
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

SPEECH ENHANCEMENTWITH CYCLE-CONSISTENT
NEURAL NETWORKS
ODSTRAŇOVÁNÍ ŠUMU POMOCÍ NEURONOVÝCH SÍTÍ S CYKLICKOU KONZISTENCÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR PAVOL KARLÍK
AUTOR PRÁCE

SUPERVISOR Ing. ŽMOLÍKOVÁ KATEŘINA
VEDOUCÍ PRÁCE

BRNO 2020

Brno University of Technology
Faculty of Information Technology

 Department of Computer Graphics and Multimedia (DCGM) Academic year 2019/2020

 Master's Thesis Specification
Student: Karlík Pavol, Bc.
Programme: Information Technology Field of study: Information Systems
Title: Speech Enhancement with Cycle-Consistent Neural Networks
Category: Speech and Natural Language Processing
Assignment:

1. Get acquainted with the problem of speech enhancement using neural networks.
2. Get acquainted with the generative-adversarial neural networks, CycleGANs and their use

for speech enhancement.
3. Implement the method, train, evaluate and compare with published results.
4. Further analyze obtained results.
5. Suggest ways to improve the results or extend the method.

Recommended literature:
Meng, Zhong, Jinyu Li, and Yifan Gong. "Cycle-consistent speech enhancement." arXiv
preprint arXiv:1809.02253 (2018).
dle doporučení vedoucí

Requirements for the semestral defence:
Items 1 and 2.

Detailed formal requirements can be found at https://www.fit.vut.cz/study/theses/
Supervisor: Žmolíková Kateřina, Ing.
Head of Department: Černocký Jan, doc. Dr. Ing.
Beginning of work: November 1, 2019
Submission deadline: June 3, 2020
Approval date: November 5, 2019

Powered by TCPDF (www.tcpdf.org)

Master's Thesis Specification/23134/2019/xkarli05 Page 1/1

Abstract
Deep neural networks (DNNs) have become a standard approach for solving problems of
speech enhancement (SE). The training process of a neural network can be extended by
using a second neural network, which learns to insert noise into a clean speech signal. Those
two networks can be used in combination with each other to reconstruct clean and noisy
speech samples. This thesis focuses on utilizing this technique, called cycle-consistency.
Cycle-consistency improves the robustness of a network without modifying the speech-
enhancing neural network, as it exposes the SE network to a much larger variety of noisy
data. However, this method requires input-target training data pairs, which are not always
available. We use generative adversarial networks (GANs) with cycle-consistency constraint
to train the network using unpaired data. We perform a large number of experiments
using both paired and unpaired training data. Our results have shown that adding cycle-
consistency improves the modelsŠ performance signiĄcantly.

Abstrakt
Hlboké neurónové siete sa bežne používajú v oblasti odstraňovania šumu. Trénovací proces
neurónovej siete je možné rožšíriť využitím druhej neurónovej siete, ktorej cieľom je vložiť
šum do čistej rečovej nahrávky. Tieto dve siete sa môžu spolu využiť k rekonštrukcii
pôvodných čistých a zašumených nahrávok. Táto práca skúma efektivitu tejto techniky,
zvanej cyklická konzistencia. Cyklická konzistencia zlepšuje robustnosť neurónovej siete
bez toho, aby sa daná sieť akokoľvek modiĄkovala, nakoľko vystavuje sieť na odstraňovanie
šumu rôznorodejšiemu množstvu zašumených dát. Avšak, táto technika vyžaduje trénovacie
dáta skladajúce sa z párov vstupných a referenčných nahrávok. Tieto dáta niesu vždy
dostupné. Na trénovanie modelov s nepárovanými dátami využívame generatívne neurónové
siete s cyklickou konzistenciou. V tejto práci sme vykonali veľké množstvo experimentov
s modelmi trénovanými na párovaných a nepárovaných dátach. Naše výsledky ukazujú, že
využitie cyklickej konzistencie výrazne zlepšuje výkonnosť modelov.

Keywords
speech enhancement, GAN, generative adversarial networks, deep learning, cycle-consistency

Kľúčové slová
odstraňovanie šumu, GAN, generatívne neurónové siete, hlboké učenie, cyklická konzisten-
cia

Reference
KARLÍK, Pavol. Speech Enhancement with Cycle-Consistent Neural Networks. Brno, 2020.
MasterŠs thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Žmolíková Kateřina

Rozšírený abstrakt
Systémy rozpoznávania reči (ASR systémy) umožňujú interpretovať ľudskú reč v podobe

textu. V posledných desaťročiach bolo v tejto oblasti dosiahnutého značného pokroku.
Využitie týchto systémov je rozmanité. V dnešnej dobe sa používajú napríklad v prístrojoch
pre automatizáciu domácnosti.

Jedným z hlavných problémov ASR systémov je prítomnosť šumu a reverberácie v rečo-
vých nahrávkach. Tieto artefakty výrazne zhoršujú schopnosť ASR systému vytvoriť ko-
rektnú textovú reprezentáciu hovorenej reči. Existuje veľa algoritmov nazlepšenie kvality
rečovej nahrávky. Väčšina dnešných techník využíva práve neurónové siete.

Táto práca sa zaoberá experimentovaním s rozsiahlymi modelmi neurónových sietí
na zlepšenie kvality rečovej nahrávky. Práca je založená na publikácii, v ktorej sa ex-
perimentuje s neurónovými sieťami s cyklickou konzistenciou pre zlepšenie kvality rečových
nahrávok. Cyklická konzistencia modiĄkuje chybovú funkciu na trénovanie siete. V sieti
s cyklickou konzistenciou Ąguruje druhá neurónová sieť, ktorá vykonáva presne opačnú
úlohu, ako prvá neurónová sieť. V našom prípade sa jedná o sieť, ktorá do čistej rečovej
nahrávky vkladá šum. Pomocou týchto dvoch neurónových sietí je možné zrekonštruovať
pôvodnú čistú a zašumenú nahrávku. Chyba rekonštrukcie je zakomponovaná do celkovej
chybovej funkcie modelu.

Často je ťažké zohnať dostatočne veľkú dátovú sadu, ktorá obsahuje páry vstup-referenčný
výstup. Avšak, neurónové siete sa dajú trénovať aj s nepárovanými dátami pomocou tzv.
generatívnych adversných sietí (GAN). Generatívne adversné siete sa skladajú z dvoch
neurónových sietí - generátoru a diskriminátoru. Cieľom generátoru je generovať vzorky,
ktoré sa podobajú vzorkám z trénovacej sady. Diskriminátor sa snaží vzorky z trénovacej
sady a vygenerované vzorky korektne rozlíšiť. Architektúra CycleGAN, ktorú používame
v tejto práci, je GAN architektúra s využitím cyklickej konzistencie. CycleGAN obsahuje
štyri neurónové siete - dva diskriminátory a dva generátory. Ďalej rozširuje chybovú funkciu
o tzv. chybu identity, ktorá má zaručiť to, že sa vstup neurónovej siete od jej výstupu ne-
bude príliš líšiť.

V tejto práci je popísaný vplyv šumu a reverberácie v oblasti rozpoznávania reči. Ďalej
sú detailne popísané neurónové siete so zameraním na ich princíp a spôsob trénovania,
rekurentné neurónové siete, konvolučné neurónové siete a princíp cyklickej konzistencie.
Predstavíme generatívne neurónové siete (GAN) a CycleGAN architektúru. Krátko je
popísaná použitá dátová sadu CHiME-3 a detaily implementácie. Veľká časť práce je
venovaná podrobnému popisu experimentov s rôznymi modelmi, ktoré využívajú princípy
generatívnych adversných sietí a cyklickej konzistencie.

Pre implementáciu modelov neurónových sietí bol použitá Python knižnica pre strojové
učenie, PyTorch. Vstupom neurónových sietí sú normalizované logaritmované mel Ąlterbank
koeĄcienty. Výstupom sú tieto koeĄcienty bez normalizácie. Neurónová sieť sa skladá
z dvojvrstvovej Long-Short Term Memory siete, ktorá je nasledovaná tzv. plne prepojenou
vrstvou. Neurónová sieť - diskriminátor - je zložená z dvoch plne prepojených vrstiev. Pre
natrénovanie jednotlivých modelov bolo venovaného veľké množstvo času hľadaním naj-
vhodnejších trénovacích parametrov. CycleGAN bol trénovaný s využitím rôznych regula-
rizačných a trénovacích techník, ktoré zlepšili výkonnosť modelu. Pre zhodnotenie kvality
modelov bola použitá metrika word error rate (WER), ktorá porovnáva text vygenerovaný
ASR systémom s referenčným textom.

Najprv bola natrénovaná základná neurónová sieť, ktorá slúžila ako referenčný model
Ů baseline. Pre model s cyklickou konzistenciou (CSE) bola najprv natrénovaná sieť
na vkladanie šumu. Tieto dva natrénované modely sa potom trénovali spolu v CSE. Pre

náš CycleGAN model, nazývaný ACSE, sme taktiež najprv inicializovali dve neurónové
siete Ů generátory. Vstupom a výstupom bola tá istá čistá alebo zašumená nahrávka,
pričom referenčná nahrávka nebola normalizovaná. Natrénované modely sa potom využili
v trénovaní ACSE. Ďalej sme pre dosiahnutie lepších výsledkov pretrénovali akustický model
(AM). Akustický model je jedna z komponent systému rozpoznávania reči, ktorá vytvára
štatistickú reprezentáciu jednotlivých fonémov. K pretrénovaniu akustického modelu boli
použité dáta z trénovacej sady, ktoré boli spracované modelmi na odstraňovanie šumu.
Pomocou natrénovaného AM bolo opäť vyhodotené WER jednotlivých sietí.

Baseline model dosiahol relatívneho zlepšenia WER (RWERR) o 17.40 % oproti ne-
spracovaným nahrávkam. S využitím cyklickej konzistencie sme dosiahli ďalšieho zlepšenia
RWERR na 20.97 %. Vďaka podrobnému ladeniu trénovacích parametrov sme dosiahli
lepších výsledkov, ako v publikácii, v ktorej baseline a CSE modely dosiahli 12.33 % a
19.60 % RWERR oproti nespracovaným dátam. Model trénovaný na nepárovaných dátach,
ACSE, dosiahol relatívneho zlepšenia o 12.71 %, pričom ACSE v publikácii dosiahlo zlepše-
nia o 6.69 %. Okrem ladenia trénovacích parametrov sme zaviedli ďalšie trénovacie triky
pre zlepšenie konvergencie GANov, ako napríklad využívanie histórie generovaných vzorkov
pre trénovanie diskriminátorov. S pretrénovaným akustickým modelom sme dosiahli 46.86
% RWERR, oproti 38.18 % RWERR v publikácii. Oproti publikácii sme ďalej pretrénovali
AM pomocou baseline a CSE, ktoré dosiahli 30.83 % a 33.50 % RWERR.

Skúmali sme vplyv adversného trénovania a chyby identity na výkonnosť modelov.
Výkon baseline modelu dosiahol 19.21 % (35.38% s pretrénovaným AM) RWERR pridaním
chyby identity. Pre CSE model sme tiež pridali chybu identity, čím sme dosiahli 22.92 %
(34.19 % s pretrénovaným AM) RWERR. Ak v CSE s chybou identity využijeme adversné
trénovanie, dôjde k zhoršeniu RWERR o 0.26 %, ale s pretrénovaným AM sa RWERR zlepší
o 1.91% oproti CSE s chybou identity.

V tejto práci sme implementovali viaceré modely neurónových sietí založené na princípoch
cyklickej konzistencie a generatívnych adversných neurónových sieťach. Naše experimenty
preukázali, že cyklická konzistencia pomáha zlepšiť výkonnosť modelu na zlepšenie kvality
rečových nahrávok. Ďalej sme zistili, že zakomponovanie chyby identity do chybovej funkcie
obecne pomáha zvýšiť výkonnosť modelov nielen u ACSE, ale aj u baseline a CSE. Adver-
sné trénovanie má väčší dopad na výsledné WER, keď sa využije pretrénovanie akustického
modelu. Lepších výsledkov by molo možné dosiahnuť nahradením LSTM siete inou, naprí-
klad tzv. Transformer Neural Network alebo Dual-Path Recurrent Neural Network.

Speech Enhancement with Cycle-Consistent Neu-
ral Networks

Declaration
I hereby declare that this Diploma thesis was prepared as an original work by the author
under the supervision of Ing. Kateřina Žmolíková. All the relevant sources, which were
used during the preparation of this thesis, are properly cited and included in the list of
references.

. .
Pavol Karlík
June 1, 2020

Acknowledgements
I would like to express my deepest gratitude to my supervisor Ing. Žmolíková for her
incredible guidance, valuable advice, encouragement, and immense knowledge.

Contents

1 Introduction 3

2 Speech Enhancement and Noise Reduction 4
2.1 Problem Introduction . 4
2.2 Speech Enhancement Methods . 5

2.2.1 Features Used in Speech Enhancement 6
2.2.2 Standard Speech Enhancement Solutions 7

2.3 Automatic Speech Recognition . 8

3 Artificial Neural Networks 10
3.1 Structure of a Neural Network . 10
3.2 Training Process . 13

3.2.1 Cost Functions . 13
3.2.2 Error Backpropagation . 14

3.3 Recurrent Neural Networks . 15
3.4 Convolutional Neural Networks . 17
3.5 Neural Networks with Cycle-Consistency . 18

4 Generative Adversarial Networks 20
4.1 Generative Modeling . 20
4.2 Training GANs . 21

4.2.1 Conditional Generative Adversarial Network 22
4.2.2 Gradient Reversal Layer . 23

4.3 CycleGAN . 23
4.4 Application of GANs . 24

5 CHiME-3 Dataset 25
5.1 CHiME-3 . 25
5.2 Properties of the Dataset . 25

5.2.1 Real Data Recordings . 26
5.2.2 Simulated Data . 27
5.2.3 Data Used For Experiments . 27

6 Implementation 28
6.1 PyTorch . 28

6.1.1 Deep Learning Model as Program 28
6.1.2 Performance . 29
6.1.3 Automatic Differentiation . 29

1

6.2 Implemented Scripts and Modules . 29
6.2.1 Python Modules . 29
6.2.2 ASR Tools . 30
6.2.3 TensorBoard . 30

7 Experiments 31
7.1 Description of the Core Architectures . 32

7.1.1 Baseline . 32
7.1.2 CSE . 32
7.1.3 ACSE . 33

7.2 Results . 34
7.2.1 Baseline . 34
7.2.2 CSE . 36
7.2.3 ACSE . 37
7.2.4 Conclusions . 39

7.3 Re-Training the Acoustic Model . 40
7.4 Adversarial Training Using Paired Data . 41
7.5 The Importance of Identity Loss . 41

7.5.1 Models Trained with Paired Data . 42
7.5.2 ACSE . 43
7.5.3 Conclusion . 43

7.6 Experimenting with Temporal Convolutional Neural Networks 44
7.6.1 Basic Building Blocks of TCNN . 44
7.6.2 TCNN Architecture . 44
7.6.3 Results . 45

7.7 Summary . 46

8 Conclusion 48
8.1 Summary of the Performed Work . 48
8.2 Future Work . 49

8.2.1 Short-Term Prospects . 49
8.2.2 Long-Term Prospects . 49

Bibliography 50

A CD Content 57

2

Chapter 1

Introduction

Automatic speech recognition (ASR) is a widely used technology that allows transcription
of a recorded speech utterance into a corresponding sequence of words. The Ąeld has been
intensively researched in the past decades, with signiĄcant advances being made through
the years. These improvements led to a surge in the usage of intelligent human-machine
speech communication systems, such as virtual speech assistants or interactive voice re-
sponse systems.

