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1. Introduction

Over the past few years, the popularity of cloud-computing has massively in-
creased. Hardware manufacturers have developed more advanced smartphones
and embedded devices which introduce new possibilities for software developers.
These include modern and complex Cyber-Physical Systems (CPS) such as aug-
mented reality, autonomous driving, and smart-home, etc. where physical and
software components are tightly intertwined. In such systems, the execution is
not centralized i.e., does not happen on a single machine, however, it is dis-
tributed among multiple logical components, where each of them is executed on
a particular device i.e., motion sensor, computation unit, actuator.

Most of the tasks in the domain of Internet of Things (IoT) are designed
to be executed on resource-constrained devices. Nevertheless, there exist com-
plex and resource-heavy tasks i.e., data processing and predictions, etc., that are
more suitable for high-performance servers. This has led to change the software
architecture, so that modern software systems are partitioned into two parts;
server-side and client-side. The server-side application i.e., microservice run on
the premises of a cloud-service provider acting as a back-end, while the client-side
application represents a front-end which communicates with the microservice.

However, partially moving the computation into the cloud increases the global
communication latency of the system. This contrasts with the concept of CPS,
which imposes the need to operate and respond in real-time, requiring high data
rates and ultra-low latency on the network side, and the guaranteed execution
time on the microservice side. The former requirement can be fulfilled using a new
concept, called edge-cloud. The idea is to move the cloud computing resources
geographically closer to the end-users, eliminating not only the physical distance
the data has to travel, but also the number of network devices e.g., switches and
routers, etc. that increase the additional delay as well. This creates a layered
architecture to balance the workload across all parts of the network beginning in
large data centers and ending in edge data centers, close to the users, sometimes
even at the Base Transceiver Station (BTS). Although, the concept of edge-cloud
eliminates the network delay, a significant portion of response time is generated
by the microservice. The current cloud technologies are optimized to easily auto-
scale and work on best-effort basis. Therefore, their primary aim is to provide
optimal performance on average instead of guaranteeing worst-case execution time
of individual requests. The problem of guaranteed execution time traditionally
belongs to the domain of real-time programming, which relies on the usage of
low-level programming languages and a limited set of libraries. However, this is
in contrast with our goals, which target high-level programming languages e.g.,
Java, Scala, and Python, etc. and various workloads.

Thesis Objective

The current cloud technologies cannot ensure hard real-time guarantees, there-
fore, in this thesis, we target applications composed of multiple microservices
that require soft real-time responses. In this frame, the general goal of thesis is
to develop a new approach that provides soft real-time guarantees on the response
time of microservices running in a container-based cloud e.g., Kubernetes, where

4



microservices are developed in high-level programming languages e.g., Java. In
this context, statistical guarantee means that, for example, in 99% of cases, the
response time will not be more than 40 ms and in 99.9% of cases, the request
demand will be less than 70 ms.

Main Steps

The main concepts of cloud computing include resource sharing – one physi-
cal host machine provides its resources for multiple colocated applications. To
reflect the changes in the service demand, the cloud orchestrator dynamically
deploys new applications on the host machine or moves the deployed containers
from one physical machine to another. The constantly changing set of colocated
workloads may result in such an inappropriate combination of workloads, where
the microservice response time cannot be guaranteed. In order to statistically
guarantee the response time and to avoid the improper container placement, our
approach combines the following main steps:

• Microservice profiling: To be able to guarantee the optimal behavior of
the microservice in a shared production environment, it is required to assess
the microservice in isolation and in predefined workload combinations. As
the microservice response time is generally determined by the amount of
hardware resources that can be dedicated for its execution, it is necessary
to capture the relationships between the microservice resource usage and the
response time. Therefore, we first analyze the attributes of the main system
resources i.e., CPU, disk, and memory, in order to be able to characterize the
microservice behavior by its resource usage pattern. Then, we design and
implement a prototype of a deployment framework to automatically execute
the microservice and to measure its resource usage both in isolation and in
various workload combinations.

• Predicting the response time: Once the behavior of the microservice
is known in predefined workload combinations, it can be used to predict
its behavior in a shared production system. Therefore, we elaborate a
method that builds a model from the measured resource usage pattern.
Then, we use the model to predict the microservice response time, when
it is colocated with other workloads in a single host machine. The result
of the microservice characterization along with the predicted response time
enables the cloud orchestrator e.g., Kubernetes to optimally schedule the
container deployment to host machines. Furthermore, it prevents the over-
allocation of resources and enables to statistically guarantee the response
time.

1.1 Structure of the Thesis

The second chapter focuses on the technical analysis of the problem. First, it
introduces the problem using a real-life application. Then, it researches the avail-
able cloud technologies and analyzes if they are suitable to be used in the solution.

The third chapter is dedicated to the overview of the solution. It begins with
the identification of requirements, then it introduces the concept of the proposed
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deployment framework. Finally, the chapter states the detailed goals and outlines
the basic structure of the solution.

The fourth chapter focuses on microservice resource usage assessment. First,
it investigates the available system counters that enable to assess the utilization
of various hardware resources i.e., CPU utilization, disk I/O rate, and memory
usage. Then, it continues with the analysis of performance monitoring tools
provided by the operating system and other third-party solutions.

The goal of the fifth chapter is to present the submission process executed
by the deployment framework. The chapter divides the submission process into
phases and describes each phase separately. First, it outlines the microservice
submission phase and describes the requirements specification in more detail.
Then, it focuses on the management of the microservice performance assessment
phase that includes the distribution of the performance assessment tasks among
the assessing agents and the management of these agents. Finally, the chapter
presents the architecture of the performance assessment framework that auto-
matically executes and assesses the submitted microservices.

The sixth chapter describes the implementation of artificial workloads for
simulating real-life applications. It introduces and analyzes the existing solutions
that can be transformed to artificial microservices and presents the custom mi-
croservices implemented by us. Furthermore, it presents the interface required
for communication between the performance assessment framework and the mi-
croservice.

The seventh chapter introduces a prediction algorithm to predict the microser-
vice response time in various workload combinations. In the first part, it describes
how the data is collected and prepared for the prediction process. In the second
part, it shows the steps of the prediction process that characterize the microser-
vice, build a model using the collected data and predict the microservice response
time. Finally, the chapter evaluates the prediction process.

The eight chapter focuses on the implementation details of the main compo-
nents of the deployment framework. It serves as a programmer’s documentation
that includes UML class diagrams and the most important concepts for every
component of the deployment framework.

The ninth chapter analyzes other works that are related to this problem and
compares them with this thesis.

The tenth chapter concludes the thesis, and summarizes the achieved results.

6



2. Background

In this chapter, we provide a detailed technical background of our research. In
the first section, we present our motivation using an example application. Then,
we investigate the current cloud technologies, which could possibly be used in
this research.

2.1 Running Example

To introduce how the final system will work, we use a simple augmented reality
application. The application recognizes people in the captured video stream,
draws a rectangle around the recognized faces, and displays the corresponding
names.

User's device User's device

Lisa John

Edge-cloud node

Figure 2.1: An augmented reality application example.

The example application is split into two parts: a client-side application run-
ning on the user’s device i.e., smartphone or tablet, and a server-side application
i.e., set of microservices deployed on a node in the edge-cloud. The client-side
application captures video stream using the device’s built-in camera and sends
it to the server-side application. The server-side application processes the video
stream and recognizes the faces using a previously prepared, trained database.
The augmentation here is that the microservice returns the position and the size
of the rectangles along with the names of the recognized people. To be able
to run the distributed face recognition seamlessly, it is crucial to guarantee the
communication latency between the client and the server. Ideally, the network
should provide low latency and high throughput for high-quality video stream.
Thus, the most suitable location of the microservice is an edge-cloud data center
located close to the client. Furthermore, the deployment of microservice should
be well-optimized in order to deliver the guaranteed response time even when
colocated with a set of various microservices.
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Data center A

Data center B
Edge-cloud node A.1

Edge-cloud node B.1

User's device

Edge-cloud node A.2

Connecting to the closest node

Figure 2.2: Example of selecting the closest edge-cloud node.

2.1.1 Application Model

To describe the application’s response time requirements, we specify the applica-
tion as a set of microservices. This design decision enables to assign a particular
function to each microservice and thus it can be scaled independently from other
parts of the application. We have designed a custom specification format, called
requirements specification, which specifies the application and its microservices in
detail (see Listing 2.1). The definitions of microservices include several test-points
over which the timing-requirements are expressed. In addition, the test-points
serve as special function allowing to assess the microservice’s performance. Ide-
ally, the test-points should be implemented in such a way, that they simulate the
microservice’s behavior. Thus, by assessing the behavior of a test-point, we can
predict the microservice’s behavior in real-life conditions. To do so, all test-points
should be measured both in isolation and in combination with other workloads.
The relationship between the test-points and the microservice ensures the soft-
ware developer that the cloud guarantees the microservice’s response time if the
test-points’ timing requirements are met. Thanks to the concept of test-points,
our approach can automatically assess the microservices while still treating them
as black-boxes.

2.1.2 Requirements Specification

Listing 2.1 shows an example requirements specification for the previously
presented face recognition application. First, it defines the application’s name
and description. They are followed by the definition of microservices and their
corresponding timing requirements. Each microservice has its own unique name
and an entry-point. The entry-point is used by the assessing framework to run the
microservice and assess its behavior. Next, the requirements are defined, which
consist of definition of the required response time and its required probability
(keys time and probability, respectively). The former defines the maximum
response time in milliseconds, the latter defines the required probability in per-
centage. In our case, the face recognition microservice requires maximum 50
ms response time in 99.9% of requests and maximum 30 ms response time in 95%
of requests.
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1 application: face_recogn

2 description: Face recognition app

3 microservices:

4 - name: video_processing

5 entry_point: com.facerecognition.VideoProcessing

6 requirements:

7 - time: 100 # 100ms response time

8 probability: 99 # 99% probability

9 - time: 70 # 70ms response time

10 probability: 95 # 95% probability

11 - name: face_recognition

12 entry_point: com.facerecognition.FaceRecognition

13 requirements:

14 - time: 50 # 50ms response time

15 probability: 99.9 # 99.9% probability

16 - time: 30 # 30ms response time

17 probability: 95 # 95% probability

Listing 2.1: Example requirements specification.

2.2 Technical Background

In this section, we present and analyze cloud technologies that will be used
throughout the thesis.

First, we describe the available cloud technologies that are designed for host-
ing various applications. Ideally, the selected cloud technologies should provide
high-performance hardware infrastructure along with provisioning services for the
deployed applications.

Next, we analyze the technologies that enable to encapsulate the applications.
The advantages of encapsulation should result in application isolation, resource
management, and metering.

Finally, we investigate the possibilities of orchestration. The desired orchestra-
tion technology should be able to manage the application deployment according
to the specified resource and response time requirements.

2.2.1 Cloud Computing

Cloud computing is a model for hosting and delivering services over the Internet.
In the recent years, it has become a popular choice among the business owners to
deploy their services into the cloud. The main reasons of the constantly increasing
popularity are the following: cloud computing eliminates the need of large upfront
investments and provides adaptive provisioning regarding to the current demand.
These two factors enable the business owners to start from small and scale the
allocated resources accordingly to the ongoing service demand.

The architecture of cloud computing is divided into four layers: hardware
layer, infrastructure layer, platform layer and application layer [1] (see Fig-
ure 2.3). The layers are loosely-coupled, which results in a modular architecture
where the layers can be developed separately.

The hardware layer represents the data center’s hardware infrastructure. Its
main task is to ensure that a sufficient amount of physical resources i.e., compu-
tation power, system memory, disk storage, and network bandwidth are available
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Hardware 
 

CPU, Memory, Disk storage, Bandwidth 

Infrastructure 
 

Computation (VM), Storage (block) 

Platform 
 

Operating system, application framework (Java/Python/.Net) 

Application 
 

Business application, augmented reality, multimedia 

Infrastructure as a service
IaaS

Patform as a service  
PaaS

Software as a service  
SaaS

Figure 2.3: Layered architecture cloud computing [1].

for the upper layers. The large hardware infrastructure combined with the prop-
erties of the upper layers make the cloud computing suitable for effective batch
processing e.g., big data, scientific computations. Moreover, it guarantees fast
scalability, which ensures that the applications provide optimal performance even
in peek hours. Lastly, the layer provides warranty for a certain level of availability
(defined in SLA1) as the failed resources can be easily substituted.

The infrastructure layer is responsible for partitioning the physical hard-
ware into virtualized pools of resources. Using the virtualization technologies
(VMware [3] or Xen [4]), the layer enables to dynamically allocate and deallocate
computing resources according to the current service demand.

The purpose of the platform layer is to create an environment where the ap-
plications can be deployed. This environment includes the operating system and
the application framework, which minimize the application developer’s effort to
deploy the application. Furthermore, the layer enables to run multiple colocated
applications on the same virtual node.

The application layer is the most visible layer of the cloud. It contains the
cloud applications and exposes them to end-users by a well-defined interface e.g.,
web-page, REST API [5], etc. Furthermore, the layer enables the applications to
exploit the cloud’s auto-scale feature, thus the applications can provide the best
performance in various load conditions.

The business model of cloud computing is built upon the previously described
layers. The services can be grouped into the following three categories: infras-
tructure as a service (IaaS), platform as a service (PaaS), and software as a
service (SaaS). Figure 2.3 depicts the relation between the architectural layers
and the provided services. Even though, the majority of current mobile applica-

1Service Level Agreement [2]
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tions e.g., e-mail clients or social media apps already utilize the cloud as SaaS,
they do not require guaranteed execution time. This is due to the fact that the
applications are not part of the computation loop as they are used as a thin client,
implementing only the presentation layer.

On the basis of the foregoing, cloud computing provides a solid environment
where the applications can be deployed. The centralized, high-performance in-
frastructure alongside with the range of advanced services e.g., dynamic resource
provisioning makes it capable to handle the most diverse and resource intensive
tasks, which could not be executed on end-user devices.

However, there exist use-cases, where this concept is not suitable. For in-
stance, in our case it is essential to guarantee the performance of individual
requests. Since cloud-computing focuses on providing high throughput and best
average performance, therefore it is unable to guarantee the microservice’s ex-
ecution time. Another important factor is the network latency. Based on the
experiment of Ang Li et al [6], the average round trip time to the instances de-
ployed on a cloud provider from 260 global vantage points is 74 ms. This response
time does not include neither the microservice’s execution time nor the latency
between the end-user device and the wireless first hop.

2.2.2 Edge-cloud

As we described in the previous section, cloud-computing is built upon a cen-
tralized architecture, which concentrates on the computational capacity and data
storage into data centers. However, there is an increasing trend of computation-
intensive applications for mobile computing e.g., speech recognition, face recogni-
tion, and augmented reality, etc., and IoT technologies e.g., smart home, vehicle-
to-vehicle communication, which require high data rates and ultra-low network
latency. In order to satisfy the newly arisen requirements, the computation ca-
pabilities and the data storages must be placed closer to end-user devices.

The concept of edge-cloud is designed to address this problem in such a way,
that is installs cloudlets [7] to the edge of the network i.e., WAN, MAN, etc. The
cloudlets are micro data centers, which provide the same services i.e., resource
pooling, scalability, multi-tenancy, and service provisioning, etc., as huge data
centers do. Since, they are located close to the end-users (within one wireless hop),
they ensure an ideal environment for hosting highly responsive cloud services.

In cloud computing, the end-user devices are directly connected to the data
center, thus creating a two-layered architecture. However, the edge-cloud ex-
tends this architecture by inserting a new layer between the data center and
the end users (see Figure 2.4). This layer is created by the edge-cloud nodes,
and its purpose is to host applications, which require ultra-low network latency.
Therefore, the mobile devices do not connect directly to the data centers, but to
the edge-cloud nodes. In the new architecture, the role of the data center is to
host non-time-critical applications and to provide supporting services e.g., data
backup for edge-cloud nodes.

In cloud computing, the mobile application serves as a thin client, which only
displays the output of the computation. However, in edge-cloud, the applica-
tion is an essential part of the computation loop. First, it collects data about
the environment using the end-user device’s built-in sensors i.e., location sen-
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Data center Data center 

User device 

Edge-cloud nodes 

User device 

Cloud Edge-cloud

Figure 2.4: Comparison of architectural layers in cloud and edge-cloud.

sor, gyroscope, camera. Next, the application sends the collected data to the
cloudlet for processing. Lastly, the cloudlet returns the computation result and
the application displays it to the user. The ultra-low network latency provided
by the edge-cloud technology makes it possible to implement a computation loop,
where the resource-heavy sections are off-loaded into the cloud, and the result is
displayed by the mobile application.

Ha et al. [8] carried out an experiment, which compared how the cloud data
center’s location affects the behavior of various computation intensive applica-
tions. The experiment included the following six locations, where the applications
were executed:

• Amazon data centers using EC2 instances in Virginia, Oregon, Ireland and
Singapore (labeled as east, west, eu and asia).

• Local data center using an obsoleted server machine (labeled as 1WiFi).

• Local mobile device (labeled as mobile).

The tested applications include face recognition, speech recognition, object
and pose identification, mobile augmented reality and physical simulation and
rendering. Because the applications implement different algorithms, there exists
cases e.g., speech recognition, which are more resource demanding than others.
In order to compensate the lack of computation power on both local machines,
it is reasonable to compare those applications, which are less resource demand-
ing. Therefore, based on their description, we have selected face recognition and
augmented reality applications. Figure 2.5 and Figure 2.6 show the cumulative
distribution function (CDF) of response times in milliseconds. In case of face
recognition application, we can see, that only the local server machine (1WiFi)
provides fast enough response time (200 ms - 300 ms) in most of the cases. The
augmented reality application behaves similarly. The local server machine per-
forms the best, providing less then 100 ms response time in approximately 80%
of cases. As the figures show, the increase of the response time corresponds to
the distance between the end-user device and the data center.
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Figure 2.5: CDF of response times in milliseconds for a face recognition applica-
tion processing 300 images. Source [8].

Figure 2.6: CDF of response times in milliseconds for an augmented reality ap-
plication processing 100 images. Source [8].

Moving computation resources closer to the end-user devices results in de-
creased response time, latency and jitter. This improved network quality makes
possible to implement mobile applications, which use external resources to aug-
ment the mobile devices’ poor computational power. The concept of edge-cloud
alongside the future 5G mobile network provide the best solution for ensuring the
ultra-low first-hop latency. Furthermore, the inherent properties of cloud com-
puting i.e., resource pooling, scalability, and multi-tenancy, enable to create an
environment, which can guarantee the application’s execution time.

2.2.3 Container-based Virtualization

Based on the previous description, we can state that the virtualization is a key
concept of cloud computing. The goal of the virtualization is to provide abstrac-
tion of multiple virtual resources by adding an intermediate software layer on
top of the host system. Such virtual resources are variously implemented virtual
machines (VMs), which create isolated execution environments.

Nowadays, there are several virtualization technologies for cloud computing,
but the most popular are the hypervisor-based and the container-based virtu-
alization. The hypervisor-based virtualization provides full abstraction of VMs,
thus they are completely separated from the host operating system. In contrast,
container-based virtualization offers a more light-weight solution by leveraging the
low-level mechanics of the host operating system. Using the operating-system-
level virtualization, it provides abstraction directly to guest processes.

Figure 2.7 compares the differences between both virtualization technologies.
As the figure shows, the hypervisor-based virtualization places a hypervisor layer
(also called as Virtual Machine Monitor) upon the host operating system, which
provides full abstraction of guest operating systems. This enables the VMs to
have its own operating system, which can differ from the host operating system.
The hypervisor completely isolates the VMs, preventing them to communicate as
they are unaware of each other’s existence. The advantages of full isolation results
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Figure 2.7: Comparison of virtual machines and containers.

in high-level of security, ensuring that problems in one of the guest operating
systems do not affect the other virtual machines.

The container-based virtualization replaces the hypervisor layer with con-
tainer engine layer, which ensures the operating-system-level virtualization. In
contrast to completely isolated virtual machines, containers are not fully sep-
arated from the host. This allows the containers to omit the implementation
of their own operating system, but share the host machine’s operating system.
Therefore, the container’s operating system is given by the host machine, and it
is not enabled to install a guest operating system. Furthermore, to avoid resource
duplication, containers can share additional libraries with the host. The fact that
containers share a single operating system, supposes a weaker isolation compared
to the hypervisor-based virtualization. This enables the containers to communi-
cate with each other via container engine. The presence of the host operating
system makes the containers very light-weight, which results in fast boot-up and
termination compared to hypervisor-based virtualization, since there is no need
to create and destroy a custom VM.

Regarding to the performance, there is a noticeable difference between hyper-
visor- and container-based virtualization technologies. Hypervisor consumes abo-
ut 10% to 15% of host machine resources, while containers consume a minimal
amount [9]. Furthermore, based on the results of Felter et al. [10], the overall
performance of container-based virtualization is similar to the performance of a
non-virtualized system. As an advantage of the lower resource demand compared
to VMs, it is possible to deploy up to 100 containers on one host machine.

The recent distributions of the Linux operating systems (as part of Linux con-
tainer project (LXC) [11]) use namespaces and cgroups to isolate the processes
and to share operating system and hardware resources. Namespaces are used
to separate groups of processes, so they cannot be seen by resources in other
groups. There are six different namespaces in the current kernel, which address
specific parts of the system e.g., NET provides network resources, MNT provides
file-system mount-points. The cgroups provide a mechanism to restrict the re-
source usage of a process or a group of processes. They can be used to specify
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the resource limits for each container. For instance, limit the number of CPU-
cores, disk input-output-rate or size of the available memory. This enables better
isolation of containers in multi-tenant environments, and prevents the scenario
where one container allocates all resources. In addition, cgroups are capable for
metering resource usage. Special pseudo-files are available for each container de-
scribing the usage of a particular resource e.g., files cpuacct.usage percpu and
blkio.io service bytes contain CPU and disk usage, respectively .

Nowadays, Docker [12] is the most popular, open-source container-manager
tool, which extends LXC with various APIs. Docker containers are created from
Docker images. One can create an image using a special file, called Dockerfile,
which contains operating system fundamentals and additional frameworks. The
final Docker image consists of layers, where each command in the Dockerfile
corresponds to one layer. Therefore, when re-building the image, the unmodified
layers can be reused, thus the build-time can be decreased. The final images are
stored in the Docker registry, which is either a local storage or a public online
storage such as the Docker Hub2. Docker uses a client-server architecture. The
client is responsible for providing user interface and passing commands to the
server (called as daemon). The Docker daemon listens for requests and manages
the containers accordingly.

The standardized environment provided by the container-based virtualiza-
tion allows fast and consistent application delivery. The container images are
created at build-time rather than deployment-time ensure a consistent environ-
ment, which can be carried from development to production. The light-weight
container-based platform offers low overhead and high scalability, thus enables the
applications to scale up or tear down accordingly to the demand. Furthermore,
the ability to isolate applications along with fine-grained resource restriction make
the platform ideal for high density environments, such as the edge-cloud hosts.

2.2.4 Orchestration

In small cloud environments, e.g., developing and testing on local machines, it
is possible to manage containers manually. However, production environments
nowadays host a vast amount of applications consisting of multiple services.
These applications span over multiple virtual machines, creating colocated en-
vironments. The increasing number of containers impose growing demand on
container management, which requires to automate certain processes in order to
guarantee the quality of cloud services.

In recent years, Kubernetes [13] has become the most popular platform to
automate Linux container operations. It is designed to eliminate manual pro-
cesses required to manage orchestration and scaling. Kubernetes groups together
containers that belong to a particular application into a logical unit (cluster).
Therefore, it creates an abstraction layer, which enables the Kubernetes to man-
age and orchestrate the clusters efficiently. These capabilities provide support
for deploying applications, which span over multiple containers, scale resources
based on current demand or monitor the containers’ health and replace the failed
ones. Furthermore, Kubernetes eliminates the need to manually manage the in-
frastructure. It automatically sets up the network and assigns IP addresses to

2https://hub.docker.com/
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the deployed containers. The platform mounts sufficient amount of storage sup-
porting various network storage systems i.e., iSCSI, Gluster, and Ceph. Beyond
providing telemetry, Kubernetes continuously monitors containers, and resched-
ules them to a different hosts if the current host dies or does not respond. In
order to improve the cost-effectiveness and utilization of the cloud, Kubernetes
automatically moves containers between hosts while respecting the applications’
resource requirements.

In spite of all these advantages, we are not going to use any third-party con-
tainer manager platform in this thesis, rather we are going to implement a custom
one. Since, we are going to measure the containerized applications, we require
overall control over the containers. Furthermore, the measurements will be ex-
ecuted on a small number of local machines (approx. 8 - 10 machines), which
can be managed manually. However, excluding Kubernetes does not affect the
results of this thesis. The proposed principle will be independent on the con-
tainer management platform, therefore it will be applicable in any edge-cloud
environment.
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3. Solution Overview

In the Introduction chapter, we have already presented our goals, however, in this
chapter we provide a more detailed description. First, we review the main idea of
the problem. Then, we analyze the requirements that we should consider during
the design process. Next, we introduce the concept of the proposed solution,
where we present the main building blocks. Finally, we describe the structure of
the solution including the main problems we are going to deal with.

3.1 The Big Picture

The goal of this thesis is to propose a solution that provides soft real-time guaran-
tees on the microservice execution time. The targeted microservices are developed
in high-level programming languages e.g., Java, Scala, and Python, etc., and are
executed in a container-based cloud environment (Docker in our case), which is
managed by a cluster orchestration system e.g., Kubernetes.

To statistically guarantee the upper bound of the response time, we design
a deployment framework that exercises the submitted microservice in various
workload combinations and analyzes the microservice’s behavior. Then, the re-
sult of the analysis determines if the microservice response time requirements
can be met. The deployment framework executes a sequence of predefined steps,
referred as submission process, to determine whether the edge-cloud environ-
ment is capable of providing the statistical guarantees. This submission process
adds an additional step to the typical approval process compared to other cloud
submission processes. Since the submission process includes the analysis of the
submitted microservice, we do not require any prior knowledge given by the de-
veloper. Therefore, we can treat the microservices as black-boxes and thus we
can minimize the impact of the developer in the submission process.

The submission process includes two main parts: performance assessment and
prediction of the execution time. Even though, this thesis will focus on these two
areas, we are going to implement a prototype version of the whole deployment
framework in order to be able to test and verify our proposed solution.

3.2 Identifying the Requirements

The goal of this section is to identify the requirements placed on the implemen-
tation of the deployment framework. The precise enumeration and analysis of
the requirements are essential for the valid design and implementation of the
proposed solution.

As we stated in previous sections, the main goal of this thesis is to target
the performance assessment and the data evaluation along with the prediction.
In this section we focus on the requirements analysis and design decisions of
the performance assessment part. The data evaluation and prediction part is
presented in more detail in Chapter 7.
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Automation

One of the main requirements is the automation of the deployment framework. To
enable the automation, the steps of the submission process should be predefined
and their execution should be managed by a central component. The central
component should be able to distribute the microservices over multiple agents to
increase the effectiveness of the submission process.

Configurability

Even though the submission process is a sequence of predefined steps, each mi-
croservice may have its own parameters that are required for executing its test-
points. Ideally, these parameters should be attached to the microservice in a
configuration file. The concept of such a configuration file is already shown in
Section 2.1.2 and is referred as requirements specification. Ideally, the final re-
quirements specification file should be designed so that it can include all the
desired parameters. In order to be able to easily manipulate and process the file,
it should be written in a well-known data-serialization language e.g., JSON1 or
YAML2.

Containerization

During the submission process, the microservices will mostly be executed with
several number of colocated workloads. Thus, the efficient management of mul-
tiple workloads is an essential capability. Microservices require various artifacts
for their execution e.g., source code, libraries, dependencies, runtime environment
and settings. Therefore, the ideal solution would be packaging these requirements
into one unit that can be executed separately. Furthermore, to comply with the
requirements in the configuration file or to prevent the microservice from allo-
cating large amount of resources, the chosen solution should support applying
various resource usage limitations. These resource usage limitations include the
number of CPU-cores, the amount of RAM or disk access speed. In order to meet
the previously described requirements, the microservices should be executed in
a containerized environment (like the popular Docker), which is a lightweight
alternative of virtual machines.

Communication Interface

Even though our aim is to handle the microservice as black-boxes and to minimize
the constraints against the developer, we require a certain level of communication
between the microservice and the assessing environment. This communication
should enable the performance assessment framework to load the microservice
and exercise its test-points. In order to be able to communicate with the mi-
croservice, each microservice should implement a common interface specified by
the performance assessment framework.

1https://json.org
2https://yaml.org
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Figure 3.1: Concept of the solution.

3.3 Concept of the Solution

In the previous parts of the text we have provided only a basic overview of the
problem. In this section, we introduce the problem and the proposed solution in
a more detailed way. We divide the solution into distinct parts and analyze the
possible problems that need to be solved.

Even though, we are focusing on the performance assessment of the microser-
vices and the evaluation of the results, which includes prediction of the microser-
vice’s response time, our goal is to provide a fully working prototype of the entire
deployment framework, including the definition of the input files. Figure 3.1
shows the concept of the main components, which are presented in more detail
in the following sections.

Unified Requirements Specification

The microservice submission process starts by uploading its requirements speci-
fication to the deployment framework. The requirements specification is a con-
figuration file created by the microservice developer. It should be designed in a
way that it enables to precisely describe the microservice’s test-points and their
requirements e.g., response time and probability.
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Ideally, a well-known data serialization language should be selected that makes
it easy for the microservice developer to create and edit the file either manually
or programmatically. Considering these requirements, we have decided to use the
YAML data serialization language. The final form of the requirements specifica-
tion will be shown in Chapter 5.

Orchestrator

There is a need for a component that enables the communication between the
microservice developer and the instances of the deployment framework. In our
proposed solution, this component will be referred as orchestrator.

The orchestrator will be responsible for handling the following tasks:

• Communicating with the microservice developer: The orchestrator enables
the microservice developer to submit the requirements specification to the
deployment framework, to monitor, and to display the current state of the
submission process. At the end of the submission process, the orchestrator
returns the prediction result to the microservice developer.

