
Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Multi-sensor accelerometer-based
gesture recognition

Master’s thesis

2020

Bc. Matej Králik

Comenius University in Bratislava

Faculty of Mathematics, Physics and Informatics

Multi-sensor accelerometer-based
gesture recognition

Master’s thesis

Study program: Computer Science

Field of study: Computer Science

Department: Department of Computer Science

Supervisor: Mgr. Vladimír Boža PhD.

Consultant: Mgr. Marek Šuppa

Bratislava, 2020

Bc. Matej Králik

21413282

Univerzita Komenského v Bratislave
Fakulta matematiky, fyziky a informatiky

ZADANIE ZÁVEREČNEJ PRÁCE

Meno a priezvisko študenta: Bc. Matej Králik
Študijný program: informatika (Jednoodborové štúdium, magisterský II. st.,

denná forma)
Študijný odbor: informatika
Typ záverečnej práce: diplomová
Jazyk záverečnej práce: anglický
Sekundárny jazyk: slovenský

Názov: Multi-sensor accelerometer-based gesture recognition
Rozpoznávanie giest pomocou viacerých akcelerometrov

Anotácia: Cieľom diplomovej práce je (nielen):

- Zostavenie vlastného prototypu rukavice vybavenej akcelerometrami.
- Zaznamenať dáta pomocou zostaveného prototypu.
- Vyhodnotiť publikované metódy na rozpoznávanie giest na zaznamenaných
dátach.
- Navrhnúť a otestovať novú metódu na rozpoznávanie giest pomocou
viacsenzorových dát.
- Porovnať navrhnutú metódu a analyzovať jej použiteľnosť
pri viacsenzorových dátach v realite.

Vedúci: Mgr. Vladimír Boža, PhD.
Katedra: FMFI.KAI - Katedra aplikovanej informatiky
Vedúci katedry: prof. Ing. Igor Farkaš, Dr.

Dátum zadania: 13.12.2018

Dátum schválenia: 08.01.2019 prof. RNDr. Rastislav Kráľovič, PhD.
garant študijného programu

študent vedúci práce

Comenius University in Bratislava
Faculty of Mathematics, Physics and Informatics

THESIS ASSIGNMENT

Name and Surname: Bc. Matej Králik
Study programme: Computer Science (Single degree study, master II. deg., full

time form)
Field of Study: Computer Science
Type of Thesis: Diploma Thesis
Language of Thesis: English
Secondary language: Slovak

Title: Multi-sensor accelerometer-based gesture recognition

Annotation: The aims of this thesis include (but are not limited to) the following:

- Construction of a custom glove prototype equipped with accelerometer
sensors.
- Gather gesture-based data using the prepared prototype.
- Evaluate previously published methods for gesture recognition on the gathered
data.
- Propose and test a new method for gesture recognition using multi-sensor
accelerometer data.
- Compare the proposed method and analyse the usefulness of multi-sensor
setup in a real world scenario.

Supervisor: Mgr. Vladimír Boža
Department: FMFI.KAI - Department of Applied Informatics
Head of
department:

prof. Ing. Igor Farkaš, Dr.

Assigned: 13.12.2018

Approved: 08.01.2019 prof. RNDr. Rastislav Kráľovič, PhD.
Guarantor of Study Programme

Student Supervisor

iii

Acknowledgment: I would like to thank my consultant Marek for being a never-

ending stream of support and guidance. Thank you for the helpful and encouraging

discussions we had. A very special thanks goes to Sára, for fully supporting me through-

out this period of time. Last but not least, I would like to thank my parents for the

help and support throughout my studies and life.

iv

Abstrakt

Oblasť automatického rozpoznávania ľudskej aktivity (Human Activity Recognition –

HAR), ktorá je založená na ľuďmi nositeľných senzoroch, zaznamenala v posledných

rokoch zásadný rozmach. Praktické aplikácie z tejto oblasti je možné nájsť v mnohých

kontextoch, najmä v zdravotníctve, či vo funkcionalite "inteligentných domácností".

V našej práci predstavujeme vlastný hardwarový prototyp WaveGlove vo forme

rukavice s piatimi inerciálnymi senzormi. S použitím tohto prototypu sme zozbierali

dva datasety, obsahujúce rôzne množiny giest. Tieto datasety obsahujú 1000, respektíve

10000 vzoriek.

V ďalšej časti našej práce implemetujeme viaceré klasifikačné metódy klasického

strojového učenia, ako aj hlbokého učenia. Pre účely vyhodnotenia následne použí-

vame viac ako 10 verejne dostupných datasetov. Ďalej navrhujeme novú architek-

túru neurónovej siete, založenú na koncepte "self-attention", aplikovanú pre túto úlohu.

Porovnaním dosiahnutých výsledkov ukazujeme, že táto nová metóda dosahuje lepšie

priemerné výsledky, ako iné, už publikované metódy. Nakoniec tiež realizujeme ablačnú

štúdiu, ktorou demonštrujeme dôležitosť nami zvolenému prístupu s použitím viac-

erých senzorov. Výsledkami tejto štúdie poukazujeme na fakt, že dosiahnuté výsledky

sa zlepšujú s pridańím viacerých senzorov, pričom výrazné zlepšenia prestávame po-

zorovať pri zahrnutí viac ako troch senzorov.

Kľúčové slová: rozpoznávanie ľudskej aktivity, rozpoznávanie ľudských giest, nositeľné

zariadenia, neurónová sieť

v

Abstract

The field Human Activity Recognition (HAR) based on wearable sensor data has grown

considerably over the recent years. One can find many practical applications of HAR,

especially in healthcare and smart-home control. In this work we present a custom

hardware prototype called WaveGlove in the form of a glove with five inertial sen-

sors. Using the prototype, we acquire two datasets with different gesture vocabularies

consisting of 1000 and 10000 samples, respectively.

We implement several classification methods from Classical Machine Learning as

well as Deep Learning. For evaluation we use more than 10 publicly available datasets.

In addition, we propose a novel self-attention based non-recurrent neural network ar-

chitecture, which on average outperforms the previously reported methods. Finally, we

perform an ablation study on the acquired dataset, to demonstrate the importance of

multiple sensors. We show an increase in performance when using up to three sensors,

with no significant improvements with more sensors.

Keywords: Human Activity Recognition, Hand Gesture Recognition, wearable sen-

sor, glove prototype, neural network, LSTM, self-attention.

Contents

Introduction 1

1 Related work 5

1.1 Classical machine learning . 7

1.1.1 Preprocessing and quantization 10

1.1.2 Feature extraction . 14

1.1.3 Windowing . 15

1.1.4 Classification . 16

1.1.5 Classifier ensembles . 19

1.2 Deep learning . 19

1.2.1 Convolutional networks . 23

1.2.2 Recurrent networks . 25

1.2.3 Attention mechanism and transformers 27

1.3 Sensor selection and placement . 29

2 Novel dataset acquisition 31

2.1 WaveGlove prototype . 32

2.1.1 Glove-like wearables . 32

2.1.2 Hardware properties . 33

2.1.3 Firmware . 34

2.2 Gesture vocabulary . 37

2.2.1 Dataset WaveGlove-single . 37

2.2.2 Dataset WaveGlove-multi . 38

2.3 Recording framework . 39

2.4 Experiment setup . 40

2.4.1 Qualitative dataset factors . 41

3 Datasets for experiments 43

3.1 Preprocessing datasets . 44

3.1.1 Non-overlapping semi-uniform length windowing 45

3.2 Dataset overview . 46

vi

CONTENTS vii

3.2.1 WaveGlove-single and WaveGlove-multi datasets 46

3.2.2 uWave dataset . 47

3.2.3 OPPORTUNITY dataset . 47

3.2.4 PAMAP2 dataset . 48

3.2.5 Skoda Mini Checkpoint dataset 49

3.2.6 MHEALTH dataset . 49

3.2.7 Dataset summary . 49

3.3 Externally preprocessed dataset overview 51

4 Classification 54

4.1 Baseline methods . 55

4.2 Deep learning methods . 58

4.2.1 Baseline deep neural networks 60

4.2.2 LSTM networks . 60

4.2.3 DeepConvLSTM networks . 62

4.2.4 Transformer-based self-attention network 63

4.3 Results summary . 65

4.4 Ablation study on the WaveGlove datasets 70

Conclusions 73

Appendix A 87

Appendix B 93

Appendix C 97

List of Figures

1 Structure of a MEMS Accelerometer 2

1.1 Stages of a CML recognition pipelines 9

1.2 Moving average filter . 12

1.3 Signal thresholding example . 13

1.4 Low-pass frequency filter . 14

1.5 Frequency analysis of a signal . 14

1.6 Dynamic time warping heuristics . 18

1.7 A single neuron . 20

1.8 Simple neural network . 21

1.9 Comparison of activation functions . 21

1.10 Gradient descent . 22

1.11 Convolutional neural network . 23

1.12 Convolutional neural network . 24

1.13 Recurrent neural network . 25

1.14 Long short term memory cell . 26

1.15 ConvLSTM cell . 28

2.1 Prototype structure . 32

2.2 Constructed glove prototype . 35

2.3 Hand movements with the prototype 35

2.4 WaveGlove-single gesture vocabulary 38

2.5 PyQT recording application . 40

3.1 Non-overlapping semi-uniform length windowing 46

3.2 Quantitative dataset properties . 50

4.1 Evaluation schemes . 56

4.2 Average representative classifier . 57

4.3 Bagging decision tree classifier . 59

4.4 Baseline DNN models . 61

4.5 LSTM models . 62

viii

LIST OF FIGURES ix

4.6 DeepConvLSTM models . 64

4.7 Novel Transformer-based model . 65

4.8 Model evaluation on datasets with non-overlapping samples 66

4.9 Sensor and training set size effects on WaveGlove-single 70

4.10 Sensor and training set size effects on WaveGlove-multi 71

4.11 Confusion matrices obtained using values from a single sensor 72

A.1 WaveGlove wiring diagram . 87

A.2 Prototype casing . 88

A.3 WaveGlove-multi gesture vocabulary - first half 89

A.4 WaveGlove-multi gesture vocabulary - second half 90

A.5 Tutorial recording session . 91

A.6 Standard recording session . 92

B.1 OPPORTUNITY dataset . 93

B.2 Skoda Mini Checkpoint dataset . 94

B.3 Dataset class distribution . 95

B.4 Sample length distribution . 96

List of Tables

1.1 Types of sensors used in HAR . 29

2.1 Overview of the used components . 34

2.2 Hardware configuration . 37

2.3 Quality affecting dataset factors . 42

3.1 Dataset sampling overview . 43

3.2 Qualitative dataset properties . 51

3.3 Externally preprocessed dataset summary 53

4.1 Summary of baseline classifiers . 59

4.2 LOTO evaluation . 68

4.3 LOSO evaluation . 69

B.1 PAMAP2 dataset activity distribution 94

x

Introduction

In recent years, the computing power we have access to has increased tremendously.

We live in an era when computers of various sizes are integrated into things around

us. Gadgets, toys, home appliances, and tools we use most of the time are a few

examples of such integrations. With this rise in computing power, the ability to process

greater quantities of data has a potential like never before. To gather that much data,

various types of sensors are being deployed where possible. Cameras, temperature

and humidity sensors, distance sensors, gyroscopes and accelerometers, radiation and

smoke detectors and many others are massively fabricated and widely used.

In this work we are particularly interested in inertial measurement units (IMUs),

which can be purchased for a few dollars and are present in devices used on a daily

basis. In phones or tablets IMUs are most commonly used for determining the screen

rotation and for gaming applications. In mechanical hard drives, they are used for

protection against damage caused by a fall. In wearable devices (smart watches, etc.)

they are used to determine the type and intensity of an activity the user is doing. IMUs

typically consist of an accelerometer, gyroscope and a magnetometer.

An accelerometer is used for measuring acceleration. The core principle of this

measurement is using Newton’s law of motion in conjunction with Hooke’s law for

springs[1]. This allows us to calculate the applied acceleration using the distance a

spring is extended. To convert this distance into an electrical signal capacitors are used.

Capacitors are passive electronic components which have a property called capacitance.

Capacitance depends (among other things) on the distance between the two plates of

a capacitor. Therefore with the correct setup (as shown in Figure 1) we are able to

measure capacitance, to measure distance and to calculate the desired acceleration.

For usage in real-world applications, the mentioned devices need to be very small.

To achieve that, Microelectromechanical systems (MEMS) are used. MEMS is a tech-

nology of building devices with moving parts (like accelerometers) on a very small

scale - typically tens of micrometers big. By integrating three accelerometers in di-

rections perpendicular to each other, we can effectively measure the three dimensional

acceleration.

Some accelerometer circuits are fabricated together with a gyroscope. Gyroscopes

are devices used in similar cases and have alike core principles. A gyroscope is used for

1

Introduction 2

Mass Acceleration

Springs

Fixed capacitor plates

C C₁ <C C₂

Figure 1: Structure of a MEMS Accelerometer. When an acceleration is applied to the

device, the springs allow the movement of the floating plates, leading to a change in

capacitance between the fixed plates.

measuring angular velocity. When an object is turned around an axis, another physical

phenomenon - the Coriolis force occurs. The size of this force is then measured through

capacitance (as with accelerometers).

In summary, IMUs are cheap and flexible sensors with a large variety of usages. One

of these usages involves attaching one or more IMUs to human clothing or body and

using the recorded values for classification of the activity the subject is undertaking.

The area of research which focuses on this kind of classification is called Human Activity

Recognition (HAR). Typically, daily activities such as walking, running, climbing stairs,

sitting, or various exercises such as squats or push-ups are classified. Either a single

sensor is used, which usually simulates the presence of a mobile phone in subjects hand

or pocket, or multiple sensors can be used with the help of special equipment (eg.

custom crafted vest). Multiple sensors are helpful in classifying activities of various

body parts, but pose a rather unrealistic scenario outside of laboratory conditions. In

the multi-sensor scenario, IMUs are also sometimes used in conjunction with other

sensors, such as heart rate monitors or electromyograms.

A sub-area of HAR which focuses on hand gestures is called Hand Gesture Recog-

nition (HGR). In HGR, the sensors are usually placed in or on subjects hands and

are used to determine what kind of hand gesture the subject does. One of the main

difference between HAR and HGR is that HAR usually works with longer time frame

(up to minutes), while hand gestures tend to be short (a few seconds) in time.

In HAR and even more importantly in HGR, an important part of classification

is distinguishing between states of activity/gesture and states of non-activity/non-

gesture. If a sensor was attached to subjects hand for a longer period, it would be

Introduction 3

impractical not to be able to perform anything than the predefined set of gestures.

The non-gesture states are those when the subject performs no movement, or some

movement which does not represent a meaningful gesture. Some of the datasets allow

benchmarking this important part of classification by including non-activity data, also

called as data belonging to the "null" class (each class corresponds to one of the classified

activities).

There are several use cases of both HAR and HGR in ubiquitous computing -

remote control, health monitoring, gaming, virtual and augmented reality, biometrics

etc. More importantly, they can be useful in sign language translation[2] or helping

users to quit smoking[3] by classifying hand movements.

In this work, we focus on the problem of HGR using multiple sensors, which has

not been explored extensively. Most of previous HGR work focused on using mobile

phones, or other commercially available products with IMU sensors, but their drawback

is the lack of pervasiveness. If performing a hand gesture in order to control a home

appliance involves finding a phone or other specialized device, it is hardly simpler than

controlling the appliance directly.

Luckily, with the availability and price of sensors and other components, it is pos-

sible to build low-cost wearables, to assist in the multi-sensor gesture recognition. We

therefore build a device prototype in the form of a glove, with an IMU attached at the

middle phalanx of each finger. If such a device was built commercially, its size, weight

and cost would shrink intensively, allowing for a much more pervasive experience. Us-

ing our prototype - WaveGlove, we effectively simulate this scenario and we create

an opportunity to capture a multi-sensor HGR dataset to be used in evaluating various

classification approaches.

To understand the core difficulty of HAR and HGR using IMUs, we need to know

the limits of the sensors we use. The problem of gesture or activity recognition would

be a lot easier if we could measure the acceleration or angular velocity without noise

and with high precision. If the noise was low enough, or simply was not present, given

the acceleration, we could compute velocity vt and position xt as shown in equation 1.

∫
atdt = vt,

∫∫
atdt =

∫
vtdt = xt (1)

Knowing the position in time, we could apply other known methods for classification

from the area of computer vision. For example, we could map the movements of a

gesture onto a two dimensional plane, making handwriting, by performing gestures

mid-air an easily approachable challenge.

Unfortunately, the sensor measurements are affected heavily by noise. This noise

can be caused by various physical phenomena occurring during the use of our devices

(eg. induction) and by our limited accuracy of measurements. Methods of denoising

Introduction 4

the signal have been studied in the area of signal processing, but none give results

plausible enough for our use case. If we were to attempt the calculation of position

through double integration as shown above, we would not be successful. Given the noise

levels and measurement frequency, the resulting position would diverge exponentially,

or slowly drift away and no further classification would be possible.

Caused by these sensor limitations, the area of HAR still presents a huge amount of

challenges to date. Various classification and segmentation techniques are researched,

both from the area of classical machine learning (CML) and deep learning (DL).

In the presented work we construct the WaveGlove prototype and use it to cap-

ture a state of the art datasets which can be used for HGR. We define and adopt

multiple gesture vocabularies, both to exploit the multi-sensor environment and to

create comparable datasets.

We explore the various CML and DL methods used for both HAR and HGR in pre-

vious work and compare them on multiple datasets. Using our newly acquired dataset

as well as 10 previously published datasets, we evaluate our classification methods.

Multiple models proposed by other authors are reproduced and their performance is

evaluated.

Using the acquired multi-sensor dataset, we perform an ablation study, showing

both the value added by multiple sensors as well as the boundary after which adding

more sensors does not further improve the accuracy. Finally, we propose a new DL

classification method, which improves the state of the art on the used datasets.

In the next chapter we provide an overview of related work, both in the CML

and DL areas and the importance of sensor placement and selection. Subsequently,

we describe the constructed WaveGlove prototype, the used gesture vocabularies,

recording framework and the overall experiment setup. In the third chapter, we outline

the used datasets, their statistical properties and setup of the experiments. Finally, we

compare several CML and DL classification methods using multiple evaluation metrics

and schemes on the datasets.

Chapter 1

Related work

Interest in the field of Human Activity Recognition (HAR) and Hand Gesture Recog-

nition (HGR) using inertial measurement units (IMUs) has grown noticeably during

recent years as identified by [4] and [5]. Several comprehensive surveys have been pre-

viously conducted in order to summarize research and define the state of the art [4],

[5], [6], [7], [8], [9] and [10]. Our work does focus on HGR, however the field of HAR

is very closely related. Most notably, when recognizing an activity, the goal is to clas-

sify a long-term state that can last several seconds or minutes. Gestures operate on

a much shorter timespan (a few seconds at most) and consist only of a single or a

few movements. Recognizing activities is studied more intensively, as annotating long

lasting states is less time consuming and usually does not require specific hardware or

infrastructure setup. Longer timespans also lead to larger datasets after segmentation,

which is beneficial for model training. In this work the terms gesture and activity may

be used interchangeably as we refer to the performances recorded using IMUs. We will

use both of these terms based on the work, dataset or method context.

We adopt the categorization of previous work from [4] into two major categories:

• Classical machine learning (CML)

• Deep learning (DL)

With the recent rapid growth in the area of Internet of Things (IoT), smart wear-

ables and environmental sensors, the amount of HAR data available has grown dra-

matically. Therefore feature extraction has become a key stage in the process of the

recognition.

In CML, discrimination feature vectors are designed manually or semi-manually,

which requires wide-ranging domain knowledge, expert-driven decisions or guesses and

other time consuming selection techniques. The major challenges of conventional hand-

crafted features could be summarized as in [5]:

• Manual feature extraction and design, requires expert domain knowledge.

5

CHAPTER 1. RELATED WORK 6

• Selection of various features is becoming more complex and unsustainable task

with the rapidly increasing amount of data and modalities.

• Feature design requires vast amounts of labelled data. Creation of such datasets

is time consuming and requires a specific setup. On the contrary, IoT, wearables

and other smart sensors provide a great source of unlabelled data that can be

used for reinforcement learning.

• Carefully designed features from the time and frequency domains may not be

able to capture the dynamic temporal dependencies in the signal.

• Ensembles and decision fusion techniques are commonly used. However, there

exist uncertainties about the generalization ability of these approaches.

One of the attempts to tackle these challenges involves automatic feature extraction.

This is mostly done using techniques form the are of deep learning - specifically neural

networks. Deep neural networks consist of several layers of neurons interacting with

each other and using activation functions to introduce non-linearity into the model.

The use of DL comes as no surprise due to its undeniable success in the areas of

signal processing, autonomous driving, image and object recognition, natural language

processing, and various others[5][7].

As reported in [4], CML techniques still prevail over DL in the area of HAR

when taking into account the amount of published papers leveraging the respective

approaches. Even though deep learning methods report higher average recognition ac-

curacy (92.8%) when compared to classical machine learning (92.3%)[4], the difference

is too small to clearly determine a dominant approach. Data generation and segmenta-

tion, evaluation metrics and validation protocols have crucial impact on the resulting

model performance[8]. Highly imbalanced datasets are very common in the area of

HAR (most notably the ones with a null class), in which case reporting the average

accuracy does not capture the actual performance of the model. A simple linear clas-

sifier which is able to distinguish between the null class and other classes may reach

average accuracy comparable to that of a more complex model.