Despite signiĄcant advances in this area, there still are certain factors that limit the
performance of such systems. Some of the central issues which reduce speech intelligibility
are reverberation and ambient noise. Those artifacts are picked up along with spoken
utterances when being captured by a microphone which results in corrupted speech. There
are many speech enhancement (SE) and ASR techniques to detect and combat the effects
of noise and reverberation [36, 78, 81].

Current state-of-the-art speech enhancement methods primarily employ artiĄcial neural
networks (ANNs) [82]. Recently, a new framework of ANNs has been proposed using
adversarial training called generative adversarial network (GAN) [21]. In GANs, two
neural networks are pitted against each other, each attempting to reach its objective, which
is ŠadversaryŠ to the other network. The generative adversarial network essentially models
the distribution of a given dataset. One of the modiĄcations of the aforementioned model
uses cycle-consistency for unpaired data training to further improve the architecture called
CycleGAN [84]. CycleGAN learns to transform samples from one domain to another.
The cycle-consistency constraint is implemented by adding another neural network. This
objective is enforced by making the networks be able to reconstruct images from source
domain X to target domain Y and vice versa, such that F (G(X)) ≈ X and G(F (X)) ≈
X. However, its potential has mostly been explored in the image processing Ąeld. This
thesis is based on a research paper recently published by Meng et al. (2018) [49] which
proposes a framework inspired by [84] for a speech enhancement task. In the paper, it was
demonstrated that the use of cycle-consistency paired with generative adversarial networks
can yield signiĄcant improvements over standard ANN models.

This thesis is organized as follows: Chapter 2 explains the problem of noise and rever-
beration in the speech recognition Ąeld. Chapters 3 and 4 overview neural networks with a
particular focus on GANs with cycle-consistency. Chapter 5 brieĆy introduces the dataset
used in this thesis. Chapter 6 contains a short overview of the tools and frameworks used
for the experiments that are described in Chapter 7. In the end, a conclusion is drawn from
the executed experiments and possible future improvements are discussed.

3

Chapter 2

Speech Enhancement and Noise

Reduction

Despite the widespread use of automatic speech recognition (ASR) technologies in various
systems, there is a large number of challenges that such systems need to handle in order
to be applicable. When a signal is captured by a microphone, the picked up signal can
get corrupted, causing it to lose intelligibility and quality. Such an altered signal might
then be erroneously processed by the ASR system, causing it to transcribe speech with less
accuracy than if it were to process a clean speech signal. One of the Ąelds that pursues this
problem is speech enhancement.

Speech enhancement (SE) techniques aim to improve a degraded speech signal by using
signal processing tools [44]. The speciĄc SE techniques heavily depend on the environment
from which target sources come from and a number of microphones available.

This Chapter describes the difficulties the noise and reverberation cause in the speech
recognition Ąeld and reviews the current speech enhancement methods used to diminish
these problems. For more detailed knowledge, the readers can refer to [41, 44, 78, 82].

2.1 Problem Introduction

Noise in a speech signal generally represents an unwanted modiĄcation that a signal may be
subjected to when being captured or processed. Various types of noises exist, depending on
their statistical properties and on the way they modify a signal. According to the spectral
distribution, the noises can be grouped into two categories:

• stationary noise - a stationary noise keeps constant spectral distribution over time
(e.g., white noise). The problem of eliminating short-term stationary additive noise
has been solved for decades [44].

• non-stationary noise - a large amount of real-world environmental noise is non-
stationary (e.g., people speaking in the background). Such noise is much more difficult
to suppress because its statistics change over time.

In the past years, the research in the speech enhancement Ąeld has not only been focused
on enhancing speech signals corrupted by non-stationary noise but also signals affected by
reverberation [36, 81]. Reverberation is a collection of sound waves reĆected from surfaces
in an enclosed space Ů a result of a signal bouncing off physical objects, such as walls.

4

The reĆected signals differ in delay and amplitude, which makes the transition between
phonemes in the signal less distinct.

Figure 2.1: Comparison of clean and corrupted speech signal.

Mathematically, a corrupted speech signal can be deĄned as a linear convolution, written
as

yt = xt ⊛ ht + at, (2.1)

where xt is the raw speech signal, ht is the room impulse response Ű reverberation, at is
the additive noise and yt is the resulting degraded speech signal observed by a microphone.
When applying Short-Time Fourier Transform (STFT), the room impulse response (RIR)
smears across several frames because the length of RIR is often much longer than the
analysis window size. The corrupted speech in the STFT domain, ỹt,f , can therefore be
modeled as

ỹt,f ≈

D−1
∑︁

d=0

x̃t−d,f h̃d,f + ãt,f , (2.2)

where d is the frame delay, f is the frequency bin and h̃d,f is STFT of the room impulse re-
sponse ht corresponding to the d-th frame delay. As we can see above, the signal corruption
is not linear due to the introduced frame delay [3].

2.2 Speech Enhancement Methods

Before introducing standard speech enhancement techniques, often-used features in these
methods will be described. The standard described approaches use the short-time Fourier
analysis modiĄcation-synthesis (AMS) framework [2]. The AMS-based SE methods consist
of three steps:

• processing a speech signal using STFT analysis

• modifying the magnitude spectrum

5

• taking the inverse STFT, followed by phase reconstruction algorithm (e.g., Griffin-Lim
[23]

Using AMS, the phase of the original signal is used for phase reconstruction, as it is sup-
posed that the phase modiĄcation is unnecessary [76]. However, it has since been shown
that a better phase estimation during speech enhancement can indeed lead to a signiĄcant
improvement of speech quality [57].

2.2.1 Features Used in Speech Enhancement

Current speech enhancement techniques primarily utilize some higher-level feature and/or
operate on the spectral domain. However, it has been shown that using raw audio in
combination with neural network can yield as good [68] or even better [56] results than
when using higher level features. Below, the most commonly used features are described.

Power Spectral Density

One of the common features used in speech enhancement is power spectral density (PSD).
PSD describes the signalŠs distribution of power over frequency. Approximated from (2.2),
the PSD of a corrupted speech signal can be formulated as

|ỹt,f |
2 ≈

D−1
∑︁

d=0

|x̃t−d,f |
2|h̃d,f |

2 + |ãt,f |
2. (2.3)

Mel Filter Bank Coefficients

Mel Ąlter bank coefficients (MFBs) are computed from applying mel-scaled Ąlter bank1 to
the power spectrum of the signal. The reason to use a mel scale instead of the frequency
scale is that the mel scale mimics the human perception of sound, which is non-linear. The
conversion formula from hertz to mels can be deĄned as

m = 2595 log10

(︂

1 +
f

f0

)︂

, (2.4)

where f0 is a corner frequency Ů a point from which the scale changes from linear to
logarithmic. The value typically ranges from 600 to 1000, depending on the speciĄc formula.

Taking PSD as described in (2.3), the k-th mel Ąlter bank output can be obtained using

Mel(ỹt,k) ≈

D−1
∑︁

d=0

mel(x̃t−d,k)mel(h̃d,k) +mel(ãt,k), (2.5)

in which mel function can be deĄned as

mel(z̃n,k) ≈ B[k] · |z̃n,f |
2, (2.6)

where B[k] is the weight of the discrete Fourier transform bin f in the k-th mel bin B.

1An array of triangular filters linearly spaced in mel scale - https://labrosa.ee.columbia.edu/doc/

HTKBook21/node54.html

6

https://labrosa.ee.columbia.edu/doc/HTKBook21/node54.html
https://labrosa.ee.columbia.edu/doc/HTKBook21/node54.html

0 1.5 3 4.5 6 7.5 9 10
Time [s]

0

5

10

15

20

25

M
el

-fr
eq

ue
nc

y
bi

n

-50 dB

-40 dB

-30 dB

-20 dB

-10 dB

+0 dB

Figure 2.2: Mel-frequency spectrogram of corrupted speech signal.

Additionally, an element-wise log operation is applied to the function when using MFBs
as a feature. This thesis uses log mel Ąlterbank coefficients as a feature of choice, since the
feature was used in [49] as well.

Mel-Frequency Cepstral Coefficients

Besides mel Ąlter bank features, SE and ASR systems often derive Mel-frequency cepstral
coefficients (MFCCs). From (2.2.1), the i-th MFC coefficient can be written as

Dct(ỹt,i) ≈ dct(x̃t,i)dct(h̃0,i) + dct(Mt,i), (2.7)

in which dct is deĄned as
dct(ft,i) = C[i] log(mel(ft,k)), (2.8)

where C denotes a discrete cosine transformation matrix, and

Mt,i = 1 +

∑︀D−1
d=0 mel(ỹt−d,k)mel(h̃d,k) +mel(ãt,k)

mel(ỹt,k)mel(h̃0,k)
. (2.9)

2.2.2 Standard Speech Enhancement Solutions

The most common speech enhancement methods are spectral subtraction, methods based
on linear Ąltering and methods utilizing neural networks.

• spectral subtraction - spectral subtraction is historically one of the Ąrst algorithms
proposed for single channel speech enhancement [10]. In this method, the average of
the noise spectrum is estimated during a non-speech period. Then, the estimated
spectrum is subtracted from the noisy signal spectrum. The phase information is
kept unchanged.

• linear filter-based methods - linear Ąltering approaches attempt to enhance the
corrupted speech signal in the STFT or time domain. In contrast to spectral subtrac-
tion, linear Ąltering exploits both the amplitude and the phase of the speech signal.

7

The phase information is especially useful in terms of removing reverberation Ů which
is, essentially, a superposition of several time-shifted and attenuated versions of clean
signal [81]. Additionally, these methods can take advantage of multiple microphone
sources of the same speech signal.

• neural network-based methods - these approaches vastly outperform standard
speech enhancement techniques and their usage is currently considered a standard
[78, 82]. Both high-level features and raw speech can be used as an input and output
of the network. Speech enhancement methods using ANNs will be discussed in more
detail in 3.

Readers interested in various forms of SE methods can refer to [41, 44, 78] for more details.
While the ASR performance in difficult noisy and reverberant conditions has signiĄ-

cantly improved over the past years [78, 80], there still are certain areas of focus where such
systems perform poorly. It has been observed that, when ASR systems are given a chal-
lenging environment with distant noisy and overlapping conversational speech, the system
performance suffers signiĄcantly [6].

2.3 Automatic Speech Recognition

Enhanced speech can improve the quality of many devices, some of which require to tran-
scribe the spoken utterance to a sequence of words, such as intelligent home assistants and
devices for the hearing impaired. This is done by automatic speech recognition (ASR) sys-
tems. In this work, we measure the performance of speech enhancement models based on
ASR results. This section provides a brief summary of how ASR works.

Generally, the ASR pipeline consists of two main parts Ů the back end and the front end.
A standard ASR framework is shown in Figure 2.3. The front end pre-processes the recorded
speech utterance and extracts features, most commonly MFCC and Constrained Maximum
Likelihood Linear Regression (CMLLR) [15] features. Those extracted features are then
used in the back end portion of ASR. The back end consists of two major components, an
acoustic model and a language model.

Acoustic Model

The role of an acoustic model is to represent a relationship between audio and phoneme
units. Acoustic model outputs the probability of a feature sequence given a sequence of
words.

Formerly, the acoustic model was primarily composed via Gaussian mixture model based
Hidden Markov Model (GMM-HMM) approach, which uses CMLLR features. Nowadays,
deep neural networks (DNNs) in conjunction with HMMs (DNN-HMM) are used for acoustic
modeling [13], as they signiĄcantly outperform GMM-HMM acoustic models [27].

Language Model

The language model then estimates the likelihood of a sequence of words. It provides
context to distinguish between similar-sounding words and phrases.

8

Raw Audio Feature
Extraction

Acoustic
Model

Language
Model Text Output

Back EndFront End

Figure 2.3: Speech-to-text pipeline.

Using the scores from the acoustic and the language model, a most likely sequence of
words given the sequence of feature vectors is computed, called hypothesis. In modern ASR
systems, such as Kaldi [64], the work of the acoustic model and the language model is
combined by weighted Ąnite state transducers [53].

9

Chapter 3

ArtiĄcial Neural Networks

The application of neural networks (NNs) has become a standard in many Ąelds. Larger
amount of computational power has become available over the years, which led to increased
interest in research and use of NNs in various systems. Current state-of-the-art speech
recognition and speech enhancement algorithms employ neural networks to improve their
performance [38, 78]. In this work, we implement three models for enhancing speech sig-
nals: a network with recurrent layers, that same model expanded with cycle-consistency
constraint, and a generative adversarial network (GAN). However, this Chapter only ex-
plains the fundamentals of neural networks and cycle-consistency. For a concise description
of GANs, see Chapter 4.

In this Chapter, we outline the structure of a standard neural network model and a
training process of a network. Followed by that, we describe classes of neural networks,
called recurrent neural networks (RNNs and convolutional neural networks (CNNs). Lastly,
we introduce an interesting concept, called cycle-consistent neural networks. The main
sources of information for this Chapters were GoodfellowŠs Deep learning book [38], OlahŠs
web article, Understanding LSTM Networks [55] and BishopŠs Pattern Recognition and
Machine Learning [9] book.

3.1 Structure of a Neural Network

A neural network consists of several simple elements called neurons. Neurons receive input,
change their internal state accordingly, and apply activation function to produce output.
The network consists of several layers made of interconnected neurons. The signiĄcance of
a neuron within the model is speciĄed by its weights, which are adjusted during the training
period.

10

Input	layer Hidden	layers Output	layer

Figure 3.1: Simple feedforward ANN with two hidden layers.

As seen in Figure 3.1, the outputs of the neurons are connected to the neuron inputs in
the next layer. The initial layer is called input layer, the Ąnal layer is called output layer
and the layers in between are called hidden layers.