• Managing the submission tasks: The orchestrator processes the submitted
requirements specifications and converts them into submission tasks for
internal representation. This representation helps the orchestrator to easily
manage i.e., add, update, and remove the tasks that are pending in the
submission queue.

• Managing the agents: The orchestrator establishes the communication with
the online agents and registers them into the group of active agents. Then
the orchestrator distributes the tasks among the agents and monitors the
state of the performance assessment process.

• Supervising the performance assessment: The orchestrator distributes the
submission tasks among the active agents. It manages the execution of the
performance assessment process according to the predefined steps of the
submission process.

• Launching the predictor: The orchestrator starts the prediction process by
passing the collected data and the submitted requirements specification to
the predictor.

Measuring Agent

One of the most important parts of the submission process is the execution of
the microservice’s test-points. During the execution, the deployment framework
determines the behavior and monitors the resource usage of the microservice. In
the following part of the text, we will refer these two activities as measurement.
In order to correctly execute the measurement, a precisely defined sequence of
steps have to be performed before and after the measurement. The sequence of
these steps together with the measurement compose the measurement process.

As a part of the submission process, the microservices undergo the measure-
ment process, which results in a dataset representing the microservice’s behavior
and resource usage. To be able to perform the measurement process, a new
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component must be added to the solution. This component will be referred as
measuring agent, or shortly agent. The agent will be responsible for handling the
following tasks:

• Communication and data transfer: The agent queries the orchestrator for
new submission tasks and reports the current state of the measurement pro-
cess. At the end of the measurement process, the agent sends the collected
dataset to the orchestrator.

• Maintaining an isolated environment: The agent isolates the measurement
by packaging the source artifacts into a container. Thus, the agent will
be responsible for managing the container life-cycle e.g., deploying the con-
tainer, executing the measurement process, and removing the container.

• Providing the measuring framework: The agent provides a framework to
load the microservice and to exercise its test-points. Furthermore, the
framework will be responsible for recording the microservice’s behavior and
its resource usage.

The agent is the only component that might have multiple instances running
at the same time in the deployment framework. The instances communicate
with the orchestrator and execute various submission tasks, each representing a
particular workload combination of the submitted microservices.

Predictor

The final part of the submission process includes several subsequent tasks that
create the prediction process, which is managed by the component called predictor.
The goal of the prediction process is to predict the microservice execution time
using the measured data. The prediction process includes the following tasks:

• Parsing requirements specification: The prediction process first parses the
input requirements specifications and transforms them into an internal rep-
resentation of requirements.

• Preprocessing the input data: The prediction process preprocesses the data
collected by measuring agents and transforms them into a representation
which is suitable for the prediction process.

• Prediction: Using the preprocessed input data the predictor predicts the
execution time of the submitted microservice. The microservice execution
time is predicted for various workload combinations that are predefined in
the prediction process.

• Returning the results: The prediction process evaluates the prediction re-
sults against the parsed requirements specifications. Finally, the prediction
process returns the prediction results along with the evaluation of the re-
quirements specifications.
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3.4 Structure of the Solution

The purpose of this section is to present the detailed goals of the thesis and the
key parts of the solution that will be described in the subsequent chapters.

Measuring Resource Usage

Since each microservice is designed for different purpose, their resource usage
requirements might be completely different as well. In addition, we treat the
microservices as black-boxes, without prior knowledge of their properties. In order
to predict the microservice’s response time in a particular cloud environment, it
is necessary to characterize the microservice’s behavior. This can be done by
executing the microservice’s test-points and monitoring their resource usage.

Thus, in this part of the thesis we are going to research for resource usage
indicators that can be used to infer the microservice’s behavior. Then, we are
going to investigate the features of the Linux platform, which enable us to measure
the test-points’ resource usage. Next, we will search for other third-party solutions
to measure resource usage. Finally, we will evaluate the analyzed solutions and
select those that meet our requirements.

Designing the Steps of the Submission Process

Creating a large and high-quality dataset requires a large amount of measure-
ments. Furthermore, each measurement must be repeated several times to elim-
inate the outliers and thus to ensure data validity. It would be impossible to
manually manage the measurements, therefore the submission process should
be fully automated. Besides the measurement process, the submission process
includes a sequence of additional steps that have to be carried out before the
measurement can be started. Therefore, we will analyze the submission process
and design the main steps, which cover the entire execution process, including
the environment initialization, the measurement, and the final phase.

First, we focus on the environment initialization phase. Creating a unified
virtual environment is crucial in order to make the collected data comparable,
and to execute all the microservices under the same circumstances. To cover the
measurement phase, we will design the steps of the measurement process one by
one. Finally, we will compose the last steps that are responsible for finishing
the measurement, cleaning up the working environment, and transferring the
collected data to the orchestrator.

Generating Artificial Workload

In order to collect data, validate our assumptions, and evaluate the predictor, it
is essential to own microservices that can be used throughout the development.
Since the real-life microservices are not accessible at the time of writing, we will
implement our own set of microservices that generate artificial workload and sim-
ulate the behavior of the real-life microservices. Each artificial microservice will
behave differently as they simulate different resource usage e.g., CPU-intensive
computation, processing large files, etc. The microservices will be executed both
in isolation and along with other workloads. Therefore, the various workload
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combinations (running 2-3-4 microservices in parallel) will be able to simulate
various real-life scenarios. The majority of the artificial microservices will be im-
plemented by us using open-source libraries. The remaining microservices will be
integrated from third-party sources, like the Scala Benchmarking Project [14] or
the stress-ng Linux tool [15].

Predicting the Execution Time

In this part of the thesis we will utilize the collected data. Our goal is to elaborate
a prediction method, which predicts the microservice response time, when it is
colocated with other workloads in a single machine. In order to do so, we will
use the data generated by the artificial workloads and collected by the measuring
agents. However, the collected data is in raw format that is not supported by the
predictor. Therefore, in the first step we will preprocess the data into a suitable
format for the predictor. Then, we will transform this data into a representation
that can be used to characterize the microservice behavior. Next, we will build
a model of the microservice, using the preprocessed data. Finally, we will use
this model to predict the execution time of the microservice in various workload
combinations.

Implementing a Prototype

To validate the designed architecture and to provide an example implementation,
we are going to implement a prototype of the deployment framework. This will
include a concrete representation of the requirements specification that enables us
to specify both the properties and the requirements of the submitted microservice.
Furthermore, we will implement the orchestrator to ensure the communication
with both the microservice developer and the parts of the deployment framework.
Next, we will implement the measuring agent that provides the framework for
executing the submitted microservices and collecting data about their behavior
and resource usage. Finally, we will implement a mechanism for processing the
measured data and predicting the execution time. We will not only focus on the
implementation of the separated modules but we will also pay an attention to the
communication between these modules.
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4. Measuring Resource Usage

In this chapter, we focus on measuring the resource usage indicators that can
be used for characterizing the microservice’s behavior. To be able to charac-
terize the microservice’s behavior and to compare the microservices during the
prediction process, a common representation should be used for all types of mi-
croservices. Such a common representation can be defined by the resource usage
pattern, which records various attributes of the utilized hardware resources e.g.,
CPU utilization, I/O (storage) bandwidth, and memory utilization throughout
the microservice’s execution. Recording the resource usage patterns during the
execution of the microservice test-points, the system can create a model of the
microservice. Combining this model with the model of any known microservice,
the system will be able to predict the microservice’s response time for a particular
set of colocated workloads.

In the first part of the chapter, we analyze the main hardware resources,
particularly the CPU, the disk drive, and the RAM, by presenting their operating
principles and the concepts that affect the system’s performance the most. In the
second part of the chapter, we present and analyze various observability types and
methodologies. Then, we describe a wide range of tools to monitor the system’s
resource usage throughout the microservice’s execution.

The research will be executed on a 64-bit quad-core Intel system1, where
Turbo-Boost, Hyper-Threading and other performance-related features were dis-
abled. Furthermore, the system is equipped with 32GB of physical memory and
one dedicated 500GB HDD2. The installed operating system is Fedora Linux 283.

The structure of this chapter and the description of concepts are based on the
systems performance book [16].

4.1 Concepts

4.1.1 CPU

In this section, we present the CPU concepts that are essential for measuring and
analyzing the microservices’ performance and resource usage pattern.

The CPU carries out the instructions of a computer program by performing
various operations e.g., logical, arithmetical, and controlling. Since, the CPU is
an essential component in a computer, it highly affects the microservice’s perfor-
mance along with its response time. Nowadays, host machines in data centers
are equipped with multi-core processors, which enable the operating system a
high level of parallelism. However, if the microservices’ overall resource demand
exceeds the CPU’s capabilities, the tasks start to queue up. The growing wait-
ing time lowers the microservices’ performance and thus increases their response
time.

1Intel Xeon E3-1230v6 @ 3.50GHz
2Seagate Constellation.2 ST9500620NS 500GB 7200 RPM 64MB Cache SATA 6.0Gb/s 2.5”
3Kernel version: 4.17.3-200.fc28.x86 64
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Clock Rate

The clock rate refers to the frequency at which the CPU is running, therefore
it is often referenced as CPU cycles. The clock rate is measured in Hertz (Hz)
expressing that a 3 GHz CPU performs 3 billion clock cycles per second. Modern
processors are able to dynamically change their clock rate. This enables to in-
crease their performance when it is needed, or decrease the energy-consumption
when the computer is idle. Although, the clock rate is an important metric when
comparing various CPUs, there are situations where a faster processor cannot
speed up the system. It often happens, when the CPU cycles are stalled, waiting
for another resource e.g., disk access. In such cases, the higher clock rate would
not increase the CPU’s throughput.

Instruction Set

The instruction set is a list of commands that the CPU can execute. They
include control flow, data, logic, and arithmetic instructions. Execution of various
instructions requires one or more CPU cycles. For instance, memory I/O can
consume tens of clock cycles, during which the instruction execution is suspended.
These elapsed clock cycles are called stall cycles.

Cycles per Instruction

The Cycles per instruction (CPI) is a metric describing the nature of the CPU
utilization. CPI helps to study how the CPU cycles are spent among the instruc-
tions. It shows how efficient the instruction processing is, but not the instructions
themselves. Low CPI value indicates high instruction throughput. However, high
CPI means that the processor is stalled in the majority of time. For instance,
blocked by slow memory access.

Utilization

CPU utilization is measured in percentage and is defined as “the time a CPU
instance is busy performing work during an interval” [16]. In other words, it is
measured by the time, when the CPU executes a user-thread or a kernel-thread
different from the idle-thread. Nowadays, the operating system kernels support
thread priorities, preemption and time-sharing, which prevent the CPU from
steep performance degradation even at high utilization.

User-time and Kernel-time

CPU utilization can be divided into user-time and kernel-time. Time spent on
executing the user-level thread belongs to user-time, while time spent calling
the kernel functions e.g., syscalls, interrupts belongs to kernel-time. The user-
time/kernel-time ratio can be used to characterize the workload. The computa-
tion-intensive applications, which only utilize CPU without massive usage of other
resources e.g., disk execute user-level code. In such cases, the user-time/kernel-
time ratio can achieve even 99 to 1 [16]. In contrast, I/O-intensive applications
perform large number of syscalls through the operating system’s kernel. There-
fore, their user-time/kernel-time ratio approximates 70/30 [16].
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Saturation

The CPU becomes saturated when it is fully utilized (at 100%) and the execution
of threads is limited as they wait to be scheduled. A saturated CPU results in
a congested scheduler queue and in growing latency. The saturation can occur
not only at 100% utilization, but when the resource exceeds a set threshold. For
instance, the cloud environment could limit the container’s CPU utilization at
25%, and thus ensures that the CPU can be equally shared among 4 containers.

4.1.2 Memory

In the following, we present the memory concepts that are essential for measuring
and analyzing the microservices’ performance and resource usage pattern.

The system main memory stores operating-system and user application code,
their data, and file system caches. The main memory’s size is relatively small
(tens of gigabytes) compared to hard disk drives (up to 10 TB), however, access
rate of main memory is higher by orders of magnitude. Once the main memory
fills, the system is forced to store and retrieve the data form the slower disk device
causing massive drop in the application’s performance.

Apart from the disk storage, one should consider the CPU expenses e.g.,
allocating, freeing, copying memory, etc. when analyzing performance factors.
In addition, performance can be affected by the memory architecture (uniform
memory access vs. non-uniform memory access) as the locally attached memory
ensures lower latency than the remote memory.

Virtual Memory

The virtual memory is a memory management technique which provides abstrac-
tion for the processes about the available memory storage. The usage of the
virtual memory creates an illusion of a large, contiguous, and private address
space for every process. This is beneficial for software developers, because the
operating system handles virtual address spaces and physical memory placement.
The operating system’s memory management capabilities include extending the
size of the virtual memory over the available physical memory. This mechanism
is called paging.

Paging

It is a memory management scheme by which the operating system moves the
memory pages between the main memory and the secondary storage device (swap
device or swap disk). This mechanism enables the operating system to create an
illusion of a large memory and therefore, execute applications which otherwise
would not fit into the memory. In most of operating systems the page size is 4 KB,
thus paging is a fine-grained approach to manage the main memory. However,
paging can cause a significant performance bottleneck. When an application
wants to access a page that has been moved to swap device, it will be blocked
until the page is not read from the slow device.
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Swapping

While paging moves only small parts of processes, swapping saves and retrieves
complete processes from the swap device to the main memory. During swapping,
all the private data of the process is saved to the swap disk, including the process
heap and the structure of the threads. The operating system kernel, however,
keeps track of the swapped-out processes, because their meta-data is still stored
in the memory. Swapping-in a process is more I/O-intensive and takes more time
than paging. To minimize the waiting time while a process is being swapped-in,
the kernel prioritizes the smaller processes which have been waiting for long time
on the swap device.

Nowadays, the term ”swapping” is used in cases when the system moves not
only complete processes to swap device but single pages as well. Solaris-based
operating systems still support swapping processes when paging is not sufficient.
On Linux, swapping refers to the mechanism of paging. Throughout this thesis,
we will use the term swapping as a synonym of paging.

File System Cache Usage

As we described at the beginning of this section, memory devices (usually DRAM4

modules) are orders of magnitude faster than storage devices (HDD5 or SSD6).
In order to improve file-access speed and application performance, the operating
system can utilize the unused part of the main memory as file system cache.
Although the cached files can allocate a significant part of the memory, it will
not cause performance costs, because the kernel can quickly free the memory
when applications need it.

Utilization and Saturation

The memory utilization is the ratio of used memory and total memory. The
memory allocated by cached files does not count into the used memory as it
can be quickly released. If the applications’ overall memory demand exceeds the
total available memory, the system becomes saturated. In this case the operating
system tries to free memory using the mechanism of paging, swapping or even
killing the most memory-intensive application. The excessive usage any of these
mechanisms indicate a highly saturated system.

4.1.3 Disk

In the following, we present the disk concepts that are essential for measuring
and analyzing the microservices’ performance and resource usage pattern.

The disk storage refers to the primary storage devices for the system, which
enables to permanently store and retrieve large amount of data. Compared to
the main memory and the processor cache, disk drives are relatively slow, and
therefore they can strongly influence the system’s performance. Under high load,

4Dynamic Random Access Memory
5Hard disk drive
6Solid-state drive
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the disk storage becomes quickly the performance bottleneck which forces the
CPU to wait for the I/O completions.

Nowadays, the most popular storage drives are hard disk drives and solid-state
drives. The former is popular for its high capacity/price ratio, while the latter is
preferred for its high I/O performance. Regardless of the underlying technology,
both drives can be the source of performance issues.

Response Time

The response time expresses the time spent between the initialization and com-
pletion of an I/O request. It is the summary of the service time and the wait time.
The service time represents the time that an I/O request requires to be actively
processed. This time period excludes the time spent in the queue, waiting to be
executed, which is exactly represented by the wait time. Despite of the exact
definitions, the way the times are measured depends on the particular context.
From the point of the OS, the service time is the time from the request initial-
ization until the completion interrupt is signalized. From the point of the disk,
the service time is the time that is spent while the disk was actively executing
the request, excluding the time spent in the disk queue.

Caching and Asynchronous I/O

In order to compensate the high I/O latency, file systems support the mechanism
of caching. This mechanism is invisible for applications, which are not aware of
whether the data is stored in the main memory or on the disk drive. Caching
utilizes the unused part of the main memory, however, it can be quickly released
when an application requires more memory. The mechanism of caching is actively
used in both read and write operations.

The applications often work with large files that could not be fit into the
memory. Therefore, they read and process the large file in smaller chunks. The
file systems are able to detect that an application performs sequential reads on a
large file. To improve the application’s read performance, the file system reads the
file asynchronously and caches the data. Storing the data in the cache improves
the application’s performance, as the read operations result in cache hit.

To improve the write performance, the file systems commonly use write-back
caching. This mechanism stores the data into the fast memory instead of the
slow disks and thus improves the application’s latency. Later, a process called
flushing goes through the memory asynchronously and writes the cached data to
disk.

Random vs. Sequential I/O

A series of I/O operations can be described as random or sequential based on
the relative offset of the I/O operations. In case of the random I/O workload,
there is no apparent relationship between each I/O operations, while in case of
the sequential workload, the next I/O begins immediately after the end of the
previous operation. As it implies from the architecture of HDDs, the access
patterns have various impacts on their performance. The random I/O operations
increase the latency as the disk platter rotates and the disk heads seek to a specific
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position. The sequential I/O operations enable the file system to read ahead or
prefetch the data and thus improve the performance.

Read-Write Ratio

Another possibility to characterize the workload is the ratio of read and write
operations. Being familiar with the read-write ratio helps to predict the resource
requirements. Applications with high percentage of read operations would benefit
from larger system cache as it would eliminate the unnecessary disk I/O. However,
the application with high write rate would take advantage of more disk devices,
which increase the throughput.

Utilization and Saturation

The disk utilization is defined as “the time disk was busy actively performing
work during an interval” [16]. Due to the fact, that the disk I/O is a typically
slow activity, any level of disk utilization can lead to decreased performance. To
make sure, that the performance degradation is caused by the I/O utilization, it
is recommended to monitor the disk response time and whether the application
is blocked on this I/O. If the amount of requests exceed the performance that the
disk can deliver, the requests queue up and the disk becomes saturated.

In cloud computing, the disk resources are often virtualized, and therefore
it is not straightforward to measure the disk utilization. For instance, 100%
utilization not necessarily indicates that all the disk drives are fully loaded, but
there can be idle disk drives. Another typical case is, when the virtual disks
are equipped with the write-back cache. The disk controller might report I/O
completion immediately as the I/O operations are handled by the fast cache, but
in the meanwhile, disks are busy until they store the cached data.

4.2 Monitoring Utilities

The monitoring tools have been continuously developed alongside the operating
system. Modern operating systems include a wide variety of built-in monitoring
tools and provide support for installing external ones. There are two common
perspectives that can be used to divide the resource monitoring tools into groups.
The first perspective focuses on the observed target. In this case, we can distin-
guish two types of resource monitoring tools: system-wide and per-process. The
second perspective focuses on the monitoring method the resource monitoring
tools are based on. This includes the following three groups: counters, profiling,
and tracing.

In this section, we present the most popular monitoring tools divided into
categories by their monitoring method. Then, we compare the presented tools
and analyze how effectively they could be used for monitoring the containerized
microservices’ resource usage patterns along three dimensions: CPU utilization,
I/O (storage) utilization, and memory utilization. We prefer solutions that can be
tightly connected to the measured microservice and provide detailed information
about the microservice’s resource usage.
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4.2.1 Sample Application

The following sections cover a wide range of monitoring tools that differ in many
ways e.g., focus on the observed target, monitoring method, etc. Despite of the
differences, our aim is to objectively evaluate all the monitoring tools. For this
purpose, we have designed a sample use-case scenario that generates the same
load in every execution.

The sample use-case scenario includes 3 microservices, which are executed
in separate Docker containers. Furthermore, the microservices are divided into
one main and two background workloads. The main workload is represented
as a disk- and CPU-intensive application that extracts a 188 MB zip archive
containing 4369 files and 184 directories. The operation produces a total of 1.08
GB of uncompressed data written disk. One of the two background workloads
is the exact copy of the main workload, therefore it extracts a copy of the same
zip archive. The second background workload sequentially inserts and deletes
5 000 000 nodes into an AVL tree. For more details about the microservices
please see Chapter 6.

4.2.2 Counters

The operating system kernel provides statistics for the system events in a form of
counters. Traditionally, counters are represented by unsigned integers, which are
increased every time the particular event occurs. Counters are implemented by
the kernel, and their continuous maintenance imposes a negligible overhead on
the system. The current values can be easily accessed by reading the appropriate
pseudo-files. These properties make the counters widely popular among various
system-wide and per-process monitoring tools.

Tool Description
vmstat Reports information about CPU and disk activity, memory, run-

ning processes, etc.
mpstat Reports processor-related statistics.
iostat Reports CPU and I/O statistics for disk drives and partitions.
netstat Reports information about the network subsystem.

Table 4.1: System-wide monitoring tools.

Tool Description
ps Reports a snapshot of the current processes, including the process

ID, the executable name, etc.
top Provides a dynamic real-time view of the system summary and

the list of processes or threads currently running.
pmap Reports a memory map of a particular process or processes.

Table 4.2: Per-process monitoring tools.

In this section, we present monitoring tools that use the built-in system coun-
ters. We show how they work and analyze how they could be used for monitoring
the containerized applications’ resource usage.
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Table 4.1 includes a selection of system-wide tools that monitor the system-
activity and the hardware resources by reading system-wide counters. Table 4.2
includes a selection of per-process tools that display the values of process-related
counters.

vmstat Monitoring Tool

It is a light-weight and low-overhead monitoring tool reporting information about
processes, memory, paging, block device input-output, and CPU activity. By
default, vmstat prints the output to the console. The first line of the output
contains the system averages since the last boot, then the following lines report
information about the sampling period specified as a command-line argument.
Beyond displaying CPU and virtual memory statistics, the tool can also display
disk statistics if the -d option is present.

1 $ vmstat -Sm 1 5

2 r b swpd free buff cache si so bi bo in cs us sy id wa st

3 7 0 0 30816 2 1221 0 0 457 8468 1099 2926 54 10 32 5 0

4 6 0 0 30553 2 1485 0 0 16 19428 4444 3741 60 17 19 5 0

5 2 1 0 30339 2 1679 0 0 0 48804 6720 20314 52 20 26 3 0

6 3 1 0 30202 2 1784 0 0 0 45508 4291 12755 53 12 27 8 0

7 3 0 0 29965 2 2069 0 0 0 13592 4763 5987 68 7 24 0 0

Listing 4.1: Sample output of vmstat monitoring tool.

Listing 4.1 displays the default statistics for 5 seconds with 1 second iteration-
step. To make the output more compact, the output unit is set to megabytes.
The attributes of vmstat shown in Listing 4.1 are described in Table 4.3.

Interpreting the Output: Using the CPU-related attributes, the sample out-
put can be analyzed as follows. The number of running or waiting processes
is between 2 and 7 and there is 1 process that is in uninterruptible state for
a short time. The CPU is not fully utilized, as the average CPU utilization is
equal to 69% (us + sy + wa). The high value of interrupts and context-switches
indicate that the computation uses other resources than the CPU e.g., disk or
memory which blocks the CPU. This assumption is supported by the relatively
high amount of time spent in the kernel code (sy), and the time the CPU was
waiting for I/O (wa).

The decreasing amount of free memory (free) indicates that the application
allocates memory continuously. Moreover, we can see that the memory is allo-
cated for cache (cache), where usually the I/O data is stored. There is no need
for swapping (swpd), as the amount of free memory is sufficiently high.

Analyzing the disk I/O-related attributes of the output, we can see from the
high amount of sent blocks (bo) that the currently running microservice utilizes
the disk device. More specifically, the disk utilization is mainly generated by
write operation, because the amount of read blocks (bi) is 0 in most of the time.

Based on the analysis of the CPU, the memory, and the disk attributes, the
executed microservice could be characterized as a moderately CPU- and memory-
intensive application that generates high-amount of data and stores it on the disk.

Despite the fact that the vmstat is also able to monitor the disk usage, in the
following section we present the iostat tool, because it provides a more detailed
view on the disk usage.
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Attribute Description
r The number of processes running or waiting for run time.
b The number of processes in uninterruptible sleep.
swpd The amount of virtual memory used.
free The amount of idle memory.
buff The amount of memory used as buffers.
cache The amount of memory used as cache.
si The amount of memory swapped in from disk (/s).
so The amount of memory swapped to disk (/s).
bi The amount of blocks received from a block device (blocks/s).
bo The amount of blocks sent to a block device (blocks/s).
in The number of interrupts per second, including the clock.
cs The number of context switches per second.
us Time spent running non-kernel code (user time, including nice

time).
sy Time spent running kernel code (system time).
id Time spent idle. Prior to Linux 2.5.41, this includes I/O-wait

time.
wa Time spent waiting for I/O. Prior to Linux 2.5.41, included in

idle.
st Time stolen from a virtual machine. Prior to Linux 2.6.11,

unknown.

Table 4.3: Attributes of the vmstat monitoring tool. Source [17].
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iostat Monitoring Tool

The iostat is a low-overhead monitoring tool designed for monitoring CPU
statistics and I/O statistics for devices, partitions and network file-systems. By
default, iostat prints its output to the console. The first line of its output
contains the system averages since the last boot, then the following lines report
information about the sampling period specified as a command-line argument.
The iostat tool is able to generate three types of reports: the CPU utilization
report, the device utilization report, and the network file-system report. From
our perspective, the device utilization report is the most valuable, therefore in
the following we analyze the iostat monitoring tool from that perspective.

1 $ iostat -d sda 1

2 Linux 4.17.3-200.fc28.x86_64 (cirrus-1.edge.d3s.hide.ms.mff.cuni.cz)

06/25/19 _x86_64_ (4 CPU)

3
4 Device tps kB_read/s kB_wrtn/s kB_read kB_wrtn

5 sda 29.58 2.93 315.40 84702348 9126822328

6 sda 0.00 0.00 0.00 0 0

7 sda 37.00 0.00 21504.00 0 21504

8 sda 155.00 0.00 100640.00 0 100640

9 sda 96.00 0.00 87016.00 0 87016

10 sda 107.00 0.00 107776.00 0 107776

11 sda 110.00 0.00 110592.00 0 110592

12 sda 107.92 0.00 110003.96 0 111104

13 sda 105.00 0.00 105728.00 0 105728

14 sda 107.00 0.00 109056.00 0 109056

Listing 4.2: Sample of basic output of iostat monitoring tool.

The device utilization report can be activated by the -d option. The output
prints a brief summary of the system statistics including the kernel version, the
host name, the current date, the system architecture, and the number of CPUs.
This is followed by the disk statistics, where each disk is shown in a separated
row (see Listing 4.2).

1 $ iostat -xd sda 1

2 Linux 4.17.3-200.fc28.x86_64 (cirrus-1.edge.d3s.hide.ms.mff.cuni.cz)

06/25/19 _x86_64_ (4 CPU)

3
4 Device w/s wkB/s wrqm/s %wrqm w_await aqu-sz wareq-sz svctm %util

5 sda 29.56 314.96 0.39 1.30 1.87 0.06 10.66 0.71 2.10

6 sda 162.00 78280.00 56.00 25.69 756.64 143.05 483.21 6.17 100.00

7 sda 84.00 86016.00 109.00 56.48 1555.26 92.94 1024.00 11.90 100.00

8 sda 129.00 114944.00 0.00 0.00 781.43 230.15 891.04 7.75 100.00

9 sda 101.00 100100.00 30.00 22.90 1477.98 165.66 991.09 9.90 100.00

10 sda 107.00 106240.00 31.00 22.46 1660.72 153.23 992.90 9.36 100.10

11 sda 109.00 109912.00 31.00 22.14 1728.89 155.35 1008.37 9.17 100.00

12 sda 109.00 110336.00 32.00 22.70 1357.32 150.82 1012.26 9.17 100.00

13 sda 107.00 107776.00 31.00 22.46 1508.79 150.64 1007.25 9.35 100.00

14 sda 107.00 109056.00 32.00 23.02 1459.26 149.79 1019.21 9.35 100.00

Listing 4.3: Sample of extended of output of iostat monitoring tool.

The iostat also implements an extended mode, which can be enabled by
the -x option. Enabling this mode, the monitoring tool provides more detailed
disk statistics (see Listing 4.3).
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Attribute Description
tps The number of transfers per second that were issued to the

device.
kB read/s

(kB wrtn/s)

The amount of data read (written) from the device expressed
in kilobytes, per second.

kB read

(kB wrtn)

The total number of kilobytes read (written).

r/s

(w/s)

The number (after merges) of read (write) requests completed
per second for the device.

rkB/s

(wkB/s)

The number of kilobytes read (written) from the device per
second.

rrqm/s

(wrqm/s)

The number of read (write) requests merged per second that
were queued to the device.

%rrqm

(%wrqm)

The percentage of read (write) requests merged together be-
fore being sent to the device.

r await

(w await)

The average time (in milliseconds) for read (write) requests
issued to the device to be served

rareq-sz

(wareq-sz)

The average size (in kilobytes) of the read (write) requests
that were issued to the device.

aqu-sz The average queue length of the requests that were issued to
the device.

svtcm The average service time (in milliseconds) for I/O requests
that were issued to the device.

%util Percentage of elapsed time during which I/O requests were
issued to the device (bandwidth utilization for the device).

Table 4.4: Attributes of the iostat monitoring tool. Source [18].

Table 4.4 describes the displayed columns both in default and extended mode.
In the rest of this section, we focus on the extended output as it provides more
details about the system.

Interpreting the Output: To present how the output of the iostat can be
interpreted, we have executed a disk intensive application, that writes data to
the disk. Listing 4.3 shows the extended output that was collected during the
execution of the application. We have omitted the disk reading-related columns,
as their values were constantly zero.

