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Abstrakt

V této práci je představena nová aplikace pro formálńı verifikaci splněńı nej-
zazš́ıch termı́n̊u (deadlines) v jednoduchých programech pro mikrokontroléry,
pracuj́ıćı na úrovni strojového kódu.

V práci jsou studovány dosavadńı techniky a nástroje pro formálńı verifi-
kaci. Jsou identifikovány jejich slabé stránky. Nevýhodou verifikačńıch technik
pracuj́ıćıch na úrovni zdrojového kódu je zejména jejich neschopnost zaručit
časy prováděńı na úrovni cykl̊u procesoru. Současných nástroj̊u pro verifikaci
na úrovni strojového kódu je málo, nejsou široce dostupné a většinou jsou spe-
cificky navrženy pro konkrétńı procesor, což velmi snižuje jejich užitečnost.

Aby nová aplikace nevykazovala nedostatky stávaj́ıćıch řešeńı, je navržen
a implementován nový hybridńı verifikačńı př́ıstup. Techniky ověřováńı mo-
delu na úrovni strojového kódu jsou použity pro reprezentaci stavového pro-
storu a verifikaci dodržeńı specifikace. Pamět’ mikrokontroléru a chováńı v
rámci kroku jsou specifikovány pomoćı jednoduchého imperativńıho jazyka, s
kterým je možné manipulovat pomoćı standardńıch technik na úrovni zdro-
jového kódu. T́ım je umožněna kontrola splněńı nejzazš́ıch termı́n̊u na úrovni
cykl̊u procesoru, rozšǐritelnost na daľśı mikrokontroléry vedle již implemen-
tovaného ATmega328P a implementace pokročilých technik bez závislosti na
konkrétńım použitém procesoru.

Vedle základńı funkcionality programu jsou implementovány pokročilé tech-
niky pro zacházeńı s nedeterminismem, generováńı ř́ıd́ıćıho toku a redukci cest
pro jednoduché cykly. Aplikace je testována pro prokázáńı jej́ı užitečnosti pro
verifikaci splněńı nejzazš́ıch termı́n̊u pro jednoduché programy. Je diskutován
dopad použitých technik a jsou identifikovány slibné cesty pro daľśı zlepšeńı.

Kĺıčová slova Ověřováńı modelu, ověřováńı splněńı nejzazš́ıch termı́n̊u,
formálńı verifikace mikrokontrolér̊u, formálńı verifikace na úrovni strojového
kódu, přesnost na úrovni cykl̊u, hybridńı technika, nedeterminismus, gene-
rováńı ř́ıd́ıćıho toku, redukce cest pro jednoduché cykly
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Abstract

In this thesis, a new utility is presented for performing formal deadline
checking of simple microcontroller programs at machine code level.

The existing formal verification approaches and tools are studied and their
weaknesses identified. Namely, source level techniques cannot guarantee cycle-
count precise execution times, while machine code verification tools are few,
not generally available, and usually heavily tailored to a specific processor,
significantly reducing their usefulness.

To counteract the weaknesses of current microcontroller verification tools,
a novel hybrid approach is proposed and implemented. Machine code level
model checking techniques are used for state space representation and verifica-
tion of adherence to specification. Microcontroller memory and step behaviour
is specified using a simple imperative language that can be manipulated using
standard source code level techniques. This allows cycle-count based deadline
checking, simple extension to other microcontrollers in addition to the im-
plemented ATmega328P, and implementation of advanced techniques without
dependence on the actual processor used.

In addition to the core functionality, advanced techniques for handling
nondeterminism, control flow generation, and simple cycle path reduction are
implemented. The utility is tested, showing its usefulness for simple program
deadline verification. The impact of various techniques used is discussed and
promising future improvements are identified.

Keywords Model checking, deadline checking, microcontroller formal verifi-
cation, machine code level, cycle-accuracy, hybrid technique, nondeterminism,
control flow generation, simple cycle path reduction
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Introduction

Modern computer systems are becoming increasingly more complex. As the
manufacturing technology progresses, more powerful devices can be used to
aid with increasingly more difficult tasks. Despite this, there is a large amount
of simple tasks that do not require an abundant amount of resources. These
tasks are usually fulfilled by embedded devices that are as simple as possible
to minimize cost per unit and power consumption.

When the amount of produced devices is not large enough to warrant
an application-specific integrated circuit (ASIC), microcontrollers are the un-
crowned kings of this field. They require little to no external components, can
be programmed to fulfill the developer’s needs, their cost is very low thanks to
the economy of scale, and so can be their power consumption if an appropriate
part is selected and good design practices are followed.

Unfortunately for developers, just the fact that the programmed device
seemingly performs its task well does not mean that it will continue to do
so indefinitely. While a manufacturer may guarantee that the microprocessor
itself will fulfill its specification while inside its operation envelope (with a
certain probability and subject to errata), the program itself is a weak point.

Empirical methods (setting device inputs to selected values and determin-
ing whether the device reacts in an expected way) can only take one so far.
If a bug is found, the program must be fixed. If no bugs are found using a
combination of inputs, not much can be said about the program: a different
input could make the program react in an unexpected way. This could have
a serious impact, compromising the function of the device (and consequently,
its reliability), security, safety, etc.

While this is considered to be an extremely important issue for safety-
critical, security-critical, and ultra-reliable systems, I feel that not enough
is done for typical, consumer-targeted devices. A single software bug may
impact thousands or millions of devices. As many embedded systems are not
easily reprogrammable by the user (e.g. by over-the-air reprogramming or
manufacturer-aided reflashing via a USB port), this may lead to high product
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Introduction

recall costs, damages to the company’s reputation, excessive electronic waste
(as many companies choose to lock the microcontrollers from reprogramming
in order to protect their intellectual property) and other undesirable effects.

Blame should not be put on the product developers, however. Using formal
verification techniques that guarantee that the program always works accord-
ing its specification is currently difficult, requiring considerable work by highly
trained specialists. Tools are expensive or severely limited in usefulness.

This is why I decided to create a formal verification tool that would be
useful for verification of microcontroller programs that perform simple tasks
(henceforth referred to as a “deadline checker” for brevity). Its outward sim-
plicity should aid its adoption not just by professionals, but also by students
and hobbyists. This should ultimately lead to a wider adoption of formal ver-
ification techniques (as the students and hobbyists become professionals) and
better, less faulty embedded products.

I have been convinced from early on that the tool should not be tied to
a specific microcontroller or an architecture. Selecting the best device for a
task is an integral step in the product development process. A tool that forces
the developer to use a certain microcontroller is clearly flawed. As I found
out, this requirement for extensibility unfortunately drastically increases the
internal complexity of the implementation. Fortunately, this is paid off by
the general applicability of each improvement instead of relying on various
kludges that only work in specific cases.

Usage of advanced techniques is paramount for avoiding state space explo-
sion. Näıve techniques that perform verification by building the whole state
space and examining it are only sufficient for a highly limited subset of pro-
grams. Most programs (even simple ones) use various constructs that make
the state space impractically big and verification unacceptably slow. Thanks
to the generality of the implementation, I was able to add some general tech-
niques to combat these scenarios. More can be added in the future.

I shall further discuss the theoretical underpinnings used to develop the
tool, current alternatives, and the tool itself. In Chapter 1, I discuss the
terms I use when concerned with ensuring that a device actually does what it
is supposed to do. In Chapter 2, I introduce approaches to formal verification
(that is, checking that a specification truly holds for all inputs) with a focus
on model checking. In Chapter 3, I discuss the specifics of formal verification
of microcontroller programs as opposed to other levels and parts of systems
that may be verified. In Chapter 4, I examine the current tools available in
detail and the lessons I learned from them. In Chapter 5, I explain the precise
goals that I chose to aim for during development. In Chapter 6, I describe
usage of the tool from user’s point of view. In Chapter 7, I discuss design
choices made when developing the tool. In Chapter 8, I describe specific parts
of implementation in detail. In Chapter 9, I describe advanced techniques
implemented. In Chapter 10, I determine how well the tool performs using
simple testing programs and discuss areas for potential improvements.
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Chapter 1

Definitions of terms used

Many terms are commonly used concerning creation of devices that should
behave in a certain way and determination of whether they actually do. Un-
fortunately, the exact definitions used are usually rather contentious, as seen
and discussed in [1]. I shall therefore define how I use them in this thesis.
The definitions are based on a “systems” point of view, particularly as used
for embedded development. I shall also give an explanation of why I consider
them to be the best fit for my purposes.

1.1 Systems, models and specifications

First, I introduce some core terms:

• A physical system is a “system” in the physical sense, i.e. “a group of
things, pieces of equipment, etc. that are connected or work together”
[2].

• A model is “a simple description of a system, used for explaining how
something works or calculating what might happen, etc.” [2].

• A conceptual model, also termed mental model, is a model comprised
by a set of thoughts about the expected properties and behaviour of a
physical system (e.g. what it should cost, what task it should fulfill, how
should it react depending on an input).

• A specification is “a detailed description of how something is, or should
be, designed or made” [2].

• A requirements specification is a specification that reflects the require-
ments imposed by the conceptual model.

• A system model is a model that can be, in an automated manner, con-
verted to a manufacturing specification.
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1. Definitions of terms used

• A manufacturing specification is a specification that contains all needed
information for manufacturing the actual physical system.

1.2 Production process

I find the aforementioned definitions most useful in the context of a production
process. Its ultimate goal is production of an actual physical system that
behaves according to the conceptual model. This process is divided into two
stages, a design process and a manufacturing process. The design process is
comprised by three steps and the manufacturing process by the fourth one:

1. The conceptual model is turned into a requirements specification.

2. The requirements specification is used to create a system model.

3. The system model is converted into a manufacturing specification.

4. The manufacturing specification is used to create the actual physical
systems that may be sold to customers.

I consider the differences between the words model and specification to be
rather semantic in nature: a model describes something, while a specification
requires something to perform in a certain way. However, while one can cre-
ate a product without actually writing down specifications (taking a rather
informal approach), the conceptual model (what is wanted) and the system
model (how it should work) cannot be skipped.

These definitions are not universally fit for everything and everyone. Math-
ematicians typically are not concerned with product development. They thus
use different definitions, sometimes colliding with the previously discussed def-
initions (such as they do for the term model, which shall be further discussed
in the context of model checking in Chapter 2). The production process be-
comes a bit different in software development, but the core ideas remain the
same.

1.2.1 Software development production process

Traditional computer software (e.g. word processors, video editing software,
computer games, web browsers, etc.) is not tightly coupled with the hardware
that it runs on, using an abstraction layer such as operating system applica-
tion programming interface (API). This is highly beneficial for common tools
since it enables a single program to be run on a multitude of different devices,
differing in processor capabilities, peripherals, etc. The production process
for software becomes a bit muddled since the manufacturing process is no
longer well defined. I consider the manufacturing process in the traditional
software case to consist of running the program on the target machine, en-
abling the computer executing the program to become the physical system
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1.2. Production process

fulfilling the specifications. In this case, the previously defined terms have
this correspondence:

1. The conceptual model is a set of ideas about how should a computer
running the program should behave.

2. The requirements specification is a specification detailing the suitable
computer configurations and usable APIs (execution environment) and
the required behaviour of the compiled program when executed on one
of these computer configurations.

3. The system model is the source code of the program paired with the
knowledge of the guaranteed behaviour of the programming language
used and execution environment.

4. The manufacturing specification is a compiled program binary. The
actual physical system is created (“manufactured”) by running the pro-
gram binary on a suitable computer.

To enable further discussion of system model checking without excluding
checking compiled program binaries, I note that they can be considered source
code with an identity translation programming language.

These definitions are useful for me as they set up the notion is that actual
software never exists in a vacuum: it must always be paired with a proper exe-
cution environment. This is a fundamental concept for my further discussion.
By combining execution environment guarantees, the guarantees specified by
the programming language used (in case the analysis is not performed on the
machine code itself), and the program, it may be possible to prove or disprove
some properties about this combination. Then, we might be certain that the
actual system will behave as intended as long as all of the guarantees hold.