Poor quality of any of the preprocessing or evaluation stages can lead to highly

skewed results as well. Other research areas, such as object detection and image classi-

fication, have already approached the problem of non-reproducibility and highly skewed

results by defining proper standards[11]. In HAR however, no well-defined evaluation

methods exist. More importantly, experimental evaluations[7] show that current state

of the art techniques do not reach accuracy levels high enough to be used in a real

world applications, even though the reported metrics may suggest otherwise.

In the following sections we present an overview of the CML and DL methods

used in the field. After that, we report how sensor selection and placement affect

CHAPTER 1. RELATED WORK 7

the recognition performance and survey previous work from this point of view. We

conclude the chapter with a section focused on HAR dataset availability, usage and

acquisition methods.

1.1 Classical machine learning

Previously outlined challenges of CML may present a significant drawback in compar-

ison to DL methods. However, there are several advantages of CML as well:

• Training and testing is usually computationally less expensive. DL training in

general involves complex gradient calculation and several iterations to find a

global minimum. This topic is particularly interesting in embedded environment,

where the speed of recognition, hardware requirements and power efficiency are

very constraining.

• CML methods tend to be more interpretable to humans. Consider for instance

the baseline we use in our classification: lowest distance from the mean of training

data per specific class, is a very interpretable model. It comes across as intuitive,

that the closest template (even when using a specific metric in a high dimensional

scenario) is the most viable prediction. Methods such as support vector machines

(SVM) or hidden Markov models (HMM) can be viewed as generalizations of this

simple approach, using nonlinear projections or probabilistic modelling. On the

other hand, neural networks – especially the deep ones – are still perceived as

black-box algorithms due to their high level of abstraction.

Explanations are especially important in situations, where making decisions was

previously entrusted to humans and ought now to be automated. The area of

explanatory artificial intelligence (XAI), has been studied only recently, with the

increasing need to entrust important decisions to algorithms. It is also important

to distinguish between the terms interpretability and completeness. In [12], the

goal of interpretability is to describe the operations of a system in a way under-

standable to humans, while the goal of completeness is to describe a system in

an accurate way. Given these definitions, deep learning may be complete but

hardly interpretable. Furthermore, interpretability in DL has a slight overlap

with ethical, moral and philosophical dilemmas[12].

• Hand tuning is more accessible. Especially in practical applications, where the

performance in a relatively specific scenario is more important than overall gen-

eralization, hand tuning the final model is a common approach. With DL models

having tons of parameters, which are hard to explain at the current state of

published research, hand tuning becomes difficult to execute. On the contrary,

CHAPTER 1. RELATED WORK 8

when deploying a solution in a realistic environment, an expert with appropriate

domain knowledge is often available to guide the hand tuning of CML parameters.

• Class imbalance and annotation scarcity present a lesser problem in comparison

to DL[7]. Supervised deep learning methods often require large amounts of an-

notated data, which is often hard to obtain in the area of HAR. As most of the

datasets used in previous work are not available to the public[4], acquiring a novel

suitable dataset is often required and time consuming. Unsupervised methods

have been adapted to the task[5], but their performance is yet to be rigorously

determined.

The process of recognising a gesture can be split into stages, creating a recognition

pipeline (Figure 1.1).

The three stages which are of interest from the classical machine learning point of

view are:

1. Preprocessing

2. Feature extraction

3. Classification

Methods employed at all of these three stages are discussed in the following sec-

tions. Some of the mentioned methods are still applicable and are used also in DL.

Traditionally, however, they originate from the CML methods, where they play a key

role in building the model, whereas in DL various hyperparameters and architectural

choices have greater impact.

Stages of the recognition pipeline

After reading the raw data from the sensors, it contains noise of various types. The

noise can be caused by imprecise measurement, change in environment or intra-class

variability (each single human performance of a gesture will differ).

When identifying a gesture based on previous samples from the same user, we talk

about user-dependent recognition, and we call the opposite situation when testing

a gesture performed by a different person user-independent recognition. As shown

in [13] and [14], user-independent gesture recognition poses a greater challenge, because

of higher variation in performances. Variations occur not only on an interpersonal

level, but performances distributed along a longer time frame (e.g. days) can differ

significantly as well[15].

Some of the noise can be effectively filtered out by applying various methods in the

pre-processing stage. Another challenge we may need to address in this stage is iden-

tifying the gesture itself in the stream of data. Significant body of research regarding

CHAPTER 1. RELATED WORK 9

Figure 1.1: Stages of a CML recognition pipelines

CHAPTER 1. RELATED WORK 10

gesture recognition does not focus on recognizing whether a time series presents any

gesture at all, resulting in the need to mark the beginning and the end of a gesture by

the user during the recording, or via other means.

As part of preprocessing, quantization can be applied, which is the process of map-

ping the continuous (or otherwise large) set of values to a smaller, discrete set.

After pre-processing and quantization is applied, features may be extracted from

the data. The corresponding model then works on these features instead of the original

raw data.

The next stage is finally responsible for the classification itself. A trained model

receives the data or some features as an input, and associates it with one of the pre-

defined classes.

The recognition pipeline stages serve only as an approximation. There are several

approaches, which leave out some of the stages. These include: working with the

raw data directly, without feature extraction[16], merging multiple stages into a single

process, or adding further stages, such as custom model adjustment[15].

1.1.1 Preprocessing and quantization

The goal of pre-processing is to transform the data into a simplified or compressed

form, to allow better recognition. This transformation typically tries to remove some

of the noise, or other redundant parts of the data. Each of the following pre-processing

techniques can be considered as a heuristic trade-off, based on a belief that it removes

the part of the data which was likely unnecessary for the classification. The appropriate

constants and thresholds for such heuristics are often determined by guesses and exper-

iments. In the case of simple hand gestures, they might not contain a lot of information,

but when classifying a longer sequence of a more complex activity in a multi-modal

environment (e.g. cycling), the amount of information can be significantly higher. Due

to the physical limitations and realistic influences however, all sensor recordings con-

tain inherent noise and other forms of redundant data. This leads us to the effort of

removing this noise and redundancy, to further reduce the amount of data pushed into

our models, leading to simpler, faster and better training and inference.

Fixed set quantization

Instead of directly using the measured values from a sensor, which are usually 10 to

20 bits in precision, we can exploit the fact that a human can consciously perform

movements only up to a certain precision.

The most straightforward approach would be to map the range of values from the

input values onto a smaller scale (e.g. 5 to 8 bits). During quick acceleration a human

has less control than during slower movements, which intuitively leads to a non-linear

CHAPTER 1. RELATED WORK 11

scale. This non-linear quantization is tested by [15], where 33 levels of acceleration are

used. Only two of the levels are used for values above 2g1 (and below −2g) while 10

levels are used for values from −2g to −1g and 1g to 2g and the remaining 20 levels

are used for values between −1g and +1g. The remaining level is used for 0g values

(seen mostly in sample padding).

The utilized quantization approach does not have to be axis-independent like the

previous example. If we suppose, that the user consciously performs movements only

in a few standard directions (e.g. the three major axes and their 45◦ rotations), we

could map each triple of consecutive acceleration (or angular velocity, or orientation)

values to the closest point on a sphere, ellipse or similar three-dimensional object. This

quantization is used in [16] and [17] with mappings to various sets of points.

Sliding window smoothing

Hand gestures tend to be rather smooth by definition – a circle, or even a set of

movements in different directions are smooth most of the time. A common way to

reduce spikes and smooth out a signal is using a moving average filter [18]. The

average filter replaces individual values with the mean of these values from an interval

centered at given value. This creates a sliding window, which is moved forward by a

constant after each calculation (typically smaller than its size).

The resulting signal tends to be smoother, due to the sudden changes in values

representing only a small weight in the mean. Moving filters can calculate arbitrary

functions on the windows, like weighted mean (where higher weight is closer to the

center), and they are widely used in digital signal processing as well as in other ar-

eas, such as finance. This sliding window technique is used in gesture recognition as

well[15][19][20][21]. In Figure 1.2, we show the raw x-axis acceleration from a circle

gesture performance and the signal after applying moving average filter.

Various thresholds

Thresholding can be used either during the task of identifying a gesture or significant

activity from a continuous stream, or when trying to reduce the length of model input.

The rationale is that hand gestures could be defined by those moments, when the user

makes a significant change in acceleration or direction of the movement. By filtering

out the data which does not contribute to these moments, we can remove unnecessary

parts of the data.

To remove passive parts of the data, it is common to use a simple threshold for the

amplitude of acceleration (at < ǫ) [16][22][23]. The constant used for this truncation

can also depend on properties of the data, like standard deviation [21]. To filter out

1
g refers to the gravitational constant - approximate gravitational acceleration on Earth.

CHAPTER 1. RELATED WORK 12

Figure 1.2: Moving average filter - the original signal (top-left) and sliding window

smoothing applied with window sizes of 4, 8 and 16.

frames which do not change the direction significantly, we can compare the components

of each acceleration vector with its predecessor (at−1 − at < ǫ′) as in [16].

When we truncate/filter our input data as we just described, the sequences will

vary in length (as they likely did before the truncation). If the considered classification

model requires data of constant length, some kind of interpolation or padding has to

be applied. One example would be cubic spline interpolation[20], in general however,

zero padding the data is a common approach. Examples of using the thresholds and

interpolation are in Figure 1.3.

Frequency filtering

A different approach, common in signal processing[18], is to use features from the fre-

quency domain instead of the time domain. The reasoning behind this transformation

is that the human movements characterizing the gesture have relatively small frequen-

cies compared to those introduced by noise. The solution is to apply a low-pass filter

to remove the noise[22]. An example usage of this filter in Figure 1.4 and Figure 1.5

shows the spectrum of the acceleration data from a recorded hand gesture instance.

Alternatively, the frequency domain coefficients can be used directly as an input to

the classification model[24]. This simulates low-pass filtering, because only a portion

of the lowest frequencies with high amplitudes is considered.

CHAPTER 1. RELATED WORK 13

Figure 1.3: Signal of a Page flip gesture from an accelerometer on the middle finger

with various thresholds applied (note the different lengths of the presented sequences).

Rotational normalization

When designing a gesture recognition system, one must decide whether the same ges-

ture rotated into a different plane should be considered as an identical or different

gesture. In the case of ubiquitous and immersive sensor presence, the user might

want to perform low-level gestures, such as finger movements in different high-level

postures – standing, lying, crouching. Employing rotational normalization techniques

may therefore improve the recognition accuracy at the cost of reduced gesture space.

One of the approaches is to plot the values of acceleration, angular velocity, rotation,

etc. as points in three-dimensional space and normalize their rotation with regard to

a best fit plane[22]. Furthermore, after the best fit plane is found, all the points

can be projected onto it, and a best fit line on this plane can be used for rotational

normalization again[23].

CHAPTER 1. RELATED WORK 14

Figure 1.4: The original signal and the low-pass filter applied on relevant portions of

the frequency spectrum.

Figure 1.5: Signal of a Page flip gesture from an accelerometer on the middle finger and

the corresponding amplitudes of frequencies up to 10Hz. The relation demonstrates

that high frequency movements are unlikely to appear in a hand gesture.

1.1.2 Feature extraction

Based on the method we use in the gesture classification stage, working directly with

the time series data may not be acceptable. In such cases the input data is transformed

into a different domain, or specific statistical features of the data are extracted. Mean,

correlation or standard deviation of the channels in the input data are examples of

statistical features that can be used [14].

In general digital signal processing, data is transformed for many purposes (not

only) into the frequency domain[18]. In the subsections below, we describe trans-

formations used in previous work. A great deal of other transformations is already

being utilized in different fields, which might be successfully applied to human activity

CHAPTER 1. RELATED WORK 15

recognition or human gesture recognition as well.

Fourier transform

Being one of the most used time-to-frequency domain transformations, it is no surprise

that Fourier transform (in its discrete form) finds an application in gesture recogni-

tion as well [24][21]. The output of this transformation gives us information on the

amplitudes, frequencies and phase offsets the input is composed of.

Most library implementations allow us to specify a precision up to which we wish

to calculate. The higher precision we choose, the more frequencies we decompose our

signal into. As noted in the subsection about frequency filtering, the lowest frequencies

tend to characterize most of the gesture, and are of interest for feature extraction.

Wavelet transform

Decomposition into sines and cosines (e.g. Fourier transform), has several disadvan-

tages when processing data containing sharp spikes. The problem originates in the fact

that sines and cosines are non-local functions spreading out to infinity, leading to a

poor performance on data containing sudden changes [25].

This problem can be solved by using a slightly different class of functions for de-

composition. Applying wavelet functions, scaled both in amplitude and frequency as

described in [25], can help us represent sharp spikes in a very sparse way. One of dissim-

ilarities between the Fourier and Wavelet transform is the fact that wavelet transform

is specified for a whole class of so-called wavelet functions.

For various applications, the choice of the wavelet function may have a great impact

on the resulting performance. In [13] and [26], the Haar wavelet and coefficients of its

transformation are used.

Other transforms

The decomposition methods used in other fields provide a vast, yet unexplored possi-

bilities. Discrete cosine transform was explored in [24], however no extensive study has

been made on different decomposition methods and their usage in gesture recognition.

1.1.3 Windowing

Especially in the case of HAR, where the recorded activities can be several minutes

long, it is not feasible to classify such long continuous streams. From the practical

point of view it would be infeasible for a system to recognize a long lasting high-

level activity (e.g. running) only after it finishes. To resolve this issue, the signal

stream is segmented into windows, typically of a fixed length. These windows can

CHAPTER 1. RELATED WORK 16

also overlap, which further increases the dataset size - a desirable side effect in many

instances. The specific method used to create windows that are used for classification

or their overlap can have tremendous impact on final model performance and can lead

to skewed experiment results if not used properly[8].

Segmented windows can then be used for further transformations. For example in

[14], the mean, energy, entropy, standard deviation and correlation between consecutive

windows are calculated and used as features. The rationale behind this approach is

that these features could reasonably characterize the motions in the gesture or activity.

1.1.4 Classification

Efficient preprocessing and robust feature extraction are the necessary prerequisites of

a successful recognition, but the core complexity and the key to success still lie inside

a proper classification model.

One of the important properties of each model is the number of training samples

does it require to operate efficiently. When attempting a user-independent gesture

recognition, the model can require a large set of training data and computationally

intensive training. In such case, both the training and data acquisition can be executed

up-front in a controlled environment. Running the model in final production should

not require immense computational power, so that it can be carried out on an average

mobile device or deployed to an embedded platform. Another desirable property of

a model is when it is able to adjust itself over time, based on processed data. These

adjustments should also require less computational power than retraining the whole

model.

User-dependent gesture recognition, seems to achieve greater results[14][27] because

of lesser variations between performances of the same gesture or activity (intra-class

variations). To increase practicality of a user-dependent model, it should require a

far smaller set of training data. If a user is required to perform a gesture only a few

times (or zero times) for the model to start successfully recognizing it, it is sufficient

for pervasive usage.

Baseline

The most basic model we could use, would be to naively use a metric (euclidean

distance, cosine distance, etc.) to compute the distance between the input data and

the saved templates labelled for the considered gesture classes. The class with the

smallest average distance of samples in the training set from the classified samples,

would be then chosen as the result of classification. A simple model like this would

have plenty of pitfalls, but it serves as a good example. In [28] a very similar simplistic

technique was shown to have better than random, but still not feasible results.

CHAPTER 1. RELATED WORK 17

When coming up with a more appropriate model, one way to think about it is to

ask how do the performances of a single gesture differ. If we tried to perform the same

gesture twice, we would inevitably fail at executing each of its parts at the same speed

again. Below, we present dynamic time warping (DTW), a common algorithm used in

signal processing, to address timing inconsistencies in time series data. After that we

discuss various CML methods used in prior work.

Dynamic time warping

To account for possible time inconsistencies in individual performances of a gesture,

we will simulate the ability to arbitrarily extend and contract parts of the performed

gesture in time. The final distance between two gestures will be represented by the min-

imal sum of differences after extension/contraction. Dynamic time warping (DTW) is a

widely used algorithm for signal processing, with plenty of heuristic improvements [29].

Dynamic time warping can be fully implemented through the usage of dynamic pro-

gramming and is widely used in accelerometer gesture recognition [15, 19, 22, 30, 31].

To find the DTW distance, let X = {x1, . . . xn} and Y = {y1, . . . ym} represent the

signals and let

D[i][j] = |xi − yj|, ∀i ∈ {1, . . . n}, j ∈ {1, . . . m}.

To calculate the minimal matching A[N][M] we can use the program shown in 1.1.

Listing 1.1: Implementation of dynamic time warping

A = Matrix(0 . . . N × 0 . . . M)

A[0, *] = A[*, 0] = ∞

for row in 1 . . . N do

for column in 1 . . . M do

A[row][column] = D[row][column] + min(

A[row][column - 1],

A[row - 1][column],

A[row - 1][column - 1])

The time complexity of this algorithm is O(n2) and the space complexity can be

improved to O(n) by remembering only the current and previous row.

Under certain circumstances the time complexity of O(n2) may not be acceptable

due to constrained environments. A simple way to narrow the search for the best

matching is to present a constraint on the amount of extensions or contractions of the

signals. These constraints will prevent us from drifting away to an excessively deformed

matching. Two commonly used constraints are Sakoe Chiba band[32] and Itakura

parallelogram[33][29] (Figure 1.6 shows implemenations from the pyts library[34]).

CHAPTER 1. RELATED WORK 18

Figure 1.6: Itakura parallelogram and Sakoe Chiba band as implemented in the pyts

library[34]. Both of these techniques constrain the matching of the two signals, that

can be found by the algorithm. The orange highlighted fields mark the positions which

can be matched.

A more flexible alternative presented in [29] is called FastDTW. This modification

of the algorithm brings time complexity down to linear, with a configurable param-

eter that determines the possible error margin. By recursively projecting a coarse

DTW solution into multiple levels of refinement, the algorithm is often able to obtain

competitive results.

Hidden Markov models

Hidden Markov models (HMM) are a widely used probabilistic method for time se-

ries modeling[35]. Usually HMMs in gesture recognition try to model the most likely

performed gesture using pre-calculated statistical properties of the training data.

This recognition method assumes that the examined time series conform to the

CHAPTER 1. RELATED WORK 19

Markov property (of first-order Markov processes), which states that every state of the

system depends only on its direct predecessor state. This may seem rather unintuitive,

but HMMs were successfully used in [17], [16] and [36] with relatively high accuracy

when compared to other classification models. Similar to HMMs, Naive Bayesian

modelling has been used in [22].

Support vector machines

Finding a separating hyperplane in a high dimensional projection with the greatest

minimal distance to any of the training data is the key idea of support vector ma-

chines (SVM). Using non-linear kernels functions, SVMs can map input data to higher

dimensions in a way that allows for non-linear separation in the input dimensions [37].

Using SVMs requires meaningful feature extraction from the input data. Unsur-

prisingly, SVMs present the most competitive CML classification model used in gesture

and activity recognition [13][14][24][21][38].

1.1.5 Classifier ensembles

Reducing classifier variance and providing better generalization and robustness can be

achieved using various classifier ensembles. Typical approaches include bagging[39],

decision forests[40], random forests[41], boosting and various voting approaches. In an

ensemble, results several classifier of the same or different types are combined to form

a final prediction.

In HAR, ensembles were explored in [42], [43] and [44]. Most notably [45] used a

majority voting ensemble composed of logistic regression, multi-layer perceptron, SVM,

K-nearest neighbour, Gaussian naive bayes and random forest classifiers. Use of the

ensemble has lead to improving evaluation metrics (and their confidence intervals) over

previous work using similar techniques[46].

1.2 Deep learning

In recent years, the area of deep learning turned out to be widely embraced in multiple

research fields. Surveys [7] and [5] report that the fusion of human activity recognition

and deep learning has began to rise only recently. Few of the reasons, why DL not

replace CML in the area of HAR and still faces the reluctance of research, are lack of

theoretical support, need for large dataset, long and computationally intensive training

and hard optimization.

The most attractive property of deep learning is its multi-layer structure which

allows learning of high-level, abstract features (effectively replacing the manual fea-

ture engineering). With the help of the latest computing resources such as GPUs and

CHAPTER 1. RELATED WORK 20

TPUs, the high parallelizability of deep learning models leads to outstanding learning

ability. Various neural network architectures such as convolutional neural networks

(CNNs), recurrent neural networks (RNNs) and other mechanisms such as attention

create a multitude of possibilities on how to approach the task at hand. Several gener-

ative models are also used in the field such as stacked autoencoders, Deep Boltzmann

Machines (DBM) or Deep Belief Networks (DBN). In our work, however, we focus on

the "traditional" deep neural networks as they have been reported as having promising

performance in recent work.

Neural networks

Deep learning refers to a broader set of techniques, from which the indisputably most

popular are Deep Neural Networks (DNNs). The book [47] provides an introduction

to the topic of neural networks on top of which we build the following paragraphs.

The basic building block of a neural network is a neuron. Neurons can be of multiple

types, but the simplest is a perceptron (Figure 1.7).

Figure 1.7: A single neuron with three inputs and one output.

Each neuron receives a set of inputs x = (x1, . . . xn) and has a weight vector w.

