
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 5, 2020

ASSIGNMENT OF MASTER�S THESIS

 Title: Backreferences in practical regular expressions

 Student: Martin Hron

 Supervisor: Ing. Ondřej Guth, Ph.D.

 Study Programme: Informatics

 Study Branch: Computer Science

 Department: Department of Theoretical Computer Science

 Validity: Until the end of summer semester 2020/21

Instructions

Make a thorough research on existing algorithms for regular expression matching.
Focus on regular expressions with backreferences.
Upon agreement with the supervisor, implement a selected method based on memory automata defined in
[1].
Compare this approach with existing regex matching tools.

References

[1] Schmid, M. Characterising REGEX languages by regular languages equipped with factor-referencing. In: Information
and Computation. Volume 249, August 2016. ISSN 0890-5401. DOI 10.1016/j.ic.2016.02.003.

Master’s thesis

Backreferences in practical regular

expressions

Bc. Martin Hron

Department of Theoretical Computer Science

Supervisor: Ing. Ondřej Guth, Ph.D.

May 27, 2020

Acknowledgements

I would like to thank my supervisor Ing. Ondřej Guth Ph.D. for guiding this
thesis and for providing all the valuable feedback and helpful advice. I would
also like to thank my family for their support.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In accor-
dance with Article 46 (6) of the Act, I hereby grant a nonexclusive authoriza-
tion (license) to utilize this thesis, including any and all computer programs
incorporated therein or attached thereto and all corresponding documentation
(hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work in any
way (including for-profit purposes) that does not detract from its value. This
authorization is not limited in terms of time, location and quantity. However,
all persons that makes use of the above license shall be obliged to grant a
license at least in the same scope as defined above with respect to each and
every work that is created (wholly or in part) based on the Work, by modi-
fying the Work, by combining the Work with another work, by including the
Work in a collection of works or by adapting the Work (including translation),
and at the same time make available the source code of such work at least in a
way and scope that are comparable to the way and scope in which the source
code of the Work is made available.

In Prague on May 27, 2020

Czech Technical University in Prague

Faculty of Information Technology

c© 2020 Martin Hron. All rights reserved.

This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hron, Martin. Backreferences in practical regular expressions. Master’s thesis.
Czech Technical University in Prague, Faculty of Information Technology,
2020.

Abstrakt

Zpětné reference (odkazy) jsou rozš́ı̌reńı regulárńıch výraz̊u bežně podporo-
vané v dnešńıch nástroj́ıch. Regulárńı výrazy se zpětnými referencemi maj́ı
zvýšenou vyjadřovaćı śılu, ale jejich vyhledáváńı (matching) je NP-úplné. Tato
práce poskytuje přehled existuj́ıćıch př́ıstup̊u pro vyhledáváńı regulárńıch
výraz̊u se zpětnými referencemi a také teoretického výzkumu na toto téma.
V rámci této práce byl implementován nástroj pro vyhledáváńı regulárńıch
výraz̊u založený na modelu pamět’ových automat̊u (memory automata). Vy-
hledáváńı regulárńıch výraz̊u s počtem zpětných referenćı na r̊uzné skupiny
omezených konstantou pomoćı pamět’ových automat̊u má polynomiáńı časovou
složitost. Byla implementována daľśı nedávno zveřejněná metoda založená na
pamět’ových automatech, která poskytuje polynomiálńı složitost i pro výrazy
s neomezeným počtem zpětných referenćı splňuj́ıćıch jistou vlastnost. V rámci
této práce byl navržen a implementován alternativńı algoritmus pro výpočet
této vlastnosti. Model pamět’ového automatu byl dále rozš́ı̌ren pro podporu
kvantifikátor̊u omezeného počtu opakováńı a daľśı rozš́ı̌reńı byla implemen-
tována. Experimentálńı vyhodnoceńı ukázalo, že implementovaný nástroj je
mnohem odolněǰśı v̊uči katastrofickému backtrackováńı než existuj́ıćı imple-
mentace podporuj́ıćı zpětné reference. Žádný z testovaných útok̊u přes algo-
ritmickou složitost nevyvolal znatelné zpomaleńı.

Kĺıčová slova Zpětné reference, Regulárńı výrazy, Regex, Pamět’ové auto-
maty, Implementace regulárńıch výraz̊u

vii

Abstract

Backreferences are an extension of regular expressions commonly supported
in modern tools. Regular expressions with backreference have an increased
expressive power but their matching problem is NP-complete. This work
researches existing approaches for regular expression matching with focus on
backreferences, and also provides an overview of theoretical work on the topic.
As a part of this thesis, a matching tool based on computational model called
memory automata was implemented. Matching patterns with number of back-
references to different groups limited by a constant using memory automata
has polynomial time complexity. An additional recently published technique
based on memory automata was also implemented, which provides polynomial
complexity even for a subset of patterns with unbounded number of backrefer-
ences restricted by a certain property. As a part of this thesis, an alternative
algorithm to compute this property was proposed and implemented. The
memory automaton model was also extended to support counting constraints,
and other common extensions were implemented. Experimental evaluation
showed that the implemented tool is much more resistant to catastrophic
backtracking when compared to existing implementations with support for
backreferences. No tested algorithmic complexity attack triggered significant
slowdown.

Keywords Backreferences, Regular expressions, Regex, Memory automata,
Regular expressions implementation

viii

Contents

Introduction 1

1 Preliminaries 3
1.1 Basic notation . 3
1.2 Alphabet, string and language 3
1.3 Finite automata . 5
1.4 Other automata models . 6
1.5 Language hierarchy . 6
1.6 Regular expressions . 7
1.7 Other preliminaries . 7

2 Regular expressions with backreferences 9
2.1 Introduction . 9
2.2 Formalizing backreferences . 10

2.2.1 Early formalization using variables 10
2.2.2 Formalization of rewbr with numbered backreferences . 11
2.2.3 Formalizing rewbr via factor-referencing 12

2.3 Properties of the regex language class 14
2.3.1 Relation to other language classes 14
2.3.2 Closure under operations 15

2.4 The regex matching problem 16
2.5 Submatch addressing and searching in text 16
2.6 Other extensions in practical regular expressions 17

2.6.1 Subpattern recursion . 18
2.7 The POSIX standard . 18

3 Regular expression matching algorithms and approaches 21
3.1 Thompson’s algorithm . 21
3.2 Basic approaches . 22

3.2.1 DFA based . 22

ix

3.2.2 NFA based with backtracking 23

3.2.3 NFA based without backtracking 23

3.3 Recursive backtracking . 23

3.3.1 Preventing infinite loops 24

3.3.2 Backreference support 24

3.3.3 Practical implementations 25

3.3.4 Complexity and catastrophic backtracking 25

3.4 Approaches overview . 27

3.4.1 Extending Finite Automata 27

3.4.1.1 Method description 27

3.4.1.2 Multiple capturing groups and backreferences . 29

3.4.2 Polynomial time matching for rewbr subclasses 31

3.4.3 Tagged automata . 33

3.4.4 Tagged NFA with constraints 34

3.4.5 Symbolic register automata 34

3.4.6 Symbolic regex matcher 35

3.4.7 Pattern optimizations 35

3.4.8 Virtual machine approach and JIT compilation 36

3.5 Overview of major implementations 37

3.5.1 Perl Compatible Regular Expressions 37

3.5.2 Java . 38

3.5.3 JavaScript . 38

3.5.4 Oniguruma . 38

3.5.5 Boost regex . 38

3.5.6 ICU Regular Expressions 39

3.5.7 GNU C library and POSIX 39

3.5.8 Hyperscan . 39

3.5.9 TRE . 39

3.5.10 RE2 . 39

4 Memory automata 41

4.1 Memory automaton model . 41

4.2 Memory automata for regex patterns 44

4.2.1 Matching regex using memory automata 45

4.3 Properties of memory automata and relation to regex languages 46

4.4 Active variable degree . 47

4.4.1 Matching regex with bounded active variable degree . . 50

4.4.2 Strong active variable degree 51

4.4.3 Relation to variable distance 51

4.5 Deterministic regex . 53

4.6 Memory determinism . 55

5 Implementation 57

5.1 Memory automata for practical regular expressions 57

x

5.1.1 Matching algorithms . 58
5.1.2 Configurations representation and implementing memories 59
5.1.3 Computing active variable sets 60
5.1.4 Matching patterns with bounded active variable degree 63
5.1.5 Extending memory automata for counting constraints . 63

5.2 Solution architecture and implementation details 71
5.2.1 Supported features . 73
5.2.2 Testing . 74
5.2.3 Source code publication and licensing 75

6 Experimental evaluation 77
6.1 Methodology . 77

6.1.1 Datasets . 78
6.1.1.1 Inputs . 78

6.1.2 Platform specifications 79
6.2 Comparison of algorithms and options provided by mfa-regex . 79

6.2.1 Comparison of matching algorithms 79
6.2.2 Active variable degree and optimizing memories 82

6.3 Comparison with other implementations 85
6.3.1 Susceptibility to catastrophic backtracking 87

Conclusion 91

Bibliography 95

A Acronyms 103

B Documentation for mfa-regex 105

C Datasets used for experimental evaluation 113

D Contents of enclosed CD 117

xi

List of Figures

3.1 NFA resulting from Thompson’s incremental construction 26
3.2 Example of an extended NFA . 28
3.3 Extended NFA for pattern with multiple capturing groups 30
3.4 Overview of PCRE-JIT engine . 37

4.1 MFA(1) accepting language {anban | n ∈ N0} 43
4.2 Illustration of regex to memory automaton conversion 45
4.3 MFA(1) accepting language {ancancbmcbm | n, m ∈ N0} 48
4.4 MFA(3) for regex pattern α = (x1{a

+} ∨ x2{b})x2(x3{a
∗}x3)+x1 . 49

4.5 Relation between active variable degree and variable distance . . . 52

5.1 MFA construction for pattern of the form α∗ 58
5.2 Construction of CMFA for cregex pattern 68
5.3 Example of CMFA . 71
5.4 Class diagram of the mfa-regex implementation 72

6.1 Comparison of matching times for different optimizations 83
6.2 Time to match pattern using backtracking with and without the

optimization based on active variable degree 84
6.3 Comparison of regular expression engines on lingua-franca and

lingua-franca-backref datasets 88
6.4 Time to match pattern “(?:.*a)+” on input anb 88

xiii

List of Tables

6.1 Comparison of matching algorithms available in mfa-regex on regexlib

patterns . 80
6.2 Comparison of matching algorithms on lingua-franca dataset . . 81
6.3 Average automaton construction times on lingua-franca-backref

dataset . 82
6.4 Tested libraries and their versions 85
6.5 Comparison of engines on regexlib patterns 86
6.6 Susceptibility of libraries to catastrophic backtracking tested on

inputs from catastrophic-backtrack dataset 89

C.1 Patterns and inputs of the regexlib dataset 114
C.2 First 15 patterns of the lingua-franca dataset 115
C.3 List of patterns in the lingua-franca-backref dataset 115
C.4 Patterns and inputs of the catastrophic-backtrack dataset . . . 116

xv

Introduction

Regular expressions are a well established tool for description of regular lan-
guages in formal language theory. They are also of high practical relevance
and their variants are used in wide array of applications, including text pro-
cessing, search engines, data validation, databases, lexical analysis and simple
parsing. For instance, many text editing applications allow their users to use
regular expressions for tasks such as searching and replacing in text. Regular
expressions are also used by various UNIX tools and utilities (for example
grep, AWK and sed). Moreover, most modern programming languages sup-
port regular expressions, either as core functionality or via additional libraries.

While the theoretical concept has not changed much since its introduction,
the practical regular expressions, as implemented in tools and libraries, have
gained many extensions over time. Some of these extensions were merely
added to simplify ease of use, serving only as a “syntactic sugar”, and do
not modify the expressive power and matching complexity. However, one
extension – addition of the so called backreferences, which are now supported in
most modern implementations – significantly increases the expressive power of
practical regular expressions. Backreferences are a construct used to reference
text matched by some previous part of pattern. They can be used to identify
a repeated character or substring in the input text.

The most interesting problem for applications of regular expressions is the
matching problem, i.e. to decide whether an input text belongs to the language
described by given pattern. It can be shown, that the matching problem of
regular expressions extended with backreferences is NP-complete. The added
expressive power thus comes at the cost of significant increase of matching
complexity of such patterns.

This work explores various techniques addressing this problem and reviews
approaches to practical regular expressions matching in general. Some of
the presented methods come with polynomial matching algorithms for certain
subclasses of the problem.

1

Introduction

An interesting model of computation for regular expressions with back-
references are memory automata, which were first introduced in [1]. Recent
works on memory automata [2, 3] present number of polynomial matching
techniques, for matching regular expressions with backreferences under cer-
tain restrictions. Therefore, it may be worthwile to implement a regex match-
ing tool using memory automata and also employing selected improvements
described in the recent articles.

Goal

The goal of this thesis is to research algorithms used for practical regular
expressions matching, with strong focus on handling the backreferences, and
then also implement regular expression matching tool based on memory au-
tomata. Then compare this approach with other existing regular expression
implementations.

Organization of the thesis

First chapter provides the theoretical preliminaries needed for topics dealt with
in this thesis. The second chapter introduces the concept of backreferences
and provides an overview of different formalization of this regular expression
extension. Overview of existing research into the theoretical properties of
such patterns is also presented. The regex patterns, which are described by
memory automata, are introduced in detail and their properties are described.
Additionally, other common extensions found in practical regular expressions
and the POSIX standard are discussed in the chapter.

