
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague February 11, 2020

ASSIGNMENT OF MASTER�S THESIS

 Title: A Modular and Extensible Tool for Software Fault Localization

 Student: Petr Nevyhoštěný

 Supervisor: Ing. Petr Máj

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

Familiarize with the existing research and methods in the field of software fault localization.
Design and implement a new fault localization tool capable of implementing the existing techniques that
will be extensible with respect to new localization techniques.
Demonstrate the functionality by implementing frontends for the C and Python programming languages.
Perform an evaluation of the implemented tool on existing datasets.

References

Will be provided by the supervisor.

Master’s thesis

A Modular and Extensible Tool

for Software Fault Localization

Bc. Petr Nevyhoštěný

Department of Theoretical Computer Science

Supervisor: Ing. Petr Máj

June 7, 2020

Acknowledgements

I would like to express my sincere gratitude to my supervisor Ing. Petr Máj,
whose valuable feedback and important advice helped to form the path while
writing the thesis and developing the tool.

Another huge acknowledgement belongs to people at the university where
I discovered and learned plenty of beauties of the computer science field.

Many thanks go also to my friends for helping me to have a life I mostly
enjoy to live. And last but not least, I would like to let my parents know
that I am grateful for what they allowed me to achieve thanks to their great
support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on June 7, 2020 .

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Petr Nevyhoštěný. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Nevyhoštěný, Petr. A Modular and Extensible Tool for Software Fault Local-
ization. Master’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2020.

Abstrakt

Lokalizace chyb je považována za jeden z nejvíce únavných a časově náročných
úkolů při vývoji software. Přesto je stále často prováděna manuálně. Loka-
lizace softwarových chyb (anglická zkratka SFL) je oblast výzkumu zabýva-
jící se vývojem automatizovaných technik pro usnadnění této aktivity. Navz-
dory množství práce, která byla tomuto výzkumu věnována, nesplňují aplikace
navržených metod kompletně potřeby praxe.

Tato magisterská práce proto popisuje nový nástroj a framework pro loka-
lizaci softwarových chyb s názvem Aardwolf, jehož hlavním cílem je usnadnit
použití SFL technik v praxi. Toho je dosaženo velmi modulárním designem,
umožňujícím snadnou rozšiřitelnost, a aplikováním doporučení, která lze nalez-
nout v publikovaných uživatelských studiích.

Pro demonstraci možností nástroje Aardwolf byla implementována tro-
jice různých SFL technik a frontendy pro programovací jazyky C a Python.
Integrace do dvou větších softwarových projektů byla popsána jako ukázka
aplikovatelnosti. Předběžné výsledky ukazují, že je efektivita nástroje srov-
natelná s literaturou. Zaměření na uživatelskou přívětivost a rozšiřitelnost
řešení je ovšem významné zlepšení oproti současnému stavu v tomto odvětví.

Klíčová slova lokalizace chyb v software, debugování, testování, spektrum
programu, pravděpodobnostní grafický model, programové invarianty, nástroj,
framework

vii

Abstract

Localization of faults has been recognized as one of the most tedious and time-
consuming tasks in software development. Yet it is still performed mostly
manually. Software fault localization (SFL) is a research field that studies the
development of automated techniques helping developers with this activity.
Despite the amount of effort put into the research, applications of proposed
methods do not fully meet the practical needs.

To that end, this thesis describes Aardwolf, a new fault localization tool
and framework whose main goal is to ease the usage of SFL techniques in real-
world projects. This is achieved by highly modular design allowing convenient
extensibility, and by applying recommendations that can be found in published
user studies.

To demonstrate Aardwolf’s capabilities, three different SFL techniques
and frontends for C and Python programming languages were implemented.
Integration into two larger software projects was described to present its ap-
plicability. Preliminary results show that the effectiveness is comparable with
the literature. The focus on user experience and tool’s extensibility is however
a major improvement over the current state in the field.

Keywords software fault localization, debugging, testing, program spec-
trum, probabilistic graphical model, program invariants, tool, framework

viii

Contents

Introduction 1
Contributions . 5
Organization . 5

1 Fault Localization 7
1.1 Overview . 7
1.2 Preliminaries . 10
1.3 Spectrum Based FL . 13
1.4 Probabilistic Graphical Model Based FL 18
1.5 Likely Invariants Based FL . 24
1.6 Test Cases Prioritization . 30
1.7 Program Elements Prioritization 31
1.8 Combining the Results . 31
1.9 Supplementary Information . 32

2 Design 35
2.1 Frontends . 38
2.2 Integration with Test Drivers 44
2.3 Runtime . 45
2.4 Core . 45
2.5 Plugins . 45
2.6 Configuration . 47
2.7 Design Applicability . 47
2.8 Conclusion . 52

3 Implementation 53
3.1 Frontends . 53
3.2 Runtime . 58
3.3 Core . 59
3.4 Plugins . 61

ix

4 Experimental Evaluation 63
4.1 Localization Effectiveness . 63
4.2 Integration with Existing Projects 70
4.3 Scalability . 73

5 Conclusion 77
5.1 Summary . 77
5.2 Related Work . 78
5.3 Further Development . 80

Bibliography 81

A Experimental Evaluation Details 91
A.1 Faulty Elements Determination 91
A.2 Siemens Dataset . 92
A.3 Data Collection for Scalability Experiment 93
A.4 Hardware Configuration . 93

B Acronyms 95

C Contents of enclosed CD 97

x

List of Figures

1.1 A correct implementation of motivating example. 9

1.2 A showcase for the explanation of terms error, fault and failure. . . 11

1.3 Diff between the correct implementation and the first faulty ver-
sion. 17

1.4 Partial results for a subset of ranking metrics. The triangle denotes
the faulty line. The safe constant ε in all denominators was set to
0.5. 17

1.5 Diff between the correct implementation and the second faulty ver-
sion. 23

1.6 A sample program code and an example of gradual relaxation of
invariants during passing runs and learned invariants violation in
failing runs. 25

1.7 Diff between the correct implementation and the third faulty ver-
sion. 29

2.1 Architecture of Aardwolf from high level perspective. 36

2.2 Detailed component diagram of the Aardwolf. 37

2.3 Illustration of potential for wide adoption by supporting multiple
programming languages and development environments. 38

2.4 An example of the static analysis output from a frontend in a
human-readable form. 40

2.5 Processing pipeline of the localization process. 46

3.1 An excerpt of a test from the Python frontend. 54

3.2 A sample of terminal output from Aardwolf. 60

4.1 Localization effectiveness of different families. 67

4.2 Localization effectiveness of different ranking metrics. 68

4.3 An example effectiveness “profile” of different families on schedule2
program. 69

4.4 Time, memory consumption and binary size increase factors. . . . 74

xi

4.5 Approximate times spent in various stages of the localization process. 75

A.1 Several examples of complicated cases when determining faulty
statements. 92

xii

List of Tables

1.1 The test suite for the motivating example. 10
1.2 Selected spectrum-based ranking metrics. 15

4.1 Characteristics of Siemens dataset. 65
4.2 Overall results. 68
4.3 Comparison of the methods with their original literature. 70

5.1 Available tools for software fault localization. 79

A.1 Hardware configuration used for scalability benchmarks. 93

xiii

Introduction

Computer software is ubiquitous in today’s world, present not only on our
personal computers and smartphones, but driving a wide range of things, from
smart devices, such as televisions or watches, to industrial machines to safety-
critical systems in medicine or aeronautics, for example. We interact with
software on a daily basis and we are more or less dependent and influenced by
it to a large extent. Its usage and adoption are growing at a fast pace thanks to
developments of physical hardware as well as recent advancements in artificial
intelligence and machine learning that enable automation of a variety of tasks.

Unsurprisingly, this trend has been accompanied by a large increase in
the scale and complexity of the software. This fact raises the challenges for
maintaining software quality. In particular, the growth of software complexity
results in more software faults, in the field referred to as bugs. A fault is an
incorrect behavior of the program, introduced by a programmer’s mistake or
misunderstanding, which causes it to produce unexpected output or behave
in unintended ways.

The process of determining the exact nature and location of the fault and
then correcting the program is called debugging [1]. Some studies show that,
in a typical programming project, programmers spend approximately 50 % of
their time doing debugging and testing [2, 1].

The first step in debugging – understanding the error and locating its
cause – takes roughly 95 % of the time in the process [1]. If we connect this
number to the ratio of time spent in debugging mentioned earlier, we can
conclude that this activity is considerably time-consuming. When carried
out manually, it has been recognized as to be greatly tedious [3] and mentally
demanding [1]. The reason is that the fault may be present virtually anywhere
in the program code that affects the erroneous behavior and requires the ability
to comprehend the entire codebase or its significant part.

Software fault localization (SFL) is a research field that aims to help pro-
grammers with this effort by developing techniques that partially or fully au-
tomate the localization of faults in the source code. In recent years, a broad

1

Introduction

spectrum of approaches have been proposed and the number of publications
on this topic per year is growing [3]. We refer to surveys [3, 4] for a com-
prehensive overview. The motivation for fault localization tools is obvious:
provide the developer with a helpful report of suspicious program elements,
events, or states to help them to reduce the amount of time and effort in this
tedious and costly task. A showcase where such a tool can aid the debugging
process is given in Chapter 1.

There are two general categories of techniques in automated fault local-
ization [5]: dynamic (or test-driven) and static (or formal). Techniques of the
first type execute the subject program using a set of tests, while techniques of
the second type perform their reasoning solely using static analysis. In this
thesis, we focus on the first category.

In general, these techniques assign a score to program elements (e.g., state-
ments or methods1) which corresponds to the degree of suspiciousness of caus-
ing the failure as determined by the algorithm. The developer is then provided
with the list of program elements sorted in descending order of their suspi-
ciousness score. The more the actual faulty element is closer to the top of the
list, the faster it is discovered by the developer, hence the more effective the
fault localization technique is.

Despite the amount of work that has been put into the research of fault
localization and high demand for it (more than 97 % of respondents in the
survey [6] consider it essential or worthwhile), the applications of the tech-
niques do not completely fulfill the requirements and needs of the developers.
In particular, they make assumptions that do not hold in practice [7] and lack
the integration with popular IDEs [6].

There are two main assumptions that are false. First, fault localization
techniques usually assume perfect bug understanding, that is, the developer
can detect and understand the fault solely by examining the program element
in isolation. However, this is not really true. Without knowing why the
element is marked as suspicious and any context, the programmer usually
cannot decide if the element is actually faulty. Second, the evaluation of
the techniques is often performed such that the rank of the faulty element is
compared relative to the size of the program. Although the result like 2 % of
lines needed to be inspected to find the fault might seem successful, in case of
a program with 5,000 lines of code, which can be considered as a medium-sized
program [8], it means to inspect roughly 100 statements. Such a number is not
acceptable by developers [7] as they would switch to the traditional manual
debugging process instead.

The findings and conclusions of performed user-focused studies [7, 6, 9]
can be summarized in the following points:

• Large demand. Current fault localization tools are mostly research pro-
totypes, therefore they are not used in practice. However, there is a

1We use the terms method and function interchangeably in this thesis.

2

significant willingness to adopt a fault localization technique that sat-
isfies certain criteria. These criteria are discussed in the subsequent
points.

• High adoption barriers. Most users consider a technique helpful if they
find the actual fault in the top 5 or so positions in the suspiciousness
list, require it to be successful at least 75 % of the time, and expect to be
able to run the tool on programs of size hundreds of thousands of lines of
code in less than a minute. For research, this particularly means to use
absolute ranking metrics and discussing scalability in the experimental
evaluation.

• Trustworthiness/reliability. It is frustrating for the user to waste their
effort unsuccessfully examining the elements produced by the tool. An
obvious remedy for this problem is to develop more effective methods,
however, techniques can also get better at filtering irrelevant parts of
code or estimating their confidence about the results.

• Rationale and context. As already mentioned, developers are usually not
able to detect and understand the fault just by seeing a program element.
An explicit rationale, which explains the reason for high suspiciousness,
and useful context can help the user to succeed in this task. Moreover,
this additional information allows the user to quickly identify the faulty
element based on their intuition and experience, ignoring the particular
order of elements given by the tool if preferred.

• Integration. There is a demanding need for developing practical tools
that are integrated into the user’s development workflow and toolchain
(including various programming languages). An interesting fact is that
the research would also benefit from such tools because they may serve as
an ecosystem for experimentation and comparative studies. The aid lies
mainly in the elimination of the need for considerable engineering effort
of implementing an infrastructure that is common for various techniques
regardless of the approach.

Motivated by the enthusiasm of developers and considering all the concerns
and requirements, we develop a new tool for software fault localization focused
on extensibility and user experience. We call it Aardwolf, named after an
insectivorous (that is, eating insects, or bugs so to say) mammal, for obvious
analogy.

Our explicit and one of the two most important goals is to have a highly
modular design that enables simple extensibility. There are multiple points
where one can extend Aardwolf, in particular, by implementing one of the
following components:

3

Introduction

• Programs that act as an interface between programming language, which
user’s software is written in, and the shared infrastructure provided by
Aardwolf. We refer to these programs as frontends. Implementation of
a new frontend brings support of the entire Aardwolf ecosystem for the
programming language immediately without further work.

• Plugins that do the actual fault localization or an accompanied task
(such as data pruning or results enhancement). It is possible to realize a
new approach or algorithm inside the Aardwolf ecosystem utilizing pro-
vided infrastructure. There are two advantages to this approach. First,
researchers can experiment with their ideas supported by the engineer-
ing efforts already made by others. Second, users may instantly benefit
from state-of-the-art methods because they are developed in a practical
tool they can use.

• Integrations of localization results with the programmer’s toolchain. The
spectrum of possibilities is broad. It can be a simple command-line
output or integration with a popular editor or IDE, as well as with
other tools such as continuous integration and development platforms
like GitHub2 or GitLab3. It enables bringing the support of fault local-
ization closer to the user without the need of actually implementing a
localization technique.

We strive for the design where all these individual components can be imple-
mented as simply and conveniently as possible.

The second most important goal is to focus on recommendations given by
authors of user studies, which are unfortunately not addressed in the major-
ity of publications, although they are slowly gaining attention recently [9].
We provide mechanisms that are intended for dealing with the problem of
trustworthiness and specifying the rationale and context to the user.

It is important to limit the scope of the tool to make its development
feasible. We deal solely with logical software faults that cannot be recognized
by static analysis. There are several tools that provide advanced program
analysis to warn about potential errors in the source code without actually
running the program. However, we target errors that can be observed only
by verifying the program’s results after running it on input data, and runtime
information is used on top of static information to determine the likely cause.
For input data and expected results, a test suite for the program is required
to be available.

For the purposes of the thesis, we reviewed the literature and implemented
three already existing techniques, varying quite greatly in how they approach
the problem as well as needs from the infrastructure. The reason is mainly

2https://github.com/
3https://about.gitlab.com/

4

https://github.com/
https://about.gitlab.com/

Contributions

that the goal of this thesis is not to develop a new fault localization technique,
but rather to develop an ecosystem. The use of existing methods, in which
a lot of research effort has already been put, also allows us to compare our
results with the published literature, that said, verifying our implementation.

We provide an implementation for two programming languages. C lan-
guage is supported through our frontend for LLVM4, a framework that is used
by several widely used programming languages like C, C++, Rust, Swift, or
Julia. An important reason for this choice was the existence of standard fault
localization datasets for C. Python language features dynamic types, high-level
syntactic constructs, and object-oriented paradigm. By support for Python
we intend to demonstrate Aardwolf’s flexibility.

Contributions

This thesis makes the following contributions.

• Summarizes various fault localization techniques and related methods
and discusses their requirements and implications from an implementa-
tion perspective.

• Proposes a design of a new software fault localization tool. The fo-
cus has been placed on extensibility, language independence, and user-
friendliness. These goals, especially the first two, are a significant im-
provement compared to existing solutions.

• Implements the proposed framework and offers three different fault lo-
calization methods, support for two programming languages, and infor-
mative terminal output.

• Experimentally evaluates the tool on a standard dataset in means of
effectiveness, and on two larger software projects in means of ease of
integration and scalability. It demonstrates that the accuracy is com-
parable with literature while being convenient for incorporation into a
real-world project.

Organization

This thesis is organized into the following chapters: Chapter 1 gives an overview
of three fault localization techniques of our choice and short description of
tasks that are related to fault localization, accompanied by the necessary the-
oretical background. Chapter 2 proposes our architecture design of a new
tool for SFL while discussing its components in detail. It also evaluates the
design applicability on methods that we did not consider in Chapter 1. The

4https://llvm.org/

5

https://llvm.org/

Introduction

implementation of the tool is described in Chapter 3. Chapter 4 gives the
experimental evaluation, where the localization effectiveness and scalability
is measured as well as the integration of the tool with an existing real-world
software project is discussed. Chapter 5 concludes the thesis and related work
and also presents our plans for future development of Aardwolf.

6

Chapter 1

Fault Localization

This chapter discusses the fault localization task, particularly focusing on
selected techniques. In Section 1.1 we give an introductory overview of the
problem and proposed solutions. Precise definitions of general terms and
concepts along with their basic explanations are presented in Section 1.2.
More detailed descriptions of selected fault localization techniques are given
in Sections 1.3 to 1.5. We demonstrate their intuition and operation on a
motivating example. Subsequent sections discuss problems related to the fault
localization, such as heuristics for reducing the computational costs and the
amount of false positives (Sections 1.6 and 1.7), combination of results into
a stronger prediction (Section 1.8) and providing the user with some rich
metadata (Section 1.9).

1.1 Overview

The essential task of a fault localization technique is to reason about the
program given a failing execution or executions, usually by differentiating it
with some successful ones. These executions are obtained from running a set
of tests written by the developers. Test cases assert that the output values of
the subject program are equal to those that are expected. In this way, failing
and successful runs are distinguished from each other.

Algorithms for fault localization combine usually two sources of informa-
tion: knowledge of program structure and the runtime behavior based on the
test suite execution. Therefore it has the potential to reveal the causes of bugs
of logic nature, that is, not discoverable by any static analysis5.

Spectrum-based fault localization (SBFL) is the most studied, understood
and evaluated FL technique in the literature [4, 10]. This and its implementa-
tion simplicity were the reason why we chose this approach as one we imple-

5We do not consider topics like model checking which require a formal specification of
the program behavior.

7

1. Fault Localization

mented for this thesis. It utilizes coverage statistics of certain program entities
(e.g., statements) and its difference in failing and passing tests. Intuitively, an
element covered more in failing executions than in passing ones is suspicious.
The main degree of freedom in this family is what entities are inspected and
how to combine given statistics into a single suspiciousness score.

The next method we chose adopts a probabilistic model with a graph struc-
ture, where the graph represents certain dependencies among the statements
in the program. Roughly speaking, it builds a model where each node can
enter into several possible states during the execution and it then estimates
the probability of nodes being in a specific state given the states of its depen-
dencies. If a statement happens to be in a very unusual state, it might be an
explanation of the failure. We chose this method because it involves a graph
structure and advanced properties like control and data dependencies.

The last fault localization approach of our choice is based on program
invariants. Invariant is a property which holds for a given program point.
For instance, it might hold that a variable is always in a specific range or
two variables are in a certain relationship. If a failing execution violates an
invariant, its location is considered as a strong predictor for the failure’s root
cause. We do not expect users to provide us with real, proper invariants, and
thus these are inferred from the successful runs of the program.

Not only suspiciousness estimating algorithms on their own are useful for
a fault localization tool. The process can be improved in several ways.

Test cases prioritization aims at reducing computational costs and runtime
data noise by prioritizing those which are considered to have a higher value
for the fault localization process. Such techniques are mostly based on test
cases characteristics, either on their own or by comparing them with the rest.

Program elements can be prioritized as well for the very similar reasons.
The approaches include considering the statement structure, statistics of its
runtime behavior in failing and successful executions or their relationships and
dependencies inside the program.

When we have predictions from multiple sources of different characteristics,
we can combine them into stronger and more robust results by amplifying
strengths and reducing weaknesses of individual methods. This is one big
advantage of unification and generalization of the fault localization process
into a single tool.

To help the user in the debugging task even more, on top of the suspicious
elements estimation results, we can present some supplementary information.
Such details can help to understand our output or guide the user when using
the predictions.

1.1.1 Motivating Example

We now introduce a motivating example on which we demonstrate how later-
described fault localization techniques work. It is somewhat artificial in order

8

1.1. Overview

1 def get_range(values):

2 min = max = values[0]

3

4 for x in values:

5 if x < min:

6 min = x

7 if x > max:

8 max = x

9

10 return min, max

11

12

13 def safe_div(nom, denom):

14 if denom == 0:

15 return float('inf')

16 else:

17 return nom / denom

18

19

20 def scale_minmax(values):

21 min, max = get_range(values)

22

23 if min == max:

24 min = 0

25

26 scaled = []

27 for x in values:

28 y = safe_div(x - min, max - min)

29 scaled.append(y)

30

31 return scaled

Figure 1.1: A correct implementation of motivating example.

to be simple enough but realistic and sufficient to illustrate all three methods
at the same time.

Suppose that we develop a small utility function which normalizes values
in a given array to be in the range from 0 to 1 using minmax scaling. An
example of correct implementation is depicted in Figure 1.1. The program is
written in Python language.

Our code is composed from three simple functions. The first one (lines
1–10) determines minimum and maximum values in the array. This is done
simply by traversing the array and updating corresponding local variables.

Then we have a helper function (lines 13–17) which performs safe division
of numbers. In Python, division by zero throws the ZeroDivisionError.
Suppose that we do not want to throw exceptions from our code, therefore
we check the denominator and return ∞ if it is zero. Note that IEEE-754
standard for floating point numbers contains a bit more complicated rules for

9

1. Fault Localization

Table 1.1: The test suite for the motivating example.

Test Values Commentary

tpos 〈1, 3, 2〉 Positive values only
tneg 〈−1, −3, −2〉 Negative values only
tmix 〈−1, 3, 1〉 Mixed sign
teq 〈2, 2, 2〉 Identical values

what the result of this ill operation should be, but that would unnecessarily
complicate our example.

Finally, there is a function scale_minmax which performs the actual nor-
malization. It firsts gets the minimum and maximum from the array. If they
are equal, it means that the array contains only identical values. In that case,
we set the value for minimum to be zero (line 24) with the effect that the
result array will contain only ones. The actual normalization routine maps
the values from the array using the standard formula (lines 28 and 29).

The test suite used for this motivating example is specified in Table 1.1.

1.2 Preliminaries

In this section, we present the basic terms and concepts used throughout the
thesis with their precise definitions.