In the case of a binary perceptron, it emits an output y = max(0, sgn(w · x)). This

effectively means, that a single perceptron uses its weight vector to create a linear

combination of the input x and returns 1 if the result is positive and 0 otherwise.

Neurons usually also have another property - bias b, in which case the output is y =

max(0, sgn(w · x + b)). For the task of binary classification, a neuron like this could be

used, and if there exists a separating hyperplane of the input space, then there exist w

and b such that the neuron achieves absolute accuracy (w ·x = b would be the equation

of the respective hyperplane).

A group of these neurons can form a layer of neurons and multiple layers form a

network. Output of each layer serves as an input to each of the neurons in the next

layer, as shown in Figure 1.8. Using these connections, more complex models can be

created.

In practice, the operation of calculating the output vector y of a single layer of

neurons, is implemented as a matrix multiplication - y = f(Wx + b), where W is

the matrix consisting of the w vectors of the neurons in the layer and f is called

an activation function. In the case of the perceptron the activation function f(x) =

CHAPTER 1. RELATED WORK 21

Figure 1.8: A simple neural network with 6 inputs (the input layer), two layers with 3

neurons and a final layer with one neuron.

max(0, sgn(W ·x+b)) and is called the step function, but in practice different activation

functions are used. An important property of this activation function is that it is

non-linear, otherwise, the calculation of y would be a linear projection. Due to the

transitivity of linear projections, the multiple layers of network would also form a

linear projection and hence lose discriminative power. The three most widely used

activation functions are Rectified Linear Unit (ReLU), sigmoid and hyperbolic tangent

(Figure 1.9).

Figure 1.9: Rectified Linear Unit (ReLU), sigmoid and hyperbolic tangent activation

functions.

In order to make the defined neural network model usable, we need to perform

training. Training refers to the process of using a labelled set of data (inputs and ex-

pected outputs) to determine the weights W and biases b (parameters) for the neurons

in the network. The training happens by iterating over epochs. At the beginning the

weights and biases are usually initialized randomly. After that, during each epoch,

every input x from the training set is fed to the network, yielding an output ŷ. For

the network, we then define a cost function C(W, b) which will denote "how good" were

the predicted outputs from the training set. Various cost functions can be used, but

their main property is differentiability (a sum of mean squared errors between y and ŷ

could be used). The cost function is usually a sum of the so-called loss function values

over each pair of (y, ŷ. We can then define the goal of the training to minimize the loss

CHAPTER 1. RELATED WORK 22

function over the whole training set.

Using the gradient ∇C, we can calculate the partial derivatives ∂C
∂wi

for every weight

in the network and ∂C
∂bi

for every bias in the network. In layman’s terms, these partial

derivatives correspond to the slopes in the high-dimensional space at the point corre-

sponding to current parameters. Therefore at the end of each epoch, these slopes can

be used to adjust the weights and biases to "get closer" to a local minimum of C:

∀i : w′

i = wi − α
∂C

∂wi

∀i : b′

i = bi − α
∂C

∂bi

This method is called gradient descent and the parameter α determines "how fast

we approach the local minimum". Of course, the local minimum may not correspond

to a global minimum, which would be more plausible to find, therefore various ap-

proaches can be taken to update weights. If the weights are updated after processing

each sample, we call the process stochastic gradient descent. Various approaches to

descending the gradient and updating the weights can be taken as shown in [48]. The

different methods used for updating the weights are called optimization algorithms

and arguably the most popular one and the one we use is Adam[49]. The process of

adjusting weights in two dimensions is visualized in Figure 1.10.

Figure 1.10: The squared surface shows the values of the cost function C and the green

ball shows the current values of weights. The green arrow corresponds to the direction

in which the weights will be changed after applying the gradient based adjustments.

To summarize, a neural network consists of layers, which consist of neurons. Each

neuron has a set of weights (and a bias). To calculate the output of the neural network

a set of matrix multiplications and non-linear functions is applied onto the input. The

weights are initialized randomly, and during the training of the network a loss function

is used to iteratively adjust the weights "to produce better results next time".

CHAPTER 1. RELATED WORK 23

Neural networks are typically used to predict either a single continuous value (re-

gression) or to determine a target class (also called label) for the input (classification).

The output of a network performing classification one-hot encoded, meaning that a

single neuron on the output layer represents each of the classes. The neuron with the

highest value determines the result of classification. During classification the softmax

function can be used, which normalizes a vector of real valued numbers into a probabil-

ity distribution. That is, after applying the softmax function the values of the vector

add up to 1 and are from the interval (0, 1).

In practice, the neural network layers we defined above are called linear, fully-

connected or dense, because all the neurons in the layer receive all the inputs and pass

their outputs to all the neurons in the next layer. Over the course of years, a multitude

of various neural network architectures was proposed, comprising of several different

types of layers, activation functions, or other architectural features. The most common

and popular ones are described in the following subsections.

Building a network from layers, defining the layer interactions, activation functions

and optimization algorithms can be done with the aid of modern open-source deep

learning libraries. The training process, gradient calculation and updating the weights

can be computationally intensive with large datasets. To improve the speed of training,

the data may be split into batches (typically sized from 32 to 512) and calculations for

the samples in the batch are carried out in parallel on a GPU or TPU. Updating the

weights in the network is then done for the whole batch "at once". In our work, we use

the PyTorch[50] library to build the networks.

1.2.1 Convolutional networks

One of the key benefits of neural networks over CML methods is the ability to automati-

cally extract features from the input. To further aid this process Convolutional Neural

Networks (CNNs)[51] use a (typically rectangular) receptive field of a convolutional

unit, with a weight matrix (Figure 1.11).

Figure 1.11: Convolutional neural networks are usually used with images. A grayscale

input image of size 24 × 24 is fed through a convolution layer. The receptive field

(kernel) is depicted as a square over the input layer. A single weight matrix of the size

of the kernel is trained for each of the three channels in the next of the layer.

The rectangular receptive field is gradually attached to the input values of the layer,

CHAPTER 1. RELATED WORK 24

and for every attachment a new value is calculated by multiplying the input value by

a weight matrix and usually also applying a non-linear function. Conceptually, the

receptive field (also called kernel or filter) can have an arbitrary number of dimensions.

One dimensional kernels tend to be used on time series data and two dimensional kernels

are typical in the area of image processing (in this terminology a two dimensional kernel

actually has three input dimensions - width, height and depth typically refers to color

channels in images). Multiple kernels with different, separately trained weight matrices

(gradient is calculated for each of them) can be used to create more than one output

channel. Each of the kernels "convolves" values from rectangular areas of the input

(from all input channels) into a single output channel.

An example convolutional network used for HAR is illustrated in Figure 1.12. The

input from five sensors with six axes of temporal length 100 is represented as a single

channel image. In the first convolution layer, 18 filters of size 6 × 11 are applied. Fol-

lowing the convolution layers, a max pooling operation is applied. Pooling operations

are a way to downscale the layers while pertaining meaningful information. The pool-

ing functions work on a set of inputs (typically from a rectangular area of the input,

similar to convolutional layers) and produce only a single output value. The most used

pooling functions include computing the maximum or average of the rectangular area

of inputs. For example, if max pooling with kernel of size (3, 4) was used on a layer

of size (24, 24), the size of the result would be (8, 6). A set of convolution layers is

typically followed by an intermediate fully connected (dense) layer and a final dense

output layer completes the network. The final dense output is most desirable during

the task of classification, as it allows one-hot encoding of the output.

Input signal
5 sensors, 6 axes
100 readings

1@30x100

18@25x90

36@25x40

12@25x15 1x1500

1x10

Convolution + Max-Pool
(3 times)

Output
one-hot
encoding

Dense
layer

Figure 1.12: Convolutional neural network architecture.

CNNs were successfully applied to the task of HAR in previous work. In [52] an

architecture of three convolutional and max pooling layers followed by a fully connected

network was used, with results suggesting that their use has great potential in the area.

Convolutional layers were also used as part of the network architecture in [53], [54] and

CHAPTER 1. RELATED WORK 25

[8] reported their use in other work as well. When using a two dimensional convolution

with inputs from heterogenous sensors on one of the convolved axes, data from different

sensors will be fused together, which may not be always appropriate. Additional rows

of zeros used as padding can be inserted, effectively preventing a kernel overlap between

sensors (modalities)[8].

1.2.2 Recurrent networks

Neural network architectures which were discussed up until now (also called feedforward

networks) are limited by interpreting the whole input "as one", possibly not being able

to learn temporal dependencies. To break this assumption and allow more advanced

time series modelling, the recurrent neural networks (RNNs) can be used. RNNs add

additional recurrent connections to the neurons - the activation value of the neuron

from a previous time point is fed back to itself, along with its standard input (Figure

1.13).

In the domain of HAR the dimension along which the recurrence happens is time.

RNNs do not require a constant length input (when using other architectures, inputs

are typically zero-padded to conform to a constant length). Self-fed activation can be

viewed as a memory cell, which can hold data about previous observations, possibly

allowing the framework to learn temporal dynamics of the data.

Figure 1.13: A recurrent layer receives both a standard input and an output from itself

in the previous time point.

The above-mentioned simple recurrent memory cells successfully demonstrate the

concept of recurrence, but are rarely used in practice. Their weak point lies in modelling

long term dependencies. In theory, the memory cell could be used to pass information

through a longer temporal window and we could even manually construct such weights

that would achieve this effect. Unfortunately, using gradient descent in practice leads

to fundamental difficulties in learning these long-term dependencies[55].

The size of the calculated gradient during back-propagation of the loss is the rea-

son of these problems. For certain activation functions some values have very small

CHAPTER 1. RELATED WORK 26

gradients (values away from 0 in the case of tanh and sigmoid) or the gradient is equal

to 0 (negative values in the case of ReLU). This phenomenon leads to very slow or

no training and is called vanishing gradient. If an activation function with areas of

high gradient values is used, one risks encountering the opposite problem - exploding

gradient.

The most commonly used approach to prevent the vanishing gradient are Long Short

Term Memory networks (LSTMs). LSTMs are a specially designed kind of RNN, which

is more capable of learning long-term dependencies. The key to their success is that the

cell state (upper of the two inputs and outputs in Figure 1.14) is mutated only using

a linear chain of operations, which allows better gradient propagation during learning.

LSTMs have shown to be more effective in various tasks, such as speech recognition[56]

and machine translation[57] than plain recurrent networks.

Figure 1.14: Long short term memory cell (LSTM) inner structure. Green rectangles

represent layers, which have their trained weights and are followed by the corresponding

non-linear function. Circular shapes represent point wise operations. Each cell has two

inputs and two outputs which are initialized to zeros.

Training an LSTM requires arguably higher amount of parameters, leading to higher

computational costs. Each of the four rectangular layers in Figure 1.14 requires its own

set of weights, which is separately trained. The leftmost of the four trained layers is

also sometimes called the forget gate, as it simulates calculating information that we

might want to "forget" from the cell state in the following multiplication. The second

of the layers, which also applies a sigmoid activation function, is called the input gate.

Its function can be viewed as to decide which values are going to be updated in the cell

state. When multiplied with the output of the third cell, the resulting state update

is added to the cell state. Lastly, the output gate is a final sigmoid layer, which is

multiplied with the cell state put through hyperbolic tangent. The final output serves

as an output of the cell itself as well as an input for the next operation in the LSTM

CHAPTER 1. RELATED WORK 27

chain.

RNNs and LSTMs in particular were widely used, often in combination with other

techniques, such as convolutional layers in previous work. A single LSTM layer followed

by a softmax layer was used in [58] and has shown very promising results in online

gesture recognition.

Ensembles of LSTM networks were introduced in [59]. Epoch-wise bagging of the

outputs of LSTMs was used during training and the validation set was used to select

a subset of the trained LSTMs which performed the best. This subset formed an

ensemble evaluated on test data to form final results by fusing the prediction of the

ensemble members.

Bidirectional LSTM (BiLSTM) layers consist of two LSTM layers, with the first

working as a standard LSTM layer and the second being reversed in the time domain

bringing the possiblity to propagate information both in left-to-right and right-to-left

contexts. In [20] BiLSTM layer followed by average pooling is used with a specialized

loss function.

LSTMs and CNNs can be combined into Convolutional LSTM networks (ConvL-

STMs) as shown in [60]. ConvLSTMs seem to capture spatiotemporal correlations

better and were shown to consistently outperform pure LSTMs on the task of pre-

cipitation nowcasting (local, short period rainfall intensity prediction). ConvLSTMs

also use additional "peephole" connections[61] which add cell state as an input to the

three sigmoid (forget, input, output) gates. Most importantly, as shown in Figure

1.15, convolutions are used in the place of basic learned weight matrix multiplication

on the input of the gates. ConvLSTMs were successfully used for HAR in [62], using

an architecture consisting of five layers - ConvLSTM, MaxPool, ConvLSTM, LSTM

and a final fully connected layer operating on the output of the last cell of the previous

layer.

DeepConvLSTM[53] consists of four convolutional layers, followed by two LSTM

layers and a final softmax normalization. It was shown that the two LSTM layers lead

to better performing network than two fully connected layers in their place. Both of

these networks also outperformed other CML methods evaluated on multiple datasets.

Similarly, [54] used a convolutional network, followed by a fully connected layer, whose

outputs were then fed to an LSTM layer and a final fully connected layer and softmax

normalization.

1.2.3 Attention mechanism and transformers

Even with the use of LSTM, with sequences that are long enough, effective training

may be problematic. Traditionally, the output of the last LSTM cell is only passed

on to the next layer in the network. Therefore information from the beginning of a

CHAPTER 1. RELATED WORK 28

Figure 1.15: ConvLSTM cell inner structure. Orange arrows represent the newly in-

troduced "peephole" connections, which add the cell state as an additional input to the

gates. The two convolution operations allow further information propagation.

sequence needs to pass through a lot of connections to have an impact.

In [63], the authors proposed using a mechanism called attention, successfully used

in the field of neural machine translation. In the context of LSTMs, attention may be

used to calculate "attention scores" for the outputs of the LSTM cells. These attention

scores (after softmax normalization) may serve as weights for the outputs of the cells.

There are several methods on how to calculate the scores and how to use them

to combine the cell outputs. In the simplest case, the scores can be learned using a

learned weight matrix and combination is done using weighted mean.

More recently, [64] introduced a novel architecture - the Transformer. Transformers

are based solely on the attention mechanism, possibly superseding RNNs, by getting

rid of the need for sequential calculations. Setting the new state of the art standard

in machine translation made the Transformer an appealing architecture for other areas

as well.

The transformer was designed for sequence to sequence (seq2seq) tasks, such as

machine translation. It uses a special type of attention, called self-attention. In a

seq2seq task, self-attention can be seen as a way to weigh which parts of the input are

important for which parts of the output. Previously, in RNNs, this information was

stored in the hidden state and corresponding weights. The Transformer is composed

of an encoder and decoder portions, consisting of several attention and standard feed

forward layers. The self-attention values are computer in the self-attention layers,

which are trained using the resulting gradient.

Similar to multiple filters in convolutional networks, attention layers can have mul-

tiple heads, which should in theory allow the different heads to focus on different

tasks. Similar to LSTMs, the final output of the attention layers is followed by a fully

CHAPTER 1. RELATED WORK 29

connected layer and softmax normalization.

Non-recurrent neural network architecture based on self-attention for HAR was

proposed in [65] and the results show superior performance over previously published

models in the field. Although attention mechanisms and transformers were not thor-

oughly investigated in HAR, their simplicity and performance makes them a very viable

option. One of the strengths of the Transformer over recurrent networks is the lack of

recurrence, which can lead to massive increase in the speed of training and inference.

1.3 Sensor selection and placement

When designing an infrastructure for HAR or HGR, one of the important model ag-

nostic choices we need to make is the type and placement of sensors to use. In [9] a

comprehensive overview of the available sensor palette is presented (Table 1.1).

Inertial sensors

Accelerometer

Gyroscope

Magnetometer

Physical health sensors

Electrocardiogram (ECG)

Skin temperature

Heart rate (HR)

Electroencephalograph (EEG)

Electromyogram (EMG)

Environmental sensors

Temperature

Humidity

Light

Barometer

Power sensors
Flex

Stretch

Other sensors

Camera

Microphone

GPS and position

Table 1.1: Various sensor types used in HAR, adapted from [9].

The most diverse set of sensors was used during the acquisition of the OPPOR-

TUNITY dataset[66][67] - inertial measurement units consisting of accelerometer, gy-

roscopes and magnetometers, 3D localization, rate of turn and various other switch

sensors were used. The previously conducted surveys suggest that the use of IMUs and

in particular accelerometers is receiving the largest popularity among HAR researchers,

which is further supported by the fact that open datasets contain mostly accelerometer

CHAPTER 1. RELATED WORK 30

data. This may be caused by the low entry cost and high availability of this kind of

sensors and their ubiquitous presence in smartphones.

In [68], a low cost wearable glove was created using bend sensors, serving as one

of the alternatives for IMUs. Intuitively, IMUs make an easier use case for HAR,

while bend sensors may be more appropriate for HGR. Both of these sensor types

were combined in GestGlove [69], where a specialized glove was constructed. Google’s

project Soli, utilizing a high frequency solid short range radar is another type of a

very specialized sensor that was attempted to be used for HAR [54]. Nevertheless,

for our case of attempting to build a low cost, lightweight reproducible prototype and

acquiring a competitive dataset we chose to use IMUs.

Advances in compactness of the mentioned sensors enable the pervasive usage of

several sensors. Data from several sensors can then be fused in various ways as ex-

amined in [42][70]. The placement of multiple sensors could in theory lead to a linear

information gain with each added sensor. In contrast, an intuitive approach suggests

that given the real world precision of measurements, multiple sensors placed next to

each other will not provide sufficient information gain and will rather make the proto-

type unnecessarily cluttered.

Multiple locations were used for mounting the sensors in HAR and their optimal

placement is analyzed in [10] and [71]. Arms, hips, thighs, feet, waist, back, chest,

trunk, ankles, wrists or ears are some of the possible sensor locations. The published

results suggest that for a single sensor setup, placement on the hip seems to be most

effective in recognizing activities of daily life (walking, running, cycling, etc.). In-

creasing the number of sensors yields better results in [10], up to three sensors, with

only marginal differences with more than two sensors, but for classifying finer grain

activities, the differences may be of greater significance.

A group of 16 different activities, from the Otago Exercise Programme such as

walking, backward walking, tandem walking, knee extension, leg stance and several

others were classified in [52]. A set of five sensors on both feet, shins and in the lumbar

area was used. Classification power of various subsets of sensor data was examined

and in contrast to previous results, individual usage of the sensor in lumbar area led

to lowest single sensor accuracy. The usage of multiple sensors has shown increased

performance as well. This leads to conclusion that the optimal placement for IMUs

can highly depend on the type of classified activities.

To the best of our knowledge, our study is the first to investigate the potential

advantage of using multiple sensors placed over the hand (in the case of HGR) over

using only one attached or hand held sensor.

Chapter 2

Novel dataset acquisition

To demonstrate the discriminative potential and gesture space size in a multi-modal

environment, we built a custom hardware prototype called WaveGlove. We further

designed a new gesture vocabulary specifically tailored for this multi-sensor setup. The

dataset we recorded is competitive in both quality and size with other available state-

of-the-art datasets.

For further comparability, we recorded a secondary smaller dataset using the same

gesture vocabulary as the uWave dataset[15], which is used in [13] as well as [27],

and an arguably similar set of gestures is used in [72], [73], [20], [38] and [19]. The

main difference between our and the previously published dataset is the usage of five

sensors instead of a single one, which creates an opportunity for an ablation study.

In general, ablation study refers to examining the effects of removing certain parts of

a model or an algorithm to see how it affects the performance. The goal of such ablation

study is to identify what are the key parts needed in order to achieve the reported results

and also to strip down the unnecessary model complexity - from two models with the

same performance, the simpler is the preferable. In our case, we will refer to an ablation

study in the context of our multi-sensor WaveGlove and the datasets acquired using

it. We would like to examine the added value of multiple sensors (possibly each of

them) and come to a conclusion to what point does adding more sensors improve the

model’s discriminative potential. The ablation study is performed in Section 4.4.

Furthermore, we believe WaveGlove to be the first publicly available dataset of its

kind. To the best of our knowledge, no prior work presents an Inertial Measurement

Unit(IMU) based hand gesture dataset of comparable size, which uses inputs from

multiple sensors. Previous surveys and overviews support this claim as well[4].

In the following sections we describe our hardware prototype and present our gesture

vocabulary. Next, we provide an overview of our comprehensive recording framework,

and describe the details of the experiment setup.

31

CHAPTER 2. NOVEL DATASET ACQUISITION 32

2.1 WaveGlove prototype

The WaveGlove prototype uses five inertial measurement units(IMUs) attached to

a left-hand glove – one on each finger – to record accelerometer and gyroscope data at

the rate of 40 Hz. An ESP8266 microcontroller is used to read the data from the IMUs

through an I2C interface. The ESP8266 is connected to a laptop using serial interface

over USB. All of the processing happens on the laptop, the role of the microcontroller

is solely to request data from the IMUs (which are behind an I2C multiplexer) and

pass it on. High level overview of the prototype structure is shown in Figure 2.1.

Figure 2.1: High level prototype structure.

