscotch-hashing
https://github.com/preshing/junction
https://github.com/TooBiased/growt
https://github.com/TooBiased/growt
https://github.com/metopa/lru_benchmark
https://metopa.github.io/deferred%5Flru/


Bibliography

[55] Harris, T. L. A Pragmatic Implementation of Non-blocking Linked-Lists.
In Proceedings of the 15th International Conference on Distributed Com-
puting, DISC ’01, London, UK, UK: Springer-Verlag, 2001, ISBN 3-540-
42605-1, pp. 300–314. Available from: http://dl.acm.org/citation.cfm?id=
645958.676105

[56] Dytrych, T. LSU3shell, Ab Initio No-Core Shell Model in SU(3)-scheme
Basis. Accessed 29/12/2019. Available from: https://sourceforge.net/
projects/lsu3shell

[57] Zipf, G. Relative Frequency as a Determinant of Phonetic Change. 1929,
reprinted from the Harvard Studies in Classical Philology.

[58] Breslau, L.; Cao, P.; et al. Web Caching and Zipf-Like Distributions:
Evidence and Implications. 4 1999, ISBN 0-7803-5417-6, pp. 126–134 vol.1,
doi:10.1109/INFCOM.1999.749260.

[59] Hsu, W.; Smith, A. J. Characteristics of I/O Traffic in Personal Computer
and Server Workloads. IBM Syst. J., volume 42, no. 2, Apr. 2003: p.
347–372, ISSN 0018-8670, doi:10.1147/sj.422.0347. Available from: https:
//doi.org/10.1147/sj.422.0347

[60] Data traces from ARC: A Self-Tuning, Low Overhead Replacement Cache.
Accessed 29/12/2019. Available from: https://researcher.watson.ibm.com/
researcher/view%5Fperson%5Fsubpage.php?id=4700

[61] Hsu, W. W.; Smith, A. J.; et al. The Automatic Improvement of Locality
in Storage Systems. ACM Trans. Comput. Syst., volume 23, no. 4, Nov.
2005: p. 424–473, ISSN 0734-2071, doi:10.1145/1113574.1113577. Available
from: https://doi.org/10.1145/1113574.1113577

[62] Urdaneta, G.; Pierre, G.; et al. Wikipedia Workload Analysis for De-
centralized Hosting. Elsevier Computer Networks, volume 53, no. 11,
July 2009: pp. 1830–1845, accessed 29/12/2019. Available from: http:
//www.globule.org/publi/WWADH%5Fcomnet2009.html

[63] Urdaneta, G.; Pierre, G.; et al. Wikipedia access traces. Accessed
29/12/2019. Available from: http://www.wikibench.eu/?page id=60

[64] UMassTraceRepository. Accessed 29/12/2019. Available from: http://
traces.cs.umass.edu

[65] Kelly, R.; Pearlmutter, B. A.; et al. Concurrent Robin Hood Hashing. In
OPODIS, 2018.

[66] Abseil: Swiss Tables and absl::Hash. Accessed 29/12/2019. Available
from: https://abseil.io/blog/20180927-swisstables

64

http://dl.acm.org/citation.cfm?id=645958.676105
http://dl.acm.org/citation.cfm?id=645958.676105
https://sourceforge.net/projects/lsu3shell
https://sourceforge.net/projects/lsu3shell
https://doi.org/10.1147/sj.422.0347
https://doi.org/10.1147/sj.422.0347
https://researcher.watson.ibm.com/researcher/view%5Fperson%5Fsubpage.php?id=4700
https://researcher.watson.ibm.com/researcher/view%5Fperson%5Fsubpage.php?id=4700
https://doi.org/10.1145/1113574.1113577
http://www.globule.org/publi/WWADH%5Fcomnet2009.html
http://www.globule.org/publi/WWADH%5Fcomnet2009.html
http://www.wikibench.eu/?page_id=60
http://traces.cs.umass.edu
http://traces.cs.umass.edu
https://abseil.io/blog/20180927-swisstables


Appendix A

DeferredLRU Meta-parameter

Measurements

65



A. DeferredLRU Meta-parameter Measurements

A.1 Wikipedia 1/10

A.1.1 1 thread

Table A.1: DeferredLRU throughput with different pull threshold and purge
threshold on Wikipedia1/10 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.80 0.77 0.78 0.82 0.87 0.89
0.01 0.83 0.81 0.82 0.87 0.92 0.94
0.1 0.86 0.84 0.85 0.91 0.96 0.98
0.4 0.13 0.43 0.80 0.92 1.00 1.00
0.7 0.07 0.24 0.67 0.88 0.92 0.92
0.9 0.07 0.22 0.63 0.79 0.81 0.82

1 Values are normalized by the maximum (3075915 op/s)

Table A.2: DeferredLRU hit-rate with different pull threshold and purge
threshold on Wikipedia 1/10 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 82.85% 82.93% 82.58% 81.25% 79.54% 78.11%
0.01 82.77% 82.80% 82.47% 81.11% 79.44% 78.05%
0.1 82.81% 82.82% 82.50% 81.23% 79.68% 78.55%
0.4 84.59% 83.33% 83.38% 82.19% 81.13% 80.85%
0.7 83.84% 85.31% 84.35% 83.24% 82.64% 82.69%
0.9 83.84% 85.98% 84.77% 84.01% 83.70% 83.60%