The neuron output y is deĄned as

y = f̃(
N
∑︁

i=1

xiwi + w0), (3.1)

where f̃ is an activation function, xi is the output of the i-th neuron from the previous
layer, wi is its weight and w0 is bias1.

Neural networks can model problems that are highly non-linear. The non-linear rela-
tionships within the network can be formed due to the presence of non-linear activation
functions in hidden layers. Besides non-linearity, other core properties of these functions are
that they are continuous and differentiable. Those characteristics are required for training
the network via backpropagation algorithm, which is explained in subsection 3.2.2.

Hyperbolic Tangent

Hyperbolic tangent (tanh) is often used as an activation function. The function is deĄned
as

f(x) = tanh(x) =
2

1 + e−2x
− 1, (3.2)

d

dx
f(x) = 1− f(x)2. (3.3)

1Each layer has a vector of biases with each scalar corresponding to a specific neuron. Biases are
independent on the input.

11

Figure 3.2: The tanh function.

Figure 3.2 shows a plot of the tanh function. The main drawback of this function is
that it can lead to vanishing gradient. This is caused by small derivatives of the function
and is especially present in multi-layer networks Ů which is a large majority. The gradient
decreases exponentially during backpropagation, which in result leads to little to no changes
to the weights of the network.

Rectified Linear Unit

The most common activation function is rectiĄed linear unit (ReLU) [54], deĄned as

f(x) = max(0, x), (3.4)

d

dx
f(x) =

{︃

0 for x < 0

1 for x ≥ 0
. (3.5)

The gradient derivative reaches a value of either 0 or 1. This effectively eliminates the
possibility of gradients vanishing, which is present in other activation functions, such as
tanh. By deĄnition, ReLU is not differentiable at 0. However, the derivative for x = 0 is
explicitly deĄned in machine learning libraries.

Figure 3.3: The rectiĄed linear activation function.

Figure 3.3 shows the plot of ReLU. Since the activation function is very close to being
linear, it preserves the properties that make linear models using gradient-based methods
optimize well [20]. Additionally, ReLu introduces sparsity in the network, and therefore
performs well when used for tasks with a large degree of data sparsity [19].

12

3.2 Training Process

Neural networks are usually trained by using iterative, gradient-based algorithms. The goal
of those optimization algorithms is to modify the weights of the neuron connections between
the layers in a way that increases the accuracy of classifying or modifying the input data.
The most common gradient-based optimization algorithm, gradient descent [66], is used
in this work.

The goal of these algorithms is to Ąnd the values of weights that minimize a cost func-
tion. To modify the weights of the network, we compute the gradient of the cost function
and subtract the gradient from the given weight. The gradient refers to a direction in which
the cost function moves. To optimize the weights, we move in the opposite direction. The
weights adjustment Ů the optimization step Ů is deĄned as

w(τ+1) = w(τ) − η∇En(w
(τ)), (3.6)

where w(τ) is the current value of the weight, η is the learning rate2, w(τ+1) is the
value of the weight after the optimization step and ∇En is the gradient of the cost function
computed from a subset n of the whole training set. When the goal is to Ąnd a local maxima
instead of a local minima, the process is called gradient ascent, deĄned as

w(τ+1) = w(τ) + η∇En(w
(τ)). (3.7)

Initial values of the weights, w(0), can be deĄned randomly by using, for example,
uniform distribution or by using one of the initialization algorithms [18]. Iterating over
all the samples of the dataset once is called an epoch. Usually, the optimization process
iterates over the same training set multiple times in order to properly adjust the network
weights.

The subset n used in a single step is called batch. The size of a batch used for the step
affects the convergence of the optimization algorithm and robustness of the trained model
[73]. For more information regarding choosing the optimal combination of the learning rate,
batch size, and epoch count, the reader can refer to [29, 73].

3.2.1 Cost Functions

Depending on the target objective, there are several cost functions that can be applied to
train neural networks. Objective functions used in this work include mean squared error
(MSE) and binary cross-entropy (BCE).

Mean Squared Error

The mean squared error cost function can be deĄned as

MSE = En(xn, yn) =
1

N

N
∑︁

i=1

(yn,i − θ(xn,i)), (3.8)

where N is the batch size, yn,i is the expected output of the network, given the input xn,i
and θ(xn,i) is the actual output of the network θ, given the same input. MSE is often used
in linear regression models.

2Learning rate, commonly referred as “step size”, is one of the most important hyperparameters used in
training.

13

Binary Cross-Entropy

For binary classiĄcation tasks, binary cross-entropy is often used as a cost function. BCE
is usually coupled with a sigmoid activation function. In generative adversarial networks,
BCE is used as a cost function to classify the discriminator network output. The function
can be deĄned as

BCE = En(xn, yn) = −
1

N

N
∑︁

i=0

yn,i log (θ(xn,i)) + (1− yn,i) log (1− θ(xn,i)), (3.9)

where yn,i is the expected outcome (either 0 or 1) and θ(xn,i) is the predicted probability,
given input xn,i.

3.2.2 Error Backpropagation

As deĄned in (3.6), the weight vector is moved in the direction of the greatest decrease of
the cost function. The gradient of the cost function is computed using the backpropagation
algorithm.

In feedforward networks, each unit computes a weighted sum of its input, which can be
written as

aj =
∑︁

i

wj,izi, (3.10)

where zi is the output of the i-th neuron from the previous layer used as an input to j-th
neuron of the current layer and wj,i is the weight associated with the connection. When
evaluating the derivative of the cost function En with respect to wj,i, we apply the chain
rule for partial derivation, which can be formulated as

∂En

∂wj,i
= δj

∂aj

∂wj,i
, (3.11)

in which δj is the error, written as

δj =
∂En

∂aj
. (3.12)

The backpropagation formula for k-th layer is deĄned as

δ
(k)
j = f̃ ′(a

(k)
j)

∑︁

l

w
(k+1)
l,j δ

(k+1)
l , (3.13)

where f̃ ′ is the derivative of the activation function, w(k+1)
l,j is the weight of the connection,

and δ
(k+1)
l is the gradient derivation of the previous layer k+1. Overall, the training process

can be split into four steps:

• forward pass - computing the output via propagating the input through the network.

• computing the cost derivative - the cost and its derivative, δl is computed from
the network output.

• backward pass - using backpropagation algorithm, δj is computed for all network
connections.

• gradient descent - the weight vector is updated according to the computed gradi-
ents.

14

3.3 Recurrent Neural Networks

Recurrent neural networks (RNNs) [66] are a family of neural networks for processing
sequential data. In RNNs, the connections between the units form a directed cycle. This
is a major characteristic in which RNNs differ from standard feedforward neural networks,
where the outputs of the neurons are connected to the neuron inputs of a lower level layer.
This unique property allows the networks to keep an internal state while processing input
sequences of arbitrary lengths. The application of recurrent neural networks includes speech
recognition, speech enhancement, sentiment analysis, and machine translation.

Figure 3.4: A single unrolled recurrent neural network layer. Taken from [55].

RNN layer forms a chain-like structure of repeating modules, as can be seen in Figure
3.4. The network processes a vector of inputs, (x0, ..., xt) and produces output that that
acts as an input to the next unit and as a temporal output (h0, ..., ht) corresponding to the
unit. These repeating modules consist of a single tanh activation function, as can be seen
in Figure 3.5.

Figure 3.5: The single-layered repeating module of a standard RNN. Taken from [55].

The main issue of RNNs is that they suffer from the vanishing and exploding gradient
problems [8]. Hence, the network is unable to store information about past inputs for very
long [61]. Therefore, the networkŠs predictions are based only on the last several inputs.

Long Short-Term Memory Networks

The problems occurring in standard RNNs are largely solved in long short-term memory
networks (LSTMs) [28]. LSTMs consist of the same structure of repeating modules. The
more advanced internal architecture of the module is designed to preserve proper error
propagation during a backward pass.

15

Figure 3.6: The repeating module of a LSTM network. Taken from [55].

As seen in Figure 3.6, each unit consists of four layers. The black line depicts a vector,
which is transformed through network layers denoted as yellow boxes and element-wise
operations displayed as pink circles. Lines forking and merging denote vector copy and
concatenation, respectively.

The cell state vector, which is denoted as the upper line in Figure 3.6 is the key part
of the network. The network is able to add or remove information from the vector during
each time step. This action is regulated by internal components called gates. Each unit
consists of three gates Ů forget gate layer, input gate layer, and output gate layer.

The Ąrst layer of LSTM, forget gate layer, decides what information gets removed from
the cell state vector. The forget gate output ft can be formulated as

ft = σ(Wtx̃t + bf), (3.14)

x̃t = [ht−1, xt], (3.15)

where σ denotes the sigmoid activation function, Wt is the weight matrix, x̃t is the con-
catenated temporal output vector of the previous unit with the input vector. The old cell
state is then multiplied by ft. In this work, the LSTM networks have all forget gate biases
initialized to 1 [31].

The cell state is then appended by the input gate output, it multiplied by new candidate
values, C̃t, deĄned as

it = σ(Wix̃t + bi), (3.16)

C̃t = tanh(WCx̃t + bC), (3.17)

where Wi, WC and bi, bC are weight matrices and bias vectors of input gate layer and
tanh layer, respectively. The complete cell state update can be written as

Ct = ftCt−1 + itC̃i, (3.18)

where Ct−1 is the cell state of the previous time step. To sum it up, the previous cell state
Ct−1 is Ąltered via ft and the values in C̃t chosen by it are appended to the Ąltered cell
state to produce the current cell state.

Lastly, temporal output of the cell is computed. The output of the output gate layer,
ot, Ąlters the output candidates using sigmoid activation function, which is formulated as

ot = σ(Wox̃t + bo). (3.19)

16

The output of the Ąnal layer is then multiplied by the cell state ran through tanh activation
function to produce the temporal output ht, deĄned as

ht = ot tanh(Ct). (3.20)

Different internal architectures of LSTM cells have been proposed, such as Gated Re-
current Unit (GRU) [11]. GRUs combine the forget gate and input gate into a single layer
called update gate and merge the temporal state ht and cell state Ct into one state as well.
However, it has been demonstrated that there is no signiĄcant difference between the LSTM
variants [22].

3.4 Convolutional Neural Networks

Convolutional neural network (CNN) [14, 39] is a class of neural networks that excels in
image processing tasks. CNNs essentially capture the spatial and temporal (when appli-
cable) dependencies in input through the application of Ąlters. They take less time to
train, as they have many fewer trainable parameters. CNNs gained popularity in 2012,
when Krizhevsky et al. created AlexNet [37] CNN architecture, which outperformed other
architectures in ImageNet 2012 Visual Recognition Challenge [67] by a large factor.

In this section, we only describe basic building blocks of a CNN, as this work only uses
CNNs for a small set of experiments. For a more in-depth description, see [20].

Basic Building Blocks

Following a terminology from [20], a typical layer of a convolutional network consists of
three sub-layers Ů convolutional layer, detector layer, and pooling layer.

Each convolutional layer generates a higher-level abstraction of the input data that
preserves important information. A convolutional layer performs a convolutional operation
on its input by applying a Ąlter (also called a kernel), producing feature map as an output.
The neurons between the feature map and a subsequent layer are not interconnected by
weights, as was the case with feedforward networks. Instead, each feature map shares
the same set of weights Ů the Ąlter weights. This principle, which greatly reduces the
number of learnable parameters, is called weight sharing. This reduction is accomplished
by making the Ąlter smaller than the input. Typically, several Ąlters are applied to the
input, producing a distinct feature map for each of the Ąlters. Each of those feature maps
is called a channel.

Convolution is a linear operation. To perform a non-linear transformation, an activation
function is used on the convolved output in the detector layer. Followed by that, a pooling
function is used in the pooling layer.

A pooling function splits the feature map into multiple smaller parts, calculates sum-
mary statistics for each of those parts, and produces a single output for each part. The
pooling function operates on each feature map independently. This leads to an additional
size reduction of the feature map. For example, the max pooling [83] operation splits the
layer input into rectangular areas and produces the maximum of that area as the output.
This makes the application approximately invariant to small translations of the input [21].
This means that the output of the pooling layer does not change when the input changes
by a small amount. For example, this helps the network for handwritten digit recognition
to recognize digits more properly, even if these digits are rotated by a certain degree.

17

Figure 3.7: An example structure of a convolutional neural network. The network takes a
grayscale image consisting of a single channel as an input, producing the estimated recog-
nized digit as an output. Taken from 3.

Figure 3.7 shows an example of a simple convolutional network for digit recognition.
The input is a single-channel two-dimensional image, that is progressively reduced in size
by applying convolution and max pool operations.

3.5 Neural Networks with Cycle-Consistency

The main purpose of a neural network is to map input X to another output Ỹ , formally
written as

F : X −→ Ỹ , (3.21)

Ỹ ≈ Y, (3.22)

where the network F attempts to produce an output that is similar to a reference sample
Y with respect to the cost function. A concept widely used in machine translation and
visual tracking, called cycle-consistency, can be applied to enforce additional constraints
within the framework [25, 32]. For example, when translating a sentence from language A

to language B, the machine should be able to transform the translated sentence back to the
original sentence in language A. This form of cycle-consistency is called forward-backward
consistency.

Cycle-consistency can be achieved by introducing an additional neural network to the
framework. The network serves as an inverse mapping function

G : Y −→ X̃, (3.23)

X̃ ≈ X, (3.24)

3https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-

the-eli5-way-3bd2b1164a53

18

https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53

where G is the neural network performing a dual task Ů attempting to produce X when
given Y as an input. Both networks are then used in conjunction to be consistent with each
other. The forward cycle-consistency objective aims to accurately reconstruct X, and can
be deĄned as

X −→ F (X) −→ G(F (X)) ≈ X. (3.25)

Similarly, we can deĄne backward cycle-consistency, where the goal is to reconstruct Y , as
follows:

Y −→ G(Y) −→ F (G(Y)) ≈ Y. (3.26)

The constraints are enforced by adding the cost functions for (3.25) and (3.26) to the main
objective function, which is deĄned as

LCSE = λ1L(F) + λ2L(G) + λ3L(F,G) + λ4L(G,F), (3.27)

where L(F), L(G), L(F,G) and L(G,F) is a cost function of F , G, a forward and a backward
cycle, respectively, with λs being weight coefficients. The architecture of a cycle-consistent
framework used in this work can be seen in 7.1.

Enforcing forward-backward consistency plays an important role in speech enhancement
[49]. When used together with generative adversarial networks, such systems can perform
difficult tasks, such as unpaired image-to-image translation signiĄcantly better [84]. Re-
cently, several speech enhancement frameworks inspired by [84] were published [49, 51]. In
this work, which is based on [49], we implement a cycle-consistent neural network both with
and without GAN for speech enhancement.