For microcontroller programs, the process is very similar to traditional
software, with the important distinction that no APIs and abstraction layers
are used for simple programs (“bare metal” programming). For more complex
applications, a lightweight operating system may be used, such as FreeRTOS
[3]. These operating systems usually are not a distinct program that executes
other programs at its will, but behave like libraries in that they are compiled
with the program, forming a single binary file to be uploaded to the micro-
controller. These lightweight operating systems may therefore be considered a
part of the program for analysis instead of being an external API. This practi-
cally means that for the resultant program, the execution environment is still
the microcontroller and its peripherals, not some abstract APIs. The knowl-
edge of processor behaviour is therefore crucial for determining interesting
properties.
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1. Definitions of terms used

1.3 Verification and validation

Having defined the core terms, I shall discuss what steps can be taken to ensure
that the final physical system behaves according to the conceptual model.

First, I shall define the top-level terms:

• Validation is the process of manual evaluation whether a model, a speci-
fication, or a physical system behaves according to the conceptual model
(“are we building the right system?”).

• Verification is the process of evaluation whether a model or a physical
system behaves according to the corresponding specification (“are we
building the system right?”). It may be manual or automated.

In my view, these constructs are disjoint (no technique is both a verifi-
cation and a validation technique). Validation falls outside the scope of this
thesis, which is concerned mainly about general program behaviour instead of
concrete program examples.

Verification can be done “informally” or “formally”. Informal techniques
restrict themselves to a subset of possible cases that can happen (execution
paths); therefore, while they may find a counterexample, that is, a case which
shows that a model does not fulfill its specification, they cannot fully assure the
designer that a model does fulfill its specification. Formal verification provides
a formal proof that given the previous specification, the verified model always
fulfills it.

1.4 Informal verification, testing

Various audits, code reviews, etc. may be instances of informal verification if
adherence to corresponding specification is checked. Another important infor-
mal verification technique is testing, a process of evaluation whether a model
or an actual system behaves as intended for a limited (usually finite) subset
of possible executions. This is important since complex models and systems
usually cannot be fully formally verified. Also, since the behaviour of actual
systems is not governed by guarantees, but by physics, formal verification of
actual physical systems is impossible, while testing is certainly possible.

This can be illustrated by an example: if I insert an appropriate amount
of coins into a soda machine and press the button with my favourite drink pic-
tured on it, the drink and corresponding change must come out of the machine
for it to behave according to my conceptual model of soda machines. There is
no “formal” way of verification that the machine does not become faulty due
to its internal components breaking, however. Ordering and receiving a drink
is a test that, while not guaranteeing that the machine will behave properly
if another drink is ordered, yields a high degree of confidence that it will.
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1.5 Formal verification, its advantages and
limitations

Formal verification, in contrast to informal verification, may prove that some
property is true for a given exactly described model with certainty, deducing
that the property must naturally follow from its guarantees. This may be
used to verify adherence of a model to its specification.

The ability of formal verification to provide a proof that a model fulfills a
specification is important in critical systems and infrastructure. Failures may
lead to loss of lives and costly damages, making every bit of assurance that
they shall not fail important. With non-critical systems such as most consumer
devices, this is not strictly required, but given that the failure might occur
within all devices manufactured to the same specification, pursuing formal
verification techniques may be a viable alternative to costly product recalls.

I believe it is important to note that while formal verification is a powerful
technique, it does not always mean that the resulting system will behave cor-
rectly. There are many cases where it might fail to ensure actual compliance:

• The checked model operates with guarantees while the actual system
is physical. If the guarantees do not hold, the system may fail. This
may be due to non-correspondence between the actual system and its
guarantees or due to a reliability issue.

• Any requirements that are not a part of the specification are not checked.
This is typically due to the specification writer not realizing that they
are necessary.

• The transition from a model to a manufacturing specification and to
the system itself may be a point where deviations from specification
may occur. In software, even a program with source code that provably
conforms to its specification might not conform after a compiler pass (if
the compiler does not fulfill its guarantees) or after a faulty upload to
the embedded device.

• The actual formal verification tool used is a program and as such may be
faulty or executed in an environment that does not fulfill its guarantees.
This is true even if a formal verification algorithm is executed by hand.
Errors may be introduced and a wrong result produced.

This means that while formal verification may increase our trust in the
checked model (and consequently, the physical system), it is not a silver bullet.
Proper engineering and quality management is always necessary to ensure that
the physical system works as intended.
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1.6 Deadline checking using formal verification
techniques

A deadline is “a point in time by which something must be done” [2]. In this
thesis, I consider deadline checking to be a process of checking action-reaction
rules, whether an action being performed in a model of an embedded system
will always result in a corresponding reaction being performed within a certain
time (the deadline).

This checking is performed on a system model against a requirements
specification containing the rules. As previously discussed, this model must
comprise of the execution environment, the program checked, and the used
programming language behaviour (if machine code is not used). The speci-
fication must also be well-defined (written in an unambiguous language) to
enable proving the adherence of the model to the rules.

While it is critical that the deadline checker only proves that the deadline
rule was fulfilled (the reaction to the action always occurs before the deadline)
if it it actually true, it is not required to prove it for all cases when it is true.
In these cases, a false counterexample may be returned.

This corresponds to the intended usage of the deadline checker: if it is able
to prove that the specification is fulfilled, it forms a guarantee of the behaviour
and could influence decisions about releasing a product to customers. There
are no significant risks associated with returning a false counterexample. It
may result in not releasing the product or abandoning the use of the deadline
checker. I do not consider these possibilities to be critical.
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Chapter 2

Approaches to formal program

verification

Formal program verification is a long-standing field of computer science. In his
1972 Turing Award lecture, Edsger W. Dijkstra devised a scheme that would
allow humans to build complex systems without the fear of programming bugs
and the costs associated: by providing a mathematical proof of a program’s
correctness while building it, bugs would not appear later. In fact, by con-
structing a proof, the implementation would follow naturally [4]. Ultimately,
this did not catch on as constructing a proof for a program is not particularly
scalable. A different approach, computer-aided verification, proved to be more
suitable [5, p. 1-2]. System designers produce a program and a specification it
should fulfill; the difficult task of finding whether the program actually fulfills
it is offloaded to a computer.

Different approaches for formal program verification exist and various clas-
sifications may be used. I introduce a basic categorization of the techniques.
They may be variously combined, as is often done in practice. [5, p. 4-5].

2.1 Formal proof techniques

Formal proof techniques aim to produce a formal proof of some property
of a program by mathematically defining programming language semantics
and, consequently, the mathematical meaning of the program itself. Once
the program is expressed in a suitable logic framework, the proof may be
constructed from the appropriate axioms [6] [7].

Unfortunately, while such methods do exist and may be automated, their
scalability to more complex program structures is still limited. As with Di-
jkstra’s approach, a proof must be somehow devised; moving its construction
to computer essentially moves it to the writers of the verification tool. This
results in limited usage of these techniques [5, p. 1-2].
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2. Approaches to formal program verification

2.2 Model checking

Model checking takes advantage of the fact that practical digital systems only
have a finite number of possible states. This makes it possible to represent the
states, transitions and properties of the system model by using a graph-like
structure. This structure can then be manipulated to prove that the system
model fulfills the specification [5, p. 2-3].

The classic formalism for the graph-like structure used is a Kripke struc-
ture. The structure is constructed over a set A of atomic propositions as a
triple K = (S, R, L) where

• S is a finite set of states (state space),

• R ⊆ S × S is a set of (directed) transitions,

• L is a labeling function L : S → 2A which associates each state with a
set of atomic propositions [5].

Furthermore, the dynamic behaviour of the system corresponds to a path
within the directed graph (S, R). Using this representation, the model checker
checks whether the specification expressed the Kripke structure K is a model
(in the sense of model theory) of as a temporal-logic formula φ, that is, K |= φ

[5, p. 2-3]. Unlike the rest of this thesis, the word model is used in the
mathematical sense. This is where model checking gets its name from. In
practice, there is fortunately not much confusion between the system model
(in the studied case, the processor description and binary program code) and
the graph-like structure it generates, which is subsequently checked against
specification.

The specifications are usually described using temporal logic. Various types
of temporal logic are used, such as Linear temporal logic (LTL) or Computa-
tion tree logic (CTL). Usage of these logics allows describing highly complex
behaviours. Unfortunately, they are not very intuitive for an average program-
mer to use. As I do not use them in the implementation, I shall not describe
them further. A detailed description of temporal logics may be found in [8].

While the task of finding out whether a model fulfills its specification is
decidable if the number of states is finite, it is infeasible to do so by näıve
exhaustive state space generation due to state space explosion, also known as
combinatorial explosion. Multiple approaches have been devised to prevent it
[5, p. 14-22].

Practically speaking, the state space explosion in actual processor-based
systems typically exhibits itself when reading (often unrelated) nondetermin-
istic inputs and assigning them to separate variables. For example, if an 8-bit
(completely unknown) variable is read from input and assigned to a register,
the näıve exhaustive generator must generate 28 states from a previous one,
one each for every possible 8-bit combination. After that, reading from input
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2.2. Model checking

to another variable generates another 28 states from each one, resulting in
28 ∗ 28 = 216 new states after this is done. In this manner, the state space
size increases exponentially, resulting in unacceptable computational require-
ments extremely quickly. This is why prevention of this behaviour is a critical
problem when model checking is performed.

2.2.1 Symbolic model checking

Symbolic model checking approaches do not store the explicitly enumerated
set of states, instead storing them as symbolic logic expressions. The first im-
portant symbolic model checking technique was model checking with binary
decision diagrams (BDDs), essential for success of model checking in the hard-
ware industry. The other important technique in this category is SAT-based
model checking which converts the model checking problem to the boolean
satisfability problem, which can be then solved using advanced SAT solvers.
SAT-based model checking may be bounded (only finding counterexamples of
finite length) or unbounded (finding all counterexamples) [5, p. 16].

2.2.2 Abstract model checking

Abstract model checking uses a different approach to combat the state space
explosion, using a structure that overapproximates the actual Kripke structure.
There are multiple definitions for the notion of overapproximation, as seen in
[9], but the fundamental notion is that overapproximation must preserve the
original behaviours but may introduce additional behaviours.

Abstraction techniques based on three-valued logic are widely used, par-
ticularly in the context of circuit verification [10] and microcontroller program
verification [11]. In this scheme, each bit of original system state is assigned
one of three values: ’0’, ’1’, or ’X’. While values of ’0’ and ’1’ represent the
bit being in one of the original values (logic zero or logic one), value of ’X’
means that states with both values are present. Bit operations can be per-
formed using three-valued logic, resulting in an overapproximation of the state
space. These abstractions preserve soundness (also called soundness for true)
[10]. Soundness means that while a counterexample may be generated by the
model checker even if the system model fulfills its specification, but it may
not prove adherence to specification if the system model does not fulfill it.

Soundness is an expected behaviour for typical model checkers of complex
systems: if a proof is made, the system definitely adheres to the specification.
If a counterexample is found, it should be investigated to determine its actual
behaviour in system model. There is a possibility that it is a false counterex-
ample, not being a counterexample for the original, non-abstracted system.
In that case, the model checker does not tell us anything interesting. This is
closely related to the (rather informal) notion of usefulness. While a model
checker that always fails to prove adherence to specification is trivially sound,
it is not useful at all.
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Chapter 3

Specifics of microcontroller

code verification

Traditional computer programs are usually verified using their source code (or
its simplified representation). For embedded systems, a binary code approach
might be more beneficial, prompting the existence both types of verification
tools. I shall examine the differences further in this chapter.

3.1 Source code verification

In traditional computer programs, the interest lies mainly in producing the
correct outputs. Microcontroller-based embedded systems usually require pre-
cise timings of those outputs as they interact with other system components
and outside world in real time. This means that analysis of source code (usu-
ally written in C language) might not be sufficient because the language pro-
vides no timing guarantees. A “high-level” approximate timing specification
schemes may be produced, but the actual timing depends on the compiler.

Furthermore, if the compiler itself does not conform to the specification of
the programming language, the program itself may be faulty even though the
source code fulfills the specification used on its own. This problem may be
alleviated in some way, for example by using the formally verified CompCert
compiler [12].