In the sections nelow we briefly describe the motivation behind architectural choices

by comparing our prototype to other alternatives. The following subsections provide

detailed characteristics of the used hardware, wiring and firmware.

2.1.1 Glove-like wearables

Building a glove designed for for human activity recognition was already attempted in

previous work [68][69][2]. Unfortunately the used components were either expensive,

unavailable on the market, completely undocumented or not IMU based.

A few companies already provide commercially available smart wearable gloves for

gesture recognition such as [74] and [75], or supportive assistance for the physically

impaired [76]. Our research has led us that there is no affordable publicly available

wearable solution for hand gesture recognition. This situation motivated one of our

goals: to build a prototype, whose price is as low as possible, while still serving as a

tool to capture a comparable dataset.

The use of commonly available components enables easier reproduction and by

sticking to a low build price we try to simulate the scenario of a future mass production

CHAPTER 2. NOVEL DATASET ACQUISITION 33

of a similar device. We understand that in the case of a mass production, custom

printed circuit boards would likely be used, along with machine soldered and glued

connections. However, the inertial measurement unit we used is commonly found in

a wide range of applications, so we assumed it to be a good fit for our case as well.

Custom PCBs would likely also reduce the spatial requirements and the overall cost of

the device.

In the WaveGlove prototype, all of the communication is wired. But a transition

to a wireless model is not a huge technical challenge with today’s technology, as we

see from the similar commercially available products and case studies. Both energy

usage and latency requirements are acceptable, given the batteries and wireless modules

available on the market.

2.1.2 Hardware properties

The hardware structure of our prototype is described in Figure A.1. It consists of three

main sections:

1. the components which are placed directly on the glove

2. the components which provide the sensors with power

3. the micro-controller used for reading the data and passing it to a recording device

We decided to use a separate power source for the sensors, because during the first

tests we were not able to pull enough current from the ESP8266 to power all of them.

This is in line with the specifications, as the maximum current from a GPIO pin on the

ESP8266 is 12mA[77], while the current draw of an MPU6050 is more than 3.5mA[78]

in our mode of use. Using the low power mode of the MPU6050 was not tested.

To test the possibility of a wireless usage, a TP4056 battery charger[79] with a

micro USB connector was used along with a 3.7V 500mAh LiPo battery. The battery

was able to power the whole prototype (with the ESP8266 rewired to be powered by it)

for more than an hour. In further usage however, it was not used, so as to provide more

stable operating conditions. Instead, the sensors were powered through the TP4056’s

USB input directly.

The sensors and the multiplexer can operate at 3.3V[78][80] and the XL6009 con-

verter has minimal input operating voltage of 5V[81]. Therefore a combination of a

step-up and a step-down component is used to achieve a stable voltage.

The MPU6050 sensors support both SPI and I2C protocols for communication.

Based on our experiments however, the SPI (which has lower communication overhead)

was not working properly on boards from three different sellers. Due to the sensors

having only two configurable I2C addresses (based on the input on pin AD0), we used

the TCA9548A I2C multiplexer.

CHAPTER 2. NOVEL DATASET ACQUISITION 34

Individual components were chosen based on availability and price. For a compo-

nent overview see Table 2.1.

Component usage Component name Datasheet Price

Microcontroller ESP8266 [77] 2.19 e

Charger TP4056 [79] 0.27 e

3.7V, 500mAh Battery JH752540P [82] 1.20 e

Switch button - - 0.07 e

Step up module SS34 [83] 0.82 e

Step down module XL6009 [81] 0.86 e

I2C Multiplexer TCA9548A [80] 0.69 e

IMU MPU6050 [78] 5 X 0.53 e

Glove Men’s silk glove - 4.69 e

Total cost: 13.44 e

Table 2.1: Overview of the used components. Price estimation is valid as of May 2020

and reflects prices for low quantity, personal use offers from major online retailers.

The final prototype has about 70 cm long cable between the glove with the sensors

and the rest of the system. This length was found to be sufficient in order to perform

gestures naturally, without limitations. The power supply components along with the

microcontroller were glued onto the walls of an enclosed carton box for protection.

The carton box has therefore three connections: to the glove, to a processing device (a

laptop) and to a USB power adapter. The sensors were mounted on the upper part of

middle phalanges of the four fingers and on the distal phalanx of the thumb. Both the

IMUs and the multiplexer are glued to a hook-and-loop fastener of which the other part

is glued using a textile glue to the glove itself. This allows detaching the sensors for

easier manipulation, cleaning and possibly replacement of the glove. Worn prototype is

shown in Figure 2.2, its casing in Figure A.2 and animation of performing a movement

in Figure 2.3.

2.1.3 Firmware

We tested three different microcontrollers in the setup, and based on the requirements

and tests described below we finally used the ESP8266, as it was the most stable and

performant variant. The PlatformIO build system[84] was used to create the firmware

for the ESP8266.

After startup, the microcontroller searches it’s ports for a valid I2C connection to

the multiplexer. Consequently, the range for the sensors is set and a short calibration is

done for each of the five sensors For communication with the recording device (typically

CHAPTER 2. NOVEL DATASET ACQUISITION 35

Figure 2.2: Five sensors are attached to the middle phalanges on the fingers and the

multiplexer is located in the middle of the back of the hand. All connections are covered

with glue for protection and sturdiness.

Figure 2.3: Cables leading from the multiplexer to sensors on the fingers are long

enough to be non-obtrusive. Performing movements while wearing the glove does not

present any major difficulties.

CHAPTER 2. NOVEL DATASET ACQUISITION 36

a laptop) serial communication via the USB connection is used.

By examining various baud rates from 9600 to 1843200 (10 bauds are needed to

transfer 1 byte of data on our platform), we found 460800 to be the highest stable baud

rate that the microcontroller was able to maintain. With higher baud rates, the error

rate was unreasonably high and the ESP8266 self-restarted after a few seconds (up to

a minute).

Accelerometer range of ±4g and gyroscope range of ±1000◦/s was used. Based on

a few experiments, these were the highest precision settings, for which the values did

not get clipped when performing the gestures. Inspired by other MPU6050 projects,

we calibrate the sensors by taking 100 subsequent readings from each of the sensors

and averaging them. This value is then used as an offset for each of the subsequent

readings.

When all of the five sensors are calibrated, the main sensor reading loop takes

place. In each cycle each of the five sensors reads six values, each consisting of two

bytes, interpreted as a signed integer. We use a specific combination of four bytes as a

marker for end of the cycle, leading to a total cycle length of 12 ∗ 5 + 4 = 64 bytes.

In theory, the combination of bytes used as end marker could also appear in the

readings themselves, leading to invalid segmentation of the streamed data. Experi-

ments have shown that this is very unlikely and in combination with a proper software

implementation can so that the error rate is kept at minimum.

Benchmarks of the reading cycle have shown it to take between 7 ms and 12 ms,

which could lead to frequency around 80 Hz. However, consequent tests have shown

that not limiting the calculation with delays again leads to instability in the microcon-

troller behaviour. We tested reading frequency of multiples of 10 and found 40 Hz to be

the fastest achievable stable reading frequency in our setup. Frequency stabilization is

implemented by a short sleep. Each reading cycle of length t ms is followed by a sleep

25 − t ms long.

Other studies contain readings from sensors ranging from 30 Hz up to 1000 Hz or

even more in the case of non-IMU sensors[66]. Therefore we believe that the chosen

frequency of 40 Hz can lead to competitive dataset quality. Increasing the frequency

could likely be achieved in various ways:

• Use a different microcontroller, which supports higher clock speed and is stable

at higher baud rate.

• Switch the protocol from I2C to lower overhead SPI, or use multiple I2C addresses

instead of a multiplexer.

• Explore the possibility of reading the data from sensors in parallel.

CHAPTER 2. NOVEL DATASET ACQUISITION 37

As our goal is to simulate a realistic scenario using low cost and widely available

components and the achieved rate is sufficient for state of the art, we decided not

to pursue increasing the frequency further. Table 2.2 summarizes the configuration

parameters used.

Parameter Value

Reading frequency 40 Hz

Frequency variations ±2 Hz

Acceleration range ±4g

Angular velocity range ±1000◦/s

Single reading size 2 B

Read cycle size 2 B

Serial baud rate 460800

Table 2.2: Hardware configuration

2.2 Gesture vocabulary

In the area of human activity recognition (HAR), previous work focuses mostly on full

body activity recognition [7] (e.g. walking, running, sitting, jumping), while the hand

gesture recognition (HGR) sub-area of HAR is more often approached using optical

input (such as cameras). Recent field reviews[4] suggest that hand gesture recognition

is mostly explored using only a single input sensor as in [15] and only a few sources

examine the potential of a multi sensor hand gesture recognition[69][68][2].

Publicly available datasets are also mostly focused on full body HAR rather than

HGR. To the best of our knowledge, there is no significantly large, publicly available,

well documented, multi sensor HGR dataset. The closest work that shares our goal is

[2] which has shown very promising results in continuous recognition of the gestures in

the french sign language alphabet.

In order for our work to create a novel dataset which embraces the multi sensor

potential, while still being comparable to previous work, we decided to record two

datasets. The first one is aimed at comparability with previous work and providing

the opportunity of an ablation study and the second dataset tries to explore all the

possibilities of intuitive but composite movements of the five fingers.

2.2.1 Dataset WaveGlove-single

For the first (smaller) dataset, we used a vocabulary of eight gestures, which is widely

used in previous work[15][13] and [27]. It is comprised of single-point movements,

CHAPTER 2. NOVEL DATASET ACQUISITION 38

because they were originally designed for a single sensor device. We record over a

thousand of samples comprising of these eight gestures and a null class. The null

class contains samples recorded during breaks between performing individual gestures.

Due to the nature of the movements, we call these gestures single gestures and the

corresponding recorded dataset WaveGlove-single. Each of these eight gestures is

described only using a single arrow for the movement direction as shown in Figure 2.4.

Counterclockwise

Clockwise

DownUp

LeftRight

Square

Diagonal
Diagonal

Figure 2.4: Gestures in the WaveGlove-single dataset. All of them represent only

simple, single-point movements.

2.2.2 Dataset WaveGlove-multi

One of our main contributions is the second (larger) dataset, consisting of ten different

gestures and a null class. Due to its size being more than ten thousand instances, we

believe that it is the largest publicly available dataset focusing on hand gestures. Note

that there exist datasets focusing on HAR instead of HGR which easily contain much

more instances, due to the segmentability of long term recordings. We call gestures

from this vocabulary the multi gestures and the dataset WaveGlove-multi.

All of the ten gestures are described using a GIF animation with a virtual hand

performing the motion. This animation is seen by the test subject during the testing

session (more information on the experiment setup is provided in Subsection 2.4). The

original animation files are distributed with the dataset and in Figures A.3 and A.4 we

show the ten gestures using static images (the arrows are used for clarification and are

not present during experiments).

Hand swipe left and Hand swipe right gestures represent simple, whole hand move-

ments, where each finger exhibits very similar movements. Pinch closer and Pinch

away are named after the typical zooming actions on a touch screen - pulling the fin-

gers together zooms out (away) and spreading them zooms in (closer). Thumb double

tap is a quick and simple thumb-only gesture. The bumps of the thumb into the other

four fingers do not present large positional changes, but introduce temporary acceler-

ation spikes for all fingers. Grab and Ungrab involve flexing all of the five fingers and

CHAPTER 2. NOVEL DATASET ACQUISITION 39

Page flip introduces another whole hand movements, this time with a sharp change of

orientation. Peace and Metal gestures focus on utilizing only a specific subset of all

fingers in an asymmetrical situation.

Six of the ten gestures can be grouped into three pairs of opposite actions (the

swipes, pinches and grabs), making it a classification requirement to distinguish be-

tween complementary movements. The complete set of gestures contains both whole

hand movements, finger-agnostic movements as well as movements with different be-

haviours for each of the fingers. The chosen gestures could also find their use in aug-

mented reality device control - grabs and ungrabs with hand movements could move

around some objects, pinches could be used for zooming and swipes for some switch

requests. More information on both datasets can be found in Chapter 3.

2.3 Recording framework

To facilitate the recording of the dataset, we created a GUI application using the

PyQt[85] libraries. The created framework provides the following functionality:

• Connect to a WaveGlove prototype (or a device adhering to the same protocol)

on a chosen USB port through Serial communication. Automatic reconnection

further enhances the ease of use.

• Display connection status and periodic statistics about the readings.

• Real time monitoring of the current sensor readings.

• Choose and start a recording session. The sessions are defined using specifically

structured YAML files and consist of individual slides. More details on what a

session looks like can be found in section 2.4.

• Browse previously recorded sessions, preview stored metadata, information about

recorded gestures and plot the recorded data.

Additionally, we implemented features which are not necessary for the final dataset

acquisition, but are useful for testing purposes. These include recording a single gesture

instance, plotting and management of previously recorded gestures, and creation of a

virtual serial port with simulated data for debugging purposes.

Rich functionality, high configurability and framework portability are factors which

we believe allow the created framework to be used with similar devices in further work.

Figure 2.5 shows the created application.

CHAPTER 2. NOVEL DATASET ACQUISITION 40

Figure 2.5: Recording application - After startup a serial port is selected and a

connection is created. The interface is separated into tabs. On the left we see the

connection tab showing us the state of the connection and all the relevant status logs.

Session recording tab is on the right in the process of recording the Thumb double tap

gesture.

2.4 Experiment setup

In this section we first describe the properties of the recording sessions we designed.

Then we consider various factors that could influence the quality of the created dataset

and discuss them further.

During a recording session a test subject performs gestures using the equipped

prototype. For each gesture class, three consecutively performed instances are recorded.

The order of the classes is randomly shuffled for each session and between each of the

classes a mandatory 2.25 s pause is inserted, which serves as a separator. Together,

these two factors make the gesture performance less dependent on the context (ges-

tures prior to an after it) and allow approaching each gesture individually instead of

performing a pre-defined routine.

The test subject is not given any specific instructions on what to do during the

pause, therefore we record the sensor data during this time and use it for the null class.

This way we effectively make the null class some unspecified movement, and very likely

not a gesture. During the recording, the pause time was usually used by the subjects

to rest their hand or make a random stretch.

When recording the three consecutive instances for each class, the test subject an-

notates the beginning and end of each instance manually, directly during the recording.

For each class, the subject is presented with a "slide" containing the following three

components:

1. animation or an image and possibly the name of the class.

2. live signal data from the sensors.

3. overview of the already recorded instances.

CHAPTER 2. NOVEL DATASET ACQUISITION 41

The live signal data, and overview of the recorded instances serve only for a basic

sanity check for the subject (e.g. to prevent recording when the sensor connection is

failing, or to prevent mistakenly recording zero or more than one gesture).

The subject is instructed to first study the gesture he or she is about to perform.

and start the process at their own convenience. Recording of a gesture instance starts

by pressing the space key and ends with its release. The pause between the three

instances in a single class is determined by the pace of the subject, no limit is enforced.

The minimal instructions the subject is given do not specifically set an expectation for

gesture orientation or speed of performance. Only in the WaveGlove-multi dataset

a small progressbar is shown under the animation to allow better understanding of the

movement (experiments have shown that subjects had otherwise troubles discriminat-

ing between consecutive animation cycles).

It is not unlikely for the subject to make a mistake - forget to press or release the

space key in time, perform the wrong gesture, be interrupted by an external factor,

etc. In this case, the mouse cursor can be used to re-select the malformed instance and

it can be recorded again. This helps to minimize problematic samples, which is vital

for the dataset. Slides from a tutorial session can be seen in in Figure A.5 and other

examples from recording a session are in Figure A.6.

2.4.1 Qualitative dataset factors

There are several factors affecting the quality of a dataset in similar experiments [86]

and in our experiment we considered several of them. An outline of considered factors

is presented in Table 2.3.

We acknowledge that some qualitative measures failed to be taken and their im-

plementation would improve the dataset usability. The number of test subjects is

very limited (two people - one male, one female), which was an unfortunate conse-

quence of the hygienic requirements of the worldwide pandemic situation in spring

2020. However, the SKODA Mini Checkpoint dataset, which is widely used also con-

tains recordings of a single test subject[87][88], and our class-subject balance is far

superior to that of the PAMAP2 Dataset[89]. This leads us to believe this limitation

is not a fundamental issue. The recording frequency of our dataset is 40 Hz, which

lies in the standard range of public datasets. With the proper hardware and expertise

this could be increased two or three-fold without major change in characteristics of the

system and with only minor impact on the overall cost of the prototype. The effect on

performance of acquiring data with higher frequency remains questionable.

CHAPTER 2. NOVEL DATASET ACQUISITION 42

Category Factor Resolution

Hardware Stable sensor frequency Hardware limitations were explored and

stabilization occured up to 2Hz precision.

Reproducibility Prototype was built from generally avail-

able components and extensively docu-

mented.

Quantitative Size Instance counts of 1000 for WaveGlove-

single and 10000 for WaveGlove-multi

are competitive with state of the art.

Longer time frame Session were recorded over the course of 16

days which is considered appropriate.

Null class Almost one fourth of the recorded data

represents the null class, leading to vitally

imbalanced dataset.

Design Relevant vocabulary WaveGlove-multi vocabulary was tai-

lored to explore the limits of five sensors

placed on fingers.

Ease of use Custom tutorial session was designed along

with a user friendly recording framework.

Mistake removal Subjects are allowed to re-record an in-

stance in case they make a mistake (e.g.

double press).

Reproducibility Subjects received uniform instructions and

the framework along with all relevant ma-

terials is published, allowing reproduction

experiments.

Qualitative Order of performance In each session target classes are shuffled,

effectively preventing mundane execution

of a learned pattern.

Independence of instances Forced break is inserted between recording

each of the classes, which is long enough

for the subject to relax temporarily.

Realistic null class Recording continues during the forced

break and is used for the null class. This

information is not explicitly disclosed to

the subjects, nor they have specific instruc-

tions on what to do during the break.

Table 2.3: An overview of various qualitative dataset factors considered.

Chapter 3

Datasets for experiments

For evaluation of the HAR and HGR methods we decided to use our acquired datasets

as well as several publicly available ones. This way our methods can be validated on an

extensive amount of data from various sources, and the relevance of our newly created

dataset will be asssessed through direct comparison.

In addition to the newly acquired WaveGlove datasets we preprocessed five widely

used datasets. As we note in Section 3.1, the method used for generating samples from

the raw signal and other preprocessing factors highly impact the classification results.

Therefore we also include a set of six datasets preprocessed in [8] using two of the four

methods they suggest. An overview of the considered datasets used is in Table 3.1.

Datasets with implicit

sample generation

or non-overlapping samples

Datasets with samples

as generated in [8]

WaveGlove-single

WaveGlove-multi USC-HAD

uWave UTD-MHAD1

OPPORTUNITY UTD-MHAD2

PAMAP2 WHARF

SKODA WISDM

MHEALTH MHEALTH

Table 3.1: Overview of the dataset sampling. The MHEALTH dataset is used both

using non-overlapping sampling as well as using two other sampling methods.

Comparison of the WaveGlove-single and the uWave datasets is of particular

interest, because their gesture vocabulary is the same. However our WaveGlove-

single uses five times the amount of sensors and ten times the amount of channels.

The impact of the significant difference in the number of channels is investigated in an

ablation study in Section 4.4.

43

CHAPTER 3. DATASETS FOR EXPERIMENTS 44

The WaveGlove, uWave and UTD-MHAD1 are segmented HGR datasets, while

the other investigated datasets are continuously recorded HAR datasets, where the

duration of each of the actions is higher.

As part of our work, we publish all of the datasets in a uniform, preprocessed form

that can be used for further research (all required permissions were requested and

citations included). Datasets are stored in the HDF5[90] file format, which is highly

optimized for heterogenous data, I/O performance, allows easy sharing and has cross

platform support. Metadata is also saved with the data itself, which further streamlines

processing pipelines. The H5Py library[91] was used for data-related operations.

In the following sections we discuss the methods used for data preprocessing and

describe the setup of experiments for both types of included datasets and present

summary statistics.

3.1 Preprocessing datasets

The available HAR and HGR datasets differ most fundamentally in the way they are

recorded. In HAR, the goal tends to be the classification of a long-term state lasting

from several seconds to minutes and it usually builds on a full body posture: walking,

sitting, lying or computer work. In HGR, the goal is to classify a short-term gesture,

local to the hand (or hands) which typically lasts up to two or three seconds. HAR

could be used for all-day tracking of activities, while HGR focuses on short actions

that can serve as triggers for the environment.

Due to the fact that HGR tries to classify individual occurrences of short gesture

and HAR is rather focused on a state-like classification, the recorded datasets differ

slightly based on their target use case. Datasets from HGR are usually presegmented:

during or after the recording, the individual gesture occurrences are separated and are

relatively short. The resulting data therefore consists of a large amount of shorter

instances. Datasets from HAR usually consist of fewer longer instances from several

minutes long recordings. Sub-sequences of these long continuous recordings are then

labeled accordingly. The character of the samples between these labelled sub-sequences

depends on the experiment setup. It can either be used as a null class, if the experiment

was designed to be a single, longer run, where the subject really "does nothing" in

between specific activities, or they could be discarded if the time between specific

activities was used for calibration, sensor adjustments, or just not tracked (e.g. the

subject had the sensors equipped during a transition between the places required to

perform the activities).