19

Chapter 4

Generative Adversarial Networks

Generative modeling is an unsupervised learning approach that involves discovering and
learning data distribution. The model can be used to output new samples that could
have been considered as if they originated from the training set. Generative adversarial
network (GAN) is a class of machine learning systems based on generative models invented
by Goodfellow et al. (2014) [21]. In GANs, two neural networks are pitted against each
other, each attempting to reach its objective, which is ŠadversaryŠ to the other network.
The discovered framework quickly gained popularity due to its ability to generate samples
that are reminiscent of the training set [82, 77, 30].

This Chapter explains the unsupervised approach taken by GANs along with how ad-
versary training works. Additionally, we describe CycleGAN architecture, followed by a
showcase of some interesting publications using GANs.

4.1 Generative Modeling

As deĄned in Chapter 3, the goal during the training of a neural network is to produce an
output that resembles a certain target output Ů the label. The supervised learning model
is essentially a function that maps inputs X to samples Ỹ ≈ Y . The training data samples
can therefore be formulated as pairs of inputs and labels, (X,Y). This approach is called
supervised learning.

However, neural networks require a signiĄcant amount of training data and having la-
belled sample for each training input can be a costly task. A training method without
the requirement of having labels is used in generative modeling. In that approach, called
unsupervised learning, the modelŠs main objective is to is learn an underlying hidden struc-
ture of some data. More speciĄcally, generative models attempt to model a probability
distribution of the given set, as depicted in Figure 4.1.

20

pdist(x)

x

pdata(x)
pmodel(x)

Figure 4.1: The goal of a generative model is to be able to model the probability distribution
of data, pmodel, that resembles the data from pdata.

Like generative models, GANs are based on unsupervised learning. However, GANs
frame the problem as supervised Ů by using a cost function to predict whether the generated
data belongs to the probability distribution or not. GANs are based on a scenario in which
the generator network must compete against an adversary, the discriminator network.

The generator, G, produces samples X, given the generated noise (e.g., uniform noise)
Z:

G : Z −→ X. (4.1)

Its adversary, D, attempts to recognize whether its inputs have been drawn from the training
data or not. The output of the discriminator is deĄned as

D : X −→< 0, 1 >, (4.2)

where p is the probability of the input sample belonging to the data distribution.

4.2 Training GANs

Generative adversarial networks are jointly trained in a minimax game, where the generator
attempts to generate samples that the discriminator recognizes as samples from the training
set. Contrarily, the discriminator attempts to recognize the samples from training set as
real samples, while recognizing the samples generated by G as fake samples.

21

Cost function

Generator
network

G

Discriminator
network

D

Fake (generated)
samples

Noise vector

Training set Real samples

Fake / real sample

σ

Figure 4.2: A structure of generative adversarial network.

Figure 4.2 shows the standard structure of generative adversarial network. The opti-
mization problem is deĄned as

min
G

max
D

V (D,G) = Ex∼pdata(x) logD(x) + Ez∼pz(z) log(1−D(G(z))), (4.3)

where x is a sample from pdata and G(z) is a sample generated from noise distribution,
pz(z). The discriminator loss is used to adjust the discriminator network weights using
gradient ascent:

max
D

V (D,G) = Ex∼pdata(x) logD(x) + Ez∼pz(z) log(1−D(G(z))). (4.4)

Ultimately, the best-case scenario for D is D(x) = 1 and D(G(z)) = 0. The generator loss
is evaluated using gradient descent:

min
G

V (D,G) = Ez∼pz(z) log(1−D(G(z))), (4.5)

where the optimal generator deceives the discriminator with fake samples, such that D(G(z))
= 1. In practice, using this generator objective does not work well. Early in learning, when
the generator is poor, the discriminator can reject samples with high conĄdence as they are
visibly different from the training set. This causes minG V (D,G) to saturate [21]. Instead,
the objective can be shifted to Ąnd local maxima, which results in stronger gradients during
early training:

max
G

V (D,G) = Ez∼pz(z) logD(G(z)). (4.6)

4.2.1 Conditional Generative Adversarial Network

The generator network in standard GAN takes a random data point from pz as input, which
makes the output rather unpredictable, as there is no way to control the generator output
besides trying to Ągure out the complex relationship between the latent space pz(z) and the
generated output. For example, when given a training set of images depicting handwritten
numbers, there is no way to generate handwritten digits speciĄcally representing the number
5.

As mentioned in In [21, 52], GANs can be extended to contain additional information.
This extension is called Conditional GAN (CGAN). In CGAN, an additional information,

22

y, is used to condition both the generator and the discriminator model on extra information.
Continuing the example, the condition could therefore represent a certain class label Ů the
number we want to generate. The objective function (4.3) is modiĄed in CGAN as follows:

min
G

max
D

V (D,G) = Ex∼pdata(x) logD(x,y) + Ez∼pz(z) log(1−D(G(z,y))). (4.7)

4.2.2 Gradient Reversal Layer

As described in Section 3.2, to Ąnd a local maxima of a cost function, its gradient derivative
needs to be added to the weights, as opposed to being subtracted. A simple way to make
the algorithm perform as if it were performing gradient ascent is by inserting Gradient
Reversal Layer (GRL) [16] into the network. During the forward propagation, GRL acts
as an identity transform. During the backward pass, the only action GRL performs is
multiplying the already computed gradient by a constant λ < 0. In this work, we use GRL
implementation made by Joris van Vugt1.

4.3 CycleGAN

CycleGAN is a GAN framework that uses a cycle-consistency loss to enable training with-
out the need for paired data. Proposed by Zhu et al. (2017) [84], the architecture was
extensively evaluated on image-to-image translation problems2, such as zebra-horse image
transfer.

The goal of CycleGAN is to learn a mapping from the source domain to the target
domain and vice versa. The framework consists of four neural networks in total Ů two
generator-discriminator pairs. Forward and backward cycle-consistency losses are added to
the cost function.

Additionally, the full cost function is extended with identity mapping loss. The generator
networks are kept close to the identity mappings by the following constraints:

X −→ G(X) ≈ X, (4.8)

Y −→ F (Y) ≈ Y. (4.9)

The full objective function of CycleGAN is deĄned as

LCycleGAN = λ1L(F,G) + λ2L(G,F)− λ3LD(DF)
−λ4LD(DG) + λ5LI(F) + λ6LI(G),

(4.10)

where L(F,G) + L(G,F) is a forward-backward cycle-consistency loss, LD(DF), LD(DG)
are discriminator losses, and LI(F), LI(G) are F and G identity losses, respectively, with
λs being weight coefficients. The whole CycleGAN architecture used in this work is shown
in Figure 7.2.

It is important to note that CycleGAN builds on a variation of conditional GAN we
described in 4.2.1, as was explained by the authors. The generator input does not use

1https://github.com/jvanvugt/pytorch-domain-adaptation/blob/master/utils.py
2Image-to-image translation is a task that takes images from the source domain and transforms them in

such a way that they have a style of images from another domain.

23

https://github.com/jvanvugt/pytorch-domain-adaptation/blob/master/utils.py

generated noise z, the input is conditioned on information present in x instead3. Discrim-
inator input does not contain information y [84]. This makes the input-target mapping
deterministic, as there is no randomness factor present anymore.

Recently, experiments using CycleGAN for single-channel speech enhancement problem
have been conducted [49]. This work, which is based on [49], uses the framework for speech
enhancement with both paired and unpaired training data.

4.4 Application of GANs

It has been shown that the use of GANs for speech enhancement signiĄcantly boosts per-
formance [62, 77]. Since GANs work with probability distributions, the generator network
can be trained to generate completely new data that can be barely distinguishable from
the original set. Notable example is a human face generator, StyleGAN4, which can effec-
tively synthesise various facial attributes [33] to create a unique, realistic face. Similar to
vector arithmetics in language modeling [50], GAN model is able to generate images with
or without certain attributes [65], as shown in Figure 4.3. Another interesting example
includes upscaling images to high resolution [40]. A detailed list of relevant publications
can be found at https://github.com/zhangqianhui/AdversarialNetsPapers.

Figure 4.3: Vector arithmetics for visual concepts, published by Radford et al. [65]. For
each column, the vectors of samples are averaged. The arithmetic is performed on mean
vectors of those samples.

3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/152#issuecomment-

345907486
4A website for StyleGAN demonstration - https://thispersondoesnotexist.com/

24

https://github.com/zhangqianhui/AdversarialNetsPapers
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/152#issuecomment-345907486
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/152#issuecomment-345907486
https://thispersondoesnotexist.com/

Chapter 5

CHiME-3 Dataset

In this Chapter, we describe the dataset used to train and evaluate our speech enhancement
models. We brieĆy mention the challenge this dataset is associated with.

5.1 CHiME-3

Throughout recent years, several challenges in the speech recognition Ąeld called CHiME
challenges are being held. Each of the challenges focuses on a certain subĄeld of speech
recognition with a speciĄc dataset and various other tools provided for the speciĄc task.
The most recent challenge, CHiME-6 Challenge, focuses on distant multi-microphone con-
versational speech diarization and recognition in home environments1. For the challenge,
a dataset containing recordings of conversations in home environments (e.g., during din-
ner) is used. These recordings contain a heavy amount of reverberation and several people
speaking at once.

The third CHiME challenge, CHiME-3 Challenge2, focuses on the performance of
ASR in real-world scenarios. A portion of the dataset used in the challenge, CHiME-3 data-
set [5], is used in this work, as well. The following section describes the dataset contents in
great detail.

5.2 Properties of the Dataset

The dataset scenario is ASR for a multi-microphone tablet device used in everyday envi-
ronments. The dataset consists of four distinct environments:

• BUS - recorded in public transports, contains heavier amount of background noise.

• CAF - recorded in café environments, has a larger presence of other speakers in the
background.

• PED - recorded in pedestrian areas.

• STR - recorded in street junctions.

For each environment, two types of noisy data have been provided Ů real and simulated
data. Additionally, the dataset contains BTH data Ů utterances recorded in a recording

1CHiME-6 Challenge - https://chimechallenge.github.io/chime6/
2CHiME-3 Challenge - http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/

25

https://chimechallenge.github.io/chime6/
http://spandh.dcs.shef.ac.uk/chime_challenge/chime2015/

booth. These utterances were use to create a portion of simulated data. The data is
divided into development (dev), training (train) and evaluation (eval) sets. The utterances
are provided as 16 kHz, 16 bit stereo WAV Ąles.

The Ąle naming format of the noisy speech recordings is S_T_E.C.wav, where S, T ,
E, and C denote speaker, transcription, environment, and channel, respectively. Channel
indexes 1-6 specify the tablet microphones (see Figure 5.1), while channel index 0 denotes
the close-talking microphone. Clean speech recordings are formatted as S_T_ORG.wav,
where ORG depicts that the speech data is based on the original WSJ0 training data [17].

5.2.1 Real Data Recordings

The real data consists of 6-channel recordings of the WSJ0 corpus sentences [17] spoken in
the environments.

Figure 5.1: The microphone array geometry of the recording tablet. The spoken utterances
are read from the tablet, which is placed 40 cm away from the speaker. All microphones
face forward the speaker, with the exception of microphone 2. Taken from [5].

Figure 5.1 shows the tablet device used for recording. In addition, a close-talking
microphone of a headset was used to capture speech.

The recordings have been made by 6 male and 6 female speakers. About 100 sentences
were recorded in each of the four environment locations. In addition, these sentences were
recorded in the acoustically isolated booth (BTH) environment. Those sentences were
then used to produce simulated data. The training set data consists of 1600 real noisy
utterances: four speakers, each reading 100 utterances in each of the four environments.
The sentences were randomly selected from the WSJ0 5k training data. The development
set and evaluation set data consist of 410 and 330 utterances, respectively, spoken by four
different speakers. Each utterance was spoken in four environments. The sentences spoken
for development and evaluation set data were the same as those in WSJ0 5k development
and evaluation set, respectively.

26

5.2.2 Simulated Data

The simulated data in the CHiME-3 dataset was constructed by mixing clean speech record-
ings with noise representing the aforementioned environments. Impulse response (IR) for
the tablet microphones was estimated. These IRs were used to estimated signal-to-noise
ratio (SNR) at each tablet microphone. For development and evaluation set data, IRs were
used to estimate the noise signal by subtracting the convolved signal recorded by the close-
talking microphone. The information representing the spatial position of the speaker with
respect to the recording microphone was convolved with a clean speech signal before being
mixed with a noise signal.

The training set simulated data consists of 7138 original recordings from WSJ0 mixed
with separately recorded noise background. The clean utterances were spoken by 83 speak-
ers. In the case of the development set and the evaluation set data, the clean speech signal
was taken from the booth recordings. These recordings were then mixed with the original
real noisy recordings from which the speech was taken out.

5.2.3 Data Used For Experiments

This work is based on [49], which used two subsets of CHiME3 Ů training set for training
the NN models and development set for ASR evaluation.

We extend the training set with additional data, as was done by [49]. In addition
to 7138 pairs, we train the models with 1600 real recordings and 399 BTH recordings,
as well, totaling 9137 pairs. From these additional recordings, the 0th channel, which
is recorded by the close-talking microphone, is used as a target. Utterances recorded by
the 5th microphone are used as input. The total length of data used for training is 18
hours 48 minutes. For evaluation, we also use 5th channel real data recordings from the
development set. The summary of the CHiME-3 dataset, highlighting the data used in this
work, is shown in Table 5.1.

Subset Real/Simulated Environments Utterances

dev Simulated {BUS, PED, CAF, STR,} {410, 410, 410, 410}
dev Real {BUS, PED, CAF, STR} {410, 410, 410, 410}
dev_bth Real {BTH} {410}

eval Simulated {BUS, PED, CAF, STR} {330, 330, 330, 330}
eval Real {BUS, PED, CAF, STR} {330, 330, 330, 330}

train Simulated {BUS, PED, CAF, STR} {1728, 1765, 1794, 1851}
train Real {BUS, PED, CAF, STR} {400, 400, 400, 400}
train_bth Real {BTH} {399}

Table 5.1: The full composition of CHIME-3 dataset. The subsets used in this work were
made bold.

27

Chapter 6

Implementation

This Chapter contains a basic overview of the technologies used in this work, the imple-
mented neural networks, and the evaluation tools.

6.1 PyTorch

The speech enhancement architectures in this work were implemented and trained using
PyTorch [63]. PyTorch is an open-source machine learning Python library. The framework
is primarily developed by FacebookŠs AI Research lab (FAIR)1. The strength of PyTorch
lies within its optimization, interoperability, and extensibility. Two versions of PyTorch are
available, a CPU version and a GPU version.