The third chapter presents a research of existing approaches to regular
expression matching, with focus on regular expressions with backreferences.
A brief overview of existing implementations is provided at the end of the
chapter.

The fourth chapter deals with the memory automata. The automaton
model is introduced and its properties are outlined. Additionally, the recently
published matching methods based on memory automata are discussed.

Chapter 5 describes implementation of the regular expression library based
on memory automata that was created as part of this thesis. Modifications
to the memory automaton model for practical regular expressions, especially
for support of the counting constraints extension is presented. Automaton
representation, construction, and the implemented matching algorithms are
described.

Finally, Chapter 6 presents the results of experimental evaluation done on
the implemented library. Comparison to other regular expression matching
tools is provided.

2

Chapter 1

Preliminaries

This chapter provides an overview of mathematical preliminaries needed for
topics covered in this work. The used notation is introduced and basic defini-
tions of major concepts, such as the various computational models (automata)
and their languages, are provided. The (classical) regular expressions, which
are central to the subject of the thesis, are also defined in this chapter.

1.1 Basic notation

Let N = {1, 2, 3, . . .} and N0 = {0, 1, 2, 3, . . .}. For k ∈ N, [k] = {1, 2, . . . , k}.
For any set A, its power set is denoted by P(A), where P(A) = {S | S ⊆ A}.

The standard notation for intervals is used, [a, b] = {x | a ≤ x ≤ b},
(a, b) = {x | a < x < b}, [a, b) = {x | a ≤ x < b}, and (a, b] = {x | a < x ≤ b}.

1.2 Alphabet, string and language

Definition 1.1 (alphabet). An alphabet is a finite, nonempty set (commonly
denoted by Σ). Elements of an alphabet are called symbols.

An alphabet of size 2 is called binary alphabet, and usually consists of {0,1}.
An alphabet with only one symbol is called an unary alphabet. △

Definition 1.2 (string). Finite sequence of symbols, where each symbol is an
element of alphabet Σ, is called a string over alphabet Σ.

For a string w, the length of the string w, denoted |w|, is the number of
symbols in w. Additionally, |w|a denotes the number of occurrences of symbol
a in string w. Symbol ε denotes an empty string (i.e. string of length zero).
For a string w and i ∈ [|w|], w[i] denotes its i-th symbol.

For a symbol a ∈ Σ and k ∈ N, ak denotes string consisting of k repetitions
of the symbol a.

3

1. Preliminaries

For two strings u = u1. . .un and w = w1. . .wm, u·w (or simply uw) denotes
their concatenation, that is the string u1. . .unw1. . .wm.

Factor (or substring) of a string w = w1. . .wn is any string wi. . .wj , where
1≤ i≤ j≤n. If i = 1 then it is also called a prefix, if j = n it is called a
suffix. △

Definition 1.3 (language). A language L over an alphabet Σ is a set of strings
over Σ.

For an alphabet Σ, the language containing all strings over Σ is denoted Σ∗.
Language containing all non-empty strings is denoted Σ+, therefore it holds
that Σ∗ = Σ+ ∪ {ε}. For any alphabet Σ, we also set Σε = Σ ∪ {ε}.

For any language descriptor1 D, the language described by D will be de-
noted using L(D). △

Definition 1.4 (operations on languages). Let Σ1 and Σ2 be alphabets. For
two languages L1 over Σ1 and L2 over Σ2, the following binary operations are
defined:

• union, intersection and difference operations are defined using the re-
spective standard set operation (for example the union is a language
L1 ∪ L2 = {w | w ∈ L1 ∨ w ∈ L2} over alphabet Σ1 ∪ Σ2),

• concatenation operation as L1 · L2 = {u · w | u ∈ L1 ∧ w ∈ L2} over
alphabet Σ1 ∪ Σ2.

Additionally, for a language L over alphabet Σ, the following unary operations
are defined:

• n-th power of a language recursively as Ln = Ln−1 · L, with L0 = {ε},

• iteration (or Kleene star) operation as L∗ =
∞⋃

n=0
Ln and positive iteration

L+ =
∞⋃

n=1
Ln,

• and complement of a language as L = Σ∗ \ L over alphabet Σ.

△

1In the context of this thesis, language descriptors can be e.g. deterministic and nonde-
terministic finite automata, memory automata, regular expressions and their extensions.

4

1.3. Finite automata

1.3 Finite automata

Definition 1.5 (nondeterministic finite automaton). A nondeterministic fi-
nite automaton (or NFA for short) is a 5-tuple (Q, Σ, δ, q0, F), where:

• Q is a finite set of states,

• Σ is an input alphabet,

• δ : Q × (Σ ∪ {ε}) → P(Q) is a transition function. Members of δ are
called transitions, when p ∈ δ(q, a) (where a ∈ Σε), such transition is
called a-transition (specially ε-transition for a = ε). This transition can
be denoted using q

a
−→δ p, or just q

a
−→ p when context is clear.

• q0 ∈ Q is a start state,

• F ⊆ Q is a set of final (or accepting) states.

△

Definition 1.6 (configuration of NFA). Configuration of a nondeterministic
finite automaton M = (Q, Σ, δ, q0, F) on input w ∈ Σ∗ are pairs (q, u), where
q ∈ Q and u is a (possibly empty) suffix of w. The configuration (q0, w) is
called the start (or initial) configuration of M on w. A configuration (q, ε),
where q ∈ F , is called an accepting configuration. △

Definition 1.7 (computation of NFA, language of NFA). For a nondeter-
ministic finite automaton M = (Q, Σ, δ, q0, F), input w ∈ Σ∗. The transi-
tion relation ⊢M is a relation on the configurations of M on w, such that
(q, u) ⊢M (q′, u′) iff u = au′, where a ∈ Σε and q′ ∈ δ(q, a).

An input w ∈ Σ∗ is accepted by M if (q0, w) ⊢∗
M (q, ε), where q ∈ F (and

⊢∗
M is the reflexive-transitive closure of ⊢M). If an input is not accepted, we

say it was rejected by M . A sequence of configurations (q0, w) ⊢M (q1, w1) ⊢M

. . . ⊢M (qn, wn) is called a computation of M on w.

The language L(M) accepted by NFA M is defined as the set of all strings
accepted by M , i.e. L(M) = {w | w ∈ Σ∗,∃q ∈ F , (q0, w) ⊢∗

M (q, ε)} △

By restricting the transition function to always return exactly one next
state for any input symbol and disallowing ε-transitions, we gain the deter-
ministic finite automaton.

Definition 1.8 (deterministic finite automaton). A deterministic finite au-
tomaton (or DFA for short) is a 5-tuple (Q, Σ, δ, q0, F), where:

• Q is a finite set of states,

5

1. Preliminaries

• Σ is an input alphabet,

• δ : Q× Σ→ Q is a transition function

• q0 ∈ Q is a start state,

• F ⊆ Q is a set of final (or accepting) states.

△

The semantics of DFA and its accepted language are defined similarly
as for NFA. For any NFA, there exists a DFA accepting the same language,
therefore the sets of languages that can be accepted by these two automaton
models are equivalent [4].

1.4 Other automata models

Other, more expressive automata models are push-down automata and Turing
machines, see [4] for their definitions.

A restricted form of Turing machine allowing to operate only on a tape
of limited size (instead of infinite tape) is called a linear bounded automa-
ton (LBA for short). It was first defined in [5], where only its determinis-
tic version is introduced. The nondeterministic variant was established later
in [6]. In this work, the term linear bounded automata (LBA) refers to the
more general nondeterministic variant.

1.5 Language hierarchy

Definition 1.9 (language types). We say that a formal language L is:

• Recursively enumerable (type 0), if there exists a Turing machine ac-
cepting it.

• Context-sensitive (type 1), if there exists a linear bounded automaton
accepting it.

• Context-free (type 2), if there exists a pushdown automaton accepting
it.

• Regular (type 3), if there exists a finite automaton accepting it.

△

6

1.6. Regular expressions

1.6 Regular expressions

Regular expressions are another formalism for description of regular languages
originally introduced by S. C. Kleene [7]. To differentiate them from the ex-
tensions that will be introduced later, they are referred to as classical regular
expressions throughout the text. Conversely, the extensions, i.e. the variants
of regular expressions implemented in real-world tools and libraries, will gen-
erally be referred to as practical regular expressions, the various dialects and
formalisms will be discussed later.

Definition 1.10 (classical regular expression). Let Σ be an alphabet, then
the set REΣ of (classical) regular expressions over Σ, and for each α ∈ REΣ

the described regular language L(α), are defined recursively by the following
rules:

1. For every a ∈ Σε, a ∈ REΣ and L(a) = {a}.

2. ∅ ∈ REΣ and L(∅) = ∅.

3. For every α, β ∈ REΣ:

a) (α · β) ∈ REΣ and L((α · β)) = L(α) · L(β),

b) (α ∨ β) ∈ REΣ and L((α ∨ β)) = L(α) ∪ L(β),

c) (α)+ ∈ REΣ and L((α)+) = L(α)+,

d) (α)∗ ∈ REΣ and L((α)∗) = L(α)∗.

Note, that the definition uses operations on languages from Definition 1.4.
△

The set of languages that can be described by classical regular expressions
is exactly the set of regular languages [4].

1.7 Other preliminaries

Various other concepts from algorithmic complexity and formal language the-
ory will be used. Overviews are provided in [8] and [4] respectively.

7

Chapter 2

Regular expressions with

backreferences

This chapter introduces the concept of backreferences in regular expressions.
It is important to note that the terminology is not very standardized. Different
terms such as regex (or REGEX), extended regex, regexp, rewbr and so on
are used for practical regular expressions and their extensions, as well as for
the various formalisms and derived language classes.

From now on, the term regular expressions with backreferences will be
sometimes abbreviated as rewbr. Note that this usage is more general than
e.g. in [9], where it denotes particular concrete variant of regular expressions.
Here, the term will be used to refer to the general concept, the concrete
definitions and their comparison are presented later in this chapter. Overview
of real-world implementations is provided at the end of Chapter 3.

The concept is first introduced informally and illustrated on examples.
Overview of works formalizing rewbr and performing theoretical analysis of
their language classes follows. The definition of regex patterns used for mem-
ory automata is introduced in detail. Theoretical results about the known
properties of the regex language class and its matching problem are also ex-
plored. Then, other extensions (than backreferences) found in practical im-
plementations are overviewed briefly. The POSIX standard and its definition
of regular expressions are also described at the end of the chapter.

2.1 Introduction

The backreference construct in regular expressions allows to match part of
input text previously matched by some subpattern. In most implementations,
pairs of parentheses “(” and “)” are used to mark the subpattern, whose
matched text will be saved and can be referenced (matched again) later. The

9

2. Regular expressions with backreferences

term capturing group is also used as a synonym for the parenthesized subpat-
tern and capturing group contents refers to the part of input text matched by
this subpattern.

The backslash character followed by a number (for instance “\1”) is then
used to reference the text most recently matched by subpattern in the cor-
responding pair of parentheses. Parentheses pairs (and the corresponding
capture groups) are usually given numbers according to the order of the open-
ing (left) parenthesis in the pattern.

Example 2.1. Pattern2 “(a*)b\1” matches strings from context-free lan-
guage L1 = {anban | n ∈ N0}. The “\1” in this pattern is a reference to
contents of the first capture group, that is the part of input most recently
matched by subpattern inside the first pair of parentheses. The subpat-
tern “a*” matches the symbol a any number of times, then the backrefer-
ence “\1” matches the same string again. For instance, the input “aabaa”
gets matched by this pattern, because the first subpattern matches “aa”, then
“b” is matched and then the backreference matches “aa” again. �

Example 2.2. Another example of a more complicated pattern with multiple
backreferences is: “(a+(b*)a)\2(c+)\1\3”. Because parentheses pairs (cap-
ture groups) are numbered based on the order of left opening parenthesis, the
backreference “\2” refers to text matched by subpattern “b*”. The language
described by this pattern is L2 = {ambnabnckambnack | m, k ∈ N, n ∈ N0}. �

There are many variants (dialects) of rewbr in different environments and
programming languages, see [10] and [11] for a good overview of practical
regular expressions and their dialects. The referenced books also contain many
examples of practical usage of rewbr patterns.

2.2 Formalizing backreferences

Several works attempt to formalize practical regular expressions and explore
properties of the resulting language class. This section provides an overview
of rewbr definitions and relationships between them, see also [12] for another
overview. Same as there are differences between how various implementations
match, definitions that were introduced also vary in semantics.

2.2.1 Early formalization using variables

An early attempt to formalize regular expressions with backreferences was
in [9], however the semantics are described only informally. Here, a concept

2For these examples, syntax described in previous paragraphs is used. Such patterns are
valid in common implementations – e.g. Java, PCRE, Python.

10

2.2. Formalizing backreferences

of variables is used. The capturing of a subpattern corresponds to variable
assignment of the form “(α)%vi”, where α is rewbr (subpattern) and vi is a
variable from the set of variable names. The contents of a variable vi is then
referenced using “vi” in the pattern. For instance, the Example 2.1 rewritten
using this syntax would be: “(a*)%v1b v1”, where the text matched by “(a*)”
is first assigned to variable v1 and then recalled later.

