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Abstract

We present a system that generates planar geometry problems suitable for
mathematical competitions such as the International Mathematical Olympiad.
Our solution consists of the following assets: (1) a novel, provably correct,
problem generation algorithm, (2) bulk filtering algorithms of easy problems in-
spired by geometry theorem proving methods, primarily the deductive database
method, (3) a novel problem quality ranking algorithm. A C# implementation
of the system has been developed and made available on GitHub https://

github.com/PatrikBak/GeoGen. The developed algorithms have been tested in
many small and large-scale experiments that generated, rated, and sorted thou-
sands of problems, nine of which are enclosed in the appendix. Five generated
problems have been proposed to the International Mathematical Olympiad,
whilst two generated problems have already been accepted to the Czech-Slovak
mathematical contests.

Keywords: geometry problem generation, geometry theorem proving, mathe-
matical olympiad problems, planar geometry problems
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Abstrakt

V práci predstavujeme systém, ktorý generuje úlohy z rovinnej geometrie vhod-
né do matematických súťaží ako Medzinárodná Matematická Olympiáda. Naše
riešenie obsahuje tieto komponenty: (1) nový, dokázateľne korektný algoritmus
generovania úloh, (2) algoritmy hromadného filtrovania ľahkých úloh inšpi-
rované metódami dokazovania geometrických viet, primárne metódou deduk-
tívnej databázy, (3) nový algoritmus hodnotenia kvality úloh. K dispozícií je
C# implementácia systému na GitHube https://github.com/PatrikBak/

GeoGen. Vyvinuté algoritmy boli otestované v malých aj šikoroškálových expe-
rimentoch, kde sa vygenerovali, ohodnotili a usporiadali tisíce úloh, z nich de-
väť je v prílohe. Päť vygenerovaných úloh bolo navrhnutých na Medzinárodnú
Matematickú Olympiádu a dve vygenerované úlohy boli už akceptované do
Česko-Slovenských matematických súťaží.

Kľúčové slová: generovanie geometrických úloh, dokazovanie geometrických
viet, úlohy matematickej olympiády, rovinné geometrické úlohy
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Introduction

Geometry problems have always been an integral part of mathematical competi-

tions. The most famous contest, the International Mathematical Olympiad (IMO)1,
takes place every year and consists of six difficult problems, two of which frequently
belong to planar geometry. For instance, the hardest problem of the IMO 2019 can be
seen in Figure 1.
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B CD
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F
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R
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Q

ω

Let I be the incenter of acute triangle ABC

with AB 6= AC. The incircle ω of ABC is
tangent to sides BC, CA, and AB at D, E,
and F , respectively. The line through D per-
pendicular to EF meets ω again at R. Line
AR meets ω again at P . The circumcircles of
triangles PCE and PBF meet again at Q.

Prove that lines DI and PQ meet on the line
through A perpendicular to AI.

Figure 1 The hardest problem of the International Mathematical Olympiad 2019.

Such problems are created by experienced geometers. This requires years of training
in problem-solving and a great amount of creativity. A conventional way to design these
problems is to examine various geometric situations by introducing new objects and
proving relations among them.

Our ultimate goal is to automate this process, i.e. we aim to extend a given ini-
tial geometric situation to arrive at geometry problems. Ideally, these problems should
already be difficult and interesting enough to be considered for mathematical compe-
titions. The work of the geometer is then to solve and judge the results, and produce
the final output.

1 http://imo-official.org/
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Solution. Our solution is introduced in Section 2.1, where we analyzed the problems
and failures of the naive approach. The outcome of the analysis is a system consisting
of three main components:

1. Generation of geometry problems (Section 2.3).

2. Filtering unsuitable problems (Section 2.4).

3. Ranking of the remaining problems (Section 2.5).

We also designed a nontrivial formal mathematical model (Section 2.2) used to describe
the generation algorithm in depth and formally prove its correctness.

Results. The developed solution has been thoroughly tested in experiments described
in Chapter 3. The conducted experiments resulted into thousands of intriguing prob-
lems, nine of these problems are to be seen in Appendix. Five generated problems have
been proposed to the International Mathematical Olympiad. Two generated problems
have already been accepted to the Czech-Slovak mathematical contests, specifically
Figure 3.3.1 and Figure 3.3.2.

Contribution. Existing geometry research and software in this area focuses mainly
on analyzing a given geometric situation, specifically discovering and proving theorems
using various deductive approaches (see Chapter 1). Our contribution is the focus on
problem generation, which brought many unprecedented challenges resulting in further
technical contributions such as:

- Memory efficient generation of geometric situations.

- Fast bulk theorem proving of non-olympiad problems.

- Problem quality estimation of potential olympiad problems.

9



Chapter 1

Related work

1.1 Geometry problem generation

There have not been many attempts at the automation of geometry problem generation.
An early attempt can be noted in [1]. The developed program works by generating
relations among points and lines until there is an inconsistency that can be translated
into a theorem by negating the last added relation. These inconsistencies are detected
by an algebraic theorem prover. The system can rediscover a few well-known theorems
such as Pappus’s hexagon theorem [10, p. 67].

High school geometry problem generation is addressed in [19]. These are computational
problems targeted to practice common techniques such as Pythagoras’ theorem, trian-
gle similarity, etc. The system cleverly combines various methods including generation
of figures and automated deduction to generate diverse questions.

1.2 Geometry theorem proving

Unlike problem generation, theorem proving in geometry is a very developed area. The
most successful methods turn out to be algebraic ones, such as Wu’s method [3, 4, 20] or
Gröbner bases method [2, 15]. These methods work with algebraic equations expressed
via Cartesian coordinates. The main disadvantage is that they merely provide a yes or
no answer, i.e. they do not produce traditional readable proofs.

Other approaches are called coordinate-free methods. The most notable ones are:

- The area method [8, 13] is built based on expressing geometric properties by
means of lengths and areas. It is very powerful and can provide readable proofs of
various easy theorems, such as Ceva’s theorem [10, p. 4]. Though proofs of more
complicated olympiad-like theorems would be tedious and unnatural.

- The full angle method [6, 5, 23], commonly known as angle chasing, which uses
powerful properties of angles and cyclic quadrilaterals. Unlike the area method, this
method practically always produces short natural proofs. It is not very powerful on
its own as many (especially olympiad) problems require a combination of different
methods (though rarely is angle chasing not among them).

- The deductive database method [7] uses a database of high-level inference
rules that are used to infer new conclusions until a fixpoint is reached, where no
new conclusion can be made. This method can entail aspects of the previous two
methods (as can be seen in [7]). Produced proofs are very close to human-like proofs

10



since using high-level lemmas is the most natural way for geometers to think while
solving.

Most harder geometry problems, such as olympiad ones, require an introduction of
auxiliary points (or other objects) in their coordinate-free proofs. Doing this unwisely
would lead to a combinatorial explosion of options, subsequently resulting in slow
provers. Better approaches can be seen in [7, 17, 22].

Despite all the effort, non-algebraic proving methods still have a relatively smaller
scope of solvable problems than algebraic provers. Therefore, most geometry software
implement more than one method [11, 21, 24]

Some systems use a randomized theorem check approach, i.e. the conjectured theo-
rems are verified numerically by means of analytic geometry. [14, 16]. This is the most
practical way to find all theorems in a given geometric situation, due to the chance of
producing incorrect results being next to zero. Also, the maximal running time can be
guaranteed.

11



Chapter 2

Methods

Most olympiad geometry problems possess the following structure: (i) Description of
a geometric situation; (ii) Theorem to be proven (for example Figure 1). Our focus will
be entirely on problems of this type. The described structure is the prime motivation
to separate the problem generation into:

1. Generation of configurations of geometry objects;

2. Finding and processing theorems in the generated configuration.

The upcoming sections will build on this idea and explain the developed solutions in
more detail.

2.1 Failures of the naive approach

Before delving into actual solutions, we shall address the issues of the naive approach.
They will inherently serve as the foundation for the final astute algorithms.

2.1.1 Configuration generation

The core idea is to extend a configuration with new objects to obtain new configura-
tions. These new objects are added via geometry constructions such as Midpoint. This
process is then repeated with newly generated configurations. The number of iterations
is fixed prior to each generation. See Figure 2.1.1 for an illustration.

I

I ∪ o1

+
o 1

I ∪ o2
+o2

...

I ∪ on

+o
n

...

...

...

Figure 2.1.1 A graph of a generation process that generates geometric con-
figurations. It starts with an initial configuration I. This is then extended
by objects o1, o2, . . . , on. The obtained configurations are iteratively extended
again in this manner, to a certain depth fixed prior to the generation.
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Isomorphism. The described straightforward approach leads to generating isomor-

phic configurations. These are, informally speaking, configurations where one can be
formed from the other by relabeling (see Figure 2.1.2).

A

B C

ED

A

B CE

D

Figure 2.1.2 An example of isomorphic problems. On the left figure, points
D, E are the midpoints of AB, AC, respectively, and we are to prove BC ‖ DE.
Relabeling (A, B, C) 7→ (C, A, B) leads to the problem on the right figure.

2.1.2 Test case experiment

In the upcoming parts, we will illustrate the gravity of generated configurations, and
later on the number of theorems. To that end, we designed a test case experiment
that will perform the generation algorithm from Section 2.1.1. The initial configura-
tion is a triangle with no additional objects. The used constructions are displayed in
Table 2.1.1. The initial triangle will be extended by at most 4 objects.

CircleWithDiameter

Excenter

Excircle

ExternalAngleBisector

Incenter

Incircle

InternalAngleBisector

IntersectionOfLineAndLineFromPoints

IntersectionOfLines

IntersectionOfLinesFromPoints

Median

Midpoint

MidpointOfArc

MidpointOfOppositeArc

OppositePointOnCircumcircle

Orthocenter

ParallelLine

ParallelLineToLineFromPoints

ParallelogramPoint

PerpendicularBisector

PerpendicularLine

PerpendicularLineAtPointOfLine

PerpendicularLineToLineFromPoints

PerpendicularProjection

PerpendicularProjectionOnLineFromPoints

PointReflection

ReflectionInLine

ReflectionInLineFromPoints

TangentLine

Table 2.1.1 Typical olympiad constructions used in the test case experiment
Section 2.1.2, and also in the large-scale experiments from Chapter 3.
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A typical olympiad problem consists of a triangle and 4-7 additional objects. Table 2.1.2
compares the combinatorial explosion, with and without isomorphism handling, when
generating triangle problems with at most 4 additional objects (iterations). The results
suggest that isomorphism ought to be taken into account.

Iterations Non-isomorphic configurations Run time All configurations Run time
1 22 0.4 sec 142 0.1 sec
2 1,377 0.7 sec 6,878 1.7 sec
3 241,073 2.2 min 1,392,396 8.2 min
4 ≈ 20,000,000 ≈ 20 hours ≥ 100,000,000 ≥ 4 days

Table 2.1.2 Quantities of generated configurations in the test case experiment
described in Section 2.1.2. The table shows that it is vital to handle configura-
tion isomorphism (Figure 2.1.2).

Memory usage. Table 2.1.2 points towards the need to handle generation in a memo-
ry-efficient manner. Empirical measurements show that by storing intermediate results
we would reach 10GB memory usage within approximately 45 minutes. Such an ap-
proach would not allow for long-running generations, like those described in Section 3.
Our solution handles the generation of non-isomorphic configurations with storing lin-
early many configurations in the number of iterations, which in practice is at most 5.
The details of this nontrivial algorithm will be presented in Section 2.3.1.

2.1.3 Theorem finding

There is a very limited range of types of geometry theorems that appear in olympiad
problems. Our focus will be on those listed in Table 2.1.3.

Collinear points Parallel lines Tangent circles
Concyclic points Concurrent lines Line tangent to circle

Equal line segments Perpendicular lines Point lies on line or circle

Table 2.1.3 The types of investigated theorems throughout the thesis.

As we can see in Table 2.1.4, the number of theorems in configurations can very easily
get too high to be handled manually.

Iterations Configurations Configurations with a theorem All theorems
1 22 20 64
2 1,377 1,317 4,224
3 241,073 230,601 872,442

Table 2.1.4 Quantities of configurations and theorems in the performed test
case experiment from Section 2.1.2. Only the theorems that use the last object
of a configuration are counted in, thus excluding apparent duplicates.
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2.1.4 Recognizing olympiad problems

The ultimate goal is to produce olympiad problems. The notion of a problem being
olympiad is very subjective, but problem selection committees generally anticipate
these three main features:

1. Difficulty. Olympiad problems are normally unapproachable for most high-school
students lacking former training.

2. Originality. Problems proposed at international competitions must be dissimilar to
previously proposed problems.

3. Attractiveness. A general appeal is difficult to describe. However, one significant
beauty aspect present in most olympiad problems is symmetry.

A problem starting with a triangle is recognized as symmetrical if there is a re-
labeling of two of the triangle’s vertices that represents the same problem (see
Figure 2.1.3).

A

B C

D E

F

G

Let Γ be the circumcircle of acute-angled
triangle ABC. Points D and E lie on seg-
ments AB and AC, respectively, such that
AD = AE. The perpendicular bisectors
of BD and CE intersect the minor arcs AB
and AC of Γ at points F and G, respec-
tively.

Prove that the lines DE and FG are paral-
lel (or are the same line).

Figure 2.1.3 First problem of the International Mathematical Olympiad 2018.
This problem is symmetric, because relabeling (A, B, C) 7→ (A, C, B), yielding
(D, E, F, G) 7→ (E, D, G, F ), is the same problem.

Uninteresting problems. Many theorems from Table 2.1.4 are not suitable for
mathematical competitions. Two types of such theorems are easily recognizable:

1. Construction-related theorems follow from the properties related to a construction,
e.g. if A, B, C are points and D is the point opposite to A on the circumcircle
of ABC, then trivially A, B, C, D are concyclic, and a little less trivially AB ⊥ BD

and AC ⊥ CD (see Figure 2.1.4).

2. Simplifiable theorems are the ones containing an object that is not necessary to
state the theorem, e.g. see Figure 2.1.5.
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A

B C

D

Figure 2.1.4 Thales’s theorem. It
is a construction-related theorem,
since D can be viewed as the point
opposite to A on the circumcircle
of ABC.

A

B CD

EF

G

Figure 2.1.5 The median concur-
rency theorem with an unnecessary
point G, the midpoint of AE. Such
a situation is called a simplifiable

theorem.

In Table 2.1.5 we can see the distribution of construction-related and simplifiable theo-
rems among all the theorems from the examined test case experiment. The data shows
that there are still far too many theorems processable by hand.

Iterations Construction-related theorems Simplifiable theorems Remaining theorems
1 44 0 0
2 2,839 69 1,118
3 502,908 126,031 240,503

Table 2.1.5 The distribution of easily recognizable construction-related (Fig-
ure 2.1.4) and simplifiable (Figure 2.1.5) theorems among the theorems from
Table 2.1.4.

Asymmetry exclusion. Restricting ourselves to generating only symmetric prob-
lems partially addresses the demand for attractiveness in olympiad problems. Ta-
ble 2.1.6 shows this requirement significantly decreases the number of theorems to
process. On the other hand, the need for further methods remains apparent.