Definition 1.1. Software error is the deviance of an observed value or con-
dition from the expected one. Software fault is an incorrect step, process or
data definition causing a software error during a specific application. Software
failure is an incorrect result caused by a software fault when it is activated
and not corrected or “neutralized” by subsequent steps. [11, 12]

A showcase of these terms can be found in Figure 1.2. According to spec-
ification, is_positive function should return true if given value is included
in the set of positive integers {1, 2, . . . }. However, the predicate on line 3 is
value >= 0 instead of value > 0 or value >= 1. Therefore, this predicate
is faulty and it causes the failure in the test case on line 8 where the error is
that it returns true instead of expected false.

A test suite can identify a failure but the searching for the fault is the task
for the programmer or an automated tool. Synonyms for the term fault are
“bug”, “defect” and – with the context of a failure – “root cause”.

To limit the scope of the thesis, we consider only deterministic failures. The
determinism lies in the existence of an oracle which decides whether an output
of a program execution is correct or not, and such decision is guaranteed to
be consistent across multiple runs. For instance, this assumption discards
programs with uncontrolled randomness or concurrency bugs.

10

1.2. Preliminaries

1 # Program

2 def is_positive_int(value):

3 return isinstance(value, int) and value >= 0

4

5 # Test case

6 def test_is_positive_int_zero():

7 # Zero is not considered positive number

8 assert is_positive_int(0) == False

Figure 1.2: A showcase for the explanation of terms error, fault and failure.
The fault is highlighted. It causes the error in the assertion on line 8 inducing
the program failure.

Debugging is a two-step process beginning with the determination of the
exact nature and location of the fault and concluding with fixing it [1]. The
first step can be further divided into the localization and comprehension of
the fault [7]. Automated tools can help in both phases, although the second
one has not received as much attention in the literature as the first one [13].

Definition 1.2. Test case is a set of inputs, an executable piece of code
exhibiting certain aspects of program behavior, and expected results developed
for verifying compliance with the requirements. Test suite is a set of one or
more test cases. [11] Executed test case has its status, which can be either
passing (observed results conform to the expected) or failing (the opposite).
Each test suite T can be thus partitioned as T = Tp ∪ Tf , where Tp and Tf

are the sets of passing and failing test cases, respectively, with |Tp| = mp and
|Tf | = mf .

An example of a test case can be seen in Figure 1.2 spanning on lines from
6 to 8. Test suite is a collection of such short testing routines.

It is a subject of research how types and characteristics of test suites affect
the automated fault localization process [5, 14]. For instance, using unit tests
with very narrow scope of what part of the program they exercise can already
lead to successful localization performed manually very quickly. On the other
hand, if system tests, which examine the global behavior of the program as a
whole, using help of an automated tool might be more meaningful.

A program is composed from statements which can be clustered to groups
of a certain level of granularity. The most related examples of such groups
are basic blocks (sequence of statements with no branches except the last one)
and methods (group of statements with an input performing a particular task).
There are various analyses that can be done about programs, both static and
dynamic. In the following text we describe some essential types of analysis
and terms used in fault localization.

11

1. Fault Localization

Speaking about individual statements, the following two terms are crucial
for the data-flow analysis.

Definition 1.3. Definition of a variable v (usually abbreviated as def) is a
statement which assigns a value to v. Use of a variable v is a reading of the
value of v. [15]

In order to do something useful, the flow of control in programs can usually
go into multiple branches at certain program points. To reason about this
behavior, we need the following representation.

Definition 1.4. Control flow graph (CFG) depicts all possible control flow
paths that may be performed during an execution. Nodes in the graph rep-
resent program statements and the directed edges represent control transfers
between the statements. [11, 15]

Control flow graphs are usually constructed for standalone functions, and
optionally connected with each other in a call graph.

Very useful information comes from program dependence analysis whose
goal is to determine how statements influence each other, either in terms of
data flow or control flow. Informal definitions for the program dependencies
taken from [13] are presented here, while their rigorous versions can be found
in [16].

Definition 1.5. In a control flow graph G, node x1 is control dependent on
node x2 if x2 has two outgoing edges e1 and e2 such that following conditions
hold:

(1) every path in G, which starts with e1 and ends in an exit node, contains
x1, and

(2) there exists a path starting with e2 and ending in an exit node that does
not contain x1.

Definition 1.6. In a control flow graph G, node x1 is data dependent on node
x2 if

(1) x2 defines a variable v,

(2) there exists a path from x2 to x1 that does not redefine v, and

(3) x1 uses v.

Together they form the following representation.

Definition 1.7. A program dependence graph (PDG) is a directed graph,
whose nodes represent program statements and whose edges represent data-
and control dependencies. Control dependence edges are labeled with the
condition outcome of the predicate node. Data dependence edges are labeled
with the name of the variables.

12

1.3. Spectrum Based FL

The accuracy of a PDG depends on the precision of the underlying analy-
ses. For example, the precision of the pointer analysis affects the correctness
of the data dependencies.

As the focus of this thesis is on dynamic fault localization techniques, the
most fundamental data obtained from program execution are the following.

Definition 1.8. Execution trace is a sequence of statements encountered dur-
ing an execution of the program. Variable trace is a record of the name and
values of variables accessed and modified during an execution of the pro-
gram. [11]

All these terms are general and commonly used in vast majority of meth-
ods. In the next sections, we describe the techniques we selected and present
the terms that are mostly specific for them.

1.3 Spectrum Based FL

1.3.1 Introduction

A program spectrum characterizes a behavior of the program by tracking the
execution of certain program entities for a specific test suite [17]. Exam-
ples of such entities are statements in general, branching statements, control
flow paths or data dependencies. The run-time information that is gathered
could be binary coverage status (whether the execution encountered the en-
tity), the execution frequency (how many times it did), or similar [18]. The
most commonly used program spectrum is binary coverage status of the state-
ments [8, 18]. However, the study by [19] evaluated three types of spectra with
the following observations:

• Different types of coverage spectra are better for different types of faults.
No individual technique is superior to others.

• Overall, def-use pairs are more effective and stable than branches out-
come, which are then more effective and stable than statements.

• Generally, although statement coverage is widely used, there seem to
exist types of spectra which outperform it, however, usually with more
demanding computational cost.

Let us use the following definition:

Definition 1.9. Program (coverage) spectrum is a quadruple of coefficients
〈ai

ep, ai
np, ai

ef , ai
nf 〉 for every program entity ei of a certain type (e.g., state-

ments or def-use pairs). The coefficients represent, following a common nota-
tion, the number of passing (p) or failing (f) test cases that did (e) or did not
(n) executed the entity ei.

13

1. Fault Localization

Let ct(e) be a function which returns 1 if test t covers e and 0 otherwise.
Then the coefficients are computed as follows:

ai
ep =

∑

t∈Tp

ct(ei) , ai
np =

∑

t∈Tp

1 − ct(ei) ,

ai
ef =

∑

t∈Tf

ct(ei) , ai
nf =

∑

t∈Tf

1 − ct(ei) .

Although several strategies of spectrum-based techniques exist [8], we will
focus solely on metric-based techniques. These use a ranking metric that
computes a suspiciousness score from the program coverage spectrum. Intu-
itively, if an element is executed more in the failing test cases and less in the
passing ones, it is likely that this element is the faulty one. The metrics are
constructed centrally based on this intuition.

Definition 1.10. Ranking metric is a function from a program spectrum
〈ai

ep, ai
np, ai

ef , ai
nf 〉 to a real number representing the degree of suspiciousness

of ei being faulty.

Take for example the D∗ metric
a2

ef

anf +aep
[20]. Suppose that an entity

ei is executed in 5 out of 10 test cases, while three of these five are the
only failing ones and the rest is passing. Therefore, its program spectrum is
ai

ep = 2, ai
np = 5, ai

ef = 3, ai
nf = 0 and the suspiciousness score as computed

by D∗ happens to be 32

0+2 = 4.5.

Plenty of ranking metrics have been introduced in the past research. There
have been many experimental evaluations [21, 10] as well as theoretical stud-
ies [22, 23] of proposed metrics.

A selection of previously proposed formulas is presented in Table 1.2. Our
choice is based on the compilations of surveys [3, 8], experimental evaluation
results of [21] (their effectiveness on real faults) and theoretical findings of [24]
(equivalence classes in the means of relative position in the ranked lists).

Notice that majority of formulas contain fractions where the denominator
can be possibly zero. Such situation is not exceptional: take again D∗ metric
as an example. The denominator is zero when all failing and none of passing
test cases executed the statement, which is a completely legitimate case. A
solution is to add a suitably small constant ε > 0 to the denominator.

1.3.2 Assumptions and Limitations

It is important to realize that, as described so far, spectrum-based techniques
compute the correlation (or association) between program elements and test
case results [8]. However, when an element correlates with program failure,
it does not mean that it causes it [5]. This property of SBFL leads to a high

14

1.3. Spectrum Based FL

Table 1.2: Selected spectrum-based ranking metrics. The expressions use
a coverage spectrum coefficients and compute the suspiciousness score. The
star symbol in D∗ is actually a parameter to be set and can be any positive
number (but is usually set to 2).

Name Formula

D∗ a∗

ef

anf +aep

Jaccard
aef

aef +anf +aep

Op aef − aep

aep+anp

Ochiai
aef√

(aef +anf)(aef +aep)

Overlap
aef

min{aef ,anf ,aep}

Tarantula

aef

aef +anf
aef

aef +anf
+

aep

aep+anp

Wong1 aef

Zoltar
aef

aef +anf +aep+
10000×anf ×aep

aef

rate of false positives (elements that are blamed to be faulty, but are actually
correct). The main challenge is that fault localization is a causal problem [25]
and coverage spectrum on its own does not involve any notion of causality.

SBFL techniques make several assumptions we need to be aware of [26,
27, 5]:

(1) If multiple elements are covered only by failing test cases and are not
executed by any of the passing ones, no metric is able to differentiate
them using the spectrum to identify the real causes. All elements in-
cluding faulty ones thus need to be covered by both failing and passing
test cases. This raises considerable requirements on the size and char-
acteristics of the test suite. It is not rare that considerable number of
program elements are not covered by passing tests.

(2) Program elements are assumed to be independent of each other. Let ei

be an element that causes the failure. If another element ej is always
executed with ei, then ej has the same suspiciousness score but is a false
positive. This happens very often, mainly for statements from one basic
block, or two distinct basic blocks whose execution depends on the same
variables and predicates.

15

1. Fault Localization

(3) Every failing test case should execute at least one faulty element whose
execution causes the failure. From their nature, spectrum-based tech-
niques assign a suspiciousness score to executed elements, therefore they
cannot be successful if the bug involves a non-executable code (like a
declaration) or missing code.

(4) A faulty element gets high suspiciousness only when it often leads to
a failure. This assumption is based on the intuition under which the
ranking metrics are developed. However, this is not necessarily the case.
There might be faulty elements which are executed only under certain
conditions. This leads to false negatives. Suppose that line 2 in the
motivating example in Figure 1.1 is faulty such that it assigns wrong
initial values to the variables. Although the statement is executed al-
ways, its faultiness would be revealed only if the value is not overwritten
by subsequent assignments.

Item (2) implies that the minimal reasonable granularity is basic blocks
because SBFL techniques cannot distinguish between statements in one basic
block. Moreover, they assess the suspiciousness of individual program ele-
ments, but ignore the structural relationships in the program.

There are some other limitations of SBFL (although many of them apply
on the other techniques as well, as described later). One is the concept of
coincidental correctness, brought up in Item (4). There are three conditions for
failure to be observed: the faulty element is reached, the program transitions
into an infectious state, and the infection propagates to the output [5]. If
the last one or the last two conditions are not met for a test case execution,
then its assertions do not reveal the faulty behavior in the program and so it
results to a passing test. As can be seen in Table 1.2, the suspiciousness of an
element in the majority of ranking metrics (sensibly) decreases with growing
number of passing test cases that execute that element. However, if there
is a faulty element that is often executed in coincidentally correct tests, its
suspiciousness is also reduced.

Obviously, SBFL techniques cannot directly locate faults that are of non-
executable nature, either missing code or declarations (such as custom data
types). Code omission is generally challenge for majority of fault localization
techniques [3], since they usually process the execution information but the
faulty code is not even in the program in this case. Although this type of
fault cannot be directly located by these techniques, such bugs may cause
some anomalous effects in the program state which – if discovered by the
technique – can hint the user and help them to identify the real cause [3].

1.3.3 Motivating Example

Before explaining the technique on a concrete example, let us first introduce
a bug into our program in Figure 1.1. The fault will be wrong target variable

16

1.3. Spectrum Based FL

1 def get_range(values):

min = max = values[0]

for x in values:

if x < min:

min = x

if x > max:

- max = x

+ min = x

return min, max

Figure 1.3: Diff between the correct implementation and the first faulty
version.

Coverage Spectrum Suspiciousness

Line tpos tneg tmix teq aep anp aef anf D2 Ochiai Tarantula

2 • • • • 2 0 2 0 1.6 0.69 0.38

4 • • • • 2 0 2 0 1.6 0.69 0.38

5 • • • • 2 0 2 0 1.6 0.69 0.38

6 • • • 1 1 2 0 2.67 0.78 0.47

7 • • • • 2 0 2 0 1.6 0.69 0.38

⊲ 8 • • 0 2 2 0 8 0.94 0.62

10 • • • • 2 0 2 0 1.6 0.69 0.38

F P F P

Figure 1.4: Partial results for a subset of ranking metrics. The triangle
denotes the faulty line. The safe constant ε in all denominators was set to 0.5.

of the assignment on line 8. This particular bug could be introduced by
copy&pasting the line 6 and forgetting to rename the variable. Its nature
belongs into one of the five most common bug-fix patterns as studied by [28]
identified as change of assignment expression. The change to our code is
illustrated in Figure 1.3.

Recall the test suite presented in Table 1.1. With the introduced fault,
two tests are now failing, namely tpos and tmix. In the other test cases, the
value of maximum is never to be updated. The faulty line is encountered by
both failing executions and not encountered in the passing ones. Therefore it
gets high suspiciousness values from ranking metrics and is indeed determined
as the most suspicious statement by spectrum-based method. The situation
is illustrated in Figure 1.4.

17

1. Fault Localization

1.4 Probabilistic Graphical Model Based FL

1.4.1 Introduction

Probabilistic graphical model based fault localization is a family of techniques
that adopt a probabilistic graphical model and its application on program
dependence graph [29]. The difference between each technique is mainly the
choice of the model, what program relationships are represented by the edges
(e.g., control or data dependencies), and the computation of the suspiciousness
score. Examples of such works are [13, 29, 30].

In this thesis, we describe, to some extent generalized, approach intro-
duced in [13]. We see other similar approaches found in the literature as
extensions [29], simplifications [30] or modifications of this method. We will
use the term probabilistic dependence for referring to our implementation of
this approach in this thesis.

The basis of the method is the program dependence graph defined in Def-
inition 1.7, which models control and data dependencies between statements
in the program – a very important information about the program structure.
The technique first transforms PDG in a specific way, then associates a set
of abstract, theoretically possible states with each node, and estimates condi-
tional probabilities between dependent nodes with associated concrete states
encountered during program execution on the test suite.

The underlying probabilistic graphical model is dependency network – a
possibly cyclic directed graph modelling dependencies among random vari-
ables. It was chosen because it permits directed cycles which are common in
PDGs of typical programs because of loops. In our case, the random variables
are the states of the program statements, between which the control and data
dependencies are modelled. The motivation for this approach is that it can
differentiate between failing and passing runs not only statistically, but also
structurally.

This technique first takes the program dependence graph and transforms
it structurally to comply with the dependence network formalism. We refer
to the original work [13] for the detailed description of this transformation.
Then, each node Xj is assigned a set of discrete abstract states {xj1

, . . . , xjk
}.

Generally speaking, a state represents what its predicate outcome is (if any),
or which parents assigned the current value of variables used by the node.
The states must be mutually exclusive (i.e., a node cannot be in two different
states at the same time).

1.4.2 State Specification

The technique distinguishes between two types of nodes: predicate and non-
predicate. Note that when a statement is conditional and at the same time
uses some variable (which is very common), it must be split into two distinct

18

1.4. Probabilistic Graphical Model Based FL

nodes during the PDG transformation, while one becomes of predicate type
and the other of non-predicate type.

The states of predicate nodes are modelled using the predicate outcome.
In their work, [13] transform all predicates into simple ones (i.e., a relation
between two values only). Moreover, they distinguish between primitive vari-
ables and pointers (or references), and regardless of the actual relational oper-
ator in the predicate, they track every possible relation between the compared
values during execution. For instance, even if the operator in a predicate is <=,
they record whether the outcome is <, =, or >.

We consider these modifications to be a considerable work for frontend
developers, thus we omit them in our explanation and deem as unnecessary.
The influence of this aspect is unknown, even though we suppose that more
detailed information could possibly lead to more accurate results. Note that
despite that we do not expect these modifications explicitly in the technique
itself, it can be simulated by the frontend by performing relevant transforma-
tions.

Existing works involving predicates like [13, 30] implicitly assume only
branching statements whose conditional expression evaluates either to true, or
false. However, we also include more complex predicates (like switch syntax
construct), again, for not complicating the development of a frontend. This is
a legitimate generalization since we only need to distinguish between possible
outcome states of the predicate nodes.

To characterize abstract states of non-predicate nodes, we use several con-
cepts. A data environment of a statement ei is the set of all statements which
ei is data-dependent on. To illustrate, consider Figure 1.1 and let us de(v)
denote a definition of variable v by statement e (here identified by its line in
the source code). Then the data environment of the condition on line 7 is
{d2(max), d8(max), d4(x)}. As can be seen, the value of variable max can be
defined by two different statements.

An elementary data context of a statement ei is the set of statements that
assigned last to variables used by ei at a certain execution point. Elementary
data context is generally a subset of data environment. Consider the same
example and suppose that, while running the program, we are in the first
iteration of the loop on lines 4–8. That is, the assignment on line 8 was not
executed, so the value of max comes from line 2. Then the elementary data
context of the condition on line 7 is {d2(max), d4(x)}.

The set of all elementary data contexts of a statement encountered during
the entire execution is called data context. An elementary data context there-
fore represents a possible state associated with a non-predicate node, while
the data context is the set of all concrete states the node happened to be
during the execution.

19

1. Fault Localization

1.4.3 Learning

Model proposed in [13] is probabilistic program dependence graph (PPDG). It
uses the dependency network created by transforming the program dependence
graph, and estimates the conditional probabilities from dynamic data collected
from the execution of the program on the test suite.

A special kind of trace, called node-state trace, is used for parameters
estimation. It is a sequence of executed nodes from the PPDG along with
their states active at that particular point in the execution. For example,
when line 7 in Figure 1.1 is encountered during an execution, it is represented
by two nodes in the trace. One must be associated with either the state
{d2(max), d4(x)} or {d8(max), d4(x)} (non-predicate node) and the other with
either the state true or false (predicate node). A node can appear multiple
times in such trace, possibly with different states. The algorithm for trans-
lating ordinary execution trace into the node-state trace is rather simple. It
uses a mapping from variables to their last definition statements to determine
states of non-predicate nodes, and checks the successor of each conditional
statement to determine its state as predicate node.

Learning the parameters consists of estimating conditional probability dis-
tributions of node being in a specific state given the states of its parents in
PPDG. Let us denote the set of parents (immediate predecessors) of a node
X as Pa(X), and define it as

Pa(X) = {X ′ | (X ′ → X) ∈ E(G)} ,

where (X ′ → X) stands for a directed edge from X ′ to X. It is important
to remember that Pa(X) represents the set of the predecessors in the (trans-
formed) program dependence graph, and not in the control flow graph. The

state associated with node Xj at point i is denoted as x
(i)
j and the state

configuration of its parents as pa
(i)
j .

For a node with no parents, the technique estimates the probability of the
node being in a given state as

p(Xj = x
(i)
j) =

n(Xj = x
(i)
j)

n(Xj)
, (1.1)

where n(Xj = x
(i)
j) is the number of times node Xj is in the state x

(i)
j , and

n(Xj) the number of times node Xj occurs in given node-state traces. It
essentially computes a probability of the node being in a specific state.

For a node that does have parents, the technique estimates the conditional
probability of the node being in a state given the states of its parents as

p(Xj = x
(i)
j | Pa(Xj) = pa

(i)
j) =

n(Xj = x
(i)
j , Pa(Xj) = pa

(i)
j)

n(Pa(Xj) = pa
(i)
j)

, (1.2)

20

1.4. Probabilistic Graphical Model Based FL

where n(Xj = x
(i)
j , Pa(Xj) = pa

(i)
j) is the number of times node Xj and its

parents are in this specific state configuration in given node-state traces.
We use the same algorithm for estimating the parameters of PPDG as

presented in [13]. It traverses each node-state trace from the input set from
beginning to end, and updates the state counters along the way. The values of
counters are then used for computing the probabilities using Equations (1.1)
and (1.2). Finally, learned PPDG is returned.

1.4.4 Fault Localization

For fault localization, the technique first learns a PPDG on node-state traces
of all passing tests. This step estimates the expected probabilities when the
result of the execution is correct. Then it analyses a single failing test case
and ranks the nodes in particular state configurations in ascending order by
the lowest conditional probability obtained from PPDG. The rationale is that
when a probability of a node being in a state given the states of its parents is
low, then the node entered some unusual state in the execution, and therefore
is suspicious to be the cause of the failure. When multiple nodes have the same
lowest probability, the tie is broken such that suspicious states that ocurred
earlier in the execution are prioritized.

The state configuration associated with the suspicious point in the ex-
ecution can be used to explain to the user why the technique blames that
particular statement. This information is further extended by the algorithm
for fault comprehension [13], where expected state configurations of each node
are determined. An expected configuration is that with the highest likelihood
as estimated by PPDG since it offers the best explanation of what the expected
behavior of the node and its parents is.

1.4.5 Assumptions and Limitations

As many fault localization techniques, this approach heavily relies on the char-
acteristics of the test suite. The probability estimates of PPDG are learned
on the passing test cases and therefore reflect the probability distribution in
these particular runs. Moreover, they also depend on the sample sizes (the
number of states and their count of occurrence) used to compute them – if
the sample size for a particular node is too small, the estimated probabilities
cannot be accurate. This limitation could be addressed by learning PPDG
from running the program in the field. In such case, the probability estimates
would reflect actual program behavior. [13]

There are also several limitations that are specific for this technique:

(1) Because the program dependence graph is transformed in order to re-
duce the number of possible node states (by splitting predicate and non-
predicate nodes), and to comply with the dependence network formalism
(removing self-loops), computed statistical dependencies between nodes

21

1. Fault Localization

may not exactly correspond to the dependencies in PDG. This might
affect the application of the approach, especially when a more complex
inference algorithm is used [13].