The sample output shows that the disk utilization (%util) is at 100%. This is
also observable by the write operations throughput (wkB/s) that are close to the
maximum bandwidth of that particular HDD drive [19]. Even though the disk is
fully utilized, it cannot process the requests fast enough, which is observable from
the high average time for write request (w await) and the average queue length
(aqu-sz). Beyond the utilization, the I/O-pattern can be also concluded. The
high average size of the write requests (wareq-sz) indicates an efficient execution
of the I/O operations, which is typical for the sequential I/O.

Based on the analysis of the extended output of the iostat monitoring tool,
we can see that the disk demanded with a large sequential load. Although the
disk is fully utilized, the huge load forces the requests to wait in the disk scheduler
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queue, which leads to increased application latency.

Summary of vmstat and iostat

Comparing the presented monitoring tools, we can conclude that they both share
the same positive properties. The tools are easy to use and provide detailed infor-
mation about the system’s resources. In addition, both vmstat and iostat create
a negligible overhead to the system as they use the built-in counters maintained
by the operating system kernel.

However, as the goal of the chapter states, our aim is to find such monitoring
tools that can be used for monitoring the Docker containers’ resource usage. Even
though the presented tools provide a detailed view of the system, they are unable
to monitor a particular container or a set of containers. In addition, the tools are
implemented as independent applications, which should be executed in parallel
with the microservice in order to collect the system data. This fact makes their
management more complicated if the desired goal is to tightly interconnect the
monitoring tools with microservice execution. For our purposes, the ideal solution
would be directly accessing the system counters from the measuring framework.
This direct access would enable us to select the relevant system attributes and
transform them into a representation that the most suits our requirements.

Per-process Monitoring Tools

The counter-based per-process monitoring tools use the same principle as the
previously presented system-wide tools. The majority of per-process tools use
the /proc interface to retrieve information about the available processes.

1 top - 18:52:54 up 17 days, 8:04, 1 user, load average: 3.90, 1.07, 0.37

2 Tasks: 159 total, 3 running, 71 sleeping, 0 stopped, 0 zombie

3 %Cpu(s): 42.8 us, 24.0 sy, 0.0 ni, 17.9 id, 15.0 wa, 0.2 hi, 0.2 si, 0.0 st

4 KiB Mem : 32759864 total, 24444276 free, 2021236 used, 6294352 buff/cache

5 KiB Swap: 0 total, 0 free, 0 used. 30322004 avail Mem

6
7 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

8 7215 root 20 0 10.463g 447440 19956 S 99.7 1.4 0:34.53 java

9 7070 root 20 0 10.527g 317864 19808 S 56.8 1.0 0:12.57 java

10 7167 root 20 0 10.463g 358288 19892 S 44.9 1.1 0:14.54 java

11 6962 root 20 0 0 0 0 R 12.0 0.0 0:01.62 kworker/u8:4

12 6872 root 20 0 0 0 0 I 11.3 0.0 0:01.38 kworker/u8:0

13 7336 root 20 0 0 0 0 I 11.3 0.0 0:00.96 kworker/u8:12

14 6959 root 20 0 0 0 0 I 9.0 0.0 0:01.68 kworker/u8:1

15 6963 root 20 0 0 0 0 R 8.0 0.0 0:01.98 kworker/u8:6

16 6980 root 20 0 0 0 0 I 7.3 0.0 0:00.82 kworker/u8:8

17 6961 root 20 0 0 0 0 I 4.7 0.0 0:01.31 kworker/u8:3

Listing 4.4: Sample of the top monitoring tool.

Similarly to vmstat, iostat, and other third-party tools, ps and top print
their output to the console by default. Listing 4.4 shows an example of the
top monitoring tool. The listing starts with the system-wide CPU load averages,
summary of tasks and total CPU load followed by the total memory usage. Then,
the output lists the processes, which are sorted by the top CPU intensity by
default.
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Comparing the output of top with the output of vmstat, it is observable
that the displayed attributes are very similar in both monitoring tools. However,
the top lacks several important attributes. For instance, there is no information
available about the disk usage of the particular process.

Furthermore, the presented per-process monitoring tools are third party so-
lutions as well as the system-wide tools. This implies, that their output can be
configured only in a limited manner, and the tools cannot be tightly connected
with the measuring framework. With regard to these properties, our overall con-
clusion is not to use the third-party per-process monitoring tools.

Sources of Resource Counters

The previously presented monitoring tools use a central data source that is main-
tained by the operating system kernel. The most commonly used interface for
accessing system counters are hierarchically ordered virtual files that represent
particular system resources. The virtual files provide both system-wide and per-
process resource statistics. Because the resource statistics are easily accessible
form any user-land application, they can be directly accessed from the measuring
framework as well. Although, the kernel provides a huge amount of interfaces for
monitoring resource usage statistics, we focus on the /proc and /sys interfaces as
they include the most relevant CPU, disk, and memory statistics. The complete
description of the system counters is available in the official Linux Documenta-
tion [20].

The proc file-system is a process information interface for accessing the run-
time system information. It is commonly mounted at /proc. The interface has a
tree-like structure that contains directories and files. However, the files at /proc

are not stored physically on any disk device, but they are in-memory files acting
as pointer to where the data is actually stored in the kernel. It is important to
note that the presented files may be missing from the reader’s system as their
presence depends on the kernel configuration and the loaded modules.

The proc file-system contains a separate directory for each running process,
which is named after the process ID. The details of a particular process can be
examined by reading the files in the corresponding process directory. A selection
of the process specific entries is listed in Table 4.5.

Beyond process-related directories, the proc file-system contains kernel spe-
cific files that represent the kernel data and the system-wide information. A
selection of the available files is listed in Table 4.6.
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File Content
cmdline Command line arguments of the process.
cpu Current and last CPU in which it was executed.
cwd Link to the current working directory of the process.
mem Memory held by the process.
root Link to the root directory of the process.
stat Status information about the process.
pagemap Page table of the process.

Table 4.5: Selection of process-specific entries in the /proc. Source [21].

Attribute Content
cpuinfo Collection of CPU and system architecture information.
diskstats Disk I/O statistics for each disk device.
loadavg Load average of last 1, 5 and 15 minutes.
meminfo System’s memory usage statistics.
net Information about the networking layer.
stat Overall system statistics.
uptime The uptime of the system and the amount of time spent in idle.

Table 4.6: Selection of system-specific entries in the /proc. Source [21].

Table 4.5 and Table 4.6 show that both per-process and system-wide entries
provide overall statistics and additional information about numerous system re-
sources. However, in the following we only focus on CPU, disk, and memory
usage statistics. More precisely, we focus on the system-wide statistics of the
/proc interface because the per-process statistics provide limited amount of re-
source usage information.

The /proc/stat Statistics File

The /proc/stat virtual file reports kernel activity along with CPU-related statis-
tics. The displayed values are aggregates since the system last booted. Listing 4.5
shows an example of the /proc/stat on our test system.

The first line displays the summed CPU statistics, followed by the statistics
of the individual CPUs of the system. The values express the amount of time (in
hundreds of a second, USER HZ) the CPU has spent executing various tasks.
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1 $ cat /proc/stat

2 cpu 50294 4515 65077 196476043 26122 16410 11855 0 0 0

3 cpu0 11851 1243 19318 49123098 7164 1934 1516 0 0 0

4 cpu1 14730 1238 6550 49132363 3863 6374 1235 0 0 0

5 cpu2 10935 971 31903 49099522 3559 2641 2998 0 0 0

6 cpu3 12776 1062 7304 49121059 11534 5459 6104 0 0 0

7 intr 43588975 16 0 0 0 0 0 0 0 1 983515 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

43749 58 1 253554 253516 253846 250418 250306 254261 246755 249331 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 ctxt 82552988

9 btime 1562777237

10 processes 4934

11 procs_running 2

12 procs_blocked 1

13 softirq 53259869 1 28994326 89150 1276791 44105 0 254 17472695 0 5382547

Listing 4.5: Sample of /proc/stat during the execution of the sample applcation.

Attribute Description
user Normal processes executing in user mode.
nice Niced processes executing in user mode.
system Processes executing in kernel mode.
idle Twiddling thumbs.
ioswait Waiting for I/O to complete.
irq Servicing interrupts.
softirq Servicing softirqs.
steal Involuntary wait.
guest Running a normal guest.
guest nice Running a niced guest.

Table 4.7: CPU attributes of the /proc/stat file. Source [22].

Table 4.7 describes the CPU attributes that are the most common in all Linux
versions.

The second part of the /proc/stat file consists of kernel activity statistics.
These include attributes such as the total number of interrupts and the context
switches. Furthermore, the statistics report the amount of threads running or
are ready to run along with the amount of currently blocked processes. For more
details, please read the Documentation [22].

Overall, the /proc/stat virtual file provides detailed CPU and kernel activity
statistics. The CPU statistics are displayed separately for all CPUs, therefore it
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helps to determine the number of threads the microservices use. Furthermore, the
kernel statistics include valuable attributes that help to characterize the behavior
of the microservice.

The /proc/diskstats Statistics File

The /proc/diskstats provides system-wide I/O statistics of the block devices.
Traditionally, the report includes multiple lines, where each line corresponds to
one block device. The advantage of displaying statistics of multiple block devices
in a single file is to eliminate the number of open/close operation if one monitors
the activity of a large number of block devices. Listing 4.6 shows an example of
the /proc/diskstats on our test system.

1 $ cat /proc/diskstats

2 8 0 sda 8371 1424 1981280 398569 62378 96670 12199288 12163164 138 263140

12580468

3 8 1 sda1 59 0 4280 2858 0 0 0 0 0 2648 2858

4 8 2 sda2 8283 1424 1974880 395412 60618 96670 12199288 12104218 138 235358

12518359

5 253 0 dm-0 9220 0 1968112 455049 158333 0 12211304 81562704 188 262971

82043537

6 253 1 dm-1 92 0 4192 2929 0 0 0 0 0 1678 2929

Listing 4.6: Sample of /proc/diskstats during the execution of the sample
applcation.

Field Description
1 Device major number.
2 Device minor number.
3 Device name.
4 Total amount of reads completed.
5 Total amount of reads merged.
6 Total amount of sectors read.
7 Total amount of milliseconds spent reading.
8 Total amount of writes completed.
9 Total amount of writes merged.
10 Total amount of sectors written.
11 Total amount of milliseconds spent writing.
12 Amount of I/Os currently in progress.
13 Total amount of milliseconds spent doing I/Os.
14 Total amount of weighted time spent doing I/Os (ms).
15 Total amount of discards completed.
16 Total amount of discards merged.
17 Total amount of sectors discarded.
18 Total amount of milliseconds spent discarding.

Table 4.8: Attributes of the /proc/diskstats file. Source [23].

Generally, the /proc/diskstats file contains 14 attributes. However, since
the kernel version 4.18, each line has been extended with 4 additional attributes.
Table 4.8 shows the available attributes, including the extended ones.
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All attributes between 4-18, except attribute 12, represent a cumulative value
since the system last booted. Although, all the attributes are unsigned integers,
they are not the same size. Most of the attributes are 64-bit integers, but there
are 32-bit integers as well. The applications that read the file should be prepared
for this inconsistency, as the 32-bit values can easily overflow on long-lived or
disk-intensive systems. Please refer to the manual [23] for identifying the 32-bit
and 64-bit attributes.

Overall, the /proc/diskstats file is easily accessible and provides detailed
information about block devices. Although, the attributes display raw values,
they can be simply converted into a particular format required by the statistical
processing tool, or into a human-readable format, and therefore simulate the out-
put of well-known disk monitoring tools e.g., iostat. Thus, the reported values
can be used for characterizing the microservices I/O behavior e.g., sequential vs.
random I/O, read-write ratio, etc.

The /proc/meminfo Statistics File

The /proc/meminfo provides information about system memory utilization and
distribution. The report traditionally includes the amount of free and used system
memory. In addition, it includes the buffers and the shared memory used by the
operating system kernel. Listing 4.7 shows the content of the /proc/meminfo on
our test system. Similarly to other system-related files, the presented attributes
can be slightly different on other systems.

The contents of the /proc/meminfo can be divided into high-level and more
detailed statistics. The high-level statistics capture the summary of the most
common values that provide the user a brief picture about the system’s memory
utilization. These attributes are presented in Table 4.9. The detailed statistics
present the memory distribution among various parts of the operating system.
The most often used attributes are described in Table 4.10.

Overall, the /proc/meminfo provides a large amount of valuable information
about the memory usage of the system. For instance, combined with the disk
statistics, it can be determined whether the application reads the data directly
from the disk or retrieves them from the memory cache.

The sysfs file-system is an interface that provides directory-based structure
for kernel statistics. It is commonly mounted at /sys. Similarly to the proc

file-system, the sysfs file-system also has a tree-like structure of directories and
files that are acting as a pointer to where the data is actually stored in the
kernel. The proc file-system was originally not intended to provide the system-
wide statistics, but the top-level statistics had been added over time. Although,
the sysfs file-system was originally meant to provide device driver statistics, it
has been extended with additional types of statistics.
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1 $ cat /proc/meminfo

2 MemTotal: 32759864 kB

3 MemFree: 26753136 kB

4 MemAvailable: 30483984 kB

5 Buffers: 2116 kB

6 Cached: 4066516 kB

7 SwapCached: 0 kB

8 Active: 3730768 kB

9 Inactive: 1882620 kB

10 Active(anon): 1545720 kB

11 Inactive(anon): 456 kB

12 Active(file): 2185048 kB

13 Inactive(file): 1882164 kB

14 Unevictable: 0 kB

15 Mlocked: 0 kB

16 SwapTotal: 0 kB

17 SwapFree: 0 kB

18 Dirty: 1506060 kB

19 Writeback: 255956 kB

20 AnonPages: 1545156 kB

21 Mapped: 191272 kB

22 Shmem: 1020 kB

23 Slab: 176156 kB

24 SReclaimable: 65192 kB

25 SUnreclaim: 110964 kB

26 KernelStack: 5264 kB

27 PageTables: 9892 kB

28 NFS_Unstable: 0 kB

29 Bounce: 0 kB

30 WritebackTmp: 0 kB

31 CommitLimit: 16379932 kB

32 Committed_AS: 2824060 kB

33 VmallocTotal: 34359738367 kB

34 VmallocUsed: 0 kB

35 VmallocChunk: 0 kB

36 HardwareCorrupted: 0 kB

37 AnonHugePages: 0 kB

38 ShmemHugePages: 0 kB

39 ShmemPmdMapped: 0 kB

40 CmaTotal: 0 kB

41 CmaFree: 0 kB

42 HugePages_Total: 0

43 HugePages_Free: 0

44 HugePages_Rsvd: 0

45 HugePages_Surp: 0

46 Hugepagesize: 2048 kB

47 Hugetlb: 0 kB

48 DirectMap4k: 260512 kB

49 DirectMap2M: 4800512 kB

50 DirectMap1G: 28311552 kB

Listing 4.7: Sample of /proc/meminfo during the execution of the sample
applcation.
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Attribute Description
MemTotal Total amount of usable physical memory.
MemFree The amount of physical memory, left unused by the system.
Buffers Temporary storage for raw disk blocks.
Cached In-memory cache for files read from the disk.
SwapCached Memory that is present both in the main memory and in the

swap file.

Table 4.9: High-level memory attributes of /proc/meminfo. Source [22].

Attribute Description
Active Memory that has been used more recently and usually not

reclaimed unless absolutely necessary.
Inactive Memory which has been less recently used. It is more eligible

to be reclaimed for other purposes.
Dirty Memory which is waiting to get written back to the disk.
Writeback Memory which is actively being written back to the disk.
Slab In-kernel data structures cache.
SwapTotal Total amount of swap space available.
SwapFree Memory which has been evicted from RAM, and is temporar-

ily on the disk.
Mapped Files which have been mmaped, such as libraries.
Shmem Total memory used by shared memory (shmem) and tmpfs.

Table 4.10: Detailed memory attributes of /proc/meminfo. Source [22].
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File Content
block Contains one symbolic link for each block device that has been

discovered on the system.
bus Contains one subdirectory for each of the bus types in the kernel.
class Contains a single layer of further subdirectories for each of the

device classes that have been registered on the system.
dev Contains two subdirectories block/ and char/, corresponding,

respectively, to the block and character devices on the system.
devices Contains a file-systems representation of the kernel device tree.
firmware Contains interfaces for viewing and manipulating firmware-

specific objects and attributes.
fs Contains subdirectories for file-systems.

Table 4.11: Selection of entries in /sys. Source [24].

Table 4.11 shows a selection of the directories under the sysfs file-system
on our test system. Each directory contains several files and sub-directories
that provide information about a specific area of the system. For instance,
/sys/devices/system/cpu lists the available CPUs and includes CPU-related
information, /sys/devices/system/memory contains memory information of the
running processes and /sys/block lists the block devices.

As we can see, the /sys contains numerous files and directories for reporting
information and statistics about various resources. However, in the following we
focus on the /sys/block and /sys/fs/cgroup folder as they include statistics
that are valuable for us.

The /sys/block Directory

The /sys/block directory contains a symbolic link for each block device that has
been discovered on the system. Traditionally, the local system is installed at block
device named as sda, therefore /sys/block/sda exists and its content is shown
in Listing 4.8. Similar to other directories in the /sys, the /sys/block/sda

contains additional files and sub-directories. These entries report disk-statistics
(stat), list partitions (sda1 and sda2) or enable to read and modify the settings
of the block device (size, events poll msecs). As our goal is to monitor the
block device’s resource usage, we focus on the stat file that reports the disk usage
statistics.

1 alignment_offset discard_alignment hidden queue sda2 slaves

2 bdi events holders range sda3 stat

3 capability events_async inflight removable sda4 subsystem

4 dev events_poll_msecs integrity ro sda5 trace

5 device ext_range power sda1 size uevent

Listing 4.8: Entries in /sys/block/sda.

The /sys/block/sda/stat [25] file contains a single line of text consisting
of 11 or 15 integer values (see Listing 4.9), depending on the kernel version (15
integers values in kernel version 4.18 and above). Both /sys/block/sda/stat

and /proc/diskstats use the same information source, therefore the displayed
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values should not differ. More precisely, the displayed attributes and their or-
der in /sys/block/sda/stat are equivalent to the fields 4-14 (or 4-18) in the
/proc/diskstats (see Table 4.8).

1 55569 1892 3589002 240894 17896816 3481525 241751664 2244776984 0 34983505

2245012978

Listing 4.9: Content of /sys/block/sda/stat.

Even though, both files report the same statistics, the usage of the stat can
be advantageous over the /proc/diskstats if the goal is to monitor a particular
block device. While the /proc/diskstats reports statistic of all block devices,
the stat file is connected to only one device. Therefore, the stat file is smaller
in size, and it can be read and parsed faster.

Control Groups

Control groups (cgroups) are kernel feature that enable to hierarchically group
processes in order to either apply resource usage limitations or monitor their
resource usage. The cgroups interface is provided by the kernel and is acces-
sible via the virtual file-system called cgroupfs, which is usually mounted at
/sys/fs/cgroup.

The cgroups feature can be split into two parts. The cgroup kernel code
handles the grouping of processes and applies the group-level limits and settings
to each member of the group.

The second most important kernel component is the subsystem, often referred
as resource controllers or controllers. The goal of the subsystem is to modify the
processes’ behavior in the cgroup, apply resource limitations to them or monitor
the cgroup’s resource usage. Since the cgroups were introduced, various subsys-
tem have been implemented. For instance, subsystem for limiting the process’
CPU time or the total amount of memory the processes in the particular cgroup
can allocate.

There can be specified numerous cgroups for one resource controller. The
cgroups can be added hierarchically by adding and removing subdirectories in
the cgroup file-system. The limits and modifications set on any level of hierarchy
are valid for all subdirectories and therefore, for all lower levels in the hierarchy.
Based on this property, limits set at higher levels cannot be exceeded on any
descendant levels of the hierarchy.

Even though, the concept of cgroups provides a wide range of tools to modify
the group’s settings and to limit its resource usage, in the following we focus on
the property that enables to monitor the resource usage of particular cgroups.
Because each Docker-container is represented as a separate cgroup with a unique
ID, the container’s resource usage can be easily monitored by monitoring the
cgroup that matches the container’s ID.

Listing 4.10 shows the available resource controllers in our test system. To
emphasize that the particular cgroup represents a Docker-container, each of the
subsystems contains a directory named docker, where each subdirectory repre-
sents a running Docker-container. For instance, to access the total CPU usage of
a container, whose ID is d95a6cef3e44, one should read the cpuacct.usage file
at /sys/fs/cgroup/cpu,cpuacct/docker/d95a6cef3e44. As the Listing 4.10
shows, there are numerous subsystems for all type of resources. However, in
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the following we focus only on subsystems related to CPU, disk and memory
resources.

1 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 blkio

2 lrwxrwxrwx. 1 root root 11 Jul 10 18:47 cpu -> cpu,cpuacct

3 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 cpu,cpuacct

4 lrwxrwxrwx. 1 root root 11 Jul 10 18:47 cpuacct -> cpu,cpuacct

5 dr-xr-xr-x. 3 root root 0 Jul 10 18:47 cpuset

6 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 devices

7 dr-xr-xr-x. 3 root root 0 Jul 10 18:47 freezer

8 dr-xr-xr-x. 3 root root 0 Jul 10 18:47 hugetlb

9 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 memory

10 lrwxrwxrwx. 1 root root 16 Jul 10 18:47 net_cls -> net_cls,net_prio

11 dr-xr-xr-x. 3 root root 0 Jul 10 18:47 net_cls,net_prio

12 lrwxrwxrwx. 1 root root 16 Jul 10 18:47 net_prio -> net_cls,net_prio

13 dr-xr-xr-x. 3 root root 0 Jul 10 18:47 perf_event

14 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 pids

15 dr-xr-xr-x. 6 root root 0 Jul 10 18:47 systemd

16 dr-xr-xr-x. 5 root root 0 Jul 10 18:47 unified

Listing 4.10: List of the available subsystems.

CPU-related Subsystems: In our test system, the following subsystems are
available for limiting and monitoring the CPU resource usage: cpu, cpu,cpuacct,
cpuacct and cpuset. However, cpu and cpuacct are only symbolic links to
cpu,cpuacct.

The subsystem cpu,cpuacct provides accounted CPU usage for the grouped
processes. The accounted CPU usage is stored in multiple files, each representing
a different perspective. The cpuacct.stat file contains statistics of CPU time
(in USER HZ) spent by user-level and system-level tasks. The remaining files
prefixed with cpuacct.usage_ report the CPU time (in nanoseconds) spent by
tasks in this cgroup and the descendant groups. The difference between multiple
cpuacct.usage_ files is in the combination of perspectives they display. For
instance, the cpuacct.usage_percpu_user reports for each CPU the time spent
on user tasks, while the cpuacct.usage_percpu reports for each CPU the time
spent on both user and system tasks.

A more detailed description of the CPU-related files is available in the Docu-
mentation [26] and in the Linux manual page [27].

The cpuset subsystem [28] assigns a set of CPUs and memory nodes to set
of tasks. As it implies from the description, the subsystem does not report any
resource usage statistics that could be useful for our measuring framework. There-
fore, we skip the description of this subsystem.

Disk-related Subsystems: The blkio subsystem implements the resource
controller for block devices. It enables to apply various I/O limitations and to
monitor the block device’s resource usage by writing and reading the appropriate
files in the blkio directory.

File blkio.io_service_bytes enables to monitor the number of bytes trans-
ferred from/to the block device by the processes in the particular cgroup (see
Listing 4.11). In addition, the transferred data is counted separately for each
type of operation (read, write, synchronous and asynchronous). Each line in the
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file consists of four columns. The first two columns represent the device’s major
and minor number. They are followed by the name of the operation and the
accounted number of bytes.

1 8:0 Read 4763648

2 8:0 Write 524288000

3 8:0 Sync 529051648

4 8:0 Async 0

5 8:0 Total 529051648

6 Total 529051648

Listing 4.11: Sample of the blkio.io service bytes file of the sample Docker-
container.

The blkio.sectors file is similar to the blkio.io_service_bytes, however,
it is less detailed. The blkio.sectors file identifies each block device with their
major and minor number and includes a counter, that is increased every time a
sector is transferred from/to the disk device. The amount of transferred data can
be calculated by multiplying the number of transferred sectors with the sector
size (traditionally 512 B).

Beyond the amount of transferred data, the subsystem provides reports about
size of the I/O queue and the time spent by requests waiting in this queue. These
statistics are available in blkio.io_queued and blkio.io_wait_time files.

The previously described files report resource usage statistics of the local
cgroup. In order to monitor the descendant cgroups’ resource usage statistics, the
blkio subsystem contains files postfixed with the string _recursive. These files
show the same information as the non-recursive ones, but the statistics include
recursive resource usage of descendant cgroups.

Memory-related Subsystems: The memory subsystem is responsible for lim-
iting, modifying, and monitoring the processes’ memory, kernel memory, and
swap memory. Compared to the CPU-related subsystems, the memory subsystem
contains a relatively high amount of writable files that enable to apply multiple
kind of limitations. However, we focus on the files that report memory usage
statistics. One of these files is the memory.stat, which is shown in Listing 4.12.
When we compare its output with the previously described /proc/meminfo file,
we can see that they include multiple matching attributes. However, it also in-
cludes additional attributes, that are described in detail in the Documentation
[29]. Based on its content, the memory.stat file can be divided into two parts.
The first part (lines 1-17) reports values related to the processes in the local
cgroup. In the second part, values prefixed with total_ (lines 20-36), include the
sum of all descendant cgroups’ values.

Besides the memory.stat, the memory subsystem includes additional files re-
porting memory-related statistics. For instance, the memory.usage_in_bytes

and the memory.max_usage_in_bytes that expresses the processes’ current and
the maximum memory usage, respectively, during the lifespan of the container.

In our test system, we have maximized the memory usage at 500 MB of
the sample Docker-container. The memory limit can be verified inside form the
cgroup, by reading the memory.limit_in_bytes file. Every time the container
tries to exceed this memory limit, a counter is increased in the memory.failcnt

file and the memory will be reclaimed.
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1 cache 7225344

2 rss 475136

3 rss_huge 0

4 shmem 0

5 mapped_file 2838528

6 dirty 270336

7 writeback 135168

8 swap 0

9 pgpgin 55407

10 pgpgout 53543

11 pgfault 3993

12 pgmajfault 0

13 inactive_anon 0

14 active_anon 548864

15 inactive_file 2437120

16 active_file 4767744

17 unevictable 0

18 hierarchical_memory_limit 524288000

19 hierarchical_memsw_limit 1048576000

20 total_cache 7225344

21 total_rss 475136

22 total_rss_huge 0

23 total_shmem 0

24 total_mapped_file 2838528

25 total_dirty 270336

26 total_writeback 135168

27 total_swap 0

28 total_pgpgin 55407

29 total_pgpgout 53543

30 total_pgfault 3993

31 total_pgmajfault 0

32 total_inactive_anon 0

33 total_active_anon 548864

34 total_inactive_file 2437120

35 total_active_file 4767744

36 total_unevictable 0

37 recent_rotated_anon 2285

38 recent_rotated_file 1356

39 recent_scanned_anon 2285

40 recent_scanned_file 54479

Listing 4.12: Sample of the memory.stat file of the sample Docker-container.
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The memory subsystem includes additional files prefixed with memory.kmem

and memory.memsw that report the cgroup’s memory statistics from the perspec-
tive of the kernel memory, the sum of the process memory, and the swap memory,
respectively.

Summary of cgroups: The mechanism of control groups enables to limit and
monitor the resource usage of a particular Docker-container. Since, each container
is represented with a separate cgroup, the monitored resource usage statistics are
precise and do not include the resource usage of other containers running in
parallel.

The CPU-related cgroup (cpu,cpuacct) provides statistics about CPU time
spent on the user and the system processes. The statistics are not only displayed
as a total of all CPUs, but are further divided for each CPU. However, the CPU
time is represented in many ways, this is the only attribute reported by the sub-
system. We are missing additional attributes introduced in the Section 4.1.1 e.g.,
executed instructions, number of interrupts, and context-switches, that would
significantly improve the workload characterization.

In contrast with the CPU-related subsystems, the statistics provided by the
blkio subsystem include a wide range of attributes that cover the most important
disk concepts. In addition, the attributes are further divided by the type of the
operation (read, write, synchronous, and asynchronous). However, at the time
when we were analyzing the blkio subsystem, the Docker containerization tool
included a bug [30]. This bug prevented the blkio subsystem to accurately
measure the data transferred from/to the Docker-container, which resulted in
invalid statistics. Even though, the bug was fixed in the later version of the
Docker, we have had already implemented an alternative solution and collected a
significant amount of data that would be incompatible after the fix was applied.

The memory subsystem reports detailed statistics about the container’s mem-
ory usage. The statistics are similarly formatted as in the /proc/meminfo, thus
it is easy to process the collected data. Out of the presented subsystems, the
memory subsystem would be an ideal candidate as a data source in the measuring
framework.

Summary of /proc and /sys Interfaces

The presented files in /proc and /sys interface include all the necessary informa-
tion to extract the resource usage attributes displayed in various monitoring tools.
Therefore, monitoring the counter-based performance counters is fully available
for us, and the monitoring tools can be completely replaced with the presented
files. However, the available data include only the system-wide resource usage,
they can be still useful for the workload characterization and prediction of the
execution time. Although, the control cgroups provide more precise, container-
focused data that would be ideal for us, their usage must be discarded due to the
lack of CPU attributes and the implementation bug in the disk statistics.

Overall, the introduced resource usage monitoring files are ideal alternative of
the third-party monitoring tools. The proposed measuring framework can be used
to extract the resource usage information directly from the presented pseudo-files.
This custom implementation enables us to be independent from the restrictions
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of monitoring tools, and to fully utilize the potential of the available resource
usage information.