Iterations Symmetric theorems Asymmetric theorems
1 0 0
2 203 915
3 11,718 228,785

Table 2.1.6 The distribution of symmetric theorems among the theorems
from Table 2.1.5 that are neither construction-related, nor simplifiable.

Exclusion of easy problems. The main challenge lies in recognizing easy prob-
lems among those that are neither construction-related, nor simplifiable. A significant

16



amount of them do not comply with the difficulty demands, which is noticeable due to
the following observation:

A triangle with 3 points extended by 3 objects yields around 11,000 symmetric theorems
(see Table 2.1.6). These contain too few points to be considered difficult, which means
they are not olympiad. Now, by extending any configuration containing a sub-triangle
with 3 points we will encounter these 11,000 theorems again. In many cases, they are
all symmetric and cannot be simplified.

This analysis outlines one of many reasons for the inevitability of proposing sophisti-
cated methods for finding difficult theorems.

Solution. Our system outlined in Section 2.4.1 is able to filter out approximately
95.6% of easy symmetry theorems in a very low computational time, as can be seen in
Table 2.1.7.

The remaining 512 theorems are subjected to the method that merges similar results
(the second method in Section 2.4.2), which leaves 250 theorems, i.e. a reduction by
another approximately 51.1%.

For the sake of completeness, let us mention that the theorems unfiltered by either of
the methods are sorted via the ranking system described in Section 2.5.

Iterations Symmetric theorems Unfiltered theorems Run time
1 0 0 0.3 sec
2 203 0 2.4 sec
3 11,718 512 2.8 min

Table 2.1.7 The results of our theorem-proving-based filtering system from
Section 2.4 on the symmetric theorems from the performed test case experiment
described in Section 2.1.2.

2.2 Formal model

In this section we will provide a formal description of informally introduced notions
in Section 2.1. This will allow for a precise description and a correctness proof of the
configuration generation algorithm in Section 2.3.

2.2.1 Construction

As a first major step, we will provide a formal definition of a construction. To begin,
let us introduce object types. In the entire thesis, we will work only with three types
of them: points, lines, and circles.

Definition (Object Type). An object type is either of the three constants: Point, Line,
Circle.

The focus of the thesis is on planar problems, hence we shall define our objects in R2.

17



Definition (Objects). By Objects(Point), Objects(Line), Objects(Circle), we denote
the sets of all R2 points, lines, circles, respectively.

Constructions expect specific inputs, for example Incenter takes three distinct points
making a Triangle. Generally, an input for a construction is a tuple of objects with
certain types. Let us define a set of such tuples:

Definition (Geometry Object Base). Let T = (t1, . . . , tn) be a non-empty sequence of
object types. A geometry object base BT is a subset of Objects(t1) × · · · × Objects(tn).
The sequence T will be called the object types of BT .

Example 2.2.1. Consider the following geometry object bases:

- Triangle is the set of all triples of distinct non-collinear points, therefore a geometry
object base with object types (Point, Point, Point).

- TwoConcentricCircles is the set of pairs of circles sharing a center, and so the object
types here are (Circle, Circle).

- LineAndTwoPoints is the set of triples (l, p1, p2), where l is a line and p1, p2 are
points, hence the object types are (Line, Point, Point).

Geometry object bases have their symmetries, for example if points (A, B, C) make
a triangle, then (C, A, B) also make a triangle. These reorderings must also match the
designated types, for example if (l, P, Q) is a pair of a line and two points, then we
cannot exchange the line with either point.

Definition (Invariant Permutation). Let BT be a geometry object base with object
types T = (t1, . . . , tn). A permutation σ of the set {1, . . . , n} is called an invariant

permutation of BT if (tσ(1), . . . , tσ(n)) = (t1, . . . , tn) and also (x1, . . . , xn) ∈ BT if and
only if (xσ(1), . . . , xσ(n)) ∈ BT .

Example 2.2.2. Consider the following geometry object bases:

- Triangle stays a triangle after any reordering of its points, i.e. all 6 possible permu-
tations are invariant ones,

- RightTriangle having the right angle at its first vertex can exchange the last two
points, i.e. it has two invariant permutations (1, 2, 3) and (1, 3, 2).

- LineAndTwoPoints, which is Objects(Line) × Objects(Point) × Objects(Point), also
has the two invariant permutations (1, 2, 3) and (1, 3, 2).

Theorem 2.2.1. Let BT be a geometry object base and let S be the set of all of its
invariant permutation. Then S with composition is a group.

Proof. Let T = (t1, . . . , tn). We need to verify the group axioms:

1. (Closure) Let σ1 and σ2 be two invariant permutations of BT . Then σ1 ◦ σ2 is
a permutation of {1, . . . , n}. We will show that it is an invariant one.

18



By the definition of an invariant permutation:

(t(σ1 ◦ σ2)(1), . . . , t(σ1 ◦ σ2)(n)) = (tσ2(1), . . . , tσ2(n)) = (t1, . . . , tn).

Similarly (x1, . . . , xn) ∈ BT if and only if (xσ2(1), . . . , xσ2(n)) ∈ BT , which holds if
and only if (x(σ1 ◦ σ2)(1), . . . , x(σ1 ◦ σ2)(n)) ∈ BT .

2. (Associativity) Let σ1, σ2, σ3 be invariant permutations. Based on the proven
closure, permutations σ1 ◦ (σ2 ◦ σ3) and (σ1 ◦ σ2) ◦ σ3 are also invariant ones.
Clearly, they are equal, because permutation composition is associative.

3. (Identity) Obviously, the identity permutation i on {1, . . . , n} is an invariant per-
mutation of BT , and for any permutation σ it holds that σ ◦ i = i ◦ σ = σ.

4. (Inverse) Let σ be an invariant permutation. We will prove σ−1 is also an invariant
permutation. We have

(tσ−1(n), . . . , tσ−1(n)) = (t(σ ◦ σ−1)(n), . . . , t(σ ◦ σ−1)(n)) = (t1, . . . , tn),

and
(x1, . . . , xn) = (x(σ ◦ σ−1)(1), . . . , x(σ ◦ σ−1)(n)) ∈ BT ,

which holds if and only if (xσ−1(1), . . . , xσ−1(n)) ∈ BT .

After having defined a geometry object base, we may use it as a domain for construc-
tions. Naturally, a construction is a function that produces new objects from given
ones, for example, ReflectionInLine takes a point and a line and produces the reflection
of the point in the line.

Definition (Construction). Let T = (t1, . . . , tn) be a non-empty sequence of ob-
ject types. A construction FT is a function, which maps a geometry object base to
a set Objects(o), where o is an object type. The sequence T will be called the input

types of FT and o will be called the output type of FT .

Example 2.2.3. Consider the following constructions:

- Midpoint has input types (Point, Point), an output type Point, and it is defined for
a geometry base, which consist of all pairs of points (P, Q). Moreover, it holds that
Midpoint(P, Q) = 1

2 (P + Q).

- IntersectionOfLines has input types (Line, Line), an output type Line, it is defined
for a geometry base of line pairs (k, l) such that k ∦ l, and IntersectionOfLines(k, l)
is the only intersection point of the lines k and l.

- ReflectionInLine has input types (Point, Line), an output type Point, and it is defined
for pairs (p, l), where p is a point and l is a line.

Rather than in the analytic interpretation of constructions, we will be interested in their
symmetries. Specifically, under which reorderings of the input arguments a construc-
tion yields the same object. For example, InternalAngleBisector(B, A, C) is the same
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as InternalAngleBisector(C, A, B), but not as InternalAngleBisector(A, B, C). While re-
ordering arguments, we need to assure that the types correspond. For example, we
cannot reorder arguments of ReflectionInLine(P, l). All of that is incorporated in the
following definition:

Definition (Invariant Permutation). Let FT be a construction with T = (t1, . . . , tn).
A permutation σ of the set {1, . . . , n} is called an invariant permutation of FT if σ is
an invariant permutation of dom(FT ) and FT (xσ(1), . . . , xσ(n)) = FT (x1, . . . , xn).

Example 2.2.4. Consider the following constructions:

- Midpoint takes two points in any order, i.e it has two invariant permutations (1, 2)
and (2, 1),

- PointReflection expects two points and their order matters, i.e. it has only one
invariant permutation (1, 2),

- IntersectionOfLineAndLineFromPoints assumes a line l and two points A and B,
producing the intersection point of the lines l and AB, i.e. the two points can
be interchanged, but not with l, which gives exactly two invariant permutations
(1, 2, 3) and (1, 3, 2),

- IntersectionOfLinesFromPoints needs four points A, B, C, D and defines the inter-
section point of lines AB and CD. Clearly, we can exchange points A and B or C

and D, but also exchange the pairs (A, B) and (C, D). One can see this leads to
8 invariant permutations:

(1, 2, 3, 4), (1, 2, 4, 3), (2, 1, 3, 4), (2, 1, 4, 3),

(3, 4, 1, 2), (3, 4, 2, 1), (4, 3, 1, 2), (4, 3, 2, 1).

Theorem 2.2.2. Let FT be a construction and let S be the set of all of its invariant
permutations. Then S with composition is a group.

Proof. The proof is entirely analogous to that of Theorem 2.2.1 (besides a few addi-
tional steps with FT ). Details are omitted.

2.2.2 Configuration

The main idea how to represent configurations is by means of graph theory, specially
directed acyclic graphs with a fixed order of their vertices and edges:

Definition (Ordered Graph). Suppose that G is a directed graph with ordered vertices
v1, . . . , vm, where for each vertex vi there exists an ordering πi of its direct successors.
We call G an ordered graph if it satisfies:

1. There exists a positive integer n ≤ m such that the first n vertices have no outgoing
edges.

2. For every edge from vi to vj it holds that i > j.
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The first n vertices will be called leaves.

Remark. Further on, we will not access πi directly, instead we will write the direct
successors in the order induced by πi, referring to this sequence as ordered successors

(leaving out “direct” for brevity).

As mentioned before, we will use an ordered graph to represent configurations. To
obtain a good understanding of the motivation, consider the following example: ABC

is a triangle, l is the perpendicular bisector of BC, D is the reflection of A in l. To
model this formally as an ordered graph, we will do this:

- The ordered vertices of the graph will be A, B, C, l, D.

- The vertices A, B, C will be the leaves. The ordered direct successors of l will be B

and C, whereas the ordered direct successors of D will be A and l.

- The graph will need to be vertex-labeled to preserve what construction was used to
define each non-leaf object. In our example, l was defined as PerpendicularBisector

and D was defined via ReflectionInLine.

- A configuration will be defined with respect to a geometry object base. In our
example it is a Triangle.

- Vertices will be labeled with object types. The types of leaves will be inferred from
the object base. In our example, all three leaves A, B, C will have a type Point.
The types of non-leaves will be the output type of the construction with which
they are labeled. In our example, l will be a Line and D will be a Point.

- The types of ordered successors of a vertex must correspond to the input types of
the particular construction, so that we cannot define ReflectionInLine(l, A).

Definition (Configuration). Let BT be a geometry object base with T = (t1, . . . , tn).
A configuration CBT

is a vertex-labeled ordered graph G satisfying:

1. Each vertex is labeled with an object type.

2. It has exactly n leaves v1, . . . , vn labeled with respective types t1, . . . , tn.

3. Each non-leaf vertex labeled with a type t and ordered successors v′
1, . . . , v′

m with
respective types T ′ = (t′

1, . . . , t′
m) is also labeled with a construction FT ′ with an

output type t.

The vertices of G will be called objects of CBT
. The leaves of G will be called base

objects of CBT
, whereas the other vertices will be called constructed objects of CBT

.

Example 2.2.5. Consider the following configurations:

1. Let l be a line and A, B be points. Let P be the intersection point of AB and l,
M the midpoint of AB, and N the reflection of P in M .

To represent this situation, we have BT = LineAndTwoPoints and a configura-
tion CBT

as the left graph on Figure 2.2.1 with ordered vertices l, A, B, P , M , N .
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The base objects l, A, B are labeled with respective types Line, Point, Point. The
remaining objects P , M , N are constructed, and have respective constructions
IntersectionOfLineAndLineFromPoints, Midpoint, PointReflection, therefore they all
have a type Point.

2. Let ABCD be a quadrilateral and M , N the midpoints of AB and CD, respectively.
This can be represented as configuration CBT

with BT = Quadrilateral and ordered
objects A, B, C, D, M , N . Note that the graph of the configuration has two
components (see the right graph on Figure 2.2.1).

1 2 3 1 2

1 2

l A B

P MN

1 2 1 2

A B C D

M N

Figure 2.2.1 Graphs of the configurations from Example 2.2.5.

To precisely describe obvious equalities such as Midpoint(A, B) = Midpoint(B, A), let
us define object equivalence. Note that the definition will be recursive, to contain
even more complex relations, including Midpoint(Midpoint(A, B), Midpoint(C, D)) =
Midpoint(Midpoint(C, D), Midpoint(B, A)). Finally, we will make use of invariant per-
mutations of a construction, which are essentially the underlying reason for objects
being equivalent.

Definition (Object Equivalence). Let C1
BT

and C2
BT

be configurations with the same
sets of base objects. We say that two objects o1 of C1

BT
and o2 of C2

BT
are equivalent,

denoted by o1 ∼ o2, if either condition is met:

a) Both objects o1 and o2 are base objects and o1 = o2,

b) Both objects o1 and o2 are constructed objects labeled with the same construction c

with respective ordered successors s1
1, . . . , s1

n and s2
1, . . . , s2

n such that there exists
an invariant permutation σ of c satisfying s1

i ∼ s2
σ(i) for every 1 ≤ i ≤ n.

Remark. Note that this recursive definition is correct, which easily follows from the
following observation: Let o1

1, . . . , o1
m1

and o2
1, . . . , o2

m2
be the objects of C1

BT
and C2

BT
,

respectively, and let o1 = o1
a and o2 = o2

b . Since a configuration is an ordered graph, it
must hold that {s1

1, . . . , s1
n} ⊂ {o1

1, . . . , o1
a−1} and {s2

1, . . . , s2
n} ⊂ {o2

1, . . . , o2
b−1}.

Example 2.2.6. Consider configurations C1
BT

and C2
BT

with BT = Triangle such that:
Configuration C1

BT
has ordered objects A, B, C, O, M , where O is the circumcenter

of ABC and M is the midpoint of AO (see the left graph on Figure 2.2.2). Configura-
tion C2

BT
has ordered objects C, B, A, O′, M ′, where O′ is the circumcenter of BCA

22



and M ′ is the midpoint of O′A (see the right graph Figure 2.2.2). All the pairs of
equivalent objects of C1

BT
and C2

BT
are as follows:

1. Trivially A ∼ A, B ∼ B, C ∼ C.

2. O ∼ O′ for σ = (3, 1, 2), and also O′ ∼ O for σ = (2, 3, 1).

3. M ∼ M ′ and M ′ ∼ M for σ = (2, 1),

1 2 31

2

A B C

M O

312 2

1

ABC

M ′O′

Figure 2.2.2 Graphs of the configurations from Example 2.2.6.

