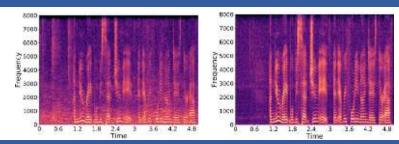
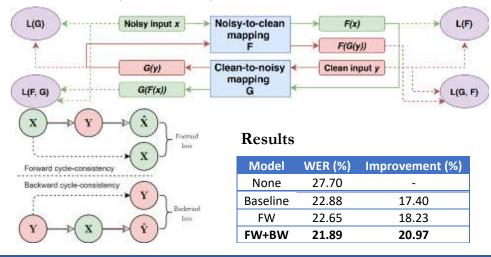
Speech Enhancement with Cycle-Consistent Neural networks


Author: Pavol Karlík

Supervisor: Kateřina Žmolíková

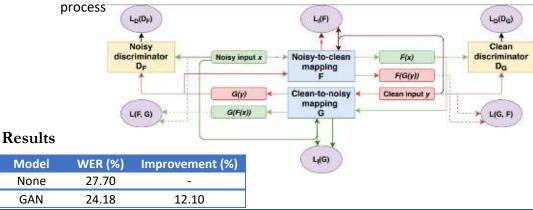
Department of Computer Graphics and Multimedia, Faculty of Information Technology, BUT


Motivation

- Noise in speech recordings reduces the effectiveness of Automatic Speech Recognition (ASR) systems
- State-of-the-art speech enhancement systems use neural networks to remove noise
- Neural network models can further be strengthened by employing cycle-consistency constraint

Cycle-Consistent Neural Network

- Uses a second neural network with the opposite goal during training
- First, the noisy speech signal is enhanced using a neural network
- Then, then noise is inserted back to that enhanced speech signal using the second network (forward cycle-consistency) or vice versa (backward cycle-consistency)
- The networks are pre-trained separately
- After initialization, they are trained simultaneously with the use of cycle-consistency losses



Acoustic model re-training

- We further re-trained acoustic models with data enhanced using trained models to obtain even better results
- When the acoustic model is re-trained with noisier data, the ASR system performance improves significantly

Cycle-Consistent GAN

- Sometimes it can be difficult to have a specific dataset of input-label pairs
- Generative Adversarial Networks (GANs) can be used to train model with unpaired data
- However, training GANs can be rather challenging, as it involves multiple DNNs
- We coupled GAN with cycle-consistency and identity-mapping constraints for adversarial speech enhancement in order to improve the unsupervised training

Results Model	Acoustic	WER (%)	Improvement (%)
woder	model	VVER (70)	improvement (%)
None	Clean	27.70	-
FW+BW	Clean	21.89	20.97
FW+BW	FW+BW	18.42	33.50
GAN	Noisy	24.18	12.10
GAN	GAN	14.72	48.86