An interesting take on the notion of compiler trust is demonstrated in
Thompson [13], where a C compiler binary is made so that it injects a vul-
nerability into a specific piece of code it is compiling; it also injects compiler
source code it is compiling so that it injects compiled programs the same way.
Verification after compilation may detect this, but the same argument raises
the question of trusting the verification tool itself. That said, it would seem
rather unlikely for both a compiler and a verification tool to be infected in a
way that an infected program passes the verification check.
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In any way, the main reason why source code is unsuited for the task at
hand, deadline checking, is not trust, but the timing issue. Actual timing
can be only determined when both the execution environment timing and its
relationship to the program is known. This might be done inside a compiler
using various existing techniques [14, ch. 1]. It does, however, tie the pro-
grammer to a specific compiler and, consequently, to the processors supported
and optimizations implemented by that compiler, in addition to restricting the
ability to use assembly language for time-critical operations (unless it is also
supported for consideration by the compiler). I did not choose to pursue this
approach due to these limitations.

3.2 Binary code verification

Binary code verification requires a slightly different mindset from the source
code approach. While the higher-level languages are usually understood as a
logical construct independent of the architecture, binary code is intristically
tied to the concrete processor. This means that the verification tool must
consider the processor in conjunction with the binary code.

This could be approached from two different angles. From hardware point
of view, a “virtual” processor might be constructed from Register-Transfer
Level (RTL) blocks (especially D flip-flops and logic gates); the program would
be stored in the register elements and RTL-level verification could be per-
formed. From software point of view, “virtual” registers and code describing
processor step behaviour also might be constructed, allowing the use of source-
code-like verification techniques. Unfortunately, while RTL level formal veri-
fication is widely used nowadays in hardware verification [15, p. 782-786], the
high-level relationships are muddled, precluding high-level optimization that
may drastically reduce computational complexity.

Compared to the source code approach, timed verification is very much
possible, especially when the processor architecture is simple. With advanced
pipelining or caching, the worst-case timing may be heavily overapproximated,
decreasing the ability to prove adherence to specification.

As the conversion to binary code loses information, the verification tool is
in a harder high-level construct optimization position than a source code tool.
This means that source code verification is still a more reasonable approach
for general computer applications. Binary code verification still has distinct
advantages for checking of simple embedded programs on microcontrollers,
especially when processor step behaviour is described instead of RTL-level
behaviour.
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Chapter 4

Current binary-level model

checkers for microcontrollers

Currently, RTL level and source-level verification is widely used in industry
with a variety of competing tools; further discussion of them may be found
in [15, p. 782-786]. Unfortunately, as I discussed in Chapter 3, source code
verification and RTL-level verification are not very suitable for the special case
of programs for simple microcontrollers. This restricts the interesting tools
to a few binary-level verification tools, which are generally built on model
checking due to the suitability of this method for this application.

4.1 State Exploring Assembly Model Checker
(StEAM)

The StEAM checker described in [16] is rather unique among binary-level
checkers since it does not aim to perform verification for specific hardware.
Instead, it compiles the C/C++ program it is trying to verify using a virtual
machine architecture as a target. This results in it having similar properties
to source code level checkers. While the methods used are different, the verifi-
cation is ultimately not done using the actual target architecture. This model
checker unfortunately does not seem to be publicly available at the time of
writing.

4.2 Estes

In [17], model checker Estes is introduced. This model checker uses the gdb

debugger to step through states and thus can, in theory, support multiple
processor models as long as gdb supports them. Unfortunately, this is not a
drop-in scenario in practice as the paper discusses extensive changes necessary
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4. Current binary-level model checkers for microcontrollers

to adapt the debugger to the task of model checking on Motorola 68hc11
processor.

While this approach might be interesting for complex architectures where
writing the processor code would be handy, this is not the case for simple
microcontrollers. Furthermore, this model checker also does not seem to be
publicly available at the time of writing.

4.3 Arcade.μC (formerly [mc]square)

The Arcade.μC is a long-running effort to create a usable binary-level checker
for microcontrollers at RWTH Aachen. The checker, formerly known as
[mc]square, was introduced in [18]. A previous similar checker called MCESS
was also mentioned there but seems to be obsoleted by Arcade.μC. This model
checker builds the state space directly using a custom simulator written for the
specific processor. It checks whether Computation Tree Logic (CTL) formulae
are valid without handling timing.

The Arcade.μC model checker was refined after the initial paper, exhibit-
ing a definite trend towards using advanced abstraction and static analysis
techniques. One of the most important techniques for state space reduction
is the delayed nondeterminism. Using this technique, each single bit of state
is represented by three-valued logic: 0, 1, or unknown [11]. Static analysis
techniques are also used [19].

A longstanding problem of Arcade.μC is the difficulty of adding new mi-
crocontroller types and architectures. As stated in [20]:

[mc]square is an assembly code model checker, which builds state
spaces using simulators, which are used to simulate microcon-
trollers. Based on experience from adding support for new plat-
forms, it is possible to estimate the effort for manually imple-
menting such a simulator. The Atmel ATmega128 and XC167
simulators were implemented by diploma thesis students [citation
omitted], and the 8051 simulator was implemented by Reinbacher
partly before and partly within a master’s thesis [citation omit-
ted]. At the end of these theses, the simulators were operative,
but not all of the peripherals had been implemented. Depending
on whether there was interest in further uses of the simulator, it
was then necessary to continue development, ending up in a total
effort of about one year for a single full-time developer.

This was the reason for development of “state space generators synthesis”
in [20, p. 26]. Unfortunately, this approach was not entirely successful as the
author was unable to implement the delayed nondeterminism technique in a
way that would not require the author of the microcontroller description to
manage the instances of nondeterminism [20, p. 121].
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The decision to not to use timing is also problematic. This disqualifies
the checker from performing deadline checking where timing is crucial. This
problem was examined in [21] and new methods for introduction of timing
were proposed.

Ultimately, the most significant problem lies in the fact that Arcade.μC is
not available to general public; only a demo is provided on the official website
https://arcade.embedded.rwth-aachen.de/doku.php?id=arcade.uc.

In the end, after researching the available literature, I did not find any
binary-level verification utilities that could be used by general public without
extensive knowledge of model checking. Therefore, I decided to create a new
one.
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Chapter 5

Goals for a new deadline

verification utility

As a student and an enthusiast, I have been interested in microcontroller-
based devices for a long time. My experience with writing microcontroller
programs and developing devices has been, unfortunately, less than stellar. I
remember multiple instances of a device seemingly working as intended, then
failing to do so afterwards. Sometimes, it was due to bad connections to
peripherals, sometimes due to the parts themselves being damaged (usually
after being subjected to voltages or currents outside their maximum ratings).
The especially tricky problems were usually caused by software bugs, however;
sometimes in my code, sometimes in the libraries I used.

Eventually, I started to fear that these bugs would not be found until
after a device I had made was shipped to its customers. At that point, it
would be hard to fix the situation without incurring significant financial losses
and damage to reputation. This resulted in my search for a tool that could
alleviate my concerns by showing that the system model behaves according to
its requirements specification (or at least part of it).

After researching current microcontroller program verification utilities avail-
able, described in Chapter 4, I arrived to the conclusion that none of them
fulfill the criteria I seek. Most program verification tools, due to working with
a higher-level language description, do not support time-based checking. This
is not acceptable for microcontroller programs as they are fundamentally real-
time devices. The binary-level verification tools are few, not readily available,
complex to use and limited to one or a few processor models without easy
extensibility.

This is why I decided to create a new microcontroller binary-level verifi-
cation tool to be readily accessible to writers of microcontroller programs and
help them with fault-free program development. I compiled the following list
of requirements:
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5. Goals for a new deadline verification utility

• The tool must be free-to-use, simple to install and start using.

• The tool must perform deadline checking (checking whether an “action”
occuring always results in a “reaction” occuring within a certain amount
of time) soundly but may resort to oversimplification.

• The tool must support microcontroller ATmega328P, be easily extensible
to support other AVR processors and only require a moderate amount
of work to extend to other simple microcontroller architectures by con-
verting the appropriate datasheets to a well-defined language.

• The tool should be able to perform the checking of programs in a rea-
sonable amount of time (seconds to minutes).

• The tool should be easily usable by an inexperienced hobbyist, student
or engineer without formal verification experience.

• The tool should provide the user with insight into the program exe-
cution through a way to visualise the state graph structure and found
counterexamples. This may greatly increase the user’s understanding
of the possible execution paths and consequently their understanding of
the program and the microcontroller, paving the way for use in formal
education or self-education.

• The functionality of the tool should be easy to extend with new model
checking techniques, visualisation options, etc. This means the tool
should be written with high cohesion and low coupling in mind to allow
reworking or adding a part without introducing changes to other parts
of the tool.

The choice of the processor is due to ATmega328P being arguably most
popular simple microcontroller today due to being used in the “classic” de-
velopment kits of the Arduino project. Furthermore, their instruction set and
peripheral functions are very similar across the whole line of AVR devices,
including the ATtiny range which includes low-cost devices used for simple
tasks.

Due to the complexity of the task and limited scope of the diploma thesis,
I restricted myself to model checking simple programs with these restrictions:

• Limited microprocessor peripheral and outside world support. Only
digital pin input/output is supported; the outside world only exhibits
itself via digital pin inputs and uninitialized values.

• No support of interrupts. Interrupt-based programs are fundamentally
parallel in nature and extreme state space explosion may occur for all
but the simplest programs unless advanced methods are used.
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Chapter 6

Deadline checker usage

I created a deadline verification tool that fulfills the goals specified in Chapter
5. The tool is released it as free software under the MIT license. Before I
delve into implementation details in Chapter 7, I aim to provide a high-level
understanding of its usage and value to an embedded system programmer. In
this chapter, I describe how it can be used by programmers to verify properties
of microcontroller programs.

6.1 Usage for visualisation

In normal AVR microcontroller programming workflow, the programmer writes
a program in C or assembly language and compiles it to an Intel HEX file.
This file can be directly used for programming the microcontroller using a
specialized software tool. In case the programmer is only interested in visu-
alisation of program execution, no detailed knowledge of the processor and
specification description language is needed. A simple command may be used
to generate the program execution state space:

$ . / model checker . exe −a atmega328p −g graph output . txt
bas icbranch . hex

INFO Checking .
INFO Proces sor d e s c r i p t i o n loaded s u c c e s s f u l l y .
INFO Proces sor d e s c r i p t i o n compi la t ion took 0.0881747 seconds .
INFO Stepping took 0.0756552 seconds .
INFO Number o f space nodes : 20
INFO Generation s t a t e s : 20
INFO S p e c i f i c a t i o n s t a t e s : 0
INFO Execution s t a t e s i z e : 20
INFO Checker s u c c e s s f u l l y te rminat ing a f t e r 0 .166336 seconds .

During the execution of this command, the model checker builds the state
space of program in basicbranch.hex assuming it is executed on micro-
controller ATMega328P. Default state space information is then output to
graph output.txt. It contains information about state graph nodes (states),
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Figure 6.1: Example state space visualisation. Program counter values are
displayed above nodes, transition cycle counts are displayed over edges. The
data come from the checker. Wolfram Mathematica is used for visualisation.

edges (transitions), program counter values, and transition cycle counts. In
Figure 6.1, the resulting state space information is visualised by Wolfram
Mathematica.

To compare the state space to the program that was used for its generation
(in addition to architecture information), more information about the example
program is needed. The basicbranch.hex program is a basic program for
ATmega328P that reads an input pin and sets an output pin to the same
value. It was written in the C language and then compiled by the GCC C
language compiler. Its shortened disassembly (with some comments added to
aid understanding) is:

Disassembly o f s e c t i o n . t ex t :

00000000 < v e c t o r s >:
0 : 0c 94 34 00 jmp 0x68 ; 0x68 < c t o r s e n d >

4 : 0c 94 3e 00 jmp 0x7c ; 0x7c < b a d i n t e r r u p t >

( . . . )

00000068 < c t o r s e n d >: ; per forms C stack i n i t i a l i z a t i o n
68 : 11 24 eor r1 , r1
6a : 1 f be out 0 x3f , r1 ; 63
6c : c f e f l d i r28 , 0xFF ; 255
6e : d8 e0 l d i r29 , 0x08 ; 8
70 : de bf out 0x3e , r29 ; 62
72 : cd bf out 0x3d , r28 ; 61
74 : 0e 94 40 00 c a l l 0x80 ; 0x80 <main>

78 : 0c 94 47 00 jmp 0x8e ; 0x8e < e x i t >

( . . . )

00000080 <main>:
; s e t pin 1 in port B as output

80 : 21 9a s b i 0x04 , 1 ; 4
; sk ip next i n s t r u c t i o n i f input value o f

pin 0 in port B i s 1
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6.2. Verification of adherence to specification

82 : 18 9b s b i s 0x03 , 0 ; 3
84 : 02 c0 rjmp .+4 ; 0x8a <main+0xa>

; s e t output value o f pin 1 in port B to 1
86 : 29 9a s b i 0x05 , 1 ; 5
88 : f c c f rjmp .−8 ; 0x82 <main+0x2>

; s e t output value o f pin 1 in port B to 0
8a : 29 98 cb i 0x05 , 1 ; 5
8c : f a c f rjmp .−12 ; 0x82 <main+0x2>

( . . . )

While this example is very simple, there still are some interesting details
in Figure 6.1. For example, the graph is somewhat asymmetric due to the
nature of branching constructs in the AVR architecture and optimization done
by compiler even though the branches are symmetrical in C code.