Note that the definition in [9] is semantically different from how rewbr
were (informally) described in Section 2.1, where the captured string was
referenced by number of the corresponding parenthesis and there is always
at most one subpattern contained in the k-th parentheses pair. In contrast,
the definition with variables allows any number of variable redefinitions for
different subpatterns. For example, in the pattern “(a*)%v1c v1(b+)%v1 v1”,
variable v1 is first assigned the string matched by “(a*)” subpattern, then
recalled and then later reassigned to the string matched by “(b+)” subpattern
and recalled again with the new value. This pattern thus describes language
{ancanb2m | n ∈ N0, m ∈ N}. Differences between these two approaches are
explored further below after introduction of precise definitions. Note also,
that some implementations support named capturing groups that resemble
variables discussed in this section. However, redefinition of group contents is
usually not allowed, i.e. one name can be associated with at most one capturing
group.

2.2.2 Formalization of rewbr with numbered backreferences

A precise definition of rewbr using parse trees was introduced in [13]. Un-
like the definitions in [9] and [1] (explored later), this definition does not use
variables, but instead it uses numbered backreferences to pairs of parenthe-
ses, much like examples from Section 2.1. As [3] points out, this approach
was likely motivated by the implementations (Perl) at the time, where only
numbered backreferences were supported.

Another noteworthy property of the definition in [13] is that it explicitly
requires the referenced subpattern to be closed – i.e. the closing parenthesis
belonging to the k-th pair of parentheses must precede any backreferences of
the form “\k”. For instance, the pattern “(a*\1)b” is invalid.

Note, that because recursively defining rewbr with the above constraint
seemed impossible in a convenient way [13], another auxiliary definition of
patterns called semi-regex was also introduced. The set of patterns with the
described property was then called extended regex.

The article [13] also provides pumping lemma for languages that can be
described by such extended regex patterns. The authors also prove that the
class of these languages is a proper subset of contex-sensitive languages and
is incomparable with context-free languages. Another article [14] explores

11

2. Regular expressions with backreferences

properties of such languages further and also comes with an improved pumping
lemma that restricts the class of languages recognized by extended regex even
more.

2.2.3 Formalizing rewbr via factor-referencing

Another definition using factor-referencing was introduced in [1] and later used
and expanded upon in works dealing with memory automata such as [3] and [2].
The rewbr patterns defined in these works are called regex, from now on, the
term regex will be used to refer to this variant of rewbr patterns and the term
regex languages will denote the class of languages that can be described by
regex patterns. Since regex are central to memory automata, an exact defini-
tion of their syntax is provided below. See also [3] for the motivation behind
this new definition and discussion of differences from the definition in [13].

The following definition was adapted from the appendix of [2], but [1]
and [3] define the concept similarly.

Definition 2.1 (regex syntax). Let Σ be an alphabet and let X be a finite set
of variables. The set RXΣ,X of regular expressions with backreferences over Σ
and X, or regex for short, is defined recursively as follows:

1. For every a ∈ Σε, a ∈ RXΣ,X and var(a) = ∅.

2. For every α, β ∈ RXΣ,X :

a) (α · β) ∈ RXΣ,X and var((α · β)) = var(α) ∪ var(β),

b) (α ∨ β) ∈ RXΣ,X and var((α ∨ β)) = var(α) ∪ var(β),

c) (α)+ ∈ RXΣ,X and var((α)+) = var(α).

3. For every x ∈ X, x ∈ RXΣ,X and var(x) = {x}.

4. For every α ∈ RXΣ,X and x ∈ X \ var(α), it holds that x{α} ∈ RXΣ,X

and var(x{α}) = var(α) ∪ {x}.

Because it is desirable that regex be able to describe an empty language (so
that it is a proper extension of classical regular expressions), ∅ will also be
allowed as a regex, but occurrence of ∅ as a subpattern in other regex is not
allowed. This rule is present in [3], but it is missing from the definition in [2].
This is likely a mistake in the latter article.

Additionally, α∗ is a shorthand for (α+ ∨ ε), where α ∈ RXΣ,X . Further-
more, the parentheses may be omitted, in that case ‘+’ and ‘∗’ takes priority
over ‘·’, which in turn takes priority over ‘∨’. The ‘·’ may also be omitted,
the absence of explicit operator between elements is called juxtaposition. For
example (a ∨ ((b+) · c)) may be written as a ∨ b+c. △

12

2.2. Formalizing backreferences

Using only3 rules 1 and 2 yields a subset of RXΣ,X that is equal to the
classical regular expressions defined in Section 1.6. For x ∈ X, an expression
of the form x{α} (see rule 4) is called a binding of variable x. An expression x
(from rule 3) is then called a reference to variable x (or also a recall of variable
x). The term occurrence of variable can denote both binding and reference of
variable.

Example 2.3. Some examples of valid regex patterns over Σ = {a, b, c}
and X = {x1, x2} are: α = x1{a

+}bx1, or β = x1{(x2{a
+}bx2 ∨ b+)}cx+

1 .
Additionally, according to the definition of syntax, references to variables may
precede bindings of variable (if any), so a pattern γ = (x1ax1{b

+})+ is also
valid.

On the other hand, because rule 4 (variable binding) does not allow the
variable to also appear inside the bounded subexpression, patterns such as
η = x1{x1{a

+}}, or ν = x1{a
+x1} are not valid regex. �

Now the regex semantics are concisely established here, see [1] for a thor-
ough definition. The definition uses concepts of ref-word and ref-languages,
which will be introduced briefly.

Definition 2.2 (regex semantics). For a finite set of variables X, we define
a set containing pair of opening and closing brackets for each variable as
Γ = {�x, �x| x ∈ X}.

Then, for any α ∈ RXΣ,X , the ref-version of α, denoted αref , is a classical
regular expression defined as the result of recursively replacing all variable
bindings x{β} in α by �x β �x. The ref-language of α is then defined as4

R(α) = L(αref). A string w ∈ R(α) is a ref-word.

For a ref-word w ∈ R(α), the dereference D(w) is defined as w with every
occurrence of any variable x ∈ X replaced by string β, where �x β �x is the
last occurrence of matching �x, �x pair preceding the x that is being replaced.
The brackets are then also omitted from dereference. If there is no preceding
�x, �x pair, x is replaced by ε (ε-semantics, see below).

And finally, for a regex α ∈ RXΣ,X , the language described by α is defined
to be L(αref) = {D(w) | w ∈ R(α)}. △

Thanks to the way regex are defined, all w ∈ R(α) are well-formed with
respect to each pair of brackets (�x, �x for every x ∈ X), and no x occurs inside
the corresponding bracket pair. The above definitions are demonstrated on
following example with pattern corresponding to the one in Example 2.1.

3Along with the rule for ∅ to allow describing an empty language.
4L(αref) is the language described by classical regular expression αref over the alpha-

bet (Σ ∪ X ∪ Γ).

13

2. Regular expressions with backreferences

Example 2.4. For a regex pattern α = x{a∗}bx (where α ∈ RX{a,b},{x}), its
ref-variant is αref = �x a∗ �x b x, where αref is a classical regular expression
over alphabet {a, b, x} ∪ Γ and Γ = {�x, �x}.

Then R(α) = L(αref) = {�x ak �x b x | k ∈ N0} is the ref-language of α.
For instance w = �x aaa �x b x is a ref-word from R(α) and by replacing
x with aaa from inside the preceding brackets pair, we gain its dereference:
D(w) = aaabaaa.

Finally, the language described by regex α is L(α) = {anban | n ∈ N0},
which is equal to the language L1 from Example 2.1. �

As seen from the example, this formalism is similar to the definition using
variables from Section 2.2.1. Much like the definition in [9], this definition also
allows multiple variable redefinitions using different patterns. Another issue
discussed in [3] is how to treat references to undefined variables. For instance,
in regex α = axb+x{a+}, the variable x is referenced before it is assigned a
value. Two natural options for default values of such undefined variables are
ε and ∅, called ε-semantics and ∅-semantics respectively.

Under ∅-semantics, subexpressions with undefined variables will not match,
i.e. they represent an empty language. In some implementations, undefined
variable will cause an error, this behavior can be considered ∅-semantics as
well. The ε-semantics are used in both [13] and [1], as well as in this thesis.
Conversely, the ∅-semantics are used for instance in [9] and [14].

See [12] for detailed comparison of semantics between different definitions
(and also some practical implementations) of rewbr, and for some additional
pumping lemmas for various rewbr language classes.

2.3 Properties of the regex language class

This section deals with properties of languages that can be described by regex
expressions defined in Section 2.2.3. The class of formal languages that can
be described by a regex pattern will be called regex languages.

2.3.1 Relation to other language classes

Trivially, regular languages are a proper subset of regex languages, since any
regular language can be described by a classical regular expression and every
classical regular expression is also a regex. Additionally, regex are clearly more
semantically powerful, Example 2.4 contains a language that is not regular but
there is a regex pattern describing it.

Properties of languages described by a variant of rewbr patterns are ex-
plored in [13]. The main results are that such languages are a proper subset

14

2.3. Properties of the regex language class

of context sensitive languages and they are incomparable with the family of
context-free languages. However, their definition (discussed in Section 2.2.2)
of rewbr is semantically different from regex. As noted in [3], there are lan-
guages that cannot be described by such rewbr patterns but can be described
by regex, i.e. the class of languages from [13] is a proper subset of regex lan-
guages. This fact is also proven in [12].

However, the above properties hold for regex languages too. There is no
regex pattern for the context-free language L1 = {anbn | n ∈ N}, because
when matching the an, only substrings of an can be possibly saved in capture
group and then recalled, but we need to match bn, i.e. we would need to
store the number of repetitions (instead of substrings) and use it to control
repetitions of another subpattern, which can not be done using backreferences.
Conversely, the language L2 = {ww | w ∈ {a, b}+} can be described by regex
pattern α = x{(a∨ b)+}x, and L2 does not belong into the family of context-
free languages. Therefore, regex languages are incomparable with context-free
languages.

The property of regex languages being a proper5 subset of context-sensitive
languages stems from the fact that any regex language can be accepted by
a linear bounded automaton. This can also be shown by proving that the
matching problem can be solved by nondeterministic Turing machine in lin-
ear space. This may be done by backtracking as described in [9], and since
language class of their rewbr patterns is equivalent to regex languages [12],
this can be used for regex as well. Another proof using memory automata is
provided in Section 4.3.

2.3.2 Closure under operations

It is proved in [1] that the regex language class is closed under intersection
with regular languages. The same article also claims that: “It is known that
REGEX languages are closed under union, but not under intersection or com-
plementation” and they cite [13] and [14] for proofs. However, as was already
discussed, the formalism used in [13] has weaker semantic power than regex.
Therefore, although [13] proves that their rewbr language class is not closed
under complementation, and [14] proves it is not closed under intersection, an
extended pumping lemma for regex class would be needed to explicitly prove
that those properties also hold for regex languages. The pumping lemmas pro-
vided in [13], [14] (and also [12]) are not directly usable for the regex language
class. It is admitted in [3] by one of the authors that using [13] as a reference
in [1] and [15] is not entirely correct, because the restrictions from [13] are not
used there.

5There is a context-free (and therefore also context-sensitive) language {anbn | n ∈ N}
that can not be described by regex, so regex languages can not be equivalent to the class of
context-sensitive languages.

15

2. Regular expressions with backreferences

The closure under union property is trivial though, given any two regex
languages L1 and L2, we can by definition construct regex patterns α and β
such that L(α) = L1 and L(β) = L2. The union L1∪L2 can then be described
by regex pattern (α ∨ β) and is therefore also a regex language.

2.4 The regex matching problem

Let α ∈ RXΣ,X be a regex pattern. The regex matching problem is to decide,
for a given string w ∈ Σ∗, whether w ∈ L(α).

The early analysis of the complexity of this problem was in [9], where
a reduction from vertex-cover problem was used to prove that the problem
is NP-complete. This proof uses large alphabet, however, as proved in [12]
and [14], the problem is NP-complete even for unary alphabet and this holds
for all rewbr variants described in Section 2.2.

Another interesting proofs6 using reductions from 3-CNF-SAT and graph
colorability on Perl regular expressions, can be found at [16]. As [3] notes,
the NP-completeness of the problem also follows from complexity of analogous
problem for Angluin patterns [17].

Complexity of the problem under various restrictions, such as on number of
variables, number of occurrences of one variable, or alphabet size, are explored
in [18]. Under many of these restrictions, the problem is still NP-complete.
However, when the number of backreferences to different capturing groups is
bounded by a constant, the resulting matching problem is in P [15]. This will
be explored in detail later, in the next chapter.

Complexities of other (than matching) problems for the regex are inves-
tigated in [19]. The paper also shows that it is not possible7 to effectively
minimize regex patterns in regards to pattern length nor number of variables.
Specially, deciding whether for a given k-variable regex there is an equivalent
(k − 1)-variable regex is undecidable [19].

2.5 Submatch addressing and searching in text

The matching problem described in previous section is a decision problem,
its solution is a logical value: True or False. In practice, it may be desirable
to have more information on the match, for instance which part of input
got matched by a particular subpattern, this is called submatch addressing.
For instance, the pattern “.*(<.*>).*” (using ‘.’ as wildcard) would match
any substring enclosed between ‘<’ and ‘>’ in input text. The solution to

6The authors note that only NP-hardness is shown there. For a problem to be
NP-complete, it must also be shown that it is in NP, which is trivial, see [9].

7That is unless P=PSPACE.

16

2.6. Other extensions in practical regular expressions

matching problem as described in previous section would just be True if any
such substring was found in the input, but using submatch addressing would
also provide the substring that was matched by the “<.*>” subpattern.

Related problem is searching for regular expression in given input. That
is given a regular expression pattern α, find a substring s (or possibly all such
substrings) in input, such that s ∈ L(α).

