Automated Generation of Planar Geometry Olympiad Problems

Mgr. Patrik Bak
prof. RNDr. Stanislav Krajči, PhD.
Mgr. Michal Rolínek, PhD.
(consultant)

Pavol Jozef Šafárik
University in Košice
Faculty of Science

Motivation

The International Mathematical Olympiad is the most prestigious mathematical contest.

http://imo-official.org/

- 100+ countries
- 600+ participants
- 6 difficult problems
- 2 planar geometry problems
- Writing these problems is:
- Difficult
- Time-consuming
- Requires years of experience

Main challenges

- Very little prior work in automation
- Multitude of possible problems
- Only a minority of them is suitable
- No universal way of recognizing them

Methods

1. Generation of geometry problems

- Complex algorithm with efficient memory usage
- Allowed for arbitrarily long-running experiments
- Formally proven to be correct

2. Filtering unsuitable problems

- Ulitizes geometry theorem proving methods
- Filtered out 95% of the easy problems in the performed test-case experiment

3. Ranking of the remaning problems

- Heuristic ranking system
- 4 rated aspects selected based on the author's years of experience in writing geometry problems

Implementation

- C\# .NET Core 3.1
- No external libraries for the main logic
- Visualization via MetaPost and TeX
- https://github.com/PatrikBak/GeoGen

Results

- Tested in long-running (40+ hours) parallel generations ($45,000+$ CPU hours)
- More than $\mathbf{1 0 0} \mathbf{0 0 0}$ problems
- 5 problems proposed to the International Mathematical Olympiad 2020
- 1 problem accepted to the Czech-SlovakPolish Match 2020
- 4 problems accepted to the Czech-Slovak Olympiad 2020

Accepted problem

Let $A B C$ be an acute triangle. Suppose that points D and E lie on the side $B C$ such that D is between B and $E, A D=$ $C D$, and $A E=B E$. Point F is a point satisfying $F D \| A B$ and $F E \| A C$. Prove that $F B=F C$.