6.2 Verification of adherence to specification

While visualisation of execution state space provides some insight into pro-
gram execution, actual verification of specifications with simple deadline rules
is the key feature of the model checker. Writing verification specifications re-
quires the programmer to become familiar with the description language, fur-
ther detailed in Chapter 7. For now, let us assume that the programmer has
written a specification of basicbranch.hex called basic branch rules.txt

with 5 rules that they are interested in:

• The output pin is configured as output within 30 cycles.

• If the output pin is set to 1, it becomes 0 within 30 cycles.

• The input pin is never configured as output.

• The output pin is never set to 1.

• If the input pin is held at 1 for at least 20 cycles, the output pin is set
to 1 at most 30 cycles after the input pin becomes 1.

With an additional command-line option, the execution state space is
checked against the specification. A -c option is also used to output the
result of checking to a separate file for visualisation.

$ . / model checker . exe −a atmega328p −g graph output . txt −s
b a s i c b r a n c h r u l e s . txt −c check output . txt bas icbranch . hex

INFO Checking .
INFO Using value propagat ion .
INFO Proces sor d e s c r i p t i o n loaded s u c c e s s f u l l y .
INFO Proces sor d e s c r i p t i o n compi la t ion took 0.105436 seconds .
INFO Rules loaded s u c c e s s f u l l y .
INFO Rules IR generated s u c c e s s f u l l y .
INFO Stepping took 0.10558 seconds .
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INFO Number o f space nodes : 19
INFO Checking that the s p e c i f i c a t i o n ho lds .
INFO −−− check ing r u l e 1 −−−
INFO r u l e passed , worst case s a t i s f a c t i o n path l ength : 15 ,

number o f premise ho ld ing s t a t e s : 19
INFO −−− check ing r u l e 2 −−−
SEVERE RULE FAILED
INFO −−− check ing r u l e 3 −−−
INFO r u l e passed , worst case s a t i s f a c t i o n path l ength : 0 ,

number o f premise ho ld ing s t a t e s : 0
INFO −−− check ing r u l e 4 −−−
SEVERE RULE FAILED
INFO −−− check ing r u l e 5 −−−
INFO r u l e passed , worst case s a t i s f a c t i o n path l ength : 19 ,

number o f premise ho ld ing s t a t e s : 17
INFO Rule check ing took 0.0477221 seconds .
INFO Generated s t a t e s : 19
INFO Execution s t a t e s i z e : 19
INFO Peak working s e t s i z e : 20 MB
SEVERE Checker te rminat ing a f t e r 0 .271605 seconds in a f a i l u r e

s t a t e .

$ echo $?
127

Rules 2 and 4 did not pass verification. This results in the checker ending in a
failure state and returning a non-zero value code in addition to printing infor-
mation about the failures. This enables the checker to be used in automated
fashion, ideally between compilation and uploading to the microcontroller.
This scheme could detect regressions in program behaviour before they could
ever manifest on the hardware (potentially even damaging it, e.g. in case of
microcontroller pin being mistakenly set as output when connected to another
strong output with different potential).

6.3 Interpretation of counterexamples and
worst-case paths

Since the checking result was also output for visualisation, the counterexam-
ples for rules 2 and 4 can be used to pinpoint the source of rule failure. Figure
6.2 visualises the counterexample to rule 2. By studying the marked instruc-
tions, it is easy to realize that rule 2 cannot hold for the program as written.
If the output pin is set to 1 and the input pin continues to stay at 1, the
output pin will never be set to 0. Thus, it can be concluded that either the
program or the rule is faulty.

This reasoning may be used for any rule that does not hold. Care must
be taken as the checker is not required to prove a rule that holds for the
original model. It is therefore also possible that the counterexample is a false
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Figure 6.2: Counterexample to specification rule 2 visualised using Wolfram
Mathematica, shown as the cycle marked in red with edges dashed.

counterexample, produced by an execution path that does not exist in the
original model.

In my opinion, the visualisation of the counterexamples greatly aids in
understanding where and how the rule fails. In cases where graph visualisation
is unwieldy, the counterexample can be studied in textual format.

If a rule passes, the checker proved that the model fulfills it. A worst-case
satisfaction path is also output. It is guaranteed that the rule will be satisfied
even with a changed deadline that is equal or longer to the path length (as long
as no other settings change). No guarantees are made about the possibility of
the path being of the same length as it would be in actual execution (it may
actually be a longer path that does not exist in the original system model).
Despite this, it may give some insight into the “weak point” of the program.
This can be seen in Figure 6.3. The corresponding rule states that if the input
pin is held at 1 for at least 20 cycles, the output pin is set to 1 at most 30
cycles after the input pin becomes 1. The worst-case scenario occurs when
the input is being held at 1 from the start of the program execution. In that
case, it takes at most 19 clock cycles for the output to be set to 1 as well.
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Figure 6.3: Worst case execution path to specification rule 5 visualised using
Wolfram Mathematica. The path marked in green with edges dashed shows
the worst-case satisfaction path output by the checker.
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Chapter 7

Deadline checker

implementation decisions

To properly fulfill the goals specified in Chapter 5 and create an easy-to-use
deadline checker as described in 6, I had to make a multitude of fundamental
decisions about the implementation.

7.1 Processor description

The most important decision concerning the checker was undoubtedly the
choice of how to represent the microcontroller memory and behaviour in order
to achieve easy extension to further microcontrollers and perhaps even other
processing devices. I searched for a suitable solution to this problem in current
binary-level model checkers described in Chapter 4.

I was inspired by [20] where model checker Arcade.μC was augmented by
automated creation of “state space generators” from their hardware descrip-
tion in a custom language. While this scheme is certainly interesting, it cannot
handle nondeterministic techniques well, requiring the processor description
creator to identify variables that can be handled in a nondeterministic fashion.
As the transcription tool and Arcade.μC are independent, usage of advanced
verification techniques requiring access to a currently generated state space
and the processor description at once is problematic.

Since I the fundamental notion of describing hardware by a custom lan-
guage is a suitable solution to the problem of extensibility and I was not
restricted by existing codebase, I decided to use a novel hybrid approach. The
core functionality is that of a model checker, but the state variables descrip-
tion and state transition behaviour (processor stepping) is defined by an in-
terpreted processor description. This allows advanced verification techniques
to be performed on-demand during state space generation.

After the choice of this technique, it became necessary to choose a proper
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processor description language. A multitude of processor specification lan-
guages exists, mostly used for the purposes of simulation. Detailed summaries
of some of these languages can be found in [20, p. 24-25] or [22, p. 3-5]. Un-
fortunately, I did not find a suitable language for my purposes. Specifications
of most of them are not publicly available. One notable exception was the
MADL language described in [23], which should have its specification avail-
able through https://ptolemy.berkeley.edu/projects/embedded/mescal/

forum/3.html, but the link to the actual archive is dead at the time of writing
and the page was last updated in 2005.

Therefore, I decided to create my own processor description language, aim-
ing to provide a simple imperative language similar to the C language familiar
to most embedded system programmers. To facilitate simple implementation
of enhanced techniques, I also decided to convert the language into simple In-
termediate Representation. The actual state manipulation is performed using
this Intermediate Representation. It is reasonably easy to perform advanced
transformations on it.

7.2 Specification description

I chose not to use a full-fledged temporal logic (discussed briefly in Section
2.2) for deadline specification. This is due to the fact that understanding
temporal logics takes a large amount of time and effort, which is precisely the
thing I was aiming to avoid. In my opinion, a tool should support describing
specifications in an imperative language since it is the only paradigm most
programmers are proficient in.

As I chose to implement my own processor description language, it became
apparent that using the same language for writing specifications could greatly
reduce implementation time and complexity. In case of deadline checking, a
function must be written to determine whether a singular state is a premise,
and another to determine whether it is a premise. Using the processor de-
scription language for this is extremely simple: the state under consideration
is copied, the copy is transformed by the function, and the function return
value is extracted from the resulting state.

The next important choice concerned the actual format and behaviour of
deadline specifications. As the notion of a deadline is rather vague, I needed
to come up with a well-defined meaning that would allow the implementation
of a model checking strategy. First, I defined the input specification to be
comprised of a set of individually named rules. This allows checking multiple
statements about the system model using an already built state space.

My choices were determined by simple programs that would respond to
some pin being “asserted”, requiring some reaction to be made. The most
basic example of this is the microcontroller acting as a buffer, repeatedly
setting the value on an output pin to mirror the value on an input pin. (One of
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7.3. State representation and nondeterminism handling

the possible implementations of such behaviour is the basic branch example
in Chapter 6.) To allow reasonable checking of this example, the rules are
constructed using four pieces of information:

• Premise function. This function is called with state information present
and returns a truth value about whether the state fulfills the premise.

• Premise duration. This is non-obvious but needed for the ability to prove
reactions to held input pins. Typically, some work is done between the
values of input pins being checked. A very temporary pulse setting
the pin to the value where premise holds might not be detected, as the
microcontroller might not check the input pin values during that period.

• Eventual consequence function. This function works similarly to the
premise function.

• Deadline. If the premise holds for the premise duration or longer, the
eventual consequence must hold in at least one state before or exactly
at the deadline time.

An important consideration is that of time between states, as the state
space is discrete, but real systems work in a continuous time environment.
This is problematic when considering the time when a premise is fulfilled for
the first time. It may be fulfilled between states. If the successor state was
selected for consideration, a shorter hold time and deadline could be computed.
This forces the usage of the predecessor state, which can only produce paths
with longer hold length and whole path length, not excluding possible paths.

The need for consideration of time between states adds an important
consideration for the processor description: there cannot be any nontrivial
changes in outputs exposed to the world. For example, if two successive states
had an output variable set to 0 and in the actual system, the output would
actually change to 1 for a short time between states, checking could produce
a false proof of the output being always 0. This is fortunately not a typical
issue in simple microcontrollers such as ATmega328P.

7.3 State representation and nondeterminism
handling

An important implementation decision is how exactly should the checker store
states. Due to the nature of microcontroller memory and variable manipula-
tion, retaining the definitely known values explicitly seems as the best choice.
A question arises how to store non-deterministic values.

Handling non-deterministic values in binary-level model checkers is neces-
sary not only for handling inputs, but also indeterminate values in processor
memory (especially after start, but potentially also e.g. after a peripheral is
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shut down). For example, the used ATmega328P processor has 2048 bytes of
RAM that is uninitialized after reset (in addition to other uninitialized regis-
ters) [24]. Creating a state for every possible RAM combination would entail
the creation of 216384 vertices. Clearly, this is not an ideal approach.

The approach taken by Arcade.μC is to use three-valued logic [11]. In
three-valued logic (also described in Subsection 2.2.2), the third value means
“unknown” (usually shortened as ’X’). Uninitialized memory locations and
inputs can then be represented by “unknown” (’X’), reducing the number of
states drastically.

I use an extension of this concept. In a typical binary computer, two
bits are used for storage of one three-state bit representation to allow fast
data manipulation. This prompted me to use the fourth value to represent an
“uninitialized” (usually shortened as ’U’) value. This is a value that effectively
is unknown (can be 0 or 1), but its manipulation is strongly undesirable in typ-
ical cases. This is comparable to the IEEE 1164 standard for nine-valued logic
[25] used in VHDL designs for ease of simulations, which also defines these 4
values (and additionally, low-impedance counterparts, a high impedance state
and a don’t care value, none of which are appropriate for this application).