Table A.3: Baseline values for threshold and hit-rate on Wikipedia 1/10 trace
for 1 thread

Cache Throughput Hit-rate

LRU 0.84 82.72%
HHVM 0.80 82.84%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.1 (3075915 op/s)
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A.1. Wikipedia 1/10

A.1.2 32 threads

Table A.4: DeferredLRU throughput with different pull threshold and purge
threshold on Wikipedia 1/10 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.86 0.88 0.96 0.88 0.91 1.00
0.01 0.87 0.86 0.87 0.92 0.96 0.97
0.1 0.87 0.89 0.85 0.90 0.93 0.97
0.4 0.10 0.35 0.76 0.86 0.91 0.96
0.7 0.05 0.18 0.57 0.83 0.96 1.00
0.9 0.05 0.16 0.53 0.82 0.95 0.97

1 Values are normalized by the maximum (135330 op/s)

Table A.5: DeferredLRU hit-rate with different pull threshold and purge
threshold on Wikipedia 1/10 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 82.84% 82.83% 82.71% 82.96% 83.17% 83.11%
0.01 82.84% 82.86% 82.84% 82.99% 83.06% 83.15%
0.1 82.96% 82.91% 82.95% 83.05% 83.14% 83.19%
0.4 84.59% 83.24% 83.49% 83.53% 83.56% 83.40%
0.7 83.86% 85.28% 84.39% 84.33% 84.16% 84.12%
0.9 83.86% 85.90% 84.87% 84.81% 84.65% 84.63%

Table A.6: Baseline values for threshold and hit-rate on Wikipedia 1/10 trace
for 32 threads

Cache Throughput Hit-rate

LRU 0.19 83.77%
HHVM 6.14 82.18%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.4 (135330 op/s)
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A. DeferredLRU Meta-parameter Measurements

A.2 Wikipedia 1/1000

A.2.1 1 thread

Table A.7: DeferredLRU throughput with different pull threshold and purge
threshold on Wikipedia 1/1000 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.83 0.83 0.84 0.86 0.88 0.88
0.01 0.86 0.88 0.89 0.90 0.92 0.93
0.1 0.89 0.90 0.92 0.94 0.96 0.98
0.4 0.22 0.50 0.86 0.95 0.99 1.00
0.7 0.14 0.36 0.81 0.94 0.96 0.96
0.9 0.11 0.30 0.76 0.86 0.87 0.88

1 Values are normalized by the maximum (7889640 op/s)

Table A.8: DeferredLRU hit-rate with different pull threshold and purge
threshold on Wikipedia 1/1000 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 56.92% 56.89% 56.64% 55.71% 54.37% 52.85%
0.01 56.88% 56.85% 56.61% 55.68% 54.34% 52.87%
0.1 57.20% 57.17% 56.96% 56.21% 55.19% 53.93%
0.4 59.38% 59.28% 59.18% 58.87% 58.49% 58.37%
0.7 60.55% 60.50% 60.50% 60.29% 60.10% 60.07%
0.9 61.25% 61.17% 61.17% 61.00% 60.88% 60.86%

Table A.9: Baseline values for threshold and hit-rate on Wikipedia 1/1000
trace for 1 thread

Cache Throughput Hit-rate

LRU 1.22 56.87%
HHVM 0.60 56.91%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.7 (7889640 op/s)
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A.2. Wikipedia 1/1000

A.2.2 32 threads

Table A.10: DeferredLRU throughput with different pull threshold and purge
threshold on Wikipedia 1/1000 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.82 0.86 0.94 0.93 0.96 0.93
0.01 0.85 0.85 0.93 0.94 0.95 0.88
0.1 0.89 0.89 0.93 0.96 0.98 0.91
0.4 0.43 0.68 0.93 0.98 0.99 0.95
0.7 0.28 0.58 0.90 1.00 0.97 0.96
0.9 0.22 0.49 0.83 0.97 0.98 0.99

1 Values are normalized by the maximum (62564 op/s)

Table A.11: DeferredLRU hit-rate with different pull threshold and purge
threshold on Wikipedia 1/1000 trace for 32 threads

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 56.81% 56.86% 57.05% 57.32% 57.56% 57.66%
0.01 56.84% 56.85% 57.04% 57.32% 57.56% 57.61%
0.1 57.25% 57.25% 57.34% 57.50% 57.58% 57.61%
0.4 59.57% 59.23% 59.39% 59.43% 59.44% 59.44%
0.7 61.10% 60.62% 60.68% 60.73% 60.72% 60.70%
0.9 61.78% 61.34% 61.40% 61.47% 61.47% 61.47%

Table A.12: Baseline values for threshold and hit-rate on Wikipedia 1/1000
trace for 32 threads

Cache Throughput Hit-rate

LRU 0.47 57.10%
HHVM 10.69 56.36%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.10 (62564 op/s)
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A. DeferredLRU Meta-parameter Measurements

