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Motivation

The growth of software complexity raises the challenges for maintaining its quality and keeping the presence of faults at
minimum. The determination of the nature and location of a fault is tedious and time-consuming activity. Software
fault localization is a research field helping developers in this effort with automated techniques. The thesis introduces a
new such tool with focus on extensibility and user experience, overcoming weaknesses of existing applications.

Results

Best techniques detected up to 55% of bugs in their top 10
list on a standard dataset – a result comparable with the lit-
erature. The tool was successfully integrated with two bigger
real-world projects (namely matplotlib and LibTIFF), and
the process required only around 40 lines of configuration for
each and no change in existing workflow. A sample of the
localization output is depicted in figure 1.

Figure: A sample of terminal output for get_range function that

fails on negative-only arrays. The issue is wrong initialization of

max on line 2. Aardwolf reports that a usual update on line 8 did not

happen during the failing execution, and reveals data dependencies

of the problematic conditional. From this rich information, the user

should be able to deduce the root cause.
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Problem Definition

The task is to provide user with a helpful report of suspi-
cious program elements to reduce the amount of time and
effort committed to fault localization. We employ dynamic
approach which augments the program with tracing calls to
gather test-suite runtime data. Static analysis is performed as
well. Generated data are used to estimate the suspiciousness
of certain program elements (e.g., statements).

Shortcomings of Existing Tools

• Mostly research prototypes with poor integration into
preferred workflow and toolchain (e.g., editor or pro-
gramming language) of the user.

• Often make impractical assumptions. For example, they
do not provide a rationale for the suspiciousness calcula-
tion or a context.

• Not publicly available or abandoned. To our best knowl-
edge, only one available, actively developed “competitor”.

Solution

We present a highly modular design that enables adding sup-
port for preferred programming language, user interface or
state-of-the-art localization technique, merely by implement-
ing respective component. Internal APIs encourage plugins
developers to provide the user with rationale, source code con-
text and additional details. Data structures are rich-enough
to support majority of techniques published in the literature
and commonly-used programming languages. Initially imple-
mented techniques employ probabilistic reasoning or inference
of program invariants.

Architecture

The tool is composed of several components. Frontends pro-
cess the source program. Core gathers the data and offers
them via convenient API to plugins. The results are then
delivered to the user through interface of choice.
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Figure: Architecture. Stacked blue nodes indicate extensibility.

Contributions

• Design of a new SFL tool that is extensible, language-
agnostic and user-friendly. These goals are a signifi-

cant improvement compared to existing solutions.

• Implementation of proposed framework, initially sup-
porting three diverse localization techniques and two
diverse programming languages (C and Python).

• The tool is openly available at

https://github.com/aardwolf-sfl/aardwolf
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