Lemma 2.2.1. For any object o of a configuration CBT
, it holds that o ∼ o.

Proof. Let o1, . . . , om be the objects of CBT
, where the first n of them are base objects.

We will prove that oi ∼ oi for 1 ≤ i ≤ m, by induction on i. For 1 ≤ i ≤ n, the claim
is obvious, because object equivalence becomes object equality. Assume that oj ∼ oj

for all 1 ≤ j ≤ i, where i ≥ n. We need to show oi+1 ∼ oi+1.

Clearly, oi+1 is a constructed object with a construction c, let s1, . . . , sp be its ordered
successors. Since {s1, . . . , sp} ⊂ {o1, . . . , oi}, we have sj ∼ sj for 1 ≤ j ≤ p by the
induction hypothesis. Hence, by taking σ as the identity invariant permutation of c,
we have oi+1 ∼ oi+1, which concludes the proof by induction.

Lemma 2.2.2. Let C1
BT

and C2
BT

be configurations with the same sets of base objects,
o1 and o2 any objects of C1

BT
and C2

BT
, respectively. If o1 ∼ o2, then o2 ∼ o1.

Proof. Let o1
1, . . . , o1

m1
and o2

1, . . . , o2
m2

be the objects of C1
BT

and C2
BT

, respectively, where
the first n of them are base objects. We will prove for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 that
if o1

i ∼ o2
j , then o2

j ∼ o1
i . The proof will be done by induction on max{i, j}.

If max{i, j} ≤ n, then o1
i and o2

j are base objects, i.e. their equivalence becomes their
equality, and therefore the claim is obvious.

Assume that we have proven the statement for every o1
i and o2

j such that max{i, j} ≤ t,
where t ≥ n. We will now prove it for such i and j that max{i, j} = t+1. Suppose that
o1

i ∼ o2
j . Since max{i, j} = t + 1, either i = t + 1 > n, or j = t + 1 > n, which means

that both objects o1
i and o2

j must be constructed objects with the same construction c.
Let s1

1, . . . , s1
p and s2

1, . . . , s2
p be their respective ordered successors. Then there exists

an invariant permutation σ of c such that s1
k ∼ s2

σ(k) for 1 ≤ k ≤ p.
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By Theorem 2.2.2, we know that σ−1 is also an invariant permutation of c. Clearly,
it holds that {s1

1, . . . , s1
p} ⊂ {o1

1, . . . , o1
i−1} and {s2

1, . . . , s2
p} ⊂ {o2

1, . . . , o2
j−1}, and since

max{i − 1, j − 1} = t, the induction hypothesis gives s2
σ(k) ∼ s1

k, for 1 ≤ k ≤ p, hence
s2

k ∼ s1
σ−1(k), for 1 ≤ k ≤ p, which finally means o2

i ∼ o1
j . This concludes the proof by

induction.

Lemma 2.2.3. Let C1
BT

, C2
BT

, C3
BT

be configurations with the same sets of base objects,
and o1, o2, o3 any objects of C1

BT
, C2

BT
, C3

BT
, respectively. If o1 ∼ o2 and o2 ∼ o3, then

o1 ∼ o3.

Proof. Let o1
1, . . . , o1

m1
and o2

1, . . . , o2
m2

and o3
1, . . . , o3

m3
be the objects of C1

BT
, C2

BT
, C3

BT
,

respectively, where the first n of them are base objects. We will prove for 1 ≤ i ≤ m1

and 1 ≤ j ≤ m2 and 1 ≤ k ≤ m3 that if o1
i ∼ o2

j and o2
j ∼ o3

k then o1
i ∼ o3

k. The proof
will be done by induction on max{i, j, k}.

If max{i, j, k} ≤ n, then o1
i , o2

j , o3
k are all base objects, i.e. their equivalence becomes

their equality, and therefore the claim is obvious.

Assume that we have proven the statement for all o1
i , o2

j , o3
k such that max{i, j, k} ≤ t,

where t ≥ n. We will now prove it for such i, j, k that max{i, j, k} = t+1. Suppose that
o1

i ∼ o2
j and o2

j ∼ o3
k. Since max{i, j, k} = t+1, either i = t+1 > n, or j = t+1 > n, or

k = t + 1 > n which means that all objects o1
i , o2

j , o3
j must be constructed objects with

the same construction c. Let s1
1, . . . , s1

p and s2
1, . . . , s2

p and s3
1, . . . , s3

p be their respective
ordered successors. Then there exist invariant permutations σ1 and σ2 of c such that
s1

l ∼ s2
σ1(l) and s2

l ∼ s3
σ2(l) for 1 ≤ l ≤ p.

By Theorem 2.2.2, σ2 ◦ σ1 is also an invariant permutation of c. Clearly, it holds that
{s1

1, . . . , s1
p} ⊂ {o1

1, . . . , o1
i−1} and {s2

1, . . . , s2
p} ⊂ {o2

1, . . . , o2
j−1} and {s3

1, . . . , s3
p} ⊂

{o3
1, . . . , o3

k−1}, and since max{i − 1, j − 1, k − 1} = t, the induction hypothesis gives
that the relations s1

l ∼ s2
σ1(l) and s2

σ1(l) ∼ s3
σ2(σ1(l)) imply s1

l ∼ s3
(σ2 ◦ σ1)(l) for every

1 ≤ l ≤ p, which finalizes the proof of o1
i ∼ o3

k, therefore the proof by induction is
concluded.

One may have noticed that in our definition of a configuration, nothing prevented it
from having equivalent objects simultaneously, for example having Midpoint(A, B) and
Midpoint(B, A). In reality, this is not wanted, hence the following definition:

Definition (Correct Configuration). We say that a configuration is correct if it does
not contain two distinct equivalent objects.

Example 2.2.7. Consider a configuration CBT
with BT = Triangle and ordered objects

A, B, C, P , Q, where P is the circumcenter of ABC and Q is the circumcenter of CBA

(see Figure 2.2.3) One can check that CBT
is not correct, because P ∼ Q for σ = (3, 2, 1).

Notice that the order of some objects of a configuration does not have to matter, for
example in a triangle ABC with its midpoints of AB and AC, the midpoints can be
interchanged. It will become essential to recognize such cases. Moreover, we will take
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into account object equivalence, i.e. a triangle ABC with midpoints of AB and AC is
the same as a triangle ABC with its midpoints of CA and BA.

1 2 3 3 2 1

A B C

P Q

Figure 2.2.3 The graph of the configuration from Example 2.2.7.

Definition (Equivalent Configurations). We say that two configurations C1
BT

and C2
BT

with the same sets of base objects are equivalent, denote by C1
BT

≡ C2
BT

, if there exists
a bijection between the objects of C1

BT
and C2

BT
such that if o 7→ o′, then o ∼ o′.

Example 2.2.8. Consider configurations C1
BT

and C2
BT

with BT = Triangle such that:
Configuration C1

BT
has ordered objects A, B, C, O, M , N , where O is the circumcenter

of ABC, M is the midpoint of BC, N is the midpoint of AM (see the left graph on
Figure 2.2.4). Configuration C2

BT
has ordered objects A, C, B, M ′, O′, N ′, where M ′

is the midpoint of BC, O′ is the circumcenter of CBA, N ′ is the midpoint of M ′A

(see the right graph on Figure 2.2.4). These configurations are equivalent, as proven by
the bijection f : (A, B, C, O, M, N) 7→ (A, B, C, O′, M ′, N ′) mapping pairs of equivalent
objects.

1 2 3 1 21

2

A B C

MNO

3 2 1 1 22

1

A B C

M ′N ′O′

Figure 2.2.4 Graphs of the configurations from Example 2.2.8.

Theorem 2.2.3. Configuration equivalence is an equivalence relation.

Proof. Let us prove the required axioms:

- (Reflexivity) Let CBT
be a configuration. The identity bijection f on its objects

satisfies o ∼ f(o), as per Lemma 2.2.1.

- (Symmetry) Let C1
BT

and C2
BT

be configurations such C1
BT

≡ C2
BT

. This means that
there exists a bijection f between the objects of C1

BT
and C2

BT
such that for every

object o of C1
BT

we have o ∼ f(o). By Lemma 2.2.2, we also have f(o) ∼ o, therefore
for every object o of C2

BT
we have o ∼ f−1(o), which proves C2

BT
≡ C1

BT
.
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- (Transitivity) Let C1
BT

, C2
BT

, C3
BT

be configurations such C1
BT

≡ C2
BT

and C2
BT

≡ C3
BT

.
This means that there exists bijection f1 between the objects of C1

BT
and C2

BT
such

that for every object o of C1
BT

we have o ∼ f1(o), and also there exists bijection f2

between the objects of C2
BT

and C3
BT

such that for every object o of C2
BT

we have
o ∼ f2(o). By Lemma 2.2.3, we have for every object o of C1

BT
that o ∼ f2(f1(o)),

which proves C1
BT

≡ C3
BT

.

To capture that some configuration is just an extension of another (equivalent) one,
we define a subconfiguration.

Definition (Subconfiguration). Let CBT
be a configuration with objects o1, . . . , om.

We say that a configuration C′

BT
with objects o′

1, . . . , o′

m′ and the same set of base
objects as CBT

is a subconfiguration of CBT
, if m′ ≤ m and for every 1 ≤ i ≤ m′ it holds

that oi ∼ o′
i.

Example 2.2.9. Consider configurations C1
BT

and C2
BT

with BT = Triangle such that:
Configuration C1

BT
has ordered objects A, B, C, M , O, where M is the midpoint of BA,

O is the circumcenter of CBA (see the left graph on Figure 2.2.5). Configuration C2
BT

has ordered objects A, B, C, M ′, O′, N ′, where M ′ is the midpoint of AB, O′ is the
circumcenter of BAC, N ′ is the point reflection of B in C (see the right graph on
Figure 2.2.5). Clearly A ∼ A, B ∼ B, C ∼ C, M ∼ M ′, O ∼ O′, therefore C1

BT
is

a subconfiguration of C2
BT

.

3 2 112

A B C

M O

2 1 31 2 1 2

A B C

M ′ N ′O′

Figure 2.2.5 Graphs of the configurations from Example 2.2.9.

Lemma 2.2.4. Let C1
BT

, C2
BT

, C3
BT

be configurations with the same base objects.
If C1

BT
is a subconfiguration of C2

BT
and C2

BT
is a subconfiguration of C3

BT
, then C1

BT
is

a subconfiguration of C3
BT

.

Proof. Let o1
1, . . . , o1

m1
and o2

1, . . . , o2
m2

and o3
1, . . . , o3

m3
be the objects of C1

BT
, C2

BT
, C3

BT
,

respectively. Clearly, m1 ≤ m2 ≤ m3, and for every 1 ≤ i ≤ m1 we have o1
i ∼ o2

i and
o2

i ∼ o3
i , therefore by Lemma 2.2.3 also o1

i ∼ o3
i . This proves that C1

BT
is a subconfigu-

ration of C3
BT

.

2.2.3 Isomorphism

The objective of this section is to define isomorphism, which was introduced only in-
formally in Section 2.1.1 (see Figure 2.1.2). In this informal explanation, we mentioned
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relabeling. On a graph level, it means to reorder leaves, and based on that also adjust
the definitions of non-leaves.

Definition (Graph Redefinition). Let G be an ordered graph with vertices v1, . . . , vm,
where the first n of them are leaves, and let σ be a permutation on {1, . . . , n}. We define
the redefinition of G by σ as an ordered graph with vertices v′

1, . . . , v′
m given by the

following inductive construction:

1. The vertices v′
1, . . . , v′

n are equal to vσ(1), . . . , vσ(n).

2. Assume that vertices v′
1, . . . , v′

i are already defined, where n ≤ i < m. If vertex vi+1

is incident with ordered vertices va1
, . . . , vap

, then the vertex v′
i+1 will be incident

with ordered vertices v′
a1

, . . . , v′
ap

.

The fact that G′ is a redefinition of G by σ will be denoted by G
σ−→ G′. Also, we will

say that a vertex vi is redefined to v′
i.

Remark 1. In the second step, we are assuming that the vertices va1
, . . . , vap

have
already been redefined. We can make this assumption based on the definition of an
ordered graph, which ensures that the existing edges (vi+1, vaj

) have aj < i + 1.

Remark 2. Note that the redefinition induces a mapping vi 7→ v′
i for 1 ≤ i ≤ m, which

is a graph isomorphism between G and G′.

Example 2.2.10. Consider the left graph on Figure 2.2.6 with ordered vertices A, B,
C, D, E, where A, B, C are leaves, D has ordered successors A, B, and E has ordered
successors C, D. After performing the redefinition by a permutation (2, 3, 1), the new
graph (the right one on Figure 2.2.6) has ordered vertices B, C, A, D′, E′, where B,
C, A are leaves, D′ has ordered successors B, C, and E′ has ordered successors A, D′.

1 2 1

2

A B C

D E

1 2 1

2

AB C

D′ E′

Figure 2.2.6 Graphs from the example from Example 2.2.10.

Lemma 2.2.5. Let G1, G2, G3 be ordered graphs with n leaves, and σ1, σ2 be
permutations on {1, . . . , n}. Then the following claims are true:

a) G1
i−→ G1, where i is the identity permutation on {1, . . . , n}.

b) If G1
σ1−−→ G2 and G2

σ2−−→ G3, then G1
σ2 ◦σ1−−−−−→ G3.

c) If G1
σ1−−→ G2, then G2

σ−1

1−−−→ G1.
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Proof. To realize these properties, notice that the redefinition of a graph is determined
by the reordering of the leaves. Therefore:

a) Redefining the leaves by i does not affect them, which proves a).

b) Redefining the leaves by σ1 and subsequently by σ2 produces the same order of
theirs as the redefinition by σ2 ◦ σ1, which proves b).

c) Redefining the leaves by σ1 and subsequently by σ−1
1 produces the same order of

theirs as the redefinition by σ−1
1 ◦ σ1 = i, which proves c).

Remark. Notice that this lemma means that the redefinition is a group action on the
set of ordered graphs by the group of permutations on the leaf indices. Generally, the
third property follows from the previous two.

The most important concept of isomorphism is applying a graph redefinition to a con-
figuration, as it essentially is an ordered graph with labels. Since the leaves represent
objects of a certain geometry object base, we cannot reorder them arbitrarily, but only
according to its invariant permutation.

Definition (Configuration Redefinition). If CBT
is a configuration and σ is an invariant

permutation of BT , then we define the redefinition of CBT
by σ as a configuration C′

BT

such that CBT

σ−→ C′

BT
(as ordered graphs), and the labels are preserved under the

induced graph isomorphism.

Example 2.2.11. Let CBT
be a configuration with BT = RightTriangle, having ordered

objects A, B, C, M , N , where M is the midpoint of AB, and N is the reflection of M

in C (see the left graph on Figure 2.2.7). Its redefinition by an invariant permutation
(1, 3, 2) yields a configuration C′

BT
with ordered objects A, C, B, M ′, N ′, where M ′

is the midpoint of BC, and N ′ is the reflection of M ′ in C (see the right graph on
Figure 2.2.7).