A.3 P4 1/10

A.3.1 1 thread

Table A.13: DeferredLRU throughput with different pull threshold and purge
threshold on P4 1/10 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.97 0.93 0.90 0.94 0.98 1.00
0.01 0.93 0.90 0.88 0.93 0.96 0.99
0.1 0.56 0.82 0.86 0.91 0.95 0.98
0.4 0.13 0.42 0.81 0.92 0.98 0.98
0.7 0.07 0.23 0.66 0.88 0.90 0.91
0.9 0.05 0.19 0.63 0.79 0.83 0.82

1 Values are normalized by the maximum (2099025 op/s)

Table A.14: DeferredLRU hit-rate with different pull threshold and purge
threshold on P4 1/10 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 48.53% 48.31% 47.40% 44.91% 41.33% 38.61%
0.01 48.40% 47.78% 47.55% 45.45% 41.43% 38.79%
0.1 48.02% 48.69% 47.74% 45.48% 41.34% 38.86%
0.4 47.44% 48.95% 48.79% 46.91% 43.10% 42.04%
0.7 45.48% 49.27% 49.69% 47.18% 45.16% 45.30%
0.9 44.21% 49.98% 49.75% 47.00% 46.93% 45.82%

Table A.15: Baseline values for threshold and hit-rate on P4 1/10 trace for 1
thread

Cache Throughput Hit-rate

LRU 1.46 48.29%
HHVM 0.73 48.17%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.13 (2099025 op/s)
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A.3. P4 1/10

A.3.2 32 threads

Table A.16: DeferredLRU throughput with different pull threshold and purge
threshold on P4 1/10 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.99 0.99 0.99 1.00 0.95 0.90
0.01 0.94 0.98 0.98 0.99 0.95 0.91
0.1 0.59 0.90 0.97 0.98 0.94 0.96
0.4 0.06 0.39 0.85 0.93 0.92 0.94
0.7 0.02 0.17 0.68 0.88 0.92 0.95
0.9 0.03 0.15 0.56 0.84 0.87 0.91

1 Values are normalized by the maximum (44123 op/s)

Table A.17: DeferredLRU hit-rate with different pull threshold and purge
threshold on P4 1/10 trace for 32 threads

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 47.73% 47.54% 47.45% 45.50% 43.12% 42.16%
0.01 47.38% 47.05% 47.28% 45.70% 43.98% 42.23%
0.1 47.32% 47.67% 47.71% 45.23% 43.34% 42.86%
0.4 47.57% 48.02% 47.69% 46.16% 43.68% 43.59%
0.7 45.78% 48.48% 49.39% 47.06% 45.91% 45.95%
0.9 43.18% 49.68% 48.40% 46.62% 45.77% 46.34%

Table A.18: Baseline values for threshold and hit-rate on P4 1/10 trace for 32
threads

Cache Throughput Hit-rate

LRU 0.60 43.46%
HHVM 12.07 47.87%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.16 (44123 op/s)
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A. DeferredLRU Meta-parameter Measurements

A.4 P4 1/1000

A.4.1 1 thread

Table A.19: DeferredLRU throughput with different pull threshold and purge
threshold on P4 1/1000 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.94 0.94 0.95 0.97 0.99 1.00
0.01 0.92 0.94 0.95 0.97 0.99 1.00
0.1 0.70 0.83 0.93 0.97 0.99 1.00
0.4 0.26 0.50 0.85 0.94 0.97 0.98
0.7 0.15 0.35 0.76 0.91 0.92 0.93
0.9 0.13 0.31 0.72 0.85 0.85 0.86

1 Values are normalized by the maximum (6054175 op/s)

Table A.20: DeferredLRU hit-rate with different pull threshold and purge
threshold on P4 1/1000 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 3.41% 3.40% 3.37% 3.33% 3.21% 3.07%
0.01 3.41% 3.41% 3.37% 3.32% 3.20% 3.07%
0.1 3.42% 3.41% 3.39% 3.33% 3.19% 3.01%
0.4 3.49% 3.48% 3.42% 3.32% 3.10% 2.99%
0.7 3.54% 3.44% 3.34% 3.13% 2.99% 2.92%
0.9 3.22% 3.29% 3.16% 2.83% 2.75% 2.74%

Table A.21: Baseline values for threshold and hit-rate on P4 1/1000 trace for
1 thread

Cache Throughput Hit-rate

LRU 2.12 3.41%
HHVM 0.55 3.41%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.19 (6054175 op/s)
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A.4. P4 1/1000

A.4.2 32 threads

Table A.22: DeferredLRU throughput with different pull threshold and purge
threshold on P4 1/1000 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.88 0.94 0.95 0.90 0.95 0.95
0.01 0.90 0.95 0.93 1.00 0.94 0.96
0.1 0.84 0.87 0.96 0.92 0.98 0.97
0.4 0.51 0.72 0.89 0.93 0.92 0.93
0.7 0.34 0.57 0.88 0.94 0.93 0.92
0.9 0.24 0.47 0.82 0.92 0.91 0.91

1 Values are normalized by the maximum (28026 op/s)

Table A.23: DeferredLRU hit-rate with different pull threshold and purge
threshold on P4 1/1000 trace for 32 threads

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.74% 0.77% 0.73% 0.75% 0.74% 0.74%
0.01 0.77% 0.75% 0.74% 0.75% 0.73% 0.77%
0.1 0.79% 0.77% 0.77% 0.77% 0.78% 0.79%
0.4 0.86% 0.88% 0.86% 0.86% 0.86% 0.86%
0.7 1.05% 0.99% 0.97% 0.97% 0.97% 0.97%
0.9 1.07% 1.10% 1.08% 1.08% 1.07% 1.07%