4.2.3 Profiling

Profiling is a principle that analyzes the target by gathering program events. A
wide variety of techniques - including hardware interrupts, code instrumentation,
operating system hook, and performance counters - can be used for data collec-
tion. From our perspective, the performance counters are the most significant
source of data, because they provide information about the resource usage pat-
tern. Modern CPUs are equipped with hardware performance counters that use
hardware logic to monitor events without the need of any active code. These
hardware performance counters are the set of special-purpose registers that can
be programmed to count particular hardware evens e.g., amount of CPU-cycles,
instructions, interrupts, etc. As the counters are physically located in the CPU,
their amount is highly restricted. For instance, our system supports 11 hardware
counters.

Depending on the implementation how program events are collected, profilers
can be divided into two groups: statistical and event-based.

Statistical profiling collects information by periodically sampling the target.
Sampling is usually executed at fixed rate, e.g., 100 Hz or 1000 Hz, however, it
is recommended to avoid sampling in the lockstep as it could lead to over- or
under-counting.

Event-based sampling uses non-timed hardware events e.g., cache-misses,
branch-instructions to profile programs. Several programming languages and
frameworks, for instance Java and .NET, include event-based profilers that pro-
vide callbacks to profilers for trapping various events e.g., class-load, class-unload,
object creation.

Statistical and Event-based Profilers

In this section we present both statistical and event-based profilers. We show how
they work and analyze, and how they could be used for profiling the containerized
applications’ resource usage e.g., CPU, disk and memory utilization. Table 4.12
includes a selection of statistical and event-based profilers.

Tool Description
OProfile Open-source statistical profiler and event counting

tool for Linux systems.
perf Performance analysis tool and profiler for Linux.
Intel VTune

Amplifier XE

Commercial application for software performance
analysis both for Microsoft Windows and Linux oper-
ating systems.

Microbenchmarking

Agent for Java

Multiplatform Java agent for high-precision mi-
crobenchmarking.

Table 4.12: Statistical and event-based profilers.
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The perf Tool: perf is a performance analyzer and profiler tool for Linux
that is capable for static and dynamic tracing using tracepoints, kprobes, and
uprobes [31]. Furthermore, the tool supports hardware performance counters,
tracepoints, and software performance counters. Despite of the wide range of
provided possibilities, perf is a lightweight tool that imposes low performance
overhead to the target.

The perf tool is included in the main Linux kernel and can be easily executed
by entering the perf command in the terminal. The particular action that the
tool should execute can be specified as a unique sub-command. Table 4.13 shows
a selection of the perf subcommands.

Subcommand Description
stat Run a command and gather performance counter statistics.
record Run a command and record its profile into perf.data.
report Read perf.data (created by perf record) and display the

profile.
annotate Read perf.data (created by perf record) and display anno-

tated code.
sched Tool to trace/measure scheduler properties (latencies).
top System profiling tool.

Table 4.13: Selection of perf subcommands.

Since, our goal is to collect the microservices’ resource usage, which is ex-
pressed by the performance counters. In the following, we focus on the stat

sub-command. Running the perf tool using the stat sub-command enables sta-
tistical profiling of the system, including user- and kernel-space. In addition, it
provides per-task, per-CPU, and also per-workload counters.

The basic usage of the perf stat is to run a command or attach to an already
running process and gather this particular process’s resource usage statistics.
Using the -d option, the output is extended by additional performance counters.

1 [root@cirrus-1 ˜]# perf stat -dp 23210 sleep 10s

2
3 Performance counter stats for process id ’23210’:

4
5 | 9742.783285 task-clock (msec) # 0.974 CPUs utilized

6 | 2119 context-switches # 0.217 K/sec

7 | 43 cpu-migrations # 0.004 K/sec

8 | 28 page-faults # 0.003 K/sec

9 | 34082431474 cycles # 3.498 GHz

10 | 45163531937 instructions # 1.33 insn per cycle

11 | 7751895914 branches # 795.655 M/sec

12 | 546218815 branch-misses # 7.05% of all branches

13 | 10830972076 L1-dcache-loads # 1111.692 M/sec

14 | 659391188 L1-dcache-load-misses # 6.09% of all L1-dcache hits

15 | 52488316 LLC-loads # 5.387 M/sec

16 | 6175391 LLC-load-misses # 11.77% of all LL-cache hits

17
18 10.001135353 seconds time elapsed

Listing 4.13: Extended per-process resource usage statistics of the main workload.
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Listing 4.13 shows the collected CPU statistics of the main workload from the
sample application. The collected data represents a 10-second-long interval. The
output includes important metrics, such as the amount of context-switches, CPU-
cycles, or processed instructions. Furthermore, the statistics not only display the
counted values, but also place them into context. For instance, the statistics
include the percentage of branch-misses or the IPC (instructions per cycles),
which is the inverse of the CPI (cycles per instructions) introduced in Section
4.1.1.

Another type of usage of the perf stat is to collect the system-wide resource
usage. This type of collection does not focuses only on a particular process but
also measures the CPU usage throughout the system. The system-wide resource
usage statistics can be enabled by the -a option.

1 [root@cirrus-1 ˜]# perf stat -ad sleep 10s

2
3 Performance counter stats for ’system wide’:

4
5 | 40005.005389 cpu-clock (msec) # 4.000 CPUs utilized

6 | 44000 context-switches # 0.001 M/sec

7 | 672 cpu-migrations # 0.017 K/sec

8 | 8120 page-faults # 0.203 K/sec

9 | 105325825796 cycles # 2.633 GHz (88.34%)

10 | 102657350959 instructions # 0.97 insn per cycle (88.34%)

11 | 18467676168 branches # 461.634 M/sec (88.34%)

12 | 1011724832 branch-misses # 5.48% of all branches (88.35%)

13 | 25060521512 L1-dcache-loads # 626.435 M/sec (85.43%)

14 | 1880647385 L1-dcache-load-misses # 7.50% of all L1-dcache hits (85.43%)

15 | 477752989 LLC-loads # 11.942 M/sec (85.43%)

16 | 171217650 LLC-load-misses # 35.84% of all LL-cache hits (85.42%)

17
18
19 10.001338462 seconds time elapsed

Listing 4.14: Extended system-wide resource usage statistics of the sample appli-
caion.

Listing 4.14 shows the system-wide CPU statistics, including both main and
background workloads of the sample application.

Comparing the per-process and the system-wide results, we can see that they
measure the same performance counters, up to one exception. The per-process
statistics measure the task-clock, which refers to the amount of time that the
CPU spent executing the process. The system-wide statistics, however, measure
the cpu-clock that expresses the total CPU time throughout the available CPUs.

As we can see, the difference between the values of per-process and system-
wide counters is significant. While the per-process resource usage statistics
present only the resource usage of the main workload, the system-wide resource
usage statistics include the resource usage of all three workloads. Therefore, the
same peaks and changes in the system-wide scale are less noticeable than in the
per-process scale. As a result, the per-process statistics are more suitable for the
data analysis and prediction due to the more detailed and precise output.

Besides the default counters, the perf stat enables the user to specify the
counters to collect. The available counters can be listed by the perf list com-
mand (see Listing 4.15). It is important to note that the list of counters varies

51



for each system, as their availability depends on many factors e.g., CPU-type,
OS kernel, installed libraries, etc. The particular events can be specified using
the -e option. Listing 4.16 shows the output of the specified hardware counters.

Moreover, perf stat provides support for specifying the counters by their
hexadecimal values if their descriptive names do not exist. However, if one would
like to examine these less-known counters, the hexadecimal counters can be found
in the CPU’s manual.

1 $ perf list

2
3 branch-instructions OR branches [Hardware event]

4 branch-misses [Hardware event]

5 bus-cycles [Hardware event]

6 cache-misses [Hardware event]

7 cache-references [Hardware event]

8 cpu-cycles OR cycles [Hardware event]

9 instructions [Hardware event]

10 ref-cycles [Hardware event]

11 ...

12 L1-dcache-load-misses [Hardware cache event]

13 L1-dcache-loads [Hardware cache event]

14 L1-dcache-stores [Hardware cache event]

15 L1-icache-load-misses [Hardware cache event]

16 LLC-load-misses [Hardware cache event]

17 LLC-loads [Hardware cache event]

18 LLC-store-misses [Hardware cache event]

19 LLC-stores [Hardware cache event]

20 branch-load-misses [Hardware cache event]

21 branch-loads [Hardware cache event]

22 ...

Listing 4.15: Selection of the available performance counters.

1 $ perf stat -e cycles,instructions,cache-references,cache-misses,bus-cycles

tar -czf archive.tar.gz ./file_to_tar

2
3 Performance counter stats for ’tar -czf archive.tar.gz ./file_to_tar’:

4
5 | 19882069212 cycles

6 | 48039909027 instructions # 2.42 insn per cycle

7 | 289922744 cache-references

8 | 18889870 cache-misses # 6.515 % of all cache refs

9 | 136334345 bus-cycles

10
11 5.380559886 seconds time elapsed

12
13 5.227331000 seconds user

14 0.625385000 seconds sys

Listing 4.16: Resource usage statistics of the particularly chosen events.

Analysis of the perf Tool: Overall, perf is a highly accurate low-overhead
tool that is ideal for monitoring a wide range of performance counters that can be
specified by the user. Beyond providing the system-level statistics, it is capable
to monitor a particular process. Therefore, it is ideal for precisely measuring the
process’s resource usage.
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Similar to the vmstat and iostat tools, perf is also an independent appli-
cation that is executed in parallel with the microservice in order to collect its
resource usage. Unfortunately, this independence prevents the tight interconnec-
tion between the microservice and the monitoring tool. Furthermore, the perf

tool’s statistics are limited by the CPU’s hardware counters. If the user exceeds
the number of available counters, the measured values are going to be multiplexed,
which leads to incorrect result.

Microbenchmarking Agent for Java

Microbenchmarking Agent for Java (MAFJ) [32] is a high-precision multiplatform
library for monitoring per-process resource usage. It uses the Java Virtual Ma-
chine Tool Interface (JVMTI) to create software agents enabling to monitor Java
applications. The agent’s basic features include reporting major JVM7 events
such as GC8 and JIT9 runs, collecting performance counters and accurate time
through JNI10. Furthermore, the agent can collect any event supported by Per-
formance Application Programming Interface (PAPI) [33] if the agent is built on
a Linux machine with available libpapi package [34]. MAFJ provides a generic
interface, which allows the software developer to bind the measurement to a spe-
cific thread and its inherited threads. Therefore, the agent can be used to collect
detailed information about a particular microservice.

The library is available for download from the project’s GitHub page [32]. To
be able to use the agent, one will need to compile the source code accordingly to
the manual.

1 list-events:

2 [java] JVM:compilations

3 [java] PAPI:PAPI_L1_DCM

4 [java] PAPI:PAPI_L1_ICM

5 ...

6 [java] PAPI:perf::INSTRUCTIONS

7 [java] PAPI:perf::PERF_COUNT_HW_CACHE_REFERENCES

8 [java] PAPI:perf::CACHE-REFERENCES

9 [java] PAPI:perf::CACHE-MISSES

10 [java] PAPI:perf::PERF_COUNT_HW_BRANCH_INSTRUCTIONS

11 [java] PAPI:perf::BRANCH-INSTRUCTIONS

12 [java] PAPI:perf::BRANCHES

13 [java] PAPI:perf::BRANCH-MISSES

14 [java] PAPI:perf::BUS-CYCLES

15 [java] PAPI:perf::REF-CYCLES

16 ...

17 [java] SYS:forced-context-switches

18 [java] SYS:thread-time

19 [java] SYS:thread-time-rusage

20 [java] SYS:wallclock-time

21 [java] Found 492 events.

Listing 4.17: Selection of supported events.

7Java Virtual Machine
8Garbage collection
9Just-In-Time

10Java Native Interface
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Similar to the perf tool, the MAFJ supports to print the list of events that can
be monitored. This can be done either by running the ListEvents demo program
or executing the ant list-events command. Listing 4.17 shows a selection of
the available events.

1 private final int LOOPS = 1;

2 /* Defining the set of events. */

3 private final String[] EVENT_SET = {

4 "PAPI:perf::REF-CYCLES",

5 "PAPI:perf::INSTRUCTIONS",

6 "PAPI:perf::CACHE-REFERENCES",

7 "PAPI:perf::CACHE-MISSES",

8 "PAPI:perf::BRANCH-INSTRUCTIONS",

9 "PAPI:perf::BRANCH-MISSES",

10 "PAPI:PAPI_L1_DCM"};

11
12 public void processBenchmark() {

13 /* We should have LOOPS measurements and we want to record these EVENTS for

this thread including the inherited threads.*/

14 int id = Measurement.createEventSet(LOOPS, EVENT_SET,

Measurement.THREAD_INHERIT);

15
16 for (int i = 0; i < LOOPS; i++) {

17 /* Start the measurement. */

18 Measurement.start(id);

19
20 /* The code to be measured. */

21
22 /* Stop the measurement. */

23 Measurement.stop(id);

24 }

25
26 /* Get the results (available as Iterable<long[]>). */

27 BenchmarkResults results = Measurement.getResults(id);

28 /* Either print them in CSV (to be later processed)... */

29 BenchmarkResultsPrinter.toCsv(results, System.out);

30
31 /* Freeing the allocated memory. */

32 Measurement.destroyEventSet(handle);

33 }

Listing 4.18: Measuring per-process resource usage. Based on [32].

The basic usage of the agent is shown in the Listing 4.18. Being a library, its
usage is different from the tools presented so far. In this case, the benchmarking
agent is directly referenced from the source code, and functions as a wrapper
that encapsulates the measured process. More precisely, to measure the main
workload’s resource usage from the sample application, the microbenchmarking
agent is used for wrapping around the main workload’s source code. Because the
implementation details are out of the scope of this chapter (see Chapter 8 for
more details), we only describe the main principle of the process of measurement
that consists of the following steps:

1. Initializing the number of loops to specify the number of repetitions the
measurement will be executed.

2. Defining the set of events to be measured.
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3. Binding the benchmarking agent to the current thread including its inher-
ited threads, setting the amount of loops and the set of events to measure.

4. Creating the measurement loop, where the target code is enclosed within
functions that start and stop the measurement.

5. Collecting the results and printing them to the output.

6. Unbinding the microbenchmarking agent from the measured thread.

Although, we omit the implementation details, it is important to highlight the
Measurement.THREAD INHERIT flag. The presence of this flag enables to collect
the inherited threads’ resource usage, which results in a more detailed and precise
measurement.

Analysis of MAFJ: The result of the measurement is shown in Listing 4.19.
Each column represents an event from the defined event set (the order is the
same as in Listing 4.18), while the rows correspond to iterations. Because the
measurement focuses on a particular process, the values present the CPU usage
of only the main workload of the sample application. Consequently, the produced
data is less noisy, captures more precisely the target’s behavior, and therefore it
helps to create a more accurate prediction.

1 9874508520; 13847251842; 108785100; 4843105; 2215065165; 214881834; 162961634;

2 9899974716; 13847310184; 111069038; 5851337; 2215087977; 215272607; 162301031;

3 9866418222; 13847277284; 106544823; 4588890; 2215073673; 214933800; 162517581;

4 9877898640; 13847282407; 106758957; 4988304; 2215077432; 214950611; 162021795;

5 9866506990; 13847298412; 106347696; 4629453; 2215080971; 214840031; 162690719;

6 9896665626; 13847226738; 108782774; 5402074; 2215061370; 215438720; 162790995;

7 9891971726; 13847252658; 109820639; 5223037; 2215065575; 215514084; 162644033;

8 9870721280; 13847342027; 106387796; 4544514; 2215097397; 215238170; 162579799;

9 9876824080; 13847346109; 105357926; 5011882; 2215096735; 215229326; 162825262;

10 9873285332; 13847259996; 105954467; 4614835; 2215070412; 215328820; 162242379;

11 9905868006; 13847229445; 110599974; 5682945; 2215059715; 215587201; 163204394;

12 9881382492; 13847326454; 109841290; 5000903; 2215092192; 214910547; 162607744;

13 9860877668; 13847348001; 103653493; 4500625; 2215097094; 214896044; 162360512;

14 9876247088; 13847260915; 106374337; 4895446; 2215070364; 214960674; 162141149;

15 9883302538; 13847297436; 105827740; 5015335; 2215081354; 215255363; 162763371;

16 9869380562; 13847291112; 104405368; 4751866; 2215080247; 214952893; 161866045;

17 9868724584; 13847271794; 104940728; 4939874; 2215071785; 214891550; 162218421;

18 9852935560; 13847311267; 101869403; 4450543; 2215087045; 214758622; 162185580;

19 9867942024; 13847249721; 104443911; 4850647; 2215064394; 214945984; 162419363;

20 9873521122; 13847351100; 108002658; 4875771; 2215099943; 214998276; 162808112;

21 9854830786; 13847343723; 102226972; 4587510; 2215095986; 214746630; 163405992;

Listing 4.19: Maasuring per-process resource usage. Based on [32].

As we can conclude from the description, the MAFJ is a low-overhead agent
that supports our main requirements. The library provides an easy-to-use mea-
suring interface, which can be directly bound to the target process, and therefore
enables to accurately measure a wide-range of supported events.

Although it is an effective tool, it faces with similar problem as the previously
presented perf tool: the amount of hardware counters is physically limited by
the CPU. This forces the user to wisely select the appropriate resource counters
to measure.
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4.2.4 Tracing

Performance analysis focuses on the summary of discreet events that operate the
system. However, the important details are often hidden in individual events,
therefore, it is important to be able to inspect each event individually. Often,
performance issues can be solved by analyzing the attributes of the inspected
events, e.g., time-stamp to find out where the high latency comes from.

Tracing is a principle of the data collection that collects per-event data for
analysis. In contrast with counters, tracing is not enabled by default, because it
imposes a relatively high performance overhead, which could affect the behavior
of the measured microservice. In addition, frequent events generate increasing
amount of data that requires large storage.

A well-known implementation of tracing is the system logging that is tradi-
tionally enabled by default on all operating systems. Logging is a low-overhead
type of tracing that focuses on less frequent events, like warnings and errors.

Tracing can be divided into two subtypes: static and dynamic tracing. Static
tracing traces a small set of instrumentation points located in the OS kernel and
other software. However, it provides only limited visibility of particular events.
Dynamic tracing enables to place instrumentation point anywhere in the system,
which produces a more detailed view of the events. Therefore, it provides data
for in-depth analysis that helps to better understand the system behavior.

Even-though, tracing is ideal for both system-wide and per-process analysis,
the underlying principle and the provided dataset is not suitable for our case.
Our goal is to find a monitoring mechanism producing such an output that can
be used to characterize the overall behavior of the submitted microservice. Be-
cause tracing focuses on particular events inside the given software, the type of
the produced data is not sufficient to characterize the overall behavior of the mi-
croservice. Furthermore, instrumenting and analyzing the microservices in detail
is contrary to the concept of handling microservices as black-boxes.

4.3 Summary

From the description of various monitoring tools, it is apparent that each tool
is designed for a particular area: in some cases the system-wide monitoring is
preferred over the per-process, or counters are preferred over profiling. Thus,
there is no universal solution that would be suitable for every situation. In
order to be able to monitor the attributes of the system resources, we decided to
combine the observability types and the methodologies.

Within the counters methodology, we analyzed the presented third-party mon-
itoring tools and the pseudo-files provided by the /proc and the /sys interface.
As a result of the analysis, we decided to select the pseudo-files. Their advantage
resides in the ability that enables any user-land application to read the content of
the files. This simplifies their integration into the measuring framework. Further-
more, the provided data can be easily processed and transformed into any kind
of representation that will be further required by the prediction process. The
disadvantage of the presented statistics files is in reporting system-wide resource
usage, therefore the collected data will not be precise and focused on a particular
process.
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Next, we analyzed the event-based profiling. After comparing and analyzing
the perf profiling tool and the MAFJ microbenchmarking agent, we decided to
select the latter one. Due to its architecture, the agent can be easily integrated
into the measuring framework. Moreover, the agent supports monitoring various
events of the selected thread including its inherited threads. This ensures a precise
measurement that focuses only on the selected microservice. The weakness of the
microbenchmarking agent resides in the CPU hardware limitations that restrict
the number of hardware counters that can be used to collect the hardware events.

In conclusion, the selected tools include both system-wide and per-process
observability, and both counters and event-based profiling methodology. This
combination of various observability types and methodologies results in a high-
quality dataset that is required for characterizing the microservices.
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5. Deployment Framework

In this chapter, we focus on the description of deployment framework that is re-
sponsible for executing the submission process in order to assess the microservice
resource usage and to determine if it can be admitted to the cloud. The submis-
sion process is a sequence of predefined, but configurable steps that support the
following concepts:

• Automation: Starts assessing the microservices at the time of submission.
The result is a faster submission process, compared to manual execution.
The automation is possible thanks to the predefined steps, which are con-
figurable by their input parameters.

• Repeatability: Due to the fact that the submission process consists of
fixed steps, and is executed on the same hardware, the results are compa-
rable to each other and are reproducible at any time.

• Distributed measurement: Since the steps are fixed and the hardware
is the same for all agents, the measurement of various workloads can be
easily distributed among the measuring agents.

• Support for black-boxiness: The predefined steps enable to design a
common microservice interface. This interface is then used by a perfor-
mance assessment framework to execute and measure the microservices
without needing to know concrete implementation of the microservice.

The concept of solution is already shown in Section 3.3. However, in this
chapter, we provide a more detailed view of the objects and main steps in the
submission process. As shown in Figure 5.1, the submission process includes one
actor, three different object types, and three main steps. The main steps are
grouped into reference fragments to make the sequence diagram more compact,
and to give the reader a better understanding about the main phases of the
submission process. In the following sections, we show a more detailed sequence
diagram of each phase and explain the main steps.

5.1 Task Generation

This section is split into multiple parts, as shown in Figure 5.1. The first part
presents the detailed steps of the Task generation phase. The second part demon-
strates samples of the requirements specification and the batch configuration files,
and explains their structure. The third part of this section presents how the re-
quirements specifications are submitted into the system. The next part presents
how the agents are managed, how the submission tasks are distributed among
them, and how the measurement process can be monitored.

5.1.1 Main Steps

The detailed steps of the Task Generation phase are shown in Figure 5.2. First,
the microservice developer connects to the orchestrator and submits the require-
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loop

opt

Developer
Orchestrator

batch != null

batch_queue != null

Predictor

restart()

Agent

startService()

ref

Evaluation and Prediction

ref

Performance Assessment

register()

return acknowledgement

ref

Task Generation

unregister()

return acknowledgement

return batch

getBatch()

Figure 5.1: High-level view of the submission process.
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sd Task Generation

Batch
Generator

Developer

Orchestrator

submitRequriementsSpecification(reqSpec)

return acknowledgement

splitDefinitions(reqSpec)

enqueue(batchConfigs)

<<create>>

generateBatchConfigs(microserviceDefinition)

return generated batch configs

<<destroy>>

Figure 5.2: Detailed view of Task Generation phase.

ments specification. Then the orchestrator parses the requirements specification
using the following steps:

• The orchestrator splits the requirements specification into microservice def-
inition and execution time requirements.

• The orchestrator generates batch configurations from the microservice defi-
nition. The batch configurations are generated by a specific tool, the Batch
Generator. The Batch Generator accepts the microservice definition and
uses it to generate batch configurations. Batch configurations include mul-
tiple batches that represent a particular workload combination.

• The orchestrator parses the batch configurations into distinct batches and
loads them into the execution queue. Afterwards, the batches are waiting
there until they are not assigned to an agent asking for a new batch.

5.1.2 Requirements Specification and Batch Configura-
tion

The requirements specification is an input file submitted by the microservice
developer. It contains the definition of the microservice and the requirements
of their execution time. However, the microservice definition specifies the at-
tributes of the microservice, it misses other attributes required by the measuring
agents. Therefore, the microservice definition is further processed by the Batch
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1 requirements_specification:

2 - specification:

3 microservice:

4 microservice_id: AVL

5 microservice_name: avl_tree

6 microservice_class_name: com.microservices.trees.Microservice

7 microservice_class_path: ./microservices/microservice_trees.jar

8 microservice_params: avl

9 requirements:

10 - time: 10000

11 probability: 100

12 - time: 9500

13 probability: 70

14 - specification:

15 microservice:

16 microservice_id: A

17 microservice_name: sunflow

18 microservice_class_name: com.microservices.scalabench.Microservice

19 microservice_class_path: ./microservices/microservice_scalabench.jar

20 microservice_params: sunflow --no-validation

21 requirements:

22 - time: 8000

23 probability: 90

24 - time: 6500

25 probability: 75

Listing 5.1: Example of requirements specification.

Generator, which uses it to generate batch configuration. The batch configura-
tion precisely defines all attributes of the measurement process, and therefore it
can serve as an input for the measuring agents.

The requirements specification and batch configuration files are written in
YAML data-serialization language, because it is easy to read and write for any
microservice developer. Furthermore, thanks to its popularity, there exists a sig-
nificant amount of libraries for well-known programming languages that provide
a simple way for parsing and generating YAML files.

Requirements Specification

Listing 5.1 shows an example of the requirements specification file. The require-
ments specification file includes one or more specification nodes. Each node
represents a combination of a microservice definition and the corresponding exe-
cution time requirements.

Definition of microservice. Contains attributes essential for executing the
microservices. These include the ID and the name of the microservice that help
to identify the microservice. Furthermore, the definition includes the name of the
test-point, path to the executable file and the command-line arguments.

Definition of requirements. Contains attributes that define the require-
ments over the microservice execution time. There can be many requirements
assigned to one microservice. Each requirement includes time and probability

attributes. The time attribute defines the maximum length of the microservice
execution time in milliseconds. The probability attribute defines the percent-
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age of the cases where the execution time will be less than or equal to the time
specified in the time attribute.

Batch Configuration

Listing 5.2 shows an example of the batch configuration file. In this section
we explain the idea of each segment. For detailed description of each attribute
please see Appendix A.1.

Definition of batch: The batch configuration file is composed of batch

nodes. Each batch node represents a set of workloads that will be assigned to
one agent. For each batch node, it is mandatory to include at least one workload–
the main workload. The main workload is the microservice itself, that is intended
to be measured. For more information about the workloads, please see Section 5.2.

Definition of tasks: Each batch node includes one or more task defini-
tions, which are essential for assessing the microservice’s behavior. We distinguish
three types of tasks: initial, microservice and final task (denoted as init task,
microservice tasks and final task, respectively). The presence of initial and
final tasks are optional, however, the microservice task must be included in each
batch node.

The concept of initial task is to prepare the environment where the microser-
vice will be executed. In this particular case, the initial task is responsible for
building the Docker image, including the assets e.g., libraries, runtime environ-
ment, input resources, etc. required to execute and measure the microservice.

The initial task definition is followed by the definition of microservices. As the
name implies, it defines the attributes of the microservices that will be executed
and measured. The attributes are gathered into multiple logical groups according
to their domain.

The first group contains attributes essential for executing the microservices
(lines 12-14). These attributes are already covered in the description of require-
ments specification. The next group of attributes (lines 15-17) focus on the
settings of the measuring framework. The attributes enable or disable the data
collection, set whether the current workload is the main one and determine the
duration of the measurement. The final group comprises the environment-related
attributes (lines 18-28). The attributes listed here determine both the container-
related settings e.g., name of the container or the container image tag, and the
required constraints e.g., container’s hardware limitations, JVM’s software limi-
tations.

The task definitions end with the definition of the final task. In our case, the
final task ensures that the collected data is compressed into a zip archive and is
sent to the orchestrator.

Although, the example shows a specific realization of the initial and the final
tasks, the user is free to change their content. The tasks are allowed to include
any kind of other attributes, however, the id and the def type attributes are
mandatory. The value of the def type attribute defines the task definition type,
which determines the type of the parser required by the agent to parse the defini-
tion. Therefore, it is allowed to change the content of the initial or the final task
definition, however, it requires to implement a new parser that is able to parse
the modified definition.
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1 configs:

2 - batch: batch--A-F_gc_no_heap_cpu1

3 init_task:

4 id: BUILD

5 def_type: build

6 dockerfile_path: /image_definitions/

7 image_tag: microservice_image

8 microservice_tasks:

9 - id: MS0

10 def_type: microservice

11 microservice_name: sunflow

12 microservice_class_name: com.microservices.scalabench.Microservice

13 microservice_class_path: ./microservices/microservice_scalabench.jar

14 microservice_params: sunflow --no-validation

15 collect_data: true

16 main: true

17 run_duration: 12m

18 container: maincont

19 image: microservice_image

20 docker:

21 options:

22 - option: --cpus=1

23 java:

24 id: gc_no_heap

25 options:

26 - option: -XX:+PrintGCTimeStamps

27 - option: -Xloggc:/tmp/gc.log

28 - option: -XX:+PrintGCDetails

29 - id: MS1

30 def_type: microservice

31 microservice_name: h2

32 microservice_class_name: com.microservices.scalabench.Microservice

33 microservice_class_path: ./microservices/microservice_scalabench.jar

34 microservice_params: h2 --size large --no-validation

35 collect_data: false

36 main: false

37 run_duration: 100m

38 container: h2cont1

39 image: microservice_image

40 docker:

41 options:

42 - option: --cpus=1

43 java:

44 id: gc_no_heap

45 options:

46 - option: -XX:+PrintGCTimeStamps

47 - option: -Xloggc:/tmp/gc.log

48 - option: -XX:+PrintGCDetails

49 final_task:

50 id: SEND

51 def_type: send

52 commands:

53 init_command: BUILD

54 microservice_commands: MS0 MS1

55 final_command: SEND

56 runs: 5

Listing 5.2: Example of batch configuration.
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Definition of commands: Task definitions are followed by the definitions
of commands. The command definition is an assignment, that assigns the task
definition to the corresponding command. Similar to task definitions, there are
three types of command definitions: init command, microservice commands and
final command. For the init command and the final command, the user can
assign one task definition at most. If the user does not assign any initial or
final task, the null definition should be assigned to the corresponding command
definition. For the microservice commands, it is mandatory to assign at least
one microservice task definition. Furthermore, it is allowed to assign multiple
microservice definitions, since the microservices are executed in parallel within
the microservice commands.