6.1.1 Deep Learning Model as Program

Neural networks evolved rapidly from simple sequences of feedforward layers into incredibly
varied and large architectures. PyTorch has taken an imperative approach to preserve the
imperative programming model of Python. Components used for deep learning models, such
as layers and data-loading scripts can all be expressed using concepts familiar to standard
developers.

This approach ensures that any neural network architecture can be implemented and
trained with ease. For example, layers are represented as Python classes, in which construc-
tors create and initialize layer parameters. These classes contain methods to process input
activation. Models are also expressed as classes that consist of several layers. This way,
the user can easily modify the execution process of the whole architecture. Optimizers,
data-loading scripts, and datasets are implemented as classes, as well. The user can extend
the speciĄc class and enhance its behavior as suited.

The base PyTorch class is Tensor. Tensor is a homogeneous multi-dimensional matrix
on which various operations can be performed. It is similar to NumPyŠs ndarray2. Unlike
NumPyŠs ndarrays, Tensors can be used on a GPU to accelerate computing. Tensors track
operations performed on it. The tracking history is then used to compute gradients as
described in 6.1.3.

1FAIR - https://ai.facebook.com/
2numpy.ndarray - https://numpy.org/doc/1.18/reference/generated/numpy.ndarray.html

28

https://ai.facebook.com/
https://numpy.org/doc/1.18/reference/generated/numpy.ndarray.html

6.1.2 Performance

In Python, global interpreter lock (GIL)3 ensures that no more than one thread out of any
concurrent threads can be run at once. This drastically slows operations, which could take
advantage of multithreading, for example, backpropagation. Some deep learning frame-
works, such as TensorFlow [1] avoid this problem by using data-Ćow graphs, which defer
the evaluation of the computation to a custom interpreter. Most of PyTorch is written in
C++ and CUDA4 to achieve high performance. This ensures that the important computa-
tionally expensive operations can take advantage of multithreading and are not bottlenecked
by GIL.

6.1.3 Automatic Differentiation

To compute gradients, PyTorch uses a method called automatic differentiation (autodiff)
[7]. Autodiff is a set of techniques used to numerically evaluate the derivative of a function
speciĄed by a computer program. All numerical computations are compositions of a set of
elementary operations that have known derivatives. By applying the chain rule repeatedly
on these operations, derivatives of arbitrary order can be computed automatically and
effectively. Autodiff is numerically stable. PyTorchŠs autodiff package, Autograd, is used
for backpropagation.

6.2 Implemented Scripts and Modules

For training a large number of different architectures, we implemented a neural network
training pipeline, which makes changing NN models or switching certain components easier.
The scripts were implemented in Python 3.7 using the PyTorch framework. For testing
purposes, ASR training and acoustic model re-training tools were provided.

6.2.1 Python Modules

Below, some of the important Python modules used in this work are described.

• dataset - classes, which enable work with paired and unpaired data. These classes
can be used for both training NNs and enhancing data. It is possible to choose a
subset of the original dataset for training, as well.

• modules - this Ąle contains all of the implemented neural network-related classes,
including custom loss functions that allow working with batches of variable length.

• tcnn - contains the implementation of experimental Temporal Convolutional Neural
Network (TCNN) [60] module.

• train - used for handling the evaluation and optimization process of NNs.

• tools - methods for processing speech data (e.g., feature extraction).

• enhance_data - script used for dataset enhancement.
3Global interpreter lock - https://wiki.python.org/moin/GlobalInterpreterLock
4CUDA - https://developer.nvidia.com/cuda-zone

29

https://wiki.python.org/moin/GlobalInterpreterLock
https://developer.nvidia.com/cuda-zone

6.2.2 ASR Tools

For this work, two tools were provided:

• acoustic model re-training script - a script for re-training ASRŠs acoustic model.

• ASR evaluation scripts - scripts for ASR evaluation using Kaldi speech recognition
toolkit [64] with base and re-trained acoustic model.

6.2.3 TensorBoard

For monitoring the results, we used TensorFlowŠs visualization toolkit, TensorBoard 5. Ten-
sorBoard enables tracking experiment metrics like loss and accuracy, histogram visualization
of weights, et cetera.

These tracked values are stored in a hierarchical folder structure. These data are in-
terpreted using a TensorBoard server. The tracked data can then viewed in a browser, as
shown in Figure 6.1. The graph and histogram contents can then be Ąltered to only show
portions of tracked data.

Figure 6.1: TensorBoardŠs browser visualization tool.

5TensorBoard - https://www.tensorflow.org/tensorboard

30

https://www.tensorflow.org/tensorboard

Chapter 7

Experiments

For training and evaluation, we use the CHiME-3 dataset [5], which incorporates Wall Street
Journal (WSJ) corpus sentences spoken in challenging noisy environments, as described in
Chapter 5.

We evaluate three major architectures Ů noisy-to-clean mapping network, which will
serve as a baseline, a network with cycle-consistency, and a generative adversarial network
with cycle-consistency. These models were proposed in [49]. We further experiment with
modifying the paired and unpaired cycle-consistent architectures in order to Ąnd the best-
possible conĄguration, without changing the layer structure of the networks themselves. In
addition, we experiment with a CNN-based architecture, which will be described on its own
in Section 7.6. Lastly, we re-train the acoustic model of ASR with data enhanced using
trained models. For testing, only the noisy-to-clean mapping network portion of the models
is used to produce enhanced speech utterances.

Training and evaluation were done using Sun Grid Engine1 job scheduling system. The
evaluation is performed by using a provided ASR system. ASR scripts and acoustic model
re-training scripts were provided for this work, as well. Training framework and the imple-
mented neural network architectures are the authorŠs own work.

Word Error Rate

In this work, we use word error rate (WER) metric to evaluate the performance of the
models. Kaldi ASR toolkit [64] is used to evaluate WERs for the given test set. The data
were fed into a trained network before being passed through Kaldi ASR. For testing, only
the real data portion was used.dwar

The evaluation of WER is done by aligning the recognized word sequence with reference
word sequence. The formula is deĄned as follows:

WER =
S +D + I

N
, (7.1)

where S is the number of incorrectly detected words - substitutions, D is the number of
words which were not detected by ASR - deletions, and I is the number of redundant words
which were incorrectly detected by ASR - insertions. N is the total number of words in
the reference text, equally deĄned as

N = S +D + C, (7.2)

1Sun Grid Engine - http://www.fit.vutbr.cz/CVT/cluster/SGE-UsersGuide.pdf

31

http://www.fit.vutbr.cz/CVT/cluster/SGE-UsersGuide.pdf

where C is the number of correctly detected words.

7.1 Description of the Core Architectures

In this section, we describe the core architectures used in the experiments. These modules
are trained using datasets that contain pairs of clean spoken utterances and the same
spoken utterances with incorporated noise and reverberation Ů paired data. For adversarial
training, we use the dataset as if it consisted of unpaired data Ů samples, which have no
clean-noisy pair.

7.1.1 Baseline

This subsection describes models trained with paired data. We describe the training process
of the baseline model. This trained model is used to further train paired cycle-consistent
architecture (CSE).

Using standard supervised training, we Ąrst train a neural network for suppressing
noise, F . The network input consists of log Mel-Ąlterbank (MFB) features appended with
Ąrst and second-order delta features, forming an 87-dimensional vector. The output is
a 29-dimensional MFB without delta features. The network consists of two Long-Short
Term Memory [28] layers followed by a linear layer. Each LSTM layer has 512 units. The
input features were globally normal mean and variance normalized before being fed into
the network.

We heavily tuned network parameters in order to achieve satisfying results. The fol-
lowing speciĄcation describes the best-performing baseline model. In LSTM layers, forget
gate biases are initialized to 1 (otherwise 0) [31]. The weights were initialized using Xavier
normal distribution [18]. For optimization, we use AdamW algorithm [46]. The learning
rate is set at 9 · 10−4 and batch size is set at 48. The weight decay of AdamW is set at
1 · 10−4. We Ąnd that using recurrent dropout in the Ąrst LSTM layer slightly lowers the
model performance. We use Mean Squared Error (MSE) as a cost function. We perform
gradient clipping [61] with the cut off threshold set at 1. Gradient clipping ensures that the
norm of the gradient is rescaled to a Ąxed size speciĄed by a cut off point to prevent the
gradients from exploding. Gradient clipping is not only used for training the baseline, but
for all subsequent models, as well.

This baseline setup slightly deviates from [49], in which the network was optimized by
using stochastic gradient descent (SGD) optimizer. No weight initialization techniques nor
any other training parameters were mentioned in the reference paper. We use standard
LSTM layer, while [49] uses LSTM with projection layers (LSTMP) [69]2.

7.1.2 CSE

We train a neural network, G, that inserts noise into clean speech utterance. The input
and the output feature dimensions are 29 and 87, respectively. The learning rate is set at
8 · 10−4. Other parameters and a cost function are the same as speciĄed in 7.1.1.

Then, we use the pre-trained networks, F and G, and jointly train them using cycle-
consistency loss. We train the model with forward cycle-consistency and a model with both
forward and backward cycle-consistency. When computing cycle-consistency loss, the input

2In the original article, LSTMP is shown to perform similarly to standard LSTM. The main advantage
of LSTMPs is that they dramatically reduce the number of trainable parameters.

32

of one network is normalized before being fed to the other network. We set the learning
rate at 4 · 10−4. The batch size is set at 24. The λ loss function coefficients are the same
as in [49].

The training process of the best model converges in 7 epochs. We assume that, by pre-
training F and G with carefully tuned hyperparameters, the networks adjust the weights
to a relatively proper state rather quickly.

Noisy-to-clean
mapping

F
Clean-to-noisy

mapping
G

Noisy input x

Clean input y

F(x)

G(y)

F(G(y))

G(F(x))L(F, G) L(G, F)

L(G) L(F)

Figure 7.1: The architecture of cycle-consistency training framework for speech enhance-
ment (CSE). Green and red lines depict forward and backward reconstruction process,
respectively. Based on [49].

7.1.3 ACSE

We use the same training set that contains noisy-clean sample pairs. However, the dataset
is used as if it contained no related pairs. In practice, we take a batch of random noisy
samples, a different batch of random clean samples, and work with these during the training
iteration.

Noisy-to-clean
mapping

F
Clean-to-noisy

mapping
G

Noisy input x

Clean input y

F(x)

G(y)

F(G(y))

G(F(x))

Noisy
discriminator

DF

Clean
discriminator

DG

LD(DF) LD(DG)

L(F, G) L(G, F)

LI(G)

LI(F)

Figure 7.2: The architecture of adversarial training framework with cycle-consistency for
speech enhancement (ACSE). Green and red lines depict forward and backward reconstruc-
tion process, respectively. Based on [49].

For generator networks, we use the same architecture as F and G. The discriminator
networks consist of two fully-connected hidden layers. Each hidden layer has 512 units.
The output layer has 1 unit. The discriminators, DF and DG, take 87-dimensional inputs
(appended with delta features) and 29-dimensional inputs, respectively. DF and DG eval-
uate the probability of the input belonging to the noisy and clean set, respectively. We use
AdamW optimizer for both generator and discriminator training.

33

Generally, GANs are difficult to train, as they can be very sensitive to changing hyperpa-
rameters. A large amount of minor training process adjustments was proposed [70, 72] that
can signiĄcantly improve convergence and prevent common pitfalls, such as mode collapse
[70].

From our experiments, these techniques were important to make the adversarial training
converge:

• initialization of generators - The initialization is done by pre-training the gen-
erators as identity mapping functions Ů the target sample is the same as the input
sample, but without normalization. The training hyperparameters for noisy-to-clean
and clean-to-noisy generator networks are the same as of F and G, respectively. The
initialization procedure in [49] may differ, as the initialization details were not men-
tioned.

• buffer of generated samples - As suggested by Shrivastava et al. [72], we update
the discriminators by using a history of generated utterances rather than the ones
produced by the latest generators. We store two sample buffers of size 72 that keep
previously generated noisy and clean samples3. The original Cycle-GAN uses a his-
tory of 50 samples [84]. It is not speciĄed whether the framework in [49] uses such
technique.

• one-sided label smoothing - We modify the cross-entropy cost functions of the dis-
criminators by employing one-sided label smoothing. We change the positive ground-
truth labels in the cost functions from 1 to 0.9. Label smoothing is a regularization
technique that prevents the discriminators from predicting the labels too conĄdently
during training, which can result in poor generalization [74].

Before beginning adversarial training, the generator networks need to be initialized in
order to learn an underlying structure. Otherwise, the model would have trouble converging.
Using pre-trained generators, we perform adversarial training. The learning rate and weight
decay are set at 1·10−6. During each iteration, the discriminator networks are trained before
the generator networks. The λ loss function coefficients are the same as in [49].

7.2 Results

7.2.1 Baseline

Due to carefully optimizing training hyperparameters and using proper weight and bias
initialization methods, the baseline model alone reduces the ASR word error rate (WER)
by 17.40% as opposed to no enhancement.

3Our implementation of the buffer is built on top of CycleGAN authors’ buffer (https://github.com/

junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/util/image_pool.py) to allow storing additional
information for each sample.

34

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/util/image_pool.py
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/util/image_pool.py

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
Baseline 28.91 16.36 27.58 18.68 22.88 17.40

None ([49]) 36.25 31.78 22.76 27.78 29.44 -
Baseline ([49]) 31.35 28.64 19.80 23.61 25.82 12.33

Table 7.1: The ASR WER (%) performance of real noisy test data in CHiME-3 enhanced by
baseline model, including comparison with the reference paper. Relative WER reductions
(%) are shown in the last column. BUS, PED, CAF, STR refer to 4 different recording
environments.

As can be seen in Table 7.1, our baseline results are signiĄcantly better than the results
from [49]. The main reasons are the following:

• hyperparameter tuning - we spent a lot of time tuning hyperparameters. It is
possible that the baseline in [49] was loosely trained for the sole purpose of having a
reference result, with which the cycle-consistent models could be compared.

• AdamW optimization algorithm - we use AdamW [46] for optimization, while
[49] use stochastic gradient descent (SGD). AdamW modiĄes how weight decay is
computed. The original Adam [35] has shown to generalize worse than stochastic
gradient descent (SGD) with momentum [79]. We reached 0.32 % lower WER using
AdamW when compared to Adam.

• long enough training - we wanted to make sure that when further training the
baseline using cycle-consistency, the model does not simply improve because it has
been trained for more epochs. We gradually monitored the modelŠs ASR performance
during the training process. When the ASR WER performance started degrading,
signaling overĄtting, the network training was stopped.

