
Aardwolf: A Modular and Extensible Tool for Software Fault Localization
Petr Nevyhoštěný, Petr Máj Department of Theoretical Computer Science, FIT CTU in Prague

Motivation

The growth of software complexity raises the challenges for maintaining its quality and keeping the presence of faults at
minimum. The determination of the nature and location of a fault is tedious and time-consuming activity. Software
fault localization is a research field helping developers in this effort with automated techniques. The thesis introduces a
new such tool with focus on extensibility and user experience, overcoming weaknesses of existing applications.

Results

Best techniques detected up to 55% of bugs in their top 10
list on a standard dataset – a result comparable with the lit-
erature. The tool was successfully integrated with two bigger
real-world projects (namely matplotlib and LibTIFF), and
the process required only around 40 lines of configuration for
each and no change in existing workflow. A sample of the
localization output is depicted in figure 1.

Figure: A sample of terminal output for get_range function that

fails on negative-only arrays. The issue is wrong initialization of

max on line 2. Aardwolf reports that a usual update on line 8 did not

happen during the failing execution, and reveals data dependencies

of the problematic conditional. From this rich information, the user

should be able to deduce the root cause.

References

[1] Petr Nevyhoštěný. A Modular and Extensible Tool for
Software Fault Localization. Master’s thesis, Faculty of
Information Technology, CTU in Prague, 2020.

Problem Definition

The task is to provide user with a helpful report of suspi-
cious program elements to reduce the amount of time and
effort committed to fault localization. We employ dynamic
approach which augments the program with tracing calls to
gather test-suite runtime data. Static analysis is performed as
well. Generated data are used to estimate the suspiciousness
of certain program elements (e.g., statements).

Shortcomings of Existing Tools

• Mostly research prototypes with poor integration into
preferred workflow and toolchain (e.g., editor or pro-
gramming language) of the user.

• Often make impractical assumptions. For example, they
do not provide a rationale for the suspiciousness calcula-
tion or a context.

• Not publicly available or abandoned. To our best knowl-
edge, only one available, actively developed “competitor”.

Solution

We present a highly modular design that enables adding sup-
port for preferred programming language, user interface or
state-of-the-art localization technique, merely by implement-
ing respective component. Internal APIs encourage plugins
developers to provide the user with rationale, source code con-
text and additional details. Data structures are rich-enough
to support majority of techniques published in the literature
and commonly-used programming languages. Initially imple-
mented techniques employ probabilistic reasoning or inference
of program invariants.

Architecture

The tool is composed of several components. Frontends pro-
cess the source program. Core gathers the data and offers
them via convenient API to plugins. The results are then
delivered to the user through interface of choice.

analysis,

instrumentation
execution

fault localization

and related

sources

tests

frontends +

coreplugins

localization
results

user
interfaces

User Community Aardwolf

Figure: Architecture. Stacked blue nodes indicate extensibility.

Contributions

• Design of a new SFL tool that is extensible, language-
agnostic and user-friendly. These goals are a signifi-

cant improvement compared to existing solutions.

• Implementation of proposed framework, initially sup-
porting three diverse localization techniques and two
diverse programming languages (C and Python).

• The tool is openly available at

https://github.com/aardwolf-sfl/aardwolf

https://github.com/aardwolf-sfl/aardwolf