I use the “unintialized” (’U’) value to detect usage of uninitialized memory.
This is usually not a desirable behaviour for programs, typically occurring due
to bugs, making such detection useful. My model checker is able to detect
usage of uninitialised values and immediately return with error.

The behaviour of unknown variable manipulation is also extremely impor-
tant. I made a choice to represent the digital input addresses as variables
holding (and being updated at the start of each state by) unknown values.
Immediate determinization of values on assignment is not feasible since it
would immediately determinize all unknown values at the start of each state.
Due to this problem, I chose to use aggressive nondeterminism as the “core”
behaviour. It does not perform determinization for assignment and binary op-
erations (bit negation, and, or, xor), where three-valued logic is used. Unfor-
tunately, this technique results in a large amount of approximation, prompting
me to use advanced techniques described in Chapter 9 to reduce it.

7.4 Programming language and external
dependencies selection

I had to make a choice of the programming language and external dependencies
before implementing the checker. As speed and memory consumption are
important factors for a model checker, I decided to use the C++ language.
While I believe that the state space explosion problem is best countered by
advanced techniques rather than brute force and therefore have decided to
focus mainly on them rather than on best state space generation performance,
using C++ provides high performance and allows for aggressive optimization
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should it ever become necessary. Compared to the C language, the language
facilities allow for speedier development and better modularity.

Ultimately, I chose not to use external dependencies for the core tool func-
tionality. This largely stems from the fact that binary-level checkers are unique
in the world of compilers, static analyzers, simulators, verification tools, etc.
They require a fusion of state space generation, nondeterminism abstractions,
higher-level techniques such as path reduction, and so on; this makes the other
related tools and frameworks unusable. Furthermore, as my tool is being cre-
ated since no current binary-level checkers are suitable for me, using them is
also not possible.

Tools such as lex or yacc would have been usable for the minor task of
creating lexer and parser for the processor description language, but writing
a recursive-descent parser for it proved to be easy enough to obviate the need
for them.

In order to avoid unnecessary work in non-core areas, I elected to use the
g3log library for logging and the TCLAP library for command line arguments
parsing. The libraries are available under permissive licenses and thus do not
interfere with my goal of releasing the software under the MIT license.
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Chapter 8

Deadline checker

implementation structure

In this section, the various top-level processing modules of the checker are
examined in more detail. The modules are designed to be highly cohesive
to minimise the amount of them impacted by advanced model checking tech-
niques. Some advanced model checking techniques are already implemented
in the model checker and are further discussed in Chapter 9.

Figure 8.1 shows a top-level view of the checker tool functionality. From
user’s point of view, the tool takes the filename of a program in its binary form
along with name of the processor it is supposed to be run on. Optionally,
a deadline specification and other flags may also be input: if no deadline
specification is used, the checker will merely produce a state space structure
for visualisation purposes. The tool then works in the following way:

1. Processor description corresponding to the provided processor name is
loaded from the checker’s processor library.

2. Program instructions are loaded from a .hex file.

3. Deadline specification (a list of rules) is loaded if specified.

4. The first state is created using a memory initialization function in the
processor description.

5. Stepping is performed using the processor description and the program
instructions. New states are only added if they do not correspond to
states already found. The complete state space structure is available
once no states remain to be processed.

6. The state space structure is output for examination / visualisation if the
user indicated the need.
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Figure 8.1: Top-level view of implementation inputs, outputs and core mod-
ules. Source boxes (green) represent inputs, sink boxes (source) represent
outputs. Intermediate yellow boxes without rounded edges represent internal
data structures and blue boxes with rounded edges represent manipulation.

7. If a deadline specification was loaded, deadline verification is performed.
Concise results are output to console. Further details (e.g. counterex-
amples) are output for examination / visualisation if the user indicated
the need.

8. The program returns zero (non-failure return) only if no error occured.
If deadline checking was performed, the failure to prove at least one rule
also results in returning a non-zero value.

8.1 Description language processing

In order to create a model checker easy to use with different processors and
architectures, I placed a great emphasis on the ability to describe processors in
a language that mirrors their usual datasheet or programmer’s guide terminol-
ogy. Furthermore, it should be simple enough to enable using enhanced model
checking techniques in a fully automated way, without extra input from the
processor description designer or user. Current industry-standard languages
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8.1. Description language processing

are not very suitable for this purpose as they are highly complex, often not
fully specified (having undefined states and behaviours), and not offering con-
structs that are typically used in datasheets and programmer’s guides.

For this reason, I designed a new processor description and deadline spec-
ification language for binary-level model checking use. It is an imperative
language inspired by datasheets of simple microcontrollers in order to facili-
tate their easy transcription. It is also inspired by languages C and VHDL
(Very High Speed Integrated Circuit Hardware Description Language) to pro-
vide a gentle learning curve for programmers familiar with at least one of
these. This is how the language is used for describing processors (only a small
part shown):

void memory ( ) {
( . . . )

Uint16 PC = 0 ;
( . . . )

a l i a s Uint8 DATA[ 0 x0900 ] ;

// −−− General Purpose R e g i s t e r s −−−
Uint8 R[ 3 2 ] ;
a l i a s DATA[ 0 x0000 . . 0 x001F ] = R;

( . . . )
// −−− IO r e g i s t e r s −−−

a l i a s Uint8 IO [ 6 4 ] ;
a l i a s DATA[ 0 x0020 . . 0 x005F ] = IO ;

( . . . )
// Status Reg i s t e r
Uint8 SREG = 0x00 ;
a l i a s IO [ 0 x3F ] = SREG;

( . . . )
}

( . . . )

// f o r i n s t r u c t i o n s AND, EOR, OR
// R: d e s t i n a t i o n r e g i s t e r a f t e r be ing s e t
void s e t s t a t u s l o g i c a l ( Uint8 R) {

// Z − zero f l a g
SREG [ [ 1 ] ] = ∼R [ [ 7 ] ] & ∼R [ [ 6 ] ] & ∼R [ [ 5 ] ] & ∼R [ [ 4 ] ] & ∼R [ [ 3 ] ] &

∼R [ [ 2 ] ] & ∼R [ [ 1 ] ] & ∼R [ [ 0 ] ] ;

// N − negat ive f l a g
SREG [ [ 2 ] ] = R [ [ 7 ] ] ;

// V − two ’ s complement over f l ow f l a g
SREG [ [ 3 ] ] = ’ 0 ’ ;

// S − s i gn f l a g
SREG [ [ 4 ] ] = SREG [ [ 2 ] ] ˆ SREG [ [ 3 ] ] ;

}
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( . . . )

void s tep ( ) {
( . . . )
Uint16 i n s t r u c t i o n = f e t c h I n s t r u c t i o n (PC) ;
PC = PC + 1 ;
( . . . )

masked case ( i n s t r u c t i o n ) {
( . . . )

// AND
”0010 0 0 rd d ddd r r r r ” :

// l o g i c a l and
R[ d ] = R[ d ] & R[ r ] ;
s e t s t a t u s l o g i c a l (R[ d ] ) ;

( . . . )
}

}

The processor description sample shows most of the description language
syntax. While the syntax is supposed to be similar to the C language most mi-
crocontroller programmers are familiar with, it also features some constructs
not found in the C language, yet highly helpful for transcription of microcon-
troller datasheets into their description.

8.1.1 Array slicing

Unlike the C language, the description language is able to manipulate arrays
not only by indexing, but also by slicing, taking a part of the array for further
manipulation. It is performed using a two-dots syntax akin to the Pascal
language declarations. For example, A[5..8] returns a 4-element array, the
first element of it corresponding to A[5] and its last to A[8]. Slices may
be used as L-values, that is, A[5..8] = B[0..3] sets A[5] to B[0], A[6] to
B[1], and so on. This is not very helpful on its own (at least for describing a
simple processor), but allows for implementation of two constructs critical for
easy construction of a processor description, alias variables and bit slicing.

8.1.2 Alias variables

In the AVR architecture (and many others), processor registers are named
differently depending on the type of access. For example, the status register
can be accessed by I/O register manipulating instructions using I/O register
offset 0x3F, but is called SREG when it fulfills the role of status register in
instruction (and status flags are set, such as in the ADD instruction).

To allow simple descriptions, I devised an alias variable construct. It al-
lows the same register to be described in multiple ways, making instruction set
transcription straightforward and drastically reducing the possibility of an er-
ror being introduced. The alias variables construct is nicely paired with array
slice assignment, making it possible, for example, to map the 32 data space
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adresses from 0x0000 to 0x001F to the 32 general purpose working registers
of the microcontroller. After this is done, any read or write to DATA[a] with
0 ≤ a < 32 is applied to the actual variable R[a] instead.

For some registers, this is still not enough to easily ensure a sound processor
description. For example, on ATmega328P, the PINx addresses return digital
inputs value on read, but writing to them toggles the corresponding PORTx

values by performing a bit XOR on them with the written value. This is
further complicated by the fact that the PINx addresses may also be interacted
with using their IO port address or their data memory address. I devised
another construct, alias functions.

Instead of assigning to the variable, the alias may be assigned functions
that execute when reading and writing it. For the aforementioned PINx

adresses, this solves issue of soundness. Special variables are created for the
actual pin inputs. When reading from PINx, these variables are read. When
writing to PINx, the write function instead performs a bit XOR with the cor-
responding PORTx. As the alias variable itself may be assigned to other aliases
(IO registers and data memory), all interaction types are neatly handled.

This construct is fundamental to future extensibility of the checker as it
separates description of the core processor and its instruction set from inter-
action with peripherals in address space. Crucially, it does this while keeping
the same imperative paradigm, not creating further complexity.

8.1.3 Individual bit indexing and slicing

Another construct highly useful for simple transcription and its inspection is
the possibility of working with individual bits of integer variables. This con-
struct uses doubled brackets in order to be recognizable from regular array
indexing or slicing. Representation using bits is similar to that of the program-
mer’s level references. In the code example of processor description, the AND
instruction is taken almost directly from the AVR instruction set reference [26,
p. 35], just without aliasing the SREG bits (which could be technically done,
but I chose not to in order to reduce the number of single-letter variables).

8.1.4 Control flow

A masked case construct is supported, intended to be used especially for
branching on instruction code. The selected branch has its ’0’ and ’1’ charac-
ters corresponding to bits set to zero or one. The letters in the branch name
correspond to variables which are to be created with their values. This cor-
responds to the traditional way of describing instruction opcodes, used in the
AVR instruction set reference [26].

The language also contains if branches based on value of a single-bit
variable (not shown in the code listing). It does not contain any looping
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constructs. Recursion is prohibited. This guarantees that the description
language functions always halt, simplifying higher-level analysis.

8.2 Language processing

The language is read and transformed into Abstract Syntax Tree (AST) repre-
sentation using a classic lexer and recursive descent parser combination. The
AST is not used directly, but generates an Intermediate Representation which
contains simpler constructs than AST and therefore is more easily analysed
with advanced techniques.

8.3 Description language intermediate
representation

The processor description and specification rules are ultimately converted to
Intermediate Representation (IR) that can be directly used to transform a
(general) state into another state.

The IR is intentionally designed to be as simple as possible to facilitate easy
high-level analysis. It is of Static Single Assignment form and only contains a
few types of simple instructions. They can be split into two types, assignment
and control flow.

Assignment instructions always assign to a single variable. They differ
mainly in the right side behaviour:

• Constant assignment: a constant value is assigned.

• Unary operation assignment: the result of an unary operation is as-
signed. Simple assignment is considered to be an identity unary opera-
tion.

• Binary operation assignment: the result of a binary operation is as-
signed.

• Assignment with right indexing: right-side variable is indexed or sliced
according to indexing variables and the result is assigned.

• Assignment with left indexing: right-side variable is assigned to a slice
or an index of the left-side variable according to indexing variables.

• External function call assignment: an external function call (specially
implemented within the checker tool) is performed with specified vari-
ables as parameters and the result is assigned.

There is only one control flow instruction:
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• Branch: contains multiple branches, each is taken based on its single-bit
variable. Also contains a default branch, taken when no normal branch
is taken.