• different ASR systems - while we use Kaldi ASR, the system used in [49] is un-
speciĄed. Minor differences in WER for unenhanced data between our ASR and ASR
in [49] can be seen in ŞNoneŤ rows. However, we believe that using relative WER
improvement over unenhanced data is a fair comparison method.

While the baseline performs better on average, the results on enhanced real CAF record-
ings were worse than the original noisy data. This phenomenon was not found in [49], where
the performance of enhanced CAF data relatively improves by 13 % over unenhanced data.
We explored the possibility of further training the baseline with only a subset of training
set. First, we experimented with training the models from scratch using only the training
data from a single environment. The hyperparameters are the same as those described in
7.1.1. The results are shown in Table 7.2.

35

Model Noise Environment

BUS PED CAF STR AVG

BUS 30.76 20.09 32.30 21.46 26.16
PED 38.46 19.88 33.70 25.94 29.50
CAF 37.51 20.06 31.12 24.91 28.40
STR 30.45 18.11 30.09 20.00 24.67

Table 7.2: The ASR WER (%) performance of real noisy test data in CHiME-3 enhanced
by models trained in single environment.

Surprisingly, the models trained on a certain environment subset do not perform best on
that speciĄc environment. Model trained on street junction (STR) environment data has
shown to perform better than other models.

Now we try to continue training the baseline model with a portion of the original training
set. Because the baseline model performs worst on the CAF data, and the STR environment
has the biggest impact on model quality, we further train the baseline with only CAF and
STR subsets. We use a learning rate of 6 · −10−4.

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70
Baseline 28.91 16.36 27.58 18.68 22.88 17.40

Baseline + (CAF + STR) 30.05 16.57 27.99 19.48 23.52 15.09

Table 7.3: Comparison of ASR WER (%) performances of baseline model and that same
model further trained on CAF + STR subset.

The model trained on a subset did not further improve neither RWERR, nor reduced WER
of any of the subsets, as shown in Table 7.3. The simplest possible explanation is that there
are certain differences between the real data from test set and the data from training set,
such as speakers or background noise levels.

7.2.2 CSE

The results in Table 7.4 conĄrm that training the network using cycle-consistency con-
straints improves model performance. Having both forward and backward cycle constraints
has shown to further improve the modelŠs robustness. The model with only the for-
ward cycle-consistency constraint (CSE-FW) slightly boosts the model performance, up
to 18.23% relative WER reduction (RWERR). The model with both cycle-consistency con-
straints reaches a relative WER reduction of 20.97%.

36

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
Baseline 28.91 16.36 27.58 18.68 22.88 17.40
CSE-FW 29.41 15.68 26.68 18.82 22.65 18.23

CSE 28.35 15.40 25.24 18.57 21.89 20.97

Table 7.4: The ASR WER (%) performance of real noisy test data in CHiME-3 enhanced
by different models. Relative WER reductions (%) are shown in the last column. BUS,
PED, CAF, STR refer to 4 different recording environments.

As with the baseline, we spent a lot of time tinkering with hyperparameters to train
CSE and reached better results over CSE from [49]. Table 7.5 shows RWERR comparison
of our models and the models in [49] over noisy data.

Model origin Architecture

Baseline CSE-FW CSE

Our work 17.40 18.23 20.97
Publication 12.33 14.30 19.60

Table 7.5: Comparison of relative WER improvement (%) of models over noisy data.

In both cases, CSE-FW only marginally improves the model performance, when compared
to CSE. It is possible that weaker baseline results in [49] led to steeper performance im-
provement of CSE. In our case, CSE-FW and CSE were trained only for 13 and 7 epochs,
respectively, before WER started to decline.

7.2.3 ACSE

As mentioned in 7.1.3, we Ąrst initialized noisy-to-clean network F and clean-to-noisy net-
work G before beginning adversarial training. The networks essentially learned to take a
normalized speech sample and denormalize that sample. Then, those pre-trained generator
networks were used for adversarial training. Without initializing the generators, ACSE had
great difficulty with converging Ů F was not able to learn to produce meaningful samples.
The network without pre-trained generators was not able to reach LCycleGAN loss of initial
pre-trained ACSE before diverging, as shown in Figure 7.3.

37

Figure 7.3: Comparison of LCycleGAN change of ACSE with (left) and without (right)
pre-trained generators over training period.

We used several training techniques to make training ACSE work properly. In addition,
we experimented with the idea of pre-training discriminators DF and DG. Training the
discriminators to learn the difference between real and generated samples before beginning
adversarial training could improve model convergence and stability. Discriminators were
initialized by freezing the generator weights for two epochs. After that, the adversarial
training has resumed.

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41-27 17.48 27.09 24.97 27.70 -
Initialized F 34.59 18.78 28.11 23.49 26.24 5.2

ACSE 32.91 16.27 26.39 21.16 24.18 12.71
ACSE (pre-trained DF , DG) 32.84 16.36 26.56 21.57 24.33 12.16

Table 7.6: The ASR WER (%) performance of real noisy test data in CHiME-3 enhanced
by different models. These models were trained using unpaired data.

Table 7.6 shows the performance of ACSE. The initialized generator F trained to pro-
duce denormalized noisy data relatively improves WER by 5.2 %. Using unpaired data,
our variation of CycleGAN, named ACSE, has reached 24.18 % WER, which is 12.71 % im-
provement over noisy data. That result is only slightly worse than the baseline from Table
7.1, which was trained with paired data. ACSE performs better on the CAF subset than
the baseline, which scored 27.58 %. Pre-training the discriminator networks has shown to
not improve the model performance.

38

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
ACSE 32.91 16.27 26.39 21.16 24.18 12.71

None ([49]) 36.25 22.76 31.78 27.18 29.44 -
ACSE ([49]) 33.93 20.72 29.87 25.53 27.47 6.69

Table 7.7: Comparison of ASR WER (%) performance of ACSE models.

Table 7.7 compares the performance of our ACSE and ACSE from [49]. Our Cycle-GAN
variant, ACSE, achieved 12.71% RWERR, which is a signiĄcant improvement when com-
pared to [49]Šs 6.69 % RWERR. This proves that the preparations mentioned in 7.1.3 have
clearly helped with modelŠs performance.

Uncooperative ACSE

Harley et al. (2019) [24] argue that there is no ŞĄdelity lossŤ in forward translation and
subsequent backward translation that reconstructs the original input. In other words, the
error generated during forward translation might be overshadowed, as long as the backward
translator properly reconstructs the input. This allows two functions to optimize for each
otherŠs outputs.

We implement uncooperative ACSE by freezing the training of F and letting G train in
one step, and freezing G while training F in other step, repeatedly. The setup is the same
as for ACSE without pre-training discriminators).

Model Noise Environment

BUS PED CAF STR Avg. RWERR

None 41-27 17.48 27.09 24.97 27.70 -
Uncooperative ACSE 33.15 17.64 27.08 22.30 25.04 9.6
ACSE 32.91 16.27 26.39 21.16 24.18 12.71

Table 7.8: The ASR WER (%) performance comparison of ACSE and uncooperative ACSE.

The results in Table 7.8 show that in our case, the uncooperative training did not
improve performance.

7.2.4 Conclusions

The table below depicts relative WER improvements over noisy data. The WERs of noisy
data in our work and the publication are 27.70% and 29.44%, respectively.

39

Model origin Architecture
Baseline CSE ACSE

Our work 17.40 20.97 12.71
Publication 12.33 19.60 6.9

Table 7.9: Comparison of relative WER improvement (%) of models over noisy data.

Table 7.9 shows that by carefully picking hyperparameters and using various NN training
enhancements, our models have performed signiĄcantly better compared to [49]. While the
models in [49] were evaluated using a different ASR system, the relative WER improvement
is shown over WER of noisy data from the publication, which was 29.44%, whereas the noisy
data WER in our work was 27.70%.

7.3 Re-Training the Acoustic Model

The authors of [49] performed acoustic model re-training using enhanced data in order to
improve ASR performance. The acoustic model portion of the ASR is trained by taking
speech recordings and their text transcriptions, from which a statistical representation
of the sounds that make up each word is created. The ASR system provided for this
work, trained using Kaldi4 has DNN-HMM acoustic model, which we re-trained on speech
utterances enhanced by our models. The dataset used for re-training the acoustic model is
the same set that was used for training the neural networks.

In the publication, the re-training was performed on data enhanced from the adversarial
model (ACSE), but not others. We have re-trained the acoustic model not only on ACSE
but also on baseline and CSE, as well.

Acoustic
Model Architecture

Baseline CSE ACSE ACSE ([49])

Clean 22.88 21.89 24.18 27.47
Re-trained 19.16 18.42 14.72 18.20

Table 7.10: Comparison of ASR WER (%) performances of speech enhancement models
evaluated with clean and re-trained ASR acoustic model.

As seen in Table 7.10, acoustic model re-training signiĄcantly boosts the performance,
causing total relative WER reduction up to 46.86% for ACSE. Surprisingly, acoustic model
re-trained using ACSE-enhanced speech samples shows biggest performance improvement.
Similar improvements can be seen in ACSE ([49]). CSE and baseline only slightly improve
the ASR performance. The possible reason for this is that while ACSE performs worse on
a test set, it can generalize to unseen data better, and thus be more effective for re-training
the acoustic model.

4Kaldi ASR - https://kaldi-asr.org/

40

https://kaldi-asr.org/

7.4 Adversarial Training Using Paired Data

We extend the experiments to explore the possible impact of adversarial training. The
presence of discriminator could further improve CSE, which was trained using paired data.

The CSE model with adversarial training using paired data (paired ACSE) objective
function extends the original CycleGAN loss (4.7) as follows:

LACSEp
= λ1L(F,G) + λ2L(G,F)− λ3LD(DF)− λ4LD(DG)
+λ5LI(F) + λ6LI(G) + λ7L(F) + λ8L(G),

(7.3)

where L(F) and L(G) is the cost function of F and G, respectively. The respective weights,
λ6 and λ7, are the same as those in (3.27). We used the same hyperparameters as those used
for ACSE, which are described in 7.1.3. Paired ACSE was trained on the same pre-trained
model as CSE.

Model Acoustic Model AVG RWERR
None Clean 27.70 -
CSE Clean 21.89 20.97
Paired ACSE Clean 21.69 21.70
ACSE Clean 24.18 12.71
CSE Re-trained 18.42 33.50
Paired ACSE Re-trained 17.72 36.10
ACSE Re-trained 14.72 46.86

Table 7.11: Comparison of ASR WER (%) performances of CSE, paired ACSE and ACSE
models.

Table 7.11 shows that paired ACSE slightly improves the model performance. Using a
clean acoustic model, the RWERR improved by 0.73 %. Re-training the AM with enhanced
data, the CSE extension improved RWERR by an additional 2.60 %. However, the model
performance with a re-trained acoustic model is dwarfed by ACSE, which reached 46.86 %
RWERR over noisy data. To get a better understanding of the result, we explore more
options in Section 7.5.

Adversarial training is extremely sensitive to hyperparameters [70]. Arguably, better
results could be obtained after trying to Ąnd a more appropriate combination of hyperpa-
rameters. Also, it is possible that different λ weights could work better for models trained
with paired data. However, the goal of this experiment was to Ąnd whether adversarial
training impacts the performance in a positive way, which we have conĄrmed.

7.5 The Importance of Identity Loss

Paired ACSE showed to improve WER performance over CSE by 0.20 %. It is important to
note that Paired ACSE differs from CSE in two major points Ů Paired ACSE uses identity
loss and performs adversarial training. In this Section, we dive deeper into the experiments
to Ąnd out the speciĄc role of identity loss and adversarial training. In total, we train four
additional model variations. We examine CSE and baseline with identity losses. We also
look at how ACSE and paired ACSE perform without identity losses.

This Section is split into two parts Ů experimenting with models trained with paired
data and models trained with unpaired data. At the end, we discuss the results.

41

7.5.1 Models Trained with Paired Data

Baseline

For the baseline, we expand the objective function with identity loss, λLI(F), where the λ

weight is the same as the weight used in other models. First 60 iterations, we let the model
train without identity loss to learn an underlying structure. Then, the identity loss is added
to the objective function. The hyperparameters are the same as for standard baseline.

Model Acoustic Model AVG RWERR

None Clean 27.70 -

Baseline Clean 22.88 17.40
Baseline (+ identity) Clean 22.38 19.21

Baseline Re-trained 19.16 30.83
Baseline (+ identity) Re-trained 17.90 35.38

Table 7.12: Comparison of ASR WER (%) performances of baseline and baseline trained
with identity loss.

Table 7.12 shows that the cycle-consistency constraint improves the performance of
baseline. The impact of identity loss is visible more when using a re-trained acoustic
model, which reached 17.90 % WER. Surprisingly enough, when compared to other models
with re-trained AM, baseline with identity loss outperforms CSEŠs 18.42 % WER and is
only slightly higher than and paired ACSEŠs 17.72 % WER.

CSE and Paired ACSE

We further explore the impact of identity loss on model performance. We add λ1LI(F) and
λ2LI(G) to CSE. In addition, we remove identity losses from paired ACSE. The hyperpa-
rameters remained the same as those used in previous experiments. The λ weights used for
CSE are the same as those used in ACSE.

Model Acoustic Model AVG RWERR
None Clean 27.70 -
CSE Clean 21.89 20.97
CSE (+ identity) Clean 21.35 22.92

Paired ACSE Clean 21.69 21.70
Paired ACSE (- identity) Clean 22.35 19.31
CSE Re-trained 18.42 33.50
CSE (+ identity) Re-trained 18.23 34.19

Paired ACSE Re-trained 17.72 36.10
Paired ACSE (- identity) Re-trained 18.74 32.35

Table 7.13: Comparison of ASR WER (%) performances of models with and without iden-
tity loss.

Table 7.13 shows that identity loss indeed improves the modelsŠ performance. When
extending CSE with only adversarial training, the model degrades in performance. On

42

the other hand, CSE with identity loss only slightly improved the performance when using
re-trained AM.

7.5.2 ACSE

We remove identity losses from ACSE to see how it impacts the model performance when
trained with unpaired data.

Model Acoustic Model AVG RWERR
None Clean 27.70 -
ACSE Clean 24.18 12.71
ACSE (- identity) Clean 24.51 11.52
ACSE Re-trained 14.72 46.86
ACSE (- identity) Re-trained 14.99 45.88

Table 7.14: Comparison of ASR WER (%) performances of models with and without iden-
tity loss.

As shown in Table 7.14, the removal of identity loss slightly lowers performance. How-
ever, it does not hurt the ASR performance with the re-trained acoustic model as much as
the removal did in paired ACSE.

7.5.3 Conclusion

Overall, the best model trained with paired data is CSE enhanced with identity losses,
without the addition of adversarial training. When evaluating with re-trained AM, the
best-performing model is CSE with both adversarial training and identity losses Ů paired
ACSE.