Associated issue is that there can be multiple possible matches in given
input. Specific regular expressions implementations then must decide which
of these matches will be reported. For instance, POSIX regular expressions
use the leftmost longest rule [20].

2.6 Other extensions in practical regular

expressions

This section provides a brief overview of some other extensions (than backref-
erences) typically found in practical regular expressions.

Most practical implementations support wildcard character (usually ‘.’)
to match any symbol, as well as many other constructs to express sets of pos-
sible symbols (like character classes, character sets, ranges etc.). For instance
the pattern “[ab[:digit:]]” is a bracket-expression in POSIX syntax (see
next section) matching either a, b or any symbol from the digit character
class (i.e. any digit). An equivalent expression using character range instead
would be “[ab0-9]”.

Additionally, engines usually support variety of assertions in patterns. As-
sertion is a special symbol in pattern that does not consume any input char-
acters, but it ensures some property in the input string. For instance, very
common type of assertions are start of string and end of string assertions, usu-
ally denoted with ‘ˆ’ and ‘$’ respectively. These can be used when searching
in text to enforce that the match occurs in the beginning or at the end of
given input. For example, the pattern “a*b$” in PCRE matches substrings of
the form anb, but only at the end of input8. These assertions are also called
anchors. Other assertions can be found in practice, such as word boundary
assertion, which matches at either a beginning or an end of a word in string
(as defined by the particular implementation). Even more complicated asser-
tions such as look-ahead and look-behind, which allow to call another pattern
as part of their constraint, are supported in some engines.

Another common feature are counting constraints (also called bounded rep-
etitions or counters), which allows to repeat a subpattern number of times
given by constant or in a form of range. For example, the pattern “a{1,3}” (in

8In multiline mode ‘$’ also matches any (internal) end of line, analogously for ‘ˆ’.

17

2. Regular expressions with backreferences

POSIX ERE syntax) matches input a, aa, or aaa. This feature does not extend
semantic power of regular expressions, equivalent patterns can be constructed
using alternation.

2.6.1 Subpattern recursion

An extension that further significantly increases the expressive power of reg-
ular expression patterns is subpattern recursion. It allows to call (reference)
another subpattern from within the same pattern. Recursion is not as widely
supported feature as backreferences, but it is for instance supported in PCRE
library. Using PCRE syntax, the pattern “(a(?1)?b)” describes language
{anbn | n ∈ N}. The “(?1)” construct9 is a recursion (reference) to the first
subpattern.

To the knowledge of author, regular expressions with recursion operator
and their properties are not very well researched from the theoretical perspec-
tive. Power of regular expressions with both backreferences and subpattern
recursion is investigated in [21], where it is claimed that such patterns are
able to express all context-free languages. An intuitive proof is provided by
showing how to construct recursive pattern for any production rule of context-
free grammar [21]. Additionally, the exact relation between languages of such
patterns and context-sensitive languages is unclear.

2.7 The POSIX standard

POSIX (Portable Operating System Interface) [20] is a family of standards
that define a standard operating system interface and environment, along
with command line shells and utility programs. Regular expressions are part
of the POSIX standard and they are supported in major utilities, such as in
grep, sed and awk command line tools.

Two different variants of regular expression syntax are part of the POSIX
standard: the basic regular expressions (BRE) and extended regular expres-
sions (ERE) syntax. The BRE variant is used in grep and sed utilities, as well
as in some other tools like emacs editor. The ERE syntax is used for instance
in awk and egrep utilities, some other utilities also support this syntax when
called with additional flags. See [20] for detailed definitions of syntax and
semantics for both variants.

BRE supports basic constructs like concatenation (using juxtaposition),
Kleene star (using ‘*’ operator), and element repetitions, using either ‘{m}’ to
repeat preceding element (subpattern) exactly m times, or ‘{m, n}’ for range.
Special character ‘.’ acts as a wildcard to match any character (possibly

9The ‘?’ after “(?1)” in “(?1)?” indicates an optional subpattern and is unrelated to
recursion syntax.

18

2.7. The POSIX standard

excluding some specific characters like newline, depending on the application).
Characters ‘ˆ’ and ‘$’ are used to match starting and ending position in input
respectively (as described in Section 2.6).

Additionally, bracket-expressions are supported, which can be used to
match character sets, character ranges, character classes, etc. BRE syntax
does not support alternation between subpatterns10, although some applica-
tions (for example emacs) extend the syntax to support it, possibly alongside
other extensions. Parentheses ‘(’ and ‘)’ can be used to mark subpatterns.
BRE syntax also supports backreferences, expression ‘\k’ matches substring
previously matched by the k-th subpattern.

The ERE syntax supports all constructs BRE (with the exception of back-
references, see below) and adds additional features. ERE additionally sup-
ports alternation (using ‘|’ operator), positive iteration (using ‘+’) and ‘?’ for
matching the preceding element one or zero times.

Another major difference is that the ERE variant defines more characters
as special characters, so that they do not need to be escaped. For instance,
the BRE pattern “\(a*\)\{5\}b” can be written simply as “(a*){5}b” in
ERE syntax.

Unlike BRE, the ERE syntax does not contain backreferences, but com-
patible extensions may add support for them. Other extensions such as look-
ahead, look-behind and pattern recursion are not part of POSIX regular ex-
pressions.

10Alternation between single characters can be achieved using the bracket-expression.

19

Chapter 3

Regular expression matching

algorithms and approaches

This chapter provides an overview of approaches and methods for implement-
ing practical regular expressions, focusing on backreference support in partic-
ular. Various techniques of how to deal with the complexity caused by adding
backreferences (see Section 2.4) are explored. Implementations may be called
regular expression engines. The main focus will be on the matching problem,
i.e. to decide whether input text belongs to language described by pattern.
Brief overview and comparison of some real-world regular expression engines
is also provided at the end of the chapter.

See also [22] for a good overview of various techniques for implementing
regular expressions. However, it largely focuses on non-backtracking imple-
mentations, without support for backreferences.

3.1 Thompson’s algorithm

One of the oldest implementations of regular expressions is due to Ken Thomp-
son, it is described in [23], published in 1968. Here, Thompson converts a
regular expression into machine code instructions11, in a somewhat similar
fashion as virtual machine or JIT compilation approaches discussed later.

Naturally, this implementation did not support backreferences, as they
are a concept introduced several decades later. The implementation supports
classical regular expressions, which were established by Kleene in 1956 [7].

While it was not formalized there, the article provides a basis for transfor-
mation of regular expressions into finite automata. The conversion algorithm,
known as Thompson’s construction algorithm, is described in detail for in-

11IBM 7094 machine code to be specific.

21

3. Regular expression matching algorithms and approaches

stance in [4]. Given a classical regular expression, the algorithm constructs a
NFA (nondeterministic finite automaton) accepting the same language.

Thompson’s algorithm is one of several methods for regular expression
to NFA transformation. Other examples of such algorithms are Glushkov’s
incremental construction algorithm [24] and Brzozowski’s method of deriva-
tives [25].

3.2 Basic approaches

Since there is an algorithm for constructing NFA from regular expression, it
seems straightforward to decide the matching problem by first constructing
the automaton and then simulating its computation for given input.

Depending on which type of automaton model is used and how it is sim-
ulated, there are three basic approaches to regular expression matching, they
are described in the following subsections.

3.2.1 DFA based

For any given (classical) regular expression, a NFA can be constructed, using
e.g. Thompson’s construction. The resulting nondeterministic finite automa-
ton can then be transformed into an equivalent12 deterministic finite automa-
ton using the subset construction [4]. It is then straightforward to simulate a
computation on a given input for this resulting DFA.

This approach works well for classical regular expressions, but it can not
support various extensions. Regular expressions with backreferences may be
used to describe other than regular languages, even some context-sensitive
languages like {ww | w ∈ {a, b}+} can be described (see Section 2.3). There
is no DFA accepting such non-regular languages and there appears to be no
practical way to extend DFA to match rewbr patterns efficiently.

This method is still useful for classical regular expressions. It can also be
used in combination with other methods that support backreferences but are
therefore potentially slower. First the DFA algorithm is employed to test if
the given string matches some pattern approximating13 the given pattern, and
only if it does, the exact and possibly slower NFA match is done.

For instance, the regex pattern α = x{a∗}bx might be transformed to
classical regular expression α′ = a∗ba∗. The given input would then be first
matched against α′ using the fast DFA algorithm. Because L(α) ⊆ L(α′),
if the result of DFA algorithm is that the input w /∈ L(α′) it must also be

12i.e. accepting the same regular language.
13The approximating pattern will describe a wider set of strings (i.e. a superset of the

original language).

22

3.3. Recursive backtracking

the case that w /∈ L(α). Only if w ∈ L(α′) must the slower NFA matching
algorithm be used to decide if also w ∈ L(α). According to [26] this approach
is used in some versions of GNU grep.

3.2.2 NFA based with backtracking

This method works by taking the NFA constructed for given regular expres-
sion and simulating its computation using recursive backtracking. Because
many practical regular expression engines (and especially those that support
backreferences) are based on this approach, it is examined in detail in Sec-
tion 3.3. As described in the section, extending engines based on backtracking
with backreference support is straightforward.

3.2.3 NFA based without backtracking

There are other ways to simulate a NFA computation than via backtracking.
One way is to keep set of active states in each step of computation. The input
string is then processed symbol by symbol, updating the set based on all
possible transitions. This could be seen as performing the subset construction
online and it is also similar to the algorithm used in [23]. This method works
well for classical regular expressions, where all parallel branches will differ only
in states, and thus keeping only set of active states is sufficient. However, for
backreference support, it is necessary to also keep information about capture
groups contents. This additional context information can be stored along with
the active states. Since it is possible to visit one state with several different
capture group contents, there may be many active configurations. For this
reason, this method may exhibit high memory usage.

Another approach is to perform an explicit search on the space of au-
tomaton configurations, starting with the initial one. Breath-first search or
depth-first search algorithms can be used. This way, adding backreference
support is again trivial, since we can store the capture group contents in-
side the configurations. This will also increase the size of the searched space.
Since we need to cache the visited configurations, this method may also result
in high memory usage. Variant of this technique is used for matching using
memory automata and will be described in detail later in Section 4.2.1.

3.3 Recursive backtracking

After obtaining NFA for given regular expression (for instance using the
Thompson’s construction algorithm), recursive backtracking can be used to
simulate a NFA computation in the following way. A recursive function, which
has an input position and current state as its parameters is used to attempt
the match. The first call starts in the initial automaton state and beginning

23

3. Regular expression matching algorithms and approaches

of input (i.e. initial configuration). For each possible transition from current
state, recursive call is made. When the match fails (for instance because the
current input symbol does not match), the function simply returns from re-
cursion (backtracks) and another transition is tried instead. This resembles a
depth-first search (DFS) on the space of automaton configurations. However,
not all visited configurations are necessarily saved, resulting in much lower
memory usage than if standard DFS was used. A greatly simplified version of
this algorithm is illustrated in the following pseudocode.

Algorithm 1: Naive backtracking

Input : NFA M = (Q, Σ, δ, q0, F), input string w
Output: True if and only if w ∈ L(M)

1 return Match(q0, 1)

2 Function Match (state q, input index i)
3 if q ∈ F ∧ i = |w| then return True
4 foreach q′ ∈ δ(q, w[i])) do
5 if Match(q′, i + 1) then return True
6 end
7 foreach q′ ∈ δ(q, ε)) do
8 if Match(q′, i) then return True
9 end

10 return False

3.3.1 Preventing infinite loops

What is not handled in the pseudocode of Algorithm 1, is the possibility of
entering into an infinite loop. This can be caused by a loop of ε-transitions
in automaton, which can be easily generated by patterns such as the one in
Example 3.1. An example of such behavior is provided in Example 3.1.

This can be prevented in several ways. For instance, we can cache (store)
some of the visited configurations. Since this problem is caused by ε-transitions,
the configurations resulting from taking ε-transitions can be stored. Addi-
tionally, caching is only necesarry for transitions originating from a state with
multiple ε. If we already visited the resulting configuration, the transition is
not taken again. This approach is better memory-wise than pure depth-first
search (see Section 3.2.3), but some unnecessary configurations may still be
stored. See also [27] for another approach, which is employed in the imple-
mentation of Java programming language.

3.3.2 Backreference support

Extending backtracking with support for backreferences is relatively simple.
When we enter the capture group (e.g. the subpattern of the form x{α} in

24

3.3. Recursive backtracking

regex), we start recording the input text. Once the subexpression is left, we
stop recording. The captured text is stored for each capture group in pattern.
These can be stored inside context along with current state and input position
(i.e. they would become another parameter in Match function in Algorithm 1).
Also, since captured texts will always be substrings of the input, it is sufficient
to just store pointers into the input string. Then, when the recall occurs in the
pattern, the string stored inside the corresponding capture group is matched
again. See also [28] for another explanation of this concept.

Other extensions, such as look-ahead, look-behind, or pattern recursion,
can also be implemented when using the backtracking approach.

3.3.3 Practical implementations

An early implementation of regular expressions using backtracking is the
Henry Spencer’s library, available at [29]. It is based on the description in [30].
This library servers as a predecessor and basis for many modern backtracking
implementations. For this reason, the term Spencer-based engine is sometimes
used for such implementations.

A good description of relatively typical backtracking implementation is
provided in [27], where the java.util.regex package of Java programming
language is discussed.

Many other backtracking implementations in use behave similarly, for in-
stance the widely used PCRE library [27].