No simple block instruction is needed as the IR is automatically generated
and thus is not subject to scope problems. A loop instruction might be added
in the future if it becomes needed, at the price of more problematic checking.

While internal functions are supported by the description language, they
are always inlined in the IR representation to facilitate better high-level anal-
ysis. This is not a memory problem as the auxiliary functions are usually
quite simple (e.g. setting eight status flags). As the description language does
not support loop constructs nor recursion, IR control flow is extremely simple
and suitable for use of enhanced techniques.

8.4 Program binary loading

The program loader loads the binary version of the program from a file. Cur-
rently, this is an Intel HEX file that is used for programming AVR devices.
The contents of program memory of the microprocessor are replicated to be
used for state space generation.

8.5 State space generation

The state space structure is explicitly generated via classic breadth-first search
as described in [27, p. 156]. Since the whole structure is always generated
(checking is only performed afterwards), depth-first search (DFS) and breadth-
first search (BFS) result in the same structure. The main difference lies in
the assignment of identifiers to states. If sequentially-increasing identifiers
are assigned to states as they are generated, this results in BFS assigning
sequential integers to successor states of any state. This makes it easy to
follow the flow in the state space graph if it is visualised with such identifiers
as labels. DFS, on the other hand, usually results in very disproportionate
identifiers of such sibling states.

Alternatively, checking could be performed on-the-run together with state
generation to leverage early termination in case of a counterexample. I did
not choose this approach as it has a disadvantage in inability to perform
their meaningful separation resulting in higher implementation complexity. It
is also incompatible with the focus on visualisation: the whole state space
structure should be visualised and the counterexample marked to provide
the insight into program execution. Furthermore, this does not help at all
with cases where no counterexample is found. This led me to separate these
functionalities altogether.
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8.6 State space representation

Program execution state space is represented explicitly in a structure similar
to a Kripke structure. Unlike the traditional space spaces based on Kripke
structures that consist of a directed graph where only vertices are stateful,
both vertices and edges are stateful in my implementation. This is chiefly
due to the need for a variable holding the number of cycles taken during a
transition between two processor states (i.e. vertices in state space graph).
The alternative approach would be to store this information directly in target
vertex (it cannot be stored in source vertex as the source vertex may have
multiple successors with different transition times), but that presents a prob-
lem with visualisation and simplification since multiple vertices with same
processor states but different transition times would not be equivalent. Using
stateful edges is clearly a more natural choice as the transition time is related
to edge rather than vertex.

I use the same state representation for vertex states and edge states. This
leads to high generality as the edges are not restricted to cycle counts, enabling
them to carry more information. It also drastically simplifies the processing of
the processor description. The only added complexity is in determining which
variables belong to edge and which belong to vertex when stepping. I solved
this problem in the following manner:

1. The first vertex is generated by executing the IR of function memory()

on an empty state. The variables in the function scope are retained to
form the first vertex.

2. When generating a new state, function edge() is executed on an empty
state. The variables in the function scope are retained to form the basis
for the new edge state.

3. The parent vertex state and edge state are merged. Function step() is
executed on this state, resulting in the merged final state of new vertex
end edge.

4. The variables are split and assigned to their respective locations (ver-
tex/edge).

This ensures that the step() function can manipulate both processor registers
and cycle count. Furthermore, this can be easily used for cleanly “ignoring”
some vertices, not putting them in the state graph but retaining the cycle
count elapsed. This is used in path reduction improvement in Section 9.4.

8.7 Output generation

If specified by user, the tool generates output that can be loaded into Wolfram
Mathematica [28]. In addition to the state graph, it outputs program counter
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value for each vertex and cycle count value for each edge. This information
may be used for visualisation as was done in Figure 6.1. This allows one to
obtain a concrete idea about the program execution.

Other visualisation formats may be added in future. Due to the amounts of
data that may be output, a binary program may be a highly reasonable choice.
Considering that the state space may become highly complex for a human to
understand, it seems that a visualiser that could reduce the complexity by
e. g. temporarily merging states differing only by unnecessary variables might
be useful.

8.8 Deadline specification

The deadline specifications are written in the same language as the processor
model. This has a distinct advantage of being able to use all of the internal
processor registers and aliases.

Each rule has four functions which control its behaviour: premise, premise
duration, eventual consequence and eventual consequence deadline. The re-
turned value is specified in variable named result. The premise duration and
eventual consequence deadline are supplied with an empty previous state and
thus effectively return a constant value.

The deadline is specified in this manner: on every possible execution path
from each starting state, if the premise holds for at least the amount of cycles
specified by premise duration, the eventual consequence must hold at least in
one state before deadline is reached, that is, the path between the starting
state and the state fulfilling the eventual consequence takes lesser or equal
amount of cycles than the eventual consequence deadline.

I use such a definition since it allows practical checking of responses to
digital inputs. In case the input changes to a new value and the program
should respond to that, the input must stay at this value for a specified amount
of time to give the program time to finish its previous work, fetch the digital
input state and decide how to react. If the premise duration would be zero in
this case, a counterexample would be generated in which the input would flip
to its old value before the digital input state would be fetched.

An example follows with some of the rules for checking a program which
should set port B bit 1 as a digital output in its initialization and then loop,
checking the input value of port B bit 0 and setting the output value of port
B bit 1 accordingly.

void r u l e 1 p r e m i s e ( ) {
// always t rue
Bit r e s u l t = ’ 1 ’ ;

}

void r u l e 1 p r e m i s e d u r a t i o n ( ) {
// in s tanteneous
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Uint16 r e s u l t = 0 ;
}

void r u l e 1 e v e n t u a l c o n s e q u e n c e ( ) {
// DDRB b i t 1 becomes 1
// should always happen −> r u l e should pass
Uint8 ddrB = IO [ 0 x04 ] ;
Bit r e s u l t = ddrB [ [ 1 ] ] ;

}

void r u l e 1 e v e n t u a l c o n s e q u e n c e d e a d l i n e ( ) {
// s e t a rea sonab l e dead l ine
Uint16 r e s u l t = 30 ;

}

( . . . )

void r u l e 5 p r e m i s e ( ) {
// PINB b i t 0 becomes 1 , t h i s could happen
Uint8 pinB = IO [ 0 x03 ] ;
Bit r e s u l t = pinB [ [ 0 ] ] ;

}

void r u l e 5 p r e m i s e d u r a t i o n ( ) {
// s e t a rea sonab l e durat ion
Uint16 r e s u l t = 25 ;

}

void r u l e 5 e v e n t u a l c o n s e q u e n c e ( ) {
// PORTB b i t 1 ev en tua l l y becomes 1
// t h i s should pass , but w i l l produce a f a l s e

counterexample
// i f the checker does not support unknown value

propagat ion
Uint8 portB = IO [ 0 x05 ] ;
Bit r e s u l t = portB [ [ 1 ] ] ;

}

void r u l e 5 e v e n t u a l c o n s e q u e n c e d e a d l i n e ( ) {
// s e t a rea sonab l e dead l ine
Uint16 r e s u l t = 30 ;

}

This could be extended in future by allowing the language to describe the
path in a more imperative fashion. Some kind of temporal logic might also
be used, but this would require the users to be familiar with its syntax and
semantics, which is the thing that I would like to avoid.

8.9 Deadline checker

For each deadline specification rule, the deadline checker checks each state.
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8.9. Deadline checker

If the premise may be fulfilled (i. e. it is true or unknown, not false), it
creates a path starting with it and pushes it to queue. If not, it searches for
successor states that fulfill the premise; for each one found, a path is created
containing the current state followed by the successor. This is done to add
paths where the premise may be fulfilled between the states.

The deadline checker then takes paths from queue until it is empty (using
depth-first search for fast counterexample generation) and for each path:

1. If the premise is definitely not fulfilled in some path state (it is broken)
and the length of the premise holding is smaller than required premise
duration, the path cannot be a valid counterexample (and so cannot be
other paths starting with it). Its processing ends.

2. The path is now definitely valid (there are no other constraints on its
validity). If it is longer than the current worst-case path, it becomes the
worst-case path.

3. If the current path is at longer than the deadline, it is a counterexample.

4. If the current path ends with a state that has been on the path previously
(forming a cycle), it is a counterexample.

5. If the eventual consequence is definitely fulfilled, the path may not be
a counterexample (and so cannot be other paths starting with it). Its
processing ends.

6. If the current path is exactly as long as the deadline, it is a counterex-
ample.

7. The path is valid but not a counterexample; this means paths starting
with it may form a counterexample. Generate longer paths by adding
all possible transitions from the last state of the original path as the new
last node.

The implemented deadline checking algorithm supports both of the “clas-
sic” strategies of breaking on a counterexample, bounded (by reaching a max-
imum path length) and unbounded (by cycle detection).

The reason for checking deadline length twice is as follows. If the path is
longer than deadline, fulfilling the consequence is always too late. However,
non-positive transition lengths are prohibited in the implementation when
checking deadlines (producing an error if such transition is detected), since
they may lead to dangerously counter-intuitive behaviour. This means that
the path can be also considered a counterexample when it is exactly as long
as the deadline and the consequence is not definitely fulfilled, since any longer
path would fail (and at least one path must exist). This is desired especially
due to the special case of zero-length deadlines which intuitively mean that if
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8. Deadline checker implementation structure

the premise holds, the eventual consequence must hold in the same state. In
such case, the counterexample path length is reduced.

Concerning the counterexamples found by cycle detection, the fact that
their path forms a cycle means that it could be added to the end of the path
infinitely many times. Such a cycle could not break path validity. Either the
required premise duration was already fulfilled, in which case the path validity
cannot be broken anymore, or all path states possibly fulfill the premise and
the cycle states, being their subset, must possibly fulfill it as well, being unable
to break the path validity. Furthermore, the cycle cannot definitely fulfill the
eventual consequence, since that would require some cycle state to definitely
fulfill it, but that is impossible since it already is on path.

If desired by the user, the checker results are output in format suitable for
Wolfram Mathematica [28] for visualisation purposes. If the rule holds for all
paths, the worst-case path before the eventual consequence was fulfilled (on
paths where premise was valid) is output. If a counterexample is found, it is
output.

Unfortunately, the näıve approach used suggests a O(n2) processing time
based on the number of states, due to paths starting from each state and
being bounded by the state space size at most (since cycles cannot occur).
This assumption is shown to be true in Chapter 10, severely reducing checking
effectiveness. A more advanced checking approach may be implemented in the
future to reduce the severity of this problem.

44



Chapter 9

Advanced techniques

implemented

In addition to the core deadline checker modules, I implemented some ad-
vanced techniques for evaluation and use. New techniques may be added to
the checker with a moderate amount of work.

9.1 Decision value propagation

In Subsection 8.6, an aggressive nondeterminism technique used by the dead-
line checker is described. Simply put, nondeterministic bits are propagated
when assignment and bit operations are used according to three-valued logic.
When value determinization is performed, the relationships to previous vari-
ables are lost. This is especially problematic because the Intermediate Repre-
sentation interpreted typically has computations with intermediate temporary
values inserted, especially when alias variables are used.

To counter this behaviour, I implemented a scheme where after each deter-
minization is performed and multiple states created, each state has the actual
value propagated backwards through assignment, unary negation and index-
ing operations in the current IR block. The corresponding variable values are
set. Most importantly, this allows the conditional control flow instructions
that depend on a bit in I/O space being set to propagate this bit back to the
proper I/O address.

This technique has a similar concept to delayed nondeterminism intro-
duced in [29], but is different in some aspects. The delayed nondeterminism
technique is concerned with successive states, while decision value propagation
currently only supports propagation within a single state. Delayed nondeter-
minism also does not propagate the determinized value backwards.
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9. Advanced techniques implemented

9.2 First relationship instantiation

The overapproximation created by nondeterminism is present due to the fact
that nondeterministic values are copied [29, p. 187]. The relationship between
the values in different variables (they must be equal to the same value in the
same execution) is fundamentally lost.

Temporary variables in IR are not “interesting” to us as their value is not
preserved in the state space. Constant values are also not interesting since they
do not infer a “relationship” between two variables. This is why I devised a
first relationship instantiation strategy to allow the checker to work very much
like an immediate instantiation strategy checker but retain the advantages of
IR-based processor description.