1 2

1

2

A B C

M N

1 2

1

2

A BC

M ′ N ′

Figure 2.2.7 Graphs of the configurations from Example 2.2.11.

Lemma 2.2.6. If C1
BT

, C2
BT

, C3
BT

are configurations and σ1, σ2 are invariant permuta-
tions of BT , then the following claims are true:

a) C1
BT

i−→ C1
BT

, where i is the identity invariant permutation of BT .

b) If C1
BT

σ1−−→ C2
BT

and C2
BT

σ2−−→ C3
BT

, then C1
BT

σ2 ◦σ1−−−−−→ C3
BT

.

c) If C1
BT

σ−→ C2
BT

, then C2
BT

σ−1

−−−→ C1
BT

.
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Proof. According to Theorem 2.2.1, if σ1 and σ2 are invariant permutations of BT , then
σ−1

1 and σ2 ◦σ1 are also. That makes the redefinitions in the lemma correct. The claims
are clearly true by Lemma 2.2.5 and the fact that redefinition does not affect labels.

The following lemma shows, informally speaking, that a redefinition preserves object
equivalence. This intuitively follows from the fact that every object is essentially defined
via the base objects (through its successors), and the base objects are the same in
equivalent configurations.

Lemma 2.2.7. Let C1
BT

and C2
BT

be configurations with the same set of base objects.
Assume that o1 and o2 are equivalent objects of C1

BT
and C2

BT
, respectively. If we rede-

fine both these configurations by the same invariant permutation of BT , then o1 and o2

will be redefined to equivalent objects.

Proof. Let o1
1, . . . , o1

m1
and o2

1, . . . , o2
m2

be the respective objects of C1
BT

and C2
BT

, where
the first n of them are leaves, and let o1′

1 , . . . , o1′

m1
and o2′

1 , . . . , o2′

m2
be the respective

objects of the configurations obtained by redefining C1
BT

and C2
BT

by an invariant per-
mutation of BT . Also let o1 = o1

a and o2 = o2
b .

We will prove the following claim: If o1
i ∼ o2

j , for some 1 ≤ i ≤ a and 1 ≤ j ≤ b, then
o1′

i ∼ o2′

j . The proof will be done by induction on max{i, j}.

If max{i, j} ≤ n, then both objects o1
i and o2

j must be base ones, i.e. their equivalence
implies their equality, and so after the redefinition, they will also be equal.

Assume that we have proven the statement for every o1
i and o2

j such that max{i, j} ≤ t,
where t ≥ n. We will now prove it for such i and j that max{i, j} = t+1. Suppose that
o1

i ∼ o2
j . Since max{i, j} = t + 1, either i = t + 1 > n, or j = t + 1 > n, which means

that both objects o1
i and o2

j must be constructed objects with the same construction c.
Let s1

1, . . . , s1
p and s2

1, . . . , s2
p be their respective ordered successors. Then there exists

an invariant permutation σ of c such that s1
k ∼ s2

σ(k) for 1 ≤ k ≤ p.

Clearly, {s1
1, . . . , s1

p} ⊂ {o1
1, . . . , o1

i−1} and {s2
1, . . . , s2

p} ⊂ {o2
1, . . . , o2

j−1}. Also, we have
max{i − 1, j − 1} = t, therefore, by the induction hypothesis we have that equivalent
objects s1

k and s2
σ(k) are redefined to equivalent objects s1′

k and s2′

σ(k), for 1 ≤ k ≤ p, and
so the redefined objects o1′

i and o2′

j have their respective ordered successors s1′

1 , . . . , s1′

p

and s2′

1 , . . . , s2′

p such that s1′

k ∼ s2′

σ(k) for 1 ≤ k ≤ p, which concludes the proof of
o1

i ∼ o2
j , hence concludes the proof by induction.

Lemma 2.2.8. A redefinition of a correct configuration is a correct configuration.

Proof. Assume that CBT
is a configuration, and C′

BT
is its definition by a symmetric

permutation σ of BT . We will show that if CBT
is correct, then C′

BT
is correct, by

contradiction. Assume that C′

BT
is not correct, i.e. it contains two distinct equivalent

objects o1 and o2. By Lemma 2.2.6c, C′

BT

σ−1

−−−→ CBT
, and by Lemma 2.2.7, objects o1

and o2 are redefined to trivially distinct equivalent objects of CBT
, which contradicts

its correctness.

29



Lemma 2.2.9. Let C1
BT

and C2
BT

be equivalent configurations. A redefinition of these
configurations by the same invariant permutation of BT yields equivalent configura-
tions.

Proof. Since C1
BT

and C2
BT

are equivalent, there exists a bijection f mapping the objects
of C1

BT
to objects of C2

BT
equivalent to them. Therefore, configurations C1

BT
and C2

BT
have

the same number of objects, denote them by o1
1, . . . , o1

m and o2
1, . . . , o2

m, respectively.
After redefining them by the same invariant permutation, we obtain configurations C1′

BT

and C2′

BT
with respective objects o1′

1 , . . . , o1′

m and o2′

1 , . . . , o2′

m.

Define the bijection f ′ between the objects of C1′

BT
and C2′

BT
such that if f(o1

i ) = o2
j for

some 1 ≤ i, j ≤ m, then f ′(o1′

i ) = o2′

j . It is easy to show that f ′ maps equivalent objects,
since f(o1

i ) = o2
j gives o1

i ∼ o2
j , and Lemma 2.2.7 means o1′

i ∼ o2′

j , i.e. o1′

i ∼ f ′(o1′

i ).
This concludes the proof of C1′

BT
≡ C2′

BT
.

Configuration isomorphism was informally portrayed as: Two configurations are iso-
morphic if we can relabel vertices of the first one to obtain a configuration same as
the second one. Formally, relabeling will correspond to redefining and sameness to
equivalence.

Definition (Isomorphic Configurations). We say that two configurations C1
BT

and C2
BT

are isomorphic, denoted by C1
BT

≃ C2
BT

, if there exists an invariant permutation σ of BT

such that redefining C1
BT

by σ yields a configuration equivalent to C2
BT

.

Remark 1. Observe that isomorphic configurations must have the same sets of base
objects.

Remark 2. Notice that equivalent configurations are naturally isomorphic, because we
may take σ as the identity invariant permutation.

Example 2.2.12. Consider configurations C1
BT

and C2
BT

with BT = Triangle such that:
Configuration C1

BT
has ordered objects A, C, B, O, H, M , where O is the circumcenter

of BAC, H is the orthocenter of OBA, M is the midpoint of AC (see the left graph of
Figure 2.2.8). Configuration C2

BT
has ordered objects B, C, A, M ′, O′, H ′, where M ′

is the midpoint of BC, O′ is the circumcenter of BCA, H ′ is the orthocenter of CO′A

(see the right graph of Figure 2.2.8).

If we redefine C1
BT

by an invariant permutation σ = (2, 3, 1), then we will get a config-
uration C3

BT
with ordered objects C, B, A, O′′, H ′′, M ′′, where O′′ is the circumcenter

of ACB, H ′′ is the orthocenter of O′′AC, M ′′ is the midpoint of CB. Clearly, config-
urations C3

BT
and C2

BT
are equivalent, due to the bijection f : (A, B, C, O′′, H ′′, M ′′) 7→

(A, B, C, O′, M ′, N ′) mapping pairs of equivalent objects.
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A BC

OHM
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3 12 3

ABC

O′H ′M ′

Figure 2.2.8 Graphs of the configurations from Example 2.2.12.

Theorem 2.2.4. Configuration isomorphism is an equivalence relation.

Proof. Let us verify the needed axioms:

- (Reflexivity) According to Lemma 2.2.6a, for any configuration CBT
it holds that

CBT

i−→ CBT
, where i is the identity invariant permutation of BT , therefore we have

CBT
≃ CBT

.

- (Symmetry) Assume that C1
BT

and C2
BT

are isomorphic configurations, i.e. there

exists an invariant permutation σ of BT such that C1
BT

σ−→ C2′

BT
, where C2′

BT
≡ C2

BT
.

By Lemma 2.2.6c, C2′

BT

σ−1

−−−→ C1
BT

, and by Lemma 2.2.9, also C2
BT

σ−1

−−−→ C1′

BT
, where

C1′

BT
≡ C1

BT
, which means C2

BT
≃ C1

BT
.

- (Transitivity) Assume that C1
BT

≃ C2
BT

and C2
BT

≃ C3
BT

. Then there are invariant

permutations σ1 and σ2 of BT such that C1
BT

σ1−−→ C2′

BT
, where C2′

BT
≡ C2

BT
, and

C2
BT

σ2−−→ C3′

BT
, where C3′

BT
≡ C3

BT
. By Lemma 2.2.9, we have C2′

BT

σ2−−→ C3′′

BT
, where

C3′′

BT
≡ C3′

BT
. By Theorem 2.2.3, this means C3′′

BT
≡ C3

BT
, and by Lemma 2.2.6b also

C1
BT

σ2 ◦ σ1−−−−−→ C3′′

BT
, which together gives that C1

BT
≃ C3

BT
.

Theorem 2.2.5. If two configurations are isomorphic configurations and one of them
is correct, then the other is correct too.

Proof. Assume that C1
BT

and C2
BT

are isomorphic configurations and C1
BT

is correct.
By the definition of configuration isomorphism, there exists an invariant permutation
of BT such that C1

BT

σ−→ C2′

BT
, where C2′

BT
≡ C2

BT
. Since C1

BT
is correct, by Lemma 2.2.8

also C2′

BT
is correct. We will prove that C2

BT
is also correct, by contradiction.

If C2
BT

were not correct, then it would contain two distinct objects o1 and o2 such that
o1 ∼ o2. Since C2′

BT
≡ C2

BT
, by Theorem 2.2.3 also C2

BT
≡ C2′

BT
, therefore configuration C2′

BT

contains objects o′
1 and o′

2 such that o1 ∼ o′
1 and o2 ∼ o′

2. By Lemma 2.2.2, o1 ∼ o′
1

implies o′
1 ∼ o1. By Lemma 2.2.3, o1 ∼ o2 and o2 ∼ o′

2 give o1 ∼ o′
2. By the same

lemma, o′
1 ∼ o1 and o1 ∼ o′

2 give o′
1 ∼ o′

2. Together with the obvious fact that o′
1

and o′
2 are distinct, this is is a contradiction with C2′

BT
being correct.
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2.3 Problem generation

In Section 2.1 we established the basic separation of problem generation into config-
uration generation and theorem finding. We claimed to have developed a generation
algorithm of non-isomorphic configurations with sophisticated memory handling, which
will finally be described in Section 2.3.1. The theorem finding methods are then ex-
plained in Section 2.3.2.

2.3.1 Configuration generation

The developed algorithm builds on the basic generation idea presented at the beginning
of Section 2.1.1. We will still generate the graph in Figure 2.1.1, but in a thought-out
order. Also, in the process we will dismiss several configurations that would lead to
generating isomorphic ones.

Configuration extension algorithm. To perform generation, we need an algorithm
to generate new configurations from a given one. As already established, this algorithm
is applied to the initial configuration and also subsequently generated configurations.

Note that the algorithm works with a finite set of constructions fixed in advance. In
the entire thesis, we use the constructions from Table 2.1.1.

The algorithm takes a configuration CBT
with objects o1, . . . , om and:

1. For every construction c with input types t1, . . . , tn and every n-tuple of distinct
objects o′

1, . . . , o′
n from {o1, . . . , om} with corresponding types t1, . . . , tn defines

a configuration C′

BT
, whose objects are o1, . . . , om+1, where om+1 has ordered direct

successors o′
1, . . . , o′

n, and labels c and the output type of c.

2. From the generated configurations, only those that are correct are taken.

3. The remaining configurations are grouped into the sets of equivalent ones. From
each set, one arbitrary configuration is taken.

Dismissal of isomorphic configurations. During the generation, it may happen
that two configurations isomorphic to each other are generated. As highlighted in Sec-
tion 2.1.2, this is not desired. We will present an algorithm that prevents this.

The main idea is to dismiss several configurations along the generation. In other words,
define an exclusion algorithm that will decide whether a given generated configuration
should be excluded or not. This algorithm will ensure that no two isomorphic configu-
rations are generated, and also that unexcluded configurations are generable from the
initial one.

Encoding function. The key idea of the exclusion algorithm is encoding objects and
configurations as strings and using lexicographical order. We will gradually explain this
technique. The first step is to define an encoding function that will be able to capture
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equivalence of two objects, i.e. two objects will be equivalent if and only if they are
encoded to the same string.

In the encoding, we will use the letters of the English alphabet and 3 additional special
characters: left and right round brackets and a comma.

We will assume that the available constructions c1, . . . , ct have arbitrary distinct re-
spective codes c′

1, . . . , c′
t not containing these special characters.

Let CBT
be a configuration with objects o1, . . . , om, where the first n of them are base

objects. Then, we will recursively encode their objects as follows:

1. The base objects o1, . . . , on have arbitrary distinct respective codes o′
1, . . . , o′

n not
containing the special characters.

2. If objects o1, . . . , oi are already encoded, where i ≥ n, then we will encode (con-
structed) object oi+1 as follows: Let cj be its construction and s1, . . . , sk the codes
of its direct successors. Consider the set of strings

S⋆ = { (sσ(1), · · · ,sσ(k)) | σ is an invariant permutation of cj },

where the round brackets and commas are literal characters. If σ′ is the permutation
realizing the lexicographically smallest element of S⋆, the code of the object oi+1

will be equal to:
c′

j(sσ′(1), · · · ,sσ′(k))

Example 2.3.1. Consider a configuration CBT
with BT = Triangle and objects A, B,

C, D, E such that D is the circumcenter of BAC and E is the midpoint of DA (see
Figure 2.3.1). One way to encode these objects by the encoding function is as follows:

1. A, B, C have respective codes A, B, C.

2. D has code Circumcenter(A,B,C).

3. E has code Midpoint(A,Circumcenter(A,B,C)).

1 23

1

2

ABC

D E

Figure 2.3.1 A graph of the configuration from Example 2.3.1.

Theorem 2.3.6. Two objects are equivalent if and only if they are encoded to the
same string.

Proof. Let C1
BT

and C2
BT

be configurations with the same base objects. Denote by
o1

1, . . . , o1
m1

and o2
1, . . . , o2

m2
the objects of C1

BT
and C2

BT
, respectively.
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We will prove for 1 ≤ i ≤ m1 and 1 ≤ j ≤ m2 that o1
i ∼ o2

j if and only the codes of o1
i

and o2
j are the same. The proof will be done by induction on max{i, j}.

If max{i, j} ≤ n, then o1
i and o2

j are base objects, which gives that their equivalence is
the same as their equality, which is the same as the equality of their codes (since these
codes are assumed to be distinct), thereby the claim is trivial.