(2) Since the technique is based on the dependency network, it does not
support reasoning across nonadjacent nodes [29]. In other words, it
only discovers local anomalies. Similarly to traditional SBFL approach,
presented algorithm finds an element that is most associated with the
failure, but does not necessarily cause it [25]. However, taking program
structure and program states into account gives this technique a consid-
erable advantage over spectrum-based family.

(3) It is also difficult to scale the approach to larger software. The first
reason is that the number of possible conditional probabilities of a node
can be very large, depending on the number of predecessors in PDG.
The second reason is that precise computation of data dependencies is
expensive [30].

If the issue mentioned in Item (2) was addressed by incorporating causal-
ity, one would need to convert the dependency network to the causal graph –
a representation lacking cycles. However, elimination of cycles may result in
loss of dependence information, likely affecting the effectiveness of the local-
ization [25]. Yet, such an approach is proposed in [29], where the Bayesian
network is used as acyclic graphical model, and the suspiciousness is computed
by taking erroneous output nodes as conditions in the conditional probability
calculations for each non-output node.

Regarding the scalability mentioned in Item (3), our simplification of state
specification of predicate nodes might result in a performance improvement.
The computation overhead can be also controlled by the precision of under-
lying data dependence analysis. Obviously, less precise algorithms can be
much faster, but presumably affect negatively the localization effectiveness.
To avoid the issue with expensive data dependence analysis, authors of [30]
use only control dependence information.

Handling of missing code is also problematic for this technique. However,
indicating an unusual and more likely control- or data-flow path has potential
to help the user to identify the fault of omission. To our knowledge, there
is no study about coincidental correctness effects on probabilistic dependence
family, but, intuitively, its model learning using passing test cases is affected
by this aspect.

1.4.6 Motivating Example

Again, we introduce a bug into our motivating example program (Figure 1.1).
It will be wrong initial value of max variable in the get_range function. Vari-
able for minimum will be correctly initialized to +∞, while variable for max-

22

1.4. Probabilistic Graphical Model Based FL

1 def get_range(values):

- min = max = values[0]

+ min, max = float('inf'), 0

for x in values:

if x < min:

min = x

if x > max:

max = x

return min, max

Figure 1.5: Diff between the correct implementation and the second faulty
version.

imum to zero. This is wrong because no value from negative-only arrays
exceeds this initial value and thus the maximum will not be properly deter-
mined. Thus the test case tneg from Table 1.1 fails. The change to our code
is illustrated in Figure 1.5.

Note that the faulty line is in this case always executed in all test cases.
Therefore, using spectrum-based method would not help at all since it cannot
differentiate the statement using the coverage spectrum. Moreover, in this
particular example, 23 out of 25 statements get the same, highest suspicious-
ness score. This brings no information to the user.

Using probabilistic dependence method, Aardwolf pinpoints two state-
ments which get significantly higher suspiciousness than the other statements.
These are lines 5 and 7. Although they are not the actual faults, we get
additional information from the analysis. The interesting case for us is the
prediction of line 7. Here is the output of the algorithm:

• The predicate on line 7 was always false in the failing execution. Thus
the control flow always continued without setting the maximum variable.
This state is considered unlikely since the predicate was true at least once
in the passing executions.

• By inspecting all possible states which the statement happened to be,
the output mentions that it was expected to observe the predicate being
satisfied.

• The list of statements which assigned last to variables used by the pred-
icate at this unlikely state configuration is presented as well. In this
case, the value of max variable comes from line 2, emphasizing that the
assignment on line 8 is expected.

Despite the fact that it does not pinpoint the actual fault, from the rich
information it provides with the prediction, we could possibly deduce what

23

1. Fault Localization

is the root cause. The technique was able to locate the approximate faulty
segment and differentiate it from the other parts of the program. In this case,
it was therefore much more successful than spectrum-based technique.

1.5 Likely Invariants Based FL

1.5.1 Introduction

Program invariants are properties in form of predicates at certain program
points that are guaranteed to hold for all possible inputs. Predicates observed
to hold for some, but perhaps not all program inputs are known as likely
invariants [31], or potential invariants [32]. The first idea of using likely
invariants for fault localization was presented in [33], followed by [32, 34] for
example.

Likely invariants can be extracted by monitoring the execution of the pro-
gram and summarize the properties that held during such execution. This
distinguishes dynamic invariant detection from static one, where an inferred
property is guaranteed to hold for all possible inputs. To satisfy this claim,
static inference must be conservative and therefore has limited scope. On the
other way, dynamic approach can detect properties that would be hard or
impossible to prove statically. An inherent limitation is that inferred invari-
ants might not be valid. This is highly constrained by the quality of the test
suite [33].

In context of fault localization, a technique utilizing likely invariants can
infer them during the executions of passing test cases. Since the program state
at most6 points in these executions can be assumed to be correct, detected
program invariants has the potential to be real constraints. Every violation of
these invariants when executed with failing test case indicates difference from
the passing executions and possible faulty program state. Therefore, locations
of such violations are candidate root causes of the failure.

The invariants are inferred from tracking the result values of selected ex-
pressions at various program points [33]. In learning phase, the detector main-
tains an invariant hypothesis that is satisfied by all the values that have oc-
curred during the execution so far. At the beginning, this hypothesis is the
most strict (e.g., variable is constantly equal to the value encountered first).
When a new value does not conform to such hypothesis, it is relaxed to allow
this new value or falsified completely. In checking phase, when a new value
does not conform to the hypothesis proposed by the learning phase, it is con-
sidered as a violation and reported to the user. Learning phase is applied on
the passing test cases, whereas checking phase is performed on the failing test
cases.

6But not all, due to coincidental correctness.

24

1.5. Likely Invariants Based FL

1 def scale_minmax(values):

2 lo = min(values)

3 hi = max(values)

4

5 scaled = []

6 for x in values:

7 y = (x - lo) / (hi - lo)

8 scaled.append(y)

9

10 return scaled

(a)

Values Invariants

〈1, 3, 2〉 lo = 1, hi = 3, 0 ≤ y ≤ 1

〈−1, −3, −2〉
−3 ≤ lo ≤ 1, −1 ≤ hi ≤ 3,

0 ≤ y ≤ 1

〈−1, 3, 1〉
−3 ≤ lo ≤ 1, −1 ≤ hi ≤ 3,

0 ≤ y ≤ 1

〈1, 1, 1〉
−3 ≤ lo ≤ 1, −1 ≤ hi ≤ 3,

0 ≤ y ≤ 1 (y = ∞)

(b)

Figure 1.6: A sample program code (a) and an example of gradual relaxation
of invariants during passing runs (1–3) and learned invariants violation (in red)
in failing runs (4) (b).

Consider an example code depicted in Figure 1.6a which scales values in
given array to be in [0, 1] range. It is essentially the same function as in our
motivating example, only simplified by removing get_range and safe_div

functions, and not handling the situation when all values are equal. When
this situation happens, lo and hi variables are also equal, and thus a division
by zero occurs on line 7. Let us pretend that built-in division follows IEEE-754
standard by returning NaN or infinity instead of throwing ZeroDivisionError

exception. Suppose that we track the invariant that a variable is in a range.
The program point where it is checked is assignment into the variable.

Each line in the top segment of Figure 1.6b shows the set of invariants that
still hold after running the test case and all its predecessors. Gradual relax-
ation of the invariant hypothesis is clearly observable on lo and hi variables.

After learning the set of invariants that hold in first three passing execu-
tions, the program is executed on the fourth, failing test. Since we suppose
that the result of division by zero on line 7 is either positive infinity, it does
violate the invariant that variable y is in range [0, 1]. Therefore, the statement
is a candidate to be the root cause of the erroneous behavior.

1.5.2 Invariants

There is plenty of possibilities which invariants can be considered in a detec-
tion tool. In order to have the inference tractable, the technique must use
a fixed set of invariant schemas. For example, [33] checks several bitwise-
oriented properties such as being a constant, only positive/negative, having
approximate upper bound or being null; [32] check for equality, sum and less-
than relationships between pair of variables, and constant equality; and [34]
use only range invariant.

25

1. Fault Localization

We selected four invariant schemas based on our intuition about how they
might help in fault localization task. Required implementation effort was also
considered. Our solution checks the following invariants:

• Constant. Variable x is a constant value during the whole execution.

• Range. Variable x is in a range a ≤ x, x ≤ b or a ≤ x ≤ b, where a, b

are some constants.

• Type stability. Variable x is of the same data type throughout the ex-
ecution. Violation of this invariant is possible in dynamically typed or
polymorphic languages.

• Non-exceptional value. Variable x has never been assigned an excep-
tional value. We consider NaN, positive and negative infinity for floating
point numbers, and null for reference types to be exceptional values.

The first two invariants were used in [33, 32] and [34], respectively. If
a variable was a constant value in all passing executions but is suddenly a
different value in a failing case, such discrepancy can point to a considerable
difference between passing and failing tests. Similar applies to range invariant
which can be seen as a relaxation of constant invariant.

The other two were partially used in [33] for reference types (that is, change
of run-time type of a polymorphic object, and null value, respectively). Type
stability constraint makes more sense in languages with dynamic typing or
polymorphic capabilities, and since our aim is to support such languages, we
incorporated this invariant into our tool. In case of non-exceptional value, we
also track occurrences of NaN and both infinities because these often arise
from invalid arithmetic operations, possibly indicating suspicious behavior.

Theoretically, program invariants can be inferred for any data type in
a program. For implementation simplification and practical reasons, so far
we support only primitive data types: booleans, integers of various width
and both signs, single and double precision floating point numbers and ref-
erences (identified by the name of their runtime type or whether they are
null). Similar scope of supported data types is used in [33], excluding floating
points numbers due to the invariant representation they used, but the pres-
ence of complications with this data type is also mentioned in [31]. Note that
in [34] authors are able to work on arrays and even some pointer-based data
structures containing these primitive types, thanks to the advanced dynamic
invariants detection tool presented in [31].

Although invariants can be checked at function entry and exit nodes [32,
31], for more specific information, reads and writes from/into object-like vari-
ables (including arrays) [33, 34], reads and writes from/into static variables [33],
results at function call sites [33], and function return statements [34] are more
preferred choices.

26

1.5. Likely Invariants Based FL

In both works ([33, 34]), stack-allocated local variables are ignored for be-
ing time-consuming to track and less interesting than object-like and static
variables and function call/return statements, which both better capture global
state of program execution. Nevertheless, we decided to include stack-allocated
variables to have more detailed information.

Note that function call sites and function return statements (i.e., results of
callees) carry almost identical information. The main difference is when a non-
instrumented component takes place in the execution. In case of instrumenting
function return statements, the output of calling foreign interface, which is a
valuable information, is lost. Therefore we believe that instrumenting function
call sites is superior choice.

To summarize, we put invariants checks at these locations:

• Writes into any variable. We do not track reads from variables used
in expressions because we think that, in context of fault localization,
violated invariant on write to a variable indicates a faulty statement
that computed such value, while violation on variable read just reveal
that fault might have occurred in the past.

• Results of function calls. Such failed invariant can indicate two causes of
a fault, either the fault is contained in the function itself, or the function
was called with wrong arguments.

• Function arguments. Complementary to the previous point, checking
function arguments can early reveal a wrong use of a function.

So far, invariants were applied on values integral to the program. In [35],
the notion of program invariants is extended also for execution features such
as basic block counts or number of function calls. The authors argue that use
of these extended invariants can be useful for fault localization.

1.5.3 Assumptions and Limitations

The first concern for a variable values analysis is its scalability, since a program
execution can generate huge amount of data to be processed. The computa-
tional and memory costs of the invariants detection grows with the number of
instrumented program points and variables, number of invariants checked, and
the size of runtime traces generated by executing the test suite [31]. There
is a trade-off between richness of the recorded information and processing
costs. For example, one could dump entire arrays to the output in order to be
able to analyze its contents, however, such analysis might become practically
unfeasible.

The tool presented in [33] is designed to monitor the invariants online while
running the program, and uses a very compact and efficient representation.
However, capabilities of the representation are very limited. We implement

27

1. Fault Localization

an “offline” approach, where we record all values in a trace file which is then
processed, similarly as Daikon tool [31] does.

The fundamental assumption of invariant-based technique is that useful
invariants can be inferred from the passing executions and will be violated in
the failing executions. The two key observations of [34] are:

• Using training inputs which are close to the failing input is more effective
than using invariants detected using a large number of unrelated inputs
in a traditional test suite.

• Sophisticated filtering allows to start with a large set of initial candidate
causes (reducing false negatives). Such filtering then narrows down the
initial set to a small set of final predictions (reducing false positives).

The size and characteristics of the test suite highly influences how sensible
and reliable invariants are obtained. An inadequate tests may result in false
or uninteresting invariants or very few of them. Based on mentioned obser-
vations, utilization of automatic or semi-automatic methods for tests genera-
tion (such as property-based or grammar-based, with automatic memory-error
checkers or programmer-inserted assertions) can lead to effective likely invari-
ants inference. Grammar-based approach was evaluated in [31] for dynamic
invariant detection and successfully used in [34] aiding their invariant-based
fault localization technique.

As the majority of failed invariants do not correspond to actual root causes,
advanced algorithms for discarding the unrelated ones is crucial in order to
have a usable technique. This introduces a difficult challenge. Moreover, there
is no direct way how to obtain suspiciousness scores for the statements that
are involved in the failed invariants, as it is just a binary indication whether
it was violated or not. One could use some measure of confidence, but that
might not correlate with the likeliness of the statement being the root cause.

An interesting application of invariant-based localization tool presented
in [33] is to apply it on long-running programs. Assuming that the program
does not enter an infected state, caused by the faulty element, in the early part,
the invariants might be inferred from running the program in the production.
Later, it can be switched to the checking phase where invariants are not relaxed
but checked for violations. The success on this type of programs suggests that
closeness of the “good” inputs to the failure-inducing inputs is beneficial.

1.5.4 Motivating Example

We make a third faulty variant of our program by omitting the check for min

and max equality on line 23 (Figure 1.1). This type of bug is also one of the
most common bug-fix patterns [28] when a precondition check is added. The
fault involves missing code which causes issues for traditional fault localization

28

1.5. Likely Invariants Based FL

20 def scale_minmax(values):

min, max = get_range(values)

- if min == max:

- min = 0

-

scaled = []

for x in values:

y = safe_div(x - min, max - min)

scaled.append(y)

return scaled

Figure 1.7: Diff between the correct implementation and the third faulty
version.

techniques. When it is run on our test suite, the test teq becomes failing. The
change to our code is illustrated in Figure 1.7.

For this case, both spectrum-based and probabilistic dependence tech-
niques identify line 15, which returns ∞ when zero denominator occurs, as
the root cause. Although this line indeed produces a value which we do not
expect in the output, in this context, the implementation of function safe_div

is correct. Thus blaming its content is a false track.

In this particular case and given the current implementation of Aardwolf,
the result of likely invariants analysis is as follows:

• The argument denom on line 13 was expected to be in range [2, 4], but
was 0 in the failing execution.

• The result of the safe_div call on line 28 was expected to be in range
[0, 1], but was ∞ in the failing execution.

• The assignment value on the same line was expected to be in range [0, 1]
as well, but was ∞ in the failing execution.

From the output, we can clearly deduce that the root cause of the error is
that the denominator happens to be 0, in other words, min and max variables
are equal, which has the effect that the scaled variable gets infinity value.
Such information leads to a correct fix (which might be either ours presented
in Figure 1.1 or some other).

Again, despite that it did not provide the user with the true faulty line,
which is in this case actually impossible due to ambiguity of the fix, it produced
very valuable details which informed the user what is the root cause, so they
can implement a fix of their choice.

29

1. Fault Localization

1.6 Test Cases Prioritization

The characteristics and composition of the test suite considerably affect the
performance of fault localization techniques. The test suite reduction (or
analogously test cases prioritization), as one of the aspects of the test suite
composition, was studied in several works [36, 37, 38, 39] (see [3] for many
others).

The impact of the test suite reduction was also evaluated by [14] with the
following key observations. First, reduction in the size of a test suite generally
harms the effectiveness of the fault localization techniques, but thorough and
less severe approach causes negligible impact on the effectiveness, while re-
ducing the computational costs. Second, removing test case redundancy (e.g.,
in the means of code coverage resemblance) occasionally improves the fault
localization.

Test cases prioritization has at least potential to lower the costs of compu-
tationally expensive localization techniques without sacrificing their effective-
ness too much. Intuitively, not all test cases have the same positive impact
on the localization performance. Therefore, while selecting a feasible sub-
set of test cases, the technique should use those that contribute the most to
differentiating the likeliness of being faulty for program elements.

In most cases, relevant test case is selected based on some notion of prox-
imity to failing test cases. Being close to the failure-inducing execution, such
passing test case has potential to narrow down the set of suspicious program
elements.

In [36], a difference metric that involves the sequence of statements and
their control dependencies, while differentiating branch instances with similar
contexts but different outcomes, is used. Both [37, 39] apply some notion of
dividing the domain into categories and measuring the degree of difference.
Contrary to others, [39] assume that test cases with diverse coverage are of
high value for the fault localization. In [38], an information-theoretic approach
of closeness is proposed.

We consider the test cases prioritization task as finding a priority function
π(t) mapping a test case t to a priority rt ∈ R. Generally, the priorities are
assigned to passing and failing test cases separately. For passing test cases,
the priority should indicate the degree of potential to discriminate suspicious
elements while contrasting them with the failing test cases. For failing test
cases, the priority should estimate the difficulty of faulty elements localization
and easier instances should be prioritized.

We do not implement any test cases prioritization technique in this thesis
but we provide the API which can be used for it. In particular, all test cases
have by default equal priority, but a technique can assign specific values to cer-
tain tests. If set to zero, it is considered as completely irrelevant. Localization
plugins can then obtain the test cases sorted by this priority.

30

1.7. Program Elements Prioritization

1.7 Program Elements Prioritization

Similarly to test cases, not every program element has the same impact on
suspiciousness estimation. Authors of [40] argue that, in the computation of
suspiciousness of an element, the contribution of the failing test cases which
cover it should be greater than that of passing test cases. The rationale behind
this intuition is that the execution of failing test cases carry the information
that they certainly cover at least one faulty statement, whereas execution
of passing test cases are not guaranteed to be absolutely free of any faulty
statement [41]. This is the implication of coincidental correctness [3].

Similarly to the previous section, we consider the prioritization task as
finding a priority function π(e) which maps an entity e to a priority re ∈ R.
The higher the element has the priority, the closer to the top of the ranked
list it should be. The goal of such mapping is to rank the elements such that
if there is a set of elements, containing a faulty one ef , that are assigned the
same suspiciousness score by a fault localization technique, ef is ranked closest
to the top among them. If no prioritization is used, the elements are ranked
arbitrarily.

Although a program elements prioritization technique can be usually per-
formed before the actual fault localization (such as [41, 42]), there are strate-
gies that can assign rank elements that happen to be in a suspiciousness
tie [40], and thus need to be activated after the scores are computed. We
therefore allow to prioritize program elements both before and after the lo-
calization. However, we do not actually implement any program elements
prioritization technique for this thesis.

1.8 Combining the Results

The effectiveness of a fault localization technique is heavily dependent on char-
acteristics of the test suite, program structure and semantics, nature of the
bug, etc. [3] As shown by [43], even various ranking metrics from spectrum-
based fault localization domain can give different results for different categories
of bugs. Presumably, such diversity is even more substantial between tech-
niques with very different bases, as those presented in this thesis. It makes
therefore sense to combine the results from all these different sources to retain
beneficial aspects of individual approaches while mitigating their drawbacks.

Several works [44, 45, 46, 47] indeed show superior performance over indi-
vidual techniques. Both [46, 47] use learning-to-rank machine learning model
to incorporate results from multiple sources. In [44], search-based optimiza-
tion techniques, namely genetic algorithm and simulated annealing, are used
to find optimal combinations of individual techniques.

All these approaches require a training phase on labeled data. However,
such data are often unavailable or may not be representative enough for new

31

1. Fault Localization

buggy programs, which could affect the effectiveness. Contrary to mentioned
techniques, [45] proposes an approach which requires no training data and is
therefore highly flexible and extensible. In their work, authors applied this
approach on multiple spectrum-based ranking metrics, but also declare that
it is possible to use it with different fault localization techniques as well. The
only requirement is that such technique assigns some numeric suspiciousness
score to program elements.

In Aardwolf, this functionality can be implemented as a post-processing
plugin, which is given a collection of results computed in the previous phase.
These can be then used for building a new list of results.

1.9 Supplementary Information

The survey [6] demonstrates that information richer than just ordered list is
very important for the potential users of a fault localization tool. As men-
tioned in the introduction, the most crucial is providing the rationale for
the prediction. Some other types of supplementary information are discussed
in [7]. Here are some examples:

• Based on the responses in [6], developers will likely distrust the tool
if it gives too much false positives. This issue was addressed by [48]
by building a machine learning classification model which attempts to
decide whether the localization output should be trusted or not. If not,
the developer can skip the automated localization not to waste their
time by examining its output, and switch to conventional debugging
instead. The model is based on features extracted from the program,
execution traces and output results. The effectivity criterion for learning
the classifier is whether the faulty element appears in the top 10 list.
All features used in the technique can be conveniently obtained from
Aardwolf’s data structures.

• The results can be clustered by aggregating them by functions or files.
Such summarization will not help to pinpoint the exact location of the
fault, but can suggest promising starting places, especially to developers
which are not very familiar with the codebase.

• Displaying the values of variables in failing executions is very helpful and
used in conventional (manual) debugging as it helps the developer to
identify suspicious values. Since Aardwolf is able to gather the variable
trace, at least in limited fashion, it could include the variable values in
the output.

• Even though the purpose of Aardwolf is fault localization, it can provide
the user with details describing the quality of the test suite. The most

32

1.9. Supplementary Information

essential quality metric is code coverage (for example, statement cov-
erage or predicate outcome coverage) [1]. This can be easily computed
from data available in Aardwolf.

33

Chapter 2

Design

This chapter describes the architectural design of Aardwolf. It thoroughly
characterizes individual components and specifies how these components in-
teract with each other.

The design goals are summarized in the following list:

• Extensibility. It should be possible and convenient to implement a new
fault localization technique or alike into Aardwolf. We would like it to
be able to serve also as a research ecosystem in which new approaches
are easily developed and evaluated.

• Language independence. The goal is to offer all localization functionality
implemented in Aardwolf to multiple programming languages. Building
a frontend (that is, bringing support of Aardwolf for a language) should
take a reasonably small engineering effort.

• User experience. We want to create a tool actually usable by developers.
This does not include only accuracy, but also results presentation with
context and explanations, scalability, and convenient integration with
existing projects.

• Generality. This relates to the first point in this list. Although we
implement just a small fraction of existing fault localization techniques
(although they are fairly different from each other), the design should
be general enough to be able to support majority of them. We discuss
this topic at the end of this chapter.