Table A.24: Baseline values for threshold and hit-rate on P4 1/1000 trace for
32 threads

Cache Throughput Hit-rate

LRU 0.92 0.74%
HHVM 15.82 0.62%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.22 (28026 op/s)
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A. DeferredLRU Meta-parameter Measurements

A.5 P8 1/10

A.5.1 1 thread

Table A.25: DeferredLRU throughput with different pull threshold and purge
threshold on P8 1/10 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.99 1.00 0.91 0.85 0.85 0.83
0.01 0.96 0.98 0.91 0.86 0.81 0.85
0.1 0.84 0.94 0.88 0.83 0.79 0.83
0.4 0.18 0.59 0.78 0.84 0.82 0.85
0.7 0.04 0.23 0.62 0.76 0.78 0.80
0.9 0.03 0.15 0.46 0.56 0.61 0.59

1 Values are normalized by the maximum (3820560 op/s)

Table A.26: DeferredLRU hit-rate with different pull threshold and purge
threshold on P8 1/10 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 50.58% 50.45% 48.99% 43.20% 36.98% 32.62%
0.01 50.61% 50.48% 48.98% 43.19% 37.00% 32.62%
0.1 51.00% 50.86% 49.35% 43.87% 37.52% 33.22%
0.4 52.24% 51.88% 50.64% 45.44% 39.98% 38.78%
0.7 51.23% 53.31% 52.28% 47.65% 44.98% 44.26%
0.9 50.89% 53.66% 53.05% 50.64% 49.36% 48.77%

Table A.27: Baseline values for threshold and hit-rate on P8 1/10 trace for 1
thread

Cache Throughput Hit-rate

LRU 2.23 50.63%
HHVM 0.50 50.37%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.25 (3820560 op/s)
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A.5. P8 1/10

A.5.2 32 threads

Table A.28: DeferredLRU throughput with different pull threshold and purge
threshold on P8 1/10 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.92 0.91 0.94 0.97 0.97 0.94
0.01 0.92 0.92 0.93 0.96 0.95 0.99
0.1 0.89 0.94 0.94 0.94 0.95 0.96
0.4 0.46 0.83 0.92 0.95 0.97 0.97
0.7 0.07 0.37 0.75 0.92 0.97 1.00
0.9 0.04 0.20 0.64 0.93 1.00 0.97

1 Values are normalized by the maximum (51162 op/s)

Table A.29: DeferredLRU hit-rate with different pull threshold and purge
threshold on P8 1/10 trace for 32 threads

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 49.99% 49.86% 49.82% 50.72% 51.04% 51.43%
0.01 49.50% 49.81% 50.16% 50.56% 50.99% 51.35%
0.1 50.21% 49.95% 49.87% 50.42% 51.12% 51.45%
0.4 52.08% 51.81% 51.71% 51.28% 51.54% 51.42%
0.7 50.80% 53.52% 53.13% 53.08% 52.97% 53.08%
0.9 54.69% 55.19% 55.15% 54.72% 54.72% 54.56%

Table A.30: Baseline values for threshold and hit-rate on P8 1/10 trace for 32
threads

Cache Throughput Hit-rate

LRU 0.56 49.17%
HHVM 11.81 45.98%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.28 (51162 op/s)
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A. DeferredLRU Meta-parameter Measurements

A.6 P8 1/238

A.6.1 1 thread

Table A.31: DeferredLRU throughput with different pull threshold and purge
threshold on P8 1/238 trace for 1 thread

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.93 0.94 0.96 0.98 0.99 1.00
0.01 0.93 0.94 0.96 0.98 0.99 1.00
0.1 0.89 0.91 0.94 0.97 0.99 0.99
0.4 0.68 0.74 0.89 0.95 0.97 0.98
0.7 0.49 0.56 0.81 0.92 0.94 0.94
0.9 0.40 0.47 0.77 0.84 0.85 0.85

1 Values are normalized by the maximum (6287865 op/s)

Table A.32: DeferredLRU hit-rate with different pull threshold and purge
threshold on P8 1/238 trace for 1 thread

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.34% 0.33% 0.33% 0.31% 0.28% 0.25%
0.01 0.30% 0.30% 0.30% 0.29% 0.27% 0.24%
0.1 0.32% 0.32% 0.31% 0.30% 0.27% 0.25%
0.4 0.37% 0.36% 0.36% 0.34% 0.31% 0.30%
0.7 0.40% 0.40% 0.39% 0.36% 0.35% 0.34%
0.9 0.41% 0.43% 0.42% 0.40% 0.38% 0.37%

Table A.33: Baseline values for threshold and hit-rate on P8 1/238 trace for 1
thread

Cache Throughput Hit-rate

LRU 2.22 0.34%
HHVM 0.53 0.32%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.31 (6287865 op/s)
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A.6. P8 1/238

A.6.2 32 threads

Table A.34: DeferredLRU throughput with different pull threshold and purge
threshold on P8 1/238 trace for 32 threads