Assume that we have proven the statement for every o1
i and o2

j such that max{i, j} ≤ t,
where t ≥ n. We will now prove it for such i and j that max{i, j} = t + 1.

First, suppose that o1
i ∼ o2

j . We will prove that they must be encoded to the same
string. Since max{i, j} = t + 1, either i = t + 1 > n, or j = t + 1 > n, which means
that both objects o1

i and o2
j must be constructed objects with the same construction c.

Let s1
1, . . . , s1

p and s2
1, . . . , s2

p be their respective ordered successors. Since o1
i ∼ o2

j , there
exists an invariant permutation σ of c such that s1

k ∼ s2
σ(k) for 1 ≤ k ≤ p.

Clearly, {s1
1, . . . , s1

p} ⊂ {o1
1, . . . , o1

i−1} and {s2
1, . . . , s2

p} ⊂ {o2
1, . . . , o2

j−1}. Also we have
max{i − 1, j − 1} = t, therefore by the induction hypothesis we have that equivalent
objects s1

k and s2
σ(k) have the same codes s1′

k and s2′

σ(k), for 1 ≤ k ≤ p. Therefore, the
sets {s′1

1 , . . . , s′1
p } and {s′2

1 , . . . , s′2
p } are equal and therefore also the sets S⋆ from step 2

corresponding to the objects s1
1, . . . , s1

p and s2
1, . . . , s2

p are the same, hence their lexico-
graphically smallest elements are the same. Together with the fact that the objects o1

i

and o2
j have the same construction, it is now clear that they must be encoded to the

same string.

On the other hand, assume that objects o1
i and o2

j are encoded to the same string.
We will prove that they are equivalent. The fact that either i > n or j > n means
that at least one of them is constructed. Codes of constructed objects contain round
brackets, whereas codes of base objects do not. Therefore, both objects o1

i and o2
j

are constructed, i.e. their code is in form c(s). The string c necessarily represents an
encoded construction, because construction codes do not contain round brackets. Since
distinct constructions have distinct codes, the objects o1

i and o2
j must have the same

construction c.

The string s contains comma-separated values of object codes. Notice that these com-
mas can be identified unambiguously as those commas that are not enclosed in round
brackets. Denote these object codes by s1, . . . , sp, and also denote by s1

1, . . . , s1
p and

s2
1, . . . , s2

p the ordered successors of o1
i and o2

j , respectively.

By the way the codes s1, . . . , sp were created, there are invariant permutations σ1

and σ2 of c such that the sequences s1
σ1(1), . . . , s1

σ1(p) and s2
σ2(1), . . . , s2

σ2(p) are encoded
as s1, . . . , sp, therefore for 1 ≤ k ≤ p, it holds that the objects s1

σ1(k) and s2
σ2(k) are

encoded to the same string. Clearly, it holds that {s1
1, . . . , s1

p} ⊂ {o1
1, . . . , o1

i−1} and
{s2

1, . . . , s2
p} ⊂ {o2

1, . . . , o2
j−1}. Also we have max{i−1, j−1} = t, therefore by the induc-

tion hypothesis we have that s1
σ1(k) ∼ s2

σ2(k), for 1 ≤ k ≤ p. This gives s1
k ∼ s2

(σ2 ◦ σ−1

1
)(k)

,
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for 1 ≤ k ≤ p, which finally concludes the proof of o1
i ∼ o2

j , therefore the entire proof
by induction.

Exclusion algorithm. Let IBT
be an initial configuration. We are ready to define the

algorithm that will find out whether a given configuration CBT
with objects o1, . . . , on

having IBT
as a subconfiguration should be excluded during the generation. The ex-

clusion algorithm goes as follows:

1. For every invariant permutation σ of BT , perform the redefinition of CBT
by σ. Let

the obtained configurations be C1
BT

, . . . , Ct
BT

. For every 1 ≤ k ≤ t, let Sk be the set
of configurations equivalent to Ck

BT
such that IBT

is their subconfiguration. Also
let S = S1 ∪ · · · ∪ St.

2. The encoding function is applied to the objects of each configuration from S, to
obtain string sequences (s′

1, . . . , s′
n). Let S′ be the set of these sequences.

3. Apply the encoding function to the objects o1, . . . , on to find the string sequence
(s1, . . . , sn). The configuration CBT

is excluded if and only if (s1, . . . , sn) is not
equal to the lexicographically smallest element of S′.

Remark. Note that the last step of the algorithm would not be correct if S′ were empty.
However, it can be easily seen that it cannot happen, due to the following lemma:

Lemma 2.3.1. If the exclusion algorithm with an initial configuration IBT
is called

on a configuration CBT
having IBT

as a subconfiguration, then CBT
is an element of the

set S from step 1.

Proof. Note that if in step 1 we take σ as the identity invariant permutation of BT ,
then the configuration obtained by the redefinition will be CBT

. By the assumption, CBT

has IBT
as a subconfiguration. Therefore, there will be an index j such that CBT

∈ Sj .
Since Sj ⊂ S, also CBT

∈ S.

The following lemma reveals the actual intention behind step 1, which is generating all
relevant isomorphic configurations:

Lemma 2.3.2. If the exclusion algorithm with an initial configuration IBT
is called

on two isomorphic configurations, then the corresponding sets S from step 1 are the
same.

Proof. Assume that the exclusion algorithm with an initial configuration IBT
is called

on a configuration CBT
having IBT

as a subconfiguration. Denote by S the set that the
algorithm would generate in step 1 without the condition of configurations having IBT

as their subconfiguration. By the definition of configuration isomorphism, S contains
every configuration isomorphic to CBT

. By Theorem 2.2.4, if the sets S are constructed
from two isomorphic configurations, then these sets will be the same. Therefore, after
excluding configurations not having IBT

as a subconfiguration, the yielded sets S will
still be the same.
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Configurations that are not excluded by the exclusion algorithm will be ones that are
actually on the output. In the following parts, we will prove their important properties.

Definition (Minimal Configuration). Let IBT
a configuration and let CBT

be a con-
figuration with IBT

as a subconfiguration. Suppose that the exclusion algorithm with
an initial configuration IBT

is called on CBT
. If CBT

is not excluded by the algorithm,
then we will say that CBT

is minimal for IBT
.

Remark. Notice that there might be more minimal configurations that are distinct,
but equivalent to each other: Assume that C1

BT
and C2

BT
are configurations with objects

o1
1, . . . , o1

m and o2
1, . . . , o2

m such that o1
i ∼ o2

i for all 1 ≤ i ≤ m. Then if C1
BT

is minimal
(for IBT

), then also C2
BT

is minimal (for IBT
), due to equivalence of their objects, the

sequences of their encoded objects are the same (due to Theorem 2.3.6).

The following lemma calls attention to the important property of the exclusion algo-
rithm, specifically that it does not exclude everything in relevant cases:

Lemma 2.3.3. If the exclusion algorithm with an initial configuration IBT
is called

on a configuration CBT
having IBT

as a subconfiguration, then any configuration C′

BT

from S corresponding to the smallest element of the set S′ from step 2 is minimal
for IBT

.

Proof. Suppose that the exclusion algorithm (with the initial configuration IBT
) was

called on C′

BT
. Clearly CBT

≃ C′

BT
, therefore by Lemma 2.3.2 we have that the sets S

from step 1 will be the same, and so the corresponding sets S′ will be the same too.
Hence their smallest elements are the same. By the assumption, one of them corre-
sponds to C′

BT
, therefore it was not excluded, hence it is minimal for IBT

.

The next key lemma shows the importance of lexicographical order in the algorithm:

Lemma 2.3.4. Let CBT
be a minimal configuration for IBT

with at least m+1 objects,
where m is the number of objects of IBT

. Then the configuration C−

BT
defined as CBT

without the last object is also minimal for IBT
.

Proof. Let o1, . . . , on be the objects of CBT
and let (s1, . . . , sn) be the sequence of their

codes. Since CBT
is minimal for IBT

, it must have IBT
as a subconfiguration. Clearly due

to n ≥ m+1, configuration C−

BT
also has IBT

as a subconfiguration. Therefore, when the
exclusion algorithm with the initial configuration IBT

is called on C−

BT
, configuration C−

BT

will be contained in the set S from step 2, by Lemma 2.3.1.

To show that configuration C−

BT
is minimal (for IBT

), it remains to prove that the
sequence (s1, . . . , sn−1) of its object codes will be the lexicographically smallest element
of the set S′ from step 2. We will do this by contradiction.

Assume that (s′
1, . . . , s′

n−1) is the smallest element of S′ distinct from (s1, . . . , sn−1),
corresponding to a minimal configuration C′−

BT
(for IBT

) with objects o′
1, . . . , o′

n−1.
Clearly, we have C−

BT
≃ C′−

BT
, i.e. there exists an invariant permutation σ of BT such that

C−

BT

σ−→ C′′−

BT
, where C′′−

BT
≡ C′−

BT
. Let o′

n be the last object of the configuration that we
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would obtain after redefining CBT
by σ. Note that the configuration C′

BT
with objects

o′
1, . . . , o′

n is isomorphic to CBT
.

Configuration C′

BT
has C′−

BT
as a subconfiguration. C′−

BT
is minimal for IBT

, and therefore
has IBT

as a subconfiguration. By Lemma 2.2.4, these two facts give that C′

BT
also

has IBT
as a subconfiguration. This fact and also CBT

≃ C′

BT
mean that C′

BT
belongs to

the set S corresponding to CBT
in step 1. Therefore, if (s′

1, . . . , s′
n) is the sequence of

the encoded objects of C′

BT
, it belongs to the set S′ from step 2 corresponding to CBT

.

By the assumption that configuration CBT
is minimal (for IBT

), we must have that
(s1, . . . , sn) is lexicographically smaller than or equal to (s′

1, . . . , s′
n). However, this

means that (s1, . . . , sn−1) is lexicographically smaller than or equal to (s′
1, . . . , s′

n−1),
which contradicts the assumption that (s′

1, . . . , s′
n−1) is the smallest element of S′

distinct from (s1, . . . , sn−1).

After gaining a good understanding of minimal configurations, it is time to precisely
define the nucleus of the thesis, the generation algorithm.

Generation algorithm. Let IBT
be a configuration, called the initial configuration

and n a positive integer, called the number of iterations. Define sets G0, . . . , Gn, where
G0 = { IBT

}, recursively as follows: For 1 ≤ i ≤ n and any configuration CBT
from Gi−1,

the set Gi contains every configuration produced by the configuration extension algo-
rithm called on CBT

which is not excluded by the exclusion algorithm with the initial
configuration IBT

. We say that the algorithm generates configurations from the set
G0 ∪ · · · ∪ Gn.

Remark. Notice that the algorithm generates configurations that are either IBT
, or

minimal for IBT
.

The core of this section is to prove that the generation algorithm, informally speaking,
generates what it is supposed to, and nothing else. To do that, let us define what being

generable precisely means.

Definition (Generable Configuration). Let IBT
be a configuration with m objects.

We say a configuration CBT
with n ≥ m objects is generable from IBT

, if it is an element
of the set Gn−m from the generation algorithm with the initial configuration IBT

and
the number of iterations n.

Let us connect generable configurations with minimal ones. In fact, the prime objective
of all their proven properties is the following crucial lemma:

Lemma 2.3.5. Let IBT
be a configuration with m objects. Every configuration CBT

,
that is either IBT

, or a configuration minimal for IBT
with at least m + 1 objects, is

generable from IBT
.

Proof. We will prove the claim by induction on the number n of the objects of config-
uration CBT

. If n = m, necessarily CBT
= IBT

, which is generable by definition.
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Assume that the claim is true for some n ≥ m. Let CBT
be a minimal configuration

(for IBT
) with n + 1 objects. Let C−

BT
be the configuration CBT

without its last object.
By Lemma 2.3.4, configuration C−

BT
is minimal (for IBT

). Since it has n objects, by
the induction hypothesis it is generable from IBT

. Clearly, the configuration extension
algorithm applied to C−

BT
yields a configuration equivalent to CBT

, which finishes the
proof of CBT

being generable, hence the entire proof.

We are finally equipped to prove the first most important theorem of the section,
stating that the generation algorithm does not omit important configurations:

Theorem 2.3.7. Let IBT
be a configuration. For any correct configuration CBT

with
a subconfiguration IBT

there exists a correct configuration generable from IBT
isomor-

phic to CBT
.

Proof. By Lemma 2.3.1, the exclusion algorithm with the initial configuration IBT

called on CBT
will create a non-empty set S from step 1. By Lemma 2.3.3, the set S

contains a minimal configuration C′

BT
(for IBT

). Clearly CBT
≃ C′

BT
. Since CBT

is cor-
rect, by Theorem 2.2.5, configuration C′

BT
is also correct. Finally, by Lemma 2.3.5,

configuration C′

BT
is generable from IBT

.

The main purpose of the complexity of the algorithm was to avoid generating iso-
morphic configurations. The following lemma is a start of the proof that it has been
accomplished. It shows the significance of the fact that the same encoded strings nec-
essarily represent equivalent objects.

Lemma 2.3.6. Let IBT
be a configuration and let C1

BT
and C2

BT
be two isomorphic

configurations generable from IBT
with respective objects o1

1, . . . , o1
m and o2

1, . . . , o2
m.

Then o1
i ∼ o2

i for every 1 ≤ i ≤ n.

Proof. The fact that C1
BT

and C2
BT

are generable from IBT
means that they are either

both IBT
, or minimal for IBT

. In the first case, the theorem is trivial. In the second case,
by Lemma 2.3.2, the corresponding sets S from step 1 of the exclusion algorithm are
the same. Subsequently, the corresponding sets S′ from step 2 are also the same. The
fact that the configurations C1

BT
and C2

BT
are minimal (for IBT

) means that the string
sequences s1

1, . . . , s1
m and s2

1, . . . , s2
m of the encoded objects of C1

BT
and C2

BT
, respectively,

are both equal to the lexicographically smallest sequence of the same set S. However,
by Theorem 2.3.6, s1

i = s2
i means that o1

i ∼ o2
i for every 1 ≤ i ≤ m.

Finally, we can prove that the generation algorithm correctly internally identifies iso-
morphic configurations and does not allow for generating two of them in the same
generation.

Theorem 2.3.8. The generation algorithm never generates two distinct isomorphic
configurations.

Proof. Let IBT
be the initial configuration of the generation algorithm and let n be the

number of iterations. Clearly, two isomorphic configurations have the same number of
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objects. Therefore, it is enough to show that for each 0 ≤ i ≤ n, the set Gi from the
algorithm does not contain two isomorphic configurations.

We will prove this by the induction on i. For i = 0, the claim is obvious. Assume that
it is true for some i ≥ 0 and we will prove it for i + 1, by contradiction.

Let C1
BT

and C2
BT

be two isomorphic configurations from the set Gi+1. Let o1
1, . . . , o1

m

and o2
1, . . . , o2

m be their respective objects. By Lemma 2.3.6 we have o1
j ∼ o2

j for 1 ≤

j ≤ m. Let C1−

BT
and C2−

BT
be the configurations C1

BT
and C2

BT
without their last object,

respectively. Since they have at least m objects, they are clearly generable.