When data are taken from an “interesting” variable (named variable other
than a formal function parameter), they have a “determinize” boolean flag
set. This flag travels with the data through all uninteresting variables. When
another interesting variable is found, determinization is performed immedi-
ately. This works very well when combined with decision value propagation,
the program working almost as a normal immediate instantiation checker.

9.3 Automatic control flow computation

In classic static analysis and processor model checking, many high-level pro-
gram transformation and simplification techniques use the control flow of the
program, considering only the program variables that interact with it in order
to build a “high-level” understanding of the program. Using the control flow,
advanced manipulation and simplification techniques can be used.

While the compilation of a program to binary code removes a high amount
of information about it, control flow usually can be easily reconstructed if
there is not a high amount of nondeterministic manipulation (depending on
data instead of instructions). Direct jumps, calls and returns do not depend
on data. Conditional branch and skip instructions only depend on one data
bit. In contrast, indirect branching, indirect function calls, etc. usually have
an extremely high number of potential paths, but only a few are ever taken.
The same problem may occur when the program counter (PC) or the program
stack is manipulated. It is then extremely hard to generate a useful state space
without combinatorial explosion occuring. Fortunately, simple programs on
microcontrollers usually do not feature these constructs, making the control
flow computation easy.

The control flow graph generation is implemented by using a separate
processor description which eliminates variables other than those on which PC
value depends. Since the PC is loaded by value from stack if the RET (return)
instruction is encountered, this requires a further modification. I solved this
problem by the processor description using a separate “virtual” stack when
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9.4. Simple cycle path reduction

path reduction is used. In control flow graph generation, the “virtual” stack is
used to push stack values whenever the CALL instruction is used and pop them
whenever the RET instruction is used. This generates the expected control flow
graph. The “virtual” stack is then also used when building the actual state
space, a check being done whenever the RET instruction is used. If the popped
stack value to be used for setting PC does not correspond to the “virtual”
stack value, the checker is aborted as using this technique would produce
wrong results.

9.4 Simple cycle path reduction

During the planning and implementation of the checker, I was especially con-
cerned about time-wasting delay constructs. These constructs drastically in-
crease the size of checked state space while usually not providing any useful
information (besides the delay length). This is especially unacceptable when
rule checking with superlinear complexity is performed. Furthermore, visual-
isation of the full state space becomes infeasible with any but shortest delays.

To counteract this undesired behaviour, I implemented a variant of path
reduction originally introduced in [30] and discussed for use in binary-code
checking in [31, p. 29-31]. As my ultimate aim in the future is full computa-
tion of behaviour of uninteresting cycles in constant time by high-level loop
analysis, I restricted myself to replace the cycles introduced by time-wasting
delays without impacting the other states. I also decided against eager path
reduction since reducing too much could hamper visualisation and understand-
ing of the program function. This is in contrast to previous approaches, which
aim to reduce as much as possible.

Time-wasting delays only use a few registers which are typically preset
to some values and then are changed within a simple loop until the ending
condition is fulfilled. This is also true on the AVR architecture. The first
task to be done is to identify these simple loops. This is done by building a
control flow graph and searching for cycles which only have a single state with
two successors; other states must have only one successor. The state with two
successors form a “breaking point” as used in [30]. The question of whether
the other states also form a “breaking point” (in which case, the technique
could not be used on that loop) is rather simplified as no interrupts are allowed
and no non-deterministic assignments are performed (this could change in the
future as the checker is enhanced to support programs with interrupts and
more complex peripherials, however).

The usage of path reduction for such a cycle would be prohibited if a
variable used for deadline checking was manipulated. Guaranteeing this is
not trivial if the checker is not supposed to know about the internal workings
of the processor. To solve this problem, I devised a technique of IR tailoring.
Each control flow state belonging to the cycle is an overapproximation of the
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9. Advanced techniques implemented

corresponding execution state where only a few variables are known (namely
PC and stack). This means it can be interpreted using the execution processor
description in the same way an execution state would be (after appropriate
variable remappings are done). When a branch instruction is encountered and
the branch taken is well-known, it means that the other branches cannot be
ever taken from the control flow state. This allows the IR to be tailored to
the instruction, removing all other branches. This tailored IR only contains
a small subset of variables used. All values that are assigned to are then
recovered. If any one of these variables is used in the specification, the cycle
is not enabled.

9.5 Simple cycle tailored IR stepping

As the path tailoring considerably simplifies the IR, especially removing the
computation of the proper instruction that should be executed after the in-
struction data are fetched, I devised a technique where this IR is used instead
of normal IR when stepping simple cycles.

Obviously, it would be even better to compute the cycle values in con-
stant time by combining all of the tailored IR and performing advanced static
analysis on it. That falls outside the scope of this thesis, but may be a very
suitable enhancement in the future.
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Chapter 10

Testing the deadline checker

As the verification tool may be used to verify the behaviour of real-world
programs, proper testing is crucial. I used a processor description developed
for the ATmega328P microcontroller in conjunction with custom-written ex-
ample programs to test the checker functionality and the impact of different
advanced techniques implemented.

10.1 Testing methodology

The checker is subject to two fundamental types of requirements: qualita-
tive and quantitative. Both are interrelated: a wrong answer requiring little
computational resources is not useful (and, worse, is misleading). Similarly, a
perfect answer that requires more computing resources than available is also
not useful.

In formal verification, the checker must be, above all, sound, i.e. never
allow specification to pass the check if the actual system does not fulfill it.
While this largely relies on the properties of algorithms used, the implemen-
tation itself may contain bugs. As formal verification of the deadline checker
is infeasible in the scope of this thesis, thorough testing is needed for a suffi-
ciently high degree of trust in the quality of the checker. To facilitate this, I
test scenarios where failure is expected. It is paramount that these scenarios
end in failure.

The other qualitative aspect is the prevalence of false negatives. While a
checker that always returns a failure is trivially sound, it is not useful at all. I
did not seek to eradicate all false negatives, instead focusing on the ones that
may occur with specifications of simple, real-world programs. I also elected
to return a negative checking result in other potentially dangerous cases not
usually covered by specifications, namely when uninitialized memory is used.
For these reasons, I aim to test the prevalence of false negatives on programs
that might very well be used in real-world applications. Ideally, the deadline
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10. Testing the deadline checker

checker should not produce a false negative on most reasonable specification
rules in such a program.

The quantitative aspect of checking is also important. The programs
should be checked in seconds to minutes in order to support the rapid de-
velopment cycle common for simple microcontroller programming. The most
problematic aspects of non-parallel programs are nondeterministic inputs and
busy delays. To determine their impact on resources used, programs for test-
ing these behaviours are analysed in a quantitative manner.

I used a standard personal computer with an AMD Ryzen 5 1500X pro-
cessor to compute the checking results. The result therefore should match
the experience of standard users of the deadline checker. Full optimizations
were used and a proper log level was set in order to eliminate the possible
dependence on I/O operations.

10.2 Programs tested

The restriction of peripherals to general digital inputs and outputs (GPIO)
and restriction to disabled interrupts severely limits the amount of useful real-
world programs that could be used by students and hobbyists in real world.
Some programs do not need other peripherals, however. The digital inputs
allow for various buttons, switches and keypads to be used as inputs. To
provide some real-world-like programs for testing, I was inspired by actual
real-world microcontroller programs.

To have proper control over the program behaviour, I implemented these
programs in assembly language. This is in contrast to the C programming
language used for the basic branch program shown in Chapter 6. The basic
branch program was technically also used for testing, but its trivial nature is
not particularly interesting for further consideration.

10.2.1 Expected-failure programs

To obtain at least some information about soundness of the checker, it is
important to know that illegal operations fail. This yields some confidence in
the belief that the checker does not permit ill-formed programs or programs
that use unimplemented constructs to pass checking.

I created simple programs that implement some behaviours that should
result in a checking failure:

• Jumping outside program instructions.

• Processing an instruction that is unimplemented in the processor de-
scription.

• Enabling the global interrupt flag. Interrupts are currently unimple-
mented.
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10.2. Programs tested

• Setting a value using an undefined value. This occurs when uninitialized
memory is used. This may help with finding of bugs.

• Getting a value from a nonaliased location (i. e. a part of memory that
is not described).

• Setting a value from a nonaliased location.

• Setting a value to a bit restricted for writing. AVR architecture typically
has unused bits of registers in memory map restricted in a way that a
logic 1 should not be written to it. This restriction is guaranteed in the
processor description, raising an error when this occurs.

The checker outputs a corresponding failure when the state space for the
programs is being built. This is a welcome behaviour, paving the way for
the possibility that no false positives are generated by the checker for such
violations.

10.2.2 Blink

To test the checker for behaviours not dependent on nondeterminism, a classic
“first introduction” program is used. It sets a pin to output mode and then
periodically toggles it, using a busy delay loop to slow the toggle rate to allow
the human eye to recognize the toggling as discrete.

In addition to its ubiquity as an example program, another reason for the
inclusion of this program is its applicability to measurement of quantitative
dependencies on delay length. Its serial nature also allows easy crosschecking
of results with a processor simulator.

For this program, this specification is checked by the deadline checker (the
pin used for output is shortened to O):

• O is never in internal pull-up mode.

• O is set to output mode in a specified amount of cycles.

• If O output value is set to 0, it must become 1 within a specified amount
of cycles (toggle period).

• If O output value is set to 1, it must become 0 within a specified amount
of cycles (toggle period).

The deadline checker is unable to check if the actual toggle period is lower
than that specified one (in another words, to check hold time). It is also
unable to check that once O is set to output mode, it never goes back to input
mode. This is a limitation of the current deadline checking algorithm and the
specification format, not an inherent problem of the checker. In future, the
checker may be extended to support more powerful specifications.
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10. Testing the deadline checker

An important implementation decision in this program was to use pin
toggling by writing a corresponding bit on PINx to 1. This is a corner case
that could not be resolved soundly without introducing alias functions. This
program therefore also tests this functionality.

10.2.3 Gate array

This program makes the microcontroller emulate a discrete gate IC with five
classic logic gates (buffer, inverter, OR, AND, XOR). For each gate, it checks
the values of input pins, computes the gate output and sets the output pin to
that value.

This testing program is chosen to thoroughly test the ability of the checker
to work with unknown values. Since delayed nondeterminism is not imple-
mented, the program is implemented by branching on concrete bits in data
registers. This keeps state explosion at a reasonable level for evaluation.

The specification is considerably more complex than the one for the Blink
program. First, for every pin O used for output:

• O is never in internal pull-up mode.

• O is set to output mode in a specified amount of cycles.

Similarly, for every pin I not used for output:

• I is always in input mode.

That forms the input direction specification. Fortunately, only 2 rules are
needed in practice, one that describes the requirements that should be true
globally (outputs never in internal pull-up mode, others always in input mode)
and another which checks that all outputs are set (at the same time) within
a specified deadline.

Then, for every gate and combination of its values:

• If the gate inputs are in the proper combination of values to produce
a logic 1 a specified amount of cycles, the corresponding output value
must become 1 in a specified amount of cycles.

• If the gate inputs are in the proper combination of values to produce
a logic 0 a specified amount of cycles, the corresponding output value
must become 0 in a specified amount of cycles.

10.2.4 Switch with momentary selection

This program is directly inspired by microcontroller-assisted relay switching
schemes used e.g. for guitar pedals. A momentary switch input controls the
output while a separate alternate action switch determines the control type.
One control type results in the momentary switch input value being copied
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to output, the other results in the input toggling every time the momentary
switch is pressed.

In real systems, switches usually must be debounced, since their value
usually does fluctuate for a few milliseconds after being toggled. For simplicity,
the mode selection switch is implemented without debouncing. 10 millisecond
debouncing is used for finding out if the action switch was pressed since the
last time a check was done.

However, the time before the action switch value is copied to output when
in momentary mode is required to be 5 ms or less. The specification contains
two rules for checking this: if both the momentary mode is selected and the
action switch is held at a certain value, this value must become present at
output in 5 ms or less.

The debouncing behaviour is intentionally implemented by waiting in a
busy loop for 10 ms when waiting for the button to debounce. The action
switch is then checked once more to see if the logic 1 detected was not just
spurious. This breaks the specification, since if both the mode selection switch
is set to momentary and action switch value is changed, the system may fail
to adhere to its specification. The checker therefore should return a failure,
not proving that the specification holds.