The overall diagram of all components and related artifacts, from high
level perspective, is depicted in Figure 2.1. The source files of user’s program
are first processed by a frontend with support for the programming language
which the source code is written in. Frontend performs static analysis, which is
saved for later use, and program instrumentation. An executable is built from
the instrumented source and tests, and is run to produce runtime data. All

35

2. Design

analysis,
instrumentation

execution

fault localization
and related

sources

tests

Aardwolf
frontends

+

Aardwolf
core

Aardwolf
plugins

localization
results

User Community Aardwolf

Figure 2.1: Architecture of Aardwolf from high level perspective. Blue rect-
angles correspond to the components of the system, whereas green rounded
ones represent artifacts consumed or produced by the components. Compo-
nents that generally have multiple instances are visually distinguished.

generated data is consumed by the core and, via high-level API, provided to
plugins that actually perform the fault localization or a related task. Results
then identify suspicious elements in the source code.

A more detailed diagram is presented in Figure 2.2. It enumerates all
components and artifacts in the system and illustrates the flow of information
and the relationships between them.

The tool is divided into these components:

• Frontends. This component is responsible for static data collection and
instrumentation of the program. There are multiple frontends because a
specific frontend must be developed for every source programming lan-
guage7. Frontends act as a gateway from user’s programming language
to data that are consumed by Aardwolf. Our aim is to make required
functionality of the frontend as simple as possible in order to simplify
the development of new ones and maintenance of existing ones.

• Test drivers. Instead of implementing a custom test driver for each
programming language, the goal is to allow integration with as many
already existing test drivers and as smooth as possible. The integration

7There might be frontends which are implemented for a technology that is underlying
for multiple programming languages, such as LLVM or JVM.

36

sources

tests
test driver

integrations

Aardwolf
frontends

static data

instrumented
source

+

executable

runtime

runtime
data

test results
Aardwolf

core

Aardwolf
plugins

localization
results

CLI & IDE
integrations

Figure 2.2: Detailed component diagram of the Aardwolf. Blue rectangles
correspond to the components of the system, whereas green rounded ones
represent artifacts consumed or produced by the components. Components
that generally have multiple instances are visually distinguished.

can take form of an extension or a wrapper. However, since the require-
ments for the integration – as described later – are minimal, it is also
feasible for the user to integrate with Aardwolf manually.

• Runtime. This component is used by frontends as API in program
instrumentation and by test drivers for dividing continuous execution
trace into individual test cases. It is theoretically possible to share one
common implementation in multiple frontends, but since it is currently
rather simple, it is perhaps more convenient to reimplement it in the
language the frontend is written in. The custom implementation ap-
proach has the advantage that its API can be tailored for the target
programming language specifics.

• Core. This component is responsible for parsing the artifacts produced
by a frontend and the execution of the test suite, and provides the fun-
damental infrastructure for fault localization plugins and presentation
of the results to the user.

• Plugins. On top of the core, there are plugins that implement specific
fault localization techniques or associated tasks. They use the core’s
API to compute the necessary information for the feedback to the user

37

2. Design

language B

language A

language C

Aardwolf

localization
plugins

editor A

CLI

editor B

Figure 2.3: Illustration of potential for wide adoption by supporting multiple
programming languages and development environments.

(like suspiciousness values or explanations) which is then sent back to
the core.

• Results presentation. This component presents the computed results to
the user and is equally important as the others. To be useful, the output
must contain rich information that helps the user to successfully locate
the real fault from the tool’s output.

This architecture enables potential for wide adoption by supporting many
users with their programming languages and development environments of
choice. This aspect is illustrated in Figure 2.3.

In the following sections we provide detailed descriptions of individual
components and their subcomponents.

2.1 Frontends

The design goal of Aardwolf is to support multiple programming languages
on its input. From a program written in such a language, we need to extract
relevant information and convert it to an intermediate representation. This
representation is general and common for all source languages, therefore it
needs to hide unnecessary implementation details, but on the other hand,
must contain all the information required by later analyses.

The most-preferred granularity levels in fault localization are methods,
statements and basic blocks [6], where the statement level is the most fine-
grained and the other ones can be derived from it (with control flow graph
and function names as supplementary information). For that reason, our
intermediate representation uses statements as its elements.

Program statement represents an abstract action, whose complexity can
vary greatly. Some types of statements are common for majority of pro-
gramming languages but generally they can differ from language to language.

38

2.1. Frontends

Furthermore, the notion of a statement is rather related to imperative pro-
gramming paradigm, whereas there are languages which are either fully or
partially expression-based (typical examples are functional programming lan-
guages). We therefore leave the decision about what exactly statement is to
implementers of the frontend without giving some exact specification.

However, we give here some general notes as an attempt to have outputs
from all frontends as semantically similar as possible. We consider these con-
structs as being a single statement:

• Entire expression that computes a value assigned to a variable. Even
though such expression might be very complex in some cases, we sup-
pose that identifying a faulty subexpression would be very difficult for
any localization technique and unnecessarily cause higher computational
costs. These complex expressions could be even advanced syntactical
constructs like list comprehensions in Python.

• Conditional expression that branches the control flow to multiple paths.
This includes typical constructs like if and switch, but also conditional
statements in loops or advanced concepts such as pattern matching.

• Function call together with all expressions that compute its arguments.
Note that every function call with an output value defines a new implicit
variable that must be indicated by the frontend. This is necessary for
the analysis.

• For each argument of a function, an artificial statement is created. Such
statement does not use any variable and defines exactly one – the ar-
gument. The order of these statements must match with the order of
the arguments. Treating arguments as statements simplifies the internal
representation.

As the first step, a frontend must detect such statements in the program
and uniquely identify them using a numeric identifier. Then, it generates static
analysis data and instruments the program to generate runtime data during
the execution. These two tasks are described in the following subsections.

2.1.1 Static Analysis Data

Static data are generated during the analysis of the program without the need
of executing it. It provides the information about the program’s structure and
the location of elements in the original source code.

For every statement, all possible outgoing edges in the control flow graph
are listed, in form of the identifier of the statement which is direct successor
in that path. This is important for control flow analysis.

39

2. Design

function: get_range

#1:1 -> #1:2 :: defs: %1 / uses: [@1 1:15-1:21] { arg }

#1:2 -> #1:3 :: defs: %2, %3 / uses: %1[] [@1 2:5-2:26]

#1:3 -> #1:4, #1:5 :: defs: %4 / uses: %1 [@1 4:9-4:10]

#1:4 -> #1:6, #1:7 :: defs: / uses: %2, %4 [@1 5:12-5:19]

#1:6 -> #1:7 :: defs: %2 / uses: %4 [@1 6:13-6:20]

#1:7 -> #1:3, #1:8 :: defs: / uses: %3, %4 [@1 7:12-7:19]

#1:8 -> #1:3 :: defs: %3 / uses: %4 [@1 8:13-8:20]

#1:5 -> :: defs: / uses: %2, %3 [@1 10:5-10:20] { ret }

@1 = <absolute path to the source file>

Figure 2.4: An example of the static analysis output from a frontend in a
human-readable form. It corresponds to function get_range from the moti-
vating example from Figure 1.1.

Each statement contains also the set of variables it uses and defines, in the
sense of Definition 1.3. This is important for data flow analysis. Variables are
specified by their unique numeric identifiers.

There must be a way to locate the statement back in the source code
in order to guide the user with the results. The location consists of the file
and the line and column numbers where the statement syntactically begins
and ends. Two line numbers are necessary, because complex statements can
generally spread over multiple lines, and in such cases, Aardwolf needs to know
the whole range in order to provide user with a meaningful information. If the
range cannot be determined (e.g., because of limited support by the technology
used for developing the frontend), both values must be equal. Aardwolf core
might apply some heuristics in such cases.

An illustrative example of the output is presented in Figure 2.4. Note that
it is given in an arbitrary human-readable form, but the actual implementa-
tion uses a binary format (see Chapter 3). One can clearly see the control
flow inside the function and def-use information as well as source code loca-
tion. It actually contains additional metadata and some special syntax for the
variables. Both details are described in the following paragraphs.

The statements are divided into several categories depending on their type.
This is useful in later analyses and even necessary for some localization tech-
niques, such as likely invariants described in Section 1.5, where checks are
placed at certain program points like return statements, or work by [49], where
different statement categories are assigned a different weight. Aardwolf cur-
rently indicates the following statement categories (the list might grow in the
future): function argument, return statement, and function call. If a state-
ment does not fall into any category, it is treated as “other”.

The statements are grouped under the functions to which they belong in
the source code. This explicit partition helps in many ways, for example in

40

2.1. Frontends

control flow graph construction or for providing method-level output granular-
ity. The names of the functions must be unique and should be human-readable,
since they might be used in the Aardwolf’s output. Object-oriented program-
ming languages are supported such that the names of methods of a class are
prefixed with the class name. Variants of polymorphic functions (in the sense
of ad hoc polymorphism) must be somehow distinguished using an artificial
identifier.

We differentiate between three categories of variable use and definition (we
refer to them jointly as access):

• Scalar. This category represents access to symbolic variables. These
might be simple values like integers or floating point numbers, but also
assignments of whole structures or pointers to variables. In other words,
an access is scalar if and only if its value is atomically set.

• Structural. Contrary to scalar type, structural access works on subcom-
ponents of the base variable. Subcomponents (e.g., structure fields) of
such variable access can be determined by some statically-known unique
identifiers. Note that fixed-size arrays and tuples also fall into this cate-
gory (if they are statically known to be such), because they can be both
treated as some form of a structure with numeric identifiers of its fields.

• Array-like. This represents two scenarios. First, the source or target
variable represents an array, or more generally a block of memory, and
its subcomponents can be accessed only via a numeric index which is
unbounded from static analysis perspective. Second, it is an access to a
structure where the accessor is not known during static analysis (this is
more typical for dynamically typed languages, but not exclusive). Note
that the expression determining the index to the array might be more
complex that just a single variable; it could be an arithmetic expression
with multiple variables. We indicate such situations but, for simplicity,
we do not specify the concrete expression.

More formally, a variable access takes the following tree form, depicted in
Backus-Naur form as follows:

〈Access〉 ::= 〈Var〉 | 〈Access〉.〈Access〉 | 〈Access〉[〈Index〉]
〈Index〉 ::= 〈IndexVars〉 | ǫ

〈IndexVars〉 ::= 〈Access〉,〈IndexVars〉 | 〈Access〉
〈Var〉 ::= unique identifier of the variable or structure field

The first alternative for 〈Access〉 rule (〈Var〉) represents the scalar access,
the second one (〈Access〉.〈Access〉) is for structural access and the last one
(〈Access〉[〈Index〉]) corresponds to array-like access. The provided grammar

41

2. Design

does not specify a concrete syntax in a programming language, it just expresses
the concept.

For example, the access tree of C/Python expression foo[bar.baz + i]

could be conceptually expressed as foo[bar.baz, i]. Note that the equivalence
of two access trees does not imply the equivalence of their semantics in the
original source code since we do not consider expression trees and constant
values (for example, foo[i * 2] and foo[i + 1] both have the same access
tree but clearly are semantically different).

Note that when analyzing data dependencies, the access trees should be
treated in a sort of a subset approach. In simple words, when foo.bar is mod-
ified somewhere in the program, then all statements which use foo, foo.bar
or foo.bar.baz are affected by this change. When an access tree is assigned,
the variables captured by 〈Index〉 rule are not considered to be modified as
they just specify a particular location inside the modified variable. For exam-
ple, when foo[i, j].baz is assigned, all statements which use foo, foo[*] or
foo[*].baz are affected, where the star symbol represents any set of variables,
but statements which use i or j are not.

Talking about statically-known structure is a bit misleading for dynami-
cally typed languages. In such cases, we approach this problem from syntacti-
cal perspective. For example, in Python language we consider foo.bar to be
structural accesses, even though we cannot know the exact structure of foo,
and foo[’bar’], foo[bar] and foo[0] to be array-like accesses (even that
the last one might be an access to a tuple).

Note that to support dynamically typed programming languages, we must
not require any notion of data type of a variable in the static output. We do
not support specifying data types even when the target language is statically
typed, because this information is provided in dynamic data anyway, so omit-
ting it in the static analysis data simplifies its representation and reasoning
in later analyses.

At the moment, Aardwolf supports yielding data only for statement def-
initions – a function argument, a variable being assigned to, or a result of a
function call. We consider it a reasonable compromise between usefulness and
performance costs as we think that analyzing suspiciousness of a statement
given the result it produces is more valuable that the values it uses. Even such
a limited variable trace is however expensive for processing and storage, thus
it should be a good practice for frontends to allow to disable its generation.

All numeric identifiers used in the static analysis data must be unique per
entire program. This requirement is necessary for matching runtime data with
static data.

2.1.2 Program Instrumentation

To observe the runtime behavior of a program, it must be first instrumented
by inserting probes in form of writing statements that reveal the executed

42

2.1. Frontends

path and the data accompanied by it. Such probes work on the statement
granularity discussed in the Section 2.1.

The simplest information that a probe can give is to log the statement
identifier at every execution of the statement. The output of such instru-
mented program is called execution trace. Such trace is just a long sequence
of encountered statements.

On the other hand, dumping the values of variables during the execution
produces a variable trace. Both traces are actually interwound in a single
sequence in our implementation. Instrumentation for variable trace is much
more complex than for execution trace.

The approach used in widely-used tool Daikon [31] is to dump the values
of variables in scope at certain program points (function entry and exit nodes
by default). The data type of a considered variable must be integral (integers,
booleans, characters), floating-point, sequence of any of these, or string. All
trace values are converted into one of these primitive forms, that is, an array
of structures is transformed into multiple arrays, each corresponding to a
specific field of the structure. Entire contents of array variables are recorded
and processed.

We see some drawbacks of this approach considering our design goals.
First, it requires considerable engineering effort for frontend implementers to
support transformation of arrays of structures and linearization of pointer-
based collections (e.g., linked list). Second, the requirement of statically
known data types of variables rules out our desire to support dynamically
typed languages. Third, dumping all the “reachable” data at certain program
points introduces extensive disk usage if we acknowledge that we want to check
the invariants on every store of a variable. However, all these design decisions
of the Daikon’s author are completely justifiable considering its goals and use
cases, which are slightly different from ours.

Instead, we dump the contents only of the memory location which is as-
signed. For non-scalar accesses, it means that only the value of the indexed
location, in case of array access, or the value of the field, in case of structural
access, are recorded. If the node is not of a primitive type, it is dumped in
its deconstructed form field by field8. This structural information should be
available at runtime even in case of dynamically typed languages using their
value inspection capabilities.

Along with the value of primitive variable or field, its data type is recorded
as well. This information is redundant in case of statically typed languages
without polymorphism, however, the overhead is negligible in comparison with
the entire output. The data type is necessary for proper parsing of the value
from the file in binary format, but also enables detection of type changes.

The invariant detection can treat the access tree as an implicit variable
without the need of reasoning about its form. Only the semantic meaning

8This is not implemented yet.

43

2. Design

of the invariant can change. Take for example the invariant “variable v is a
constant value”. If v is substituted with foo.bar (structural access), then it
means “field bar in structure foo is a constant value”. On the other hand,
if v is substituted with foo[bar] (array-like access), its meaning changes to
“elements of array foo are, as far as we can tell, all of the same value”, which
is rather a different statement.

Another example of the difference for array-like access is the following:
consider that “variable” foo[bar] did not change its data type, then “array
foo is homogenous”, whereas it’s “heterogeneous” if it did.

To summarize, an item of execution trace consists of just the statement’s
identifier, while an item in variable trace must follow its defining statement
and is composed from current data type and its data in raw binary form. We
refer to the output that mixes execution and variable traces to just trace.

2.2 Integration with Test Drivers

Every software project can be divided into two parts: application software
and support software. Application software is designed to fulfill specific needs
of a user, whereas support software aids in the development or maintenance
of the application software (for example, tests) [11].

A software project can be split code-wise into application code and testing
code. Obviously, static and runtime data should be collected only for applica-
tion code. Therefore, static analysis and program instrumentation is applied
on the user’s program and not on the testing code. There is one exception
to this. We need to split the trace into blocks each belonging to a specific,
individual test case. The reason is obvious, we need to apply the information
about the status of a test case only on the runtime data belonging to this test.

At the very beginning of each test case, a function from Aardwolf runtime
intended for this purpose must be called with the identification (usually the
name) of the test case. This information then appears in the created trace.
Splitting is then very simple – all trace items beginning with the test case
identification item until the next one or the end of the trace belongs to that
test.

This “instrumentation” might be provided by an extension of the used
test driver or its wrapper. As already mentioned in the beginning of this
chapter, this task is also feasible to perform by the user manually. It would
usually involve just find&replace procedures and gluing them together with
Aardwolf’s runtime.

The tool also needs to know which test cases are passing and which are
failing. This information is, however, very easy to get. A test driver can output
it in a widely-used machine-readable format that is then loaded by Aardwolf.
In the worst case, it can be parsed from the human-readable output which is
always available.

44

2.3. Runtime

2.3 Runtime

Runtime component is currently very simple. Its only goal is to dump data
into an output file lazily created during the execution. These data are iden-
tifiers of executed statements (for execution trace), scalar values of definition
statements (for variable trace) and name of a test case (for dividing the whole
trace into traces per test case). The first two are used by an instrumented
program, whereas the last one must be handled by the integration with test
driver.

In the future, we might implement various space usage optimizations. For
example, [31] uses an artificial status variable to indicate whether a variable
has changed since last execution of the program point. However, this approach
introduces another challenge for frontend implementers since all function sig-
natures must change to pass status variables of the arguments. We might thus
need a different technique which would implement the status checking in the
runtime itself, completely hiding the details from the frontend.

2.4 Core

Core provides plugins with the underlying infrastructure. Its driver glues all
the necessary components together, from parsing the data over running the
plugins to present the results to the user. For plugins it offers several high-
level data structures (such control flow graph or def-use sets) and allows to
implement custom ones from the raw data.

2.5 Plugins

Plugins are extensions of Aardwolf that use core’s API to perform the actual
fault localization or associated tasks. They are supposed to be self-contained
and non-interacting with other plugins (at least not directly). Plugins may
implement their own data structures from those provided by the core if needed.

We divide plugins into three categories which form a kind of pipeline (which
is depicted in Figure 2.5):

(1) Data pruning. These are run before any fault localization. Their task is
usually to filter or prioritize the input space according to some criterion
in order to improve the results and reduce the computational costs. Ex-
amples of such plugins are test case prioritization and program elements
prioritization, described in Section 1.6 and Section 1.7, respectively.

(2) Fault localization. These are the plugins responsible for fault localization
itself. They output a sequence of program elements ordered descending
by their suspiciousness score.

45

2. Design

fault
localization

data pruning results
enhancements

test cases and pro-
gram elements prioriti-
zation, etc.

results combination,
confidence estimation,
etc.

Figure 2.5: Processing pipeline of the localization process.

(3) Results enhancements. These are run after the fault localization in or-
der to further enhance or refine the results or provide the user with
supplementary information. Examples include combination of results
from multiple localization techniques (Section 1.8) or producing various
metadata (Section 1.9).

We plan to extend this notion of a pipeline further by allowing the user to
specify its own pipeline, however complicated, in the configuration file. This
is quite a common practice for example in continuous integration setups in
today’s software projects.

The task of fault localization is to generate suspicious elements along with
some context and rationale. Their output is a list of items consisting of the
following information:

• Location. File’s numeric identifier and line numbers where the item be-
gins and ends. Note that this allows to express all reasonable levels of
localization granularity (statements, blocks and methods). These ex-
cerpts can be then copied to the terminal output or highlighted in an
editor. As a general rule, fault localization plugins should stick to the
statement level (if it is not against their very nature) and let grouping
and contextualization to be done by the results enhancements stage.

• Suspiciousness. The value of suspiciousness estimated by the technique.
This is used mainly for sorting the items which is handled by the core.
Furthermore, the core also normalizes the values to be in [0, 1] range in
order to present a unified scale across all fault localization techniques.
The actual absolute values are not relevant for the user, but the unified
scale may be important for results enhancement plugins.

• Root statement. An indication which the statement was originally the
reason for blaming the code block. This is mainly for implementa-
tion purposes as it can help some localization refinement techniques
to achieve their goal (consider for example combining the results from
multiple sources).

46

2.6. Configuration

• Rationale. Human-readable description of the reason why the technique
blames the item to be suspicious. It should be brief but helpful. More-
over, it can contain anchors into the source code that are presented to
the user in an appropriate way (imagine for example a rationale “As-
signment to variable foo is unusual at [1], it usually happens at [2].”).

Every fault localization plugin creates such a list. Results enhancement
plugins then have access to these lists and can refine or combine them. The
source of suspiciousness list can be identified by a name, and the behavior of
results enhancement techniques can depend on this information.

Along with the list of suspicious items, some additional metadata might
be provided. Since they are supposed for the user and not for some successor
analysis, they can take any form. As an example, a plugin can estimate
localization confidence as described in Section 1.9 and report this value to the
user.

2.6 Configuration

The cornerstone of the integration of Aardwolf within an existing project is
its configuration file. It has a textual, human readable form in the YAML
format9. The only two required items are script and plugins.

Script item specifies a sequence of commands needed for getting all data
that Aardwolf needs. At the very minimum, it should compile source files
with Aardwolf analysis and instrumentation extensions (in case of compiled
language) and execute the test driver while collecting the test results. This is
however very specific for each project. The compilation and testing machinery
already existing in the project should be reused as much as possible.

In plugins item, the user specifies the plugins which they want to use, op-
tionally giving them custom names and specifying their options. Examples of
possible options are name of the ranking metric for spectrum-based technique
or disabling certain program points for checking likely invariants. Since the
user can give a custom name to the plugin, there can be multiple instances of
the very same technique, only with different options.

Other optional configuration settings include output directory for data
generated for Aardwolf or the number of top-ranked elements which will be
displayed to the user (by default, this number is 10). We expect the number
of such settings to grow in the future depending on the user needs.

2.7 Design Applicability

In this section, we review a broad spectrum of methods proposed in the lit-
erature and speculate how they could be integrated into presented design of

9https://yaml.org/

47

https://yaml.org/

2. Design

Aardwolf or what would need to be added to Aardwolf in order to support
them. Our review cannot be exhaustive, but we use published surveys [3, 4, 47]
as our basis.

2.7.1 Slice-Based Techniques

Program slicing reduces the program domain which the programmer needs to
examine by filtering statements that do not affect a program point of interest
(e.g., return value where the error is revealed by a test case) in the means
of control- and/or data-flow. Such techniques do not – at least in their base
variant – assign any form of suspiciousness score to program elements, only
filter the irrelevant ones. Therefore, in Aardwolf design they would rather
serve as a helper technique in form of a data pruning plugin which would be
used together with an actual fault localization technique of choice.