The HGR datasets usually come split into separate gestures, but the HAR datasets

need to be split into smaller samples which will be used for classification. The used

CHAPTER 3. DATASETS FOR EXPERIMENTS 45

sample generation and train-test split process can have significant impact on the final

results[8]. In [8] four approaches are described - Semi-Non-Overlapping-Window, Full-

Non-Overlapping-Window, Leave-One-Subject-Out and Leave-One-Trial-Out as a new

method. In all four approaches the data is segmented into same-length temporal win-

dows, which receive either the last label from the sequence, or the label that appeared

most often during the window.

Semi-Non-Overlapping-Window creates a sequence of windows, where two consecu-

tive windows overlap by 50% - this approach is used most commonly in previous work.

A notable drawback of this process which can lead to skewed results is that improper

validation metric can cause high bias. If the windows i and i + 1 appear in different

folds of cross validation (or other protocol), then the 50% overlap of the windows causes

the overlap to be present in both training and testing sets at the same time, biasing

the results. This flaw was not considered in previous work, therefore the reported re-

sults do not reflect real performance[8]. Other work failed to mention the segmentation

technique completely, effectively preventing any attempts at reproduction.

Full-Non-Overlapping-Window refers to extracting consecutive windows without an

overlap. Even though this method does not experience the bias described previously, it

has a slight disadvantage in generating fewer samples. In [8] the Leave-One-Trial-Out

method was introduced to prevent both of these drawbacks and Leave-One-Subject-Out

is the approach typically used in previous work.

As the dataset sizes are sufficient for our experiments in the Full-Non-Overlapping-

Window, we do not search for a way to increase the number of samples. We would,

however, like to improve the length distribution of the generated samples. The ap-

plication of the aforementioned methods leads to constant length sampling and slight

divergence from a real-world scenario. Therefore we propose the Non-overlapping semi-

uniform length windowing approach and use it on the relevant datasets.

3.1.1 Non-overlapping semi-uniform length windowing

In order to achieve slight differences in the window lengths and utilize the majority of

the data, we propose the following method. A single global parameter is chosen for

each dataset – the minimal segment length lmin. We call each continuous sequence

labelled with a single class a run and its length lrun. For each run, the number of

minimal segments csegment that can fit into it is calculated. If the run is shorter than

a minimal segment, then the whole run is used as a single sample in the output set.

Otherwise, we calculate the largest possible length of which csegment segments can fit

into the run: lfinal = lrun ÷ csegment. At the end, csegment samples, each of length lfinal

are added to the output set. Note that the remaining lrun − csegment · lfinal readings are

ignored. The amount that gets ignored this way is negligible. A diagram visualizing

CHAPTER 3. DATASETS FOR EXPERIMENTS 46

the process can be seen in in Figure 3.1.

Figure 3.1: Non-overlapping semi-uniform length windowing, applied to two runs. The

final segments are added as samples to the output set.

As the output, we create a set of samples with the following properties. Runs

shorter that the lmin parameter are not affected and included as separate samples.

Other runs are split into smaller samples and their length is identical in a single run,

but may differ between runs. The upper bound on lfinal is 2lmin − 1 in the rare case

when the length of the run is 2lmin − 1 (if the run has length of at least 2lmin, it is split

into more than one sample). This windowing technique is used in the preprocessing of

various datasets as noted below.

3.2 Dataset overview

We chose the uWave dataset as a dataset with equivalent gesture vocabulary and one

of the few datasets that focus on HGR. We also acquired the dataset from [2] but due

to the different preprocessing approach, ultimately it was not used (only the filtered

pitch and roll calculated values for each of the five sensors were available).

Based on existing field surveys [86][6] [4], we chose the OPPORTUNITY, PAMAP2,

Skoda and MHEALTH datasets as one of the most prominent examples of benchmark

datasets in the field of HAR.

3.2.1 WaveGlove-single and WaveGlove-multi datasets

Both WaveGlove datasets were acquired as described in 2. A custom glove was cre-

ated and a single IMU (with accelerometer and gyroscope) was mounted on the middle

phalanx of each finger (distal phalanx of thumb). A vocabulary of eight (WaveGlove-

single) and ten (WaveGlove-multi) gestures was chosen and null class samples are

CHAPTER 3. DATASETS FOR EXPERIMENTS 47

included. Further information about the experiment setup is in 2.4 and the gesture

vocabulary in 2.2.

3.2.2 uWave dataset

Containing over 4000 samples, the uWave dataset[15] was acquired for low training

sample personalized gesture recognition. The eight gestures were identified by a Nokia

researchers to be the ones preferred for mobile interaction. Samples were recorded on a

Wii remote controller, which has a built-in three-axis ADXL330 accelerometer[92] with

a range of ±3g and operating frequency of 100 Hz. Eight right handed participants (7

male, 1 female) in their 20s or early 30s participated in data collection.

Gestures were collected during seven days within a period of about three weeks.

On each day, the participant repeats each of the gestures in the vocabulary ten times.

The dataset and the associated work further highlight that inter-user and inter-day

variations in gesture pose a significant challenge for recognition and not accounting

for this may lead to overly optimistic results. Gesture vocabulary has been previously

shown in 2.4.

3.2.3 OPPORTUNITY dataset

Probably the most prominently used dataset in HAR is the OPPORTUNITY dataset

[66][67]. The original dataset contains readings from motion sensors recorded while the

subject executed typical daily activities in a room simulating a studio flat. A large

variety of sensors has been used in the experiment - 7 IMUs, 12 three-axis accelerom-

eters, 4 3D localization sensors, 12 sensors attached to objects measuring acceleration

and rate of turn, 13 ambient switch sensors and 8 three-axis accelerometers attached

to appliances and furniture.

A distinguishing feature of this dataset are its multi-level annotations. Four sep-

arate annotation tracks are provided: four modes of locomotion (sit, stand, lie walk),

rich set of low-level actions relating actions with objects, 17 mid-level gesture classes

(open/close door, drink, . . .) and 5 high-level activity classes. Four people took part

in the creation of this dataset, and six runs per each of them were recorded. Five of

the runs are naturally executed daily activities and the sixth run is a drill run, where

a scripted sequence of activities is performed. The natural runs build a set of tem-

porarily unfolding situation during a typical kitchen routine: relaxing, preparing and

drinking coffee or preparing and eating a sandwich. The data contains "NaN" values

due to connection problems with wireless sensors. The overall sample rate was 30 Hz,

but the data or the annotations may contain slight jitter of the order of 100 ms due to

the complexity of the system.

CHAPTER 3. DATASETS FOR EXPERIMENTS 48

A subset of this dataset was used for the OPPORTUNITY Activity Recognition

Challenge held in 2011. Prior work follows the recommendation of the authors to only

use the data from on-body sensors for HAR and we do so in our work as well. This

includes the seven IMUs (five of which are placed over the upper half of the body and

two of them are located in the shoes), twelve three-axis accelerometers and the four

localization sensors.

For target classes, we use the middle level gesture annotation track, again following

previous work and recommendation of the authors. Unlabeled segments of the data

are assigned to the null class, yielding a total of 18 target classes. The middle level

activities include opening and closing doors, the fridge, the dishwasher, various draw-

ers and cleaning the table, drinking and toggling switches. Samples are collected using

the proposed non-overlapping semi-uniform length windowing with lmin corresponding

to 1 s temporal window, creating a highly imbalanced dataset. The null class forms

approximately three quarters of the data, so the usage of non-uniform sampling tech-

niques may be necessary for achieving optimal performance. Information about sensor

placement and experiment setup is shown in Figure B.1.

3.2.4 PAMAP2 dataset

In the PAMAP2 dataset[89] various physical activities are recorded. The sensors con-

sist of three IMUs with sampling frequency of 100 Hz and a heart rate monitor with

sampling frequency of 9 Hz. The three IMUs are placed on the chest and on the

wrist and ankle on the dominant side of each subject. In total 9 subjects partici-

pated in the experiment (8 male, 1 female) aged 27.22 ± 3.31 years and with a BMI

25.11 ± 2.62kgm−2.

Each of the subjects followed a protocol containing 12 different activities, and a

list of optional activities to perform was also suggested to the subjects. In total 18

different activities were performed. Parts of the data labelled as the null class are

ignored as recommended by the authors, as this time covers transient activities between

performances, e.g. going from one location to the next activity’s location. The activities

are whole body state and focused on various physical action in one’s daily life - lying,

sitting, watching TV, car driving, ironing, rope jumping, etc. Each of the activities

took 1 − 3 min. Parts of the data contain "NaN" values due to dropping connections

and the lower frequency heart rate monitor contains "NaN" values at time points it did

not provide a reading. Therefore some further processing of the heart rate channel is

required.

For our analysis, we used the acceleration data on the scale ±16g (they were also

provided in higher resolution, but those reading got saturated during certain activities),

gyroscope data, magnetometer data and the data from the heart rate sensor - providing

CHAPTER 3. DATASETS FOR EXPERIMENTS 49

a total of 28 channels. Temperature data was not processed for our evaluation.

Activities in the dataset are only slightly time-imbalanced but due to the inclusion

of the optional activities not all activities were performed by all subjects, and even

activities performed by only one of the subjects are present. The activity distribution

is shown in Table B.1. Samples are collected using the proposed non-overlapping semi-

uniform length windowing with lmin corresponding to 1 s temporal window.

3.2.5 Skoda Mini Checkpoint dataset

Ten manipulative gestures from a car maintenance scenario are captured in the Skoda

Mini Checkpoint dataset [87][88]. These are a subset of 46 activities performed in a

car factory in one of the quality control checkpoints. With a sampling rate of 98 Hz, 10

three-axis accelerometers were placed both on left and right arms of a single subject.

Each of the ten activities was recorded 70 times. Samples are collected using the

proposed non-overlapping semi-uniform length windowing with lmin corresponding to

1 s temporal window. Sensor placement and gesture descriptions are in Figure B.2.

3.2.6 MHEALTH dataset

Another widely used dataset containing various physical activities and exercises is the

MHEALTH dataset[93][94]. The collected dataset was acquired from ten volunteers

of diverse profile when performing twelve physical activities (e.g. standing, walking,

climbing stairs, cycling). A three-axis accelerometer was placed on the chest along

with a 2-lead ECG sensor. Another IMUs recording acceleration, angular velocity and

magnetic field orientation were placed on subjects right wrist and left ankle (attached

using elastic straps), creating a total of 23 channels. The various activities involved

focus on different body parts, resulting in differences between the states of the sensors.

Sessions were also recorded using a video camera and the subjects were given no specific

instructions with the expectations to try their best.

All sensors provided a stable sampling rate of 50 Hz and the unsegmented activity

lengths are about 1 min. In our experiments, we used the data preprocessed in the work

of [8], using the Full-Non-Overlapping-Window technique, allowing direct performance

comparison with their work. Null class readings were not used and the segmented

activities have constant length

3.2.7 Dataset summary

Ultimately we collected a set of seven datasets, of which two were recorded on our

prototype, three are focused on gestures and six use more than a single sensor. Class

distribution of the datasets is shown in Figure B.3 – datasets containing null class

CHAPTER 3. DATASETS FOR EXPERIMENTS 50

tend to be less balanced. Figure B.4 shows the length distributions of the samples.

The WaveGlove datasets and the uWave dataset provide higher variation in sample

length, due to their record-time segmentation character. OPPORTUNITY, PAMAP2,

and Skoda datasets show lower variance in sample length and were segmented by

the method we proposed, while the MHEALTH dataset has constant length samples.

Table 3.2 summarizes qualitative properties of the datasets and Figure 3.2 shows the

quantitative properties.

Figure 3.2: Comparison of quantitative dataset properties.

CHAPTER 3. DATASETS FOR EXPERIMENTS 51

W
a
v

e
G

lo
v

e
-s

in
g

le

W
a
v

e
G

lo
v

e
-m

u
lt

i

u
W

a
v

e
[1

5]

O
P

P
O

R
T

U
N

IT
Y

[6
6]

P
A

M
A

P
2

[8
9]

S
k

o
d

a
[8

7]

M
H

E
A

L
T

H
[9

3]

Activity type Hand Hand Hand Daily Physical Work Physical

Null class Yes Yes No Yes No No No

Segmentation None None None NOSU NOSU NOSU FNOW

Year 2020 2020 2008 2011 2012 2007 2014

Total length - - - ±3 h 10 h ±3 h ±3 h

NaN values No No No Yes Yes No Yes

Table 3.2: Qualitative properties of the datasets. Legend: NOSE - Non-overlapping

semi-uniform, FNOW - Full-Non-Overlapping-Window.

3.3 Externally preprocessed dataset overview

To achieve the most direct and accurate comparison of model performance, various

factors need to be considered. Most notable work in this area is that of [8], in which

the authors publicly provide six preprocessed datasets. Not only are the input values

and target labels are provided uniformly for these datasets, but the fold data is also

included. Using the same exact set of folds for (cross) validation yields better model

comparability. These datasets are provided in four different modes of preprocessing

- Full-Non-Overlapping-Window (FNOW), Semi-Non-Overlapping-Window (SNOW),

Leave-One-Subject-Out (LOSO) and Leave-One-Trial-Out (LOTO).

In the previous section, we used the MHEALTH dataset preprocessed in the Full-

Non-Overlapping-Window mode for comparison with the datasets we preprocessed.

For additional comparison we will also adopt all of these datasets preprocessed in

the Leave-One-Subject-Out and Leave-One-Trial-Out modes. Leave-One-Subject-Out

is most widely used in previous work, while Leave-One-Trial-Out is shown to be less

biased and has more realistic results. We would like to emphasize that [8] did make

these datasets along with the fold data publicly available and previous work such as

[95] used them to increase result reproducibility.

Below we briefly describe these datasets. The MHEALTH dataset was already

described in the previous section, so we leave it out here. Collective summary of the

externally preprocessed datasets can be seen in Table 3.3.

CHAPTER 3. DATASETS FOR EXPERIMENTS 52

USC-HAD

A single wired device packed into a mobile phone poach was used for data collection.

The used device was wired to a miniature laptop used for the data collection. Subjects

have worn the poch at their front right hip and held the laptop in one hand. Activities

were performed only with high-level instructions, leading to higher user-dependent vari-

ations. Each subject performed 5 trials for each activity on different days at different

indoor and outdoor locations.

In general, it took about 6 hours to finish the whole data collection for each of

the 15 subjects. Data was annotated by an observer during the recording. Activity

vocabulary consisted of common whole body movements, such as walking forward,

walking in a circle, running, jumping, standing, riding and elevator, etc.

UTD-MHAD

The original multimodal action dataset used a combination of color camera, depth

camera and a 9-axis IMU to capture a set of 27 activities. For HAR, the image data

and magnetometer data are discarded leaving a total of 6 channels. Each of the 8

subjects repeated each action 4 times.

The action vocabulary can be split into 21 classes of movements performed by hand

(with the accelerometer attached on the right wrist) and 6 classes of whole body move-

ments (with the accelerometer attached on right thigh). These two types of activities

are benchmarked separately under names UTD-MHAD1 and UTD-MHAD2. UTD-

MHAD1 vocabulary includes actions such as arm swipes, claps, drawing x’s and circles

or knocking on an imaginative door. UTD-MHAD2 voacbulary consists of jogging,

walking, sit to stand, stand to sit, forward lunges and squats.

WHARF

Wearable Human Activity Recognition Folder (WHARF) dataset is a public collection

of labelled accelerometer recordings. After preprocessing a set of 12 classes including

brushing teeth, lying, sitting, drinking, pouring water or climbing the stairs is included

in the dataset.

WISDM

Six different activities were performed in controlled laboratory conditions in order to

collect the data. A custom Android application was used, collecting acceleration data

every 50 ms. Action vocabulary includes outdoor activities such as walking, jogging

but also climbing stairs, sitting and standing. The dataset is slightly imbalanced, with

37.2% of the labels referring to walking and only 5% referring to standing.

CHAPTER 3. DATASETS FOR EXPERIMENTS 53

Dataset Fr
eq

ue
nc

y
(H

z)

#
Se

ns
or

s

#
C

ha
nn

el
s

#
A

ct
iv

it
ie

s

#
Su

bj
ec

ts

#
T

ri
al

s

#
Sa

m
pl

es

B
al

an
ce

d

MHEALTH [93] 50 3 (Acc, Gyro, Mag) 23 12 10 262 2555 Yes

USC-HAD [96] 100 2 (Acc, Gyro) 6 12 15 840 9824 No

UTD-MHAD1 [97] 50 2 (Acc, Gyro) 6 21 9 617 3771 Yes

UTD-MHAD2 [97] 50 2 (Acc, Gyro) 6 6 9 190 1137 Yes

WHARF [98] 32 1 (Acc) 3 12 17 884 3871 No

WISDM [46] 20 1 (Acc) 3 6 36 402 20846 No

Table 3.3: Summary of the dataset properties as shown in [8]. Reported sample counts

are the result of applying the Semi-Non-Overlapping-Window sampling.

Chapter 4

Classification

We compare a total of nine different classification methods on the preprocessed datasets.

We present two baseline non-DL methods - Average representative and Bagging Deci-

sion trees. For DL learning methods, we compare various neural network architectures

- linear, convolutional, recurrent, attention-based and their combinations which were

proposed in previous work. For the newly proposed methods we perform a hyperpa-

rameter searches.

First two methods were implemented using the scikit-learn library[99] and for neural

networks we used the PyTorch framework[50]. Code was run on a machine with the

Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz processor (6 cores, 12 threads) with a

single GeForce GTX 1080 graphics card (8 GB of memory, CUDA version 10.2). For

neural networks, batch sizes were set to 64 or 128, with no significant difference in

performance between these two options.

Throughout the description of classification methods, we use the following notation:

B - Batch size

S - The total number of channels from all sensors

T - Temporal length of a sample (zero padded to be constant for each dataset)

C - Target class count

For evaluation we report Accuracy, Recall and Macro F1 score. These metrics can

be calculated from four variables: TP (True Positive, correctly recognized as label),

TN (True Negative, correctly recognized as non-label), FP (False Positive, incorrectly

recognized as label) and FN (False Negative, incorrectly recognized as non-label).

Accuracy =
TP + TN

TP + FP + TN + FN

Recall =
TP

TP + FN
, Precision =

TP

TP + FP

54

CHAPTER 4. CLASSIFICATION 55

F1 − score = 2 ×
Precision × Recall

Precision + Recall

In a multi-class scenario, there are various ways how to calculate the metrics - based

on previous work we use macro averaging. In macro averaging, the metric is computed

for each label separately and then the average is reported.

Various training and testing schemes can be used for evaluation and [8] shows that

they have a huge impact on the resulting metrics. We report three types of results in

the rest of the chapter.

First, we evaluate models on the datasets with non-overlapping samples (left column

in Table 3.1) using a single random cut to split the data into 85% set and a 15% test

set. Afterwards, the 85% is randomly fold k (specific for a method) times. During

each fold k−1

k
of the samples are used for training and 1

k
samples are used for validation

(e.g. to decide when to stop training in order to prevent overfitting). From the models

trained during the k folds, the best performing one (based on its F1 score) is chosen for

the final evaluation on the test set. The resulting metrics are reported. This process

is shown in Figure 4.1a.

For the rest of the datasets (right column in Table 3.1), we use the predefined LOSO

and LOTO folds from [8]. The number of folds is either equal to the number of subjects

(LOSO) or it is set to 10 (LOTO). Mirroring the evaluation used by [8][45][100], we

divide the dataset using the pre-defined fold into a test set and and the rest. The

rest is then randomly divided into a 85% training set and a 15% validation set. A

considered model is trained using the training set and the validation set is used to stop

the training. Afterwards, the trained model is evaluated against the single pre-defined

fold (test set). This is consequently repeated for each of the folds and we report the

average of the metrics over all folds. This process is described in Figure 4.1b.

For the non-DL methods, we use a 90% training and 10% test split, with no vali-

dation set used.

In the following sections we present the non-DL method, DL methods and sum-

marize the results of previous and proposed methods. Finally, we perform an ablation

study on the WaveGlove datasets in which we investigate the impact of the number

of sensors and the size of the training set size on model performance.

4.1 Baseline methods

To better understand the performance improvements introduced by various neural

network architectures, we present two non-DL methods that we can use as a baseline.

The first method is a very naive approach, which will set a lower limit for any

meaningful classification. We interpret each of the recorded samples (i.e. gesture or

activity) as a point in D = S × T dimensional space. During the training phase, we

CHAPTER 4. CLASSIFICATION 56

(a) Evaluation scheme used on the datasets with non overlapping windows.

(b) Evaluation scheme used on the datasets with predefined cuts/folds.

Figure 4.1: Evaluation schemes used to provide the results.

CHAPTER 4. CLASSIFICATION 57

calculate a single representative point for each of the target classes. These points are

the element-wise means of all training samples for given class. Classification for a given

sample is then performed by calculating the L2 distance to each of the representative

points, and the class with the minimal L2 distance to its representative point is chosen

as the classification result.

For each of the seven datasets, the algorithm was run 100 times with different

random seeds used for splitting into the train (90%) and test (10%) sets. In Figure 4.2

we present a standard box plot, showing the distributions of the metrics.

Figure 4.2: Results obtained using 100 runs of the average representative classifier.

For each category a box is drawn from the first quartile (Q1, 25th percentile) to the

third quartile (Q3, 75th percentile). The line in the box denotes the median value.