10.2.5 Independent nondeterminism

As an objective measurement of possible worst-case generation speed and pro-
gram memory usage behaviour is needed, I devised a program which uses
single-bit branches to set different register bits in succession, forcing the de-
terminization. This allows somewhat precise control of the number of states
and does not result in sequential state processing, as with the Blink program.

Using instructions loading whole bytes together with first relationship in-
statiantion, described in Section 9.2, is not desirable in this case since the
precise amount of determinized bits would not be controllable.

10.3 Qualitative testing

As the expected-failure programs are supposed to quickly fail (and they do),
they are not discussed in this section. Rather, the actual usefulness of the
checker for the user is discussed.

10.3.1 Blink

The Blink program does not contain non-determinism and its simplicity en-
sures that almost no false counterexamples to the specification are generated.
The returned worst case path for transition from 0 to 1 is one cycle longer
than in actual case. This is presumably due to the conservative path handling
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Figure 10.1: Execution state graph generated for the Blink program when
simple path reduction is used. Values in bold are program counter values
in corresponding states, values in italic are transition cycle counts. While it
does not exactly describe the execution state space, it describes it extremely
concisely and akin to actual programmer’s view: the exact execution of delay
cycles present is not important for understanding and only muddles it.

described in Section 7.2. The checker also properly signals when the speci-
fication is violated, e. g. by the toggling being slower than required. The
deadline behaviour was crosschecked using an official processor simulator for
ATmega328P present in Atmel Studio 7 [32].

This program is studied in bigger depth in the quantitative section, but
using the simple cycle path reduction technique (discussed in Section 9.4)
presents a big qualitative difference when studying or visualising the output.
When simple cycle path reduction is used, the simplified state space is ex-
tremely simple and understandable, as seen in Figure 10.1.

10.3.2 Gate array

The Gate array test program is an interesting test of deadline checker use-
fulness. In Table 10.1, it is shown that the checker is not able to prove any
rules concerning the gates without the decision value propagation technique
described in Section 9.1. This makes the decision value propagation technique
extremely useful, almost completely necessary. The state space does not grow
significantly, but the added information about state of input pins is sufficient
to allow proving the full specification.

Enabling the first relationship instantiation technique described in Section
9.2 did not have a noticeable effect on the output. This is expected as the
program was written in a way that uses branching on bit value, which always
results in deterministic value instantiation.

The speed of checking is problematic. Even though the program is written
in a way that aims to keep the generated state space small, the number of
states still increases rapidly with each new gate and checking becomes much
slower.

I consider the evaluation of this test program to be a success. I am espe-
cially motivated by Table 10.2. Determining the contained information using
a simulator or even through stepping by hand would be impractical and prone
to error due to the large amount of execution paths. By using the deadline
checker, guarantees are made automatically and easily.
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techniques/criterion global gates state# step check

no techniques all pass all fail 3799 16.19 s 1.33 s

decision value prop. all pass all pass 4229 15.48 s 487.13 s

d.v.p., first rel. inst. all pass all pass 4229 14.83 s 494.98 s

Table 10.1: Comparison of results of techniques used when the Gate array
program is checked. For each combination of technique, the result of proving
the “global” rules (setting pin as inputs and outputs), rules concerning each
gate, number of states generated, time elapsed when generating the state
space (stepping) and time elapsed when checking are shown. Decision value
propagation allows the specification to be fully proven. Not using it results in
a fast failure to prove. First relationship instantiation does not help further as
there is no further nondeterminism present after decision value propagation.

Gate Buffer Invertor And Or Xor

Worst-case path length 55 53 47 37 36

Table 10.2: Worst-case lengths of paths before satisfaction of rule eventual
consequences for individual gates in the Gate array program. The paths are
measured in processor cycles. The worst path length was selected from each
set of rules for a gate.
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Figure 10.2: Control flow graph generated for the Gate array program using
automatic control flow computation.
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While simple cycle path reduction does not help with evaluation of the gate
array since no valid simple cycles are found, control flow graph generation can
be used for visualisation since the generated state space is too big and complex
to be helpful to humans. Figure 10.2 shows the control flow graph generated.

10.3.3 Switch with momentary selection

The rules for guaranteed momentary selection fail as expected. A simple cycle
(delay) is found if simple cycle path reduction is used, but it is not used since
variables representing inputs present in the specification are manipulated by
being set to a constant unknown value. This is a problem since the state
space exhibits growth both due to the nondeterminism present and to the
delay used. Otherwise, this program behaves as similarly to Blink and Gate
array programs.

10.4 Quantitative testing

Quantitative testing was motivated by the desire for a lesser memory usage
and (especially) processing time by using advanced techniques. It is shown
that processing time is the main bottleneck in practice.

10.4.1 Blink

The Blink program is ideal for testing the dependence of execution space
size and time elapsed on introduced delays. Usage of various techniques for
handling nondeterminism does not have a significant impact, since no non-
determinism (apart from undefined values in unused processor registers and
memory) is present. Therefore, I further interpret the results depending on the
usage of the simple cycle path reduction technique and varying delay length.

In Figure 10.3, time spent by state space generation and deadline checking
is shown depending on varying delay length with simple cycle path reduction
disabled. It is apparent that the deadline checking algorithm used has a
quadratic dependency on the number of states. This is unacceptable if the
amount of states is not extremely small. Unfortunately, busy delays increase
the amount of states checked in a linear fashion, making the Blink program
infeasible to check if the toggle delay is on the order of milliseconds. This
means the checker cannot check the Blink program if it actually performs
blinking (requiring delays on the order of hundreds of milliseconds) without
simple cycle reduction.

Simple cycle path reduction helps immensely, as shown in Figure 10.4.
The deadline checking time is negligible in all cases since the amount of states
checked becomes constant. The states still are generated one by one, resulting
in linear generation time. This enables the checker to check the Blink program
in a reasonable amount of time. The time needed is further improved by a
factor of 3 when IR tailoring is used.
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Figure 10.3: Dependence of state space generation time and deadline check-
ing time on number of states for the Blink program with simple cycle path
reduction disabled. The state space generation is solid black and shows linear
dependency. Deadline checking time is shows quadratic dependency. Deadline
checking time quickly dominates and becomes unacceptable. One millisecond
of delay corresponds to 1000 states.
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Figure 10.4: Dependence of full deadline checker processing time on the num-
ber of states when checking the Blink program. The case without using simple
cycle path reduction is solid black. The dashed line represents simple cycle
path reduction and the dot-dashed line represents simple cycle path reduction
with IR tailoring.
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10. Testing the deadline checker

10.4.2 Independent nondeterminism

I used the independent nondeterminism program to evaluate time and memory
requirements when multiple states are generated from one. As expected, the
amount of states generated roughly doubled with each nondeterministic bit
introduced. Generation time remained strongly linearly dependent on the
number of states, as shown in 10.5.

Unlike the previous test programs where maximum memory consumption
increased insignificantly on the order of megabytes to low tens of megabytes,
the memory consumption in this case exhibited a strong linear dependence
on the number of states, as shown in Figure 10.6. This would correspond
to memory consumption of each state being approximately 11 kB, which is
larger than expected given the fact that the all processor memory used in
description sums to approximately 2.1 kB and is expected to be doubled in
the state representation. Despite this, memory consumption is clearly not the
main target for future improvements.
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number of states
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Figure 10.5: Dependence of state space generation time on number of states
when the independent nondeterminism program is used. The time needed to
generate one state remains constant.
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10.5. Interpretation of results
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Figure 10.6: Dependence of maximum memory used on number of states when
the independent nondeterminism program is used. The nature of successive
states generating more states requires many states to be stored before they are
processed. This is not the case with the other programs where the branching
is not as extensive.

10.5 Interpretation of results

The checker can be reasonably used to check simple microcontroller programs.
While the limited amount of testing done is not enough to assure typical users
of its soundness, this could not be reasonably done in the scope of this thesis.
I consider the checker in its current state to be a good first step towards a
full-fledged, usable model checker.

The biggest problem encountered is the quadratic dependence of the rule
checking routine on the number of states. This makes checking any advanced
programs infeasible. This would require a new algorithm for deadline checking,
but not necessarily requiring a change in other components. Pure processing
speed should be also optimized.

Usage of nondeterministic overapproximation techniques severely limits
the deadline rules that can be checked, but allows checking basic rules in sim-
ple programs. That may be useful e. g. for ensuring that microcontroller pins
are always in proper modes, which may prevent possible damage caused by an
inadvertent short circuit between two outputs. The technique of decision value
propagation extremely helped in reducing overapproximation, making prov-
ing of normal deadline rules posssible. The first-relationship determinization
technique was not very useful, either not improving upon decision value prop-
agation or aggressively performing determinization without regard for state
space size (avoided in the examples discussed by using single-bit nondetermin-
ism). More advanced techniques are needed to properly balance the amount
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10. Testing the deadline checker

of overapproximation as required.
Simple cycle path reduction is a must for checking programs with any

form of busy delays due to the shortcoming of the näıve deadline checking
algorithm used. Simple cycle path reduction massively reduces the amount
of states that must be checked, allowing checking of simple programs using
busy delays in a reasonable amount of time. Currently, the states still must be
generated in linear time, but the symbolic nature of the processor description
in the implementation offers a highly attractive avenue of their computation
in constant time. An improved handling of the question when a state may be
used is also needed.

10.6 Comparison with other binary-level model
checkers

While a comparison of the checker performance with other binary-level model
checkers would be interesting, one needs to be very careful with proper inter-
pretation, as all of the current present (including this one) are unique in many
regards.

The State Exploring Assembly Model Checker (StEAM) discussed in Sec-
tion 4.1 does not have almost anything in all common with the implemented
deadline checker, as its purpose is not model checking of microcontroller pro-
grams, but of traditional computer programs. The binary-level approach is
only used as a tool. Due to this, it is not sensible to compare it with the
implemented deadline checker.

The Estes model checker discussed in Section 4.2 is more similar to the
implemented deadline checker, model checking programs for Motorola 68hc11
processor by using a modified debugger gdb. The Estes model checker is
reasonably fast, being able to check a program with 4443 assembly language
lines and 31772 states in 45 seconds [17]. A comparison with the implemented
deadline checker is problematic, but given the testing results, it is obvious
that the deadline checker suffers from a fatal flaw in the quadratic complexity
of checking. This does not seem to be present for Estes.

The same could be said for Arcade.μC discussed in Section 4.3. I consider
the implemented deadline checker to at least have an advantage in the fact that
it supports manipulation of time, allowing for checking deadlines, something
not possible using Arcade.μC.
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Conclusion

In this thesis, I presented the current state of research concerning verification
of microcontroller programs with the focus on deadline verification. I identified
the weaknesses of the current tools for this task, most notably the difficulty
of enhancing them to support different processors and lack of availability to
the general public.

Using this knowledge, I formulated the goals for a new model checker,
mainly: it should be freely available, simple to use and easily extended to
support new microcontrollers and verification techniques. This greatly in-
creased the complexity of implementing it, but was worthwhile. I created a
free, MIT-licensed model checker that allows easy transcription of processor
descriptions from official datasheets to an imperative description language I
devised. The language is then transformed to a simple Intermediate Represen-
tation language. This allows various verification techniques to be used with
little to no dependence on the actual microcontroller.

In addition to the core model checking capabilities, I implemented some
advanced techniques to enhance the capabilities of the checker. The technique
of simple cycle path reduction is especially useful, allowing checking of simple
programs that contain busy delays in reasonable amounts of time. Appro-
priately simplified state space of such programs may also be output to be
visualised. This allows further understanding of program behaviour and may
be a useful learning aid.

While the checker in its current state can be used to check simple programs,
real-life programs are usually more complex, using advanced peripherals and
interrupts. I intend to continue developing the created model checker in the
future to further its usefulness. Currently, the field of binary-level verification
is severely underdeveloped compared to source-level and Register Transfer
Level verification, despite being able to guarantee program deadlines with
cycle accuracy. This is crucial for developing more reliable, safe, and secure
real-time systems. In my opinion, further research and development in this
area is an objective need.
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Appendix A

Contents of enclosed SD card

readme.txt....................................contents description file
exe .................. directory containing a deadline checker executable
src.................................source code of the deadline checker
text................................directory containing the thesis text

thesis.pdf...........................the thesis text in PDF format
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