The configurations C1−

BT
and C2−

BT
are equivalent, and so also isomorphic. By the in-

duction hypothesis, this means they are identical. Therefore, the configurations C1
BT

and C2
BT

must have been generated in the same call of the configuration extension algo-
rithm. That is a contradiction, given that the configuration extension algorithm never
generates equivalent configurations.

DFS generation. In the generation algorithm, we need to remember previously
generated configurations. We can achieve having their number upper-bounded by the
number of iterations. This is accomplished by emulating the order in which a well-
known depth-first search algorithm [9, p. 603] would traverse the generated graph (see
Figure 2.3.2).

I
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+
o 1

5
+o2

9

+
o
3

2
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4

6

7

8

10

11

12

Figure 2.3.2 An illustration of the DFS order, in which the generation al-
gorithm generates geometric configurations, starting with an initial configura-
tion I. With this approach, the maximal number of configurations that are
needed to be in memory at the same time is linearly bounded by the depth of
the generation graph, which is at most 5 in practice.

39



Memory usage. The memory usage of a DFS generation is generally linear in the
maximal search depth. In our case, the depth is equal to the number of iterations n.
The other parts of the algorithm, i.e. the configuration extension algorithm and the
exclusion algorithm, do not require having knowledge of more than a constant number
of generated configurations. In conclusion, the number of configurations that are needed
to be in memory, is linear in n. Practically, this is at most 5, and the algorithm requires
at most a few hundreds of megabytes regardless of the run-time.

2.3.2 Theorem finding

We slightly introduced theorem finding in Section 2.1.3, where we established the types
of sought theorems in Table 2.1.3 and illustrated their amounts in Table 2.1.4. In this
section, we will explain the algorithm for discovering them.

Due to their immense count, a method for finding theorems must be fast and to a high
extent reliable. For these reasons, we choose a randomized numeric method. With care-
ful implementation, a 64-bit floating-point arithmetic rarely fails to find the theorems
correctly. Similar approaches have also been used in [14, 16].

Simple algorithm. We aim to discover all theorems in a given configuration. One
way to achieve this is as follows:

1. Make every hypothesis, for instance conjecture every triple of points to be collinear.

2. Verify each hypothesis numerically using analytic geometry in several randomly
generated figures (3 are enough in practice).

3. The theorems that hold in all the figures are considered correct.

This algorithm is applied to the initial configuration from which we start a generation.

Caching algorithm. For a configuration generated from a configuration C by adding
an object O we can adopt the following slightly faster version:

1. Make every hypothesis that contains the object O.

2. Verify these theorems as in the previous algorithm.

3. Merge these results with the cached theorems of the configuration C.

The caching algorithm is used for every configuration except for the initial one, where
it provides approximately two times speedup against the simple algorithm.

2.4 Filtering problems

The most important part of filtering is the exclusion of simple problems. This is per-
formed by means of theorem proving. We will describe its capabilities regarding our
situation in Section 2.4.1.
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Two other filtering approaches are then discussed in Section 2.4.2. These assume that
we already have interesting problems and we want to intelligently reduce their final
count.

2.4.1 Theorem proving

In the ideal scenario, we would have a theorem prover that can solve every problem with
the estimation of difficulty and guaranteed maximal runtime speed. The state of the
art of geometry theorem proving does not provide a solution like that (see Section 1.2).

The ability to estimate the problem’s difficulty requires human-like proofs. However,
the provers that provide such proofs have very limited capabilities regarding the number
of theorems that they can prove.

Furthermore, the more theorems a prover can prove, the slower it is. This is, however,
in line with their design, because they were not meant to analyze the magnitude of
theorems that we encounter (see Table 2.1.4). This represents the main reason for us
not using them.

Other important issues of existing provers in regard to our scenario are:

- They rarely make use of proving theorems in bulk. In our case, this is an important
feature, because the prover receives a configuration and all of its theorems.

- They seldom allow for assuming some theorems being proven ahead. This is crucial
in our case, because when our prover receives a configuration and its theorems,
it does not need to prove all of them, but only those that do not appear in the
previously generated configurations.

Goal. For the aforementioned reasons, we designed our own theorem prover more
suitable in our situation. Instead of building a universal theorem prover that can prove
everything and estimate difficulty, we decided to use the prover as a filter, i.e. provable
theorems are those that are not interesting. The ultimate goal was to meet the following
criteria:

1. The prover must be capable of proving simple theorems.

2. The runtime speed must be reasonably upper-bounded.

Demonstration example. To get a better overview of how our prover works, let us
show its proof of the problem in Figure 2.4.1.

This problem is far beyond the scope of the high-school curriculum, but still not in-
triguing enough for the olympiad. Our prover can recognize this by performing the
following steps in under 0.2 seconds.

1. Trivially, from the construction of D, it holds that D ∈ l1 and D ∈ l2.
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A

B C

D

l

l1 l2

Let ABC be a triangle with its incen-
ter D. The internal angle bisectors l1
and l2 of ∠CBA and ∠ACB, respec-
tively, meet atD. Let l be the the line
tangent to the circumcircle of BDC

at D.

Prove that AD ⊥ l.

Figure 2.4.1 An example of a nontrivial, but still not an olympiad problem.
The problem is used to illustrate the capabilities of the developed theorem
prover (Section 2.4.1). The prover found the demonstrated nontrivial proof of
this theorem in under 0.2 seconds.

2. As D lies on both internal angle bisectors l1 and l2, it must be equal to the incenter I

of ABC.

3. The presence of the discovered incenter I indicates explicit introduction of the
internal angle bisector l′ of ∠BAC.

4. On the other hand, the presence of the tangent line l to the circumcircle of BIC

suggests adding the center O of the circle (see Figure 2.4.2 for illustration).

5. There is a well-known lemma stating that this point is equal to the midpoint M of
the arc opposite to BAC of the circumcircle of ABC.

6. Another well-known lemma states that M ∈ l′, therefore O ∈ l′.

7. Obviously, A lies on l′.

8. Since I is the incenter, it lies on l′ too.

9. The last three facts together prove that the points A, I, O are collinear.

10. A basic property of a tangent line indicates that OI ⊥ l.

11. Since OI ⊥ l and points A, I, O are collinear, we have the conclusion AI ⊥ l.

In the upcoming parts, we will discuss in depth this proof and how it was discovered
by the prover.

Inference rules. The nucleus of our prover is a knowledge database. It is represented
in the form of manually written inference rules. This idea was developed independently
but has a resemblance to [7].

To give a better overview what inference rules are, we will give a few introductory
examples. Before doing so, note that all referred objects in all inference rules are meant
to represent distinct objects, unless appearing in an equality.
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A

O = M

B C

D = I

l

l1 l2

l′

l

Figure 2.4.2 An illustration for the nontrivial automatically found proof of
the problem from Figure 2.4.1. The prover introduced the circumcenter O of
triangle BIC, which is key to the solution.

1. If k, l, m are lines, then k ‖ l and l ‖ m imply k ‖ m.

2. If A, B, C are points, then supposing they are collinear and BA = BC imply
B = Midpoint(A, C).

3. If l is a line and A, B, C, I are points, then l = InternalAngleBisector(B, A, C) and
I = Incenter(A, B, C) imply I ∈ l.

4. If A, B are points and k, l are lines, then A ∈ k, B ∈ k, A ∈ l, B ∈ l imply k = l.

Generally, each inference rule consists of:

1. Object variables, e.g. lines k, l, m in the first example.

2. Assumption clauses, each of one of the two types:

a) Standard clause. This is in a form of a standard theorem of one of the types
from Table 2.1.3, for example BA = BC in the second example.

b) Object equality clause. An equality of an object variable and an object con-
structed from the variables, e.g. I = Incenter(A, B, C) in the third example.

In rarer cases, assumption clauses can be negative, i.e. assuming that something is
not true. This will be shown later.

3. Conclusion clause, which again can be:

a) Standard clause.

b) Object equality clause.

c) General equality clause. An equality of two object variables, e.g. k = l in the
fourth example.
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Note that the third rule in the example can be contracted to a more readable form: If A,
B, C are points, then Incenter(A, B, C) ∈ InternalAngleBisector(B, A, C). In the upcom-
ing examples, we will generally prefer readability over strictly following the prescribed
structure.

In the forthcoming algorithm, it will be useful to distinguish between inference rules
based on their structure. The following types are considered:

1. General rules. These are rules that do not contain any object equality clauses in
their assumptions. There are two sub-types of these rules:

a) Non-equality rules. The conclusion clause is a standard clause, e.g. the first
example.

b) Equality rules. The conclusion clause is either an object equality clause (the
second example), or a general equality clause (the forth example).

2. Object rules. At least one of the assumption clauses is an object equality clause,
e.g. the third example.

Examples of inference rules. Let us have a look at a few more elaborate examples,
including ones that were used in the demonstration example. In the following examples,
we will assume that all mentioned objects are distinct.

(i) A very useful general non-equality rule is the following one: If A, B, C are points
and l is a line, then

(A ∈ l) ∧ (B ∈ l) ∧ (C ∈ l) ⇒ (A, B, C are collinear).

This rule was used in step 9 of the demonstration proof, for points A, I, O and l as
the internal angle bisector of ∠BAC.

The last step of the demonstration problem actually used a general rule too: If
A, B, C are points and l is a line, then

(AB ⊥ l) ∧ (A, B, C are collinear) ⇒ (AC ⊥ l).

(ii) As an example of a nontrivial general non-equality rule with negative assumptions,
assume that A, B, C, D, E, F are points. Then, the radical axis theorem [10, p. 67]
can be stated as follows (Figure 2.4.3):

(A, B, C, D are concyclic) ∧ (C, D, E, F are concyclic) ∧

∧ (E, F , A, B are concyclic) ∧ (A, B, C, E are not concyclic) ∧

∧ (AB and CD are not parallel) ⇒ (AB, CD, EF are concurrent).

A few words how negative assumptions are handled. Proving that something is not
true is algorithmically challenging, and even in olympiad proofs often omitted. We
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A
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C

D
E

F

Figure 2.4.3 The well-known radical axis theorem stating that if quadruples
(A, B, C, D), (C, D, E, F ) (E, F, C, D) consists of concyclic points and the six
points are not all concyclic, then lines AB, CD, EF are either parallel or
concurrent. The figure illustrates the latter.

will follow this approach and merely verify these statements using the numerical
model built for finding theorems.

(iii) As a nontrivial general equality rule, notice that if points A, B, C, H are points,
then

(HB ⊥ AC) ∧ (HC ⊥ AB) ⇒ (H = Orthocenter(A, B, C)).

Instead of saying that H is the orthocenter, we could have had HA ⊥ BC. How-
ever, that would be less powerful, because after discovering that an object is an
orthocenter, we can use this fact to apply object rules specific to an orthocenter,
like its famous property that it lies on the line with the centroid and circumcenter
of the triangle (Euler line [10, p. 18]).

(iv) When it comes to object rules, they were used widely throughout the demonstration
example. The most nontrivial one was used in step 5 and could be formally written
as: If we have points A, B, C, I, O, then

(I = Incenter(A, B, C)) ∧ (O = Circumcenter(B, I, C)) ⇒

⇒ (O = MidpointOfOppositeArc(B, A, C)).

Notice that prior to using this rule, we had to verify that I was the incenter. This
happened in step 2 by applying the rule

(I ∈ InternalAngleBisector(A, B, C)) ∧ (I ∈ InternalAngleBisector(A, C, B)) ⇒

⇒ (I = Incenter(A, B, C)).
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When it comes to other used object rules, in step 6 we used

MidpointOfOppositeArc(B, A, C) ∈ InternalAngleBisector(B, A, C),

whereas in step 8 it was

Incenter(A, B, C) ∈ InternalAngleBisector(B, A, C),

and finally, the following rule was used in step 10, where by TangentLine(A, B, C)
we mean the tangent line to the circumcircle of ABC at A:

(O = Circumcenter(A, B, C)) ⇒ (TangentLine(A, B, C) ⊥ AO).

(v) Notice we have not covered four steps of the proof. In steps 3 and 4, no theorem
was inferred, we merely introduced a new object to the figure. On the other hand,
in steps 1 and 7, we claim that A lies on the internal angle bisector of ∠BAC.
This, however, is a construction-related theorem (described in Section 2.1.4, see
Figure 2.1.4). As we will see, these are automatically found whenever we introduce
a new object, or realize that an existing object can be defined differently (as in
(iii), where we can infer the orthocenter H from HB ⊥ AC and HC ⊥ AB, and
then have HA ⊥ BC as a construction-related theorem).

Now that we have explained all the rules used in the demonstration example, let us
visually summarize the proof in Figure 2.4.4.

AD ⊥ l

A,O,D

A ∈ l′O ∈ l′

M = O

D = I

D ∈ l1 D ∈ l2

D ∈ l′

DO ⊥ l

Figure 2.4.4 A graph of the proof of the demonstration example (see Fig-
ure 2.4.1) from the beginning of Section 2.4.1. Note that by A, O, D, we refer
to the collinearity of these points. Individual nodes representing claims were
concluded based on the described inference rules. Colorwise, red theorems were
inferred by general rules, green ones by object rules, and blue ones are con-
struction-related theorems.
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Database of inference rules. We selected rules that entail common geometry knowl-
edge including a few more complex lemmas known to olympiad solvers. At the final
stages, we had 183 rules, 22 of them were general equality ones, 60 general non-equality
ones, and 102 were object rules. All the rules are available on the GitHub page1 of the
project.

Object introduction rules. Even simple theorems sometimes require an introduc-
tion of a new object. Doing this unwisely would lead to an extreme slowdown of the
prover. For that reason, object introduction techniques must be designed very carefully.

We decided to introduce objects based on two simple methods:

1. Construction-based introduction. The presence of an object o = f(o1, . . . , on) con-
structed via a certain construction f and arguments o1, . . . , on might indicate in-
troduction of an object constructed from o, o1, . . . , on, e.g. if D is the reflection of
a point A in a line l, then the introduced object might be the midpoint of AD.

2. Theorem-based introduction. Theorems of certain types indicate what could be
introduced, specifically:

a) If we are trying to prove that two lines are perpendicular, we introduce their
intersection point.

b) If it is being proven that three lines are concurrent, we introduce the intersection
points of some two of them (i.e. 3 options).

The construction-based introduction is founded on arbitrarily chosen rules. We choose
36 of them. All these rules can be found on the GitHub2 page of the project.

