
Deadline Verification Using Model Checking
Author: Ing. Jan Onderka

Supervisor: doc. Dipl.-Ing. Dr. techn. Stefan Ratschan

Motivation

Fulfillment of actions within set deadlines is crucial for real-time embedded systems

Non-critical systems are mostly verified using non-exhaustive testing

Formal verification possible, always detects noncompliance

Using machine code for verification is ideal for microcontroller-based embedded

systems due to extensive peripheral interaction

Latency guarantees are also possible in machine code through known clock

cycles per instruction

Current tools for formal verification on machine code basis are severely limited,

prompting me to design a new one

Tool design philosophy

Formal verification through model checking, in which the space of possible

microcontroller states is built and processed; this also aids visualisation

Support for multiple microcontrollers and future extensibility through usage

of a custom, newly designed processor description language

Focus on generality and orthogonality of advanced techniques used to prevent

state space explosion that occurs in naı̈ve model checkers

Uint8 R[3 2] ; / / General Purpose Regis ters

(. . .)

vo id step () {

Uint16 i n s t r u c t i o n = f e t c h I n s t r u c t i o n (PC) ;

PC = PC + 1;

(. . .)

masked case (i n s t r u c t i o n) {

(. . .)

/ / AND

”0010 0 0 r d d d d d r r r r ” :

/ / l o g i c a l and

R[d] = R[d] & R[r] ;

s e t s t a t u s l o g i c a l (R[d]) ;

(. . .)

}

}

Figure: A short excerpt of AVR ATmega328P described in the custom description language.

The tool uses the processor description and a program in machine code to build the state space.

This eliminates the shortcoming of current machine code verification tools in which the addition

of a new microcontroller is highly complex and time-consuming.

Implementation considerations and advanced techniques

Each bit of state is represented by value ‘0’, ‘1’, ‘X’, or ‘U’

Value ‘X’ means that both 0 and 1 are possible, useful for inputs

Value ‘U’ means the value is undefined and manipulating it results in an error,

useful for memory with unknown initial state

Aggressive propagation of ‘X’ values through bit operations by default, keeps

state space size reasonable, but results in possible spurious counterexamples

A novel value propagation technique is introduced and implemented, reducing

the amount of spurious counterexamples and vastly increasing usefulness

Path reduction is also implemented, reducing the amount of states in programs

with busy delays

Results

Simple action-reaction programs have been successfully verified

More complex programs are still problematic due to state space increase

Fulfillment of actions within set deadlines can be guaranteed with high precision

State space graphs, counterexamples, and worst-case rule satisfaction paths

can be exported and visualised

The introduced value propagation technique was crucial for checking usefulness

and shows great promise for future improvement

3

1

1 1 1 1 1 4 2 1

2

2

2

2

2

2

1

2

2

2

20x0

0x68

0x6a 0x6c 0x6e 0x70 0x72 0x74 0x80 0x82 0x84

0x86

0x8a

0x88

0x8c

0x82

0x84

0x86

0x8a

Figure: Visualised state space of a simple program for AVR ATmega328P that sets the value of an output

pin according to the value of an input pin. The tool found a counterexample to a rule stating that the value

of the output pin must be set to 0 within 30 processor cycles after being set to 1. The counterexample path

forms a cycle, visualised in the graph in red with dashed lines. Program counter values are shown adjacent

to the states (vertices), cycle counts elapsed between states are shown on the edges.

Jan Onderka (Czech Technical University in Prague) Deadline Verification Using Model Checking 1 / 1