Since Aardwolf frontends emit control flow graphs along with variable def-
use sets as well as execution trace, both static and dynamic slicing are possible
in Aardwolf. However, as the representation used is rather simplified, precise
data-flow analysis is either difficult or impossible. This is the case especially
for pointer analysis which is difficult in general [15].

This implies that slicing support in Aardwolf is limited to imprecise ap-
proximations. Our arguments why Aardwolf should not aim for including
more precise pointer analyses are following:

• Pointer analysis for dynamically typed languages is even more difficult.
Although such analysis would benefit static languages, we think that
future work should be rather invested into techniques that benefit all
types of languages.

• Enhancing intermediate representation produced by frontends and con-
sumed by the core with pointers-related information would complicate
development of frontends, especially for languages where this informa-
tion is inapplicable (e.g., dynamic languages, as already mentioned).

• Low-level pointer analysis might be unnecessarily hard and imprecise in
cases where the semantics of the source language, such as type system,
provide more specific and easier-to-obtain information (e.g., non-aliasing
property) about the data-flow behavior. Aardwolf intermediate repre-
sentation could be then augmented with such explicit, optional data-flow
information to help its reasoning.

2.7.2 Program Spectrum-Based Techniques

This fault localization family is thoroughly described in Section 1.3. Its im-
plementation is quite straightforward. However, our tool needs to be flexible

48

2.7. Design Applicability

enough to provide ways how to gather various types of spectra. We now as-
sess which types of spectra taken from [3, 8, 17, 19] are currently possible in
Aardwolf10.

The simplest type of spectra is coverage of code entities of various granu-
larity, mainly statements, basic blocks and methods. All these information can
be easily extracted from the execution trace and control flow graphs. Similar
situation is for branch hit spectrum that records how predicates are executed.
This information to some extent characterizes the behavior of the program.
Control flow information and execution trace in Aardwolf can be conveniently
used for gathering such spectrum.

An extension of branch count spectrum, called predicate count spectrum,
makes use of implicit predicates not actually present in the program. For
instance, [50] uses several predicates on numerical values at function returns
and variable assignments comparing them to zero or other constants. For this
use case, the variable trace can be utilized.

For method calls sequence hit spectrum, execution trace can be again used,
since each statement is associated with a function name which it is located in.
More detailed information is provided by path hit spectrum which records the
execution of inter-procedural, loop-free paths. It can be gathered from the
execution trace, the only difficulty is discarding loops from the trace.

Def-use pair (abbreviated as du-pair) spectrum represents the coverage of
a pair of statements where one statement uses a value of a particular variable
defined (i.e., assigned) by the other statement. Since the Aardwolf interme-
diate representation of programs contain definition and use information along
the statements, this type of spectra is also relatively easy to gather.

Time spectrum records the execution time spent in individual functions.
Currently, there is no way how to measure time using Aardwolf, but – if proved
valuable – runtime data could contain a timestamp of the logged item.

Although families like statistics-based techniques (e.g., [50, 51, 52, 53, 54,
55]) or machine learning techniques (e.g., [56, 57]) are justly distinguished in
the literature from the program spectrum-based family for their fundamental
difference in analysis, regarding their architecture and required data, they
usually fall into this category. Thus the Aardwolf design does not prevent
such techniques to be implemented. Some require additional information as for
instance [58], where execution frequency vectors over continuous sections of the
program are collected. These can be obtained from the Aardwolf intermediate
representation and execution trace as well.

10Many of mentioned types spectra can be divided into hit and count types. Their dis-
tinction is certainly important for the evaluation results, but not so much for their gathering.
This section therefore uses these types interchangeably.

49

2. Design

2.7.3 Program State-Based Techniques

Authors of [59, 60] proposed a technique which isolates the root cause of a
failure by contrasting program states, where program state is represented by
values of the variables. Their method was later extended further by some other
works. Although Aardwolf produces variable trace of values of some primitive
types, this is very limited (and presumably inefficient) compared to the data
processing of techniques in this family, which capture entire program state
with a memory graph containing all values and all variables of the program.

Moreover, these techniques are usually accompanied by failure-inducing
input generation and simplification, or replacing actual values of variables in
failing executions. Both are impossible in Aardwolf architecture since it con-
siders the test suite execution as given and immutable. However, we think
that experimenting with input generation and property-based testing11 would
be valuable for Aardwolf effectiveness, complementing the test cases prioriti-
zation techniques presented in Section 1.6. The goals of such generation could
be to find failing input as simple as possible and passing inputs close to such
failing one in terms of execution similarity.

2.7.4 Model-based Techniques

What connects the techniques from this group is that they create some sort
of model generated from the program and potentially the test suite execution
information. However, the type of the model may vary a lot. One example of
such technique is presented in this thesis in Section 1.4 and similar program
dependencies-based are implementable in Aardwolf to certain extent.

Other methods are however heavily dependent on the programming lan-
guage semantics [61] and require advanced static analysis techniques like ab-
stract interpretation [62] or symbolic execution [63]. There are also methods
(e.g., [64]) that make use of the counterexample found by a model checker
that is based on a formal specification of the program. These technique could
not be supported by our design, at least not naturally.

2.7.5 Mutation-Based Techniques

Techniques based on the information from mutation analysis modify program
elements and analyze which ones affect failing test cases more frequently than
others. This localization family does not fit into the design of Aardwolf at
all since the approach mutates the program, which we consider immutable12,
and is heavily programming language-dependent, which interferes with our
goal to have as uncomplicated frontends as possible. Therefore, this type of

11An automatic input generation with constraints specified by the tester and check-
ing if the output satisfies a specific property. A prominent example of such technique is
QuickCheck tool.

12Apart from the required instrumentation to gather runtime information.

50

2.7. Design Applicability

techniques are very unlikely to be supported in the future. Moreover, current
implementation does not support reacting on the execution results to adjust
the next steps in the fault localization process. This issue is discussed in the
following paragraphs.

2.7.6 Semi-Automated Techniques.

In order to improve localization effectiveness, there exist methods (e.g., [65,
55]) that incorporate the information given by the user who is interacting with
the tool, usually by specifying whether a suspicious element is actually faulty
or is healthy instead. Such techniques proceed in iterations, each step refining
their results based on the user feedback.

There is no obstacle in the architecture of Aardwolf preventing the inter-
active mode to be part of it per se. As far as the data gathered from static
analysis and test suite execution remain immutable, a technique is free to
take user feedback and adjust its results appropriately. However, it is not
supported by the current implementation.

2.7.7 Techniques with Learning Phase

Some approaches (e.g., [47, 48, 66]) require the learning phase, in which the
technique is run on a benchmark data with labels, where labels identify pro-
gram elements that are real root causes. The output of this phase is a trained
model which is then used in the deployment phase to perform the localization
or a related task for the user.

This split into two modes of operation is not conveniently available in
Aardwolf yet. But considering recent advances and popularity of machine
learning applications, we think that such addition with provided infrastructure
and data would be very significant enhancement for Aardwolf in the future.

2.7.8 Information Retrieval Techniques

Information retrieval techniques estimate suspiciousness of program elements
by analyzing the bug report, created by a user, and the source code. Contrary
to all families discussed so far, this approach does not use any execution infor-
mation. Aardwolf is currently designed around analysis of program structure
and runtime information from test suite execution. However, we consider it
to be trivial to employ an external source, such as bug report text, and plu-
gin developers could implement it by their own. Source code is accessible by
using the absolute path to the source file which is present in the intermediate
representation.

51

2. Design

2.8 Conclusion

We argue that Aardwolf can support a decent portion of techniques. Taking
the statistics from [3, 4], it is the majority13 of methods published in the
literature. Therefore it fulfills our goal to be general and widely applicable.

Language independence – another goal of ours –, however, poses a ma-
jor limitation for Aardwolf applicability because of the absence of way how to
mutate the program and its execution, since it is highly dependent on the pro-
gramming language and the runtime. There are other extensions that would
increase the applicability of Aardwolf which are not prevented by its current
design: mainly providing infrastructure and data for pre-training phase to ease
the support for machine learning approaches and implementing an interactive
mode to be able to gather user feedback for adjusting the results.

Aardwolf is by default highly extensible with multiple ways how to extend
it. First, by implementing a new frontend, one brings the whole fault localiza-
tion groundwork for another programming language right away, bringing the
support to wider range of users. Second, new localization or related techniques
can be implemented in the form of plugins, building on top of already imple-
mented framework without the need to deal with general and common things
like instrumentation or user interface. The results presentation is the third
dimension where Aardwolf can be extended, providing support for different
editors or IDEs, or even continuous integration services, etc.

Last but not least, Aardwolf addresses the recommendations of user studies
with first-class support for giving prediction rationale, contextualization, and
producing metadata, aiding the reasoning about the computed results. This
and its focus on convenient integration with existing projects delivers good
user experience and gives Aardwolf the potential for wide adoption.

13Spectrum-based techniques is the most popular category by large margin in the litera-
ture. Support for families like model-based is dependent on their specific requirements.

52

Chapter 3

Implementation

This chapter discusses details of the implementation of the Aardwolf fault
localization tool. Individual sections describe corresponding components pre-
sented in the Chapter 2.

We implement most of our tool in Rust programming language. The main
exception is frontends which we implement in technology that is most suitable
for given task, in particular, C++ for LLVM frontend and Python for Python
frontend. Rust performance is comparable to C/C++, which helps making
Aardwolf scalable, but on the other hand, is designed to eliminate many classes
of bugs at compile-time (mainly memory safety), hence it promotes reliability.

Aardwolf binaries can be currently built from source but we plan to provide
more convenient ways of its distribution. All code is publicly available at
https://github.com/aardwolf-sfl/aardwolf. To ease the building process,
we provide an installation script written in Python that checks all required
dependencies, compiles individual components, and copies the artifacts to
default or specified directory.

3.1 Frontends

Both frontends we implement in this thesis have very similar structure from
high level perspective. Essentially, there are three components: program anal-
ysis, static data generation and program instrumentation. The most complex
one is for program analysis whose main goal is to identify the statements
and variable access trees that the statements use and assign to. This is the
most language-dependent part of the frontend. Static data component then
just takes the result of program analysis and writes it into relevant files. In-
strumentation phase instruments identified statements with the calls to an
Aardwolf runtime.

In practice, the language frontends usually work on a single module (often
represented by a file). A program is then composed from multiple modules.
In order to guarantee the uniqueness of statement identifiers across the whole

53

https://github.com/aardwolf-sfl/aardwolf

3. Implementation

1 # AARD: function: __main__

2

3 # AARD: #1:1 -> #1:2 :: defs: %1 / uses: [@1 4:1-4:18]

4 condition = False

5

6 # AARD: #1:2 -> #1:3 :: defs: %2 / uses: [@1 7:1-7:6]

7 n = 3

8

9 # AARD: #1:3 -> #1:4, #1:5 :: defs: / uses: %1 [@1 10:7-10:16]

10 while condition:

11 # AARD: #1:4 -> #1:3 :: defs: %2 / uses: %2 [@1 12:5-12:11]

12 n += 1

Figure 3.1: An excerpt of a test from the Python frontend.

program, they are composed from two numbers: statement unique number
in the module and a file identifier of the source file. We use inode number
of the file obtained from POSIX standard compatible stat function on Unix
systems and file index obtained from GetFileInformationByHandle function
on Windows system. We consider this to be reasonably sufficient platform
compatibility.

To aid the development of a frontend, a Python package is created pro-
viding several useful tools such as a binary format parser which transforms
Aardwolf raw data into a human-readable form, which is especially useful for
debugging, or a framework for testing static analysis and tracing behavior of
the frontend. The tests are written as short code snippets in the language for
which the frontend is written, with human-readable Aardwolf data items in
the comments. An excerpt of a test of static analysis from Python frontend
is depicted in Figure 3.1. The framework also takes care of normalizing the
actual raw data, for instance changing file system-based file identifiers to the
sequential one-based index.14

Based on our experience while developing both frontends, we recommend
to future developers to work closer to the source level (as Python framework
does) rather than on a low-level representation (LLVM frontend case). The
advantage is that high-level statements could be much more directly identified
and exact and complete location information exists.

3.1.1 LLVM Frontend

LLVM frontend is implemented as multiple passes for LLVM compiler and
operates over its bytecode (sometimes referred to as bitcode). This interme-
diate representation of programs is low-level – being closer to real machine
code than high level languages –, but expressive and lightweight at the same

14This approach is inspired by FileCheck tool used for verifying outputs in LLVM project.

54

3.1. Frontends

time. An LLVM “program” is composed from instructions like “store this vir-
tual register to memory” or “jump conditionally to one of these basic blocks”,
and rich metadata such as data types or source level information. For proper
description we refer to the official Language Reference Manual15.

The program analysis is a pass running on the entire module as it needs
to gather the information about the whole program (or the part of it rep-
resented by the module). It iterates over all instructions in all functions
with bodies and, if the instruction represents a statement (e.g., StoreInst,
BranchInst, etc.), the values it uses, its output variable (if any), and its lo-
cation in the source code are obtained. The most interesting is finding which
variables a statement uses. From the root instruction a graph-like traver-
sal backwards over def-use edges is performed until all valid access trees are
reached. For instance, reaching AllocaInst represents finding a scalar, local
variable, whereas reaching GetElementPtrInst represents either structural or
array-like access and the traversal must continue to find its base (instance or
array) and accessors (field or variables used in index). Note that this process
requires debug symbols enabled when emitting the LLVM bytecode.

Instrumentation is another module pass. It just iterates over previously
identified statements and adds the tracing calls and (if applicable) the value of
the statement output. Note that for statements like assignment and function
calls, runtime call must be inserted after the statement, whereas for control
flow statements, which are terminators of basic blocks, it must be inserted
before them, because otherwise the basic block would be invalid, having an
instruction after its terminator.

All Aardwolf passes are implemented in both legacy and upcoming pass
manager16. The purpose of legacy implementation is to use it directly within
Clang (the C language compiler based on LLVM) which still uses the legacy
pass manager at the time of writing this thesis. The upcoming pass man-
ager interface is future-proof and allows to conveniently implement custom
command line application on top of the passes.

The preferred way of frontend usage with Clang is as follows (assuming
Linux environment and omitting everything project-specific):

clang -Xclang -load -Xclang libAardwolfLLVM.so \

-c -g -o <program>.o <sources>.c

clang -o <exec> <tests>.c <program>.o libaardwolf_runtime.{so,a}

where libAardwolfLLVM.so is the shared library composed from all Aard-
wolf’s LLVM passes and libaardwolf_runtime.{so,a} is the Aardwolf C run-
time library (either dynamically or statically linked). The arguments -Xclang

-load -Xclang <library> instruct the Clang compiler to use given pass dur-
ing the compilation.

15https://llvm.org/docs/LangRef.html
16At the time of writing this thesis, LLVM is in the middle of the phase of moving from

the old pass manager to the new one.

55

https://llvm.org/docs/LangRef.html

3. Implementation

One disadvantage of using LLVM is that its location information does not
include the whole span (beginning and end) of the instruction in the source
code, only a single position. For this reason, the location details of suspicious
elements is not as precise and user-friendly as we would like. However, we
consider it a good enough approximation.

Although LLVM is used by multiple real-world languages, we expect that
the current implementation would not work with them out of the box and
would require various tweaks and feature additions. Regarding C language, it
correctly works on test inputs that we created and checked. However, support
for the whole standard would require to explore what LLVM IR Clang compiler
generates on every syntactic construct allowed by the standard and check if
our passes handle it correctly, which is currently beyond our means.

3.1.2 Python Frontend

Python frontend heavily utilizes built-in module ast (abstract syntax tree).
This guarantees full support for complete Python syntax from parsing per-
spective as well as maintenance of this module in the future. Note that we use
Python in version 3.8 where several changes were introduced and therefore
our frontend only supports this version of Python. However, adding support
for previous minor versions should be fairly trivial17. We used to use also
the built-in module for symbol tables (symtable), but there were certain lim-
itations in the behavior and exposed API. Thus we had to create a custom
implementation tailored to our needs.

The class responsible for program analysis implements ast.NodeVisitor

– a visitor pattern-based interface for traversing the AST of a program. Rea-
soning about individual nodes locally is very convenient. Each visitor method
essentially visits its children and, if the node represents a statement (for in-
stance, assignment or conditional), it records the node along with its uses and
definitions. For outputting the set of successors for each statement, we imple-
ment a very simple CFG construction used in the visitor. To appropriately
distinguish between different variables of the same name, we use symbol tables
generated from the tree.

The instrumentation class implements ast.NodeTransformer which has
the same interface as NodeVisitor. The only difference is that it modifies the
tree depending on the return value of the visitor methods (e.g., by returning
a modified node). All visitor methods just visit their children and instru-
ment the node using one of the two instrumentation techniques. Statement
instrumentation is applied on nodes inside a list of statements (e.g., inside a
function). In such case, instead of returning the original node alone, a runtime
call is returned along with it and is appended to the list. Note that we need to
distinguish between non-terminating and terminating statements and use the

17The main change in 3.8 is deprecation of several AST node classes and replacing them
with a new one covering all the cases.

56

3.1. Frontends

valid order. Expression instrumentation is applied on expressions (for which
we cannot just add a new statement to a list). Expressions are logged using a
call to write_expr(expr, id), which logs the id and returns the expression.
This way, the visitor method can still return a single node – a requirement
of the transformer class – but tracing the statement in the execution as well.
One interesting case is function calls, which need to be traced before calling.
Hence the expression passed to write_expr is the function itself and it is
called after it is returned from this runtime call.

The Python frontend uses its own runtime implementation. Although
wrapping the C library is theoretically possible, the current simplicity of run-
time outweighs the costs of such wrapping. If the official runtime implements
some complicated optimizations in the future, this choice might be reconsid-
ered.

The reference and most-widely used Python implementation is CPython.
Although it compiles the sources when executing a program under the hood,
and for optimized package distribution, from the user’s perspective it acts as
an interpreter. Therefore, there is not a distinct compilation step as in C case.
In order to analyze and instrument user’s source code, we adopt so-called meta
import hooks18 feature provided by Python. This technique is based on imple-
menting a custom module finder which can specify a custom module loader
for modules being imported during runtime. Aardwolf provides an install

function which accepts a name or module specification of the user’s package
to test. This function should be called at the very beginning of the test suite
execution as it injects a custom finder which, if encounters an import from
the specified package, loads the file while analyzing and instrumenting it first.
The approach intentionally works only for source code-based packages (that
is, not somehow-compiled ones), since we need the source level information.

A very common practice in testing Python programs is to use assert

statements that raise an exception when the condition is not met. Such ex-
ception is caught by a test driver and reported to the user as failed test. We
thus provide a very convenient way how to integrate Aardwolf with such test
suites using wrap decorator which is applied on test case functions in the suite.
Before running the test case function, it logs its name using the corresponding
runtime call. Then, if the test raises an exception, the test status is considered
failing and as such is logged, while reraising the original exception to be con-
sumed by the test driver. If the function finishes successfully, the test status
is considered to be passing.

To avoid annotating every test case with the wrap decorator, we pro-
vide wrap_module function as well, which automatically wraps all functions
in the module. Because not every function in the module is necessarily a
test, wrap_module allows to optionally filter them in several ways (e.g., using
regular expressions or specifying a set of names to be ignored).

18https://docs.python.org/3/reference/import.html#import-hooks

57

https://docs.python.org/3/reference/import.html#import-hooks

3. Implementation

However, this is not the only way how to use Aardwolf in Python. For
example, a popular test framework pytest19 offers many hooks which can
influence the test suite execution. Utilizing these hooks, one can trace the
test names as well as their results.

3.1.3 Data Formats

There are three types of files that Aardwolf uses for its working: data produced
by static analysis performed by the frontends, runtime information produced
by running the test suite, and test results taken from the test driver.

For static and runtime data, a custom binary format is used. The reason
is twofold: memory efficiency and easy and fast parsing, in comparison with
a textual form. The files contain all information described in Section 2.1 in
a compact structure. At the moment, we do not consider it stable and will
likely be making breaking changes. However, we expect to stabilize it in the
future and use a proper versioning schema with backward compatibility.

We are not aware of any test results output format which would be com-
monly used across different ecosystems. It is always dependent on the partic-
ular test driver. The output is usually in a human-readable form, sometimes
accompanied by rich metadata such as value difference or similar. In IDE-
integrated test drivers, it is presumably in a machine readable format. The
Aardwolf core is able to parse a simple format we chose, which consists of each
test case on an separate line, prefixed with either PASS: or FAIL: . It is a
compromise between human readability and simple parsing. As a side note,
this exact format is used by ManyBugs benchmark dataset [67]. There are two
ways how to integrate test drivers not directly supported by Aardwolf core (as
for example exception-based runners are by the Python frontend). Either a
custom results reporter is developed and plugged into, if the driver supports
that (preferable), or a translation post-processing tool is implemented and
used in the script in project-specific configuration file.

3.2 Runtime

The role of runtime is to record execution information to the trace file and thus
is used by instrumented program for statements and values and test driver for
dividing the entire traces into individual test cases by logging their name. The
whole trace is written to a single file which is created on the first call to any
of the functions provided by the runtime. That is, every such function first
checks if the file handle for the trace is already available to be written to, and
if not, it is initialized appropriately. A usual practice is to initialize all data
structures of the logging mechanism with an initialization call inserted at the
beginning of the program. However, the target program that we instrument

19https://docs.pytest.org/

58

https://docs.pytest.org/

3.3. Core

might represent a library without the execution entry point, so we decided to
use this lazy approach.

3.3 Core

Core is implemented as a command line application written in Rust program-
ming language. The driver first finds the project-specific configuration file
named .aardwolf.yml20 by default, but this name can be overridden using
the command line argument. The directory where the file is located is consid-
ered as the project root. It then proceeds with the following steps:

(1) Output directory preparation. The output directory can be specified in
the configuration file and is relative to the project root. By default, its
value is .aardwolf.

(2) Script execution. The script for generating data required by Aardwolf
is retrieved from the configuration file and a temporary file with the
script contents is created. The file is then executed with bash shell21.
The script command is populated with several environment variables to
properly generate the data or access Aardwolf libraries, mostly absolute
paths to directories (e.g., output directory) or files (e.g., expected path
for file with test execution results).

(3) Data loading. After script is executed, we expect that all required data
files are generated. All of them are loaded and parsed into internal
structures which greatly resemble the raw format of the data files. Note
that there might be multiple files containing static analysis data, which
might be even nested in directories. This is because the frontends usually
work on per module basis and create corresponding file for each module
separately.

(4) Plugin initialization. Plugins, as specified in the configuration file, are
initialized along with their options. Each plugin item is identified by its
name (if omitted, the name of the plugin itself is used).