However, standard ACSE, which is trained on unpaired data, performs much better
when using a re-trained acoustic model. Its performance with clean AM is worse than the
performance of baseline, but with the use of re-trained AM, ACSE reaches 3 % less WER
than paired ACSE.

Our deduction from Section 7.3 was observed to be correct. The models were trained
using an extension of the training set. However, the evaluation set used to measure ASR
WER performance is different. The utterances are spoken by different speakers and the
background noise in real data might differ from the noise in simulated data5. Also, the
provided ASR system might perform better when the acoustic model is trained with nois-
ier data. While ACSE performed worse with clean AM, using adversarial training, in
which there is no label, helped the network generalize on unseen data better. Therefore
the enhanced data used to re-train the acoustic model reĆected further ASR inputs more
accurately than data enhanced with other models.

5The reasoning is that the process of adding noise to clean recordings improperly reflects real noise and
speech captured by the microphone.

43

7.6 Experimenting with Temporal Convolutional Neural Net-

works

To measure the impact of the cycle-consistency constraint in other architectures, we wanted
to apply the constraint to the state-of-the-art speech enhancement DNN framework. We
chose a speech enhancement architecture based on convolutional neural networks called
temporal convolutional neural network (TCNN) [60]. Our TCNN implementation performed
rather poorly. Nevertheless, we summarize the performed experiments here as they can
serve as a basis for future work. We brieĆy describe TCNN basic building blocks, TCNN
architecture, and our results.

7.6.1 Basic Building Blocks of TCNN

TCNN is based on a generic temporal convolutional network [4], which utilizes the following
principles:

• fully convolutional networks [45] - TCNN is able to take input of arbitrary size
and effectively produce output of that same size.

• dilated causal convolutions [56] - in causal convolutions, the output at time t

is convolved only with elements from time t and earlier in the previous layer. The
convolution Ąlter is applied over an area larger than the Ąlter by skipping input values
with a certain step, called dilation rate.

• residual connections [26] - residual connections are made within a block, which
contains a series of transformations. The output of that sequence is added to the Ąrst
input of that block at the end of the transformation.

7.6.2 TCNN Architecture

The TCNN architecture is composed of an encoder, temporal convolutional module
(TCM), and a decoder. The encoder and decoder are composed of two-dimensional causal
convolutional layers. The TCM is inserted between the encoder and its mirror-image, the
decoder. TCM is largely based on Conv-TasNet [48] architecture, which is used for speaker
separation. It comprises of one-dimensional causal and dilated convolutional layers. More
speciĄcally, TCM consists of three dilation blocks, each formed by stacked six residual
blocks. Those residual blocks use depthwise convolution [12], which further reduces the
number of parameters. The architecture is shown in Figure 7.4.

44

Figure 7.4: TCNN architecture. Encoder and decoder consists of convolutional layers. The
input of a layer in the decoder consist of the previous layerŠs output concatenated with the
respective encoder input. Each dilation block within a residual block uses exponentially
increased dilation rate. Taken from [60].

Previous models used MFCCs to perform speech enhancement in the frequency domain.
TCNN follows a speech enhancement framework for training models in the time domain
[58]. It can therefore take advantage of phase information, which can lead to more accurate
speech reconstruction [57].

The input and the output of the network consist of a speech signal in the time domain6.
During the training phase, the network output is used to compute STFT magnitude, which
is used to calculate MSE loss. Previously mentioned models used the network outputs,
MFFC features, to compute MSE loss. We used a learning rate of 5 · 10−5, with batch size
set at 12. For optimization, we used AdamW. The rest of the parameters are the same as
those described in [60].

7.6.3 Results

Model Noise Environment
BUS PED CAF STR Avg. RWERR

None 41.27 17.48 27.09 24.97 27.70 -
Baseline 55.14 24.65 31.22 29.86 35.22 -27.15

Table 7.15: ASR WER (%) performance of a baseline model using TCNN architecture.

Table 7.15 shows the results of TCNN baseline. The model has performed poorly. There
were many factors that could contribute to these results. Since the baseline model performed
much worse when compared to unenhanced data, we decided to not explore the effects
of cycle-consistency constraint. The architecture consists of a completely different set of
techniques, therefore it is likely that an improperly implemented component could be the
reason for those results.

6The frames were extracted using a rectangular window of size 20 ms and an overlap of 10 ms

45

7.7 Summary

In this work, we performed a large number of experiments with variations of CSE and
ACSE. This Section summarizes our Ąndings. We discuss the impact of cycle-consistency,
identity loss and adversarial training.

Cycle-Consistency

The cycle-consistency constraint has shown to boost the model performance. Without
changing the model structure, we improved RWERR from baselineŠs 17.40 % to 20.97 %.
We can therefore conĄrm the conclusion from [49] that cycle-consistency improves model
performances for speech enhancement tasks.

Adversarial Training

Without using paired data, our ACSE has reached 12.71 % RWERR, which is a signiĄcant
improvement over [49]Šs 6.69 %. By using additional GAN training tricks, we were able to
reach such performance. Performing adversarial training using paired data with CSE has
shown to further increase RWERR from 20.97 % to 22.92 %. Figure 7.5 shows that CSE
and paired ACSE was able to effectively remove noise from the recordings. In ACSE, the
phonemes are smeared in time.

(a) Real noisy speech (unprocessed) (b) ACSE-enhanced speech

(c) CSE-enhanced speech (d) Paired ACSE-enhanced speech

Figure 7.5: Spectrograms of a noisy utterance enhanced by various models.

46

Re-training the acoustic model has brought much larger performance jump in models
trained using unpaired data. While adversarial CSE with the re-trained acoustic model has
reached 33.50 % RWERR, ACSE had reached 46.86 % RWERR. The adversarial training
has shown to improve performance when utilizing the re-trained acoustic model. However,
the presence of noise in AM training data has the biggest impact on the overall perfor-
mance. It is also possible that the signiĄcant noise suppression caused the acoustic model
to improperly represent individual phonemes.

Identity Loss

We further explored the impact of identity loss. Identity loss was originally used in ACSE
to regularize the generator networks to keep their respective outputs close to the identity-
mapping functions. The addition of identity loss has brought improvement not only to the
performance of ACSE but also to the baseline and CSE performance, as well. The addition
of identity loss to baseline and CSE improved their respective RWERR by 1.50 % and
1.95 %, and by 4.55 % and 0.69 % when using re-trained AM. Figure 7.6 shows spectrograms
of a noisy speech signal enhanced by baseline and baseline with identity loss.

(a) Speech enhanced by baseline (b) Speech enhanced with baseline (+ identity)

Figure 7.6: Spectrograms of a real utterance enhanced by baseline and baseline with identity loss.

47

Chapter 8

Conclusion

8.1 Summary of the Performed Work

The goal of this thesis was to experiment with neural networks using cycle-consistency
constraints for speech enhancement. This thesis is based on a publication that evaluates
cycle-consistent neural networks for speech enhancement [49]. Cycle-consistent neural net-
works use a second neural network for training the network, which performs an opposite
task. In our case, it was noise insertion into a clean speech signal. The networks are
then jointly trained using an extended objective function. Using two networks that are
dual to each other, the original noisy or clean speech signal can be reconstructed. The
reconstruction loss is then used in the Ąnal objective function.

However, training data consisting of input-target pairs (paired data) is not always avail-
able. We utilize generative adversarial networks (GANs) with cycle-consistency to train a
network using only unpaired data. In generative adversarial networks, two neural networks
are pitted against each other, each attempting to reach its objective, which is ŞadversaryŤ
to the other network. We combine GANs with cycle-consistency to construct CycleGAN,
which was originally proposed in [84]. CycleGAN consists of four neural networks in total
Ů two discriminators and two generators.

It was demonstrated that the presence of cycle-consistency constraint drastically im-
proves the network ASR performance, outperforming the models from the reference publi-
cation. Cycle-consistent network trained with paired data (CSE) achieves 20.97 % relative
WER reduction (RWERR) over noisy data. Backward cycle-consistency was shown to pro-
vide a signiĄcant improvement when used in combination with forward cycle-consistency.
Using unpaired data, our implementation of CycleGAN (ACSE) achieves 12.71 % RWERR,
which is a large improvement over [49]Šs ACSE, which reached 6.69 % relative WER re-
duction. Using various GAN training tricks helped improve ACSE performance. To obtain
better results, we re-trained the DNN acoustic model (AM) used in Kaldi using data en-
hanced by the trained models. Using re-trained AM, the RWERR performance of CSE and
ACSE further increased to 33.50 % and 46.86 %, respectively.

Lastly, we investigated the impact of adversarial training and identity loss on ASR
performance. The addition of identity loss improved the performance of both CSE and
baseline models. Using both adversarial training and identity loss in CSE led to additional
signiĄcant RWERR improvement to 36.10 % with re-trained AM.

48

8.2 Future Work

Cycle-consistency is a relatively new concept in the deep learning Ąeld. The principle on
its own is quite simple, however, there are many ways the use of cycle-consistency can be
pushed to its limits.

8.2.1 Short-Term Prospects

While we experimented with various hyperparameters to train the best possible model, we
have not modiĄed the λ weight coefficients of the respective loss functions. Fine-tuning the
coefficients could lead to signiĄcant performance improvements in both CSE and ACSE.

8.2.2 Long-Term Prospects

Neural networks successfully trained in this work perform speech enhancement in the fre-
quency domain. While our TCNN implementation did not work well, performing the en-
hancement within the time domain has recently shown to be successful [62, 58, 59]. Below
are described possible architecture replacements for LSTMs which were used in this work.

Transformer Neural Networks

Recently, transformer neural networks (TNNs) [75] have demonstrated state-of-the-art
performance on natural language processing (NLP) tasks. Self-attention is a core building
block of a TNN, that allows computing symbol-by-symbol correlations over an entire input
sequence in parallel. The self-attention mechanism in TNNs traverses a Ąxed amount of
time steps, before computing attention weights, which has shown to beneĄt many NLP
tasks. Kim et al. have proposed TNNs with Gaussian-weighted self-attention mechanism
for speech enhancement [34].

Dual-Path RNNs

Initially proposed for speaker separation task, dual-path RNNs (DPRNNs) [47] could be
coupled with cycle-consistency. DPRNN splits the sequential input into shorter overlapping
chunks. A DPRNN layer consists of two interleaved bi-directional LSTMs (BLSTMs) [71].
One network locally processes chunks independently, while the other network aggregates the
information from all the chunks to process the utterance as a whole. Replacing depthwise
convolutions with DPRNNs in TasNet [48] led to state-of-the-art performance.

Teacher-Student Learning

Instead of combining cycle-consistency with adversarial training, a teacher-student (T-
S) learning [43] approach can be used for speech enhancement via unsupervised domain
adaptation1 [42]. In T-S learning, a teacher network is used to teach a student network to
make the same predictions as the teacher.

1Domain adaptation attempts to transfer the knowledge obtained from the source domain to the target
domain.

49

Bibliography

[1] Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A. et al. TensorĆow: A system
for large-scale machine learning. In: 12th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16). 2016, p. 265Ű283.

[2] Allen, J. B. and Rabiner, L. R. A uniĄed approach to short-time Fourier analysis
and synthesis. Proceedings of the IEEE. IEEE. 1977, vol. 65, no. 11, p. 1558Ű1564.

[3] Avargel, Y. and Cohen, I. System identiĄcation in the short-time Fourier
transform domain with crossband Ąltering. IEEE Transactions on Audio, Speech, and
Language Processing. IEEE. 2007, vol. 15, no. 4, p. 1305Ű1319.

[4] Bai, S., Kolter, J. Z. and Koltun, V. An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling. ArXiv preprint
arXiv:1803.01271. 2018.

[5] Barker, J., Marxer, R., Vincent, E. and Watanabe, S. The third
ŚCHiMEŠspeech separation and recognition challenge: Dataset, task and baselines. In:
IEEE. 2015 IEEE Workshop on Automatic Speech Recognition and Understanding
(ASRU). 2015, p. 504Ű511.

[6] Barker, J., Watanabe, S., Vincent, E. and Trmal, J. The ĄfthŠCHiMEŠSpeech
Separation and Recognition Challenge: Dataset, task and baselines. ArXiv preprint
arXiv:1803.10609. 2018.

[7] Baydin, A. G., Pearlmutter, B. A., Radul, A. A. and Siskind, J. M. Automatic
differentiation in machine learning: a survey. The Journal of Machine Learning
Research. JMLR. org. 2017, vol. 18, no. 1, p. 5595Ű5637.

[8] Bengio, Y., Simard, P., Frasconi, P. et al. Learning long-term dependencies with
gradient descent is difficult. IEEE transactions on neural networks. 1994, vol. 5,
no. 2, p. 157Ű166.

[9] Bishop, C. M. Pattern recognition and machine learning. Springer, 2006.

[10] Boll, S. Suppression of acoustic noise in speech using spectral subtraction. IEEE
Transactions on acoustics, speech, and signal processing. IEEE. 1979, vol. 27, no. 2,
p. 113Ű120.

[11] Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.
et al. Learning phrase representations using RNN encoder-decoder for statistical
machine translation. ArXiv preprint arXiv:1406.1078. 2014.

50

[12] Chollet, F. Xception: Deep learning with depthwise separable convolutions.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, p. 1251Ű1258.

[13] Dahl, G. E., Yu, D., Deng, L. and Acero, A. Context-dependent pre-trained deep
neural networks for large-vocabulary speech recognition. IEEE Transactions on
audio, speech, and language processing. IEEE. 2011, vol. 20, no. 1, p. 30Ű42.

[14] Fukushima, K. Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics. Springer. 1980, vol. 36, no. 4, p. 193Ű202.

[15] Gales, M. J. Maximum likelihood linear transformations for HMM-based speech
recognition. Computer speech & language. Elsevier. 1998, vol. 12, no. 2, p. 75Ű98.

[16] Ganin, Y. and Lempitsky, V. Unsupervised domain adaptation by
backpropagation. ArXiv preprint arXiv:1409.7495. 2014.

[17] Garofalo, J., Graff, D., Paul, D. and Pallett, D. CSR-I (WSJ0) Complete.
Linguistic Data Consortium, Philadelphia. 2007.

[18] Glorot, X. and Bengio, Y. Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the thirteenth international
conference on artiĄcial intelligence and statistics. 2010, p. 249Ű256.

[19] Glorot, X., Bordes, A. and Bengio, Y. Deep sparse rectiĄer neural networks.
In: Proceedings of the fourteenth international conference on artiĄcial intelligence and
statistics. 2011, p. 315Ű323.

[20] Goodfellow, I., Bengio, Y. and Courville, A. Deep learning. MIT press, 2016.

