
Efficient Techniques for Program Performance Analysis
Jiří Pavela Adam Rogalewicz

Brno University of Technology, Faculty of Information Technology

Motivation

Program Performance Analysis is vital for detection and
localization of performance bugs within a program.
Similarly to functional program testing, performance
should ideally be analyzed after every major change of
the source code, e.g., commits in the Git terminology.
Large codebases with hundreds of thousands of LoC
(Lines of Code), thousands of functions and complicated,
time-consuming compilation process pose a challenge to
continuous automated performance analysis.
Specifically, the problem lies in either (a) enormous time
and memory overhead when all instrumentation locations
are profiled or (b) manually selecting the sufficient set of
locations to ensure fast but crude analysis.

Goal of the Thesis
Automated selection of the appropriate subset of avail-
able instrumentation points IPi ⊆ IP in order to dimin-
ish the overhead and avoid the need for manual filtering
while still keeping sufficient precision and granularity of
the profiling data.

Perun Framework

Minor Versions

Major Versions

Code Changes
(.git) (.perun)

Performance Profiles

Data Visualizations

Statistics

Functionality Performance
Project

Perun is an open-source lightweight Performance Version
System that manages, analyzes and visualizes perfor-
mance profiles of a program.
Profiling data are obtained via Collectors: modules built
upon various instrumentation frameworks (e.g. System-
Tap or eBPF) that can dynamically inject instrumentation
probes to executable files. Thus, there is no need for pro-
gram recompilation or project source code!

Proposed Optimization Techniques

We designed novel optimization techniques based on com-
bination of static and dynamic analyses in the areas of (1) Se-
mantic information, (2) Syntactic information, (3) Recency and
(4) Profiling process. We propose the following methods:

1. Static Baseline exploits existing formal static analysis of
resource bounds to filter out non-complex instrumentation
points (e.g., functions with constant complexity).

2. Dynamic Baseline leverages metrics gathered from pre-
vious profiling runs to filter non-complex instrumentation
points that cause the most profiling overhead.

3. Call Graph Shaping is a family of static analysis methods
that prune instrumented functions based on the structure
of a program Call Graph.

4. Diff Tracing exploits the Call Graph, Control Flow Graph
and deep integration of Perun and VCS to instrument
only recently changed code.

Block   0x022088
0x00021d2f:   movsxd rax,  dword ptr  [r14 + 0xb4] 0x00022088:   xor eax,  eax

0x0002208a:   jmp 0x21d36
Block   0x021d2f

HEAD~20

HEAD

Block   0x022837
0x00022837:   movsxd rax,  dword ptr  [r15 + 0xb4]
0x0002283e:   test        r12,  r12
0x00022841:   je           0x2299b

Block   0x022990
0x00022990:   xor  eax,  eax
0x00022992:   test r12,  r12
0x00022995:   jne  0x22847

6. Dynamic Sampling estimates and iteratively refines how
often the probes generate performance data.

7. Timed Sampling is similar to Dynamic Sampling, however,
the sampling is triggered in specific time intervals.

8. Dynamic Probing measures the overhead incurred by the
probes at run-time and dynamically disables or enables
them during the profiling.

Furthermore, we designed the methods such that they can
be arbitrarily combined together into pipelines. Three
pipelines were pre-configured for a better user-experience:
(1) Basic, (2) Advanced and (3) Full.

Experimental Evaluation

Total of 37 experiment cases per 4 different configurations
and 2 projects (CPython 3.8 interpreter: 500000+ C/C++
LoC, ≈ 6400 functions, CCSDS 122.0 image compression
standard: 10000+ C LoC, 164 functions) were performed.
Following barplots show only a small subset of CPython mea-
sured data corresponding to certain optimization methods.

no
-o

pt
cg

:m
ds

:d
:1

ds
:s:

1
db

:s:
1

db
:r:

1 p:
f

cg
:p p:
a

cg
:t-

s
dt

:l dt
cg

:t-
r

p:
b

Experiment Cases

0

5000

Fu
nc

ti
on

 C
ou

nt Probe Locations vs Probe Locations Reached
Probe Locations Probe Locations Reached

no
-o

pt
cg

:m
ds

:d
:1

ds
:s:

1
db

:s:
1

db
:r:

1 p:
f

cg
:p p:
a

cg
:t-

s
dt

:l dt
cg

:t-
r

p:
b

Experiment Cases

0

1000

Ti
m

e 
[s

]

Profiling Time vs Collect Phase Time vs Program Run Time
Profiling Time
Collect Phase Time

Program Run Time

Conclusion

We were able to achieve a significant degree of optimiza-
tion for most of the identified Optimization Criteria (up
to hundreds of % of profiling speedup and data size reduc-
tion while not severely compromising precision). Thus, we
are now able to analyze even projects that would otherwise
be infeasible due to the enormous time ormemory overhead.

In the future, we plan to leverage the proposedmethods to (a)
optimize other dynamic profiling tools (e.g., Valgrind) and (b)
efficiently hunt performance bugs and degradations in vari-
ous real-world projects of all sizes.

The presented work was supported by the ECSEL AQUAS: ”Aggregated Quality
Assurance for Systems” and Czech Science Foundation SNAPPY: ”Scalable
Techniques for Analysis of Complex Properties of Computer Systems” projects.