Theorem-based introduction example. Construction-based introduction was al-
ready shown in the demonstration example, precisely in steps 2 and 3. To illustrate
theorem-based introduction, assume that we have the rules about points A, B, C, O

and lines l1, l2, l3 saying:

(i) (C ∈ PerpendicularBisector(A, B)) ⇒ (CA = CB)

(ii) (CA = CB) ⇒ (C ∈ PerpendicularBisector(A, B))

(iii) (OA = OB) ∧ (OB = OC) ⇒ (OA = OC)

(iv) (O ∈ l1) ∧ (O ∈ l2) ∧ (O ∈ l3) ⇒ (l1, l2, l3 are concurrent)

With this, the prover can easily show that the perpendicular bisectors l1, l2, l3 of sides
AB, BC, AC, respectively, of a triangle ABC are concurrent (see Figure 2.4.5):

1. First it introduces the intersection point T of l1 and l2.

2. Trivially, T ∈ l1 and T ∈ l2.

1 See https://github.com/PatrikBak/GeoGen/tree/2abcbb48eb8bc74b601ea722f1e33a9cc4018711
#inference-rules.

2 See https://github.com/PatrikBak/GeoGen/tree/2abcbb48eb8bc74b601ea722f1e33a9cc4018711
#object-introduction-rules.
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Figure 2.4.5 The problem stating that the perpendicular bisectors of the
sides of a triangle are concurrent. This problem can be proved automatically
by the theorem prover by means of theorem-based introduction technique, de-
scribed in Section 2.4.1.

3. By (i), it proves TA = TB and TB = TC.

4. By (ii), it proves TA = TC.

5. By (iii), it proves T ∈ l3.

6. By (iv), it proves that l1, l2 and l3 are concurrent.

Proving algorithm. After having discussed inference and object introduction rules,
we are able to use them in the core proving algorithm.

As an input, this algorithm takes a configuration and all its theorems. Its goal is to
prove those of them that cannot be stated without the last object of the configuration.
These theorems are deemed interesting and passed to complementary methods for
further processing.

An important part of the algorithm is choosing which inference rules should be applied.
We want to apply them iteratively, until the desired theorems are concluded. Trying
every rule in every iteration would be inefficient. Therefore, we will use scheduling

algorithms to handle this. They will ensure that appropriate inference rules are prepared
(scheduled) for applying.

Since the algorithm is complex, we will first give a high-level overview of its steps. In
the upcoming parts, we will then describe the individual complex steps in depth. The
algorithm goes as follows:

1. Establish theorems that are automatically considered proven, i.e. axioms.

2. Prepare inferences rules that will be scheduled for usage. This is done via the initial

scheduling algorithm.

3. Run the main loop. In each iteration, we will try to apply one inference rule.
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a) Obtain the current scheduled inference rule.

b) If there is no remaining one, perform the object introduction algorithm. It will
finish in either of the two ways:

(i) It internally ensures that there is a new scheduled inference rule, therefore,
the main loop can continue.

(ii) There is no new scheduled inference rule. In that case, the entire algorithm
is over.

c) In this step, there is an inference rule to be applied. This is done by matching
already proven theorems (including axioms) with the assumptions of the rule,
and also potentially verifying negative assumptions. If this matching can be
done, then we have proven the conclusion.

d) For every new proven theorem, the following steps are performed:

(i) If it found out that some object can be constructed differently, then its
construction-related theorems of the alternative constructed version are
found.

(ii) The proven theorem, and potentially the found construction-related theo-
rems, are used by the schedule after proving algorithm.

e) If there is nothing left to be proven, we are done. Otherwise, we continue with
the main loop.

Axioms. To make inferences, we need a set of basic propositions that will serve as ax-
ioms. As hinted in the analysis of the demonstration problem, we will use construction-

related theorems. These are easily discoverable solely from the object’s definition.

In the demonstration example, the prover was able to solve the problem only with
construction-related axioms. However, when the prover is being run as part of a gener-
ation, it is more efficient to regard proven every theorem that is true in a previous con-
figuration, as well as every new theorem that is simplifiable (described in Section 2.1.4,
see Figure 2.1.5). This might seem like an overly strong assumption, the reasons for
doing it this way are as follows:

- The theorems of the previous configuration have been examined previously, there-
fore their exclusion (by assuming them proven) is not a loss.

- Similarly with simplifiable theorems, which, by their definition, already appeared
in a smaller configuration (which we assume was generated or contains too few
objects to be interesting).

- Most importantly, assume that some of these previous or simplifiable theorems
is considered proven, but in reality it is very difficult. Then, its difficulty lies in
a smaller configuration. Therefore, if we use this difficult theorem as an assumption
and infer some other theorem, than the inferred theorem also has its difficulty in the
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smaller configuration. Hence, assuming difficult previous or simplifiable theorems
proven will not cause a loss of interesting problems.

Scheduling algorithms. In the proving algorithm, we mentioned two needed op-
erations concerning rule scheduling, specifically initial scheduling algorithm in step 2
and schedule after proving algorithm in step 3d (ii). These are parts of the general
scheduling principle that shall be described now.

The main idea of the scheduler is to maintain two separate queues of scheduled inference
rules, one for general and one for object rules. When the next rule is requested by the
main algorithm, then a general one will be preferred, if it is available, otherwise an
object one, else none. The idea behind this decision is that general rules are more likely
to prove theorems.

Another important part is premapping. When a rule is scheduled, it is possible to
premap what conclusion it is supposed to prove, or what assumption it should use, or
in case of an object rule, which concrete object should be used.

Initial scheduling algorithm. As an input, there are theorems needed to be proven,
and the configuration in which they hold. With this we will schedule rules in the
following way:

1. For every theorem t to be proven, and every general rule r that concludes a theorem
of the same type as t, schedule r with a premapped conclusion t.

2. Schedule every general equality rule.

3. For every object o of the configuration, and every object rule r that contains an
object with the same construction as o, schedule r with a premapped object o.

Schedule after proving algorithm. When a theorem is proven, the scheduler should
react on it by scheduling rules that might use this fact as an assumption. The algorithm
is as follows:

1. If the proven theorem t is an equality, then it means that t is about a constructed
object o (geometrically equal to an object of the configuration). Therefore, object
rules that contain an object with the same construction as o should be scheduled
with premapped o.

2. If the proven theorem t is not an equality, then:

(i) For every rule r that contains an assumption of the same type as t, schedule r

with a premapped assumption t.

(ii) For every object rule r that was scheduled previously and contains an assump-
tion of the same type as t, schedule r with a premapped assumption t (and
keep the premapped object).
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Object introduction algorithm. When the algorithm runs out of scheduled rules, it
tries to introduce a new object to the situation. We already presented the two methods
used to accomplish so, theorem-related and object-related introduction. The following
algorithm puts them into the context of the main proving algorithm.

The most dangerous part of introducing new objects is a potential time explosion,
as one of the important aspects of the prover is its speed. Introducing every object
would result into a practically unusable prover. This is the reason why a compromise
is needed. The following statements are its outcome:

1. At all times there should be at most one newly introduced point.

2. Lines and circles can be introduced freely.

3. All introduced objects must be definable in the examined configuration.

The primary motivation behind the first decision is a logical observation that points are
what causes time complexity. On the other hand, lines and circles are usually already
present implicitly by points, hence they should not cause a slowdown.

The order in which objects are being introduced is the following one:

1. Construction-based lines and circles.

2. Theorem-based objects.

3. Construction-based points.

The actual object introduction algorithm uses this order as follows:

1. Remove the last introduced object, if it was a point, and did not turn out to be
equal to an object of the examined configuration.

2. Introduce the next object.

3. If there is none left, then the algorithm is over.

4. Otherwise there is a new object o. Find all construction-related theorems of o.

5. For each call the schedule after proving algorithm.

6. Schedule object rules that contain an object with the same construction as o with
premapped o.

Results. To illustrate the prover’s quality, we will refer to the analysis portrayed
in Section 2.1.4, specially Table 2.1.7. Running the prover on the 11,718 symmetric
theorems of the performed test case experiment (Section 2.1.2) took under 3 minutes,
and the prover filtered up to 95.6% of these theorems.

2.4.2 Complementary methods

After the initial filtering by theorem proving (Section 2.4.1), numerous problems still
remain. To provide better final results, we further introduced the following methods:
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1. Asymmetric theorems are excluded, as drafted in Section 2.1.4.

2. It is possible that a theorem appears in more problems in different forms, for
instance see Figure 2.4.6. Such a situation is detected numerically.

We will only choose one of these problems. The problem with fewer objects is
preferred, for it being more elegant and less obfuscated. If there is equality, then
the problem with fewer points is chosen. If the tie remains, then we use ranking,
or else select the problem at random.

A

B CD

EF

A

B CD

EF
O

Figure 2.4.6 A median concurrency theorem in two versions, where the right
one uses the circumcenter O of ABC to define the midpoints of the sides.
Generally, a simpler version is the “cleaner” one, hence the right one will be
excluded as not interesting. Recognizing such cases is a part of complementary
filtering (Section 2.4.2).

Results. The impact of the asymmetric theorem exclusion was widely examined in
Section 2.1.4. Specifically, Table 2.1.6 suggests that there are about 19 times more
asymmetric than symmetric theorems.

Regarding the influence of the second method, we will refer to the 512 theorems (Ta-
ble 2.1.7) of the test case experiment (Section 2.1.2) not filtered out by the theorem
prover (Section 2.4.1). These 512 theorems are reduced to 250, which represents a re-
duction by approximately 51.1%.

2.5 Problem ranking

In section Section 2.1.4, we highlighted that there are still hundreds of theorems even
after filtering (from Section 2.4). Therefore, it is favorable to have them sorted by
their estimated suitability for the mathematical olympiad. This way their subsequent
manual inspection will become much simpler. For this reason, we designed a ranking

system.
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The key idea is to choose various relevant aspects and rate them individually. This
way we obtain ratings r1, . . . , rn. Using manually configured weights w1, . . . , wn, we
calculate the final rating of the problem as a linear combination

w1r1 + · · · + wnrn.

Olympiad problems are required to be both engaging and challenging. Taking this into
consideration, let us present the proposed rated aspects. Later in Section 2.5.4, we will
address their overall importance and set up their weights.

2.5.1 Symmetry rating

We introduced symmetry in Section 2.1.4 (see Figure 2.1.3) and in Section 2.4.2 estab-
lished that we would exclude asymmetric problems. However, there are more degrees of
symmetry and they can be rated. More symmetric problems are generally more elegant.

Let us recall that a triangle problem is said to be symmetric if there is a relabeling
of two of the triangle’s vertices that represents the same problem. We will refer to
such relabelings as symmetry relabelings. Clearly, a triangle has at most 3 symmetry
relabelings.

Similarly, for a quadrilateral, a relabeling, where we interchange at least one pair of
points while preserving the problem, is called a symmetry relabeling (for a quadrilat-
eral). One can check there are at most 9 such relabelings.1

A

B CD

EF

(a) A symmetric theorem, in which
there exist three symmetric relabel-
ings (exchanging some two vertices).

A

B C

ED

(b) A symmetric theorem, in which
there exists exactly one symmetric
relabeling, (A, B, C) 7→ (A, C, B).

Figure 2.5.1 An example of two levels of triangle symmetry described via
symmetric relabelings defined in Section 2.5.1. Generally, problems with a higher
degree of symmetry are more appealing.

Based on the number of symmetry relabelings we can distinguish various levels of sym-
metry (see Figure 2.5.1). More precisely, the symmetry rating is calculated by dividing

1 This number is equal to the number of permutations of 4 elements containing a 2-cycle.
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the number of actual symmetry relabelings by the number of potential symmetry re-
labelings.

For example, in Figure 2.5.1a, all the three potential symmetry relabelings actually
preserve the problem, i.e. the rating of symmetry is 1, whereas in Figure 2.5.1b only
(A, B, C) 7→ (A, C, B) preserves the problem, i.e. the rating is 1

3 .

2.5.2 Level rating

Most interesting problems often appear simple. One reason for problems seeming com-
plicated is that their objects have long definitions. For example, a point A is the
midpoint of BC, where B is the circumcenter of DEF , where D...

Ideally, the best problems should have simpler definitions that are easier to imagine and
understand. On top of that, this will affect the difficulty too, because short definitions
often hide the relations between the objects needed for the solution.

To capture the definition’s complexity, we will assign a natural number to every object,
called its level. Intuitively, it will be equal to the depth of the object’s definition. It is
calculated as follows:

(i) Initial objects have a level of 0.

(ii) If the maximal level among objects o1, . . . , on is l and f is a construction, then the
level of the object f(o1, . . . , on) is l + 1.

As an example, see Figure 2.5.2.

A

B C

H

R

P

Q

S

Let ABC be an acute triangle. Denote by H

its orthocenter. Let P and Q be the projec-
tions of B and C on AC and AB, respectively.
Furthermore, let R and S be the midpoints of
BC and AH, respectively.

Prove that points P,Q,R, S are concyclic.

Figure 2.5.2 A problem to illustrate object levels defined in Section 2.5.2. In
the problem, points A, B and C have levels of 0, points P , Q, R, and H of 1,
and finally the level of S is 2.

After having the levels, the rating is calculated as follows: Assume that l1, . . . , ln are
the levels of the problem’s constructed objects (i.e. not initial ones).

1. We combine the levels by using the sum of their squares. The reason for squaring
levels is to penalize higher ones more. It also provides a wider range of attainable
values.
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2. The sum of their squares is then normalized to be in the interval [0, 1]. Clearly,

n = 12 + · · · + 12 ≤ l21 + · · · + l2n ≤ 12 + · · · + n2 =
1
6

n(n + 1)(2n + 1),

therefore for n > 1 we have

0 ≤
(l21 + · · · + l2n) − n

1
6 n(n + 1)(2n + 1) − n

≤ 1.

Cases n = 0 and n = 1 are not interesting, because for n = 0 we have only initial
objects, and for n = 1 we have only construction-related theorems.

3. To achieve that better problems have higher ratings, we replace a rating r with
1 − r. After an algebraic simplification, the final formula is

L(l1, . . . , ln) = 1 − 6 ·
(l21 + · · · + l2n) − n

n(n − 1)(2n + 5)
.

For example, in the problem on Figure 2.5.2, the levels of P , Q, R, H, S are 1, 1, 1,
1, 2, respectively, therefore the level rating of the problem is equal to

L(1, 1, 1, 1, 2) = 1 − 6 ·
(12 + 12 + 12 + 12 + 22) − 5

5 · 4 · 15
=

47
50

.

Notice that this aspect does not take the theorem into account, but merely the config-
uration where it holds.

2.5.3 Complementary rating

In addition to symmetry and level rating, we also considered two supplementary as-
pects, whose aim is to correlate with the problem’s difficulty.

Number of theorems. More theorems in a geometry problem usually indicate that
there are more ways to make inferences among them, which means the problem is
easier. For that reason, their count provides an appropriate evaluation of the problem’s
difficulty.

This aspect will have assigned a negative weight, i.e. we can view a theorem as a penalty.
If there are n theorems in the rated problem, then the rating will be n − 1. The idea
behind the subtraction of 1 is to exclude the problem we are currently rating. Hence,
an ideal problem would have this rating 0.

Number of cyclic quadrilaterals. Cyclic quadrilaterals have a variety of powerful
properties. The more they occur in a problem, the easier it is to exploit them to solve
the problem. Therefore, we include their count into the rating.