Pull threshold Purge threshold
0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.93 0.93 0.96 0.98 0.98 0.96
0.01 0.93 0.95 0.96 0.97 0.95 0.99
0.1 0.89 0.91 0.95 1.00 0.98 0.98
0.4 0.74 0.80 0.91 0.97 0.95 0.98
0.7 0.66 0.74 0.90 0.96 0.96 0.99
0.9 0.63 0.70 0.88 0.92 0.97 0.97

1 Values are normalized by the maximum (27324 op/s)

Table A.35: DeferredLRU hit-rate with different pull threshold and purge
threshold on P8 1/238 trace for 32 threads

Pull Purge threshold
threshold 0.001 0.01 0.1 0.4 0.7 0.9

0.001 0.55% 0.56% 0.56% 0.57% 0.57% 0.56%
0.01 0.55% 0.55% 0.56% 0.58% 0.57% 0.57%
0.1 0.57% 0.58% 0.58% 0.58% 0.59% 0.59%
0.4 0.66% 0.67% 0.66% 0.67% 0.67% 0.66%
0.7 0.74% 0.75% 0.77% 0.76% 0.76% 0.76%
0.9 0.83% 0.85% 0.87% 0.87% 0.86% 0.85%

Table A.36: Baseline values for threshold and hit-rate on P8 1/238 trace for
32 threads

Cache Throughput Hit-rate

LRU 0.84 0.65%
HHVM 16.65 0.69%

1 Throughput values are normal-
ized by the maximum of Ta-
ble A.34 (27324 op/s)
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B. DeferredLRU Performance Measurements

Table B.1: Singular cache performance I

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

DS1 DLRU 0.001|0.1 3.25% 4.90% 1.95 0.89 0.85 0.44
1/10 DLRU 0.1|0.7 3.32% 5.52% 2.32 0.88 0.84 0.36

DLRU 0.99|0.99 6.73% 12.00% 3.62 0.90 0.84 0.23
LRU 3.43% 5.58% 3.07 0.73 0.67 0.22
conLRU 3.55% 3.64% 1.56 0.66 0.50 0.32
TBB 3.44% 3.51% 2.09 0.48 0.30 0.14

DS1 DLRU 0.001|0.1 0.96% 0.21% 5.32 0.86 0.86 0.16
1/1000 DLRU 0.1|0.7 0.83% 0.22% 5.65 0.87 0.87 0.15

DLRU 0.99|0.99 0.53% 0.40% 1.81 0.84 0.82 0.45
LRU 0.97% 0.15% 12.41 0.83 0.76 0.06
conLRU 0.98% 0.30% 4.32 0.66 0.50 0.12
TBB 0.96% 0.34% 4.20 0.62 0.36 0.09

OLTP DLRU 0.001|0.1 66.23% 66.20% 6.80 2.54 2.24 0.33
1/10 DLRU 0.1|0.7 62.74% 57.55% 7.23 1.99 1.87 0.26

DLRU 0.99|0.99 62.72% 59.26% 4.76 2.07 1.92 0.40
LRU 66.70% 52.99% 9.60 0.98 0.89 0.09
conLRU 66.70% 55.03% 5.14 0.91 0.62 0.12
TBB 66.69% 64.62% 2.37 0.78 0.48 0.20

OLTP DLRU 0.001|0.1 50.63% 32.51% 6.59 1.28 1.20 0.18
1/45 DLRU 0.1|0.7 46.00% 33.33% 7.26 1.31 1.24 0.17

DLRU 0.99|0.99 46.44% 41.99% 5.44 1.41 1.40 0.26
LRU 51.27% 32.58% 10.66 0.94 0.82 0.08
conLRU 51.27% 34.63% 5.42 0.75 0.56 0.10
TBB 51.27% 43.45% 2.93 0.84 0.52 0.18

P4 DLRU 0.001|0.1 47.55% 47.43% 1.84 1.53 1.43 0.78
1/10 DLRU 0.1|0.7 41.66% 42.73% 1.95 1.39 1.32 0.68

DLRU 0.99|0.99 45.75% 44.83% 0.80 1.35 1.29 1.60
LRU 48.38% 42.84% 2.97 0.89 0.79 0.27
conLRU 48.34% 46.68% 1.68 0.86 0.61 0.36
TBB 48.16% 45.94% 1.85 0.51 0.32 0.17

P4 DLRU 0.001|0.1 3.38% 0.74% 5.73 0.85 0.84 0.15
1/1000 DLRU 0.1|0.7 3.19% 0.76% 5.97 0.88 0.86 0.14

DLRU 0.99|0.99 1.92% 1.13% 3.00 0.86 0.83 0.28
LRU 3.41% 0.70% 12.84 0.90 0.73 0.06
conLRU 3.39% 0.83% 4.48 0.66 0.50 0.11
TBB 3.42% 0.83% 3.55 0.66 0.40 0.11
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Table B.2: Singular cache performance II

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

P8 DLRU 0.001|0.1 48.99% 49.84% 3.54 1.69 1.54 0.44
1/10 DLRU 0.1|0.7 37.52% 50.93% 3.13 1.68 1.56 0.50

DLRU 0.99|0.99 51.06% 56.10% 1.04 1.78 1.67 1.61
LRU 50.62% 48.61% 8.45 1.08 0.93 0.11
conLRU 50.59% 51.01% 3.11 0.87 0.63 0.20
TBB 50.43% 50.34% 1.95 0.61 0.38 0.20

