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Motivation

Probabilistic programs serve as an important tool for modelling systems with unpredictable or unreliable
behavior, such as communication protocols, controllers for partially observable models, so�ware product lines etc.
Designing a system exhibiting a desirable behavior – e.g. a network protocol allowing to increase the packet
throughput, or selecting the optimal power management strategy – is a difficult task that involves reasoning over a
myriad of alternative designs. To automate this process, we usually start with the so-called program
sketch [1] – an incomplete description of the program – and let the automatic synthesizer fill in this description to
obtain a program that satisfies a given specification. Essentially, synthesizer is a program that designs programs.
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 ...
 while( (rand() % 3) < 3 ) {
     a = a + 5;
 }
 ...

 ...
 while( (rand() % 3) < 2 ) {
     a = a + 5;
 }
 ...

 ...
 while( (rand() % 3) < 1 ) {
     a = a + 5;
 }
 ...

 ...
 while( (rand() % 3) < ?1 ) {
     a = a + ?2;
 }
 ...

a program sketch a correct program

 ...
 while( (rand() % 3) < 2 ) {
     a = a + 5;
 }
 ...

a specification

P>0.5 [F a > 0]

To decide whether a candidate program satisfies a specification, we use Markov chain as its operational model.
One program sketch then corresponds to a family of Markov chains, and the goal of an automated synthesizer is to
explore this family and identify a chain that satisfies the given specification. Designing such synthesizer represents
a tremendous challenge, particularly due to the double state-space explosion problem: number of family
members as well as the state space of each individual chain grows exponentially wrt. the length of the program.

A ‘trivial’ example

Design an optimal (wrt. to the number of transitions) probabilistic program that uses a fair coin to simulate a random

choice between three players.
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There are over 3 million candidate designs with at most 6 states. Meanwhile, only 0.001% of them represent optimal
solutions. Checking each chain one by one is definitely possible, but how can one efficiently identify a satisfying
solution?

Existing approaches

Counterexample-Guided Inductive Synthesis (CEGIS) [2] analyzes
individual chains one by one, but, a�er encountering an unsatisfying chain
(purple), uses a critical subsystem of this chain to reject a whole subfamily
of chains (red). Critical subsystem – also referred to as a counterexam-

ple – represents a part of the chain that is sufficient, on its own, to refute
the given specification. Thus, any other family member, that shares this
subsystem, necessarily refutes the specification as well. CEGIS

Counterexample-Guided Abstraction Refinement (CEGAR) [3] ana-
lyzes all candidate designs at once via MDP abstraction – an overapproxi-
mation of all the chains in the family. Such analysis produces information
about the best-case pmax and the worst-case pmin behavior of the chains
in the system. Such information can reveal whether all chains in the fam-
ily refute the property (red), all chains satisfy the specification (green), or
be inconclusive (blue). The la�er case indicates that the abstraction is too
coarse, and we continue by partitioning the family into refined subfami-
lies, which are handled analogously.

CEGAR

The proposed solution

Both CEGIS and CEGAR have their advantages and there are families or specifications for which induction, or abstraction, is the
preferred approach. Our solution represents a fusion of both approaches, combining the power of all-in-one abstraction with the
precision of one-by-one induction. The key component for the integration was the following discovery: we can use information about the

best-case pmax and the worst-case pmin behavior of the chains in the family to assist CEGIS in constructing smaller counterexamples. The
intuition behind this reasoning is straightforward: employing global information about the family members relaxes the requirements for
the critical subsystems to be the most conservative – we are quite satisfied with a subsystem that is critical only within our family of
interest.
The immediate effect of this is evident: smaller counterexamples correspond to larger subfamilies that we are able to reject during one
iteration, thus greatly accelerating the computation. The algorithm of the integrated method is summarized below:

◮ [CEGAR phase] Analyze family in a CEGAR loop down to a limited depth and collect information about the best-case and the
worst-case behavior of the chains in the subfamilies.

◮ [CEGIS phase] For each subfamily, initiate a CEGIS loop, but use the collected data to enhance the counterexample construction
algorithm in order to provide smaller critical subsystems.

Experimental evaluation

The proposed method was implemented for Storm model checker [4] and was evaluated on numerous practically relevant case studies.
The tables below feature selected results, where we report, for each synthesis approach, the synthesis time (in seconds) for the two
different problems. The values with the asterisk ∗ represent experiments that hit a 10-minute timeout, and therefore the presented values
were either roughly approximated from the percentage of processed members, or interpolated from smaller samples.

_ 1-by-1 CEGIS CEGAR Integrated
0.003 900

∗ 1.28 <1 <1
0.005 900

∗ 52.74 <1 <1
0.007 950

∗
750

∗ <1 <1
0.009 900

∗
750

∗ 32.14 1.08
0.011 900

∗ 2.1 31.67 1.02
0.013 850

∗ 2.09 31.85 1.01

(a) Problem: design a scheduler for a disk power manager so that the
service queue overflows with probability at most _. Family size:

43M members; size of the MDP abstraction: 27k states; average size of
a family member: 4k states.

_ 1-by-1 CEGIS CEGAR Integrated
0.74 28k∗ 1.49 94.86 1.67
0.76 28k∗ 79.27 10.2 1.63
0.78 28k∗ 106.13 10.42 4.65
0.80 28k∗ 82.9 10.33 1.5
0.82 28k∗ 566.82 10.52 2.27
0.84 28k∗ 5.75 <1 <1

(b) Problem: devise a policy for a partially observable MDP, such that
the agent reaches the target location in a maze with probability at least _.
Family size: 1M members; size of the MDP abstraction: 9k states; average

size of a family member: 5k states.

Observe that in all cases the proposed integrated method manages to significantly outperform state-of-the-art approaches,
sometimes by a margin of orders of magnitude. In fact, even when dealing with models for which neither CEGIS nor CEGAR can find a
reasonable approach, the integrated method manages to strike a perfect balance between abstracting and inductive reasoning in
order to efficiently synthesize a program, as illustrated in the experiment below.

_ 1-by-1 CEGIS CEGAR Integrated
0.52 78.69 46.01 77.77 2.34
0.54 79.03 45.23 77.53 2.37
0.56 79.54 45.4 79.76 2.3
0.58 78.96 850

∗ 263.23 3.36
0.60 78.08 800

∗ 260.27 3.33
0.62 82.84 800

∗ 276.14 3.31

(a) Problem: use Herman’s protocol to self-stabilize a ring a�er exactly
one round with probability at least _. Family size: 0.5k members; size of
the quotient MDP: 54k states; average size of a family member: 2k states.
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