Note that backtracking does not have to be necessarily implemented using
an explicit recursion. Some implementations, such as the ICU Regular expres-
sions that will be discussed in Section 3.5.6, do not use program recursion for
maintaining the backtracking state and rather store it on the heap to limit
stack usage [31].

3.3.4 Complexity and catastrophic backtracking

The worst-case complexity of matching by backtracking algorithm is expo-
nential [32, 22]. As discussed in Section 2.4, the matching problem for regex
is NP-complete. Therefore, unless P=NP, it is not possible to implement a
polynomial matching algorithm. However the backtracking algorithm has the
exponential worst-case complexity even for regular expressions without back-
references (classical regular expressions) [22].

Example 3.1. Using the Thompson’s construction as described in [4], clas-
sical regular expression α = (a∗)∗ would be transformed into the NFA shown
in Figure 3.1.

25

3. Regular expression matching algorithms and approaches

ε
1 2

ε
3

a
4

ε
5

ε

ε
ε

ε

6

ε

Figure 3.1: NFA resulting from Thompson’s incremental construction for reg-
ular expression (a∗)∗.

First note, that there is a cycle of ε-transitions between states 2 and 5. If
this is not treated using one of the methods from Section 3.3.1, the backtrack-
ing algorithm could enter into an infinite loop here.

Now let us consider the computation of this NFA for an input w = anb, for
any n ∈ N. After matching each symbol a, the automaton will be in state 4
and can take one of two ε-transitions from this state: either to state 5 or
back to state 3. The backtracking algorithm will use two function calls to try
both (see lines 7-9 of Algorithm 1). The first call will eventually return False,
since w /∈ L(α), and then the second call will be made. However, in each
recursive call this decision is made again and two additional recursive calls
are made from each. This happens for each of the first to n-th positions in
the input. Consequently, 2n recursive calls will be made before the input w
is ultimately rejected. The backtracking algorithm thus exhibits exponential
time complexity on such inputs.

One way to prevent this behavior is to cache some visited configurations.
As described in Section 3.3.1, this can also be used to prevent infinite loops. If
we cache all configurations entered using an ε-transition starting in state with
multiple ε-transitions, then configuration (5, akb) will be stored as visited for
every k ∈ {n − 1, . . . , 0}. When an already visited configuration is entered
again, the recursive call may return False immediately without making any
additional calls, thereby preventing exponential behavior (in this case). As
already discussed, the caching of configurations will also result in increased
memory usage. �

When the exponential matching time occurs, it is also called catastrophic
backtracking. This behavior can be potentially used for a denial-of-service
attacks, when user inputs are not controlled sufficiently. Such attacks, named
regex denial-of-service (ReDos) are explored in [33], where an algorithm to
craft malicious inputs for given regex is presented.

This problem can be averted to some extent. Known inputs that cause
catastrophic backtracking can be detected by regular expression engines to

26

3.4. Approaches overview

prevent exponential behavior. Modern engines handle several various such
special cases. Methods of static analysis to detect vulnerable regular expres-
sion patterns are researched in [32] and [27].

Another recent work, which explores ways to prevent this problem is [34].
They propose to add state cache into existing backtracking engines, similar
in principle as the visited configurations caching described earlier (see Exam-
ple 3.1 and Section 3.3.1). However, the author notes that: “We have not
yet considered how to support regexes with super-linear features like backrefer-
ences . . .” [34].

3.4 Approaches overview

This section provides an overview of various other methods of regular expres-
sion matching, with strong focus on regular expressions with backreferences.

3.4.1 Extending Finite Automata

An approach for implementing regular expressions with backreferences without
recursive backtracking is presented in [35]. The proposed algorithm is based
on the online NFA simulation mentioned in Section 3.2.3. The following sub-
section briefly describes this method as it was specified in [35]. Then, in the
second subsection, the application for multiple capturing groups and various
issues are discussed.

3.4.1.1 Method description

The matching is directed by the input and each input symbol is processed at
most once. This is achieved by storing a set of active states. In each step of
computation, the algorithm iterates over all currently active states (stored in
the active state set) and performs all possible a-transitions and ε-transitions
from each state, where a ∈ Σ is the current input symbol. After that, the
algorithm proceeds to the next input symbol until the whole input is processed.

The algorithm described above is basically the already mentioned online
NFA simulation. For backreference support, the NFA was extended in the
following way. Each backreference in pattern is assigned a unique identifier.
This is motivated by matching one input against multiple regular expressions
at once in the article, since they focus on networking applications where this is
useful. Using identifiers, they can abstract away which backreference belongs
to which pattern [35]. This is not as interesting for our problem of matching
against single pattern.

Each transition can be marked with up to the number of backreferences
different tags. A tag is associated with backreference identifier, and it indicates
that when it is taken the input symbol should be appended at the end of

27

3. Regular expression matching algorithms and approaches

1

2
Σ

4 5
b

3

b

a

b

a

a
61

1

S ≠ ε

∖1|

S = ε

∖1|

1

Figure 3.2: Example of an extended NFA for pattern “.*(b+|a)a\1b”.

the corresponding backreference’s recorded contents (string). All transitions
to states in the part of automaton constructed from a subexpression inside
capturing parentheses (i.e. of the form x{α} using14 regex syntax) will have
tags associated with backreferences that recall this subexpression.

Recorded substrings are kept along with active states. For each backref-
erence ‘\k’ in the pattern, a set of recorded (previously matched) strings MSk

can be stored for each active state. When a transition q
a
−→ p is taken, all

stored sets are moved from the originating state q to the destination state p.
If a ∈ Σ, then for all tags k in the taken transition, the matched symbol a is
appended at the end of all strings in MSk .

The backreferences (recalls) are implemented using a special type of state
called the consuming state. Two special conditional transitions originates from

each consuming state q ∈ Q: q
S 6=ε
−−→ q and q

S=ε
−−→ p (where p ∈ Q, p 6= q is

next state). When a consuming state q that implements backreference ‘\k’ is
active, then in a step of the (text-directed) computation the following happens.
Suppose that the input symbol processed in current step is a ∈ Σ. Then,
each string from MSk that begins with a is shortened by removing a from its
beginning (the symbol a is consumed). If the resulting string is empty, then

the latter transition q
S=ε
−−→ p is taken. Otherwise, the former transition back

to state q is taken (the string with a removed replaces its original form in MSk).
For nonempty strings in MSk that do not begin with a, no transition can be
taken, meaning that they are removed from the MSk set of active state q and
if no transition to q was taken the state will cease to be active. A special case
not explicitly mentioned in the article is when the string captured in MSk is ε,

but this can be treated by taking the transition q
S=ε
−−→ p (without consuming

any input symbol).

14This article does not use the regex formalism defined earlier, they use syntax based on
PCRE, similar to the one in [13].

28

3.4. Approaches overview

Example 3.2. To clarify how the computation of NFA extended in the de-
scribed way works, the following example is provided. Another two examples
can be found in the article [35].

Figure 3.2 shows extended automaton for pattern “.*(b+|a)a\1b”. Tagged
transitions and special states implementing backreferences (recalls) are drawn
using dashed arrows, numbers under each transition indicate the backreference
tags (here we have only one backreference). The pattern follows PCRE syntax
used in the article, ‘.’ stands for any symbol and ‘|’ denotes alternation. The
active states in each step of computation for input “aabbabb” will be:

a: 1, 3(MS1 = {a})
a: 1, 3(MS1 = {a}), 4(MS1 = {a})
b: 1, 2(MS1 = {b})
b: 1, 2(MS1 = {b, bb})
a: 1, 3(MS1 = {a}), 4(MS1 = {b, bb})
b: 1, 2(MS1 = {b}), 4(MS1 = {b}), 5
b: 1, 2(MS1 = {b, bb}), 5, 6

After processing all input symbols, the computation terminates and input
is accepted, because the final state 6 is present in the set of active states. �

3.4.1.2 Multiple capturing groups and backreferences

It is not entirely clear how the proposed extended NFA would deal with multi-
ple capturing groups and multiple backreferences in patterns. Both examples
from the article have only one capture group and one backreference. It is
even claimed in [36] that this Becchi’s approach fails when there are multiple
backreferences to the same capturing group, but this claim is not explained
further. It is stated in [35] that “each active state can be associated with a
set of matched substrings MSk for each back-reference \k”. The sets MSk

are associated with backreferences not capturing groups, so even if one set is
consumed when matching the backreference, subsequent backreferences to the
same group would have their own independent sets. As such, this alone does
not prevent using multiple backreferences.

However, there is another problem. When an active state has multiple
sets MSk for different backreference numbers, there does not seem to be any
information stored on their possible co-occurrences. Not all combinations of
captured strings between different backreferences may be possible. This is
illustrated in the following example.

Example 3.3. Suppose pattern “(ab*)(b+)c\1\2”, this is equivalent to pat-
tern α = x{ab∗}y{b+}cxy using the regex formalism. The described language
is L = {abncabn | n ∈ N} and it is obvious that abbcabbb = ab2cab3 /∈ L.

29

3. Regular expression matching algorithms and approaches

a
1 2 4 5

b

61

1

S ≠ ε

∖1|

S = ε

∖1|

S = ε

∖2|

S ≠ ε

∖2|

b
3

b

2

2

c

Figure 3.3: Extended NFA for pattern “(ab*)(b+)c\1\2” with multiple cap-
turing groups and backreferences.

Figure 3.3 shows extended automaton for this pattern. Given input string
“abbcabbb”, the steps of computation would be (showing active states and
their sets MSk):

a: 2(MS1 = {a})
b: 2(MS1 = {ab}), 3(MS1 = {a}, MS2 = {b})
b: 2(MS1 = {abb}), 3(MS1 = {a, ab}, MS2 = {b, bb})
c: 4(MS1 = {a, ab}, MS2 = {b, bb})
a: 4(MS1 = {b}, MS2 = {b, bb}), 5(MS2 = {b, bb})
b: 5(MS2 = {b, bb}), 6
b: 5(MS2 = {b}), 6
b: 6

In the third step (highlighted) of computation, two transitions to state 3
were taken: from state 2 and from state 3 itself. Therefore we have 2 “in-
stances” of active state 3. In the standard NFA, this would not be a problem,
but here the two instances have different sets of possible recorded strings: if
entered from state 2 we have (MS1 = {ab}, MS2 = {b}), from state 3 we
have (MS1 = {a}, MS2 = {bb}). We could simply merge the corresponding
sets. The result can be seen on the computation above. While “ab” is valid
contents for backreference “\1” and “bb” is valid for “\2”, they can not occur
together (for given input). This information is lost by merging the sets MSk

and this leads to the input “abbcabbb” being incorrectly accepted.

Solution to this would be to keep multiple instances of an active state (e.g.
state 3 in this example) in such cases. �

We note that it is not clear whether patterns with multiple (referenced)
capturing groups as in the above example were considered at all in the ar-
ticle [35], and if multiple instances of an active state were intended in such
cases. It is stated in the article that for input of length m, O(m2|Q|) is the up-
per bound on number of all stored strings for one backreference, which seems
to imply that multiple instances of an active state were not considered, since
each MSk can contain O(m2) strings (substrings of input), and there are |Q|
states.

30

3.4. Approaches overview

As already discussed, if unlimited number of backreferences is allowed,
multiple instances of active states may potentially need to be kept as shown in
Example 3.3. This can lead to exponentially many such instances. If this was
not the case and the “merging” of different instances of an active state in the
example worked, the time complexity would be polynomial. This is because
there would be at most O(|Q|) active states (at most one instance of each),
for each of which there is k sets MSk, where k is number of backreferences,
and each set contains at most O(m2) strings. Therefore, it would take O(|Q| ·
k ·m2) to iterate over all of them in each step, and an input of length m could
be matched in O(|Q|·k ·m3) using the text-directed algorithm outlined before.
The reason why this subsection was included is to clarify that for unbounded
number of capture groups, deterministic polynomial time complexity would
not be achieved. This is expected since, as already established, matching
rewbr is NP-complete.

Another edge case not explicitly addressed in the article is occurrence of
capture group inside Kleene star or other quantifier expression. Suppose pat-
tern “(a+|b)+c\1” (equivalent to pattern (x{a+ ∨ b})+cx using the regex
formalism), expected behavior would be that the string captured in the last
iteration of subpattern “a+|b” is matched by backreference \1. For instance,
the input aaabcb should match. However, as described the automaton would
keep appending symbols to strings saved in sets from previous iterations. To
prevent this, the transition entering captured subexpression (e.g. 1 → 2 in
Example 3.2) should first clear any previous MSk contents (for k correspond-
ing to tags stored in the transition). This would be similar to how memory
automata clear previous contents when opening memory (see Chapter 4).

3.4.2 Polynomial time matching for rewbr subclasses

Another noteworthy work is [37], which explores subclasses of patterns whose
matching problem has polynomial complexity. They use pattern languages
introduced in [17] as a formalism to specify regular expressions with back-
references, but their results can be extended for rewbr in a straightforward
fashion [37].

In short, such patterns are (non-empty) strings of terminal symbols and
variables and their language is a set of strings obtainable by substituting
variables in given pattern with strings of terminals, see [17] or [37] for proper
definitions. For instance, the pattern x1ax2bx2, where X = {x1, x2} are
variables and Σ = {a, b} are terminal symbols, generates (describes) formal
language15 {uawbw | u, w ∈ Σ∗}. This language contains strings such as
aaaba or abababba.

15Note that according to the original definition in [17] generated language contains only
non-empty strings. The definition in [37] does not seem to have this property.