P8 DLRU 0.001|0.1 0.69% 2.50% 5.73 0.88 0.86 0.15
1/238 DLRU 0.1|0.7 0.65% 2.60% 5.94 0.91 0.88 0.15

DLRU 0.99|0.99 1.95% 3.87% 2.63 0.91 0.87 0.33
LRU 0.73% 2.57% 12.45 0.82 0.77 0.06
conLRU 0.73% 2.50% 4.42 0.64 0.51 0.11
TBB 0.73% 2.51% 3.32 0.69 0.41 0.12

S3 DLRU 0.001|0.1 3.77% 11.11% 1.56 0.92 0.90 0.58
1/10 DLRU 0.1|0.7 3.09% 12.14% 1.54 0.94 0.89 0.58

DLRU 0.99|0.99 17.03% 16.85% 1.17 0.86 0.85 0.73
LRU 3.98% 10.60% 3.72 0.77 0.66 0.18
conLRU 3.98% 4.31% 1.42 0.66 0.51 0.36
TBB 3.97% 4.03% 1.31 0.41 0.25 0.19

S3 DLRU 0.001|0.1 0.08% 0.21% 2.63 0.87 0.89 0.34
1/412 DLRU 0.1|0.7 0.06% 0.22% 3.28 0.88 0.90 0.28

DLRU 0.99|0.99 0.53% 0.44% 2.37 0.87 0.88 0.37
LRU 0.09% 0.25% 3.74 0.58 0.57 0.15
conLRU 0.09% 0.10% 1.83 0.68 0.50 0.27
TBB 0.09% 0.09% 2.51 0.69 0.44 0.17

Wikipedia DLRU 0.001|0.1 82.72% 82.64% 2.24 5.24 3.89 1.74
1/10 DLRU 0.1|0.7 79.72% 83.09% 2.77 5.82 4.22 1.52

DLRU 0.99|0.99 83.92% 85.10% 1.43 5.13 4.30 3.01
LRU 82.92% 82.91% 2.40 0.90 0.78 0.33
conLRU 82.47% 83.03% 1.52 0.98 0.75 0.49
TBB 83.81% 84.12% 0.83 0.43 0.29 0.35

Wikipedia DLRU 0.001|0.1 56.64% 57.09% 6.66 1.95 1.82 0.27
1/1000 DLRU 0.1|0.7 55.19% 57.58% 7.61 2.01 1.92 0.25

DLRU 0.99|0.99 61.30% 61.92% 4.44 2.19 2.09 0.47
LRU 56.88% 56.92% 9.57 1.00 0.82 0.09
conLRU 56.93% 56.97% 5.18 0.86 0.67 0.13
TBB 56.99% 57.35% 2.40 0.89 0.54 0.22
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B. DeferredLRU Performance Measurements

Table B.3: Singular cache performance III

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

YouTube DLRU 0.001|0.1 46.89% 46.71% 4.10 1.55 1.50 0.37
1/10 DLRU 0.1|0.7 43.37% 38.76% 4.28 1.29 1.27 0.30

DLRU 0.99|0.99 44.82% 39.61% 2.75 1.28 1.24 0.45
LRU 47.26% 31.18% 6.37 0.85 0.77 0.12
conLRU 47.26% 35.69% 3.43 0.82 0.57 0.16
TBB 47.24% 46.42% 1.18 0.54 0.33 0.28

YouTube DLRU 0.001|0.1 28.99% 7.79% 5.72 0.91 0.91 0.16
1/120 DLRU 0.1|0.7 27.44% 8.08% 6.15 0.92 0.91 0.15

DLRU 0.99|0.99 27.53% 13.90% 4.96 0.96 0.96 0.19
LRU 29.25% 7.12% 10.35 0.78 0.72 0.07
conLRU 29.25% 9.99% 4.75 0.66 0.51 0.11
TBB 29.25% 19.17% 2.19 0.76 0.46 0.21

Zipf DLRU 0.001|0.1 58.55% 59.40% 7.39 2.01 1.97 0.27
1/10 DLRU 0.1|0.7 54.14% 60.28% 7.79 2.13 1.98 0.25

DLRU 0.99|0.99 66.86% 65.03% 1.83 2.41 2.21 1.20
LRU 59.26% 59.22% 9.88 0.97 0.88 0.09
conLRU 59.26% 59.20% 5.35 0.89 0.69 0.13
TBB 59.26% 59.25% 2.39 0.87 0.53 0.22

Zipf DLRU 0.001|0.1 48.44% 49.21% 6.67 1.62 1.56 0.23
1/22 DLRU 0.1|0.7 45.00% 50.10% 7.39 1.69 1.59 0.22

DLRU 0.99|0.99 55.83% 56.29% 4.35 1.88 1.80 0.41
LRU 49.08% 49.05% 10.31 0.92 0.89 0.09
conLRU 49.08% 49.00% 5.31 0.82 0.65 0.12
TBB 49.08% 49.10% 2.55 0.87 0.54 0.21
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Table B.4: Binned cache performance I