The commands are executed sequentially, in a predefined order. Initially, the
initial task is executed. If the task finishes successfully, it is followed by the
microservice tasks. At the end, the final task is executed. Whenever a task fails,
the submission process terminates immediately and the remaining tasks will not
be executed.

Definition of the number of runs: The batch configuration is terminated
with the run key. The key defines the amount of iterations the batch and the
defined tasks will be repeatedly executed. For more details about repeated exe-
cution, please see Section 5.2.

5.1.3 Orchestrator

The orchestrator ensures the communication among the microservice developer,
the measuring agents, and the predictor.

In order to be able to exchange up-to-date information during the communi-
cation, the orchestrator has to supervise the state of every batch and the con-
nected agents within the deployment framework. Therefore, the orchestrator is
responsible for managing the queue of available batches and the measuring agents.
Furthermore, the orchestrator controls the distribution of the batches and their
assignment to measuring agents.

To prevent collisions during batch distribution among the agents, the orches-
trator applies the following rules when assigning batches to agents. Each batch
can be assigned to one agent at once. After a batch is assigned to an agent, all
the subsequent iterations of that batch will be executed on the same agent. If
any iteration of the measurement fails, the batch is marked as failed and will not
be assigned to any agent anymore. Besides assigning the batches to agents, the
orchestrator also provides the ability to stop the execution of a running batch
forcefully. If the batch is stopped forcefully by the orchestrator, it is marked as
waiting and is reset to the initial state. Later, the batch can be assigned to any
agent that asks for a new batch to execute.

By default, the orchestrator communicates with the developer and the measur-
ing agents via REST API. Besides that, our implementation provides an optional
command-line user interface for the developer to interact with the orchestrator.
Listing 5.3 and Listing 5.4 show sample usages of the command-line interface,
while the REST API is described in more detail in Chapter 8.

The command-line-like user interface makes it simple to monitor the current
state of the batches and the measuring agents. Furthermore, the user inter-
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face provides a simplified management tool that enables the user to manage the
batches and the agents. For instance, the management tool supports adding and
removing batches, or adding batches into groups and assigning these groups to
a particular set of agents that execute batches only from that group. Regarding
the management of the agents, the batch execution process can be suspended
and later resumed or stopped forcefully. If the batch execution process is stopped
forcefully, the agent does not ask for more batches.

Besides monitoring and managing the batch execution, the orchestrator also
communicates with the predictor and manages the evaluation of the collected
data. After the execution of the submitted batches finishes, the orchestrator
is responsible for passing the collected dataset along with the submitted time
requirements to the predictor and propagating the result of the prediction to the
microservice developer.

1 orchestrator >lsb

2 singles

3 -----------------------------------------------------------

4 batch--CYPHERD_gc_no_heap_cpu1 BatchState.RUNNING 2 of 5

5 batch--AVL_gc_no_heap_cpu1 BatchState.FAILED 0 of 5

6 batch--RB_gc_no_heap_cpu1 BatchState.RUNNING 3 of 5

7 batch--FLOYD_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

8 batch--ROD_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

9 batch--EGG_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

10 batch--FACE_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

11
12 doubles

13 -----------------------------------------------------------

14 batch--FLOYD-AVL_gc_no_heap_cpu1 BatchState.RUNNING 1 of 5

15 batch--ROD-SORTD_gc_no_heap_cpu1 BatchState.RUNNING 4 of 5

16 batch--EGG-CYPHERD_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

17 batch--FACE-PDFD_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

18 batch--FACE-RB_gc_no_heap_cpu1 BatchState.WAITING 0 of 5

19
20 triples

21 -----------------------------------------------------------

22 The batch queue is empty!

Listing 5.3: Grouped batches.

1 orchestrator >lsa

2 cirrus-2 singles 10.10.54.3:50000 batch--CYPHERD_gc_no_heap_cpu1 running

3 cirrus-3 singles 10.10.54.4:50000 batch--RB_gc_no_heap_cpu1 restarting

4 cirrus-4 doubles 10.10.54.5:50000 batch--FLOYD-AVL_gc_no_heap_cpu1 running

5 cirrus-5 doubles 10.10.54.6:50000 batch--ROD-SORTD_gc_no_heap_cpu1 running

6 cirrus-6 triples 10.10.54.7:50000 No batch running

7 cirrus-7 triples 10.10.54.8:50000 No batch stand_by

8 cirrus-8 triples 10.10.54.9:50000 No batch stand_by

Listing 5.4: List of available agents and the assigned batches.
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5.2 Measurement Process

5.2.1 Prerequisites

Before we present the measurement process in more detail, we first describe the
most important properties and design decisions that we have made.

Workload Combinations

To make our measurement and prediction that reflect the real-life conditions
precisely, we are going to execute the submitted microservice in a single machine
with various colocated workloads. Therefore, we design our test scenarios in such
a way, that they measure the microservice not only as a single instance running
on a particular server, but also with a combination of multiple microservices. The
selection process of the combined microservices is covered in Chapter 7.

For easier orientation, we divide the microservices into two groups during
the measurement process. The first group includes the submitted microservice
only. We are going to refer this microservice as the main microservice. The
second group includes the other microservices running on the same machine. We
are going to refer this group of microservices as background microservices. The
naming also expresses the importance of the microservices. Even though, both
the main and the background microservices will be executed in parallel, the data
collection will only be focused on the main workload.

Repetitive Measurement

One of the most straightforward way to improve the predictor’s accuracy is to pro-
vide a large dataset that covers a wide application domain. This large dataset can
be built from repeated execution of the submitted microservice that is exercised
both alone and with various combinations of colocated workloads. The repetition
of execution enables to compensate the short execution time of the microservices
(up to 12 seconds in our case), therefore it helps to eliminate the effect of one-off
events i.e., running service in the background, network event, etc. and runtime
environment peculiarities occurring during the measurement process. The more
we understand the runtime environment’s behavior, the more we can fine-tune
the data collection process, which results in a more consistent dataset. In the
following sections, we present the issues occurred during the tuning process and
the solutions we provided for them.

Warm-up: The first issue associated with the runtime environment is related
to the Java application achieving its steady state. The application performance
is often influenced at the startup by various one-off events that slow down the
execution and prevent the application from providing sustainable performance.
In order to accomplish the steady state, these one-offs need to be eliminated
during the so-called warm-up phase. In Java-based performance experiments,
the warm-up phase includes two major aspects: class loading and just-in-time
compilation [35]. The warm-up process can be enhanced by various configurations
that enable better optimization. However, a common criterion for a warmed-up
application is a sufficiently high number of iterations the particular performance-
aware method was invoked.
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Figure 5.3: Iteration-restricted measurement process.
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Figure 5.4: Time-restricted measurement process.
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In this thesis, we refer to the steady application state as the application is
warmed-up, and we refer to the state where the application does not provide
sustainable performance as the application is cold-out.

During the design and development of the thesis, we have experimented with
various implementations for keeping the application warmed-up.

In our first attempt, we separated the microservice measurement process into
two phases (warm-up phase and measurement phase) and executed a predefined
amount of iterations in both phases (see Figure 5.3). The original idea was to
execute the phases in parallel in case of colocated workloads - do not start the
measurement phase until the warm-up phase is not finished on all workloads.
The only difference between the two phases is the enabled data collection in the
measurement phase for the main workload. Based on the results of our analysis,
we have decided to execute 30 iterations in warm-up phase and 50 iterations in
measurement phase for both the main workload and the background workloads.
This concept worked well for workloads with matching execution time. However,
when the execution time of workloads did not match, the faster microservices
(shorter execution time) were suspended after their warm-up phase and were
kept waiting for the slower microservices (longer execution time) to finish. This
caused the faster microservices to cold out and therefore, the first few iterations
of the measurement phase provided unstable results.

Due to these issues, we have decided to focus on the total length of the ex-
ecution instead of the prescribed amount of iterations (see Figure 5.4). This
implementation does not distinguish the warm-up and the measurement phases
of the microservices, but considers the entire execution as a single measurement
phase, which is only limited by the execution time. Therefore, the data collection
of the main microservice is active since the beginning of the execution. Based on
the experiments that we have carried out with various lengths of the execution
time, we have decided to set the execution length to 12 minutes. This time in-
terval is long enough to collect multiple iterations of long-running microservices.
For instance, it gives 60 iterations of a 12 second-long microservice.

The latter solution (time-restricted) offers several advantages over the former
one (iteration-restricted). Thanks to the continuous data collection started at
the beginning of the execution, we can use the collected data to determine when
the application is already warmed-up. This allows us to dynamically select the
amount of iterations that are used for setting up the model in the prediction
process. The dynamic data selection is a big benefit compared to the iteration-
restricted solution, were the amount of collected data was previously fixed.

Restarting the Measuring Agent: Modern computers consists of highly
complex hardware and software components. Execution of a non-trivial operation
can be affected by various factors. We distinguish frequently occurring, but less
significant factors caused by the non-determinism in the execution, and rarely
occurring but more significant factors caused by external events. There are factors
e.g., internal memory cache that can be changed by the operation execution,
referred as mutating sections of the state. Other factors, such as the CPU clock
speed, are unchangeable by the operation execution and are referred as initial
sections of the state.

In order to make the measurement reproducible, both the microservice and the
measuring agent should be set to a well-defined state. Achieving the same state of
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1 ...;write_time_in_ms;...;weighted_io_time;...

2 ...

3 ...;4269679575;.........;4294451153;...

4 ...;4269819695;.........;4294595941;...

5 ...;4269972419;.........;4294739535;...

6 ...;4270119238;.........;4294884904;...

7 ...;4270270110;.........;60492;...

8 ...;4270409142;.........;204908;...

9 ...;4270555015;.........;348823;...

10 ...;4270717003;.........;490014;...

11 ...;4270835850;.........;633594;...

12 ...;4270971714;.........;774175;...

13 ...

14 ...;4294491533;.........;24284485;...

15 ...;4294632314;.........;24427116;...

16 ...;4294762449;.........;24571132;...

17 ...;4294921046;.........;24715064;...

18 ...;89337;..............;24857697;...

19 ...;240941;.............;25001225;...

20 ...;371935;.............;25144577;...

21 ...;526735;.............;25287425;...

22 ...;670760;.............;25431815;...

23 ...;811740;.............;25574457;...

24 ...

Listing 5.5: Overlow of counters in /proc/diskstats.

the mutating parts can be done by executing warm-up steps of the microservice.
Furthermore, setting the initial parts of the state can be precisely defined by a
particular system configuration. However, as it is shown in the experiment using
the Fast Fourier Transform in [36], there is no guarantee for setting the same
initial state of the microservice for each repetition of the measurement. Therefore,
we have to consider the slightly random initial state for each measurement.

In order to analyze how the random initial state affects the measured data, we
have designed and conducted the following experiment. To carry out the exper-
iment, we have measured all the microservices that have been selected in Chap-
ter 6. Changes of the initial state were enforced by restarting the measuring
agents. During the experiment, each measurement was 5-times subsequently re-
peated on the same machine of the available agents, in two different sessions.

In the first session, agents were not restarted between the 5 subsequent mea-
surements. However, in the second session the agents were restarted before the
first measurement and after all subsequent measurements. Then, we compared
the length of the execution times of the microservices from both sessions. The
results are shown in Figure 5.5. The x-axis shows the names of the microservices
while the y-axis shows the execution time in milliseconds. As shown in the figure,
there is no significant difference between the execution times, however, the mea-
surements separated by restarts performed slightly better, providing less noisy
results. Therefore, we can conclude that it is recommended to restart the agents
between the subsequent measurements.

Besides improving the measurement quality, restarting the agent might help
to prevent some other issues as well. While we have been continuously eval-
uating the collected data, we have noticed a sudden significant drop in the
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Figure 5.5: Comparison of execution times in two different measurement scenar-
ios.
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measured values. During the execution of highly disk-intensive microservices
some of the counters (Field 8 -- number of milliseconds spent writing

and Field 10 -- weighted amount of milliseconds spent doing I/Os) in
the /proc/diskstats file exceeded their limit (232

− 1) and overflew, which reset
the counter to 0. A snippet of the affected dataset is shown in Listing 5.5.

To prevent the counter from overflow and to avoid the inconsistency in the
dataset, the total amount of transferred data should be kept below a certain limit.
In our case, the overflow happened after approx. 17.84 TB data has been written
to the disk, which is a result of uptime of several months. Resetting the counters
in the /proc/diskstats file can only be done by restarting the measuring agent.
If the restarts are executed after every measurement i.e., in every 12 minutes,
it is guaranteed that the total amount of transferred data at maximum transfer
speed (approx. 72 GB at 100 MB/s continuous read/write speed) will not exceed
the limit and therefore the counters will not overflow.

5.2.2 Performance Assessment

In this section, we focus on the second phase of the submission process, the
Performance Assessment phase that is depicted in more detail in Figure 5.6. This
detailed sequence diagram shows the sequence of steps among the objects that
take part in the measurement process and are responsible for repetitive execution
and data collection of the microservice.

The measurement process consists of sequence of predefined but configurable
steps. The predefined steps ensure the same execution of the measurement tasks,
regardless of the current instance of the agent they are running on. Furthermore,
the unified measurement process guarantees the comparability of the measured
data irrespective of the measuring agent that collected the data. Configurability
of the predefined steps helps to parametrize the submitted microservices and
enables to apply various hardware and software constraints accordingly to the
batch configuration.

From our perspective, the most important steps in the measurement process
are the ones that execute and measure the submitted microservice. Besides the
measurement steps, there are multiple essential steps as well, which are respon-
sible for setting up the measuring environment and managing the measurement
process.

From Figure 5.6, it is clear that the measurement process can be divided into
three parts, as there are three objects that take part in the measurement process.
Therefore, we first describe what each object is responsible for, and afterwards
we present the steps of the measurement process. The objects of the Performance
Assessment phase are the following:

• Agent: The agent manages the execution of the command definitions from
the received batch configuration file. Furthermore, it monitors the state of
the execution process and reports the execution result to the orchestrator.

• Framework: The measuring framework is responsible for loading the mi-
croservice and running data collection during its execution. The framework
runs in a virtual environment that is provided by a Docker container.
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sd Performance Assessment

startExecutionProcess()

startBatchExecution()

executeInitTask()

executeFinalTask()

<<create>> Framework
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parseBatch()
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Docker image

Compresses and
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loadMicroservice()

return execution result

runAndMeasureMicroservice()

return execution result
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return execution result

return execution result

<<destroy>>
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executeMicroserviceTask()

<<destroy>>
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reportExecutionResult()

return acknowledgement

Figure 5.6: Detailed view of Performance Assessment phase.
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• Microservice: The microservice itself that is submitted for measurement.
The microservice implements the required interface (see Section 6.2) that
enables the framework to load the microservice and communicate with it.

Before the Performance Assessment phase begins, the orchestrator and the
agent are required to execute the following sequence of steps in order to achieve a
particular state. Afterwards, the Performance Assessment phase can be started.

Both the orchestrator and the agent applications are running on the appropri-
ate server machines. The agent connects to the orchestrator and registers itself
as an active agent. Afterwards, the agent starts an infinity loop, in which the
agent starts querying the orchestrator for new batches. Meanwhile, the microser-
vice developer submits the requirements specification to the orchestrator, which
parses the input into separate batches. If the returned batch is null, then the
agent sleeps the loop for a particular amount of time (10 minutes in our case).
If the returned batch is not null, then the phase starts as it is shown in the
Performance Assessment fragment.

Steps of the Agent:

• Parse batch: The agent parses the batch and converts the batch tasks into
an internal representation of tasks that are going to be executed by the next
steps.

• Start execution process: The agent starts the execution process. From this
point, the agent will not query any batch until the execution process is not
finished.

• Start batch execution: The agent loads the parsed batch tasks, and executes
them subsequently in the following order: initial task, microservice tasks,
and final task. If there is more than one microservice task, they are executed
in a parallel way.

• Execute initial task: The agent builds a container image and assigns it the
given image tag. The Dockerfile’s1 path and the assigned image tag are
properties of the initial task definition. If the Docker image with the same
image tag already exists, the image is reused and no new image going to be
built.

• Execute microservice tasks: The agent loads the microservice tasks and
starts to execute them in parallel.

• Start the framework: The agent deploys a Docker container and creates an
instance of the measuring framework for each microservice task.

Steps of the Framework:

• Load the microservice: The framework loads the microservice using the
information in the microservice task definition (location of the .jar file,
class path, and the command-line parameters).

1A text document containing sequence of commands to assemble a Docker image.
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• Execute and measure the microservice: The framework starts the microser-
vice execution that includes the following three phases: initialization, iter-
ation and measurement, and cleanup.

Steps of the Microservice:

• Initialize: The microservice runs its initialization procedure accordingly to
its command-line parameters. The procedure includes the tasks that should
be executed only once e.g., setting up the working environment, propagating
the database, etc., before the iteration and data collection starts.

• Iteratively execute and measure: The microservice is repeatedly executed
for 12 minutes. In parallel with the microservice execution, the data collec-
tion collects the microservice’s resource usage and behavior.

• Cleanup: The microservice deletes the working environment, removes the
temporary files or the database created during the initialization phase.

Steps of the Framework:

• Finish the microservice: The framework terminates the microservice execu-
tion.

• Report the execution result: The framework reports to the agent whether
the execution succeeded, failed or it was force stopped by the orchestrator.

Steps of the Agent:

• Stop the Framework: The agent terminates the measuring framework and
destroys the Docker container. Since the measured data are stored on a
volume mounted to the server machine, the data remains available even
after the container is destroyed.

• Execute final task: The agent compresses the collected data into a zip
archive and sends it to the orchestrator.

• Report the execution result: The agent reports the entire batch execution
result to the orchestrator. According to the received result the orchestrator
marks the batch as DONE, WAITING or FAILED.

After the Performance Assessment phase is finished, the agent restarts the
server machine it is running on. Then the loop starts from the beginning until
the orchestrator’s batch queue is not empty.

5.3 Evaluation and Prediction

The Performance Assessment phase is followed by the last phase of the submission
process, the Evaluation and Prediction phase. This phase focuses on the data
analysis, prediction of the microservice’s future behavior in various conditions,
and evaluation of the requirements submitted via the requirements specification.

The Evaluation and Prediction phase is depicted in more detail in Figure 5.7.
As the figure shows, the phase includes three main steps:
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sd Evaluation and Prediction

reportPredictionResult(predictionResult)

Orchestrator Predictor

predictExecutionTime(reqSpec, dataset)

return prediction result

Developer

Figure 5.7: Detailed view of Evaluation and Prediction phase.

• The orchestrator sends the requirements specification and the collected data
to the predictor.

• The predictor processes the data, runs the prediction, and returns the result
to the orchestrator.

• The orchestrator forwards the prediction result to the microservice devel-
oper, who originally submitted the requirements specification.

Due to the complexity of the prediction step, it will be covered separately
in Chapter 7.
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6. Workload Generation

Traditional prediction algorithms analyze historical and current facts and use
them to predict the future trends. For the majority of algorithms it holds that
a more detailed and high quality source dataset can significantly improve the
predictor’s accuracy. Therefore, before a prediction algorithm is designed, it is
crucial to record a sample dataset that covers the behavior of a wide range of
microservices. The collection of a high quality dataset requires a vast amount of
measurements of different microservices in various workload combinations.

Ideally, the measurements should be accomplished with a set of microservices
that are targeted to be deployed in such a cloud environment. However, due to the
fact that this is a prototype project, the microservices are not available at the time
of implementation. Therefore, it is our responsibility to design and implement
artificial microservices that simulate the behavior of future microservices in real-
life conditions.

To cover the widest possible range of real-life applications, and therefore to
improve the predictor’s accuracy, there should be distinct microservices, each
representing a particular example of the most common cloud applications. The
variability should not be expressed only by the implemented algorithm, but also
by the generated resource usage pattern. Ideally, the microservices should be
implemented in such a way that they impose various resource demands in the
measured dimensions i.e., CPU, I/O (storage) and memory utilization.

It would be extremely time-consuming to manually set up the measuring en-
vironment and collect the data for each scenario. To address this problem, we
have decided to develop a measuring framework that automates the measurement
of microservices in various workload conditions. The automation of measuring,
however, requires a certain level of communication e.g., starting or stopping the
measurement, and reporting failure, etc. between the measuring framework and
the measured microservice. This can be solved by a common interface imple-
mented by both parties, which enables the communication and therefore the
measurement automation.

In this chapter, we first present the implemented microservices and then we
design the interface to enable the communication between the measuring frame-
work and the microservice.

6.1 Implementing the Microservices

In this section, we focus on the implementation of various microservices that
cover a wide application domain. The implementation of a huge amount of mi-
croservices is time consuming, therefore, in the first part we conduct a research for
existing solutions. These solutions include various benchmark suites and libraries
that might serve as a base of the microservices. In the second part, we analyze
the selected benchmarks and the microservices designed upon the libraries from
resource usage perspective. Then, we select the designed microservices that will
be implemented and used throughout this thesis.
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6.1.1 Sources of Microservices

The microservices suitable for our needs can be implemented in two different
ways. The first way is to research for existing solutions that are designed for
similar problems and require only a slight modification in order to make them
usable. The second option is to design and implement the microservices from
scratch or using third-party libraries.

However, before we start the research, we list the requirements that the mi-
croservices should satisfy:

• Relevance: The microservice should cover a particular application domain.

• Repeatability: The microservice should execute the same code so that the
results can be verified.

• Representativeness: The microservice’s resource usage should be eligible for
performance characterization.

In the following sections we analyze the existing solutions and compare them
to custom implementations built upon third-party libraries.

Existing Solutions

As the computer architecture has evolved and become more advanced, it is a
difficult task to compare their performance. To address this problem, so called
benchmarks were developed. The benchmarks simulate various types of workloads
and therefore allow to compare the performance of different architectures. Tra-
ditionally, benchmarks are divided into two categories: synthetic and application
benchmarks. Synthetic benchmarks focus on a particular hardware component,
while application benchmarks mimic real-life applications.

Generally, benchmarks are collected into a benchmark suite. The benchmark
suites usually include applications from the same domain i.e., all benchmarks
are written in the same programming language or are targeted to a particular
hardware resource. Following are the most known benchmark suites:

• SuperPi1 and Linpack2 for CPU benchmarking.

• Bonnie++3 and Iometer4 for file-system and disk benchmarking.

• NBench5 for memory benchmarking.

• DaCapo6 Benchmark Suite and Scala Benchmark Suite7 for benchmarking
JVM-based applications.

1http://www.superpi.net
2http://www.netlib.org/benchmark/hpl
3https://doc.coker.com.au/projects/bonnie
4http://www.iometer.org
5https://www.math.utah.edu/˜mayer/linux/bmark.html
6https://github.com/dacapobench/dacapobench
7http://www.benchmarks.scalabench.org/modules/scala-benchmark-suite
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As a secondary option, test programs that allow to compare computer per-
formance are transformed into stress tests (also called stressors). Stressors are
designed to exercise both hardware and software components of a computer.
This excessive testing helps to reveal possible hardware or software failures. The
most known stressors are the following: Memtest86+8, Aida9, stress-ng10. While
Memtest86+ focuses on exercising memory, the other stressors are designed to
exercise physical subsystems of a computer.

Bearing in mind the requirements, we have chosen the Scala Benchmark Suite
and stress-ng, as they cover a wide application domain and enable to generate
a wide range resource load. Both the benchmark suite and the stressor include
CPU, disk and memory-intensive applications.

Scala Benchmark Suite: The Scala Benchmark Suite (scalabench) is built
upon the well-known DaCapo Benchmark Suite (dacapobench), by extending
the existing Java benchmarks with Scala benchmarks. Since both languages are
compiled into Java bytecode, they can be executed by the Java Virtual Machine
(JVM) and thus the results can be compared.

The scalabench contains 26 benchmarks in total. It includes 12 new bench-
marks written in Scala, and 14 Java benchmarks taken from dacapobench. More-
over, the input size of each benchmark can be specified between two and four
input sizes11, thus it multiplies the total number of benchmarks. Table 6.1 sum-
marizes the currently available benchmarks.

Since scalabench is designed as a benchmark suite, it fulfills all our require-
ments. The implemented benchmarks cover a wide application domain. Most
of the benchmarks are designed for performance evaluation, therefore they are
designed for repetitive execution. Furthermore, the execution can be split into
warmup and measurement phases that are described in more detail in Chapter 5.
Regarding the applied load, the benchmarks create various resource demands. For
instance, the benchmark suite contains both single- and multi-threaded bench-
marks of multiple CPU utilization levels and I/O-intensive benchmarks that pro-
cess large amount of files and also the memory-intensive benchmarks that exercise
the memory.

stress-ng: stress-ng is a set of computer stressors that aim to stress various
physical subsystems and kernel interfaces. Most of the implemented stressors
generate excessive load in order to reveal the possible hardware and software
issues of the system by pushing it to the limit. The stress-ng is able to measure
the output rates that can be helpful for comparing the performance of multiple
systems. However, the measured values should be handled with care, since the
stress-ng was not designed as a benchmark suite, and therefore the measured
values might not be precise.

The stress-ng features over 220 stress tests. These tests can be run either
by individually selecting the particular tests or selecting a predefined test group.
Selecting tests manually enables to stress the system by a particular combination

8http://www.memtest.org
9https://www.aida64.com

10https://kernel.ubuntu.com/˜cking/stress-ng
11Does not hold for all benchmarks in dacapobench.
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Benchmark Description
avrora Simulates a number of programs run on a grid of AVR mi-

crocontrollers.
batik Produces a number of Scalable Vector Graphics (SVG) im-

ages based on the unit tests in Apache Batik.
eclipse Executes some of the (non-gui) jdt performance tests for the

Eclipse IDE.
fop Takes an XSL-FO file, parses it and formats it, generating a

PDF file.
h2 Executes a JDBCbench-like in-memory benchmark, execut-

ing a number of transactions against a model of a banking
application, replacing the hsqldb benchmark.

jython Inteprets the pybench Python benchmark.
luindex Uses lucene to index a set of documents; the works of Shake-

speare and the King James Bible.
lusearch Uses lucene to do a text search of keywords over a corpus

of data comprising the works of Shakespeare and the King
James Bible.

pmd Analyzes a set of Java classes for a range of source code prob-
lems.

sunflow Renders a set of images using ray tracing.
tomcat Runs a set of queries against a Tomcat server retrieving and

verifying the resulting webpages.
tradebeans Runs the daytrader benchmark via a Jave Beans to a

GERONIMO backend with an in memory h2 as the underly-
ing database.

tradesoap Runs the daytrader benchmark via a SOAP to a GERONIMO
backend with in memory h2 as the underlying database.

xalan Transforms XML documents into HTML.
actors Trading sample with Scala and Akka actors.
apparat Framework to optimize ABC, SWC, and SWF files.
factorie Toolkit for deployable probabilistic modeling.
kiama Library for language processing.
scalac Compiler for the Scala 2 language.
scaladoc Scala documentation tool.
scalap Scala classfile decoder.
scalariform Code formatter for Scala.
scalatest Testing toolkit for Scala and Java programmers.
scalaxb XML data-binding tool.
specs Behaviour-driven design framework.
tmt Stanford Topic Modeling Toolbox.

Table 6.1: Available benchmarks in dacapobench and scalabench.
Source [14], [37].
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1 $ stress-ng --class cpu 3

Listing 6.1: Running 3 instances of various CPU-specific stressors.

of stressors that simulate a specific workload combination. The already prepared
test groups focus on a particular area of the system e.g., cpu, cpu-cache, io,
filesystem, memory, and scheduler. In both cases i.e., individual and grouped
tests, one can specify the number of workers to invoke. Listing 6.1 shows how to
run three instances of various CPU-specific stressors.

Analysis of Existing Solutions: The use of external, existing benchmarks,
and stressors has some merits and demerits as well. On one hand, the tools
are specifically designed to generate various resource loads. They either target a
specific resource or a combination of resources. These solutions often implement
well-known benchmarking and stressor algorithms. Furthermore, the developers
can maintain, fine-tune, and test the existing algorithms based on the feedback
of a large user-base. On the other hand, external solutions place restrictions on
the design process. Therefore, the final product will not be fully designed to meet
our requirements.

Custom Implementation

Although, the existing implementations cover a wide application domain and
various resource usages, there are examples of missing microservices. In order
to complete the set of microservices, we have decided to implement the missing
microservices either from scratch or by using existing libraries.

To make our microservices comparable with the existing benchmarks, we have
set the following two requirements. The first is to implement a well-known algo-
rithms that would possibly be used in microservices implemented in the future.
The second requirement is to generate various types and levels of resource usage.
By satisfying these requirements, the custom microservices will be suitable for
simulating real-life microservices.

Table 6.2 presents the custom-implemented microservices. We have imple-
mented 17 new microservices in total12. From the description of microservices, is
evident that they meet both requirements: the microservices cover various sorting
algorithms, process well-known file formats (JSON), utilize disk by reading and
writing files (compress files into a zip archive, generate PDFs), exercise memory
by setting up and destroying tree-like data structures (AVL-tree, Red-Black-tree),
and generate CPU usage by solving problems using dynamic programming (rod
cutting, egg dropping) or processing images (face detection).

Analysis of Custom Implementation: The advantages of custom implemen-
tation include the fact that each microservice is designed for a particular problem.
Furthermore, they are fully compatible with the measuring framework. Since, we
are the authors of the microservices, we own full control over the final product

12Four microservices were implemented in a cooperation with another student, whose thesis
targeted the same domain. These microservices are marked with *.
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Microservice Description
JSON* Generates and writes JSON data to disk.
PDF* Generates images and writes them as PDF files to disk.
Sort* Generates, sorts and writes random numbers to disk.
Cypher* Generates random string, cyphers it and writes to disk.
AVL tree Sets up an AVL tree by inserting 1 000 000 random

items, then destroys the three by removing the nodes.
Red-Black tree Sets up a Red-Black tree by inserting 1 000 000 random

items, then destroys the three by removing the nodes.
Floyd-Warshall Uses the Floyd-Warshall algorithm to find the lengths

of shortest paths between all pairs of 2 200 vertices.
Prim Uses the Prim’s algorithm to find the minimum span-

ning tree.
Rod cutting Solves Rod cutting problem using dynamic program-

ming.
Egg dropping Solves Egg dropping problem using dynamic program-

ming.
Edit distance Solves Edit distance problem using dynamic program-

ming.
Longest common
subsequence

Solves Longest common subsequence problem using
dynamic programming.