31

3. Regular expression matching algorithms and approaches

As mentioned in Section 2.4, Angluin’s pattern languages have NP-complete
membership problem [17]. Because variables are the source of complexity, the
article [37] focuses on terminal-free patterns, which are patterns without ter-
minal symbols, i.e. they consist only of variables. For examples in this section,
similar notation as in the above articles will be used for such patterns: vari-
ables will be denoted using x1, x2, . . . and concatenation will be explicitly
marked, such as in: x1 · x2 · x3. As an illustration, the pattern x1 · x2 · x1

generates language {uwu | u, w ∈ Σ∗}.

The work in [37] was motivated by non-cross patterns explored in [38].
Non-cross patterns have the property that for each variable xi there is no
other variable xj (i 6= j) in the pattern between first and last occurrence of xi.
For instance, pattern x1 · x2 · x1 is not a non-cross pattern since x2 occurs
between first (left-most) and last (right-most) occurrence of x1. Matching
problem of non-cross pattern languages can be solved in polynomial time [38].

An equivalent non-cross property for rewbr would prohibit other backref-
erences (to different capture groups) between a capture group and its back-
reference. The rewbr pattern “(ab*)(b+)c\1\2” from Example 3.3 would
violate such restriction, whereas the one from Example 3.2 would satisfy such
non-cross property. When using the matching algorithm from Section 3.4.1
on such non-cross rewbr pattern, it would not be necessary to handle multiple
instances of an active state (i.e. the problem outlined in Section 3.4.1.2 would
never occur). This is because there must always be at most one non-empty set
MSk at a time, otherwise the pattern would not have the non-cross property.
Therefore, such rewbr patterns could be matched by keeping only one MSk

set at a time and the complexity would be polynomial.

The article [37] builds on the concept of non-cross patterns and extends
it further by introducing a pattern parameter called the variable distance.
They describe this parameter as “the maximum number of different variables
separating any two consecutive occurrences of x”, where x is any variable. For
example, the pattern x1 · x2 · x3 · x3 · x1 · x3 has variable distance equal to 2,
because there are 2 different variables (x2 and x3) between the two occurrences
of x1, which is the maximum for this pattern.

They prove that when this parameter is restricted by a constant16, the re-
sulting matching problem is in P. The non-cross patterns discussed above have
variable distance equal to zero. Therefore, variable distance is a complexity
parameter, whose restriction induces subclasses of pattern matching problem
(and also rewbr matching) with polynomial time complexity. They introduce
a computation model called Janus automaton, an extended two-way two-head
automaton, which is used to prove their results. [37]

Newer article [2] written recently by Markus Schmid, one of the authors
of [37], introduces another complexity parameter for regex called active vari-

16i.e. a constant independent from the size of matched pattern.

32

3.4. Approaches overview

able degree. This newer complexity parameter is able to describe even larger
subclasses of patterns with polynomial matching complexity. Relation be-
tween these two parameters will be discussed in Section 4.4.3. The newer
article also uses a different computation model – memory automaton, which
was first introduced in [1].

Results presented in the recent article [2] using memory automata appear
much more promising – not only is the active variable degree more general
than the variable distance parameter, but additional different technique for
polynomial matching based on a property called memory determinism is also
presented there. For this reason, this thesis largely focuses on memory au-
tomata, they are discussed in separate chapter (see Chapter 4), and the im-
plementation of regex engine that is part of this thesis is also based on them.

This section illustrates that one possible approach to efficient rewbr match-
ing is restricting the patterns by some property. Because the reason for
NP-completeness is the presence of backreferences, restrictions pertaining to
them seem to be efficient for this purpose. This has a downside that not all
regex patterns will satisfy such restrictions, but for substantial subclasses it
may be possible to match in polynomial time.

3.4.3 Tagged automata

Ville Laurikari introduced another modification of NFA in [39]. The proposed
extension augments automaton transitions with tags. Each tag has an associ-
ated variable. When a transition with tag is taken, the current input position
is saved into the variable.

The main application of such automata with tagged transitions is for sub-
match addressing and searching in text. So far, we dealt mainly with the
matching problem, that is to decide if a given input matches a regex pat-
tern. Submatch addressing allows to report which part of input string got
matched by given pattern and its subpatterns (see Section 2.5). This can be
implemented using two tagged transitions for each subpattern, whose matched
substring should be returned. A transition entering the part of automaton con-
structed for this subpattern will be tagged and start of matched substring will
be saved when this transition is taken. Likewise, when leaving the subpattern
another tagged transition is used to save the end of matched substring. This
works similarly as tags used in the method described in Section 3.4.1.

In a similar way, tags can be used for searching and also for implementing
look-ahead in patterns, as described in [39]. As noted in [35], Laurikari’s
tagged transitions can not be used directly for implementing backreferences.
However, the technique discussed in Section 3.4.1 can be seen as an extension
of this approach, where tags with more complex actions (other than just saving
position in the input) are used for backreference support. Another different
approach based on tagged automata is discussed in the next section.

33

3. Regular expression matching algorithms and approaches

3.4.4 Tagged NFA with constraints

A way to utilize tagged automata for backreference support was presented
in [36]. The basic idea is to first transform the given pattern by replacing
every backreference with the subpattern inside the corresponding referenced
capturing group. This is similar to the approximation method mentioned in
Section 3.2.1, for instance the pattern “(a+)b\1” is rewritten to “(a+)b(a+)”.
The transformed pattern is then compiled into a tagged NFA using construc-
tion similar to a Thompson’s algorithm. As in previous section, the tagged
NFA performs submatch addressing and keeps track of the strings matched
by particular capturing group. Additionally, constraints are added that com-
pare the corresponding captured strings and ensure that the matched string
really is from the language of the original pattern. For instance, in the above
example there would be a constraint that the strings matched by the first
and the second capturing groups (in the modified pattern) are the same. See
the article for detailed description of their proposed matching algorithm. Ac-
cording to their benchmarks, the approach was resistant to tested algorithmic
complexity attacks. [36]

3.4.5 Symbolic register automata

Another recent automaton model motivated by dealing with large, possibly
even infinite alphabets17, are symbolic register automata (SRA) introduced
in [40].

This automaton model has so called registers – variables that are able to
store symbols, each register stores exactly one symbol. When taking tran-
sitions, these register can be written to during automaton computation and
later their value can be compared against (recalled).

The article [40] contains examples and describes how regular expressions
with backreferences can be implemented using this automaton model. In
their benchmarks, an implementation of rewbr matching based on SRA is
significantly faster than the Java backtracking implementation.

However, these registers can only hold one symbol and SRAs have finite
number of such registers. Therefore, this model has a significant drawback:
it can not be used to express regular expressions with capturing groups of
unbounded length [40]. For example, capturing subexpression (a+) can not
be implemented, because the matched substring’s length is not bounded. This
drastically restricts set of rewbr patterns that can be represented by SRA.

17Aphabet was defined as a finite set of symbols in Chapter 1. However, all the concepts
can be also extended for infinite alphabets.

34

3.4. Approaches overview

3.4.6 Symbolic regex matcher

An alternative method of regular expression matching based on derivatives
was developed in [41]. Derivatives of regular expressions are an established
concept, see [25]. The algorithm in [41] works with derivatives of extended
variant of regular expressions. Their patterns support both character classes
and counting constraints (see Section 2.6), as well as additional operations
like intersection and complement. Their method allows to not only decide if
an input matches the pattern, but also to find all the matches (they call this
task match generation).

The algorithm is non-backtracking and has linear time matching complex-
ity in the length of the input. However, backreferences in patterns are not
supported. An implementation in C# language is provided. [41]

3.4.7 Pattern optimizations

Another way to speed up the matching process is by optimizing the regular
expression pattern itself. Optimizations are usually done on some internal
representation of the given pattern, for instance on abstract syntax tree, or
even on the resulting automaton structure, which will then be used by the
matching algorithm.

For DFA based regular expression engines discussed in Section 3.2.1, the
automaton can be minimized using e.g. Hopcroft’s minimization algorithm [42],
which transforms the DFA into an equivalent DFA that has a minimal number
of states. This is, however, not generally usable for implementations based on
NFA, such as backtracking implementations, where the NFA is also extended
to support additional features like backreferences. Still there are several tech-
niques to help the engine by transforming the pattern to equivalent one that
will lead to faster matching, many such transformations are described in [10].

For instance, it may help to expose literal text by factoring out common
prefixes in alternation expressions. For instance, the pattern “abcd|abef”
can be rewritten as “ab(?:cd|ef)”, which may lead to earlier recognition
of mismatch and also help the engine to perform other literal-text optimiza-
tions [10]. The same can also be done for common suffices, such as transform-
ing “xabc|yabc” into “(?:x|y)abc”.

Because alternation in patterns is expensive, as it may cause backtracking
for the alternate branches, it may be helpful to convert alternation between
characters into character classes. For example, pattern “a|b|c” can be con-
verted into the equivalent “[abc]”, which can be matched in one step of the
regular expression engine.

Optimizations on the level of patterns can be done by the engine, as well as
manually by the user. However, some implementations contain advanced opti-

35

3. Regular expression matching algorithms and approaches

mization logic and outright discourage hand-optimizing the regular expression
by user, for example as in the case of the Hyperscan library [43].

3.4.8 Virtual machine approach and JIT compilation

A different approach to regular expression matching is to compile given pattern
into some form of machine code. An input can then be matched against the
pattern by executing this machine code. Similar approach was taken in the
original Henry Spencer’s library [29] mentioned in Section 3.3.3.

However, instead of compiling into machine code for an existing processor,
the pattern can instead be compiled into instructions for some virtual ma-
chine (VM), the result is also called a byte code. A regular expression virtual
machine can be defined for this purpose, with instructions for matching sym-
bols (comparing against given character and advancing in input), returning
successful match and so on.

This family of approaches is described in detail in [26]. The virtual ma-
chines can be implemented using recursive backtracking, but non-recursive
implementation is also possible. If the alternation construct is implemented
using some sort of split instruction, which creates a separate thread of execu-
tion, as in the referenced article, then parallelization of such implementation
can be done intuitively. Some of the threads of execution can be run in sepa-
rate OS threads.

This approach can also support backreferences as outlined in [26]. It can
be done e.g. by introducing a save instruction and saving the captured strings
in context (current thread state).

The VM approach was also used for regular expressions in text editor Sam
developed by Rob Pike [44].

The compilation into instructions during execution (i.e. at run time instead
of before execution) is called just-in-time (JIT) compilation. In context of
regular expression engines, the pattern may be compiled directly into target
platform machine code, as in the Henry Spencer’s library, or into byte code
for some virtual machine, either a special VM for regular expressions or an
already existing VM, such as the Java virtual machine (JVM).

More complex variants are also possible, such as compiling the pattern
into abstract syntax tree (AST), or some other internal representation, and
then using it to generate the machine code. This scheme was used in [45] to
implement JIT compilation support for the PCRE library. Figure 3.4 shows
overview of this implementations’ architecture. The PCRE byte code gener-
ated for given pattern is first transformed into an intermediate representation
used by SLJIT compiler, which then generates machine code for target plat-
form from it, see [45] for detailed description. According to benchmarks in

36

3.5. Overview of major implementations

Figure 3.4: Overview of PCRE-JIT engine [45]

the referenced article, using JIT compilation resulted in significant speed up
for the PCRE engine.

3.5 Overview of major implementations

This section provides basic overview of practical regular expression engines.

3.5.1 Perl Compatible Regular Expressions

The Perl Compatible Regular Expressions (PCRE) [46] is an open source reg-
ular expression library written in C language, it is available under the BSD li-
cense. A native wrapper for C++ programming language is also provided. The
PCRE library has two major versions, the first PCRE version was originally
published in 1997, while the more recent PCRE2 was first released in 2015.
The syntax follows the Perl regular expression syntax (specifically Perl 5) and
the library provides wrapper functions following the POSIX regular expression
standard (see Section 2.7). [46]

The PCRE library supports a wide array of features including backrefer-
ences. Two matching algorithms are available. First is a backtracking NFA
based algorithm with support for backreferences. The second one is DFA based
algorithm (see Section 3.2.1), which does not support backreferences and other
extra features, and is not Perl-compatible [47]. The backtracking algorithm
also supports just-in-time optimization described in Section 3.4.8 [47, 45].

The PCRE library is one of the most widely used regular expressions im-
plementations. It is used for regular expression support in PHP, R, Delphi
and Xojo (formerly REALbasic) programming languages [48]. It is also incor-
porated into other applications such as the Apache HTTP server and Nginx
web server.

37

3. Regular expression matching algorithms and approaches

3.5.2 Java

Regular expression matching in Java programming language is provided in
the java.util.regex package. It is implemented using the backtracking al-
gorithm and does support backreferences and other additional features. It is
a fairly typical backtracking implementation, good description of the package
implementation is provided in [27].

3.5.3 JavaScript

Due to its widespread use, an important dialect of practical regular expressions
is the variant used in JavaScript programming language. It is not a single im-
plementation, the JavaScript language, including the syntax and semantics of
its regular expressions, is standardized in the ECMAScript specification [49].
Significant number of different JavaScript implementations (engines) is in use
today, largely as part of web browsers. Naturally, the specific behavior be-
tween certain implementations may vary.

The specification of regular expression in the ECMAScript standard is
based on Perl 5 syntax, similarly as in the case of PCRE library. The standard
does contain backreferences in patterns and conforming implementations may
additionally support other extensions [49].