Analogous to the number of theorems, this aspect will also have a negative weight.
If there are n concyclic point theorems, then the rating will be either n, if the rated
theorem is not one of them, otherwise n − 1. Again, an ideal problem would have this
rating 0.
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2.5.4 Configuring weights

We have described the four rated aspects, (1) symmetry, (2) level, (3) number of the-
orems, (4) number of cyclic quadrilaterals. Assume that we have a problem whose
ratings for these aspects are s, l, t, c, respectively. To get the total rating, we need to
know the values of the corresponding weights ws, wl, wl, wc, yielding the total rating
equal to

ws · s + wl · l + wt · t + wc · c.

Before revealing the actual chosen values, let us point a few heuristic observations:

1. Problems with higher levels of symmetry are generally rare, which itself makes
them more intriguing. Therefore, we will set the value ws very high.

2. As discussed in Section 2.5.2, the level is the most universal aspect, which entails
both beauty and difficulty. There will be thousands of problems within the same
symmetry category, therefore a high value of wl will distinguish them.

3. There are still hundreds of problems with the same symmetry and level rating. The
ratings t and c are designed to provide their order, and generally a better dispersion
of results. As said earlier, the weights wt and wc will be negative. Cyclic quadri-
laterals are usually way more useful to make implications than other theorems,
therefore we will have |wc| > |wt|.

The final setup of the weights is

10000s + 1000l − t − 10c

For an example see Figure 2.5.3.

Let ABC be a triangle. Let l be the external angle bisector

of ∠BAC. Let D be the midpoint of opposite arc ABC.

Let E be the midpoint of opposite arc ACB.

Show that DE ‖ l.

Type Rating Weight Contribution

Symmetry 0.33 10000 3333.33

Level 1 1000 1000

Number of theorems 8 −1 −8

Cyclic quadrilaterals 5 −10 −50

Total rating: 4275.33

Figure 2.5.3 An automatically drawn and stated problem with ratings cal-
culated via the rating methods described in Section 2.5. This simple-looking
problem is recognized as interesting and well-rated by the ranking system.
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Chapter 3

Experiments and results

To demonstrate the functionality of our solution, we have conducted both large-scale
(Section 3.2) and local generation experiments. These experiments resulted in many
high-quality problems, as presented in Section 3.3.

3.1 Implementation

The system has been implemented in the programming language C# using the .NET
Core 3.1 framework. The fully documented source code is provided on the GitHub page
of the project https://github.com/PatrikBak/GeoGen, commit 2abcbb4.

3.1.1 Visualization

The program generates problems in a text form. To improve the user experience, we
developed a drawer that can automatically produce a human-readable problem text
alongside METAPOST figures. The drawer can handle aesthetic details including:

- Objects are drawn according to their importance, e.g. an auxiliary line would ap-
pear dotted whereas a point from the formulation of a theorem would be colored
red.

- Point labels are intelligently placed to prevent them from crossing other objects.

- Large circles are clipped to ensure the figure is not unnecessarily large.

- The point positions are generated to avoid having points too close or too far from
each other.

- Triangles and quadrilaterals are drawn with respect to their symmetry, which is
a standard way of drawing olympiad figures.

For examples of automatically drawn figures, see Appendix and Figure 2.5.3.

3.2 Large-scale experiments

The main idea of the large-scale experiments was to run a vast number of independent
generations in parallel and merge the results afterward. Throughout the experiments,
we used a fixed set of constructions, the ones from Table 2.1.1. The experiments con-
sisted of generating problems of two types:

(i) triangle problems with 8 objects in total, i.e. 5 additional objects;

(ii) quadrilateral problems with 8 objects in total, i.e. 4 additional objects.
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As initial configurations, we generated a triangle with 2 additional objects, which
yielded 1,355 configurations, and a quadrilateral with 2 additional objects, giving the
next 3,187 configurations. This allowed us to use parallelization and conduct 4,524 con-
figurations independent generations.

3.2.1 Run-time

The experiments were conducted on the cluster in Max Planck Institute for Intelligent
Systems1. The entire run-time was around 40,000 CPU hours altogether, with a max-
imal run-time of approximately 40 hours. After merging the results, the experiments
produced more than 100,000 problems, sorted by their estimated quality using the
ranking methods (see Section 2.5). Nine of these results are shown in Appendix, with
automatically generated figures (see Section 3.1.1).

3.3 Results

One type of result are problems discovered during the development and myriads of
diverse local generation experiments. Many of these problems are in the process of
submission to various national and international contests. Two of them have already
been accepted to the Czech-Slovak mathematical olympiad, specifically Figure 3.3.1
and Figure 3.3.2.

Other significant results are certainly the problems generated in the large-scale exper-
iments (Section 3.2). Five of these problems have been proposed to the International
Mathematical Olympiad 2020. At the time of writing this thesis, their status remains
undecided. These five proposed problems are only a small portion of reasonably looking
experiment results ready to be proposed in the future to the Internal Mathematical
Olympiad and other competitions.

A

B CD E

F

Let ABC be an acute triangle. Suppose that
points D and E lie on the side BC such that D
is between B and E, AD = CD, and AE =
BE. Point F is a point satisfying FD ‖ AB

and FE ‖ AC.

Prove that FB = FC.

Figure 3.3.1 A generated problem that has been accepted to the home round
of the Czech-Slovak mathematical olympiad 2020/2021, category A (highest).

1 https://is.mpg.de/
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A

B C

D E

A′

B′

Let ABC be an acute triangle with its alti-
tudes AA′ and BB′. Let D be the perpen-
dicular projection of A′ on the altitude BB′.
Suppose that the circle through points B,C,D

intersects the segment AC at its inner point E.

Prove that DE = AA′.

Figure 3.3.2 A generated problem that has been accepted to the home round
of the Czech-Slovak mathematical olympiad 2020/2021, category B (second
highest).
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Conclusion

We have demonstrated that even such a creativity demanding task as the writing of
olympiad geometry problems can eminently benefit from automation. The experiments
show that our developed system can generate large numbers of quality problems, of-
fering geometers a seemingly unlimited resource for their problem writing endeavors.

The five problems proposed to the International Mathematical Olympiad, the two
problems already accepted into the Czech-Slovak mathematical contests, and the nine
problems in Appendix are merely the tip of the iceberg regarding the capabilities of
our system in planar geometry olympiad problem generation.

In the discussion section of [18] the following question has been posed: What is the

role of software in the process of problem posing for competitions? Traditionally, dy-
namic geometry software such as GeoGebra [12] provide tremendous aid in examining
geometric situations given in advance. We take a step further and provide a tool that
suggests these problems. To the best of our knowledge, our designed system is the first
answer to the challenge of automated geometry olympiad problem creation.

Opportunities for future work fall into two main categories:

1. Improving filtering methods from Section 2.4, especially enhancing the theorem
prover (Section 2.4.1) by including other proving methods such as the full-angle
method [6, 5, 23]. This would result in the filtering of many difficult problems, but
the remaining ones would be even more challenging.

2. Exploring options of AI methods, mainly with regards to the selection of the best
generated results (Section 2.5). This could introduce other unprecedented chal-
lenges, such as building an annotated database of olympiad problems.
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Resumé

Geometrické úlohy sú odjakživa neoddeliteľnou súčasťou matematických súťaží ako
je Medzinárodná Matematická Olympiáda. Tradične tieto úlohy vymýšľajú skúsení
geometri, pričom táto činnosť si vyžaduje popri vysokej odbornosti aj roky tréningu.
V tejto diplomovej práci ukazujeme, že aj takáto kreatívna a nesmierne časovo náročná
činnosť dokáže neobyčajne profitovať z automatizácie. Predstavujeme náš systém au-
tomatického generovania rovinných geometrických úloh pre Matematickú olympiádu.

V Kapitole 1 sa venujeme prieskumu aktuálneho stavu v relevantných oblastiach. Uka-
zuje sa, že ohľadom generovania úloh bolo urobené len veľmi málo. Existujúce riešenia
nevykazujú možnosti na generovanie úloh vyššej obtiažnosti pre Matematickú olym-
piádu.

V predmetnej oblasti sa venuje väčšia pozornosť automatizovanému dokazovaniu geo-
metrických viet. Túto sféru sme taktiež preskúmali, keďže jednou zo súčastí nášho
riešenia je dokazovací systém. Neskôr je vysvetlené, prečo tieto riešenia nie sú v našom
prípade vhodné.

V Kapitole 2 predstavujeme naše riešenie. Jeho základnou myšlienku je rozdelenie prob-
lému generovania úloh na generovanie geometrických konfigurácií a hľadanie a spraco-
vanie geometrických viet.

V podkapitole 2.1 zľahka uvádzame naše riešenie analyzovaním naivných prístupov.
Výsledkom sú tieto problémy:

1. Priamočiare generovanie vedie ku generovaniu veľkého počtu konfigurácií, z kto-
rých mnohé sú izomorfné (predstavujúce tú istú geometrickú situáciu zadanú iným
spôsobom).

2. Vo vygenerovaných konfiguráciách platí veľmi veľa viet, ľudskými silami len veľmi
ťažko spracovateľných. Navyše, mnohé z nich nevyhovujú kritériám olympiádnych
úloh.

To nás vedie k tomu, že potrebujeme:

1. netriviálny algoritmus generovania konfigurácií, ktorý rozpoznáva izomorfné konfi-
gurácie (podkapitola 2.3),

2. sofistikovaný systém filtrovania jednoduchých úloh (podkapitola 2.4),

3. systém hodnotenia kvality úloh, pomocou ktorého sa usporiadajú neodfiltrované
úlohy (podkapitola 2.5).
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V podkapitole 2.2 sme popísali formálny matematický model, ktorý nám neskôr umožnil
v podkapitole 2.3 exaktne popísať a dokázať správnosť algoritmu generovania. Zákla-
dom tohto modelu je reprezentácia geometrických konfigurácií pomocou teórie grafov,
konkrétne orientovaných grafov s usporiadanými vrcholmi a hranami.

V podkapitole 2.3 sme sa okrem exaktného popisu algoritmu generovania a dôkazu
jeho korektnosti zaoberali aj otázkou jeho pamäťovej zložitosti. Zámerom bolo totiž
použiť tento algoritmus na dlhotrvajúce generovania (desiatky hodín). Bolo teda po-
trebné, aby množstvo pamäte spotrebovanej algoritmom bolo z hľadiska praxe rozumne
ohraničené. To sa podarilo dosiahnuť. Náš algoritmus si počas generovania potrebuje
pamätať počet konfigurácií, ktorý je lineárne závislý od hĺbky generovaného grafu, čo
je v praxi nanajvýš 5. V praxi tento algoritmus potrebuje nanajvýš niekoľko stovák
MB pamäte RAM.

V podkapitole 2.4 sme popísali náš systém filtrovania ľahkých úloh. Jeho hlavný kom-
ponent je založený na dokazovaní viet. Hlavná myšlienka je použiť dokazovač ako filter.
Dokazovač je teda prispôsobený tomu, aby vedel rýchlo odhaliť jednoduché úlohy. Zá-
kladom je využitie známej metódy deduktívnej databázy, avšak vyvinutej nezávisle.
Dokazovač bol otestovaný na ukážkovom experimente a bol schopný odhaliť 95.6%
ľahkých viet za menej než 3 minúty.

V podkapitole 2.5 sa venujeme systému hodnotenia úloh. Tento systém predpokladá, že
dostáva na hodnotenie zaujímavé úlohy, a snaží sa z nich vybrať tie najzaujímavejšie. To
robí tak, že individuálne ohodnotí štyri zvolené aspekty a výsledky lineárne skombinuje.
Výsledky sú potom usporiadané podľa tohto finálneho hodnotenia.

V Kapitole 3 popisujeme vykonané experimenty a uvádzame výsledky. Okrem nespočet-
ného množstva malých lokálnych experimentov priebežne vykonávaných počas vývoja
sme vykonali aj experimenty vo veľkom meradle. Tieto experimenty bežali paralelne
na približne 4 500 počítačoch v Inštitúte Maxa Plancka v Nemecku, pričom spotrebovali
približne 40 000 CPU hodín.

Hlavnými výsledkami práce sú:

1. dve úlohy zverejnené v domácich kolách Česko-Slovenskej matematickej olympiády
2020/2021, vygenerovaných počas vývoja,

2. päť úloh navrhnutých na Medzinárodnú Matematickú Olympiádu 2020, vygenero-
vaných vo veľkých experimentoch,

3. tisíce ďalších kvalitných úloh vygenerovaných vo veľkých experimentoch, ktoré budú
priebežne navrhované na rôzne národné a medzinárodné súťaže.

V prílohe uvádzame ukážky netriviálnych úloh vygenerovaných počas veľkých experi-
mentov. Obrázky spolu so zadaniami sú produktom nášho automatizovaného systému
na kreslenie obrázkov a generovanie textových zadaní pre vygenerované úlohy.
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Appendix

The following are nine difficult problems, each for every sought theorem type (Ta-
ble 2.1.3), generated in the large-scale generation experiments (see Section 3.2), auto-
matically drawn and stated by our visualisation tool (see Section 3.1.1).

Let ABC be a triangle. Let D be the incenter of ABC.

Let E be the incenter of BCD. Let F be the incenter

of ABD. Let G be the incenter of ACD.

Show that lines AE,BG,CF are concurrent.
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Let ABC be a triangle. Let D be the A-excenter of ABC.

Let E be the projection of A on BC. Let F be the incenter

of ABC. Let l be the external angle bisector of ∠DEF .

Show that A lies on l.
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Let ABC be a triangle. Let D be the reflection of A in BC.

Let E be theD-excenter ofDBC. Let F be the orthocenter

of BCE. Let G be the incenter of ABC.

Show that points B,C, F,G are concyclic.
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Let ABC be a triangle. Let D be the point opposite to A

on circle BAC. Let E be the orthocenter of ABC. Let l

be the line tanget to circle EBC at E.

Show that AD ⊥ l.
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Let ABC be a triangle. Let l1 be the line

through A perpendicular to BC. Let l2 be

the line tangent to circle ABC at A. Let D

be the midpoint of opposite arc BAC. Let E

be the reflection of D in l1. Let F be the

reflection of D in l2.

Show that AD ‖ EF .
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Let ABCD be a convex quadrilateral. Let E be the re-

flection of B in AD. Let F be the reflection of C in AD.

Let G be the orthocenter of BEF . Let H be the orthocen-

ter of CEF .

Show that BG = CH.
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Let ABC be a triangle. Let D be the reflection of A in BC.

Let E be the point opposite to A on circle BAD. Let F be

the point opposite to A on circle CAD. Let G be the A-

excenter of AEF .

Show that circles ABC and EFG are tangent to each other.
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Let ABCD be a convex quadrilateral. Let E be the reflec-

tion of A in BD. Let F be the reflection of E in C. Let G

be the point opposite to F on circle AFC. Let H be the

point opposite to E on circle AEF .

Show that line BD and circle AGH are tangent to each

other.
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Let ABCD be a convex quadrilateral. Let E be the point

opposite to B on circle ABD. Let F be the point opposite

to C on circle ACD. Let G be the intersection point of BF

and CE. Let H be the orthocenter of BCG.

Show that points A,D,H are collinear.
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