(5) Fault localization. Initialized plugins are then used to perform the fault
localization. As described in Section 2.5, there are three phases. In
the real implementation, plugins are not categorized into these phases,
instead, all plugins implement all three phases, possibly doing nothing in
those which they are not interested in. This simplifies the management
and allows to use all capabilities of Aardwolf if needed.

20Prefixing configuration files with dot and putting them inside source code repositories
is a common practice nowadays.

21Bash is common shell for Linux system, and is officially available in Windows Subsystem
for Linux since Windows 10.

59

3. Implementation

Figure 3.2: A sample of terminal output from Aardwolf.

(6) Results presentation. Calculated results are in the end presented to the
user. At the moment, Aardwolf implements two interfaces – a rich ter-
minal output (a sample is depicted in Figure 3.2) and machine readable
results in JSON format which can be consumed by external tools.

The memory management of raw data heavily utilizes an arena-based al-
location, where arena is a contiguous block of memory to which new items are
appended sequentially and identified by a space-efficient numeric identifier.

As a preliminary optimization driven by very high memory usage of Aard-
wolf during our experiments, we improved two things in our otherwise naive
implementation. We limit the size of all arena indexes to 4 bytes. This is
not only optimization compared to our previous implementation (three times
smaller execution trace), but is also more efficient than using references, which
would be of double size on today’s most common 64-bit platforms. The sec-
ond optimization is compression of data obtained from variable trace when

60

3.4. Plugins

loading them into memory. Consider for example a 64-bit variable which is
often zero. Storing it always as 8 bytes is significant waste of space. If the
actual value of a variable allows it, we therefore store it in a more compact
form and properly decompress it when the actual value is needed. This comes
at slight computational cost, but reduces the memory usage, although actual
savings are very dependent on the actual behavior of the program.

Plugins do not use the raw data parsed from files directly, instead, we
use a concept we call “queries”. A query is a high-level data structure (e.g.,
control flow graph or statement coverage spectrum) which is created from raw
data, possibly using other queries as its dependencies. We encourage plugin
creators to implement their own queries if necessary. All these high-level data
structures are computed lazily and are memoized. In the future, we might
implement a cache flushing mechanism in case of memory usage stress. The
queries are stored using a key created from type system level information.

During the whole computation, a process log is maintained by the driver.
It contains info and debug messages, warnings and errors, and time mea-
surements of various steps. Such information is useful for both users and
developers of Aardwolf ecosystem.

3.4 Plugins

In the current implementation, all plugins are part of the repository and com-
piled into the Aardwolf executable. Nonetheless, all of them are initialized
and used through a common interface. Once the interface is stable enough,
we will implement the infrastructure for loading the plugins dynamically as
shared libraries in order to achieve high level of flexibility by allowing users
to use new, independently developed plugins without the need of recompiling
Aardwolf.

The API provided to the plugins is intended to be capable of doing all
the tasks described in Chapter 1. We also strive to make it as convenient as
possible and to reduce the implementation efforts for the plugin developers.

61

Chapter 4

Experimental Evaluation

The purpose of this chapter is to demonstrate quantitative analysis about
Aardwolf’s effectiveness and performance and to illustrate how much effort is
needed for integration to an existing project. As the objective of this thesis is
an implementation of an extensible and user-friendly tool, and not to propose
a new localization method, we refer to other literature for more thorough
evaluation specific to fault localization methods. To show that our tool is
functional, we present the results for a widely-used dataset.

We publish openly our infrastructure for all experiments performed in this
chapter to provide reproducibility. Everything is wrapped in a Docker22 image
and thus is executed in an isolated and already set-up container, independent
on the host environment. It is available at https://github.com/aardwolf-

sfl/evaluation.

4.1 Localization Effectiveness

In this section, we evaluate our tool on a standard dataset with common
evaluation metrics and present the results. Its main purpose is to compare
our implementation with results published in the original literature where the
techniques were proposed.

4.1.1 Evaluation Metrics

Given a fault localization technique and a program consisting of n executed
elements (statements, methods, etc.) with a single known faulty element ef ,
and a test suite for the program, a numerical measure of the effectiveness of
the fault localization technique can be computed as follows:

(1) Run the technique on the program with the test suite to produce the
list of elements sorted by their suspiciousness.

22https://www.docker.com/

63

https://github.com/aardwolf-sfl/evaluation
https://github.com/aardwolf-sfl/evaluation
https://www.docker.com/

4. Experimental Evaluation

(2) Let nf be the rank of ef in the list of elements.

(3) Compute a selected metric using nf and n to evaluate the effectiveness
of the technique.

There are multiple scoring metrics that have been proposed in the liter-
ature. The most commonly used one is EXAM score [8, 10, 3], which is the
percentage of program elements that have to be examined until the faulty
element is reached. The formula is

EXAM =
nf

n
× 100 % . (4.1)

This metric represents the developer’s effort to find a fault using the list
produced by the technique. The score value is relative to the program size,
the lower the value of EXAM score is, the better.

To address the findings and recommendations of published user studies [7,
9], an absolute scoring metric called Hit@k [45] was introduced. It indicates
the number of bugs that are discovered when inspecting top k elements in the
ranked list. Mathematically speaking, the formula is as follows:

Hit@k =
1

m

m
∑

i=1

✶k,ni
f

× 100 % , ✶k,ni
f

=

{

1 if ni
f ≤ k,

0 otherwise,
(4.2)

where m is the number of evaluated program versions and ni
f is the rank of

faulty element in the list when evaluating i-th program version.

According to [6], by far the most preferred maximum number of examined
statements by practitioners is 5. In the literature [45, 47], number 10 is com-
monly used as well. Therefore we use Hit@5 and Hit@10 in our evaluations.

4.1.2 Subject Programs

We use Siemens dataset [68] for the evaluation. It is the most frequently used
benchmark for this task in previous studies [3, 4]. Presenting our results on
this benchmark thus allows to directly compare our work with the literature.

The suite was downloaded from https://sir.csc.ncsu.edu. It consists
of seven small programs whose characteristics are summarized in Table 4.1.
These programs are simple, yet complex enough to be considered realistic. The
artificial faults were seeded for experimental purposes by the dataset creators.
Each one contains single fault per “version” and is accompanied by a large
test suite. For more thorough description we refer to the original article [68].

In works which we compared our results with, eight versions were omitted
for one of these reasons:

• There were no syntactic differences in C file between the faulty and
corrected versions of the program. That means that the fault was in a

64

https://sir.csc.ncsu.edu

4.1. Localization Effectiveness

Table 4.1: Characteristics of Siemens dataset.

Program SLOC Faulty versions Tests Description

replace 512 32 5542 pattern replace
tcas 141 41 1608 altitude separation
print_tokens 472 7 4130 lexical analyzer
print_tokens2 399 10 4115 lexical analyzer
schedule 292 9 2710 priority scheduler
schedule2 301 10 2650 priority scheduler
tot_info 440 23 1052 information measure

header file. Although a fault localization tool should be able to detect
these non-executable parts of a program, this is the limitation of majority
of techniques.

• Faulty versions caused segmentation fault when executed on the test
suite.

• None of the test cases failed when executed on the faulty version of the
program.

In particular, it was versions 8, 14, and 32 of replace, versions 4 and 6 of
print_tokens, version 9 of schedule and schedule2, and version 38 of tcas. For
reasonable comparison, we omit these versions as well.

4.1.3 Faulty Elements Determination

In order to evaluate a fault localization technique, we need to determine which
elements in the program are faulty. This is usually done by comparing the
changes between the buggy version of a program and its corrected version.
We follow principles described in [10] – a large replication study evaluating
fault localization techniques on real-world faults.

The standard technique for evaluating fault localization is to blame the
elements which were modified or deleted in the developer patch. In cases
when the patch consists of code additions only (that is, faults of omission),
a fault localization technique should report the statement that immediately
follows inserted statement.

There are multiple complicated cases which cannot be determined in such a
straightforward way. We give their overview and commentary in Appendix A.

Real-world bugs usually span multiple statements [10]. There are various
ways how to approach such cases. We follow the approach in existing work [10,
47] and consider a fault localization technique successful if it detects any one
of the faulty elements. This assumes that by pointing out one statement, the
developer understands the bug and can infer the other faulty statements.

65

4. Experimental Evaluation

4.1.4 Elements with the Same Suspiciousness Score

It is common that a fault localization technique assigns the same suspicious-
ness score to multiple elements. For our evaluation, we assume that a fault
localization technique outputs elements with the same suspiciousness score in
an arbitrary order (although it does not need to be the case, as for example
in [13]). In the presence of such ties, the total number of elements that the
developer needs to examine varies randomly.

To address this issue, two levels of effectiveness are computed [3]. Consider
a portion of the ranked list consisting of elements with equal suspiciousness,
containing the faulty element, which starts at rank nbest and ends at nworst

inclusively. When using these two ranks, two levels of presented metrics,
EXAM and Hit@k, are produced. Since ties make the actual effectiveness of
fault localization more uncertain, by comparing both levels we can assess such
uncertainty for a given fault localization technique.

4.1.5 Results

Figures 4.1 and 4.2 show the cumulative results for different localization fam-
ilies and different ranking metrics of SBFL, respectively. Both EXAM and
absolute rank (Hit@k, where k is on the horizontal axis) metrics are plotted
for the best and worst case. The charts illustrate how large part of the pro-
gram would a developer need to examine before finding a fault. The “step
levels” in absolute rank plots are caused by different sizes of the programs
because, for an unsuccessful prediction, we set the rank to be equal to the
number of executed statements.

The very first observation in Figure 4.1 is that using likely invariants is
not very successful. This is consistent with negative results of [32] which
experimented with invariants on Siemens dataset as well. However, successes
of [34, 33] promise that, when more sophisticated inference and filtering are
implemented, this type of analysis might become useful. The results might be
also skewed such that even when it was not effective in the sense of quantitative
measurements, its detailed information could be valuable for the developer and
lead to the successful end.

Comparing spectrum-based family represented by D∗ with probabilistic
dependence technique gives us that the former is slightly better than the latter.
This is especially interesting when their computational costs are contrasted
(see Section 4.3 for details). However, the cause for this result might be, at
least partially, our imperfect implementation. This is especially the case for
data-flow analysis which is very primitive in our current state.

Figure 4.2 visualizes the effectiveness of different ranking metrics in SBFL
family. Extreme cases are Wong1 and Overlap which follow almost identical
line (therefore Overlap is not visible). Both metrics have enormous deviation
between best and worst cases. The explanation is that they generate large

66

4.1. Localization Effectiveness

0% 20% 40% 60% 80% 100%

EXAM (best)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

EXAM (worst)

0 100 200 300

Absolute rank (best)

0%

20%

40%

60%

80%

100%

0 100 200 300

Absolute rank (worst)

D
en

si
ty

o
f

d
is

co
v
er

ed
fa

u
lt

s
DStar Probabilistic Dependence Likely Invariants

Figure 4.1: Localization effectiveness of different families. The lines rep-
resent how many bugs are found when inspecting given part of the program
cumulatively.

clusters of statements which share the same suspiciousness score. The case of
Overlap is consistent with findings in [10] where real faults are used. For this
reason we consider them both rather ineffective.

Another pair of similarly behaving metrics is Zoltar and Op. They are
both more effective than the others and their best-worst range is reasonable.
In [10] however, Zoltar is slightly worse than Ochiai and Tarantula which,
together with D∗, form another group of similar metrics. This might indicate
that Zoltar and Op success is biased by evaluation on the Siemens dataset.

The numeric results are summarized in Table 4.2. When using Op and
Zoltar, one would be able to successfully locate more than half of the bugs
after inspecting at most 10 statements in the best case, and almost 40% in
the worst case.

From Hit@k results for probabilistic dependence we can conclude that
when the technique is successful in discovering the fault, it is very confident
about its prediction. On the other hand, if it is not the case, it is rather unsure
as the deviation in its EXAM score suggests.

There is however no superior technique which would be always better than
others. This fact is illustrated in Figure 4.3 visualization, where EXAM scores

67

4. Experimental Evaluation

0% 20% 40% 60% 80% 100%

EXAM (best)

0%

20%

40%

60%

80%

100%

0% 20% 40% 60% 80% 100%

EXAM (worst)

0 100 200 300

Absolute rank (best)

0%

20%

40%

60%

80%

100%

0 100 200 300

Absolute rank (worst)

D
en

si
ty

o
f

d
is

co
v
er

ed
fa

u
lt

s

DStar Jaccard Op Ochiai Overlap Tarantula Wong1 Zoltar

Figure 4.2: Localization effectiveness of different ranking metrics. The lines
represent how many bugs are found when inspecting given part of the program
cumulatively.

Table 4.2: Overall results. In case of EXAM score, the lower is better, while
in case of Hit@k, the opposite is true. We highlighted techniques which were
most effective in our evaluation.

Technique EXAM Hit@5 Hit@10

D∗ 17.65 24.76 35.54 23.14 43.80 33.88
Jaccard 20.63 27.74 33.06 19.83 38.02 31.40
Op 14.40 22.10 48.76 28.93 55.37 38.84
Ochiai 17.71 24.83 35.54 23.14 42.98 33.88
Overlap 7.48 57.86 93.39 0.00 93.39 0.00
Tarantula 17.52 24.64 35.54 23.97 44.63 34.71
Wong1 7.49 57.86 93.39 0.00 93.39 0.00
Zoltar 14.29 21.98 48.76 28.93 55.37 38.84
Prob. Dep. 27.87 40.39 14.05 13.22 18.18 18.18
Likely Invariants 91.09 91.14 3.92 3.92 3.92 3.92

68

4.1. Localization Effectiveness

v1 v2 v3 v4 v5 v6 v7 v8 v10

Version

0%

20%

40%

60%

80%

E
X

A
M

DStar

Probabilistic Dependence

Best

Worst

Figure 4.3: An example effectiveness “profile” of different families on sched-
ule2 program.

of spectrum-based and probabilistic dependence techniques are presented for
different faulty versions of the same program. As can be seen, one is better
than the other for some bugs while it is the opposite in other cases. There is
therefore potential for results combination techniques, whose success is demon-
strated in [47, 45].

Tabular comparison of our results and the numbers published in the orig-
inal literature is given in Table 4.3. We compare Tarantula [69] with our
implementation of SBFL with this metric and RankCP [13] which is the basis
for our probabilistic dependence plugin. Two numbers for RankCP are given
because the method is designed to work on a single failing test case originally
and thus the results are shown for the most and the least successful test case.
Our implementation utilizes all failing test cases by joining their scores and
choosing the most suspicious prediction for each statement. Authors of [69]
specifically mention that they use the worst rank in case of ties and hence we
present the equivalent. This issue is not discussed in [13].

As can be seen, our implementation of Tarantula is comparable to the
original one and the differences are caused by different faults determination
methodology and statement coverage construction. On the other hand, com-
pared to the results presented in the original publication, our implementation
of probabilistic dependence method is inferior and suggests that improvements
should be made.

We emphasize that the numbers are only of tentative nature because there
are few aspects that make this direct comparison questionable. While the de-
nominator in EXAM score formula (Equation (4.1)) is the number of executed
statements for Tarantula and our results, in case of RankCP, it is the number
of nodes in corresponding PPDG.

Although not extremely, the implementation details might cause differ-

69

4. Experimental Evaluation

Table 4.3: Comparison of the methods with their original literature. The
table shows percentage of located faults for given EXAM range. Our results
are marked with † symbol. RankCP is the name of fault localization algorithm
used in [13] which we utilize in probabilistic dependence plugin. Original
results for Tarantula are taken from [69], and for RankCP from [13].

EXAM Tarantula RankCPbest RankCPworst Tar.† Prob. Dep.†

0-1 % 13.93 41.94 17.74 14.05 9.09
1-10 % 41.80 31.45 27.42 31.40 23.14

10-20 % 5.74 13.71 25.81 10.74 16.53
20-30 % 9.84 2.42 4.84 14.88 4.13
30-40 % 8.20 2.42 4.84 9.92 6.61
40-50 % 7.38 5.65 8.06 2.48 1.65
50-60 % 0.82 1.61 2.42 0.83 3.31
60-70 % 0.82 0.00 5.65 0.83 0.00
70-80 % 4.10 0.80 2.42 9.09 12.40
80-90 % 7.38 0.00 0.81 0.00 7.44

90-100 % 0.00 0.00 0.00 5.79 15.70

ences in the statements count and form. For example, authors of Tarantula
use Gcov coverage tool which monitors execution of source lines regardless of
the syntactic structure.

Both [69] and (presumably) [13] use simply differing lines as the predictor
for faulty statements. On the other hand, we follow more complex and precise
methodology introduced by [10] (see Subsection 4.1.3 for details). We publish
our labels in our public repository for reproducible evaluation.

All these imperfections accent the need for a general framework which
would enable more fair and meaningful comparisons between individual tech-
niques. To be such a framework is one of the Aardwolf’s goals as it encourages
extensibility while being the common denominator for program analysis and
instrumentation and evaluation methodology.

4.2 Integration with Existing Projects

In this section, we describe how we integrated Aardwolf into two non-trivial,
real-world software projects. Convenient integration is one of the goals of ours.
The experience gained from this effort was valuable for improving this aspect
of user-friendliness and the tool in general, and convinced us that it really has
the potential to be incorporated into a project with a reasonable effort.

70

4.2. Integration with Existing Projects

4.2.1 LibTIFF

The first software project in which we attempted to use Aardwolf is LibTIFF
– a library providing support for the Tag Image File Format (TIFF), a widely
used format for storing image data. We downloaded the sources from the of-
ficial repository at https://gitlab.com/libtiff/libtiff in its most recent
version at the time of writing the thesis. The project consists of more than
61,000 source lines of C code, and has around 140 tests. The test suite might
be best characterized as system tests where each test calls whole programs in
a sequence (LibTIFF consists of many small utility programs) [67].

The project uses multiple build systems, mainly CMake23 and Autoconf24.
We further describe configuration for Autoconf, but we expect that modifying
the CMake build would be very similar.

First, a flag --with-aardwolf was introduced into configure.ac file,
which serves as a macro-based template from which a real configure script is
generated. If the flag is enabled, then the script checks if the selected compiler
is Clang (as we use LLVM frontend) and if a dummy program can be compiled
and linked with required compiler flags and Aardwolf libraries. The libraries
need to be available either system-wide or inside the directory given by user as
the argument. If any of these check fails, the whole configuration is terminated
with error.

The biggest obstacle turned out to be libtool program which is used by
LibTIFF’s build process for compiling and linking the sources. Its purpose is to
help with linking of shared libraries and one of its features is reorganizing the
command line arguments to be sent to the compiler. In particular, it groups
library linking flags together and puts them after the compilation flags. All
arguments prefixed with -l are considered to be for linking libraries. However,
this applies also to -load used in the pair with -Xclang. Obviously, when
they are torn apart, it stops working. We solved this issue by patching the
libtool script where we considered -load flag to be a special case.

To dump the name of a test to the trace file, a simple utility program
distributed with Aardwolf is used. If it is given an argument, it adds it as the
test name into the trace file. For simplicity, we added this call into the test
driver script that is automatically generated by Autoconf. A much more clean
and robust solution would be to use its custom test driver API, where a simple
wrapper would log the test case name and then pass on the test execution to
the default driver.

The last step is writing the .aardwolf.yml file. In the script, the project
is configured to be built while enabling the Aardwolf using new flag we intro-
duced, and setting the compiler to be Clang. Path to Aardwolf libraries is set
using the variable passed into the script by the tool. Compilation of source
files is triggered using make with compiler flags overridden with those for anal-

23https://cmake.org/
24https://www.gnu.org/software/autoconf/

71

https://gitlab.com/libtiff/libtiff
https://cmake.org/
https://www.gnu.org/software/autoconf/

4. Experimental Evaluation

ysis and instrumentation. Trace file is initialized by mentioned utility and the
test suite is executed using make check. Finally, test results are obtained
by extracting them from .log files using a one-line script. The whole pro-
cess closely follows the standard test execution procedure as described in the
project documentation. The only extensions are patching the libtool (might
be fixed in a future version) and test driver (unnecessary if a custom driver is
used), initialization of trace file using a single command, and extracting the
test results using a simple one-line script.

As everything is activated conditionally only when --with-aardwolf is
set, it does not interfere with the ordinary test suite execution. Therefore it
does not affect the project development routines and conventions and only
brings support for an automated fault localization if requested.

The process of integration fully utilizes the build systems used ordinarily in
the project and only modifies certain bits of it. The biggest struggle happened
to be issues with -Xclang -load in libtool. In the end, when the setup is done,
to use Aardwolf one can just run the executable installed on their system and
everything works out of the box. The performance implications for the test
suite execution are discussed in Section 4.3.

4.2.2 Matplotlib

We chose matplotlib as the second project. It is a widely-used, comprehensive
library for creating visualizations in Python25. The sources were downloaded
from https://github.com/matplotlib/matplotlib. The library contains
almost 70,000 source lines in Python. Note that there is also a couple of
thousands of C++ code. One of the advantages of Aardwolf is that it can
potentially support multi-language projects. For matplotlib in particular, a
C++ frontend would need to be implemented. The test suite in the project is
composed of more than 7,000 unit tests, each examining a very limited scope
of functionality of the library.

The project has a Python test script which does few checks for assets
and prepares dependencies for the tests execution, and then invokes pytest,
a very popular testing framework for Python. We hook into the process of
dependencies setup with installation of Aardwolf import hook for matplotlib

and mpl_toolkits packages. Since the tests reside inside the sources directory
tree and not in a separate one, we need to specify testing submodules to be
ignored by the hook.

Test names and results logging is achieved through pytest hooks in which
Aardwolf runtime functions are called. Matplotlib uses such hooks as well and
there is a file which collects their definitions. We add our hooks to this file
and import them with the others at appropriate initialization files (one for
matplotlib and one for mpl_toolkits). In .aardwolf.yml script, we can

25In fact, we use matplotlib for graphs in this thesis.

72

https://github.com/matplotlib/matplotlib

4.3. Scalability

then just execute matplotlib’s test driver and the rest is done in initialization
files as we described. Analysis and instrumentation is enabled only if specific
environment variable is defined, which is set automatically when the script is
run by the tool. If not defined, tests are executed as usual.

The project does not specify its development dependencies in any setup
script, it only mentions them in the documentation. In a similar way, Aardwolf
would need to be mentioned there too. As in the case of LibTIFF, when
setup we just described is finished, using Aardwolf involves simply running its
executable. Again, we discuss the performance in Section 4.3.