Google’s V8 JavaScript engine, which is used for instance in Google Chrome
web browser, employs a regular expression implementation called Irregexp [50].
It is a backtracking implementation, which first converts given pattern into
an intermediate automaton representation, then performs optimizations and
generates native machine code [50].

3.5.4 Oniguruma

Another open source library written in C is Oniguruma, its source code is avail-
able at [51]. It also supports backreferences. The matching is implemented
using VM based approach similar to the one discussed in Section 3.4.8, the
pattern is first transformed into an abstract syntax tree and then compiled
into instructions for Oniguruma virtual machine [52]. Oniguruma is used by
Ruby programming language, as well as in some applications, such as Atom
text editor.

3.5.5 Boost regex

Another open source implementation [53] of regular expressions is part of the
Boost C++ library. It uses backtracking and supports backreferences. This
implementation and its semantics is explored in [54].

38

3.5. Overview of major implementations

The Boost regex module also heavily influenced the proposal to add reg-
ular expression support into the C++ standard [55]. Since C++11, regular
expressions are part of the C++ standard [56].

3.5.6 ICU Regular Expressions

An implementation of regular expressions is part of the ICU – International
Components for Unicode project [31]. Its C++ API is inspired by the interface
of the java.util.regex package of the Java language. It is a bactracking
implementation, however it uses heap for storing its state during matching,
and does not use recursion to perform the backtracking. This is done to limit
stack usage, which could be a problem on complex patterns. The supported
syntax and pattern semantics are based on regular expressions in Perl. [31]

3.5.7 GNU C library and POSIX

As described in Section 2.7, regular expressions are part of the POSIX stan-
dard. The GNU C library (glibc) [57] includes implementation of regular
expressions, it supports both POSIX basic and extended regular expression
syntax. The implementation is based on backtracking and it supports back-
references. The library is distributed under GNU General Public License.

3.5.8 Hyperscan

Another regular expression matcher called Hyperscan was introduced in [58],
where the internal design and implementation details are described. The im-
plementation is available under the BSD license at [59], it has a C API. This
engine is not based on recursive backtracking, and it does not support back-
references, and various other features are also missing [43].

3.5.9 TRE

Another open source library is TRE [60]. It supports backreferences and at-
tempts to closely follow the POSIX standard. It also supports approximate
pattern matching (it uses Levenshtein distance as a measure), which is a fea-
ture not commonly found in other regular expression engines.

3.5.10 RE2

Last library mentioned in this overview is Google’s RE2 regular expression
library [61]. The engine is non-backtracking and does not support backrefer-
ences. This library is also open source, and it is written in C++, but wrappers
for other languages are provided.

39

Chapter 4

Memory automata

In this chapter, the memory automaton model, which accepts regex languages,
is introduced. First a formal definition is given, then the properties of memory
automata and their relation to regex languages are explored. Additionally,
matching algorithms based on memory automata are discussed along with
recently published methods for polynomial matching.

4.1 Memory automaton model

Memory automaton is a model of computation that characterizes the regex
language class (see Sections 2.2.3 and 2.3). This model was first introduced
in [1]. Later works [2] and [3] also use this model and develop new approaches
based on it.

As the regex patterns (introduced in Section 2.2.3) are extension of clas-
sical regular expressions, the memory automaton model is an extension of
nondeterministic finite automaton. Intuitively, memory automaton is an NFA
augmented with finite number of memories that can record and store sub-
strings of processed input. The strings stored in memories can later be recalled
by consuming (matching) the corresponding string from the input again.

The model will now be defined formally. The below definition follows the
one in [2], but memory automata are defined very similarly in [1], albeit with
some minor differences.

Definition 4.1 (memory automaton). Let Γk = {o(x), c(x) | x ∈ [k]}, for
k ∈ N. Additionally, for an alphabet Σ, let18 Σk = Σ∪ [k] and Σε,k = Σk∪{ε}.

For k ∈ N, a k-memory automaton (denoted MFA(k)) is syntactically an
NFA (Q, ∆, δ, q0, F), where ∆ = Σε,k∪Γk. Semantics are defined in the follow-
ing way. Configuration of MFA(k) is a (k+2)-tuple (q, w, (u1, r1), . . . , (uk, rk)),

18Here it is assumed that Σ ∩ [k] = ∅.

41

4. Memory automata

where q ∈ Q is the current state, w is the remaining input, and (ui, ri) is the
configuration of memory i, for i ∈ [k]. Configuration (ui, ri) of memory i
consists of memory content ui, which is a substring of the input, and mem-
ory status ri ∈ {O, C}. The initial configuration of M on input w ∈ Σ∗ is
(q0, w, (ε, C), . . . , (ε, C)). Configuration (q, ε, (u1, r1), . . . , (uk, rk)) is accepting
if q ∈ F . If the number of memories is not important, memory automaton
may be referred to simply as MFA.

The transition relation ⊢M is a relation on the configurations of MFA(k).
For configurations c and c′, c ⊢M c′ iff one of the following two conditions
hold:

1. c = (q, vw, (u1, r1), . . . , (uk, rk)) and c′ = (p, w, (u′
1, r1), . . . , (u′

k, rk)),
where:

a) p ∈ δ(q, x) with either (x ∈ Σε∧v = x) or (x ∈ [k], rx = C∧v = ux),

b) and, for every l ∈ [k], rl = O implies u′
l = ulv, and rl = C implies

u′
l = ul.

2. c = (q, w, (u1, r1), . . . , (uk, rk)) and c′ = (p, w, (u1, r1), . . . , (u′
l, r′

l), . . . ,
(uk, rk)), where p ∈ δ(q, x) with either

a) x = o(l), r′
l = O ∧ u′

l = ε,

b) or x = c(l), r′
l = C ∧ u′

l = ul.

The language accepted by a MFA is defined in an analogous way to the
definition for NFA. An input w ∈ Σ∗ is accepted by memory automaton M
if (q0, w, (ε, C), . . . , (ε, C)) ⊢∗

M (q, ε, (u1, r1), . . . , (uk, rk)), where q ∈ F . The
language accepted by M is the set of all strings accepted by M and will be
denoted L(M). A sequence of configurations c1 ⊢M c2 ⊢M . . . ⊢M cn is called
computation of M , if c1 is initial configuration on w, it is called computation
of M on input w.

Similarly as in the case of NFA, for x ∈ ∆, transitions p ∈ δ(q, x) are
called x-transitions. As with NFA transitions, p ∈ δ(q, x) can also be written
as q

x
−→δ p (or q

x
−→ p when the context is clear). If x ∈ [k], such x-transitions

are called memory recall transitions. △

As seen from Definition 4.1, MFA(k) is NFA extended with k memories,
each of which has a contents (saved string) and a status O or C. Memories with
status O will be referred to as open memories and those with status C as closed
memories.

Apart from the classical x-transitions for x ∈ Σε, which are modified to
save processed input into open memories, there are additional special transi-
tions for manipulating with memories. In the above definition of relation ⊢M ,
rule 1 handles x-transitions for x ∈ Σε ∪ [k]. The case 1a states what string is

42

4.1. Memory automaton model

1 2
o(1)

a

3
c(1)

4
b 1

5

Figure 4.1: MFA(1) accepting language {anban | n ∈ N0}

going to be consumed (matched) from input. For the “classical” x-transitions
with x ∈ Σε, the symbol x is consumed (or nothing in case of ε). For mem-
ory recall transitions with symbol x ∈ [k], the string stored in memory x
is consumed (matched) from the input, the memory contents is not changed
meaning that the string stored in memory may be recalled multiple times.
Rule in case 1b states that all open memories will have the consumed string
appended at the end of its content. Contents of closed memories will not
change.

Additionally, rule 2 deals with x-transitions for x ∈ Γk (that is o(l) and c(l)
transitions, where l ∈ [k]). Transition o(l) opens the memory l, it erases its
previously stored content and sets its memory status to O (opened). Transition
c(l) closes the memory l, memory status is set to C (closed), but memory
content is not modified.

Example 4.1. Figure 4.1 shows an 1-memory automaton (MFA(1)) accepting
the language L1 = {anban | n ∈ N0} from Example 2.1. The transition

1
o(1)
−−→ 2 opens memory 1 (and sets its content to ε), then the string ak

matched by repeatedly taking transition 2
a
−→ 2 is stored into the memory 1.

When transition 2
c(1)
−−→ 3 is taken, memory 1 is closed. After that symbol b

is matched and then the string stored in memory 1 is recalled when taking

transition 4
1
−→ 5.

To illustrate how the memory automaton operates, a computation of this
MFA for input aabaa is given below:

(1, aabaa, (ε, C)) ⊢ (2, aabaa, (ε, O)) ⊢ (2, abaa, (a, O)) ⊢ (2, baa, (aa, O)) ⊢
(3, baa, (aa, C)) ⊢ (4, aa, (aa, C)) ⊢ (5, ε, (aa, C)) ⊢ accept

Note that the automaton contains nondeterminism. When in configuration

(2, aabaa, (ε, O)), both transition 2
a
−→ 2 and transition 2

c(1)
−−→ 3 could have

been taken (similar situation also happens in the next configuration). For
more complicated automata this nondeterminism may result in many possible
computations. See also [2] for another more complicated example. �

The memory automaton formalism has the advantage that a MFA can also
be interpreted as a NFA accepting language extended with meta-symbols.
Both automaton models are used to explore properties of regex languages

43

4. Memory automata

and develop techniques for polynomial regex matching in [2]. Since memory
automata accept exactly the class of regex languages (see Section 4.3), they
can also be used as an alternative definition of the regex languages and are a
useful tool for proving various properties of that language class.

Operation of MFA is somewhat similar to the other NFA extension [35]
described in Section 3.4.1. However, while the automaton from [35] was out-
lined informally by describing the matching algorithm, memory automaton
computation is defined precisely using transition relation on MFA configu-
rations. Additionally, unlike the former extension memory automata do not
suffer from the problems explored in Section 3.4.1.2.

4.2 Memory automata for regex patterns

A method to construct memory automaton for any regex pattern is described
in [2]. It is an incremental construction similar to Thompson’s construction
method. Their algorithm uses syntax tree of regex pattern as input and pro-
duces MFA by recursively constructing states and transitions for every node
of the tree. Syntax tree of regex can be defined naturally according to rules
in Definition 2.1. For instance, pattern of the form α∨β (from rule 2b) would
have syntax tree with node ∨ as its root and roots of syntax trees of the sub-
patterns α, β as its children. See [2] for detailed definition of regex syntax tree
and precise description of the construction algorithm.

Figure 4.2 illustrates how the memory automaton construction works.
Each sub-figure shows structure of automaton for one of the rules from Def-
inition 2.1. Similarly as in the Thompson’s construction algorithm, memory
automata (“fragments”) constructed for subpatterns of a pattern are recur-
sively combined into larger automaton describing the entire pattern. When
combining, transitions incoming into child fragments go into their initial states
and outgoing edges originate from their final states. As seen in the figure, the
resulting automaton will always have exactly one initial and one final state.

Memory automaton constructed in this way will also have a constant num-
ber of outgoing transitions for each state: there are always at most two out-
going transitions. Furthermore, all outgoing transitions will be labeled with
the same symbol.

Because the algorithm uses syntax tree as an input, if the pattern is given
in form of a string (as will likely be the case in practice), it must be first
converted into its syntax tree. Since the language of regex pattern notation is
context-free19, this can be done using one of the methods of syntax analysis
described in [62].

19The rules in Definition 2.1 could be used to create a context-free grammar for regex
pattern notation.

44

4.2. Memory automata for regex patterns

x

(a) x

α

c(k)o(k)

(b) k{α}

ε

ε

ε

ε

α

β

(c) α ∨ β

ε ε

α

ε

(d) α+

ε

α

ε

β

εε

(e) α · β

Figure 4.2: Illustration of regex to memory automaton conversion

According to the construction rules, a constant number of states is added
for each type of syntax tree node. It thus holds that |Q| = O(|α|). This
property can also be preserved if the input is given as a string instead of
syntax tree.

No rule for α∗ is provided, but following Definition 2.1, α∗ can be con-
structed by treating it as α+ ∨ ε. Additionally, the pattern ∅ can be charac-
terized by an automaton with two states, one initial and the other final, and
no transitions.

4.2.1 Matching regex using memory automata

Using the construction described in previous section, it is possible to con-
struct for any given regex pattern α a memory automaton M , such that
L(M) = L(α). Therefore, the regex matching problem (i.e. to decide whether
w ∈ L(α)) can be solved by first constructing the corresponding MFA M and
then deciding w ∈ L(M). To decide w ∈ L(M), a breadth-first search (BFS)
can be run on the set of all possible configurations (of the MFA M), starting
in the initial configuration [2].

45

4. Memory automata

The construction algorithm runs in time20 O(|α|) [2]. Additionally, a proof
is provided in [2] that if an MFA(k) M = (Q, Σ, δ, q0, F) satisfies |δ| = O(|Q|),
the BFS search on configurations takes time |Q||w|O(k).

The |δ| = O(|Q|) constraint is always satisfied for an automaton con-
structed for regex in the described way, since there is a constant number of
transitions for each state. It can also be seen from the construction rules that
the resulting MFA will have one memory for each variable (capture group)
in pattern. Therefore, using this algorithm, regex pattern α with k variables
can be matched against an input w in time O(|α|) · |w|O(k). If the number of
variables k is bounded by a constant, the matching time complexity is polyno-
mial. Otherwise, there can be up to O(|α|) variables, in which case the time
complexity would be O(|α|) · |w|O(|α|) and therefore exponential with pattern
length.