Face detection Detects human faces in the images located in the
source directory.

Unzip Extracts the given zip archive into the target directory.
Zip Archives the target directory into a zip archive.
Compare-zip Compares two zip archives. The archives are equal if

they contain the same files.
Check-zip Checks whether the zip archive contains the specified

file.

Table 6.2: List of custom microservices.

and we are not dependent on external factors. Therefore, the microservices can
be changed in a short time and they can be combined in multiple ways to generate
various levels of resource demand.

However, the custom microservices have their disadvantages too. For instance,
the implementation and maintenance is time-consuming. Moreover, the final
solution is not as complete as the existing solutions are, because we are lacking
the feedback from a larger user-base.

6.1.2 Selecting the Most Suitable Microservices

Based on the details mentioned above, the choice between the sources of the
artificial microservices is not straightforward. Both source groups have their ad-
vantages and disadvantages, therefore, we have decided to select the most suitable
microservices from both groups.

In order to choose the most suitable test microservices, we conducted an
iterative, multi-stage selection process, which consists of two main parts. First, we
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executed the microservices and measured their runtime properties. In the second
part, we analyzed the collected data and selected the most suitable microservices
that met our criteria.

Before starting the selection process, we set up the test environment. The
goal of the test environment was to simulate the production environment along
with its hardware and software constraints. In this case, we required the same
hardware components and the same version of the operating system, including the
installed applications. Furthermore, we executed each microservice in a Docker
container where the CPU usage was restricted to 25% of the total available CPU
resources.

Data collection was performed by various built-in and third-party monitoring
tools. At the time of execution, no other microservices or resource intensive
applications were enabled on the host machine in order to make the data collection
more precise and to minimize the effect of external factors.

After analyzing and evaluating the measured data of current iteration we have
reduced the number of microservices based on the following criteria:

• Resource usage: The selected microservices should produce different re-
source usage patterns along with the following three dimensions: CPU,
disk I/O, and memory usage. More precisely, we focus on the attributes
presented in Section 4.1. Therefore, we select benchmarks that meet at
least one of the following attributes: single-or multi-threaded, high user- or
kernel-time, random or sequential I/O, various read/write ratio, and various
levels of memory usage.

• Execution time: The too much lengthy execution time unnecessarily pro-
longs the measurement process and thus reduces the number of microser-
vices that can be measured during a specific time period. However, the
shorter execution time prevents the measuring framework to collect suffi-
cient amount of data, which makes the microservice’s analysis less precise.
Furthermore, in most of the cases the execution time increases when the
microservice is colocated on a single host machine with other resource in-
tensive microservices. Based on these attributes and our analysis, we have
defined the ideal length of the execution as a time interval between 4 and
12 seconds.

• Stability and Repeatability: During the measurement process each mi-
croservice is executed up to one-hundred-times. This requires a microservice
that is stable during its execution, does not crash and, does not produce
errors. Furthermore, the repeatable execution flow and the consistent re-
source usage pattern is also required. Otherwise, the irregular behavior
could distort the result of the analysis.

• Uniqueness: All the microservices should be different, each focusing on a
particular area. This helps to cover a wide application domain even with a
low number of microservices.

Table 6.3 summarizes the microservices that satisfy these criteria. Columns
CPU and Disk present the utilization of the CPU and the hard disk drive, re-
spectively. Column RAM expresses the amount of memory allocated by the
microservice.
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Here we describe the notation of signs: For the CPU column, each + repre-
sents an additional 25% of total CPU usage. For the Disk column, * represents
negligible disk usage i.e., 0% - 5%, while each + represents steps of 25% additional
disk usage. The first + sign in disk usage represents 5% - 25% disk utilization.
For the RAM column, each + represents an additional 1000 MB of allocated
memory.

Microservice Source group
Resource Demand

Exec. timeCPU Disk RAM
sunflow scalabench ++++ * ++ 5519 ms
h2 scalabench ++ * ++++ 9330 ms
apparat scalabench ++ * ++ 4390 ms
tmt scalabench +++ * ++ 4621 ms
avrora scalabench ++ * ++ 12041 ms
matrix stress-ng + * ++ 7998 ms
JSON custom ++ + +++ 5073 ms
PDF custom + +++ ++++ 7138 ms
Sort custom + ++ ++ 5423 ms
Cypher custom + ++ ++ 3554 ms
AVL tree custom + * ++ 4983 ms
Red-Black tree custom + * ++ 5836 ms
Floyd-Warshall custom + * + 8272 ms
Rod cutting custom ++ * + 6878 ms
Egg dropping custom + * + 10640 ms
Face detection custom + + ++ 6277 ms
Unzip custom + ++++ ++++ 6354 ms

Table 6.3: List of selected microservices.

6.2 Interface Design

Even though, we have selected the most suitable microservices in the previous
step, they are not ready to be executed and measured yet. As is it described
in Section 5.2.2, the microservice’s measurement is part of a complex execution
process. This execution process is designed to be able to execute and measure
any kind of microservice, including our artificial microservices and the future
microservices submitted by the microservice developers.

The Performance Assessment phase in Section5.2.2 describes, that the mi-
croservices are executed by the measuring framework. The measuring framework
loads the particular microservice that is specified in the batch configuration file
and manages the microservice’s measurement process.

Making the measuring framework to be able to handle various kind of mi-
croservices submitted by multiple developers requires a communication interface
implemented by both parties. This interface enables the microservice to be at-
tached to the measurement process, and enables the measuring framework to
measure the particular microservice’s resource usage.
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Initialize working
environment

Cleanup working
environment

Execute microservice iteratively and
measure its resource usage

Measurement process

Figure 6.1: Main steps of the microservice within the measurement process.

The goal of this section is to design the communication interface. In the first
part, we analyze the communication between the measuring framework and the
microservice. Then, in the second part we use the result of this analysis to design
the interface.

6.2.1 Designing the Interface

Analysis

Since the steps of the measurement process are already described in Section 5.2.2,
now we focus on the steps related to the microservice execution. The microservice
execution consists of the following three steps:

• Initializing the microservice and its working environment.

• Executing the microservice iteratively and measuring its resource usage.

• Finishing the measurement and cleaning up the working environment.

The measurement process starts with the initialization phase, where the mi-
croservices can prepare their working environment e.g., creating the working di-
rectory, setting up the database, etc. This step is executed only once, after the
measuring framework starts and loads the microservice.

The initial step is then followed by the execution and measurement step.
The microservice is iteratively executed for 12 minutes. During the microservice
execution the data collector records the microservice resource usage.

In the final step, the run is finished by cleaning up the environment created
in the initial step. This step ensures that the current run is terminated properly
and thus the following run can be started.

At the end of each step, the result of the execution is returned to the measuring
framework. In case of success, the execution is continued with the next step.
However, in case of failure, the execution is terminated and the failure is handled.

Although, the measurement process is more complicated and the presented
steps may contain multiple sub-steps, we do not continue the analysis in a more
detailed level of abstraction. Otherwise, we would set up tight restrictions against
the submitted microservices, which would make difficult to handle them as black-
boxes.
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1
2 public interface MeasurableMicroservice {

3
4 MicroserviceResult init(String[] args);

5
6 MicroserviceResult iterateAndMeasure();

7
8 MicroserviceResult cleanup();

9 }

Listing 6.2: Interface functions representing the steps of the microserivce
execution.

Implementing the Interface

As a first step, we assign a particular function for each of the steps presented
in the Analysis section (see Listing 6.2). By doing so, we enable the measuring
framework to start any step according to the measurement flow.

Most of the functions are parameter-less, however, the init(String[] args)

function accepts an array of Strings as its parameter. The passed parameters
can be used for setting up the microservice, based on the requirements in the
batch configuration file.

As it is described in the previous section, the result of the execution is re-
turned at the end of each step. For this, the interface defines a custom enum,
the MicroserviceResult, that is set as the return type of all three functions
executing a step. Listing 6.3 shows the possible results of the execution.

The functions shown in Listing 6.2 enable the measuring framework to exe-
cute any of the microservice’s steps. However, they do not enable the microservice
to report its state changes to the measuring framework. For instance, the mi-
croservice should notify the measuring framework before the current iteration
starts and finishes, so the measuring framework can start and stop the itera-
tive data collector at the right moment. Therefore, each microservice should
have a reference that can be used for notifying the measuring framework. In
our case, the reference will be set by the setMicroserviceRunFlowController(

IMicroserviceRunFlowController controller) function. The function is de-
signed to be called from the measuring framework, which should pass a reference
to the run flow controller that is responsible for managing the flow of the current
run.

The final interface is presented in Listing 6.4. Implementing this interface
by the microservice enables the communication with the measuring framework.
Therefore, the microservice can be executed and measured by the measuring
framework.

85



1 public enum MicroserviceResult {

2 /**

3 * The microservice’s initialization was successfully finished.

4 */

5 INIT_FINISHED,

6 /**

7 * Failed to initialize the microservice.

8 */

9 INIT_FAILED,

10 /**

11 * The microservice’s execution was force stopped.

12 */

13 FORCE_STOPPED,

14 /**

15 * The microservice’s execution successfully finished.

16 */

17 RUN_FINISHED,

18 /**

19 * The microservice’s execution failed.

20 */

21 RUN_FAILED,

22 /**

23 * The working environment was cleaned up.

24 */

25 CLEAN_UP_FINISHED,

26 /**

27 * Failed to clean up the working environment.

28 */

29 CLEAN_UP_FAILED

30 }

Listing 6.3: Possible results of the microservice measurement process.

1
2 public interface MeasurableMicroservice {

3
4 MicroserviceResult init(String[] args);

5
6 MicroserviceResult iterateAndMeasure();

7
8 MicroserviceResult cleanup();

9
10 void setMicroserviceRunFlowController(IMicroserviceRunFlowController

controller);

11 }

Listing 6.4: Interface for measuing the microservices.
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7. Prediction Process

This chapter focuses on developing a prediction process that will be able to predict
the microservice execution time. In the first step, we perform the data collection
process. Then, we preprocess the collected data to prepare them for the pre-
diction process. Next, we use the processed data to characterize the measured
microservice. Finally, we describe the predictor and evaluate its accuracy.

7.1 Data Collection

The goal of this section is to describe how the data is collected during the mi-
croservice execution.

7.1.1 Data Collectors

During the analysis of different data sources in Chapter 4, we realized that dif-
ferent data sources require different data collection approaches to collect them
efficiently. Based on this observation, we have decided to divide the data collec-
tion approaches into the following categories.

• Sampling at a particular frequency.

• Repeatedly measuring along with every microservice iteration.

• Combination of both.

As we see, the listed approaches are significantly different. Consequently, it
would be unnecessarily complicated to design a single data collector that maxi-
mizes the quality of the collected data, while minimizes the data collection over-
head. Therefore, we have designed two types of data collectors: sampling data
collector and iterative data collector. Each data collector is targeted to a specific
collecting approach.

The sampling data collector is scheduled at a predefined frequency e.g., ev-
ery 2 seconds and collects the data accordingly to its implementation. It is
independent from the current state of the measurement process i.e., whether the
currently executed microservice is at the beginning or at the end of its itera-
tion. The sampling data collector starts at the beginning of the 12 minute long
execution period and runs until the period elapses.

The iterative data collector is more tightly connected to the microservice ex-
ecution than the sampling data collector. The iterative data collector collects
data during each iteration of the microservice. The data collection starts when
a microservice iteration begins, and stops when the microservice iteration fin-
ishes. Then the collection is repeated again along with the next iteration of the
microservice. Therefore, the number of data entries collected by iterative data
collector equals to the number of repetitions of the microservice during the 12
minute long measuring interval.

Combination of sampling and iterative data collectors is not implemented as
a third data collector, but as a data processing step. The data collection step is
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followed by the data processing step (see Section 7.2), where the measured data
can be processed and transformed to any representation. As a result, the measur-
ing framework uses one less data collector, which minimizes the data collection
overhead.

Even though, we have implemented concrete data collectors in our prototype,
they can be easily replaced, because the architecture is prepared for adding new
data collectors. We have provided the detailed implementation in Chapter 8.

7.1.2 Environmental Settings

In Chapter 5, we described that the microservices are executed and measured in
Docker containers. There are multiple advantages of isolating the microservices
in containers from the hosting environment e.g., security, unified environment for
all microservices, etc.

Just like Docker, the JVM also serves as a virtual environment, that isolates
the Java application from the operating system. Even though, Docker container
and the JVM are used for different reasons, they both support changing the
default settings of the virtual environment or applying various restrictions on it.

In order to be able to apply changes on the virtual environments, we have
added support for command-line options to the batch configuration file. As it is
presented in Section 5.1.2, the batch configuration file supports docker and java

attributes, where the command-line options of the particular virtual environment
can be specified.

During the measurements, we used the docker attribute to apply hardware-
limitations on the containers. More specifically, we used the --cpus=1 Docker
option to limit the container CPU-usage to 1/4 of the total CPU capacity [38].
The idea behind limiting the CPU-usage is to equally share the available hardware
capacity among the containers and to prevent resource-intensive microservices
from allocating high portion of resources and thus slowing down the colocated
microservices. Beyond the CPU-limitations there were no restrictions applied on
the available RAM memory or disk usage.

In the batch configuration file, we used the java attribute as well. Although,
in our case we did not apply any limitation e.g., limiting the JVM heap size, we
used the command-line options to enable the logging for Garbage collector and
to specify the output file location.

Listing 5.2 shows, that the attributes support adding multiple command-line
options at once. Moreover, they accept any option1 supported by the Docker or
the JVM.

7.2 Data Processing

The sampling and the iterative data collectors capture the data from different
perspectives, thus the produced outputs are different as well. However, building
the model for prediction requires a unified input format. Therefore, there is a
need for data preprocessing that converts the collected data into the required

1The validity of the option should be checked by the developer who adds the new option.
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Figure 7.1: Data processing steps.
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representation. Moreover, the execution of preprocessor includes combining the
output of the two data collectors to generate the combined dataset.

The data preprocessing is the first phase of the prediction process. The steps
of data processing are shown in Figure 7.1. The input is represented by two
types of files: data collected by the iterative data collector and the sampling data
collector. Since each measurement is repeated five-times, there are five output
files generated by each data collector.

In the first step, the two types of input files are processed in a different manner.
The result of the iterative data collector (named as Iterative result 0, .., Iterative
result 4 ) is merged into Merged iterative results file. The merging process takes
the last 50 lines (which equals to the last 50 iterations of the microservice) of each
file indexed from 0 to 4 and subsequently copies them into the Merged iterative
results file. Because the data are the result of the time-restricted measurement
process (described in Section 5.2.1), merging the last 50 measurement results in
a stable, consistent dataset.

As a part of the first data processing step, the result of the sampling data
collector (named as Sampling result 0, .., Sampling result 4 ) is processed as well.
The sampling results represent the system’s state in every 2 seconds, because
the sampling data collector is executed in every 2 seconds. However, the in-
put required by the subsequent steps of the prediction process should represent
the system’s state in every second. Therefore, in this data processing step the
sampling results are interpolated to 1 second interval.

The second step of the data processing is divided into two parts: scaling and
merging. In the scaling part, the Merged iterative results file is processed. The
process scales the measured resource usage attributes with the respect to the
execution length. Values of the measured attributes are divided with the elapsed
time (execution length) and the result is saved into the Scaled merged iterative
results output file.

In the merging step, sections of the Interpolated sampling results are merged
into an output file (see Figure 7.2). Each line in the Merged iterative results
represents the microservice’s resource usage during its execution. Since the usual
execution time of the selected microservices ranges from 3 to 12 seconds, for each
line in the Merged iterative results, there are multiple corresponding lines in one of
the Interpolated sampling result files. During the merging process, for each line in
the Merged iterative results the corresponding lines of the Interpolated sampling
results are found and added to the Merged interpolated sampling result output
file. As a result, the content of the output file covers the same time interval as the
Merged iterative results, but uses the interpolated one-second sampling results.
This representation will be useful for the Data Transformer described in the next
section.

In the third step of data processing, the previously created Merged inter-
polated sampling results file is processed. During the processing, the values of
subsequent rows are subtracted. Thus, the Diff merged interpolated results output
file contains the differences of the measured values between each elapsed second.
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Figure 7.2: Merging Interpolated sampling results.

7.3 Characterization

The purpose of this section is to characterize the microservice behavior based on
its resource usage. The overall characteristics of the microservice enable a better
understanding of its behavior for the cluster orchestration system. This can be
later used as an additional property when planning the deployment of colocated
workloads.

The goal of data processing is to prepare data for further use in the pre-
diction process. Although, the preprocessed files return the measured resource
usage in different representations, they are not suitable for characterizing the
microservice behavior. Therefore, we designed additional transformation steps
that return a representation similar to the vmstat and iostat monitoring tools,
presented in Chapter 4. The final attributes should outline the most important
resource usage indicators throughout all three dimensions i.e., CPU, disk, and
memory usage. Using the attributes and applying the concepts from Chapter 4
the microservice can be easily characterized.

7.3.1 Data Transformation

The data transformation step is depicted in Figure 7.3. The input files entering
the data transformer are the Merged interpolated sampling results and the Diff
merged interpolated sampling results. Both files are product of the data processing
steps described earlier in this chapter. The data transformation step produces two
output files: Detailed characterization result and Short characterization result.
The output files differ both in their format and content.
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The content of the Detailed characterization file focuses on the characteriza-
tion of the microservice by transforming the input data into a format similar to
the output of vmstat and iostat monitoring tools. The Detailed characteriza-
tion file consists of 26 columns, separated by semicolons. Each column stands
for a particular resource usage attribute. The attributes are stored in a special
header file located next to the Detailed characterization file. An example of the
Detailed characterization file along with the corresponding header file is located
in the attached medium in the /prediction resources directory.

Merged
interpolated

sampling
results

Diff merged
interpolated

sampling
results

Data Transformer

Detailed
character -

ization

Short
character -

ization

Figure 7.3: Data transformation process.

The Short characterization result is formatted as a YAML file, that presents
the result of the characterization as a structure of nodes and attributes. List-
ing 7.1 shows an example of the characterization file. The programmatically gen-
erated YAML file contains exactly one CharacterizationResult node, which is
further divided into cpu result, disk result, and mem result nodes. Each of
the sub-nodes include several attributes expressing the usage of the particular
hardware resource. The values are calculated as the average for every attribute
of the detailed characterization file.

The cpu result node (lines 2-6) is a type of CpuResult and contains the
following attributes. The total time attribute shows the total available CPU
time of the installed CPUs. The system time shows the time spent by executing
system-level code e.g., syscalls, interrupts, while the user time shows the time
spent by user-level processes e.g., the microservice itself, including the overhead
of the measuring framework. The time-related attributes show the total time,
summarized over the installed CPUs. The utilization attribute expresses the
overall CPU utilization in percentage.
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1 !yamlable/data_transformation.characterization_result.CharacterizationResult

2 cpu_result: !yamlable/data_transformation.characterization_result.CpuResult

3 total_time: 399.4059281437127

4 system_time: 58.855808383233516

5 user_time: 42.76676646706589

6 utilization: 25.736074172490213

7 disk_result: !yamlable/data_transformation.characterization_result.DiskResult

8 r_s: 1.3532112527147375

9 w_s: 190.81813482505507

10 rkB_s: 65.7192063075226

11 wkB_s: 73495.57132322335

12 avgqusz: 139.7915910988561

13 avgrqsz: 833.4796535740735

14 utilization: 99.73854215713382

15 mem_result: !yamlable/data_transformation.characterization_result.MemoryResult

16 used: 3320506.178443112

17 cached: 2092573.3067664658

18 dirty: 6962.30263473053

19 writeback: 726378.0895808374

Listing 7.1: Example of short characterization result file.

The disk result node (lines 7-14) is type of DiskResult and contains the
following attributes. Attributes r s and w s show the the amount of read and
write requests per second. Similarly, the attributes rkB s and wkB s show the
amount of data read and written per second, in kilobytes. The attributes avgqusz

and avgrqsz show the average size of requests and the average queue length of
request sent to the disk device. The utilization attribute expresses the overall
disk utilization in percentage.

The mem result node (lines 15-19) is type of MemResult and contains the
following attributes. The attribute used shows the total amount of physical
memory used by the system (including buffers, cache, etc.). The attribute cache

shows the amount of physical memory used for files read from the disk. The
attribute dirty shows the amount of physical memory waiting to be written
back to disk. The attribute writeback shows the amount of physical memory
actively being written back to disk. Values shown by each attributes are expressed
in kilobytes.

7.4 Prediction

The goal of this section is to design a prototype of a prediction method that
can be used for predicting the microservice execution time when it is colocated
with other workloads. First, we describe the collected data and separate it into
training and testing datasets. Then we design the prediction process. Finally,
we evaluate the prediction by predicting and verifying the execution time of the
testing microservices.
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7.4.1 Workload Combination

Traditionally, the prediction methods rely on historical datasets when predicting
future values. Therefore, there is a need for a large dataset, that covers a wide
range of microservice. To build this dataset, we use the artificial microservices
introduced in Chapter 6.

The microservices are measured in multiple combinations. The goal of measur-
ing various workload combinations is to simulate real-life scenario, where multiple
colocated workloads are deployed on a single server machine. Using the available
microservices, we executed and measured the following workload combinations:

• Single: 17 microservices.

• Double measurements: 289 workload combinations.

• Triple measurements: 2601 workload combinations.

• Quadruple measurements: 3000 workload combinations.

• Quintuple measurements: 3000 workload combinations.

Even though, we experimented with tuples of higher arity e.g., sextuples, sep-
tuples, octuples, etc., we rejected this approach. While executing more than five
colocated microservices, the server machine became overloaded, which resulted
in extremely high microservice execution time.

Furthermore, we measured only a fraction of all possible quadruple and quin-
tuple combinations (6.78% and 0.39%, respectively). Because each measurement
lasts for approx. 75 minutes, it would not be possible to measure 44217 quadruple
and 751689 quintuple combinations in a reasonable time. Therefore, we selected
the measured 3000 − 3000 combinations randomly.

As it is described in Chapter 5, each workload combination consists of one
main microservice and zero or more background microservices. From the perspec-
tive of the collected data, the main microservice is the only relevant workload.
Moreover, regardless of their definition order, each background workload is han-
dled with the same priority. Therefore, we consider two workload combinations
equal if their main microservice is equal and their background workloads are
equal, irrespective of their order. For instance, workload combinations A-AVL-RB

and A-RB-AVL are equal. In order to maximize the number of various workloads
measured during a limited time period, we do not measure the duplicates of a
workload combination.

The selected combinations are stored in the attached medium,
in the /prediction resources/workload combinations/ directory. The com-
binations are structured in YAML language and serve as input for the Batch Gen-
erator.

7.4.2 Dataset Separation

In order to be able to design the prediction process, evaluate, and test the results,
there is a need for separating the dataset into training and testing datasets. Using
the training dataset, we are going to build the prediction model, while the testing
dataset would be used for evaluating its correctness.

94



Since, the amount of available microservices is limited at the time of writing,
we do not add new microservices that could represent the testing dataset. We split
the available microservices into two groups. From the microservices that create
the testing dataset, we expect to simulate the microservices that will be submitted
by the microservice developer in the future. Furthermore, we require from the
set of testing microservices to cover the widest possible application domain and
to utilize a specific resource only (CPU, disk I/O or RAM) or the combination of
these resources. As a result, the selected microservices that represent the testing
dataset are the following: Cypher, Egg dropping, Face detection, Red-black tree,
Unzip. In the following part of this chapter, we will refer to microservices using
their IDs: CYPHERD, EGG, FACE, RB, ZB. For more information about the
microservices, please see Chapter 6. The training dataset is represented by the
remaining 12 artificial microservices.

To provide the most detailed dataset, the microservices in training dataset
are measured in all combinations for double and triple workloads. For quadru-
ple workloads, a randomly selected set of combinations are measured (see Sec-
tion 7.1). Furthermore, microservices from both datasets are measured in work-
load combinations with themselves - every microservice A is measured as single,
double, triple, and quadruple combinations (noted as A, A-A, A-A-A and A-A-
A-A).

7.4.3 Designing the Prediction Process

The prediction process consists of multiple subsequent steps that the submitted
microservice goes through in order to predict its execution time in various work-
load combinations. In this section, we focus on the description of these steps.
First, we present the steps in general. Afterwards, we present details of each
step.

Main steps

1. Transforming the microservice into a common representation that enables
to compare the submitted microservice with the existing microservices.

2. Finding a microservice from the training dataset that is most similar to the
submitted microservice.

3. Computing the execution time ratio of the submitted microservice and its
most similar microservice.

4. Computing the execution time of the submitted microservice along with
various workload combinations using the execution time ratio and the ex-
citon time of its most similar microservice.

It is noticeable from the above mentioned steps, that the Step 2 is dependent
on the Step 1 as well as the Step 4 is dependent on the Step 3. Therefore, we group
the dependent steps into phases and describe the design of prediction process as
a sequence of subsequent phases.
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Phase 1: Step 1 and Step 2

The first phase of the prediction process focuses on finding a microservice from
the training dataset that is most similar to the submitted microservice. In order
to do so, the phase includes two steps.

First, the microservices should be presented in a specific format that enables to
compare them with each other. This requires a step that transforms the microser-
vices into that particular representation. Second, there is a need for a mechanism
that is able to compare the microservices using their specific representations.

To compare the microservices, we use the Scaled merged iterative results file
created during the Data processing steps. This file consists of 250 lines, describing
the microservice’s resource usage during each iteration by measuring 19 different
attributes. Although, the high number of lines along with the attributes help
to characterize the microservice behavior during each iteration, they reduce the
correctness of the microservice comparison. In order to increase the comparison
success rate, we decided to represent each microservice with a single line, which
is computed from the content of the Scaled merged iterative results file.

In the next step, this specific representation is used for comparing the mi-
croservices. To compare any two selected microservices, we use a distance function
(metric). Using a metric, we can calculate the distance between two microser-
vices, which in our case represents the similarity of the microservices. The lower
the distance between two microservices is, the more similar they are.

During our work, we considered multiple combinations of representations and
metrics. Following are the analyzed representations:

• Calculate the average value for every attribute.

• Calculate the median value for every attribute.

• Calculate the geometric mean value for every attribute.

The analyzed metrics are the following:

• Euclidean metric.

• Manhattan metric.

• Chebyshev metric.

The 3-3 representations and metrics result in 9 different combinations. How-
ever, at the time of designing Step 1 and Step 2, we did not have enough data
to choose the best combination. Therefore, we selected a random combination
and finished the design of Step 3 and Step 4. Afterwards, when each step of the
prediction process was implemented, we returned to Step 1 and Step 2 to test
the combinations. In our test case, we used 289 measured double workloads to
find the most similar microservice, predict the execution time of the workload
combination, and to verify against the measured data. Comparing the predicted
and the real execution time we calculated the error rate of each combination and
summarized the results in Table 7.1. As the results show, the combination of av-
erage representation and the Manhattan metric matches the microservices with
the lowest error rate. Therefore, this combination is selected for the prediction
process.
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Combination Error rate
Representation Metric Average Median Minimum Maximum Sum
Average Euclidean 0.14151 0.07083 0.00001 1.17654 40.89641
Average Manhattan 0.13500 0.05661 0.00001 1.17654 39.01622
Average Chebyshev 0.15508 0.06955 0.00002 0.88302 44.81821
Median Euclidean 0.15360 0.06255 0.00001 1.17654 44.38921
Median Manhattan 0.15031 0.05973 0.00001 0.88302 43.43866
Median Chebyshev 0.14477 0.07450 0.00016 0.98717 41.83751
Geometric mean Euclidean 0.16832 0.07083 0.00001 1.17654 48.64592
Geometric mean Manhattan 0.14372 0.05907 0.00001 0.88302 41.53378
Geometric mean Chebyshev 0.16265 0.07690 0.00001 0.98717 47.00549

Table 7.1: Error rates of every combination of representation and metric.

Phase 2: Step 3 and Step 4

The second phase of the prediction process focuses on computing the execution
time of the submitted microservice colocated with various workloads. To achieve
this goal, this phase is split into two steps. The goal of the first step is to compute
the execution time ratio of the submitted and its most similar microservice. Then,
in the second step, this ratio is used to predict the average execution time of the
particular workload combination.

Using the appropriate representation of the Scaled merged iterative results
file and applying the appropriate metric from Step 2, we can determine the mi-
croservice whose behavior is most similar to the submitted microservice within
a single unit of time (1 second in our case). However, the similar behavior of
the microservices does not imply that their execution time will also be close to
each other. For instance, the submitted microservice processes a larger task than
its most similar microservice, therefore the execution requires more time. The
difference of execution time has to be considered, when predicting the execution
time of any workload combination using the execution time of the most similar
microservice. To be able to apply this time difference in the predicted execution
time, we decided to compute the execution time ratio of the submitted and its
most similar microservice. Let’s denote the newly submitted microservice with N ,
its most similar microservice with S, and the average execution time as et(N)
and et(S). Then, the execution time ratio is calculated as follows:

exectime ratio =

et(N)
et(S)

+ et(NN)
et(SS)

+ et(NNN)
et(SSS)

+ et(NNNN)
et(SSSS)

4

The formula shows that the execution time ratio is calculated as the average
execution time ratio of single, double, triple, and quadruple combinations of the
submitted and the most similar microservice.

In the second step, we use this formula to predict the average execution time
of the submitted microservice colocated with any workload combinations. Let’s
denote the particular workload combination with X. Then, the predicted average
execution time of the submitted microservice colocated with workload combina-
tion X is calculated as follows:

predicted avg exectime N X = avg exectime S X ∗ exectime ratio
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As the formula describes, we use the average execution time of the most similar
microservice with colocated workload X from the corresponding Merged iterative
results file, and we multiply it by the execution time ratio. The result is then the
predicted average execution time of the combination N -X.