Afterwards the Interquartile Range - IQR = Q3 − Q1 is calculated. The whiskers

above and below the box are drawn up to the farthest observed value from the data

that falls within distance of 1.5IQR from the boundaries of the box. The rest of the

values are marked as outliers and plotted as separate points [101].

The WaveGlove-multi dataset shows exactly what we wanted to achieve during

the design of its gesture vocabulary - the possible space of multi-finger movements is

much larger that that of single point movements, and we were successful at unfolding

the vocabulary along the space. Such high precision on this naive approach highlights

the importance of an ablation study.

The performances of WaveGlove-single and uWave are very comparable due to

CHAPTER 4. CLASSIFICATION 58

the fact that the same vocabulary of gestures was used. This further supports the

quality of our dataset as it is comparable to that from previous work. Higher variance

in average representative classification of WaveGlove-single is yet to be investigated.

On the OPPORTUNITY dataset, which is the most imbalanced of these datasets (75%

of samples are from the null class), we can see a major difference between F1 score and

the other metrics caused by this imbalance.

The second, more sophisticated non-DL method we examined is a Bagging ensem-

ble of 100 decision tree classifier. During the feature extraction phase, two types of

features are used: mean value for each input channel and correlation for every pair of

channels. Bagging classifier is implemented using the scikit-learn library[99] and for

each decision tree in the ensemble 50% of total samples and 50% of all channels are

drawn randomly with replacement for learning. The same technique was employed by

[102] and replicated by [8].

Datasets were split for evaluation the same way as with the previous method and

for each of the datasets, the algorithm was run on 50 different random seeds used for

splitting into the train and test sets. Results are shown in Figure 4.3 and averages of

the metrics of both baseline methods are summarized in Table 4.1.

The results obtained using the Bagging Decision tree method suggest that there

are fundamental differences in the difficulty of classification of the individual datasets.

The median performance on the uWave dataset even dropped compared to the Aver-

age representative method, which is very likely due to the longest median length of

samples (315). On the WaveGlove-multi, Skoda and MHEALTH datasets, practi-

cally all predictions were correct. This likely suggests that the WaveGlove-multi

dataset presents a rather simple classification task. On the other hand, results from

the following sections suggest that when LOSO or LOTO validation is used on the

MHEALTH dataset, the precision is much lower. We can therefore conclude that ran-

dom split validation hides the user-dependent or trial-dependent differences and can

lead to optimistic results when compared to LOSO or LOTO.

4.2 Deep learning methods

Surveys of the state of the art mentioned in Chapter 1 suggest that using neural

networks is the most popular deep learning approach to HAR and HGR. For all of

these methods, we normalize the input data in a way such that each input channel acts

as a random variable with zero mean and unit variance over the whole input. This is

considered to be a standard normalization technique for neural network applications.

In the following subsection we describe a simple linear neural network and a network

consisting of mostly convolutions. We continue with two models based on using LSTM

CHAPTER 4. CLASSIFICATION 59

Figure 4.3: Results obtained using 50 runs of the Bagging Decision tree classifier.

Dataset
Average representative Bagging Decision tree

Accuracy Recall F1 score Accuracy Recall F1 score

WaveGlove-multi 0.917 0.934 0.923 0.991 0.992 0.992

WaveGlove-single 0.763 0.761 0.753 0.966 0.965 0.964

uWave 0.719 0.720 0.716 0.707 0.708 0.705

OPPORTUNITY 0.447 0.524 0.340 0.902 0.589 0.693

PAMAP2 0.581 0.572 0.547 0.933 0.919 0.929

Skoda 0.501 0.538 0.481 0.978 0.978 0.978

MHEALTH (FNOW) 0.662 0.637 0.637 0.999 0.999 0.999

Table 4.1: Average accuracies, recalls and F1 scores obtained from the baseline meth-

ods.

CHAPTER 4. CLASSIFICATION 60

units and two more models from [53] and [95]. Finally, we present a novel Transformer-

based, self-attention network architecture. Images showing the network architecture

were generated using the Netron[103] application.

4.2.1 Baseline deep neural networks

As the simplest neural network architecture, we use a multi layer perceptron (MLP) -

the network consists of three linear (fully connected) layers. The input of size T × S is

flattened before the first layer and the three linear layers use ReLU, tanh and softmax

activation functions respectively.

Hyperparameter search has been performed on datasets with non-overlapping win-

dows, using k = 4 folds. For the second and third linear the sizes of 64, 128, 256 and

512 neurons per layer and learning rates of 0.001, 0.0001 and 0.00001 were searched.

Of the resulting 64 combinations, 256 neurons on the second layer, 128 neurons on the

third layer and learning rate 0.001 was found to be the best. The final architecture is

shown in Figure 4.4a.

A great way to make a network aware of spatial (or temporal) dependencies is using

convolutional layers. Therefore for the second baseline we therefore chose an architec-

ture similar to the of [104]. We changed the architecture to include zero padding before

the convolutional layers, so that outputs after convolutions have the same dimensions

and inputs before padding. Otherwise, due to maxpooling layers after convolutions

this method could not be used on datasets with short temporal sample dimension.

In our architecture, zero padding, two dimensional convolution and maxpooling

layers are used three times with a final linear layer to map the outputs to target

classes. ReLU activation is used after each of the convolutional layers. First of the

convolutional layers has kernel size (12, 2), allowing data from sensors to be spread to

neighbouring sensors. The second and third convolutional layers have kernel sizes of

(13, 1) and (12, 1) respectively and all of the maxpool layers have kernel size of (2, 1).

This way, after the first layer and until the final linear layer, information from each of

the sensors is processed separately.

Hyperparameter search with k = 4 has again been performed. Filter counts of

9, 18, 36 for the first two layers, 12, 24 for the third layer and learning rates 0.001, 0.0001

were explored. The final architecture (including the best performing hyperparameters)

is shown in Figure 4.4b.

4.2.2 LSTM networks

Recurrent neural networks are a popular network architecture that allows to capture

temporal dependencies of the input. Similar to previous work, we use the LSTM cells

as the basic building block of our RNNs. Our experiments have shown that even

CHAPTER 4. CLASSIFICATION 61

Output

Linear
in_features = T * S
out_features = 256

Linear
in_features = 256
out_features = 128

Linear
in_features = 128
out_features = C

Input

ReLU

tanh

softmax

flatten

(a) MLP with three linear layers.

ZeroPad2d
padding = 0, 1, 0, 11
value = 0

Conv2d
kernel_size = 12, 2
filters = 18

MaxPool2d
kernel_size = 2, 1
stride = 2, 1

ZeroPad2d
padding = 0, 0, 0, 12
value = 0

Conv2d
kernel_size = 13, 1
filters = 36

MaxPool2d
kernel_size = 2, 1
stride = 2, 1

ZeroPad2d
padding = 0, 0, 0, 11
value = 0

Conv2d
kernel_size = 12, 1
filters = 24

MaxPool2d
kernel_size = 2, 1
stride = 2, 1

Linear
in_f. = 24*S*(T//8)
out_features = C

Input

Output

ReLU

ReLU

ReLU

[1, T, S]

flatten

(b) A convolutional neural network with three zero-

padded convolutional layers and a final linear layer.

Figure 4.4: Baseline DNN models.

LSTM-based networks are hard to train on sequences with high temporal dimension.

In particular, if the temporal dimension of the sample is higher than 60 (which is the

case for most of the datasets), we were unable to find a hyperparameter combination

which leads to decreasing loss. Moreover, with sequences longer than 60 our networks

were not able to overfit a small portion of the training set, leading us to believe that

the model needs to be further tweaked.

The first way to allow the LSTM cells to work with shorter sequences, is to learn a

linear time embedding (Figure 4.5a). Therefore we add a linear layer before the LSTM

layer, which has T input features and 60 output features. Before applying the linear

layer, the sample is transposed, so that the same set of weights is used for each of

the S input channels. This linear layer can be considered as a learned projection onto

temporal length of 60. Hyperbolic tangent activation function is used before the next

layer. A single LSTM layer is used, with hidden state size of 256 and 0.1 dropout.

Finally, a second linear layer maps the output of the last LSTM cell onto target class

labels.

The second LSTM model we show uses self-attention (a technique which gained a

lot of attention lately). This allows the model to focus on some of the T recurrent

outputs (Figure 4.5b). The LSTM layer has a hidden state size of 64 followed by a

CHAPTER 4. CLASSIFICATION 62

0.2 dropout. The attention mechanism it uses is a simple dot-product attention with

8 heads. Output of the last LSTM cell is used as the query, and outputs of all cells are

used as key and value. Finally, a linear layer maps the attention output onto target

class labels.

For both models, hyperparameter searches were performed with hidden state sizes

64, 128, 256 and 512, dropouts 0.1, 0.2 and 0.3 and time embedding lengths of 30, 50, 60

and 80 for the first model. The aforementioned combination described above was found

to be the best performing one. Learning rate was set to 0.001.

Output

Input

Linear
in_features = T
out_features = 60

LSTM
dropout = 0.1
hidden_size = 256
input_size = S
layers = 1

Linear
in_features = 256
out_features = C

tanh

[S, T]

[60, S]

output of
last cell

(a) LSTM network with time embedding.

LSTM
dropout = 0.2
hidden_size = 64
input_size = S
layers = 1

Linear
in_features = 64
out_features = C

MultiheadAttention

dropout = 0

dot-product attention

embed_dim = 64
head_dim = 8
kdim = 64
num_heads = 8
vdim = 64

Input

Output

query:
output of
last cell

key, value:
all outputs

(b) LSTM network with self attention.

Figure 4.5: Models using LSTM layers.

4.2.3 DeepConvLSTM networks

A combination of convolutional and LSTM layers was proposed in [53], naming the

architecture DeepConvLSTM. We did reproduce two DeepConvLSTM architectures

from previous work in order to compare them with other models.

The first model is reproduced from the description and code published in [53].

It uses four convolutional layers, with 64 filters each and (5, 1) kernel sizes, without

padding. Each of the convolutional layers is followed by ReLU activation. The output

of the fourth convolutional layer is fed to the first of two LSTM layers with hidden

state size of 128. Learning rate was set to 0.001. Finally, the output of the last LSTM

cell from the second layer is mapped to target classes using a linear layer. The model is

CHAPTER 4. CLASSIFICATION 63

shown in Figure 4.6a. In the original work, the samples were generated using a short,

500ms sliding window, which caused the network to not run into the problems with

too long sequences as mentioned above. Therefore the performance on datasets in our

work may be lower than that reported by the authors.

In order to improve the overall model performance (most notably on longer se-

quences), [95] proposed a model using self-attention. We reproduced the model from

the description and the published code. The model uses a single convolutional layer

with kernel size (1, S) with three filters, effectively mapping the S input channels into

3. This input is fed into a single LSTM layer with hidden size of 32 without dropout.

Aftewards, they proposed a self-attention mechanism using two learned weight matri-

ces Wa and Wb. The output of the attention layer is calculated as (with in as the layer

input:

out = softmax(Wb · tanh(Wa · inT)) · in

As in other methods a final linear layer maps the features into target class labels.

The model is shown in Figure 4.6b, the learning rate was set to 0.0001 as in the original

work.

This model was originally evaluated using LOSO and LOTO validation on the

datasets provided by [8]. During the inspection of the original code published by [95],

we discovered that the evaluation method did use the folds provided with the datasets,

but no training and validation split was used. Unfortunately, the authors used the

test set for early stopping of the training, effectively making the validation and test

sets equal. This suggests extensively skewed results reported in the original work.

Our reproduction shows that this model does not outperform most of other models,

contradicting the reported results. We note that we did not perform a hyperparameter

search on this model, which could improve the situation slightly.

4.2.4 Transformer-based self-attention network

Finally, we present a novel architecture using solely the self-attention mechanism, with-

out recurrent layers. The model is based on the encoder layers of the Transformer

introduced in [64].

Firstly a linear layer with S input features and 32 output features learns sensor

embedding (same weight matrix is used throughout the temporal window). After this

layer an activation f(x) = x + tanh(x) is used. Since our model does not use any

convolution or recurrent connections, in order for the model to make use of the order

of the sequence, we add positional encoding. We use the same positional encoding as

described in [64], adding sine and cosine values of different frequencies. The positional

encoding contains an additional dropout of 0.2.

CHAPTER 4. CLASSIFICATION 64

Conv2d
kernel_size = 5, 1
filter = 64

Conv2d
kernel_size = 5, 1
filter = 64

Conv2d
kernel_size = 5, 1
filter = 64

Conv2d
kernel_size = 5, 1
filter = 64

LSTM
hidden_size = 128
input_size = 64 * S
layers = 2

Linear
in_features = 128
out_features = C

Input

Output

[1, T, S]

ReLU

ReLU

ReLU

ReLU
[T-16, 64*S]

output of
last cell

(a) DeepConvLSTM from [53].

Output

Conv2d
kernel_size = 1, S
filters = 3

LSTM
hidden_size = 32
input_size = 3
layers = 1

Linear
in_features = 320
out_features = C

Input
[1, T, S]

[T, 3]

[T, 32]

flatten

Self-attention
Wa 32x32
Wb 10x32
att = tanh(Wa . inT)
attw = softmax(Wb . att)
out = attw . in

(b) DeepConvLSTM with self-

attention from [95]

Figure 4.6: Two reproduced DeepConvLSTM architectures.

Four encoder layers follow, which are the same as in the Transformer architecture -

a multi-head attention and linear layer both followed by batch normalization and with

residual connections. For the linear layers, the size 128 is chosen and 8 heads are used

in the self-attention. Again, a 0.2 dropout is introduced.

After the encoder layers a global temporal attention layer is introduced, similar to

that in [65]. The layer uses the last output in the temporal dimension as query and

all outputs of the previous layer as key and value. A dot product attention without

dropout and with 8 heads is used. Finally, a linear layer maps the outputs onto target

classes.

Hyperparameter search was performed, we used 16 and 32 for the sensor embedding

dimension, 4 and 8 attention head combinations in the encoder and temporal attention

layers, 4 and 6 encoder layers and encoder linear layer sizes of 128 and 256. Learning

rates of 0.001 and 0.0001 were examined, with the former yielding better results and

therefore being used in the final evaluation. The values described above and in Figure

4.7 were found to yield the best results.

CHAPTER 4. CLASSIFICATION 65

Linear
in_features = S
out_features = 32

PositionalEncoding

TransformerEncoder
layers = 4
embed_dim = 32
heads = 8
dropout = 0.2
feedforward_dim = 128

MultiheadAttention

dropout = 0
embed_dim = 32
head_dim = 8
kdim = 32
num_heads = 4
vdim = 32

dot-product attention

Linear
in_features = 32
out_features = C

Input

Output

query:
last output

x + tanh(x)

key, value:
all outputs

Figure 4.7: The novel, Transformer-based model using no convolutional or recurrent

layers.

4.3 Results summary

In this section we summarize the results of the proposed models. First, we compare

their performance on the datasets with non-overlapping samples and then we use com-

pare their accuracy to that reported by previous work on the datasets with LOSO and

LOTO predefined folds.

We report accuracy, recall and F1 score for the DL models described in the previous

sections, on the non-overlapping sample datasets in the Figure 4.8. DeepConvLSTM

with self-attention was left out, as it has shown consistently worse performance than

the original DeepConvLSTM model in our experiments.

Three HGR datasets (WaveGlove datasets and uWave dataset) provide consis-

tently better performance than other HAR datasets. This supports the claim that

classifying movements performed of the hand with one or more IMUs, presents a lesser

challenge than classifying whole body movements.

OPPORTUNITY and PAMAP2 are the two most imbalanced datasets. All of the

proposed methods achieved the worst performance on the OPPORTUNITY dataset.

The high difficulty of classification in this dataset may be caused by very little inter-

class differences between some of the activities, e.g. opening drawer 1 and opening

drawer 2. In PAMAP2, the activities are not only imbalanced between each other, but

also between the subjects. Some of the activities were performed only by one of the

subjects as shown in Table B.1, which can also contribute to the difficulty.

The poor to fatal results of the DeepConvLSTM architecture are likely caused by

improper choice of various hyperparameters. We did use the model with hyperparam-

eters reported in [53] without further tuning. The authors did present benchmarks on

CHAPTER 4. CLASSIFICATION 66

Figure 4.8: Accuracy, recall and F1 scores of models evaluated on the datasets with

non-overlapping samples. Reported metrics represent the average of 4 runs (differing

in the random test split), with the exception of the DeepConvLSTM and Self-attention

with sensor-embedding networks, for which only 2 runs were performed.

CHAPTER 4. CLASSIFICATION 67

the OPPORTUNITY and SKODA datasets, however the method they used for sample

generation was different.

Near perfect classification was achieved by the CNN, LSTM with self-attention

and the Transformer-based using self-attention models on the MHEALTH dataset.

Based on the benchmarks presented in the next section, we can conclude that splitting

the MHEALTH dataset randomly into the training and test sets can lead to overly

optimistic results. In the next section, the dataset is split using LOTO and LOSO

methods, changing the results considerably.

Our newly proposed model achieved the best accuracy on five out of the seven

datasets. However, it’s overall performance is very similar to the two LSTM-based

models.

In [8], the authors provide a set of six datasets split into training and testing sets

in four different ways. In Tables 4.2 and 4.3 we show a comprehensive comparison of

accuracies of several classification methods on the LOTO and LOSO splits. We include

methods:

• Re-implemented in [8].

• Proposed in [100].

• Re-implemented by us and originally proposed in [53] and [95].

• Proposed in our work.

The results suggest that LOSO validation presents a higher challenge than LOTO

validation. This is likely caused by higher differences between the subjects. Moreover,

by splitting the MHEALTH dataset using the LOTO or LOSO protocols, the methods

we propose show substantially worse results. Therefore, for further evaluation and

research, using LOTO or LOSO rather than the windowing method we proposed seems

more viable, as they simulate a more realistic scenario.

The MHEALTH dataset contains the most sensor channels (23) from the datasets

shown in the tables. When using the Bagging Decision Tree classifier, the number

of features used grows with the number of channels quadratically, which may be the

reason for its outstanding performance on the dataset.

Using the attention mechanism in combination with LSTM layers as proposed does

consistently increase classification performance when compared with the proposed time

embedding method. We were not able to train LSTMs using the longer time sequences

without any embedding or attention mechanism.

Finally, the proposed Transformer-based self-attention network architecture shows

promising results, comparable to those of the LSTM network using the self attention

mechanism. We believe that further investigation and hyperparameter tuning may

further improve its performance.

CHAPTER 4. CLASSIFICATION 68

The method proposed in [100] using ensembles of CNN classifiers demonstrate ex-

ceptional performance on some of the datasets as well. None of the compared methods

dominates the others on all of the datasets.

Method
LOTO (accuracy (%))

Avg.

M
H

E
A

L
T

H

U
S

C
-H

A
D

U
T

D
-M

H
A

D
1

U
T

D
-M

H
A

D
2

W
H

A
R

F

W
IS

D
M

Kwapisz et al. [46] 89.75 76.52 15.99 69.61 44.51 79.08 62.57

Catal et al. [105] 91.84 87.77 47.80 81.37 64.84 80.52 75.69

Kim et al. [102] 91.51 85.70 50.98 75.27 61.12 56.26 70.14

Chen and Xue [104] 89.95 84.66 - - 72.55 86.55 83.42

Jiang and Yin [106] 52.78 80.73 - - 70.79 83.82 72.03

Ha et al. [107] 85.31 - - - - - 85.31

Ha and Choi [108] 82.75 - - - - - 82.75

Nguyen et al. [45] 94.72 86.90 - - - - 90.81

Sena and Schwartz [100] 93.09 88.49 62.03 81.63 75.50 89.01 81.62

DeepConvLSTM [53] 81.01 83.97 67.29 86.50 67.98 91.23 79.66

DeepConvLSTM

with attention[95]
74.08 78.64 48.31 74.15 65.31 86.57 71.17

Proposed models

Bagging Decision tree 93.41 89.22 67.51 81.90 66.26 61.61 76.65

CNN 87.35 89.87 62.74 83.47 78.03 90.59 82.00

LSTM

with time embedding
81.69 82.96 63.61 72.00 67.76 79.34 74.56

LSTM

with attention
86.44 89.79 69.72 84.13 81.47 90.07 83.60

Self-attention

with sensor embedding
90.35 89.83 76.32 88.42 78.63 84.53 84.68

Table 4.2: Evaluation of the proposed and previous methods on LOTO predefined folds.

The "-" symbol denotes that the given method could not be applied on the dataset.

CHAPTER 4. CLASSIFICATION 69

Method
LOSO (accuracy (%))

Avg.