[21] Goodfellow, I., Pouget Abadie, J., Mirza, M., Xu, B., Warde Farley, D.
et al. Generative adversarial nets. In: Advances in neural information processing
systems. 2014, p. 2672Ű2680.

[22] Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R.
and Schmidhuber, J. LSTM: A search space odyssey. IEEE transactions on neural
networks and learning systems. IEEE. 2016, vol. 28, no. 10, p. 2222Ű2232.

[23] Griffin, D. and Lim, J. Signal estimation from modiĄed short-time Fourier
transform. IEEE Transactions on Acoustics, Speech, and Signal Processing. IEEE.
1984, vol. 32, no. 2, p. 236Ű243.

[24] Harley, A., Wei, S.-E., Saragih, J. and Fragkiadaki, K. Image disentanglement
and uncooperative re-entanglement for high-Ądelity image-to-image translation.
In: Proceedings of the IEEE International Conference on Computer Vision
Workshops. 2019, p. 0Ű0.

[25] He, D., Xia, Y., Qin, T., Wang, L., Yu, N. et al. Dual learning for machine
translation. In: Advances in Neural Information Processing Systems. 2016,
p. 820Ű828.

51

[26] He, K., Zhang, X., Ren, S. and Sun, J. Deep residual learning for image
recognition. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, p. 770Ű778.

[27] Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r. et al. Deep neural
networks for acoustic modeling in speech recognition: The shared views of four
research groups. IEEE Signal processing magazine. IEEE. 2012, vol. 29, no. 6,
p. 82Ű97.

[28] Hochreiter, S. and Schmidhuber, J. Long short-term memory. Neural
computation. MIT Press. 1997, vol. 9, no. 8, p. 1735Ű1780.

[29] Hoffer, E., Hubara, I. and Soudry, D. Train longer, generalize better: closing the
generalization gap in large batch training of neural networks. In: Advances in Neural
Information Processing Systems. 2017, p. 1731Ű1741.

[30] Jason, A. DeOldify. 2019 [Online; visited 30. 12. 2019]. Available at:
https://github.com/jantic/DeOldify.

[31] Jozefowicz, R., Zaremba, W. and Sutskever, I. An empirical exploration of
recurrent network architectures. In: International Conference on Machine Learning.
2015, p. 2342Ű2350.

[32] Kalal, Z., Mikolajczyk, K. and Matas, J. Forward-backward error: Automatic
detection of tracking failures. In: IEEE. 2010 20th International Conference on
Pattern Recognition. 2010, p. 2756Ű2759.

[33] Karras, T., Laine, S. and Aila, T. A style-based generator architecture for
generative adversarial networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 2019, p. 4401Ű4410.

[34] Kim, J., El Khamy, M. and Lee, J. T-GSA: Transformer with Gaussian-Weighted
Self-Attention for Speech Enhancement. In: IEEE. ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP).
2020, p. 6649Ű6653.

[35] Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. ArXiv
preprint arXiv:1412.6980. 2014.

[36] Kinoshita, K., Delcroix, M., Gannot, S., Habets, E. A., Haeb Umbach, R.
et al. A summary of the REVERB challenge: state-of-the-art and remaining
challenges in reverberant speech processing research. EURASIP Journal on Advances
in Signal Processing. Nature Publishing Group. 2016, vol. 2016, no. 1, p. 7.

[37] Krizhevsky, A., Sutskever, I. and Hinton, G. E. Imagenet classiĄcation with
deep convolutional neural networks. In: Advances in neural information processing
systems. 2012, p. 1097Ű1105.

[38] LeCun, Y., Bengio, Y. and Hinton, G. Deep learning. Nature. Nature Publishing
Group. 2015, vol. 521, no. 7553, p. 436Ű444.

52

https://github.com/jantic/DeOldify

[39] LeCun, Y., Bottou, L., Bengio, Y. and Haffner, P. Gradient-based learning
applied to document recognition. Proceedings of the IEEE. Ieee. 1998, vol. 86, no. 11,
p. 2278Ű2324.

[40] Ledig, C., Theis, L., Huszár, F., Caballero, J., Cunningham, A. et al.
Photo-realistic single image super-resolution using a generative adversarial network.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, p. 4681Ű4690.

[41] Li, J., Deng, L., Gong, Y. and Haeb Umbach, R. An overview of noise-robust
automatic speech recognition. IEEE/ACM Transactions on Audio, Speech, and
Language Processing. IEEE. 2014, vol. 22, no. 4, p. 745Ű777.

[42] Li, J., Seltzer, M. L., Wang, X., Zhao, R. and Gong, Y. Large-scale domain
adaptation via teacher-student learning. ArXiv preprint arXiv:1708.05466. 2017.

[43] Li, J., Zhao, R., Huang, J.-T. and Gong, Y. Learning small-size DNN with
output-distribution-based criteria. In: Fifteenth annual conference of the
international speech communication association. 2014.

[44] Loizou, P. C. Speech enhancement: theory and practice. CRC press, 2013.

[45] Long, J., Shelhamer, E. and Darrell, T. Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2015, p. 3431Ű3440.

[46] Loshchilov, I. and Hutter, F. Decoupled weight decay regularization. ArXiv
preprint arXiv:1711.05101. 2017.

[47] Luo, Y., Chen, Z. and Yoshioka, T. Dual-path rnn: efficient long sequence
modeling for time-domain single-channel speech separation. In: IEEE. ICASSP
2020-2020 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP). 2020, p. 46Ű50.

[48] Luo, Y. and Mesgarani, N. Conv-tasnet: Surpassing ideal timeŰfrequency
magnitude masking for speech separation. IEEE/ACM transactions on audio, speech,
and language processing. IEEE. 2019, vol. 27, no. 8, p. 1256Ű1266.

[49] Meng, Z., Li, J., Gong, Y. et al. Cycle-consistent speech enhancement. ArXiv
preprint arXiv:1809.02253. 2018.

[50] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S. and Dean, J. Distributed
representations of words and phrases and their compositionality. In: Advances in
neural information processing systems. 2013, p. 3111Ű3119.

[51] Mimura, M., Sakai, S. and Kawahara, T. Cross-domain speech recognition using
nonparallel corpora with cycle-consistent adversarial networks. In: IEEE. 2017 IEEE
Automatic Speech Recognition and Understanding Workshop (ASRU). 2017,
p. 134Ű140.

[52] Mirza, M. and Osindero, S. Conditional generative adversarial nets. ArXiv
preprint arXiv:1411.1784. 2014.

53

[53] Mohri, M., Pereira, F. and Riley, M. Weighted Ąnite-state transducers in speech
recognition. Computer Speech & Language. Elsevier. 2002, vol. 16, no. 1, p. 69Ű88.

[54] Nair, V. and Hinton, G. E. RectiĄed linear units improve restricted boltzmann
machines. In: Proceedings of the 27th international conference on machine learning
(ICML-10). 2010, p. 807Ű814.

[55] Olah, C. ColahŠs blog. Aug 2015 [Online; visited 25. 12. 2019]. Available at:
https://colah.github.io/posts/2015-08-Understanding-LSTMs/.

[56] Oord, A. v. d., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O. et al. Wavenet:
A generative model for raw audio. ArXiv preprint arXiv:1609.03499. 2016.

[57] Paliwal, K., Wójcicki, K. and Shannon, B. The importance of phase in speech
enhancement. Speech communication. Elsevier. 2011, vol. 53, no. 4, p. 465Ű494.

[58] Pandey, A. and Wang, D. A New Framework for Supervised Speech Enhancement
in the Time Domain. In: Interspeech. 2018, p. 1136Ű1140.

[59] Pandey, A. and Wang, D. A new framework for CNN-based speech enhancement in
the time domain. IEEE/ACM Transactions on Audio, Speech, and Language
Processing. IEEE. 2019, vol. 27, no. 7, p. 1179Ű1188.

[60] Pandey, A. and Wang, D. TCNN: Temporal convolutional neural network for
real-time speech enhancement in the time domain. In: IEEE. ICASSP 2019-2019
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 2019, p. 6875Ű6879.

[61] Pascanu, R., Mikolov, T. and Bengio, Y. On the difficulty of training recurrent
neural networks. In: International conference on machine learning. 2013,
p. 1310Ű1318.

[62] Pascual, S., Bonafonte, A. and Serra, J. SEGAN: Speech enhancement
generative adversarial network. ArXiv preprint arXiv:1703.09452. 2017.

[63] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J. et al. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In: Wallach, H.,
Larochelle, H., Beygelzimer, A., Alché Buc, F. d', Fox, E. et al.,
ed. Advances in Neural Information Processing Systems 32. Curran Associates, Inc.,
2019, p. 8024Ű8035.

[64] Povey, D., Ghoshal, A., Boulianne, G., Burget, L., Glembek, O. et al. The
Kaldi speech recognition toolkit. In: IEEE Signal Processing Society. IEEE 2011
workshop on automatic speech recognition and understanding. 2011.

[65] Radford, A., Metz, L. and Chintala, S. Unsupervised representation learning
with deep convolutional generative adversarial networks. ArXiv preprint
arXiv:1511.06434. 2015.

[66] Rumelhart, D. E., Hinton, G. E. and Williams, R. J. Learning representations
by back-propagating errors. Nature. Nature Publishing Group. 1986, vol. 323,
no. 6088, p. 533Ű536.

54

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

[67] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S. et al. Imagenet
large scale visual recognition challenge. International journal of computer vision.
Springer. 2015, vol. 115, no. 3, p. 211Ű252.

[68] Sainath, T. N., Weiss, R. J., Senior, A., Wilson, K. W. and Vinyals, O.
Learning the speech front-end with raw waveform CLDNNs. In: Sixteenth Annual
Conference of the International Speech Communication Association. 2015.

[69] Sak, H., Senior, A. W. and Beaufays, F. Long short-term memory recurrent
neural network architectures for large scale acoustic modeling. 2014.

[70] Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A. et al.
Improved techniques for training gans. In: Advances in neural information processing
systems. 2016, p. 2234Ű2242.

[71] Schuster, M. and Paliwal, K. K. Bidirectional recurrent neural networks. IEEE
transactions on Signal Processing. Ieee. 1997, vol. 45, no. 11, p. 2673Ű2681.

[72] Shrivastava, A., Pfister, T., Tuzel, O., Susskind, J., Wang, W. et al. Learning
from simulated and unsupervised images through adversarial training.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
2017, p. 2107Ű2116.

[73] Smith, S. L., Kindermans, P.-J., Ying, C. and Le, Q. V. DonŠt decay the learning
rate, increase the batch size. ArXiv preprint arXiv:1711.00489. 2017.

[74] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. Rethinking
the inception architecture for computer vision. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2016, p. 2818Ű2826.

[75] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L. et al. Attention
is all you need. In: Advances in neural information processing systems. 2017,
p. 5998Ű6008.

[76] Wang, D. and Lim, J. The unimportance of phase in speech enhancement. IEEE
Transactions on Acoustics, Speech, and Signal Processing. IEEE. 1982, vol. 30, no. 4,
p. 679Ű681.

[77] Wang, K., Zhang, J., Sun, S., Wang, Y., Xiang, F. et al. Investigating generative
adversarial networks based speech dereverberation for robust speech recognition.
ArXiv preprint arXiv:1803.10132. 2018.

[78] Watanabe, S., Delcroix, M., Metze, F. and Hershey, J. R. New era for robust
speech recognition: exploiting deep learning. Springer, 2017.

[79] Wilson, A. C., Roelofs, R., Stern, M., Srebro, N. and Recht, B. The marginal
value of adaptive gradient methods in machine learning. In: Advances in Neural
Information Processing Systems. 2017, p. 4148Ű4158.

[80] Xiong, W., Droppo, J., Huang, X., Seide, F., Seltzer, M. et al. Achieving
human parity in conversational speech recognition. ArXiv preprint arXiv:1610.05256.
2016.

55

[81] Yoshioka, T., Sehr, A., Delcroix, M., Kinoshita, K., Maas, R. et al. Making
machines understand us in reverberant rooms: Robustness against reverberation for
automatic speech recognition. IEEE Signal Processing Magazine. IEEE. 2012,
vol. 29, no. 6, p. 114Ű126.

[82] Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A. E.-D., Jin, W. et al. Deep
learning for environmentally robust speech recognition: An overview of recent
developments. ACM Transactions on Intelligent Systems and Technology (TIST).
ACM. 2018, vol. 9, no. 5, p. 49.

[83] Zhou, Y.-T. and Chellappa, R. Computation of optical Ćow using a neural
network. In: IEEE International Conference on Neural Networks. 1988, p. 71Ű78.

[84] Zhu, J.-Y., Park, T., Isola, P. and Efros, A. A. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE
international conference on computer vision. 2017, p. 2223Ű2232.

56

Appendix A

CD Content

The attached CD contains following items:

• sources folder, which contains the source Ąles and task scripts

• examples folder, which contains example noisy and enhanced speech utterances

• trained_models folder contains several trained network models

• the text of this thesis in DT_xkarli05.pdf

• text folder, which contains LATEX source Ąles

• README Ąle, which contains a detailed description of the contents of the CD

57

	Introduction
	Speech Enhancement and Noise Reduction
	Problem Introduction
	Speech Enhancement Methods
	Features Used in Speech Enhancement
	Standard Speech Enhancement Solutions

	Automatic Speech Recognition

	Artificial Neural Networks
	Structure of a Neural Network
	Training Process
	Cost Functions
	Error Backpropagation

	Recurrent Neural Networks
	Convolutional Neural Networks
	Neural Networks with Cycle-Consistency

	Generative Adversarial Networks
	Generative Modeling
	Training GANs
	Conditional Generative Adversarial Network
	Gradient Reversal Layer

	CycleGAN
	Application of GANs

	CHiME-3 Dataset
	CHiME-3
	Properties of the Dataset
	Real Data Recordings
	Simulated Data
	Data Used For Experiments

	Implementation
	PyTorch
	Deep Learning Model as Program
	Performance
	Automatic Differentiation

	Implemented Scripts and Modules
	Python Modules
	ASR Tools
	TensorBoard

	Experiments
	Description of the Core Architectures
	Baseline
	CSE
	ACSE

	Results
	Baseline
	CSE
	ACSE
	Conclusions

	Re-Training the Acoustic Model
	Adversarial Training Using Paired Data
	The Importance of Identity Loss
	Models Trained with Paired Data
	ACSE
	Conclusion

	Experimenting with Temporal Convolutional Neural Networks
	Basic Building Blocks of TCNN
	TCNN Architecture
	Results

	Summary

	Conclusion
	Summary of the Performed Work
	Future Work
	Short-Term Prospects
	Long-Term Prospects

	Bibliography
	CD Content