7.4.4 Evaluation

In this section we evaluate the prediction process. The goal of the evaluation is to
validate the correctness of the presented steps and the overall prediction process.

Before we start the evaluation, we divide the entire available dataset into train-
ing and testing dataset accordingly to the testing microservices selected in Sec-
tion 7.4.2. The testing microservices are selected in a manner, that there should
exist at least one similar microservice in the training dataset. Therefore, the
prediction process should be able to select the microservice that is most similar
to the one from the testing microservices. Beyond that, to show that how the
prediction process behaves in a situation, where the training dataset does not
include any similar microservice, we decided to add the Unzip (denoted as ZB)
microservice to the testing dataset.

During the evaluation process, we focus on the already measured double,
triple, and quadruple workload combinations of the testing microservices. The
execution time of single workloads will not be predicted because it is determined
during the microservice measurement.

We evaluate the correctness of the prediction process from the aspect of error
rate of the predicted and the real execution time of particular workload combi-
nations. Since the workload combinations we are going to evaluate are extracted
from our original measured dataset, the real execution time of each combination is
known. Thus, it enables us to evaluate the correctness of the prediction process
by verifying the predicted execution time against the real measured execution
time.

In the following part of this section, we are going to use figures to evaluate the
prediction process in case of each test microservice. The figures combine the real
and the predicted execution time in milliseconds for every measured workload of
double, triple, and quadruple combinations. Furthermore, we are going to refer
to Table 7.2, that summarizes the error rate over the testing microservices and
their predicted double, triple, and quadruple combinations.

Microservice
Error rate

Double Triple Quadruple
Min Max Average Min Max Average Min Max Average

CYPHERD 0.069103 0.219291 0.185672 0.036139 0.288659 0.195137 0.007625 0.359415 0.197647
EGG 0.036147 0.074182 0.057391 0.000921 0.15564 0.041813 0.000237 0.276021 0.046179
FACE 0.026932 0.117689 0.075302 0.001154 1.401065 0.076166 0.001862 1.278915 0.103014
RB 0.00684 0.035495 0.019303 0.004248 0.055577 0.021804 0.003426 0.031801 0.019649
ZB 0.564034 0.88302 0.738443 0.210829 0.832983 0.535543 0.084218 0.627021 0.426497

Table 7.2: Comparison of error rates for double, triple and quadruple workload
combinations.
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Microservice CYPHERD

Figure 7.4 shows the real and the predicted execution time of the CYPHERD mi-
croservice in double, triple, and quadruple combinations. As a result of the pre-
diction process, microservice PDFD was selected as the most similar microservice
to CYPHERD.

Both microservices belong to the group of disk-intensive microservices. Fur-
thermore, the behavior of the microservices is very similar, since they both gen-
erate and write relatively large files to disk. Analyzing the characteristics of the
microservices, the disk-intensive behavior is also supported by the high value
of the average request size, the high transfer speed, and the high amount of
I/O requests. Both microservices generate medium disk utilization: 43% in case
of CYPHERD and 63% in case of PDFD microservice. Based on the characterization
result, it is apparent that the prediction process successfully selected a similar
microservice from the set of available microservices.

The figure shows that the predicted execution time follows the shape of the
real execution time, but the predicted values are below the real execution time
in every workload combination. The difference is 18.6%, 19.5%, and 19.8% in
average, for double, triple, and quadruple combinations, respectively.

The high error rate is caused by the behavior of the PDFD microservice. Due to
its higher disk utilization in general, the execution time of the PDFD microservice
increases faster than the execution time of the CYPHERD microservice in double,
triple, and quadruple combinations with itself i.e, PDFD-PDFD, PDFD-PDFD-PDFD

and PDFD-PDFD-PDFD-PDFD; similarly to CYPHERD. The high values in the denom-
inator decreases the final value of the execution time ratio, and therefore causes
the prediction process to predict the execution time below the real values.

This phenomenon is particularly observable in workload combinations, where
at least one of the background workloads is a disk-intensive microservice as well
e.g., CYPHERD-A-PDFD, CYPHERD-PDFD-K-SORTD. In such cases, the error rate can
exceed even 35%.

It is shown in Table 7.2, that the error rate varies between 0.8% and 35.9%,
while the average error rate remains below 20%. The results show that there are
substantial differences between the real and the predicted execution time.

Even though, the microservices share similar characteristics, their different be-
havior in more resource intensive load conditions leads to a distorted prediction
result. In order to improve the error rate of the prediction, a new microservice
should be added to the training dataset, whose behavior is closer to the the behav-
ior of CYPHERD microservice in more resource intensive workload combinations.
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(a) Double workload combinations.

(b) Triple workload combinations.

(c) Quadruple workload combinations.

Figure 7.4: Comparison of real and predicted execution time for CYPHERD
microservice. 100



Microservice EGG

Figure 7.5 shows the predicted execution time of the EGG microservice in dou-
ble, triple, and quadruple combinations. As a result of the prediction process,
microservice FLOYD was selected as the most similar microservice to EGG.

Microservices EGG and FLOYD belong to the group of microservices that are not
pushing the available resources to their extremes. However, both microservices
intensively execute operations over arrays and matrices. Therefore, they generate
a constant, but solid load on the CPU and on the memory bus. Given the nature
of the tasks the microservices are designed for, the disk usage of the microservices
during their execution is 0%. Based on the characterization result, it is apparent
that the prediction process successfully selected a similar microservice from the
set of available microservices.

The figure shows that the predicted and the real execution time are close to
each other, with a few exceptions. In quantitative terms, the differences between
the predicted and the real execution time are 5.7%, 4.2%, and 4.6% in average, in
double, triple, and quadruple combinations, respectively. The highest differences
occur in quadruple combinations and reach up to 27.6%.

In most of the combinations, the predicted execution time stays below the real
execution time, however, in some cases the predicted execution time is higher.
This behavior is mainly visible among the most memory-intensive combinations
of triple and quadruple workloads e.g., EGG-SMATRIX-AVL or EGG-SMATRIX-F-K.
Such a memory-intensive microservice is the SMATRIX that repeatedly transposes
the generated matrix. After analyzing the measured workload combination, the
data show, that adding the SMATRIX as a background workload into a combination
where FLOYD is the main workload, increases the execution time of the FLOYD

microservice. Since, the predictor uses the combinations of the FLOYD microservice
to predict the execution time of the combinations of the EGG microservice, the
increased execution time of FLOYD in particular combinations affects the predicted
execution time of the EGG.

It is shown in Table 7.2, that the error rate varies between 0.02% and 27.6%,
however, the average error rate does not exceed 6%. These results support our
statement based on Figure 7.5 that microservice FLOYD is an appropriate choice
as the most similar microservice to EGG, and enables to predict the execution time
with a small error rate in average.
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(a) Double workload combinations.

(b) Triple workload combinations.

(c) Quadruple workload combinations.

Figure 7.5: Comparison of real and predicted execution time for EGG microser-
vice. 102



Microservice FACE

Figure 7.6 shows the predicted execution time of the FACE microservice in dou-
ble, triple, and quadruple combinations. As a result of the prediction process,
microservice H was selected as the most similar microservice to FACE.

The FACE microservice is designed to accept input images, detect human faces
in them, and generate output images that serve as an overlay to identify the loca-
tion of the faces in the submitted input images. Its most similar microservice is H,
which represents the apparat benchmark from the Scala benchmark suite. The
benchmark optimizes a selection of SWC files by using four tools of the Apparat
framework [39]. Regarding the resource usage, the microservices generate similar
resource load. Both microservices intensively exercise the CPU and the memory.
Furthermore, they work with a limited amount of small files. Thus, their disk
usage is minimal, however, it is noticeable.

The figure shows that the predicted execution time is close to the real exe-
cution time in double, triple, and quadruple combinations. In all double and in
the most of the triple combinations, the predicted execution time is below the
real execution time. Contrary to this, in most of the quadruple combinations,
the predicted execution time is above the real execution time.

Event though the two microservices share a very similar behavior in different
workload combinations, the execution time of the H microservice increases in a
slightly faster rate than the execution time of the FACE microservice. Analyz-
ing the intermediate results of the prediction process, the average execution time
ratio of single, double, triple, and quadruple combination of the FACE and H mi-
croservices is higher than the execution time ratio of the quadruple combinations
of FACE and H. This causes that the predicted execution time is above the real
execution time in the quadruple combinations.

It is observable from the triple, and quadruple combinations, that there are
six cases altogether, where the predicted execution time extremely differs from
the real execution time. The common property of these combinations is that they
include either one of the PDFD or the SORTD microservice, or both of them. These
microservices represent the most resource intensive microservices that generate a
solid load on the CPU, disk, and the memory at the same time. The high resource
demand of the colocated workloads combined with the fact that the execution
time of microservice H increases faster in more resource intensive combinations
leads to those cases where the execution time of H exceed 17 seconds. Because
the predicted execution time is calculated on the basis of the real execution time
of the most similar microservice, it will be extremely distorted as well.

It is shown in the figure, that the difference between the predicted and the
real execution time is small in the majority of combinations. The differences are
7.5%, 7.6%, and 10.3% in average, in double, triple, and quadruple combinations,
respectively. There are altogether six cases in triple and quadruple combinations
where the extreme inaccuracies occur.

It is shown in Table 7.2, that the error rate varies between 0.1% and 140.1%,
however, the average error rate does not exceed 11%. This means that even
though, there are cases where the prediction is extremely invalid, in the majority
of cases the predicted execution time is close to the real execution time. There-
fore this confirms that microservice F was correctly selected as the most similar
microservice to FACE.
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(a) Double workload combinations.

(b) Triple workload combinations.

(c) Quadruple workload combinations.

Figure 7.6: Comparison of real and predicted execution time for FACE microser-
vice. 104



Microservice RB

Figure 7.7 shows the predicted execution time of the RB microservice in dou-
ble, triple, and quadruple combinations. As a result of the prediction process,
microservice AVL was selected as the most similar microservice to RB.

Algorithms of microservices RB and AVL share the same base steps. First,
both set up a tree (Red-Black and AVL tree, respectively) by inserting nodes
with randomly generated numbers. In the second step, both microservices remove
the nodes from the existing tree one-by-one. What they differ in, is the type of
the tree they exercise on. The repeated execution of the presented algorithm
generates solid CPU and memory load. Because the algorithms do not execute
any file I/O operation and the disk utilization is 0% for both microservices.

Based on this characterization, the combination of RB and AVL resembles the
combination of EGG and FLOYD microservice. However, from the figures of dou-
ble, triple, and quadruple combination is obvious, that the execution time of
the RB microservice changes significantly in various workload combinations, while
there are only negligible changes in execution time of the EGG microservice. The
higher execution time is particular in combinations, where one of the background
workloads include the CPU and memory intensive SMATRIX microservice. Fur-
thermore, the characteristics of the microservices show that RB uses 30% more
memory than EGG, and AVL uses 100% more memory then FLOYD. This behav-
ior strengthens the assumption that the RB and AVL are more resource-intensive
microservices than the EGG and FLOYD.

The difference between the predicted and the real execution time is very small
in general, even though, the real execution time changes significantly in almost
every workload combination. However, the predicted execution time always stays
below the real execution time, the differences are 1.9%, 2.2%, and 2.0% in av-
erage, in double, triple, and quadruple combinations, respectively. The highest
differences are present in triple combinations, but they do not exceed 6%.

It is shown in Table 7.2, that the error rate varies between 0.3% and 5.6%, how-
ever, the average error rate does not exceed 2.2%. The small difference between
the minimum, maximum, and the average error rate implies a precise prediction
in every scenario, and confirms that microservice AVL is an appropriate choice as
the most similar microservice to RB.
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(a) Double workload combinations.

(b) Triple workload combinations.

(c) Quadruple workload combinations.

Figure 7.7: Comparison of real and predicted execution time for RB microservice.
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Microservice ZB

Figure 7.8 shows the predicted execution time of the ZB microservice in dou-
ble, triple, and quadruple combinations. As a result of the prediction process,
microservice PDFD was selected as the most similar microservice to ZB.

The figure shows that the differences between the predicted and the real ex-
ecution time are the highest among the presented testing microservices. This
unusual behavior corresponds to the fact, that microservice ZB was added into
the testing dataset intentionally. Analyzing the characteristics of the ZB microser-
vice, it is evident that this is the most resource-intensive microservice of the 17
available microservices. Because ZB extracts a 188MB zip archive, which results
in 4396 files, each size of several hundreds of kilobytes, the generated disk load
exceeds the disk limits even if the microservice is executed without any colocated
workloads.

Based on the available characteristics, we can see that the microservice is
resource-intensive enough to utilize the disk device at 100% even running as
a single instance. Therefore, the various double, triple, and quadruple com-
binations overload the disk, and cause a massive bottleneck, which results in
highly increasing execution time. For instance, the average execution time of
the quadruple combination ZB-ZB-ZB-ZB is 7.37-times slower than the execution
time of the single run of ZB, without background workloads. However, in case
of PDFD microservice, the average execution time of the quadruple combination
PDFD-PDFD-PDFD-PDFD is only 3.36-times slower than the execution time of the
single run.

This serious difference of the scalability of the compared microservices affects
the prediction process, and results in a distorted execution time ratio. This is
the cause, why all double, triple, and quadruple combinations are significantly
predicted above the real execution time.

It is shown in Table 7.2, that the error rate varies between 8.4% and 88.3%.
The average error rate is 73.8%, 53.6%, and 42.6% for double, triple, and quadru-
ple combinations, which makes ZB the worst predicted microservice among all test
microservices.

The presented test-case is a perfect example to show the weakness of our pre-
diction process. The correctness of the prediction process highly depends on the
availability of a microservice from the training dataset that is similar to the sub-
mitted microservice. If the training dataset does not include such a microservice,
the prediction process will not be able to provide a reliable prediction.
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(a) Double workload combinations.

(b) Triple workload combinations.

(c) Quadruple workload combinations.

Figure 7.8: Comparison of real and predicted execution time for ZB microservice.
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Prediction Input & Output

In Section 5.1.2 we presented the structure of the requirements specification file
and described how it is used to define the time and probability requirements of
the microservice. This file serves as one of the input files of the prediction process
and determines the cases the predictor should predict.

As we described in the previous part, the predictor predicts the execution time
of the submitted microservice colocated with the available double, triple, and
quadruple combinations of its most similar microservice. To decide whether the
specified time and probability requirements can be met, the predictor evaluates
the predicted execution time with respect to the submitted requirements. If
the submitted requirements specification lists more than one requirement, the
predictor subsequently evaluates every requirement. At the end of the prediction
process, the predictor summarizes the prediction results into a programmatically
generated YAML output file which is available for the microservice developer in
a predefined location. Listing 7.2 shows a sample of the generated output file.

The prediction result contains exactly one MultiRequirementResult node,
which includes the results of prediction for each case defined in the submitted
requirements specification file.

Input requirements: In the first part (lines 2-10), the prediction result file
contains the input requirements. They help the microservice developer to identify
the microservice and the requirements that this prediction result refers to.

Output requirements: The most important content of the prediction result
is presented within the output requirement results node (lines 11-40). The
node includes a list of RequirementResult nodes. In this particular example,
there are 8 nodes in the list, because every Requirement from the input re-
quirements specification is evaluated with the 4 types of workload combinations
(single, double, triple, and quadruple) we measure. Each RequirementResult

node has 3 attributes and an internal node. The input requirement attribute
identifies the requirement to which this result belongs to. The overall result

attribute specifies whether the referred requirements are met for this particu-
lar set of workload combinations. The probability attribute expresses the
percentage of combinations that met the time limit. The attributes are fol-
lowed by the predicted combination result node. The node includes a list of
PredictedCombinationResult nodes that represent the result of the prediction
for that particular workload combination. Each PredictedCombinationResult

consists of 5 attributes. The average runtime ratio expresses the execution
time ratio introduced in the previous section. Attributes new microservice id

and closest microservice id show the ID of the currently submitted and its
most similar microservice. The background combination attribute shows the
background workloads of that particular workload combination. If the value is
set to null, there are no background workloads. The predicted combina-

tion avg runtime attribute shows the predicted runtime of the workload com-
bination in milliseconds.

Predicted workload combinations: Beyond the general overview pre-
sented by the RequirementResult nodes, the prediction result includes data
about every predicted workload combination. These are divided into the fol-
lowing four nodes, according to the arity of the combination:
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• Node single predicted combination result.

• Node double predicted combination result.

• Node triple predicted combination result.

• Node quadruple predicted combination result.

Each node contains a list of PredictedCombinationResult nodes, which de-
scribe the details of the predicted workload combination.
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1 !yamlable/result.requirement.MultiRequirementResult

2 _input_requirements:

3 - &id001 !!python/object:requirements.requirement.Requirement

4 _microservice_id: AVL

5 _probability: 100

6 _runtime: 10000

7 - &id003 !!python/object:requirements.requirement.Requirement

8 _microservice_id: AVL

9 _probability: 70

10 _runtime: 9500

11 _output_requirement_results:

12 - !yamlable/result.requirement.RequirementResult

13 _input_requirement: *id001

14 _overall_result: true

15 _predicted_combination_results: &id004

16 - !yamlable/result.predictor.PredictedCombinationResult # single combination

17 _average_runtime_ratio: 1.0

18 _background_combination: null

19 _closest_microservice_id: AVL

20 _new_microservice_id: AVL

21 _predicted_combination_avg_runtime: 9320.548

22 _probability: 100

23 - !yamlable/result.requirement.RequirementResult

24 _input_requirement: *id001

25 _overall_result: false

26 _predicted_combination_results: *id002

27 _probability: 29

28 - !yamlable/result.requirement.RequirementResult

29 _input_requirement: *id001

30 _overall_result: false

31 _predicted_combination_results: &id005

32 - !yamlable/result.predictor.PredictedCombinationResult # triple combination

33 _average_runtime_ratio: 1.1393649242893078

34 _background_combination: A-A

35 _closest_microservice_id: RB

36 _new_microservice_id: AVL

37 _predicted_combination_avg_runtime: 9876.024278659113

38 # ... additional PredictedCombinationResults for triples

39 _probability: 7

40 # ... additional RequirementResults for the remaining combinations

41 _single_predicted_combination_result: *id004

42 _double_predicted_combination_result: &id002

43 - !yamlable/result.predictor.PredictedCombinationResult # double combination

44 _average_runtime_ratio: 1.1393649242893078

45 _background_combination: A

46 _closest_microservice_id: RB

47 _new_microservice_id: AVL

48 _predicted_combination_avg_runtime: 9611.226755334885

49 # ... additional PredictedCombinationResults for doubles

50 _triple_predicted_combination_result: *id005

51 _quadruple_predicted_combination_result: *id006

Listing 7.2: Example of prediction result.
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8. Implementation

In this chapter, we focus on the architecture and the implementation details of
the final system. We highlight the main components, and the possibilities to
extend the current solution.

First, we show the system architecture diagram and enumerate its main com-
ponents. Then, we describe every component in a separate section with its UML
class diagram, that visualizes the associated important classes, methods, and at-
tributes. A more detailed description of each class and method can be found in
the generated documentation.

8.1 Architecture

This section presents the overall architecture and introduces the main components
of the system. As it is clear from Figure 8.1, the architecture consists of multiple
components that can be further divided into sub-components. The system is a
combination of applications written in Python and Java programming languages.
The components running on different machines communicate via REST API.
Since the communication between the components is rare and requires to transfer
only a small amount of structured data, therefore REST is an ideal choice. Here,
we list main components that we will describe in more detail in the next sections.

• Orchestrator: It is written in Python language and is considered as a cen-
tral component of the architecture. It enables the microservice developer
to submit the microservice into the deployment framework and manages
the microservice deployment process. A dedicated server is used for its
deployment.

• Agent: It is responsible for the microservice measurement process. There
can be multiple instances of agents in the deployment framework, each run-
ning on a separated server. The agent communicates with the orchestrator
via REST API, and is written in Python language.

• Measuring framework: The most important component of the system. It
is enabled to run multiple measuring framework instances inside one agent,
however, the instances should be executed in separated Docker containers.
The measuring framework is written in Java language.

• Communication interface: It enables the measuring framework to load, exe-
cute, and measure the submitted microservices. It also provides an API for
communication between the measurement framework and the microservice.
The communication interface is written in Java language.

• Microservice: These are the concrete implementations written in Java lan-
guage and represent real-life workloads. Each microservice is executed by
the measuring framework inside the Docker container. The microservice
communicates directly with its measuring framework because both imple-
ment the custom communication interface.
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• Predictor: It analyzes the collected data and predicts the microservice exe-
cution time in various workload combinations. The predictor is written in
Python language.

Predictor

Preprocessor

Data transformer

Runtime predictor

Orchestrator

User interface / REST API

Request manager

Batches

Internal communication /
REST API

RequirementsAgents
Input Config
Processor

Input processing

Agent

Measurement flow manager

Communication interface

Submission tasks / jobs

Collected data

Prediction result

Collected data and
time requirements

Microservice
developer

Re
qu

ire
m

en
ts

sp
ec

ific
at

ion

Deployment framework

Measuring framework

Microservice

Interface

Container 1

Measuring framework

Microservice

Interface

Container N

Figure 8.1: System architecture.
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8.2 Orchestrator

The orchestrator is the entry point of the deployment framework and represents
a bridge between the microservice developer and the internal parts of the frame-
work. Its main responsibility is to enable the microservice developer to submit
the microservice along with its requirements. It also distributes the microservice
measurement among the cluster of measuring agents and passes the collected data
to the prediction process.

In this section, we show how the orchestrator communicates with the mi-
croservice developer and the internal parts of the system. Then, we present each
main component separately.

8.2.1 Communication Interface

REST API

The default communication method between the orchestrator and other parties
is implemented via REST APIs, which exchange data in JSON format.

The RequestManager exposes an endpoint for every main functionality re-
lated to submitting the requirements specifications, managing the batches, and
enabling the communication with the agents.

The REST APIs are realized using the Flask Framework1, that is a third-party
library used for developing web applications in Python.

Administrator UI

Beyond the REST API, the orchestrator also provides an optional command-
like user interface. This is mostly used for the testing purposes and enables a
faster and more simple interaction with the application. It is implemented by
the AdministratorUI that extends the built-in Cmd2 class. The command-like
interface offers the same functionalities as the REST API does.

8.2.2 Main Parts

Input Processing

The requirements specification submitted by the microservice developer is passed
to the InputManager that is responsible for parsing the input files. The Input-

Manager processes the single requirements specification file into two separate files:
batch configuration and requirements of the microservice. The InputManager

uses the InputConifgProcessor to generate the batch configuration file. The
InputConifgProcessor is a separate application and its purpose is to generate
the batch configuration from the input file based on a predefined pattern. The
requirements are simply extracted from the requirements specification file and
are stored in a separated requirements file.

1https://flask.palletsprojects.com/, version 1.0.2
2https://docs.python.org/3.6/library/cmd.html
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Batch Management

The generated batch configurations are represented as instances of Batch and
are managed by the BatchManager, that allows to add and remove batches, or to
update their current states.

The BatchManager organizes the batches into batch groups. By default, the
batches are added into the default group. These batch groups allows to gather
batches of the same type and to assign them to agents that provide a specific
environment. The agents assigned to different groups may differ in their settings,
therefore batches from different groups can be measured in different environments.

Furthermore, the BatchManager is responsible for distributing the batches
among the agents, and managing the state of the batches during the execution.
The possible states of the batch are defined in the BatchState enum. The various
batch states enable the BatchManager to distinguish between the batches already
executed and the batches waiting for execution.

The batches are stored in BatchQueue, a queue-like data structure which holds
the batches. There is a separate BatchQueue instance for every batch group.
When the next batch is requested from the queue, the data structure returns
the first batch which is in BatchState.WAITING state or returns None if no such
batch exists.

Requirements Management

The RequirementsManager keeps track of the submitted requirements and pro-
vides methods for managing them. The requirements submitted by the microser-
vice developer are represented as an instance of Requirement. If there are more
requirements for a single microservice, they are wrapped into an instance of the
MultiRequirement.

As it is described in Chapter 7, the requirements are evaluated in the last
step of the prediction process. However, the prediction process cannot be started
until all the batches of a particular requirement are successfully measured. To
be able to start the prediction process and to establish the communication be-
tween the orchestrator and the predictor, the RequirementsExecutor is used.
It enables the orchestrator to communicate with the predictor, and to pass the
requirements and the collected data to the predictor. Furthermore, it ensures
that the prediction result is returned to the orchestrator as an instance of the
MultiRequirementResult.

Agent Management

To be able to communicate with the agents and to distribute the batches among
them, there is a need for AgentManager. Agents are represented by the Agent

class that includes the most important properties of the agents. For instance,
each agent has its unique name, unique address, name of the currently assigned
batch, etc. The AgentManager manages the agent registration - assigning it to
the appropriate batch group, unregistration and monitoring the agent’s state.
Furthermore, it enables the orchestrator to suspend the agent for a while or to
immediately terminate the agent.
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8.3 Agent

The agent is responsible for requesting new batches, managing the execution
flow of batch tasks included in the particular batch configuration, and returning
the measurement result to the orchestrator. As it is described in Chapter 5, the
batch configuration includes optional initial and final tasks besides the mandatory
microservice tasks. Therefore, the main objective is to design a task executor
application and a public interface that enables to execute various tasks specified
in the batch configuration.

First, we describe the main concept of the agent application life-cycle. Then
we present the architecture in two steps. In the first step, we show the mechanism
that accepts the batch configuration file from the orchestrator and parses the task
definitions. In the second step, we show the general task execution mechanism
that executes the parsed tasks.

8.3.1 Application Life-cycle

The agent application has a predefined life-cycle that helps the application to run
without user interaction. This life-cycle defines the crucial states that the appli-
cation goes through during its execution. The application life-cycle is controlled
by the MainExecutor class, which implements the appropriate mechanisms to
control the transitions between the states during the application life-cycle. The
life-cycle consists of multiple states that cover the main execution flow and the
corner cases as well. In this section, we describe the most important steps of
the life-cycle. The entire life-cycle and the transitions between the states are
described in the documentation of the MainExecutor class.

• Registered: The agent successfully establishes the communication with the
orchestrator and registers itself as an active agent. Registering the agent
to orchestrator ensures that every iteration of the batch execution will be
executed on the agent that the batch was first assigned to. No other agent
can register at the orchestrator using the same agent name.

• Stand-by: The agent is ready to execute the batch. If it does not get force
stopped in the meanwhile, it keeps querying the orchestrator for a batch to
execute in every 10 minutes until it gets a batch. If a batch is received, the
execution continues in the Executing state.

• Executing: The batch is being executed. The execution is done if it is suc-
cessfully finished, force stopped, or failed to execute the batch. Regardless
the result of the batch execution, the application execution continues in the
Execution done state.

• Execution done: The batch execution has been finished. In this state, the
agent creates the result based on the outcome of the batch execution and
reports this result to the orchestrator.

• Restarting: The agent executes the reboot command, which restarts the
underlying operating system.
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• Unregistered: The agent is unregistered from the orchestrator and will not
query for new batches. This state can be reached only when the agent
execution is force stopped by the orchestrator.

• Failed: There was a critical failure during the life-cycle e.g., failed to regis-
ter, sign in, sign out, report result or unregister. The agent tries to report
the failure to the orchestrator and terminates the application.

8.3.2 Input Processing

The input processing is a sequence of steps that parses the received batch con-
figuration into executable tasks. In the following, we use Figure 8.4 to describe
the architecture of input processing and to present the main classes involved in
each step. In order to show every case of the process, we assume that the batch
configuration file contains concrete initial and final tasks besides the mandatory
microservice task.

The parsing process starts by receiving the batch configuration file in JSON
format from the orchestrator. Then the entire parsing process is managed by the
BatchParser class.

Step 1. The BatchParser splits the JSON file into smaller sections: main
attributes of the batch configuration and task definitions. Then, the BatchParser

passes each task definition to the corresponding task definition parser.

Step 2. Besides the required attributes, every task definition contains unique
attributes. Therefore, it is required to implement a custom parser that parses the
attributes of that particular task definition. In our solution, the build task, mi-
croservice task and send task definitions (see Section 5.1.2) are parsed by the fol-
lowing custom parsers: BuildTaskDefinitionParser, MicroserviceTaskDefi-

nitionParser and SendTaskDefinitionParser.
The results of the task definition parsers are returned as concrete implementa-

tions of the abstract TaskDefiniton class, that store the attributes of the corre-
sponding task definition. The concrete implementations are the following: Build-

TaskDefinition, MicroserviceTaskDefinition and SendTaskDefinition.

Step 3. The parsed task definitions are returned to the BatchParser, that
passes them to the TaskCreator. The TaskCreator is responsible for convert-
ing the task definitions into executable tasks depending on the type of the task
definition. The executable tasks must extend the BaseTask abstract class that
defines the necessary methods for tasks execution e.g., start, stop, reset, change
state, etc. In our solution, the concrete implementations of the BaseTask are the
following: BuildTask, MicroserviceTask, and SendTask.

Step 4. The TaskCreator returns the executable tasks to the BatchParser.
Then, the BatchParser creates an instance of the BatchConfig class that is re-
sponsible for representing the parsed batch configuration file. In the last step, the
BatchParser adds the already parsed main attributes of the batch configuration
and the executable tasks to the BatchConfig instance.
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8.3.3 Task Execution

The goal is to design a general task executor that is able to execute mandatory mi-
croservice tasks and optional user-defined tasks defined in the batch configuration
file. Since, the optional tasks can be implemented and added by the microservice
developer, we designed the BaseTask interface that enables the task executor to
execute them. By implementing the BaseTask interface, the tasks are split into
main steps that represent critical parts of the task execution process. In order to
successfully execute the steps, and to handle their possible failures without letting
to fail the entire measuring process, the concrete BaseTask instances are executed
by particular task executors. The BatchTaskExecutor defines an interface that
allows to safely execute the tasks. Therefore, for each concrete BaseTask there
must be implemented a concrete BatchTaskExecutor, that executes the partic-
ular BaseTask step-by-step. During the execution, each step reports its result to
the executor. Therefore, the execution is always supervised and the odd events
can be immediately handled.