4.2.3 Conclusion

We were able to seamlessly integrate our tool into two non-trivial software
projects, one written in C and one in Python. In both cases, Aardwolf was
hooked into build and testing procedures used by the projects by default,
and the process was simple. For LibTIFF, it meant writing seven-line script
in .aardwolf.yml (from which three lines account to standard compilation
and test suite execution process) plus list of plugins of choice, 40 lines for
--with-aardwolf flag configuration including proper checks, and three-line
patch of the test driver, excluding the patch for libtool which should not have
been necessary. In case of matplotlib, it was one-line script running the test
suite and all the machinery implementation in 30 lines of Python code inside
the test configuration files.

After it is set up, developers can use our tool straightforwardly by running
Aardwolf program installed on their computer.

4.3 Scalability

We now evaluate the scalability of Aardwolf on LibTIFF and matplotlib li-
braries from the previous section. Several metrics are measured in order to
illustrate the overhead brought by the analysis and instrumentation on the
runtime. Performance of individual Aardwolf stages is also benchmarked.

As mentioned in the introduction, scalability to larger software is an im-
portant requirement for any fault localization tool. Although we sacrifice some
performance possibilities in our design for simpler implementation of Aardwolf
extensions, the tool’s computational costs should remain reasonable.

4.3.1 Runtime Overhead

First important aspect of using a fault localization tool is what overhead it
brings to running the test suite. We are interested in three metrics here:
execution time, peak memory consumption and the size of compiled binaries.

73

4. Experimental Evaluation

LibTIFF matplotlib
1

10

100

1000

E
x
ec

u
ti

o
n

ti
m

e
(l

o
g

1
0
)

LibTIFF matplotlib

1.0

1.1

1.2

1.3

1.4

1.5

P
ea

k
m

em
o
ry

u
sa

g
e

LibTIFF matplotlib

1.0

1.5

2.0

2.5

B
in

a
ri

es
si

ze

Figure 4.4: Time (in log scale), memory consumption and binary size in-
crease factors when using Aardwolf for test suite execution of LibTIFF and
matplotlib.

An overhead factor for every metric is calculated simply as

X =
xaardwolf

xbaseline

.

Meaning of this factor is then for instance “when using Aardwolf, the peak
memory consumption is X times higher”.

Regarding the execution time, for LibTIFF we measure the runtime over-
head for the test suite omitting the time spent in compilation26. “Compila-
tion” and execution are tightly coupled in Python and cannot be conveniently
split, hence this metric includes both of these factors in matplotlib case. Re-
garding the size of compiled binaries, we measure the disk size of .o files for
LibTIFF and .pyc files for matplotlib. Note that in case of Python frontend,
due to our usage of import hooks, no bytecode files are actually generated,
and we must create them manually using Python internal API for analysis
purposes. Running the entire test suite of matplotlib was beyond the capa-
bilities of our hardware memory-wise as Aardwolf currently loads entire data
into the operational memory. For this reason, we limited the test execution
to roughly one third of the original test suite.

All three metrics for both projects are depicted in Figure 4.4 using box
plots. They illustrate what is the average increase factor as well as the stan-
dard deviation and statistical outliers.

The slowdown is significant for both projects, more severely in LibTIFF
case. Besides that, our benchmark compares the executions with disabled op-
timizations, as this is the requirement for our LLVM frontend at the moment.
In ordinary execution, the LibTIFF test suite is however compiled with -O2

optimizations, so the effective slowdown when using Aardwolf is even larger.
The reason for the overhead is mainly performed I/O operations.

26From our measurements, the compilation is slowed down roughly by 10 %, which we
consider negligible.

74

4.3. Scalability

LibTIFF

5 m 33 s

17 m 30 s

9 m 10 s

matplotlib

8 m 57 s

2 m 46 s

Data loading Plugins init. DStar Prob. Dep. Invariants

Figure 4.5: Approximate times spent in various stages of the localization
process. The absolute values are averages of multiple runs.

The memory overhead for LibTIFF is reasonable while a little bit more
notable in case of matplotlib. But we consider it as still acceptable. There is
no significant source of memory overhead as all data are immediately dumped
into the trace file. We might trade-off some of the memory usage for execu-
tion speedup, for example by storing the data temporarily in runtime’s data
structures and using file writes less frequently.

The overhead of binary size is not so important as there is no real cost
in storing the files on the disk. It serves only as an interesting factor. On
average, the compiled files are 1.5 times bigger when using Aardwolf for both
projects. There are some cases when the file size was actually smaller, but we
do not have a reasonable explanation for this phenomenon.

4.3.2 Aardwolf Scalability

The performance of Aardwolf analysis itself is discussed in this section. It
should be noted that it is highly dependent on the test suite size and program
behavior (which affects the number of encountered states in probabilistic de-
pendence technique or invariants inference for likely invariants technique).

The execution times of various stages are presented in Figure 4.5. Due to
incompleteness of the Python frontend, probabilistic dependence plugin was
crashing on matplotlib data, and thus it is not depicted in this case. Recall
that the times for matplotlib correspond to just a fraction of its entire test
suite.

75

4. Experimental Evaluation

It can be seen that significant amount of time is spent in data loading
stage. Probabilistic dependence analysis is the most costly but that is partly
due to lack of optimizations. On the other hand, spectrum-based analysis is
extremely lightweight and fast, taking only very small fraction of the entire
run time. Invariants plugin is somewhere between.

We consider the absolute times as encouraging since the measurement
was performed on two rather large software projects. Regarding this, it is
important to repeat that no serious profiling and optimization effort was put
into the implementation yet.

76

Chapter 5

Conclusion

5.1 Summary

This thesis presents a new automated tool Aardwolf for software fault local-
ization. Its main goals are high extensibility and focus on user experience.
Fault localization techniques which we implemented, or want to be able to
implement, are briefly described, the proposed design of the tool is discussed
and our current implementation is explained. In the end, the evaluation was
performed, where we focused not only on the localization effectiveness, but
on the convenience of integration with a real-world project and the scalability
when using Aardwolf on these projects as well.

The architecture of our framework encourages researchers and engineers
to integrate new methods into Aardwolf. Both scientists and users can benefit
from this opportunity. Users will get the most advanced localization methods
into their functional toolset, whereas researchers are provided with an environ-
ment where common and tedious implementation work is available so they can
focus solely on what is unique in their approach. Moreover, a unified frame-
work allows to quantitatively compare different techniques in a manner which
is more fair and objective, improving reproducibility and trustworthiness of
results in this field.

The tool is designed to be extensible on multiple axes, not only by new
fault localization techniques. Its architecture allows to bring support for a
new programming language by developing the corresponding frontend. By
building a plugin into an editor or IDE, one can also deliver the fault localiza-
tion features directly to the user’s development environment. These aspects
have the potential for wide adoption and represent a novel approach in fault
localization tools development.

Currently, Aardwolf’s results are presented in a terminal output with a
source code context and suspiciousness explanation. The advantage of termi-
nal output is that it is usable by all developers regardless of their development
environment. Supported programming languages are C and Python. At the

77

5. Conclusion

moment, we have implementations for three different fault localization tech-
niques with plans for many others.

The tool is openly available at

https://github.com/aardwolf-sfl/aardwolf

5.2 Related Work

There are many studies about software fault localization. However, our ob-
jective was to design and develop a practical tool rather than a new SFL
technique. We compile a list of tools available for software fault localization
in Table 5.1. It is based on the summaries in [3, 70] as well as on our own
research. Only solutions utilizing dynamic analysis for fault localization are
considered, as this was the scope of this thesis. For instance, we do not include
pure static analyzers or manual debugging helpers.

The final selection contains 13 tools. Seven of them are openly accessible
on URLs given below the table, while there is no information on how to obtain
the software in other cases, thus it is assumed that they are accessible solely
via contacting its author.

The majority is based on program spectrum analysis, sometimes accom-
panied by an extension as in Apollo and Barinel. Prominent exceptions are
delta debugging algorithm in DD and replay debugging for execution traces
in DrDebug.

Best supported languages are Java (7 tools) and C (3 tools). Although
there are explicit mentions about plans for extending language support in
some works (e.g., [78, 70]), it can be hardly seen as a priority. There is
quite a trend of implementing the tools as plugins into Eclipse IDE34 with
first-class support for the JUnit35 testing framework for Java. These tight
integrations however prevent expansion into other development environments
and programming languages.

We did not notice efforts to make an extensible tool such that different
methods can be implemented in one application. Instead, each solution focuses
on the technique that their authors propose or on the spectrum-based family.
In Flavs, there is a possibility to specify custom ranking metric as a textual
expression which is parsed and used for the localization, but it still limits the
extensibility to SBFL method.

Unfortunately, from openly accessible software only GZoltar seems to be
still actively developed. Links to other works do not indicate any recent
activity and in some cases the download links do not even work at the time
of writing this thesis. This demonstrates the deficiency of the software fault
localization ecosystem. The implication is that users have very few ways how
they can benefit from the research in this area.

34https://www.eclipse.org/eclipseide/
35https://junit.org/

78

https://github.com/aardwolf-sfl/aardwolf
https://www.eclipse.org/eclipseide/
https://junit.org/

5.2. Related Work

T
a
b

le
5

.1
:

A
va

il
ab

le
to

ol
s

fo
r

so
ft

w
ar

e
fa

u
lt

lo
ca

li
za

ti
on

.

N
am

e
D

es
cr

ip
ti

on
L

an
gu

ag
es

In
te

rf
ac

e
A

va
il
ab

il
it

y

A
m

p
le

[7
1]

C
al

l
se

q
u
en

ce
sp

ec
tr

u
m

J
av

a
E

cl
ip

se
p
lu

gi
n

op
en

2
7

A
p

ol
lo

[7
2]

C
om

b
in

at
io

n
o
f

T
ar

a
n
tu

la
an

d
sy

m
b

ol
ic

ex
ec

u
ti

on
P

H
P

,
H

T
M

L
C

L
I

v
ia

au
th

or
B

a
ri

n
el

[7
3]

C
om

b
in

a
ti

on
o
f

S
B

F
L

a
n
d

B
ay

es
ia

n
re

as
on

in
g

C
u
n
k
n
ow

n
v
ia

au
th

or
D

D
[6

0]
D

el
ta

d
eb

u
g
g
in

g
to

ol
se

t
J
av

a
E

cl
ip

se
p
lu

gi
n

op
en

2
8

D
rD

eb
u
g

[7
4]

R
ep

la
y
-b

as
ed

d
eb

u
g
g
in

g
w

it
h

d
y
n
am

ic
sl

ic
in

g
x
86

ex
ec

u
ta

b
le

s
C

L
I,

G
U

I
op

en
2
9

F
al

co
n

[7
5
]

F
a
u
lt

lo
ca

li
za

ti
o
n

fo
r

co
n
cu

rr
en

t
b
u
gs

J
av

a
C

L
I

v
ia

au
th

or
F

la
v
s[

70
]

S
B

F
L

to
o
l

C
#

V
is

u
al

S
tu

d
io

p
lu

gi
n

v
ia

au
th

or
G

Z
ol

ta
r

[7
6]

T
es

ti
n
g

an
d

d
eb

u
gg

in
g

fr
am

ew
or

k
J
av

a
C

L
I,

E
cl

ip
se

p
lu

gi
n

op
en

3
0

H
ol

m
es

[7
7]

S
ta

ti
st

ic
al

d
eb

u
g
g
in

g
to

ol
C

G
U

I
v
ia

au
th

or
H

S
F

a
l

[7
8
]

H
y
b
ri

d
sp

ec
tr

u
m

o
f

sl
ic

es
J
av

a
u
n
k
n
ow

n
v
ia

au
th

or
J
ag

u
ar

[7
9
]

S
B

F
L

to
ol

J
av

a
G

U
I

op
en

3
1

T
ar

an
tu

la
[8

0]
S
B

F
L

to
ol

J
av

a
C

L
I

op
en

3
2

Z
ol

ta
r

[8
1]

S
B

F
L

to
ol

C
C

L
I

op
en

3
3

A
ar

d
w

ol
f

F
a
u
lt

lo
ca

li
za

ti
on

fr
a
m

ew
or

k
C

,
P

y
th

on
C

L
I

op
en

2
7

h
t
t
p
s
:
/
/
w
w
w
.s

t
.c

s
.u

n
i
-

s
a
a
r
l
a
n
d
.d

e
/
a
m
p
l
e
/

2
8

h
t
t
p
s
:
/
/
w
w
w
.s

t
.c

s
.u

n
i
-

s
a
a
r
l
a
n
d
.d

e
/
e
c
l
i
p
s
e
/

2
9

h
t
t
p
s
:
/
/
s
o
f
t
w
a
r
e
.i

n
t
e
l
.c

o
m
/
c
o
n
t
e
n
t
/
w
w
w
/
u
s
/
e
n
/
d
e
v
e
l
o
p
/
a
r
t
i
c
l
e
s
/
p
i
n
t
o
o
l
-

d
r
d
e
b
u
g
.h

t
m
l

3
0

h
t
t
p
s
:
/
/
g
z
o
l
t
a
r
.c

o
m
/

3
1

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.c

o
m
/
s
a
e
g
/
j
a
g
u
a
r

3
2

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.c

o
m
/
s
p
i
d
e
r
u
c
i
/
T
a
r
a
n
t
u
l
a

3
3

h
t
t
p
s
:
/
/
g
i
t
h
u
b
.c

o
m
/
n
c
f
x
y
/
z
o
l
t
a
r

79

https://www.st.cs.uni-saarland.de/ample/
https://www.st.cs.uni-saarland.de/eclipse/
https://software.intel.com/content/www/us/en/develop/articles/pintool-drdebug.html
https://gzoltar.com/
https://github.com/saeg/jaguar
https://github.com/spideruci/Tarantula
https://github.com/ncfxy/zoltar

5. Conclusion

5.3 Further Development

We plan to extend Aardwolf mainly in the following aspects.
Auxiliary techniques described in Chapter 1 like test cases and program

elements prioritization, results combination and supplementary information
generation would fully demonstrate the capabilities of Aardwolf design and
implementation. Moreover, additional fault localization techniques would fur-
ther expand the variability of the tool. Currently available plugins could be
augmented and improved, for example by introducing new types of spectra in
SBFL, using different graphical models in probabilistic dependence plugin or
adding more program invariants in likely invariants technique.

Regarding user adoption, more programming languages should be sup-
ported. One attractive option is Java, mainly because it is widely used, but
also for the reason that advanced fault localization datasets exist for this lan-
guage (e.g., [82]). An editor plugin implementation is desirable, partly for
exploring the possibilities and difficulties of this area for the Aardwolf archi-
tecture. The results presentation can be improved on its own, by providing
more explanations and more context.

More enhancements for user-friendliness can be brought to the configura-
tion and platform compatibility. To be more developer-friendly, we need to
polish and expand our APIs as well as extend the documentation such that
the ways how to extend Aardwolf are convenient and understandable.

To improve user experience, more serious effort must be put into the op-
timizations of test suite execution overhead and memory usage of analysis.
Test suite execution times is the domain for language frontends where instru-
mentation and runtime optimizations must be found and implemented. For
Aardwolf itself, the major bottleneck is significant operational memory usage.
We want to explore data structures serialization and deserialization to/from
disk to avoid memory overloading with complete data. Another dimension for
performance improvement is parallel execution, both for the test suite execu-
tion (which is currently limited by single trace file) and the analysis performed
by Aardwolf (plugins in the same phase are completely independent).

Regarding architecture changes, the most feasible augmentations are pro-
viding support for semi-automated methods and algorithms that require a
pre-training phase. The former requires the implementation of a client-server
architecture model as is for example used in Language Server Protocol36 where
the server offers features like autocomplete for editors and IDEs. Support for
model pre-training involves providing API for distinguishing between learning
and deployment phases as well as model saving, and preferably a ready-made
infrastructure with labeled datasets.

36https://microsoft.github.io/language-server-protocol/

80

https://microsoft.github.io/language-server-protocol/

Bibliography

[1] Myers, G. J.; Sandler, C.; et al. The Art of Software Testing. John Wiley
& Sons, Inc., 2012, ISBN 978-1-118-03196-4.

[2] Britton, T.; Jeng, L.; et al. Reversible Debugging Software: Quantify the
time and cost saved using reversible debuggers. 2013.

[3] Wong, W. E.; Gao, R.; et al. A Survey on Software Fault Localization.
IEEE Transactions on Software Engineering, 2016: pp. 707–740, doi:
10.1109/TSE.2016.2521368.

[4] Zakari, A.; Lee, S. P.; et al. Software fault localisation: a systematic map-
ping study. IET Software, 2019: pp. 60–74, doi:10.1049/iet-sen.2018.5137.

[5] Masri, W. Chapter Three - Automated Fault Localization: Advances
and Challenges. Elsevier, 2015, pp. 103–156, doi:https://doi.org/10.1016/
bs.adcom.2015.05.001. Available from: http://www.sciencedirect.com/

science/article/pii/S0065245815000339

[6] Kochhar, P. S.; Xia, X.; et al. Practitioners’ Expectations on Auto-
mated Fault Localization. Proceedings of the 25th International Sym-
posium on Software Testing and Analysis, 2016: pp. 165–176, doi:
10.1145/2931037.2931051.

[7] Parnin, C.; Orso, A. Are Automated Debugging Techniques Actually
Helping Programmers? Proceedings of the 2011 International Symposium
on Software Testing and Analysis, 2011.

[8] de Souza, H. A.; Chaim, M. L.; et al. Spectrum-based Software Fault
Localization: A Survey of Techniques, Advances, and Challenges. CoRR,
volume abs/1607.04347, 2016.

81

http://www.sciencedirect.com/science/article/pii/S0065245815000339
http://www.sciencedirect.com/science/article/pii/S0065245815000339

Bibliography

[9] Ang, A.; Perez, A.; et al. Revisiting the Practical Use of Automated
Software Fault Localization Techniques. IEEE 28th International Sympo-
sium on Software Reliability Engineering Workshops, 2017, doi:10.1109/
ISSREW.2017.68.

[10] Pearson, S.; Campos, J.; et al. Evaluating and Improving Fault Lo-
calization. In 2017 IEEE/ACM 39th International Conference on Soft-
ware Engineering (ICSE), 2017, ISSN 1558-1225, pp. 609–620, doi:
10.1109/ICSE.2017.62.

[11] Radatz, J. IEEE Standard Glossary of Software Engineering Terminology.
Technical report, The Institute of Electrical and Electronics Engineers,
1990.

[12] Galin, D. Software Quality Assurance: From Theory to Implementation.
Pearson Education Limited, 2004, ISBN 0201 70945 7.

[13] Baah, G. K.; Podgurski, A.; et al. The Probabilistic Program Dependence
Graph and Its Application to Fault Diagnosis. IEEE Transactions on
Software Engineering, 2010: pp. 528–545, doi:10.1109/TSE.2009.87.

[14] Yu, Y.; Jones, J. A.; et al. An Empirical Study of the Effects of Test-Suite
Reduction on Fault Localization. In Proceedings of the 30th International
Conference on Software Engineering, New York, NY, USA: Association
for Computing Machinery, 2008, ISBN 9781605580791, pp. 201–210, doi:
10.1145/1368088.1368116. Available from: https://doi.org/10.1145/

1368088.1368116

[15] Khedker, U.; Sanyal, A.; et al. Data Flow Analysis: Theory and Practice.
CRC Press (Taylor and Francis Group), 2009, ISBN 9780849328800.

[16] Ferrante, J.; Ottenstein, K. J.; et al. The Program Dependence Graph
and Its Use in Optimization. ACM Trans. Program. Lang. Syst., volume 9,
no. 3, 1987: pp. 319–349, ISSN 0164-0925, doi:10.1145/24039.24041.
Available from: https://doi.org/10.1145/24039.24041

[17] Harrold, M. J.; Rothermel, G.; et al. An empirical investigation of the
relationship between spectra differences and regression faults. Software
Testing, Verification and Reliability, volume 10, no. 3, 2000: pp. 171–194,
doi:10.1002/1099-1689(200009)10:3<171::AID-STVR209>3.0.CO;2-J.

[18] Xie, X.; Kuo, F.-C.; et al. Provably Optimal and Human-Competitive
Results in SBSE for Spectrum Based Fault Localisation. In Search Based
Software Engineering, Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, ISBN 978-3-642-39742-4, pp. 224–238.

82

https://doi.org/10.1145/1368088.1368116
https://doi.org/10.1145/1368088.1368116
https://doi.org/10.1145/24039.24041

Bibliography

[19] Santelices, R.; Jones, J. A.; et al. Lightweight fault-localization using
multiple coverage types. In 2009 IEEE 31st International Conference on
Software Engineering, 2009, pp. 56–66.

[20] Wong, W. E.; Debroy, V.; et al. The DStar Method for Effective Software
Fault Localization. IEEE Transactions on Reliability, 2014: pp. 290–308,
doi:10.1109/TR.2013.2285319.

[21] Kochhar, P. S.; Xia, X.; et al. A Critical Evaluation of Spectrum-Based
Fault Localization Techniques on a Large-Scale Software System. IEEE
International Conference on Software Quality, Reliability and Security,
2017, doi:10.1109/QRS.2017.22.

[22] Naish, L.; Lee, H. J.; et al. Spectral debugging: How much better can we
do? In ACSC, 2012.

[23] Xie, X.; Chen, T. Y.; et al. A Theoretical Analysis of the Risk Eval-
uation Formulas for Spectrum-Based Fault Localization. ACM Trans.
Softw. Eng. Methodol., volume 22, no. 4, 2013, ISSN 1049-331X, doi:
10.1145/2522920.2522924. Available from: https://doi.org/10.1145/

2522920.2522924

[24] Naish, L.; Lee, H. J.; et al. A Model for Spectra-Based Software Diagnosis.
ACM Trans. Softw. Eng. Methodol., volume 20, no. 3, 2011, ISSN 1049-
331X, doi:10.1145/2000791.2000795. Available from: https://doi.org/

10.1145/2000791.2000795

[25] Baah, G. K. Statistical Causal Analysis for Fault Localization. Disserta-
tion thesis, Georgia Institute of Technology December, 2012.

[26] Steimann, F.; Frenkel, M.; et al. Threats to the Validity and Value of Em-
pirical Assessments of the Accuracy of Coverage-Based Fault Locators. In
Proceedings of the 2013 International Symposium on Software Testing and
Analysis, New York, NY, USA: Association for Computing Machinery,
2013, ISBN 9781450321594, pp. 314–324, doi:10.1145/2483760.2483767.
Available from: https://doi.org/10.1145/2483760.2483767

[27] Denmat, T.; Ducassé, M.; et al. Data Mining and Cross-Checking of Ex-
ecution Traces: A Re-Interpretation of Jones, Harrold and Stasko Test
Information. In Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, New York, NY, USA: As-
sociation for Computing Machinery, 2005, ISBN 1581139934, pp. 396–
399, doi:10.1145/1101908.1101979. Available from: https://doi.org/

10.1145/1101908.1101979

[28] Campos, E. C.; de Almeida Maia, M. Common Bug-Fix Patterns: A
Large-Scale Observational Study. ACM/IEEE International Symposium

83

https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2522920.2522924
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1145/2483760.2483767
https://doi.org/10.1145/1101908.1101979
https://doi.org/10.1145/1101908.1101979

Bibliography

on Empirical Software Engineering and Measurement, 2017: pp. 404–413,
doi:10.1109/ESEM.2017.55.