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

DS1 B-DLRU 0.001|0.1 3.95% 8.36% 1.00 12.45 21.83 21.75
1/10 B-DLRU 0.1|0.7 3.95% 8.31% 1.00 12.54 22.05 22.07

B-DLRU 0.99|0.99 3.93% 8.10% 1.00 12.48 21.86 21.79
B-LRU 3.63% 6.87% 1.53 19.09 26.32 17.20
B-conLRU 3.33% 5.91% 0.69 10.97 16.11 23.23
HHVM 3.41% 5.76% 1.10 8.91 10.53 9.55

DS1 B-DLRU 0.001|0.1 0.94% 0.52% 4.69 23.52 33.68 7.18
1/1000 B-DLRU 0.1|0.7 0.94% 0.43% 4.70 23.87 33.20 7.07

B-DLRU 0.99|0.99 0.95% 0.51% 4.68 23.88 33.57 7.18
B-LRU 0.97% 0.13% 9.01 29.50 35.60 3.95
B-conLRU 0.98% 0.11% 3.88 14.80 18.04 4.65
HHVM 0.99% 0.12% 2.96 13.63 13.62 4.61

OLTP B-DLRU 0.001|0.1 66.05% 62.49% 6.30 35.91 52.54 8.34
1/10 B-DLRU 0.1|0.7 66.05% 62.37% 6.32 35.50 52.08 8.25

B-DLRU 0.99|0.99 66.05% 62.63% 6.32 35.35 52.55 8.32
B-LRU 66.67% 55.38% 8.73 32.24 40.66 4.66
B-conLRU 66.67% 59.10% 4.91 21.54 27.54 5.61
HHVM 66.69% 62.08% 4.57 20.10 22.94 5.02

OLTP B-DLRU 0.001|0.1 48.49% 32.27% 6.16 26.82 37.10 6.02
1/45 B-DLRU 0.1|0.7 48.49% 32.36% 6.17 26.83 36.92 5.98

B-DLRU 0.99|0.99 48.49% 32.35% 6.17 26.71 36.69 5.95
B-LRU 51.13% 34.79% 9.42 27.11 34.45 3.66
B-conLRU 51.14% 33.32% 5.12 16.47 20.30 3.96
HHVM 51.22% 32.78% 4.75 16.11 17.20 3.62

P4 B-DLRU 0.001|0.1 47.98% 46.67% 1.37 23.38 39.35 28.77
1/10 B-DLRU 0.1|0.7 47.98% 46.79% 1.37 23.67 39.35 28.82

B-DLRU 0.99|0.99 48.21% 46.63% 1.38 23.68 39.27 28.52
B-LRU 48.04% 36.65% 2.14 26.66 32.54 15.17
B-conLRU 48.20% 46.26% 1.07 17.34 22.67 21.09
HHVM 47.88% 47.90% 1.47 12.72 15.61 10.58

P4 B-DLRU 0.001|0.1 3.34% 0.53% 4.95 23.76 32.15 6.50
1/1000 B-DLRU 0.1|0.7 3.34% 0.52% 4.96 23.76 32.41 6.54

B-DLRU 0.99|0.99 3.34% 0.53% 4.96 23.71 32.42 6.54
B-LRU 3.42% 0.56% 9.60 28.24 33.03 3.44
B-conLRU 3.40% 0.57% 4.08 14.22 17.30 4.24
HHVM 3.42% 0.62% 3.33 14.16 13.93 4.19
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B. DeferredLRU Performance Measurements

Table B.5: Binned cache performance II

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

P8 B-DLRU 0.001|0.1 49.19% 44.41% 3.19 31.30 43.96 13.79
1/10 B-DLRU 0.1|0.7 49.20% 44.43% 3.18 30.98 44.06 13.85

B-DLRU 0.99|0.99 49.19% 44.40% 3.17 30.96 44.02 13.88
B-LRU 50.58% 46.19% 6.08 36.04 41.07 6.75
B-conLRU 50.49% 46.28% 2.62 22.13 26.77 10.22
HHVM 50.40% 46.02% 1.94 16.97 18.60 9.58

P8 B-DLRU 0.001|0.1 0.72% 2.13% 4.94 23.73 32.00 6.48
1/238 B-DLRU 0.1|0.7 0.72% 2.13% 4.94 23.73 32.20 6.52

B-DLRU 0.99|0.99 0.72% 2.13% 4.94 23.74 31.35 6.34
B-LRU 0.74% 2.43% 9.58 27.78 33.38 3.48
B-conLRU 0.74% 2.41% 4.06 14.32 17.40 4.29
HHVM 0.72% 2.61% 3.28 14.29 14.07 4.29

S3 B-DLRU 0.001|0.1 4.16% 13.32% 0.63 15.02 23.56 37.33
1/10 B-DLRU 0.1|0.7 4.16% 13.37% 0.63 14.95 23.72 37.71

B-DLRU 0.99|0.99 4.15% 13.47% 0.63 14.91 23.72 37.62
B-LRU 3.97% 13.79% 1.05 15.39 20.75 19.83
B-conLRU 3.95% 13.72% 0.44 10.56 15.13 34.07
HHVM 3.98% 13.51% 0.59 8.99 11.17 18.96