M
H

E
A

L
T

H

U
S

C
-H

A
D

U
T

D
-M

H
A

D
1

U
T

D
-M

H
A

D
2

W
H

A
R

F

W
IS

D
M

Kwapisz et al. [46] 90.41 70.15 13.04 66.67 42.19 75.31 59.62

Catal et al. [105] 94.66 75.89 32.45 74.67 46.84 74.96 66.57

Kim et al. [102] 93.90 64.20 38.05 64.60 51.48 50.22 60.40

Chen and Xue [104] 88.67 75.58 - - 61.94 83.89 77.52

Jiang and Yin [106] 51.46 74.88 - - 65.35 79.97 67.91

Ha et al. [107] 88.34 - - - - - 88.34

Ha and Choi [108] 84.23 - - - - - 84.23

Sena and Schwartz [100] 96.27 82.66 46.75 79.38 69.79 86.22 76.85

DeepConvLSTM [53] 83.58 70.96 48.42 75.65 61.23 84.43 70.71

DeepConvLSTM

with attention[95]
74.18 70.12 42.57 69.20 63.97 81.06 66.85

Proposed models

Bagging Decision tree 94.53 72.66 49.45 73.28 60.09 56.19 67.70

CNN 91.05 77.15 47.62 76.45 66.67 86.58 74.25

LSTM

with time embedding
85.61 77.31 45.33 68.16 62.73 76.29 69.24

LSTM

with attention
89.23 80.67 52.05 78.55 68.53 83.26 75.38

Self-attention

with sensor embedding
91.04 73.44 55.85 79.19 63.05 74.90 72.91

Table 4.3: Evaluation of the proposed and previous methods on LOSO predefined folds.

The "-" symbol denotes that the given method could not be applied on the dataset.

CHAPTER 4. CLASSIFICATION 70

4.4 Ablation study on the WaveGlove datasets

In the previous section, nearly all classification methods were shown to have near-

perfect accuracy and other metrics on the WaveGlove datasets. Due to these results

and the multi-sensor structure of the WaveGlove datasets, an ablation study is war-

ranted in order to asses the impact of various factors on the final performance. In this

ablation study we examine the impact of two factors on the classification accuracy.

Firstly, we review the accuracy changes resulting from the usage of a subset of the

sensors. Secondly, we examine the impact of the size of the training set.

There are a total of 31 non-empty subsets of the five sensors (including the full

setup). We group them by the amount of sensors they contain into five groups. There

are 5 subsets containing a single sensor and 10, 10, 5 and 1 subset containing 2, 3, 4 and

5 sensors respectively. Various training set sizes are used: 1%, 5%, 20%, 50% and 85%,

with the rest of the samples selected for testing.

Two methods are used during the ablation study: the Bagging Decision Tree model

and the proposed Transformer-based network. Figures 4.9 and 4.10 show the results

on the WaveGlove-single and WaveGlove-multi datasets respectively.

Figure 4.9: Attribution of the count of sensors and training set size to the accuracy on

the WaveGlove-single dataset. Training set of size 1% was not sufficient to train the

self-attention based model.

Results of the experiment on the WaveGlove-single dataset suggest that increas-

ing the number of used sensors does not have significant impact on classification ac-

CHAPTER 4. CLASSIFICATION 71

curacy in this dataset. The outcome does not come as a surprise, as all eight gestures

in the vocabulary are whole hand movements - all of the fingers perform the same

movement. Furthermore, training set sizes of 50% and 20% (500 and 200 samples ap-

proximately) achieve comparable accuracy to the standard setup of using 85% of the

samples in the training set.

Figure 4.10: Attribution of the count of sensors and training set size to the accuracy

on the WaveGlove-multi dataset.

On the other hand, in the case of the WaveGlove-multi dataset, increasing the

number of sensors does increase the classification accuracy significantly.

The vocabulary of the dataset was designed to specifically contain movements using

only some of the fingers, leading to the expected result. Similar to WaveGlove-single,

using a training set of size 20% or even 5% (approximately 2000 and 500 samples

respectively), shows very similar results in comparison to the standard setup.

To examine the differences in classification when not using all of the sensors, we

compare the four confusion matrices shown in Figure 4.11. The confusion matrices

were obtained using the Bagging Decision Tree classifier on the WaveGlove-multi

dataset with a training set containing 5% of all samples. In each case, only values

from a single sensor were used, corresponding to four fingers: thumb, index finger, ring

finger and pinky.

Results support the intuitive claim, that gestures where a finger performs a similar

movement are harder to classify using only the sensor on that finger. When using the

CHAPTER 4. CLASSIFICATION 72

sensor on the ring finger, the Peace gesture was classified with only 43% accuracy.

This is caused by very similar movements performed by the ring finger during the

Grab, Peace and Metal gestures. Similarly, the sensor on the thumb turns out to be

less effective in distinguishing between the Hand Swipe Left and the Hand Swipe Right

gestures and the sensor on the index finger in distinguishing between the Pinch Out

(Pinch In) and Grab (Ungrab) gestures. The pinky does not perform any movement

during the Pinch in and Pinch out gestures, resulting in reduced accuracy when using

only the corresponding sensor alone.

(a) Thumb. (b) Index finger.

(c) Ring finger. (d) Pinky.

Figure 4.11: Four confusion matrices obtained using the Bagging Decision Tree classifier

on the WaveGlove-multi dataset. Only data from a single sensor on four different

fingers was used.

Conclusions

In our work, we investigate the challenges of Human Activity Recognition (HAR) and

Hand Gesture Recognition (HGR) using several methods evaluated on over 10 datasets.

We built a specialized hardware prototype called WaveGlove in the form of a

glove. A single IMU is mounted on each of the fingers of the glove , allowing to record

multi-sensor samples. We created custom firmware, and designed an efficient protocol

for the communication between a microcontroller connected to the prototype and a

recording device (usually a laptop).

We used two hand gesture dataset vocabularies. The first one is identical to that

used in [15], with the difference that we use more than one sensor in our setup. The

second one contains 10 gestures and is specifically designed to contain gestures with

different movements for each of the fingers. Using the prototype we record two datasets:

WaveGlove-single and WaveGlove-multi of sizes 1000 and 10000 respectively. We

consider the size of the datasets to be comparable to that of the previously published

HAR and HGR datasets. The only known major disadvantage of the WaveGlove

datasets is that only 2 test subjects participated. Unfortunately, the pandemic situation

in the spring of 2020 did not allow the participation of more subjects.

For the performance evaluation of classification methods, we adopted several dif-

ferent publicly available datasets. We preprocessed some of them using a proposed

sample generation technique. Furthermore, 6 datasets preprocessed in [8] were used

with the same exact train and test set splits, for increased comparability.

We implemented 9 different classification models, including both Classical Machine

Learning and Deep Learning methods. The performance of the methods ranges from

baseline to state of the art. We propose a novel neural network architecture, based on

the Transformer architecture introduced in [64]. This newly proposed method does not

use recurrent layers, yet achieves comparable or arguably better performance on some

of the datasets. In the LOTO evaluation our method achieved mean accuracy 3.06%

higher than that reported in previous work. It’s accuracy was also 8.03% higher than

that of the Bagging Decision Tree method and 1.08% than that of the LSTM model

using attention.

Using our evaluation of the methods on multiple datasets, we can conclude that the

sample generation process can fundamentally affect the final classification performance.

73

Conclusions 74

In particular, the methods evaluated on the MHEALTH have experienced 5 − 15%

difference in accuracy, depending on the used sample generation process.

We reproduce the DeepConvLSTM-based methods proposed in [53] and [95]. With

our proposed methods, we also heavily extend the standardization benchmarks estab-

lished in [8].

Based on our results, we conclude that methods achieve consistently better perfor-

mance on the HGR datasets in comparison to the considered HAR datasets.

Finally, we perform an ablation study on the WaveGlove datasets. Our study

shows, that increasing the number of sensors in the WaveGlove-single dataset does

not increase the performance significantly. This is in line with the expectations, because

identical movement is executed by each of the fingers for the gestures in the correspond-

ing vocabulary. On the other hand, we show that for the WaveGlove-multi dataset,

increasing the number of sensors does increase the classification accuracy. Major im-

provements are observed while using up to 3 sensors, with lesser to no improvements

obtained from adding the fourth or fifth sensor.

We show that a smaller training set consisting of a few hundred samples is sufficient

for achieving near the same performance as with over 8500 samples for the Wave-

Glove-multi dataset. By comparing the confusion matrices of classification methods

using various subsets of the five sensors on the WaveGlove, we confirm that different

gestures can be classified with higher performance using different subsets of sensors.

For future work, we recommend closer investigation of the different dataset splitting

methods and their effect on final performance. Splitting techniques which model the

final practical use case should be preferred. The LSTM model using self-attention as

well as the model using self-attention with sensor embedding have shown very promis-

ing performance. We suggest further fine tuning and hyperparameter search for the

attention-based models, to achieve even higher classification accuracy. Due to the fact

that the WaveGlove-single dataset has identical vocabulary to the dataset published

in [15], we advise the examination of the possible application of transfer learning. In

the case of a practical application of a WaveGlove-like device, we recommend the

use of wireless communication and the problem of distinguishing between gesture and

non-gesture states to be further investigated.

Bibliography

[1] Matej Andrejašic. Mems accelerometers. In University of Ljubljana. Faculty for

mathematics and physics, Department of physics, Seminar, 2008.

[2] Chaithanya Kumar Mummadi, Frederic Philips Peter Leo, Keshav Deep Verma,

Shivaji Kasireddy, Philipp M. Scholl, Jochen Kempfle, and Kristof Van Laer-

hoven. Real-time and embedded detection of hand gestures with an imu-based

glove. Informatics, 5(2):28, 2018.

[3] Casey A. Cole, Bethany Janos, Dien Anshari, James F. Thrasher, Scott M.

Strayer, and Homayoun Valafar. Recognition of smoking gesture using smart

watch technology. CoRR, abs/2003.02735, 2020.

[4] Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, and Parisa Rashidi. Human

activity recognition using inertial, physiological and environmental sensors: a

comprehensive survey. CoRR, abs/2004.08821, 2020.

[5] Henry Friday Nweke, Ying Wah Teh, Mohammed Ali Al-garadi, and Uzoma Rita

Alo. Deep learning algorithms for human activity recognition using mobile and

wearable sensor networks: State of the art and research challenges. Expert Syst.

Appl., 105:233–261, 2018.

[6] Marcin Straczkiewicz and Jukka-Pekka Onnela. A systematic review of human

activity recognition using smartphones. CoRR, abs/1910.03970, 2019.

[7] Kaixuan Chen, Dalin Zhang, Lina Yao, Bin Guo, Zhiwen Yu, and Yunhao Liu.

Deep learning for sensor-based human activity recognition: Overview, challenges

and opportunities. CoRR, abs/2001.07416, 2020.

[8] Artur Jordao, Antonio C. Nazare Jr., Jessica Sena de Souza, and William Rob-

son Schwartz. Human activity recognition based on wearable sensor data: A

standardization of the state-of-the-art. CoRR, abs/1806.05226, 2018.

[9] Florenc Demrozi, Graziano Pravadelli, Azra Bihorac, and Parisa Rashidi. Human

activity recognition using inertial, physiological and environmental sensors: a

comprehensive survey. CoRR, abs/2004.08821, 2020.

75

BIBLIOGRAPHY 76

[10] Ian Cleland, Basel Kikhia, Chris D. Nugent, Andrey Boytsov, Josef Hallberg,

Kåre Synnes, Sally I. McClean, and Dewar D. Finlay. Optimal placement of

accelerometers for the detection of everyday activities. Sensors, 13(7):9183–9200,

2013.

[11] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh,

Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition

Challenge. International Journal of Computer Vision (IJCV), 115(3):211–252,

2015.

[12] Leilani H. Gilpin, David Bau, Ben Z. Yuan, Ayesha Bajwa, Michael Specter,

and Lalana Kagal. Explaining explanations: An overview of interpretability of

machine learning, 2018.

[13] Mridul Khan, Sheikh Iqbal Ahamed, Miftahur Rahman, and Ji-Jiang Yang.

Gesthaar: An accelerometer-based gesture recognition method and its applica-

tion in nui driven pervasive healthcare. In ESPA, pages 163–166, 2012.

[14] Jiahui Wu, Gang Pan, Daqing Zhang, Guande Qi, and Shijian Li. Gesture recog-

nition with a 3-d accelerometer. In International Conference on Ubiquitous In-

telligence and Computing, pages 25–38. Springer, 2009.

[15] Jiayang Liu, Lin Zhong, Jehan Wickramasuriya, and Venu Vasudevan. uwave:

Accelerometer-based personalized gesture recognition and its applications. Per-

vasive and Mobile Computing, 5(6):657–675, 2009.

[16] Thomas Schlömer, Benjamin Poppinga, Niels Henze, and Susanne Boll. Ges-

ture recognition with a wii controller. In Proceedings of the 2nd international

conference on Tangible and embedded interaction, pages 11–14. ACM, 2008.

[17] Diman Zad Tootaghaj, Adrian Sampson, Todd Mytkowicz, and Kathryn S

McKinley. High five: Improving gesture recognition by embracing uncertainty.

arXiv preprint arXiv:1710.09441, 2017.

[18] Steven W Smith et al. The scientist and engineer’s guide to digital signal pro-

cessing. California Technical Pub. San Diego, 1997.

[19] Ahmad Akl and Shahrokh Valaee. Accelerometer-based gesture recognition via

dynamic-time warping, affinity propagation, & compressive sensing. In Acoustics

Speech and Signal Processing (ICASSP), 2010 IEEE International Conference

on, pages 2270–2273. IEEE, 2010.

BIBLIOGRAPHY 77

[20] Ce Li, Chunyu Xie, Baochang Zhang, Chen Chen, and Jungong Han. Deep fisher

discriminant learning for mobile hand gesture recognition. Pattern Recognition,

77:276–288, 2018.

[21] Michael Xie and David Pan. Accelerometer gesture recognition, 2014.

[22] David Mace, Wei Gao, and Ayse Coskun. Accelerometer-based hand gesture

recognition using feature weighted naïve bayesian classifiers and dynamic time

warping. In Proceedings of the companion publication of the 2013 international

conference on Intelligent user interfaces companion, pages 83–84. ACM, 2013.

[23] David Mace, Wei Gao, and Ayse K Coskun. Improving accuracy and practical-

ity of accelerometer-based hand gesture recognition. on Interacting with Smart

Objects, page 45, 2013.

[24] Zhenyu He, Lianwen Jin, Lixin Zhen, and Jiancheng Huang. Gesture recognition

based on 3d accelerometer for cell phones interaction. In Circuits and Systems,

2008. APCCAS 2008. IEEE Asia Pacific Conference on, pages 217–220. IEEE,

2008.

[25] Amara Graps. An introduction to wavelets. IEEE computational science and

engineering, 2(2):50–61, 1995.

[26] Gabriele Costante, Lorenzo Porzi, Oswald Lanz, Paolo Valigi, and Elisa Ricci.

Personalizing a smartwatch-based gesture interface with transfer learning. In Sig-

nal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European,

pages 2530–2534. IEEE, 2014.

[27] Matthias Rehm, Nikolaus Bee, and Elisabeth André. Wave like an egyptian:

accelerometer based gesture recognition for culture specific interactions. In Pro-

ceedings of the 22nd British HCI Group Annual Conference on People and Com-

puters: Culture, Creativity, Interaction-Volume 1, pages 13–22. British Computer

Society, 2008.

[28] Ahmed Hassan. Classification of accelerometer data as input for user interfaces,

2007.

[29] Stan Salvador and Philip Chan. Toward accurate dynamic time warping in linear

time and space. Intelligent Data Analysis, 11(5):561–580, 2007.

[30] Prajwal Paudyal, Ayan Banerjee, and Sandeep KS Gupta. Sceptre: a pervasive,

non-invasive, and programmable gesture recognition technology. In Proceedings of

the 21st International Conference on Intelligent User Interfaces, pages 282–293.

ACM, 2016.

BIBLIOGRAPHY 78

[31] RMW Kluge. Online accelerometer gesture recognition using dynamic time warp-

ing and k-nearest neighbors clustering with flawed templates. Bachelor thesis,

2017.

[32] Ghazi Al-Naymat, Sanjay Chawla, and Javid Taheri. Sparsedtw: A novel ap-

proach to speed up dynamic time warping. CoRR, abs/1201.2969, 2012.

[33] Fumitada Itakura. Minimum prediction residual principle applied to speech

recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,

23(1):67–72, 1975.

[34] Johann Faouzi and Hicham Janati. pyts: A python package for time series

classification. Journal of Machine Learning Research, 21(46):1–6, 2020.

[35] Zoubin Ghahramani. An introduction to hidden markov models and bayesian

networks. International journal of pattern recognition and artificial intelligence,

15(01):9–42, 2001.

[36] Marcus Georgi, Christoph Amma, and Tanja Schultz. Recognizing hand and

finger gestures with IMU based motion and EMG based muscle activity sens-

ing. In Harald Loose, Ana L. N. Fred, Hugo Gamboa, and Dirk Elias, editors,

BIOSIGNALS 2015 - Proceedings of the International Conference on Bio-inspired

Systems and Signal Processing, Lisbon, Portugal, 12-15 January, 2015, pages 99–

108. SciTePress, 2015.

[37] Christopher JC Burges. A tutorial on support vector machines for pattern recog-

nition. Data mining and knowledge discovery, 2(2):121–167, 1998.

[38] Hobeom Han and Sang Won Yoon. Gyroscope-based continuous human hand

gesture recognition for multi-modal wearable input device for human machine

interaction. Sensors, 19(11):2562, 2019.

[39] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.

[40] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE Trans. Pattern Anal. Mach. Intell., 20(8):832–844, 1998.

[41] Leo Breiman. Random forests. Mach. Learn., 45(1):5–32, 2001.

[42] Antonio A. Aguileta, Ramon F. Brena, Oscar Mayora, Erik Molino-Minero-Re,

and Luis A. Trejo. Multi-sensor fusion for activity recognition—a survey. Sensors,

19(17):3808, Sep 2019.

BIBLIOGRAPHY 79

[43] Sijie Zhuo, Lucas Sherlock, Gillian Dobbie, Yun Sing Koh, Giovanni Russello, and

Danielle M. Lottridge. Real-time smartphone activity classification using inertial

sensors - recognition of scrolling, typing, and watching videos while sitting or

walking. Sensors, 20(3):655, 2020.

[44] Haodong Guo, Ling Chen, Liangying Peng, and Gencai Chen. Wearable sensor

based multimodal human activity recognition exploiting the diversity of classifier

ensemble. In Paul Lukowicz, Antonio Krüger, Andreas Bulling, Youn-Kyung Lim,

and Shwetak N. Patel, editors, Proceedings of the 2016 ACM International Joint

Conference on Pervasive and Ubiquitous Computing, UbiComp 2016, Heidelberg,

Germany, September 12-16, 2016, pages 1112–1123. ACM, 2016.

[45] Huu Du Nguyen, Kim Phuc Tran, Xianyi Zeng, Ludovic Koehl, and Guillaume

Tartare. Wearable sensor data based human activity recognition using machine

learning: A new approach. CoRR, abs/1905.03809, 2019.

[46] Jennifer R. Kwapisz, Gary M. Weiss, and Samuel Moore. Activity recognition

using cell phone accelerometers. SIGKDD Explorations, 12(2):74–82, 2010.

[47] Michael A. Nielsen. Neural networks and deep learning, 2018.

[48] Yann LeCun, Léon Bottou, Genevieve B. Orr, and Klaus-Robert Müller. Efficient

backprop. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth

of a 1996 NIPS Workshop, page 9–50, Berlin, Heidelberg, 1998. Springer-Verlag.

[49] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

In Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on

Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,

Conference Track Proceedings, 2015.

[50] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-

gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-

ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,

Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and

Soumith Chintala. Pytorch: An imperative style, high-performance deep learn-

ing library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. dÁlché-Buc, E. Fox,

and R. Garnett, editors, Advances in Neural Information Processing Systems 32,

pages 8024–8035. Curran Associates, Inc., 2019.

[51] Kunihiko Fukushima and Sei Miyake. Neocognitron: A new algorithm for pattern

recognition tolerant of deformations and shifts in position. Pattern Recognit.,

15(6):455–469, 1982.

BIBLIOGRAPHY 80

[52] Antonio Bevilacqua, Kyle MacDonald, Aamina Rangarej, Venessa Widjaya,

Brian Caulfield, and M. Tahar Kechadi. Human activity recognition with convo-

lutional neural networks. In Ulf Brefeld, Edward Curry, Elizabeth Daly, Brian

MacNamee, Alice Marascu, Fabio Pinelli, Michele Berlingerio, and Neil Hurley,

editors, Machine Learning and Knowledge Discovery in Databases - European

Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018, Pro-

ceedings, Part III, volume 11053 of Lecture Notes in Computer Science, pages

541–552. Springer, 2018.

[53] Francisco Javier Ordóñez and Daniel Roggen. Deep convolutional and lstm re-

current neural networks for multimodal wearable activity recognition. Sensors,

16(1):115, 2016.

[54] Saiwen Wang, Jie Song, Jaime Lien, Ivan Poupyrev, and Otmar Hilliges. In-

teracting with soli: Exploring fine-grained dynamic gesture recognition in the

radio-frequency spectrum. In Proceedings of the 29th Annual Symposium on

User Interface Software and Technology, UIST ’16, page 851–860, New York,

NY, USA, 2016. Association for Computing Machinery.

[55] Yoshua Bengio, Patrice Y. Simard, and Paolo Frasconi. Learning long-term de-

pendencies with gradient descent is difficult. IEEE Trans. Neural Networks,

5(2):157–166, 1994.

[56] Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. Hinton. Speech recogni-

tion with deep recurrent neural networks. In IEEE International Conference on

Acoustics, Speech and Signal Processing, ICASSP 2013, Vancouver, BC, Canada,

May 26-31, 2013, pages 6645–6649. IEEE, 2013.