The BatchExecutor manages the execution of batch tasks within the main
execution process. The batch execution process is divided into three phases,
where each phase executes a particular type of task. The tasks are executed
sequentially in the following order: initial, microservice, and final task. The
BatchExecutor executes every concrete instance of the BaseTask by using task’s
concrete BatchTaskExecutor. The concrete batch task executors for the initial,
microservice and final tasks are the following: BuildTaskExecutor, Microser-

viceTaskExecutor, and SendTaskExecutor. The BatchExecutor ensures that
the tasks are executed in this order, and reports the result of each task execution
to the MainExecutor.

8.4 Measuring Framework

The measuring framework is executed in the second step of the batch execution
process. The purpose of the measuring framework is to provide an environment
that enables to iteratively execute the microservice and measure its resource us-
age. The measuring framework is executed inside a Docker container, therefore
there can be multiple instances running in one agent in parallel, each in a sepa-
rated Docker container. Even though, the resource usage of a particular microser-
vice is not measured i.e., the microservice represents a background workload, the
measuring framework is required to manage the microservice execution.

In order to be able to run the measuring framework, the following precondi-
tions should be met during the initialization step of the batch execution process:
the appropriate Docker image is built and includes the assets required for execut-
ing and measuring the microservice. These assets are: the measuring framework,
the submitted microservice, and the dependencies that will be required during
the execution.
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8.4.1 Microservice Execution

Main Controller

As described in Chapter 6 and in Section 8.5, the second step of the batch ex-
ecution process can be further divided into three phases of microservice execu-
tion. To be able to control the execution of each microservice phase, we use the
MicroserviceLifeCycleController (MLCC). The MLCC is responsible for man-
aging the microservice execution flow, handling the success, and failure for each
phase.

Initialization

However, before the MLCC can control the execution of phases, the measuring
framework should be initialized. The properties of the microservice execution
and measurement are passed by command-line parameters to the Docker con-
tainer, that uses them to start the measuring framework. The measuring frame-
work parses the parameters and creates an instance of the MicroserviceConfig

class. The MicroserviceConfig includes the most important properties of the
microservice: class-path of the microservice test-point, configuration of the mi-
croservice, etc. Then the measuring framework initializes the MLCC by passing
this MicroserviceConfig instance to it.

Class Loading

The MLCC initialization process is followed by loading and initializing the microser-
vice. The MLCC uses the class-path from the given MicroserviceConfig instance
to load the concrete implementation of the MeasurableMicroservice interface
that represents the microservice test-point. By calling the public methods of this
interface, the MLCC will able to execute the phases of the microservice.

Controlling the Microservice Execution

The initialization and cleanup phases usually consist of a few simple steps. How-
ever, the iterate and measure phase is more complicated and requires an intensive
communication between the measuring framework and the microservice. To man-
age this phase and to ensure the communication between the parties, the MLCC

uses a concrete implementation of the IMicroserviceRunFlowController, the
MicroserviceRunFlowController. This run flow controller enables the com-
munication between the measuring framework and the microservice: reporting
when the iteration starts or finishes, succeeds or fails. Furthermore, it guarantees
that the microservice execution does not exceed the specified measurement time
(12 minutes in our case).

Reporting Sub-results.

Beyond the management of the microservice execution, the MLCC maintains the
communication with the agent. The MLCC reports the result of each phase to the
agent that processes the reported result and notifies the orchestrator if necessary.
The communication between the measuring framework and the agent is based on
HTTP requests.
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8.4.2 Data Collection

The most important part of the measuring framework is data collection that in-
cludes measuring the microservice resource usage and behavior during its iterative
execution.

We have implemented two different data collection approaches: iterative and
sampling data collection. The former collects the microservice resource usage
within each microservice iteration, while the latter uses an iteration-independent
data collection scheduled at a predefined frequency.

Data Collectors

Even though the approaches significantly differ in their implementation details,
they are required to execute the same actions: start and stop the data collection
process and return the collected data. Therefore, we designed the DataCollector

interface that the concrete data collectors should implement in order to satisfy
these requirements. By implementing the DataCollector interface, one is not
limited to use only the existing approaches but can extend the data collection
process with additional data collector implementations.

However, the high amount of concrete data collectors significantly increases
the complexity of their management and coordination with the microservice
execution. To simplify their management, we decided to add an additional
abstraction layer above the concrete data controllers. This is realized by the
CombinedDataCollector, that gathers the concrete data controllers implement-
ing the DataCollector interface, and ensures their management.

In our solution, the CombinedDataCollector manages two concrete imple-
mentations of the DataCollector interface: the IterativeDataCollector and
the SamplingDataCollector.

The IterativeDataCollector manages the data collection at the beginning
and at the end of each microservice iteration. This concrete data collector im-
plements the IterationStartStopListener interface as well, that enables the
microservice to notify the IterativeDataCollector when the iteration starts
and finishes. At the end of each iteration, the IterativeDataCollector cal-
culates the difference of the collected data to get the amount of resources used
within one microservice iteration.

The SamplingDataCollector manages periodical data collection regardless of
the current iteration of the microservice. The SamplingDataCollector samples
the microservice resource usage until the overall data collection is enabled by the
MicroserviceLifeCycleController.

The IterativeDataCollector and the SamplingDataCollector do not im-
plement concrete data collection algorithms by themselves, but they use specific
data monitors, which are designed for this purpose.

Data Monitors

Data monitors are responsible for collecting the usage of a particular hardware
resource. Every data monitor implements a specific data collection algorithm,
designed for that particular hardware that the data monitor focuses on. The
data monitors implement the Monitor interface. The interface enables to start
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and stop the data collection and to return the collected data. To ensure the com-
patibility with the iterative and sampling data collectors, the Monitor interface
is extended by the IterativeMonitor and SamplingMonitor interfaces.

The IterativeMonitor interface enables to implement concrete iterative data
monitor, that focuses on a particular hardware resource and collects its usage in
every iteration of the microservice. To collect data about multiple resources,
we have implemented the following iterative data monitors that are managed
by the IterativeDataCollector: IterativeCpuMonitor monitors CPU usage,
IterativeDiskMonitor monitors disk I/O usage, and IterativeTimeMonitor

monitors the microservice execution time.
The SamplingMonitor interface enables to implement concrete sampling data

monitor that repeatedly collects the usage of a particular hardware resource us-
ing a predefined sampling period. To collect data about multiple resources, we
have implemented the following sampling data monitors that are managed by
the SamplingDataCollector: SamplingProcStatMonitor monitors CPU usage,
SamplingSdaStatMonitor monitors disk I/O usage, and SamplingProcMemInfo-

Monitor monitors memory usage.

8.5 Communication Interface

The communication interface library enables the communication between the
measuring framework and the microservice. The library includes the following two
interfaces: MeasurableMicroservice and IMicroserviceRunFlowController.
See Figure 8.6 for the UML class diagram.

The MeasurableMicroservice interface enables the measuring framework to
load the microservice and manage the microservice execution flow that includes
following main phases: initialize the working environment and the microservice,
iteratively execute the microservice, measure its resource usage, and clean up
the working environment. The more detailed analysis of the phases is presented
in Chapter 6. The MeasurableMicroservice interface assigns one particular
method for each of the main microservice phases, therefore they can be easily
executed from the measuring framework. At the end of each phase, the methods
return the execution result as one constant of the MicroserviceResult enumer-
ation.

The IMicroserviceRunFlowController interface enables the microservice
to execute callbacks to the measuring framework. The callbacks include report-
ing the start and stop of execution of current microservice iteration or checking
whether the next iteration can be executed.

Listing 8.1 shows an example implementation of the iterateAndMeasure()

method of the MeasurableMicroservice interface. This method is called to
execute the second phase, in which the microservice is executed iteratively and its
resource usage is measured until the IMicroserviceRunFlowController enables
the next iteration.

The execution of the microservice should be bundled into a loop, which enables
to execute the microservice repeatedly. The condition of while-loop must include
a call of canRunAgain() to ensure that the microservice iterations do not exceed
the total length of execution. Moreover, it can be also used to terminate the
iterative execution if the measurement was force stopped by the orchestrator.
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<<Interface>>
MeasurableMicroservice

+ init(String[]): MicroserviceResult
+ iterateAndMeasure(): MicroserviceResult
+ cleanup():MicroserviceResult
+ setMicroserviceRunFlowController(IMicroserviceRunFlowController)

<<Interface>>
IMicroservicerunFlowController

+ iterationStarted():void
+ iterationStopped():void
+ iterationCompleted():void
+ iterationFailed(): void
+ isIterationRunning(): boolean
+ canRunAgain(): boolean
+ forceStop(): void
+ isForceStopped(): boolean
+ resetAll(): void
+ resetTerminationCondition(): void

<<Enumeration>>
MicroserviceResult

INIT_FINISHED
INIT_FAILED
RUN_FINISHED
RUN_FAILED
CLEAN_UP_FINISHED
CLEAN_UP_FAILED
FORCE_STOPPED

1

Figure 8.6: UML class diagram of the communication interface.

To report the run flow controller that the microservice execution started and
the data collection should be started, call the iterationStarted() method.
When the microservice is finished, calling the iterationStopped() reports the
run flow controller that the microservice is finished and the data collection for
that particular iteration should be stopped. To increase the counter of the it-
erations passed, call the iterationCompleted() method. If the microservice
fails for any reason, the fail must be reported to the run flow controller by call-
ing iterationFailed() method. Otherwise, the corresponding result should be
returned.
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1 @Override

2 public MicroserviceResult iterateAndMeasure() {

3 try {

4 while (runFlowController.canRunAgain()) {

5 runFlowController.iterationStarted();

6
7 microservice.run();

8
9 runFlowController.iterationStopped();

10 runFlowController.iterationCompleted();

11 }

12 } catch (TaskFailedException e) {

13 if (runFlowController.isIterationRunning()) {

14 runFlowController.iterationFailed();

15 }

16 return MicroserviceResult.RUN_FAILED;

17 }

18
19 if (runFlowController.isForceStopped()) {

20 return MicroserviceResult.FORCE_STOPPED;

21 } else {

22 return MicroserviceResult.RUN_FINISHED;

23 }

24 }

Listing 8.1: Example implementation of the iterateAndMeasure() method.

8.6 Microservices

In our solution, the microservices are implemented as Java applications. This
fulfills the requirements, which expect real-life microservices implemented in high-
level programming languages. Furthermore, using the same programming lan-
guage for the measuring framework and the microservices enables to simply con-
nect the two components.

Implementing the Communication Interface

Even though, the 17 selected microservices represent different problem domains,
they are built on the same principle. As depicted in the UML class diagram
in Figure 8.7, every microservice must implement the MeasurableMicroservice

interface presented in the previous section. Thus, the measuring framework can
load the microservices and manage their execution flow including the main phases.
Although, it is not mandatory for the other microservice developers, every mi-
croservice implemented in our solution contains a class called Microservice. This
is the main class that serves as an entry-point of microservices that implement
the MeasurableMicroservice interface.

Test-points

In our project, some microservices implement multiple algorithms from the same
application domain. Each of the implemented algorithms extend the microservice
with additional functionality, therefore they can be considered as separate test-
points of a single microservice. For instance, microservices AVL and RB both
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1 public class Microservice implements MeasurableMicroservice {

2 private IMicroserviceRunFlowController runFlowController;

3 private AbstractTask task;

4
5 @Override

6 public MicroserviceResult init(String[] args) {

7 if (args.length >= 1) {

8 // the first cmd-line argument determines the test-point

9 String taskType = args[0];

10 switch (taskType) {

11 case Task.AVL:

12 task = new AVLTask();

13 break;

14 case Task.RB:

15 task = new RBTask();

16 break;

17 default:

18 return MicroserviceResult.INIT_FAILED;

19 }

20 try {

21 // using the task object to initialize

22 // the test-point and its working environment

23 task.prepareTask();

24 } catch (TaskFailedException e) {...}

25 } else {

26 return MicroserviceResult.INIT_FAILED;

27 }

28 }

29
30 @Override

31 public MicroserviceResult iterateAndMeasure() {

32 try {

33 while (runFlowController.canRunAgain()) {

34 runFlowController.iterationStarted();

35
36 // using the task object to execute the test-point

37 task.performTask();

38
39 runFlowController.iterationStopped();

40 runFlowController.iterationCompleted();

41 }

42 } catch (TaskFailedException e) {...}

43 ...

44 }

45
46 @Override

47 public MicroserviceResult cleanup() {

48 try {

49 // using the task object to remove

50 //the test-point working environment

51 task.cleanupTask();

52 } catch (Exception e) {...}

53 ...

54 }

55
56 // setting the instance of the IMicroserviceRunFlowController ...

Listing 8.2: Example usage of microservice test-points.
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<<Interface>>
MeasurableMicroservice

+ init(String[]): MicroserviceResult
+ iterateAndMeasure(): MicroserviceResult
+ cleanup():MicroserviceResult
+ setMicroserviceRunFlowController(IMicroserviceRunFlowController)

<<Abstract>>
AbstractTask

<<constructor>> ~ AbstractTask(String[])
+ prepareTask(): void
+ performTask(): void
+ cleanupTask(): void

1 1

XOR

Microservice

- runFlowController: IMicroserviceRunFlowController
- task: AbstractTask

RBTaskAVLTask

Figure 8.7: UML class diagram of the microservice.

apply the same steps in their algorithms: first they insert nodes into a tree, then
they remove the inserted nodes. The different algorithms are implemented within
one microservice, however, they are separated into two test-points.

The UML class diagram in Figure 8.7 shows that the test-points extend the
AbstractTask abstract class. The AbstractTask defines three abstract methods
that correspond to the three main phases of the microservice.

Listing 8.2 shows an example implementation of the main entry-point, the
Microservice class. From the implementation is observable, how the appropri-
ate instance of AbstractTask is created and how it is used in each phase of the
microservice execution. The concrete implementation of the AbstractTask is in-
stantiated in the init(String[]) method. When the measuring framework loads
the microservice, the command-line arguments are passed to the init(String[])

method as an array of String. Based on the command-line arguments, the method
determines the appropriate test-point and instantiates it (lines 12 and 15). Then,
this instance is used in every microservice phase to propagate the execution (of
the particular phase) to the corresponding method of the test-point (lines 23, 37
and 49).

8.7 Predictor

The goal of the predictor is to predict the submitted microservice execution time
in various workload combinations and use the prediction result to evaluate the
requirements specification.

However, the predictor is considered as a standalone application within the
whole solution, it is tightly connected with the orchestrator. The orchestrator
starts the prediction process and provides the input parameters after the mi-
croservice measurement finishes. Therefore, the predictor should be executed
as a sub-module of the orchestrator and should be located on the orchestrator
project directory.
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8.7.1 Prediction Process

The prediction process is a sequence of predefined steps. The execution of these
steps are controlled by the PredictionManager central class that ensures the
proper execution of sub-steps and handles the occurring events (step succeeded,
failed, etc.). The prediction process is started by the orchestrator that calls the
PredictionManager. As a part of the call, the orchestrator passes the path to
the collected data, and an instance of the MultiRequirement class including the
microservice execution time and probability requirements.

The prediction process is separated into two big phases: data preparation and
prediction.

8.7.2 Data Preparation

The data preparation phase is further divided into data preprocessing and mi-
croservice characterization steps.

Data Preprocessing

Data preprocessing is the first main step of the prediction process. It includes
three data preprocessing sub-steps shown in Figure 7.1 and Figure 7.2. Their
execution is managed by the Preprocessor class that contains the implemen-
tation of every sub-step, except the data interpolation. The interpolation of
sampling results from 2-second-interval to 1-second-interval is implemented by
the Interpolator class.

Characterization

The data preprocessing includes the microservice characterization, which is de-
scribed in more detail in Section 7.3. Because the data preprocessing sub-steps
are designed to prepare the data for the prediction, additional data transfor-
mations steps are required. This transformation process is managed by the
DataTransformator class. The DataTransformator parses the input files and
passes the parsed data to the particular transformator. For each monitored
hardware resource there exists a particularly implemented data transformator:
CpuTransformator, DiskTransformator, and MemoryTransformator. Each da-
ta transformator takes the parsed input and transforms into a unique represen-
tation that can be later used for characterizing the microservice behavior.

8.7.3 Prediction

The data collection is followed by the second phase of the prediction process,
the prediction of microservice execution time. We show the architecture of this
phase by following the steps presented in Section 7.4.3 and describe how the
PredictionManager manages the other components that are involved in the pre-
diction process.
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Microservice Representation

Transforming the microservice into a common representation that enables the
prediction process to compare it with other microservice is done by the data
loaders. The abstract DataLoader class implements the basic features of loading
the microservice representation, and it is further extended by three concrete data
loaders: AverageDataLoader, GmeanDataLoader, and MedianDataLoader. The
concrete data loaders load the following microservice representation: average,
geometric mean, and median, respectively. The concrete type of data loader
used by the PredictionManager is specified in the configuration file, and the
particular DataLoader instance is created by the DataLoaderFactory.

Distance Calculation

The second step focuses on finding a microservice from the training dataset
that is the most similar to the submitted microservice. This process is man-
aged by the DistanceCalculator, which uses a metric to calculate the sim-
ilarity of two microservices. The abstract Metric class implements the basic
features of metric calculation, and it is further extended by three concrete met-
rics: ChebyshevMetric, EuclideanMetric, and ManhattanMetric. The concrete
instance used by DistanceCalculator is specified in the configuration file, and
the particular Metric instance is created by the MetricFactory.

Prediction

The rest of the prediction process is implemented in the PredictionManager

and the RuntimePredictor classes. The PredictionManager generates the dou-
ble, triple, and quadruple combinations for which the microservice execution
time will be predicted. Then, the RuntimePredictor computes the execution
time ratio of the submitted and its most similar microservice and uses this ratio
to predict the microservice execution time in that particular combination. Fi-
nally, the PredictionManager generates the result of prediction as an instance
of the MultiRequirementResult class.
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8.8 System Setup

This section lists the steps required for setting up the Deployment Framework.
The scripts, project resource codes, and other assets referred in this section are
located in the system setup directory in the attached media.

8.8.1 General System Requirements

We split the installation of the Deployment Framework into two server computers.
We install the Orchestrator and the Prediction application on the first server,
and install the the Measuring Agent, including the Measuring Framework, on the
second server computer.

We require our server computers to run a clean installation of the Fedora

Sever 28 operating system, and a Python 3.6.5 interpreter. The additional
packages will be installed by the attached installation scripts. Furthermore, we
require a 64-bit quad-core CPU, where performance-related features are disabled,
30 GB free space on a dedicated HDD, and 16 GB of physical memory.

8.8.2 Installing Orchestrator and Predictor Applications

Execute the following steps to install the Orchestrator and the Predictor appli-
cations. The target installation directory is /home/df-orchestrator/.

1. Copy the /system setup/orch pred install directory to the home direc-
tory of the current user.

2. Open the orchestrator and predictor src directory
located in the orch pred install and execute
the install orchestrator and predictor.sh script.

3. Open the training dataset directory
located in the orch pred install

and execute the copy training dataset.sh script.

4. If the firewall is active in the system, enable ports 60000 and 60011.

Starting Orchestrator and Predictor Applications

1. Open
/home/df-orchestrator/sources/orchestrator and predictor run/

and activate the virtual environment venv-orch-pred.

2. Open ./orchestrator run and execute the command shown in Listing 8.3
to start the Orchestrator application.

3. The Orchestrator is running and waiting for the Measuring Agents to con-
nect. Use the lsb and lsa commands of the administrator UI to list the
measurement tasks and the connected agents.

1 PYTHONPATH=. python orchestrator/app.py -i y -r ../requirements/rb.yaml

Listing 8.3: Starting Orchestrator application.
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8.8.3 Measuring Agent

The installation of the Measuring Agent application on the second server com-
puter is divided into two phases. The first phase prepares the system by installing
Docker and other required packages. The second phase installs the Measuring
Agent application.

Installing Docker

1. Copy the /system setup/agent install directory to the home directory
of the current user.

2. Open the agent system install directory located in the copied
agent install directory and execute the install system.sh script.

3. Accordingly to the Docker Documentation3, enable to manage Docker as a
non-root user.

4. Execute the commands shown in Listing 8.4 to start the Docker service now
and to enable to start it automatically when the system boots.

1 sudo systemctl start docker

2 sudo systemctl enable docker

Listing 8.4: Start Orchestrator.

Installing Measuring Agent Application

Execute the following steps to install the Measuring Agent, and to create a service
to start the Measuring Agent after the system booted. The target installation
directory is /home/df-agent/source/measuring agent run/.

1. Open the agent client install directory located in the copied
agent install directory and execute the install agent.sh script.

2. In the target installation directory,
open the ./constants/config file.ini file for editing. Edit the value of
the [agent][OrchestratorAddress] field so that it contains the address
of the Flask server running in the Orchestrator.

3. If the firewall is active in the system, enable port 50000.

4. Open again the agent client install directory and execute the
install agent service.sh script.

Starting the Measuring Agent Application

Start the installed measuring agent.service to start the Measuring Agent ap-
plication. Since, the server computer is restarted multiple times during the mea-
surement process, one must enable to start the microservice automatically after
the system re-boots.

3https://docs.docker.com/engine/install/linux-postinstall/
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9. Related work

To be able to position our proposed solution in the context of this research area,
we first describe other solutions from the same field of interest. Then, we compare
their particular points that define the frame of reference for our research.

Q-Clouds

Q-Clouds [40] is a QoS-aware control framework that tunes resource allocations
to mitigate performance interference effects. Q-Clouds analyzes the resource-
usage requirements of VMs submitted by the clients by building a multiple-
input-multiple-output model that captures performance interference interactions.
Then, Q-Clouds manages the interference among VMs by dynamically adapting
resource allocation using closed loop resource management.

Cuanta

Cuanta [41] uses active probing to precisely quantify the impact of shared cache
interference and memory bandwidth contention for colocated applications. It
uses a linear number of measurements to estimate the performance degradation
in each application due to contention of shared chip-level resources. The key
feature of Cuanta is that it uses a synthetic cache clone of each application to
mimic its cache pressure. The cache clones are later used as a proxy for actual
applications to predict the interference due to various colocation scenarios.

CloudScope

CloudScope [42] is a model-based approach for diagnosing interference for multi-
tenant cloud systems. It employs a discrete-time Markov chain model for the on-
line prediction of performance interference of colocated VMs. CloudScope char-
acterizes the performance degradation by probing the system behavior, which
includes both the behavior of the hypervisor layer and the hardware characteris-
tics of different workloads. The model is then used to optimally reassign VMs to
physical machines and to adjust the hypervisor configuration.

CtrlCloud

CtrlCloud [43] is a feedback-driven resource controlling system that adaptively
allocates CPU resources for cloud applications to meet QoS targets. It uses
dynamic controllers with a fine-grained resource-share slicing scheme to optimize
the resource allocation based on application performance. CtrlCloud maintains
an online model to quantify the dynamic non-linear relationship between resource
shares allocated to an application and its corresponding performance.

Pythia

Pythia [44] is a colocation manager that predicts the combined contention of
multiple batch workloads with a latency sensitive workload on shared resources.
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For non-recurring workloads, Pythia executes a sequence of profiling and mod-
eling operations before the workload can be scheduled. First, Pythia performs
contention characterization for each batch workload when singly running with
a particular latency sensitive workload, and removes the batch workloads that
create contention higher than the determined contention score. Then, it uses a
small fraction of batch workloads to colocate with a latency sensitive workload,
to build the linear regression prediction model for the contention due to multiple
batch workloads.

Overview

The common aim of our and the presented approaches is to provide a self-
adaptive, performance-aware, and interference-aware system that manages the
resource allocation and the deployment of containers in cloud environment. In
addition, the system optimizes the overall resource utilization of the cloud while
enabling the microservices to meet the required quality of service.

Similarly to Pythia, our approach adds an additional step into the admis-
sion process, where it profiles the microservice. However, our approach relies on
profiling the microservice via its test points, that enable to determine the mi-
croservice resource demands and changes of response time in various workload
combinations. We require the developers to implement the test-points so that
they mimic the resource demand of the real microservice and to explicitly specify
performance objective for them. If the specified objectives are satisfiable by the
system, then we admit the microservice. Using dedicated test-points to provide
guarantees, we create a suitable contract between the microservice developer and
the cloud. It also enables us to treat the microservices as black-boxes.

Mostly presented approaches focus only on the CPU usage when character-
izing the microservice and planning the microservice deployment. Contrary to
these approaches, our approach uses the CPU, disk, and memory resources to
characterize the microservice resource demand and to build a model for predic-
tion.

We target a private edge-cloud environment e.g., mobile network operators,
which enables us to apply constrains that would not be possible to implement
in public cloud service environments. Unlike other approaches, our approach
is based on using containers instead of virtual machines. This allows us fast
deployment of the microservices and also fast re-deployment of the containers if
the underlying infrastructure lacks of resources. Furthermore, this private cloud
enables us to use context-specific details, like providing statistical performance
guarantees based on estimation of worst-case instead of other approaches that
try to estimate the throughput.
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10. Conclusion

In this thesis, we developed a new approach that provides soft real-time guar-
antees on the response time of microservices running in a container-based cloud.
In this context, we implemented a prototype of a deployment framework, which
measures the resource usage of the submitted microservice and uses this data to
predict the microservice response time in various workload combinations.

In the first part of the thesis, we focused on the requirements analysis and
conducted research in two problem domains. The first research area focused on
the technical analysis and an overview of the available cloud technologies that
fulfill the requirements of the presented motivation application. Afterwards, the
research was dedicated to the system performance indicators. It was followed by
the analysis of the available resource usage monitoring tools that enable to record
the values of the analyzed performance indicators.

In the second part of the thesis, we applied knowledge from the previous
research. We designed and implemented a deployment framework, where the de-
veloper can submit a microservice and specify its requirements. The deployment
framework converts the requirements specification into microservice measurement
tasks and distributes them among measuring agents. These agents execute the
tasks and assess the microservice resource usage in isolation and in predefined
workload combinations. Then, the system uses the collected data to predict the
microservice response time in a shared production system.

Finally, we evaluated the prediction process. For this purpose, we imple-
mented artificial microservices that enabled us to simulate various real-life sce-
narios and therefore to test the measuring framework along with the predictor.

The implemented deployment framework has gone through excessive testing
using a cluster of seven physical servers. We have executed more than 10,000
measurements using final version of the deployment framework. During the mea-
surements, the system was stable and free of errors and failures. Furthermore,
the system was able to handle the user-related issues e.g., incorrect requirements
specification or failing microservices without external intervention and contin-
ued the measurements process up to 21 days. This supports the stability of the
implementation.

In conclusion, we have successfully implemented and tested a working pro-
totype of the deployment framework, and therefore the goals of this thesis have
been completed.

10.1 Future Work

The proposed solution possesses the ability to be extended in the future and the
architecture has been designed to support scalability and modifiability according
to the future needs.

The data collection process could be improved by implementing additional
data collectors to measure the disk and memory usage of a particular process.
Thus, the measured data would represent the resource usage of the main mi-
croservice only. Also, the prediction accuracy could be increased. It could be
either done by extending the training dataset with more microservices, which
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would cover a wider application domain, or by implementing a more sophisti-
cated prediction algorithm. For instance, assigning weights to resources based
on their impact on the microservice execution time, or utilization of machine
learning algorithms.
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A.1 Batch configuration

The following table describes each attribute of the batch configuration.

Attribute Description
configs Indicates the beginning of the batch configuration

file.
batch Name of the batch definition. Generally, the name

is prefixed with batch--. Then it is followed by the
IDs of the microservices, and enclosed with the IDs
of constraints.

init task Indicates the beginning of the initial task definition.
If there is no initial task definition, null should be
assigned as a value.

id The unique ID of task definitions or constraints. The
task definition IDs are conventionally written by up-
per cases, and are referred in the command defini-
tions.

def type Type of the task definition. Defining the defini-
tion type helps the Agent to choose the appropriate
parser that parses the task definition.

dockerfile path Location of the Dockerfile in the file-system. The
resulting Docker image is going to be used by the
microservice.

image tag Name of the Docker image that is going to be used
by the microservice.

microservice tasks Indicates the beginning of the microservice task def-
initions. This task definition is mandatory.

microservice name Name of the microservice.
microservice class name Class path of the microservice test-point.
microservice class path Path to the executable file containing the microser-

vice and its test-points.
microservice params Command-line parameters required to execute the

microservice.
collect data Set to true to enable the data collection at the par-

ticular microservice, otherwise set to false. The
data collection should be enabled only for the main
workload.

main Set to true to mark the microservice as the main
microservice, otherwise set to false. There can be
only one main microservice in each batch definition.

run duration Determines the duration of the microservice execu-
tion.

container The name of the container where the microservice
will be executed.

image The name of the Docker image (created in the ini-
tial task) that is going to be used by the Docker
container.
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docker Indicates the beginning of the Docker-related con-
straints.

options Beginning of the constraint list.
option A particular constraint for the Docker container.
java Indicates the beginning of the JVM-related con-

straints.
final task Indicates the beginning of the final task definition.

If there is no final task definition, null should be
assigned as a value.

commands Indicates the beginning of the command definitions.
init command Defines the initial command by assigning the ID of

the initial task definition.
microservice commands Defines the microservice commands by assigning the

IDs (separated by space) of the microservice task
definitions.

final command Defines the final command by assigning the ID of the
final task definition.

runs Defines the amount of iterations the batch and the
included tasks will be repeatedly executed.

Table A.1: Description of the attributes in batch configuration.
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A.2 The Attached Medium

The medium attached to this thesis contains the following directories:

• text: Contains the PDF version of this text.

• sources: Contains the source code and the generated documentation for
each project. The Python projects include setup.py to install them in a
separate virtual environment. The Java projects include build.xml, there-
fore the ant jar command can be used to build the JAR file.

• system setup: Contains the prepared resources and installation scripts to
help to set up the Deployment Framework.

• prediction resources: Contains resources related to the prediction pro-
cess.
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