Deadline Verification Using Model Checking | racurry

: OF INFORMATION
Author: Ing. Jan Onderka TECHNOLOGY

Supervisor: doc. Dipl.-Ing. Dr. techn. Stefan Ratschan CTU IN PRAGUE

m Fulfillment of actions within set deadlines is crucial for real-time embedded systems m Each bit of state is represented by value ‘0’, ‘1’, X', or ‘U’

m Non-critical systems are mostly verified using non-exhaustive testing m Value ‘X’ means that both 0 and 1 are possible, useful for inputs

m Formal verification possible, always detects noncompliance m Value ‘U’ means the value is undefined and manipulating it results in an error,

m Using machine code for verification is ideal for microcontroller-based embedded useful for memory with unknown initial state
systems due to extensive peripheral interaction m Aggressive propagation of ‘X’ values through bit operations by default, keeps

m Latency guarantees are also possible in machine code through known clock state space size reasonable, but results in possible spurious counterexamples
cycles per instruction m A novel value propagation technique is introduced and implemented, reducing

m Current tools for formal verification on machine code basis are severely limited, the amount of spurious counterexamples and vastly increasing usefulness
prompting me to design a new one m Path reduction is also implemented, reducing the amount of states in programs

with busy delays

Tool design philosophy

m Formal verification through model checking, in which the space of possible

microcontroller states is built and processed; this also aids visualisation m Simple action-reaction programs have been successfully verified
m Support for multiple microcontrollers and future extensibility through usage m More complex programs are still problematic due to state space increase
of a custom, newly designed processor description language m Fulfillment of actions within set deadlines can be guaranteed with high precision
m Focus on generality and orthogonality of advanced techniques used to prevent m State space graphs, counterexamples, and worst-case rule satisfaction paths
state space explosion that occurs in naive model checkers can be exported and visualised

m The introduced value propagation technique was crucial for checking usefulness

, , and shows great promise for future improvement
Uint8 R[32]; // General Purpose Registers

()

void step() { 0x82
Uint16 instruction = fetchlnstruction (PC); S
FZC By PC+ 1 0x86 0x88,.:2"
masked_case (instruction) { 2/ "Quo.x 6
(..) .
/1 AND 0x6a 0x6¢ Ox6e 0x70 0x72 0x74 0x80 0)(8% 0x84
”0010_.00rd_dddd_rrrr”: O —1+>0—1>0—1+>0+>0 1+ >0 4+ >0 2> »Q
// logical and 0x68 1 \ 2 Ox8a 0x84
R[d] = R[d] & R[r]; e 2 \, @
set_status_logical (R[d]); 3..0x0 Ox8c, 2
() ® SN
} Oxga

}

Figure: Visualised state space of a simple program for AVR ATmega328P that sets the value of an output
pin according to the value of an input pin. The tool found a counterexample to a rule stating that the value
of the output pin must be set to 0 within 30 processor cycles after being set to 1. The counterexample path
forms a cycle, visualised in the graph in red with dashed lines. Program counter values are shown adjacent
to the states (vertices), cycle counts elapsed between states are shown on the edges.

Figure: A short excerpt of AVR ATmega328P described in the custom description language.
The tool uses the processor description and a program in machine code to build the state space.
This eliminates the shortcoming of current machine code verification tools in which the addition
of a new microcontroller is highly complex and time-consuming.