[57] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. In Advances in neural information processing systems,

pages 3104–3112, 2014.

[58] Alessandro Carfì, Carola Motolese, Barbara Bruno, and Fulvio Mastrogiovanni.

Online human gesture recognition using recurrent neural networks and wearable

sensors. In 27th IEEE International Symposium on Robot and Human Interactive

Communication, RO-MAN 2018, Nanjing, China, August 27-31, 2018, pages

188–195. IEEE, 2018.

[59] Yu Guan and Thomas Plötz. Ensembles of deep LSTM learners for activity

recognition using wearables. IMWUT, 1(2):11:1–11:28, 2017.

BIBLIOGRAPHY 81

[60] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai kin Wong, and

Wang chun Woo. Convolutional lstm network: A machine learning approach for

precipitation nowcasting, 2015.

[61] Felix A. Gers and Jürgen Schmidhuber. Recurrent nets that time and count. In

Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural

Networks, IJCNN 2000, Neural Computing: New Challenges and Perspectives for

the New Millennium, Como, Italy, July 24-27, 2000, Volume 3, pages 189–194.

IEEE Computer Society, 2000.

[62] Philipp Koch, Mark Dreier, Marco Maaß, Martina Böhme, Huy Phan, and Al-

fred Mertins. A recurrent neural network for hand gesture recognition based on

accelerometer data. Conference proceedings: ... Annual International Conference

of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in

Medicine and Biology Society. Conference, 2019, 07 2019.

[63] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine trans-

lation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473,

2014.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M. Wallach, Rob

Fergus, S. V. N. Vishwanathan, and Roman Garnett, editors, Advances in Neu-

ral Information Processing Systems 30: Annual Conference on Neural Informa-

tion Processing Systems 2017, 4-9 December 2017, Long Beach, CA, USA, pages

5998–6008, 2017.

[65] Saif Mahmud, M. Tanjid Hasan Tonmoy, Kishor Kumar Bhaumik, A. K. M. Mah-

bubur Rahman, M. Ashraful Amin, Mohammad Shoyaib, Muhammad Asif Hos-

sain Khan, and Amin Ahsan Ali. Human activity recognition from wearable

sensor data using self-attention. CoRR, abs/2003.09018, 2020.

[66] Paul Lukowicz, Gerald Pirkl, David Bannach, Florian Wagner, Alberto Calatroni,

Kilian Förster, Thomas Holleczek, Mirco Rossi, Daniel Roggen, Gerhard Tröster,

Jakob Doppler, Clemens Holzmann, Andreas Riener, Alois Ferscha, and Ricardo

Chavarriaga. Recording a complex, multi modal activity data set for context

recognition. In Michael Beigl and Francisco Javier Cazorla-Almeida, editors,

ARCS ’10 - 23th International Conference on Architecture of Computing Systens

2010, Workshop Proceedings, February 22-23, 2010, Hannover, Germany, pages

161–166. VDE Verlag, 2010.

BIBLIOGRAPHY 82

[67] Daniel Roggen, Alberto Calatroni, Mirco Rossi, Thomas Holleczek, Kilian

Förster, Gerhard Tröster, Paul Lukowicz, David Bannach, Gerald Pirkl, Alois

Ferscha, Jakob Doppler, Clemens Holzmann, Marc Kurz, Gerald Holl, Ricardo

Chavarriaga, Hesam Sagha, Hamidreza Bayati, Marco Creatura, and José del

R. Millán. Collecting complex activity datasets in highly rich networked sensor

environments. In Seventh International Conference on Networked Sensing Sys-

tems, INSS 2010, Kassel, Germany, June 15-18, 2010, pages 233–240. IEEE,

2010.

[68] Leire Francés, Paz Morer, Maria Isabel Rodriguez, and Aitor Cazón. Design and

development of a low-cost wearable glove to track forces exerted by workers in

car assembly lines. Sensors, 19(2):296, 2019.

[69] Sonu Agarwal, Arindam Mondal, and Gurdeepak Joshi. Gestglove: a wearable

device with gesture based touchless interaction. In Pranav Mistry, Pattie Maes,

Jean-Marc Seigneur, Suranga Nanayakkara, and Joe Paradiso, editors, Proceed-

ings of the 8th Augmented Human International Conference, AH 2017, Mountain

View, CA, USA, March 16-18, 2017, page 3. ACM, 2017.

[70] Henry Friday Nweke, Ying Wah Teh, Ghulam Mujtaba, Uzoma Rita Alo, and

Mohammed Ali Al-garadi. Multi-sensor fusion based on multiple classifier sys-

tems for human activity identification. HCIS, 9:34, 2019.

[71] Marcin Straczkiewicz, Nancy W. Glynn, and Jaroslaw Harezlak. On placement,

location and orientation of wrist-worn tri-axial accelerometers during free-living

measurements. Sensors, 19(9):2095, 2019.

[72] Ruize Xu, Shengli Zhou, and Wen J Li. Mems accelerometer based nonspecific-

user hand gesture recognition. IEEE sensors journal, 12(5):1166–1173, 2012.

[73] Vasileios Sideridis, Andrew Zacharakis, George Tzagkarakis, and Maria Pa-

padopouli. Gesturekeeper: Gesture recognition for controlling devices in iot

environments. CoRR, abs/1903.06643, 2019.

[74] Mimu gloves - the world’s most advanced wearable musical instrument. https:

//mimugloves.com. Accessed: 2020-05-07.

[75] Senseglove - make the digital feel real. https://www.senseglove.com. Accessed:

2020-05-07.

[76] Neomano - a robotic glove that enables people with hand paralysis to complete

daily activities. https://neomano.neofect.com. Accessed: 2020-05-07.

https://mimugloves.com
https://mimugloves.com
https://www.senseglove.com
https://neomano.neofect.com

BIBLIOGRAPHY 83

[77] Espressif Systems. ESP8266EX - Espressif’s highly integrated Wi-Fi SoC solu-

tion., 2020. Version 6.4.

[78] InvenSense Inc. MPU-6000 and MPU-6050 Product Specification, 2013. Revision

3.4.

[79] NanJing Top Power ASIC Corp. TP4056 1A Standalone Linear Li-lon Battery

Charger with Thermal Regulation in SOP-8.

[80] Texas Instruments. TCA9548A - Low-Voltage 8-Channel I2C Switch with Reset.,

2019. SCPS207G – MAY 2012 – REVISED NOVEMBER 2019.

[81] KylinChip Electronic (Shanghai) Co.,Ltd. XL6009 - 400KHz 60V 4A Switching

Current Boost / Buck-Boost / Inverting DC/DC Converter.

[82] SHENZHEN PKCELL BATTERY CO., LTD. Techical Specification Li-Polymer

503035 500mAh 3.7V with PCM, 2014. QA.S.0228.

[83] Linear Technology Corporation. LTC3426 - 1.2MHz Step-Up DC/DC Converter

in SOT-23., 2004. LT 0617 REV B.

[84] Platformio - a new generation ecosystem for embedded development. https:

//platformio.org. Accessed: 2020-05-07.

[85] PyQT. Pyqt reference guide, 2012.

[86] Emiro De la Hoz, Paola Ariza, J. Medina, and Macarena Espinilla. Sensor-based

datasets for human activity recognition – a systematic review of literature. IEEE

Access, PP:1–1, 10 2018.

[87] Piero Zappi, Clemens Lombriser, Thomas Stiefmeier, Elisabetta Farella, Daniel

Roggen, Luca Benini, and Gerhard Tröster. Activity recognition from on-body

sensors: Accuracy-power trade-off by dynamic sensor selection. In Roberto Ver-

done, editor, Wireless Sensor Networks, 5th European Conference, EWSN 2008,

Bologna, Italy, January 30-February 1, 2008, Proceedings, volume 4913 of Lecture

Notes in Computer Science, pages 17–33. Springer, 2008.

[88] Thomas Stiefmeier, Daniel Roggen, and Gerhard Tröster. Fusion of string-

matched templates for continuous activity recognition. In 11th IEEE Interna-

tional Symposium on Wearable Computers (ISWC 2007), October 11-13, 2007,

Boston, MA, USA, pages 41–44. IEEE Computer Society, 2007.

[89] Attila Reiss and Didier Stricker. Introducing a new benchmarked dataset for

activity monitoring. In 16th International Symposium on Wearable Computers,

https://platformio.org
https://platformio.org

BIBLIOGRAPHY 84

ISWC 2012, Newcastle, United Kingdom, June 18-22, 2012, pages 108–109. IEEE

Computer Society, 2012.

[90] The hdf5 R© library & file format. https://www.hdfgroup.org/solutions/

hdf5/, 2007. Accessed: 2020-05-09.

[91] Andrew Collette and contributors. Hdf5 for python. http://www.h5py.org,

2008. Accessed: 2020-05-09.

[92] Analog Devices, Inc. 3-Axis, ±2g/±4g/±8g/±16g Digital Accelerometer, 2015.

Rev. E.

[93] Oresti Baños, Rafael García, Juan Antonio Holgado Terriza, Miguel Damas,

Héctor Pomares, Ignacio Rojas Ruiz, Alejandro Saez, and Claudia Villalonga.

mhealthdroid: A novel framework for agile development of mobile health ap-

plications. In Leandro Pecchia, Liming Luke Chen, Chris D. Nugent, and José

Bravo, editors, Ambient Assisted Living and Daily Activities - 6th International

Work-Conference, IWAAL 2014, Belfast, UK, December 2-5, 2014. Proceedings,

volume 8868 of Lecture Notes in Computer Science, pages 91–98. Springer, 2014.

[94] Oresti Baños, Claudia Villalonga, Rafael García, Alejandro Saez, Miguel Damas,

Juan Holgado-Terriza, Sungyong Lee, Hector Pomares, and Ignacio Rojas. De-

sign, implementation and validation of a novel open framework for agile develop-

ment of mobile health applications. BioMedical Engineering OnLine, 14:S6, 08

2015.

[95] Satya P. Singh, Aimé Lay-Ekuakille, Deepak Gangwar, Madan Kumar Sharma,

and Sukrit Gupta. Deep convlstm with self-attention for human activity decoding

using wearables, 2020.

[96] Mi Zhang and Alexander A. Sawchuk. USC-HAD: a daily activity dataset for

ubiquitous activity recognition using wearable sensors. In Anind K. Dey, Hao-

Hua Chu, and Gillian R. Hayes, editors, The 2012 ACM Conference on Ubiqui-

tous Computing, Ubicomp ’12, Pittsburgh, PA, USA, September 5-8, 2012, pages

1036–1043. ACM, 2012.

[97] Chen Chen, Roozbeh Jafari, and Nasser Kehtarnavaz. UTD-MHAD: A mul-

timodal dataset for human action recognition utilizing a depth camera and a

wearable inertial sensor. In 2015 IEEE International Conference on Image Pro-

cessing, ICIP 2015, Quebec City, QC, Canada, September 27-30, 2015, pages

168–172. IEEE, 2015.

https://www.hdfgroup.org/solutions/hdf5/
https://www.hdfgroup.org/solutions/hdf5/
http://www.h5py.org

BIBLIOGRAPHY 85

[98] Barbara Bruno, Fulvio Mastrogiovanni, and Antonio Sgorbissa. Wearable inertial

sensors: Applications, challenges, and public test benches. IEEE Robot. Automat.

Mag., 22(3):116–124, 2015.

[99] Olivier Grisel, Andreas Mueller, Lars, Alexandre Gramfort, Gilles Louppe, Peter

Prettenhofer, Mathieu Blondel, Vlad Niculae, Joel Nothman, Arnaud Joly, Jake

Vanderplas, manoj kumar, Hanmin Qin, Thomas J Fan, Nelle Varoquaux, Robert

Layton, Loïc Estève, Jan Hendrik Metzen, Nicolas Hug, Noel Dawe, Guillaume

Lemaitre, Adrin Jalali, Rajagopalan (Venkat) Raghav, Johannes Schönberger,

Roman Yurchak, Wei Li, Clay Woolam, Kemal Eren, Tom Dupré la Tour, and

Eustache. scikit-learn/scikit-learn: scikit-learn 0.23.0, May 2020.

[100] Jessica Sena and William Robson Schwartz. Human activity recognition based on

wearable sensors using multiscale dcnn ensemble. In Anais Estendidos da XXXII

Conference on Graphics, Patterns and Images, pages 112–118. SBC, 2019.

[101] Michael Waskom, Olga Botvinnik, Joel Ostblom, Maoz Gelbart, Saulius

Lukauskas, Paul Hobson, David C Gemperline, Tom Augspurger, Yaroslav

Halchenko, John B. Cole, Jordi Warmenhoven, Julian de Ruiter, Cameron Pye,

Stephan Hoyer, Jake Vanderplas, Santi Villalba, Gero Kunter, Eric Quintero,

Pete Bachant, Marcel Martin, Kyle Meyer, Corban Swain, Alistair Miles, Thomas

Brunner, Drew O’Kane, Tal Yarkoni, Mike Lee Williams, Constantine Evans,

Clark Fitzgerald, and Brian. mwaskom/seaborn: v0.10.1 (april 2020), April

2020.

[102] Hyun-Jun Kim, Mira Kim, Sun-Jar Lee, and Young S. Choi. An analysis of

eating activities for automatic food type recognition. In Proceedings of The 2012

Asia Pacific Signal and Information Processing Association Annual Summit and

Conference, pages 1–5, 2012.

[103] Netron - a viewer for neural network, deep learning and machine learning models.

https://github.com/lutzroeder/Netron. Accessed: 2020-05-15.

[104] Yuqing Chen and Yang Xue. A deep learning approach to human activity recog-

nition based on single accelerometer. In 2015 IEEE International Conference on

Systems, Man, and Cybernetics, pages 1488–1492, 2015.

[105] Cagatay Catal, Selin Tufekci, Elif Pirmit, and Guner Kocabag. On the use of

ensemble of classifiers for accelerometer-based activity recognition. Applied Soft

Computing, 46, 01 2015.

[106] Wenchao Jiang and Zhaozheng Yin. Human activity recognition using wearable

sensors by deep convolutional neural networks. In Proceedings of the 23rd ACM

https://github.com/lutzroeder/Netron

BIBLIOGRAPHY 86

International Conference on Multimedia, MM ’15, page 1307–1310, New York,

NY, USA, 2015. Association for Computing Machinery.

[107] Sojeong Ha, Jeong-Min Yun, and Seungjin Choi. Multi-modal convolutional

neural networks for activity recognition. In 2015 IEEE International Conference

on Systems, Man, and Cybernetics, pages 3017–3022, 2015.

[108] Sojeong Ha and Seungjin Choi. Convolutional neural networks for human ac-

tivity recognition using multiple accelerometer and gyroscope sensors. In 2016

International Joint Conference on Neural Networks (IJCNN), pages 381–388,

2016.

Appendix A

Figure A.1: WaveGlove wiring diagram

87

APPENDIX A 88

Figure A.2: A sufficiently long cable separates the glove and the rest of the wiring.

Components are enclosed in a carton box with a removable lid, offering protection from

the environment.

APPENDIX A 89

Hand swipe left

Hand swipe right

Pinch closer

Pinch away

Thumb double tap

Figure A.3: First five of the gestures in the WaveGlove-multi gesture vocabulary (the

arrows are used for clarification and are not present during experiments).

APPENDIX A 90

Ungrab

Page flip

Peace

Metal

Grab

Figure A.4: The other half of the gestures in the WaveGlove-multi gesture vocabulary

(the arrows are used for clarification and are not present during experiments).

APPENDIX A 91

Figure A.5: First slides from the tutorial recording session. In the top left, we ask the

subject for a name and provide basic slide advancement instructions. Top right slides

provides further instructions on how the session will progress.

The slide at the bottom serves as as the first contact of a subject with the actual

recording - all the controls are explained and a chance to freely test them is provided.

During recording, the live signal is shown (upper part of the window - accelerations

and angular velocities below them), an animation or picture instructing on the gesture,

as well as the already recorded instances and their downsampled plots. This helps the

subject validate whether they did record the gesture correctly.

Also note the small progressbar at the top of the window showing the overall progress

throughout a recording session.

APPENDIX A 92

Figure A.6: Top two windows show recording a gesture (Right) from WaveGlove-single

and the progressbar that is present between recording various gesture classes. In the

middle a Thumb double tap gesture is being recorded. At the bottom, the subject

mistakenly pressed space twice and recorded erroneous gestures of length 3 and 0.

They are able to reselect the boxes (green border) and re-perform the gesture.

Appendix B

(a) Locations of the seven IMUs. (b) Locations of the twelve accelerometers.

(c) Custom jacket housing the sen-

sors.

(d) Top-down view of the environment.

Figure B.1: Further information related to the creation of the OPPORTUNITY

dataset.

93

APPENDIX B 94

subject101 subject102 subject103 subject104 subject105 subject106 subject107 subject108 subject109 Sum Nr. of subjects

 1 – lying 271.86 234.29 220.43 230.46 236.98 233.39 256.1 241.64 0 1925.15 8

 2 – sitting 234.79 223.44 287.6 254.91 268.63 230.4 122.81 229.22 0 1851.8 8

 3 – standing 217.16 255.75 205.32 247.05 221.31 243.55 257.5 251.59 0 1899.23 8

 4 – walking 222.52 325.32 290.35 319.31 320.32 257.2 337.19 315.32 0 2387.53 8

 5 – running 212.64 92.37 0 0 246.45 228.24 36.91 165.31 0 981.92 6

 6 – cycling 235.74 251.07 0 226.98 245.76 204.85 226.79 254.74 0 1645.93 7

 7 – Nordic walking 202.64 297.38 0 275.32 262.7 266.85 287.24 288.87 0 1881 7

 9 – watching TV 836.45 0 0 0 0 0 0 0 0 836.45 1

 10 – computer work 0 0 0 0 1108.82 617.76 0 687.24 685.49 3099.31 4

 11 – car driving 545.18 0 0 0 0 0 0 0 0 545.18 1

 12 – ascending stairs 158.88 173.4 103.87 166.92 142.79 132.89 176.44 116.81 0 1172 8

 13 – descending stairs 148.97 152.11 152.72 142.83 127.25 112.7 116.16 96.53 0 1049.27 8

 16 – vacuum cleaning 229.4 206.82 203.24 200.36 244.44 210.77 215.51 242.91 0 1753.45 8

 17 – ironing 235.72 288.79 279.74 249.94 330.33 377.43 294.98 329.89 0 2386.82 8

 18 – folding laundry 271.13 0 0 0 0 217.85 0 236.49 273.27 998.74 4

 19 – house cleaning 540.88 0 0 0 284.87 287.13 0 416.9 342.05 1871.83 5

 20 – playing soccer 0 0 0 0 0 0 0 181.24 287.88 469.12 2

 24 – rope jumping 129.11 132.61 0 0 77.32 2.55 0 88.05 63.9 493.54 6

 Labeled total 4693.07 2633.35 1743.27 2314.08 4117.97 3623.56 2327.63 4142.75 1652.59 27248.27

 Total 6957.67 4469.99 2528.32 3295.75 5295.54 4917.78 3135.98 5884.41 2019.47 38504.91

Table B.1: Distribution of activities among test subjects in the PAMAP2 dataset

(values shown in seconds).

(a) Locations of the 20 sensors

on the arms and body.

(b) Desription of the ten car maintenance activi-

ties performed.

Figure B.2: Skoda Mini Checkpoint dataset information. Ten sensors were placed

around the subjects right arm, nine sensors were placed on the left arm and one sensor

was placed on the left hip.

APPENDIX B 95

Figure B.3: Class distribution of the used datasets.

APPENDIX B 96

Figure B.4: Length distribution of the segmented samples.

Appendix C

The acquired datasets, the WaveGlove firmware and the code of the recording frame-

work can be found on the attached storage medium.

Alternatively, these resources are published online:

• The acquired and used datasets are available at:

https://zenodo.org/record/3831958

• The recording framework is available at:

https://github.com/Zajozor/gesture

• The implementation of the models available at:

https://github.com/Zajozor/waveglove

97

https://zenodo.org/record/3831958
https://github.com/Zajozor/gesture
https://github.com/Zajozor/waveglove

	Introduction
	Related work
	Classical machine learning
	Preprocessing and quantization
	Feature extraction
	Windowing
	Classification
	Classifier ensembles

	Deep learning
	Convolutional networks
	Recurrent networks
	Attention mechanism and transformers

	Sensor selection and placement

	Novel dataset acquisition
	WaveGlove prototype
	Glove-like wearables
	Hardware properties
	Firmware

	Gesture vocabulary
	Dataset WaveGlove-single
	Dataset WaveGlove-multi

	Recording framework
	Experiment setup
	Qualitative dataset factors

	Datasets for experiments
	Preprocessing datasets
	Non-overlapping semi-uniform length windowing

	Dataset overview
	WaveGlove-single and WaveGlove-multi datasets
	uWave dataset
	OPPORTUNITY dataset
	PAMAP2 dataset
	Skoda Mini Checkpoint dataset
	MHEALTH dataset
	Dataset summary

	Externally preprocessed dataset overview

	Classification
	Baseline methods
	Deep learning methods
	Baseline deep neural networks
	LSTM networks
	DeepConvLSTM networks
	Transformer-based self-attention network

	Results summary
	Ablation study on the WaveGlove datasets

	Conclusions
	Appendix A
	Appendix B
	Appendix C