[29] Yu, X.; Liu, J.; et al. Bayesian Network Based Program Dependence
Graph for Fault Localization. IEEE International Symposium on Software
Reliability Engineering Workshops, 2016, doi:10.1109/ISSREW.2016.35.

[30] Gong, D.; Su, X.; et al. State dependency probabilistic model for fault lo-
calization. Information and Software Technology, 2015: pp. 430–445, doi:
10.1016/j.infsof.2014.05.022. Available from: https://doi.org/10.1016/

j.infsof.2014.05.022

[31] Ernst, M. D. Dynamically Discovering Likely Program Invariants. Dis-
sertation thesis, University of Washington, 2000.

[32] Pytlik, B.; Renieris, M.; et al. Automated Fault Localization Using Po-
tential Invariants. International Workshop on Automated and Algorithmic
Debugging, 2003.

[33] Hangal, S.; Lam, M. S. Tracking down software bugs using automatic
anomaly detection. Proceedings of the 24th International Conference on
Software Engineering, 2002: pp. 291–301, doi:10.1145/581376.581377.

[34] Sahoo, S. K.; Criswell, J.; et al. Using Likely Invariants for Automated
Software Fault Localization. Proceedings of the eighteenth international
conference on Architectural support for programming languages and op-
erating systems, 2013.

[35] Alipour, M. A.; Groce, A. Extended Program Invariants: Applica-
tions in Testing and Fault Localization. In Proceedings of the Ninth In-
ternational Workshop on Dynamic Analysis, WODA 2012, Association
for Computing Machinery, 2012, ISBN 9781450314558, pp. 7–11, doi:
10.1145/2338966.2336799. Available from: https://doi.org/10.1145/

2338966.2336799

[36] Guo, L.; Roychoudhury, A.; et al. Accurately Choosing Execution Runs
for Software Fault Localization. In Proceedings of the 15th International
Conference on Compiler Construction, Berlin, Heidelberg: Springer-
Verlag, 2006, ISBN 354033050X, pp. 80–95, doi:10.1007/11688839_7.
Available from: https://doi.org/10.1007/11688839_7

[37] Hao, D.; Xie, T.; et al. Test input reduction for result inspection to
facilitate fault localization. Automated Software Engineering, volume 17,
2009: pp. 5–31.

[38] Yoo, S.; Harman, M.; et al. Fault Localization Prioritization: Compar-
ing Information-Theoretic and Coverage-Based Approaches. ACM Trans-
actions on Software Engineering and Methodology, volume 22, no. 3,

84

https://doi.org/10.1016/j.infsof.2014.05.022
https://doi.org/10.1016/j.infsof.2014.05.022
https://doi.org/10.1145/2338966.2336799
https://doi.org/10.1145/2338966.2336799
https://doi.org/10.1007/11688839_7

Bibliography

2013, ISSN 1049-331X, doi:10.1145/2491509.2491513. Available from:
https://doi.org/10.1145/2491509.2491513

[39] Zhang, X.; Towey, D.; et al. Using Partition Information to Prioritize
Test Cases for Fault Localization. In 2015 IEEE 39th Annual Computer
Software and Applications Conference, volume 2, 2015, pp. 121–126.

[40] Xu, X.; Debroy, V.; et al. Ties within Fault Localization rankings: Ex-
posing and Addressing the Problem. International Journal of Software
Engineering and Knowledge Engineering, volume 21, 2011: pp. 803–827.

[41] Xie, X.; Chen, T. Y.; et al. Isolating Suspiciousness from Spectrum-
Based Fault Localization Techniques. In Proceedings of the 2010 10th In-
ternational Conference on Quality Software, USA: IEEE Computer Soci-
ety, 2010, ISBN 9780769541310, pp. 385–392, doi:10.1109/QSIC.2010.45.
Available from: https://doi.org/10.1109/QSIC.2010.45

[42] Jin, W.; Orso, A. F3: Fault Localization for Field Failures. In Proceed-
ings of the 2013 International Symposium on Software Testing and Anal-
ysis, New York, NY, USA: Association for Computing Machinery, 2013,
ISBN 9781450321594, pp. 213–223, doi:10.1145/2483760.2483763. Avail-
able from: https://doi.org/10.1145/2483760.2483763

[43] Lucia, L.; Lo, D.; et al. Extended Comprehensive Study of Associ-
ation Measures for Fault Localization. Journal of software: Evolution
and Process, volume 26, no. 2, 2014: pp. 172–219, ISSN 2047-7473, doi:
10.1002/smr.1616. Available from: https://doi.org/10.1002/smr.1616

[44] Shaowei Wang; Lo, D.; et al. Search-based fault localization. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE 2011), 2011, pp. 556–559.

[45] Lucia; Lo, D.; et al. Fusion Fault Localizers. In Proceedings of the 29th
ACM/IEEE International Conference on Automated Software Engineer-
ing, Association for Computing Machinery, 2014, ISBN 9781450330138,
pp. 127–138, doi:10.1145/2642937.2642983. Available from: https://

doi.org/10.1145/2642937.2642983

[46] Xuan, J.; Monperrus, M. Learning to Combine Multiple Ranking Met-
rics for Fault Localization. In 2014 IEEE International Conference on
Software Maintenance and Evolution, 2014, pp. 191–200.

[47] Zou, D.; Liang, J.; et al. An Empirical Study of Fault Localization Fam-
ilies and Their Combinations. IEEE Transactions on Software Engineer-
ing, 2019, ISSN 2326-3881, doi:10.1109/TSE.2019.2892102.

85

https://doi.org/10.1145/2491509.2491513
https://doi.org/10.1109/QSIC.2010.45
https://doi.org/10.1145/2483760.2483763
https://doi.org/10.1002/smr.1616
https://doi.org/10.1145/2642937.2642983
https://doi.org/10.1145/2642937.2642983

Bibliography

[48] Le, T.-D. B.; Lo, D.; et al. Should I Follow This Fault Localiza-
tion Tool’s Output? Empirical Software Engineering, 2015: pp. 1237–
1274, ISSN 1382-3256, doi:10.1007/s10664-014-9349-1. Available from:
https://doi.org/10.1007/s10664-014-9349-1

[49] Neelofar. Spectrum-based Fault Localization Using Machine Learning. Dis-
sertation thesis, University of Melbourne, 2017.

[50] Liblit, B.; Naik, M.; et al. Scalable Statistical Bug Isolation. ACM SIG-
PLAN Notices, volume 40, no. 6, 2005: pp. 15–26, ISSN 0362-1340, doi:
10.1145/1064978.1065014. Available from: https://doi.org/10.1145/

1064978.1065014

[51] Liu, C.; Fei, L.; et al. Statistical Debugging: A Hypothesis Testing-Based
Approach. IEEE Transactions on Software Engineering, volume 32,
no. 10, 2006: pp. 831–848, ISSN 0098-5589, doi:10.1109/TSE.2006.105.
Available from: https://doi.org/10.1109/TSE.2006.105

[52] Wong, W. E.; Debroy, V.; et al. Towards Better Fault Localization: A
Crosstab-Based Statistical Approach. IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), volume 42,
2012: pp. 378–396.

[53] You, Z.; Qin, Z.; et al. Statistical fault localization using execution se-
quence. 2012 International Conference on Machine Learning and Cyber-
netics, volume 3, 2012: pp. 899–905.

[54] Feyzi, F.; Parsa, S. Inforence: effective fault localization based on
information-theoretic analysis and statistical causal inference. Frontiers
of Computer Science, volume 13, 2017: pp. 735–759.

[55] Landsberg, D.; Barr, E. T. Doric: Foundations for Statistical Fault Lo-
calisation. CoRR, volume abs/1810.00798, 2018, 1810.00798. Available
from: http://arxiv.org/abs/1810.00798

[56] Wong, W. E.; Qi, Y. BP Neural Network-Based Effective Fault Local-
ization. International Journal of Software Engineering and Knowledge
Engineering, volume 19, no. 04, 2009: pp. 573–597, doi:10.1142/
S021819400900426X, https://doi.org/10.1142/S021819400900426X.
Available from: https://doi.org/10.1142/S021819400900426X

[57] Wong, W. E.; Debroy, V.; et al. Effective Software Fault Localization
Using an RBF Neural Network. IEEE Transactions on Reliability, vol-
ume 61, 2012: pp. 149–169.

[58] Modi, V.; Roy, S.; et al. Exploring Program Phases for Statistical Bug Lo-
calization. In Proceedings of the 11th ACM SIGPLAN-SIGSOFT Work-
shop on Program Analysis for Software Tools and Engineering, New

86

https://doi.org/10.1007/s10664-014-9349-1
https://doi.org/10.1145/1064978.1065014
https://doi.org/10.1145/1064978.1065014
https://doi.org/10.1109/TSE.2006.105
1810.00798
http://arxiv.org/abs/1810.00798
https://doi.org/10.1142/S021819400900426X
https://doi.org/10.1142/S021819400900426X

Bibliography

York, NY, USA: Association for Computing Machinery, 2013, ISBN
9781450321280, pp. 33–40, doi:10.1145/2462029.2462034. Available from:
https://doi.org/10.1145/2462029.2462034

[59] Zeller, A.; Hildebrandt, R. Simplifying and Isolating Failure-Inducing
Input. IEEE Transactions on Software Engineering, volume 28, no. 2,
2002: pp. 183–200, ISSN 0098-5589, doi:10.1109/32.988498. Available
from: https://doi.org/10.1109/32.988498

[60] Zeller, A. Isolating Cause-Effect Chains from Computer Programs.
In Proceedings of the 10th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, New York, NY, USA: Associa-
tion for Computing Machinery, 2002, ISBN 1581135149, pp. 1–10,
doi:10.1145/587051.587053. Available from: https://doi.org/10.1145/

587051.587053

[61] Mayer, W.; Stumptner, M.; et al. Can AI help to improve debugging
substantially? Debugging Experiences with Value-Based Models. 2002,
pp. 417–421.

[62] Mayer, W.; Stumptner, M. Abstract Interpretation of Programs for
Model-Based Debugging. In IJCAI, 2007.

[63] Könighofer, R.; Bloem, R. Automated error localization and correction
for imperative programs. In 2011 Formal Methods in Computer-Aided
Design (FMCAD), 2011, pp. 91–100.

[64] Groce, A.; Clarke, E. M. Error explanation and fault localization with
distance metrics. 2005.

[65] Gong, L.; Lo, D.; et al. Interactive fault localization leveraging sim-
ple user feedback. In 2012 28th IEEE International Conference on
Software Maintenance (ICSM), 2012, ISSN 1063-6773, pp. 67–76, doi:
10.1109/ICSM.2012.6405255.

[66] Zhang, S.; Zhang, C. Software Bug Localization with Markov Logic. In
Companion Proceedings of the 36th International Conference on Software
Engineering, New York, NY, USA: Association for Computing Machinery,
2014, ISBN 9781450327688, pp. 424–427, doi:10.1145/2591062.2591099.
Available from: https://doi.org/10.1145/2591062.2591099

[67] Le Goues, C.; Holtschulte, N.; et al. The ManyBugs and IntroClass
Benchmarks for Automated Repair of C Programs. IEEE Transactions
on Software Engineering (TSE), volume 41, no. 12, December 2015: pp.
1236–1256, ISSN 0098-5589, doi:10.1109/TSE.2015.2454513.

87

https://doi.org/10.1145/2462029.2462034
https://doi.org/10.1109/32.988498
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/587051.587053
https://doi.org/10.1145/2591062.2591099

Bibliography

[68] Hutchins, M.; Foster, H.; et al. Experiments of the Effectiveness of
Dataflow- and Controlflow-Based Test Adequacy Criteria. In Proceed-
ings of the 16th International Conference on Software Engineering, IEEE
Computer Society Press, 1994, ISBN 081865855X, pp. 191–200.

[69] Jones, J. A.; Harrold, M. J. Empirical Evaluation of the Tarantula
Automatic Fault-Localization Technique. In Proceedings of the 20th
IEEE/ACM International Conference on Automated Software Engineer-
ing, Association for Computing Machinery, 2005, ISBN 1581139934,
pp. 273–282, doi:10.1145/1101908.1101949. Available from: https://

doi.org/10.1145/1101908.1101949

[70] Wang, N.; Zheng, Z.; et al. FLAVS: A Fault Localization Add-in for Vi-
sual Studio. In Proceedings of the First International Workshop on Com-
plex FaUlts and Failures in LargE Software Systems, IEEE Press, 2015,
pp. 1–6.

[71] Dallmeier, V.; Lindig, C.; et al. Lightweight Bug Localization with
AMPLE. In Proceedings of the Sixth International Symposium on Au-
tomated Analysis-Driven Debugging, New York, NY, USA: Association
for Computing Machinery, 2005, ISBN 1595930507, pp. 99–104, doi:
10.1145/1085130.1085143. Available from: https://doi.org/10.1145/

1085130.1085143

[72] Artzi, S.; Dolby, J.; et al. Practical Fault Localization for Dynamic Web
Applications. In Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering - Volume 1, New York, NY, USA: Asso-
ciation for Computing Machinery, 2010, ISBN 9781605587196, pp. 265–
274, doi:10.1145/1806799.1806840. Available from: https://doi.org/

10.1145/1806799.1806840

[73] Abreu, R.; Zoeteweij, P.; et al. Spectrum-Based Multiple Fault Localiza-
tion. In 2009 IEEE/ACM International Conference on Automated Soft-
ware Engineering, 2009, pp. 88–99.

[74] Wang, Y.; Patil, H.; et al. DrDebug: Deterministic Replay based Cyclic
Debugging with Dynamic Slicing. In CGO ’14, 2014.

[75] Park, S.; Vuduc, R. W.; et al. Falcon: Fault Localization in Concurrent
Programs. In Proceedings of the 32nd ACM/IEEE International Confer-
ence on Software Engineering - Volume 1, New York, NY, USA: Associ-
ation for Computing Machinery, 2010, ISBN 9781605587196, pp. 245–
254, doi:10.1145/1806799.1806838. Available from: https://doi.org/

10.1145/1806799.1806838

[76] Riboira, A.; Abreu, R. The GZoltar Project: A Graphical Debugger In-
terface. In Proceedings of the 5th International Academic and Industrial

88

https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/1085130.1085143
https://doi.org/10.1145/1085130.1085143
https://doi.org/10.1145/1806799.1806840
https://doi.org/10.1145/1806799.1806840
https://doi.org/10.1145/1806799.1806838
https://doi.org/10.1145/1806799.1806838

Bibliography

Conference on Testing - Practice and Research Techniques, Berlin, Hei-
delberg: Springer-Verlag, 2010, ISBN 3642155847, pp. 215–218.

[77] Chilimbi, T. M.; Liblit, B.; et al. HOLMES: Effective statistical debug-
ging via efficient path profiling. 2009 IEEE 31st International Conference
on Software Engineering, 2009: pp. 34–44.

[78] Ju, X.; Jiang, S.; et al. HSFal: Effective fault localization using
hybrid spectrum of full slices and execution slices. Journal of Sys-
tems and Software, volume 90, 2014: pp. 3–17, ISSN 0164-1212,
doi:https://doi.org/10.1016/j.jss.2013.11.1109. Available from: http://

www.sciencedirect.com/science/article/pii/S0164121213002823

[79] Ribeiro, H. L.; de Souza, H. A.; et al. Jaguar: A Spectrum-Based
Fault Localization Tool for Real-World Software. 2018 IEEE 11th In-
ternational Conference on Software Testing, Verification and Validation
(ICST), 2018: pp. 404–409.

[80] Jones, J. A.; Harrold, M. J.; et al. Visualization for Fault Localization.
In Proceedings of the Workshop on Software Visualization (SoftVis), 23rd
International Conference on Software Engineering, May 2001, pp. 71–75.

[81] Janssen, T.; Abreu, R.; et al. Zoltar: a spectrum-based fault localiza-
tion tool. In SINTER ’09: Proceedings of the 2009 ESEC/FSE workshop
on Software integration and evolution @ runtime, New York, NY, USA:
ACM, 2009, ISBN 978-1-60558-681-6, pp. 23–30, doi:http://doi.acm.org/
10.1145/1596495.1596502.

[82] Just, R.; Jalali, D.; et al. Defects4J: A Database of existing faults to
enable controlled testing studies for Java programs. In In Proceedings of
the International Symposium on Software Testing and Analysis (ISSTA,
2014, pp. 437–440.

89

http://www.sciencedirect.com/science/article/pii/S0164121213002823
http://www.sciencedirect.com/science/article/pii/S0164121213002823

Appendix A

Experimental Evaluation Details

A.1 Faulty Elements Determination

In this section we show and comment some complicated cases regarding the
determination of faulty elements.

• Switch branching construct is a common syntax sugar for chained else

if statements. Consider the example in Figure A.1a. We consider both
switch and case lines as faulty because case 32 is equivalent to else

if (state == 32) which would be blamed if if/else construct would
be used.

• Predicates which span multiple lines. Consider the example in Fig-
ure A.1b. We consider the whole span of the predicate as faulty even
though the second line is technically to be blamed only. The rationale
is that when the expression on the second line is incorrect, it is also true
that the entire predicate is faulty.

• A non-unusual developer practice is to assign the result of a predicate to
a temporary variable and then use this variable in the branching state-
ment. Consider the example in Figure A.1c. The variable assignment
on the first line is faulty without a doubt. It is, however, questionable if
we should also blame the if statement where the predicate is used. We
chose not to.

• When values of non-mutable constants are incorrect, apart from blaming
the assignment line, we also consider all statements that use that par-
ticular constant as faulty. The rationale is that a constant is essentially
a named literal value, and so the statement is faulty because is using an
incorrect literal value. An example is depicted in Figure A.1d.

• In case of fault of omission, the inserted statement could be sometimes
added at a different location and it would be equally valid choice. See

91

A. Experimental Evaluation Details

switch (state) {

case 16:

return XOR;

- case 32:

- return EQUALGREATER;

}

(a)

else if ((isalnum(src[*i - 1]))

- && (src[*i - 1] < src[*i + 1]))

+ && (src[*i - 1] <= src[*i + 1]))

(b)

-int status = put_end(prio, new_proc);

+int status = put_end(prio, old_proc);

if (status) {

return status;

}

(c)

-#define MAXLEN 25

+#define MAXLEN 256

for (int i = 0; i < MAXLEN; i++) {

// ...

}

(d)

switch (state)

{

case 23: return QUOTE;

case 25: return COMMA;

+ case 32: return EQUALGREATER;

default: return ERROR;

}

(e)

Figure A.1: Several examples of complicated cases when determining faulty
statements. Orange lines indicate what we consider to be faulty elements.

Figure A.1e for an example. Semantically speaking, the new statement
could be inserted anywhere in between the third and sixth line. The
first line in this example is considered faulty for the same reason as in
Figure A.1a.

We applied this methodology for making labels for the Siemens dataset.

A.2 Siemens Dataset

All programs in the Siemens dataset were compiled using (omitting Aardwolf-
related flags)

clang -g -O0 -Wno-return-type -std=c89 <program>.c -lm

92

A.3. Data Collection for Scalability Experiment

Table A.1: Hardware configuration used for scalability benchmarks.

Parameter Value

CPU Model Intel® Core™ i5-4200M
CPU Clock Frequency 2.50 GHz
Architecture x86-64
RAM Memory 8 GiB SODIMM DDR3 Synchronous 1600 MHz
Disk Samsung SSD 840
Filesystem ext4
Linux kernel 5.5.5-arch1-1

Debug information (-g) and disabled optimizations (-O0) are required for
Aardwolf to function properly. The standard of the language is set to C89
because programs use implicit return types, which was allowed in C89, but
forbidden in later versions of the standard. Some programs do not specify the
return type in their void functions. The default, implicit return type in C
is int and thus the compiler raises the error that non-void function does not
return a value. We ignore this error using -Wno-return-type and assume that
usage of these functions is correct, that is, their return values are not used, as
it would cause undefined behavior according to the standard. There are also
several warnings even in the default mode (i.e., without -Wall, -Wextra or
similar options that turn on extra warnings) but we ignore them.

A.3 Data Collection for Scalability Experiment

All time and memory consumption data for test suite execution were obtained
by using GNU time utility with the format %e (elapsed real time in seconds)
and %M (maximum resident set size of the process during its lifetime in kilo-
bytes). In case of LibTIFF, values were collected on per-test basis, while in
case of matplotlib, we grouped individual tests based on test file which they
are defined in (limited to 30 out of 86 test files). Running time of Aardwolf
components was measured by the internal timer. Binaries sizes (.o files for
LibTIFF and .pyc files for matplotlib) were computed with du utility from
GNU coreutils.

A.4 Hardware Configuration

All benchmarks presented in Chapter 4 were performed on a computer whose
relevant hardware details are listed in Table A.1.

93

Appendix B

Acronyms

AST Abstract Syntax Tree. 56

CFG Control Flow Graph. 12, 56

FL (Software) Fault Localization. 7

IDE Integrated Development Environment. 2, 4, 52, 58, 77, 80

PDG Program Dependence Graph. 12, 13, 18, 19, 22

PPDG Probabilistic Program Dependence Graph. 20, 21, 69

SBFL Spectrum-Based Fault Localization. 7, 14–16, 22, 66, 69, 78–80

SFL Software Fault Localization. 1, 5, 78

SLOC Source Lines of Code. 65

95

Appendix C

Contents of enclosed CD

README.txt........................the file with CD contents description
code.............................the directory of program source codes
text................... the directory of LATEX source codes of the thesis
thesis.pdf..............................the thesis text in PDF format

97

	Introduction
	Contributions
	Organization

	Fault Localization
	Overview
	Preliminaries
	Spectrum Based FL
	Probabilistic Graphical Model Based FL
	Likely Invariants Based FL
	Test Cases Prioritization
	Program Elements Prioritization
	Combining the Results
	Supplementary Information

	Design
	Frontends
	Integration with Test Drivers
	Runtime
	Core
	Plugins
	Configuration
	Design Applicability
	Conclusion

	Implementation
	Frontends
	Runtime
	Core
	Plugins

	Experimental Evaluation
	Localization Effectiveness
	Integration with Existing Projects
	Scalability

	Conclusion
	Summary
	Related Work
	Further Development

	Bibliography
	Experimental Evaluation Details
	Faulty Elements Determination
	Siemens Dataset
	Data Collection for Scalability Experiment
	Hardware Configuration

	Acronyms
	Contents of enclosed CD