S3 B-DLRU 0.001|0.1 0.07% 0.27% 3.01 12.88 18.21 6.04
1/412 B-DLRU 0.1|0.7 0.07% 0.27% 3.01 13.08 16.86 5.61

B-DLRU 0.99|0.99 0.07% 0.27% 3.01 13.01 16.75 5.57
B-LRU 0.09% 0.32% 3.45 13.53 17.98 5.21
B-conLRU 0.09% 0.28% 2.07 7.79 6.85 3.32
HHVM 0.09% 0.31% 2.67 11.26 12.25 4.59

Wikipedia B-DLRU 0.001|0.1 82.71% 81.81% 2.38 35.71 55.12 23.12
1/10 B-DLRU 0.1|0.7 82.73% 81.80% 2.36 35.35 57.04 24.18

B-DLRU 0.99|0.99 82.71% 81.78% 2.38 35.72 56.98 23.98
B-LRU 82.99% 82.21% 2.33 24.02 31.75 13.63
B-conLRU 82.44% 82.39% 1.46 18.19 24.45 16.69
HHVM 82.92% 82.14% 2.40 20.06 25.53 10.65

Wikipedia B-DLRU 0.001|0.1 56.59% 56.02% 6.72 35.28 51.39 7.65
1/1000 B-DLRU 0.1|0.7 56.59% 55.99% 6.72 35.42 50.43 7.51

B-DLRU 0.99|0.99 56.59% 56.00% 6.72 35.04 51.29 7.63
B-LRU 56.84% 56.34% 8.92 27.94 36.76 4.12
B-conLRU 56.93% 56.53% 5.10 18.53 23.17 4.55
HHVM 56.87% 56.37% 4.56 18.67 20.78 4.55
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Table B.6: Binned cache performance III

Hit-rate Throughput

Threads Threads
Trace Cache 1 32 1 16 32 Speedup

YouTube B-DLRU 0.001|0.1 46.93% 39.84% 4.13 27.28 40.29 9.75
1/10 B-DLRU 0.1|0.7 46.93% 41.08% 4.18 27.54 40.97 9.80

B-DLRU 0.99|0.99 46.93% 39.14% 4.18 27.59 39.44 9.44
B-LRU 47.24% 33.11% 6.13 29.01 39.35 6.42
B-conLRU 47.24% 35.41% 3.41 19.23 24.03 7.05
HHVM 47.24% 43.71% 2.32 16.04 17.75 7.64

YouTube B-DLRU 0.001|0.1 28.39% 7.42% 5.48 22.99 31.93 5.83
1/120 B-DLRU 0.1|0.7 28.39% 7.20% 5.48 23.22 31.52 5.75

B-DLRU 0.99|0.99 28.39% 7.17% 5.48 23.35 31.29 5.71
B-LRU 29.22% 8.65% 9.51 26.14 32.50 3.42
B-conLRU 29.22% 7.54% 4.60 14.54 17.41 3.79
HHVM 29.24% 7.36% 3.89 13.07 13.64 3.51

Zipf B-DLRU 0.001|0.1 57.86% 57.95% 6.94 36.59 51.12 7.37
1/10 B-DLRU 0.1|0.7 57.86% 57.94% 6.97 36.11 50.75 7.28

B-DLRU 0.99|0.99 57.86% 57.95% 7.00 35.81 51.24 7.33
B-LRU 59.22% 59.18% 8.98 25.38 18.20 2.03
B-conLRU 59.22% 59.17% 5.16 9.22 4.24 0.82
HHVM 59.26% 58.90% 4.74 18.84 21.72 4.58

Zipf B-DLRU 0.001|0.1 46.86% 47.01% 6.45 31.11 42.62 6.61
1/22 B-DLRU 0.1|0.7 46.86% 47.01% 6.46 30.81 42.24 6.53

B-DLRU 0.99|0.99 46.86% 47.01% 6.47 31.00 41.88 6.47
B-LRU 49.01% 48.97% 9.27 21.64 16.51 1.78
B-conLRU 49.01% 48.95% 5.05 8.60 4.08 0.81
HHVM 49.08% 48.75% 4.66 17.72 19.37 4.16
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Appendix C

Contents of SD card
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C. Contents of SD card

thesis kroilov viacheslav 2020.......................Root directory
text..........................................Thesis text directory

chapter................................Chapter LATEX directory
appendix*.tex.............Appendix chapters from the thesis

figures.......................................Figures directory
*.tex ................. LATEX files for figures used in the thesis

listings......................................Listings directory
*.tex............LATEX files for code listings used in the thesis

plots............................................Plots directory
* ....................... LATEX files for plots used in the thesis

tables.........................................Tables directory
*.tex..................LATEX files for tables used in the thesis

FITthesis.cls ..................... LATEX style file for the thesis
index.bib...........Entities cited in the thesis in BibTex format
Thesis Kroilov Viacheslav 2020.pdf..the thesis in PDF format
Thesis Kroilov Viacheslav 2020.tex.the thesis in LATEX format

traces ....................................... Data traces directory
DS1.blis.............................................DS1 trace
OLTP.blis..........................................OLTP trace
P4.blis ............................................... P4 trace
P8.blis ............................................... P8 trace
S3.blis................................................S3 trace
trace info.py............Python utility for gathering trace stats
wiki dataset.blis ............................. Wikipedia trace
youtube.blis....................................YouTube trace
zipf 09.blis.........................................Zipf trace
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