Two main approaches for efficient regex matching were introduced in [2].
In both cases some restricting property is formulated for regex patterns and a
polynomial time matching algorithm is provided for the resulting regex sub-
class. An example of efficiently matchable subclass of regex are patterns with
number of variables (backreferences) bounded by a constant as discussed ear-
lier. Similar restriction yielding larger subclass is to require only the number
of memories to be bounded by a constant. So far, the presented construc-
tion algorithm always used one memory for each variable, but it is possible to
match regex using memory automaton with less memories than pattern vari-
ables. This is basis for the first approach from [2] that uses property called
active variable degree, it is the topic of Section 4.4 below.

The second approach does not limit number of memories but restricts
how the memories are used, it is explored in Section 4.6. A similar property
inducing much more restricted subclass of regex was established in [3] and is
the focus of Section 4.5.

4.3 Properties of memory automata and relation

to regex languages

The class of languages accepted by k-memory automata is equal to the class
of regex languages [1]. Regex patterns and memory automata thus have equal
expressive power and MFA can be used as an alternative way to define the
class of regex languages. A way to convert regex into an equivalent MFA was
discussed in Section 4.2. For the opposite direction, a memory automaton can
also be transformed into an equivalent regex, see [1].

Now it will be shown that computation of a k-memory automaton can be
simulated using linear-bounded automaton (i.e. on nondeterministic Turing

20They assume syntax tree as an input but regex pattern can be converted into its syntax
tree in linear time using e.g. LR parsing [62].

46

4.4. Active variable degree

machine in linear space). This also implies the property of regex languages
being (proper) subset of context-sensitive languages discussed in Section 2.3.
k-memory automata can be interpreted as NFA with special transitions (la-
beled with meta-symbols) and additional k memories. Each of the k memories
has status and content. Statuses are boolean variables and storing them for
k memories requires O(k) space. Memory content can be stored by either
storing the string, which is substring of the input w and so will have length at
most n = |w|, or by keeping start and end pointers into the input string. The
former way requires O(k ·n) memory, the latter only O(k), but since the given
input string is also stored, both alternatives have linear memory complexity.

For the computation, MFA(k) can be interpreted as a NFA accepting spe-
cial meta-symbols. When o(x), c(x) or x symbol (for x ∈ [k]) is consumed,
the corresponding memory operation is performed. The computation runs as
described in Section 4.1, by simulating the computation on nondeterministic
Turing machine all the parallel computational branches (created by nondeter-
ministic choices) can be handled simultaneously. It can also be seen on an
intuitive level, that the computation of k-memory automaton model could be
simulated on (k + 1)-tape linear bounded automaton with input on one tape
and the other k tapes serving as memories.

4.4 Active variable degree

A property named active variable degree was introduced in [2]. Subclass
of regex obtained by restricting this property and an algorithm for efficient
matching is also presented in the article.

Basic idea of this approach is reusing a memory for multiple variables
in regex patterns. For instance, the pattern α = x1{a

∗}c x1c x2{b
∗}c x2,

which represents language L(α) = {ancancbmcbm | n, m ∈ N0}, contains two
variables. If the construction algorithm discussed in Section 4.2 was used,
the resulting memory automaton would also have two memories. However,
as illustrated in Figure 4.3, it is possible to construct memory automaton
with just one memory (i.e. a MFA(1)) accepting the same language. Because
variables in this pattern are “independent”, the single memory can be used
first to save an and then recall it, and later to do the same for bm.

By contrast, in case of regex pattern β = x1{a
∗}c x2{b

∗}c x1x2 the mem-
ory used to store an can not be reused in the same way for storing bm, be-
cause value of the first variable is still needed later (it is recalled after bmc is
matched). Here the variables are not “independent” in the sense they were
in pattern α. Intuitively, this corresponds to non-cross patterns mentioned in
Section 3.4.2, but as will be shown later, active variable degree is more general,
i.e. it allows significantly larger subclass of regex to be matched efficiently.

47

4. Memory automata

1 2
o(1)

a

3
c(1)

6 7
o(1)

b

8
c(1)

4
c

5
1

9
c 1

10

c

Figure 4.3: MFA(1) accepting language {ancancbmcbm | n, m ∈ N0}

A different example where less memories than variables are required is
pattern γ = (x1{a

∗}∨x2{b
∗})x1x2. Either variable x1 or variable x2 is defined,

but never both at the same time. Only single memory is thus needed, one of
the variables will be undefined (and thus count as ε when using ε-semantics).

To formalize this behavior and what it means for variables to be “indepen-
dent”, the active variable degree property was introduced in [2]. Intuitively,
a set of active variables is defined for each state of memory automaton, con-
taining all variables that can be defined when in this state and at the same
time are also possibly recalled later. Value of variables that are not active in
current state is not important for further computation. Active variable degree
is then defined to be the maximal active variable set size, which is equal to the
minimal number of required automaton memories to handle active variables
during computation. These concepts are established formally in Definition 4.2,
which follows closely the one from [2].

Definition 4.2 (active variable set, active variable degree). Let α ∈ RXΣ,X

and M(α) the MFA(|X|) constructed for pattern α (i.e. L(M(α)) = L(α))
with its states denoted using Q. Additionally, R(α) denotes the same automa-
ton interpreted as NFA.

Relations ⊲def ⊆ X ×Q and ⊲call ⊆ Q×X defined as follows:

• For x ∈ X, q ∈ Q: x ⊲def q ⇔ R(α) can reach q by reading string w
with21 |w|o(x) ≥ 1.

• For q ∈ Q, x ∈ X: q ⊲call x⇔ starting in q, R(α) can read string wx
with |w|o(x) = 0.

21As defined earlier, |w|a stands for number of occurrences of symbol a inside string w,
therefore the condition |w|o(x) ≥ 1 requires that at least one o(x) was in the string read
by R(α), i.e. at least one o(x)-transition was taken.

48

4.4. Active variable degree

1

2

7
2

4 5
b

a
3

6

o(1)

o(2)

c(1)

c(2)

ε

9

10

8

a

o(3)
c(3)

3

ε

1
11

Figure 4.4: MFA(3) for regex pattern α = (x1{a
+} ∨ x2{b})x2(x3{a

∗}x3)+x1

For every state q ∈ Q the set of active variables (for q), denoted avs(q),
is defined as avs(q) = {x ∈ X | x ⊲def q ∧ q ⊲call x}.

Active variable degree of α, denoted avd(α), is then defined as maximum
from active variable sets’ sizes: avd(α) = max{|avs(q)| | q ∈ Q and a transi-
tion labeled o(l) leads into q, where l ∈ X}.

In the original definition from [2], the above condition for q is formulated
using syntax tree, but this is an equivalent property because of how the au-
tomaton is constructed. This condition only states that the only interesting
states for computing active variables are the ones entered using o(x) transi-
tion (because of how the relation ⊲def is defined).

Additionally, for every k ∈ N, the set of regex with active variable degree
at most k is defined as RXavd≤k

Σ,X = {α ∈ RXΣ,X | avd(α) ≤ k}. △

The relation ⊲def from Definition 4.2 formalizes which variables22 may have
recorded value in each state. The relation ⊲call indicates if a memory can be
recalled later (without its value being redefined) when starting in given state.
If a memory is both possibly defined and also recalled later from some state,
its value must be kept when in this state and it will be in active variable set.

Example 4.2. Figure 4.4 depicts a MFA(3) constructed for regex pattern
α = (x1{a

+} ∨ x2{b})x2(x3{a
∗}x3)+x1. Note that the automaton is slightly

different from what the result of construction algorithm would be. To maintain
brevity, unnecessary ε-transitions were removed, as they are not important for
this example.

The following table shows relations and active variable sets for each state.
The ⊲def row contains for each state q ∈ Q all the variables (memories) x ∈ X
for which x ⊲def q. Similarly, the row ⊲call lists all x, s.t. q ⊲call x. The last row
then contains each state’s avs(q).

22In the Definition 4.2, the number of variables and memories is the same and so the
terms variable and memory are used interchangeably, it is assumed that X = {1, 2, . . . , k},
where k ∈ N, so |X| = k.

49

4. Memory automata

state 1 2 3 4 5 6 7 8 9 10 11

⊲def ∅ 1 1 2 2 1,2 1,2,3 1,2,3 1,2,3 1,2,3 1,2,3

⊲call 1,2 1,2 1,2 1,2 1,2 1,2 1 1,3 1,3 1 ∅

avs ∅ 1 1 2 2 1,2 1 1,3 1,3 1 ∅

The active variable degree here is 2, all the active variable sets have at
most 2 elements. Therefore, 2 memories are sufficient to match this regex, the
procedure to do so is discussed in Section 4.4.1.

A shortcoming of the avd property can be seen in this example. Variables 1
and 2 can be defined in state 6 and, because they both can also be recalled
from this state, the active variable set of state 6 contains both of them. This
also means that even without variable 3 in pattern, the avd would still be 2.
However, it is impossible to reach state 6 with variable 1 and variable 2 de-
fined at the same time. During the MFA computation, either the transition
to state 2 or the one to state 4 is taken from initial state 1, which determines
whether variable 1 or 2 will be defined, but they can not be defined simulta-
neously. Therefore, if the variable 3 would not be in pattern, only at most
one variable could be active at one time during computation, but the active
variable property does not capture this. An extension of avd that is able to
recognize occurrence of such behavior in patterns is discussed later in Sec-
tion 4.4.2, unfortunately computing that extended property is intractable. �

It is shown in [2] that the relations ⊲def and ⊲call (and therefore also the
active variable sets) can be computed in time O(|X||α|2), the active variable
degree avd(α) can then be computed by taking maximum from sizes of active
variable sets. In the proof, a way to check if two elements are in relation
is presented for both relations. In both cases it is based on using cross-
product of some nondeterministic automata and checking reachability between
configurations, see [2] for details. Although this is useful for formal proof,
doing this construction explicitly and checking relation for every state-variable
pair in this way would be needlessly complicated in practice. An alternative
algorithm for computation of active variable sets based on BFS traversal of
MFA states is presented later in this thesis in Section 5.1.3.

4.4.1 Matching regex with bounded active variable degree

The matching problem for regex with active variable degree at most k ∈ N

can be solved in polynomial time [2]. The referenced article provides a high
level description of how a MFA(k) M constructed for regex pattern α can
be simulated using MFA(avd(α)) M ′. Intuitively, the k memories of M that
are active are mapped into the memories of M ′. When a memory operation
is to be performed on an old memory l ∈ [k], it is done on the memory to
which memory l is currently mapped. When a memory is not active (not

50

4.4. Active variable degree

in the active variable set of current state), the mapping is canceled and the
corresponding memory of M ′ is marked as free. Conversely, when an inactive
memory becomes active (by entering a state whose avs contains it), it is
mapped to one of the free memories of M ′. Some edge cases must be handled
in practice, Section 5.1.4 describes the algorithm as implemented in the library
created as part of this thesis.

Decreasing the number of MFA memories does not only result in decreased
memory usage, but more importantly it leads into the set of possible config-
urations being significantly smaller and as a result the BFS search algorithm
described in Section 4.2.1 will have improved time complexity. Using the BFS
search, an input w can be matched against a regex α in time of the form
|α||w|O(avd(α)), which is exponential only in active variable degree [2]. The
avd property thus induces a hierarchy of complexity classes and when it is
bounded by a constant, the resulting regex subclass has polynomial matching
problem.

4.4.2 Strong active variable degree

An extension of the active variable degree property was presented in [2]. As
they point out, the disadvantage of avd property is that the ⊲def relation used
to compute it only tells which variables can be defined in a state, but does
not differentiate whether the variables can be defined simultaneously. For
example, regex α = (x1{a

+} ∨ x2{b} ∨ x3{c
∗})x1x2x3 has avd(α) = 3, but

only one variable can be defined at the same time. Another instance of such
behavior was presented in Example 4.2. Consequently, the article introduces
another property called strong active variable degree, which is able to recognize
these cases.

To this end, the relation ⊲def is redefined to be a relation over P(X)×Q,
where X are variables and Q automaton states as in Definition 4.2, in the
following way: {y1, y2, . . . , yl} ⊲def q ⇔ R(α) can reach q by reading string w
with |w|o(yi) ≥ 1, for every i ∈ [l]. A strong active variable degree savd(α)
can then be defined using this extended ⊲def relation in an analogous way to
how the avd was in Definition 4.2, see [2] for details.

However, practical relevance of the strong active variable degree property
seems to be low, since it can not be computed efficiently (unless P=NP).
Specially, deciding for a given α ∈ RXΣ,X and k ∈ N whether savd(α) ≤ k is
coNP-hard [2].

4.4.3 Relation to variable distance

The active variable degree (avd) property shares some similarity with another
complexity parameter called variable distance (vd) introduced in [37], which
was already discussed in Section 3.4.2.

51

4. Memory automata

x

k+1

x

1

…

o(x) c(x)
…

α = ‘…x… ⋅ ⋅… ⋅ ⋅ x…'x

1

x

2

x

k+1

= ‘…x{ }… … x…'α

′

Σ

∗

x

1

x

2

x

k+1

M()α

′

Σ

q …

x

2

x

…

avs(q) = { , ,…, ,x}x

1

x

2

x

k+1

≥ k+1 variables

 avd() ≥ k+2α

′

 vd(α) ≥ k+1

Figure 4.5: Relation between active variable degree and variable distance

The variable distance property is defined for terminal-free patterns (see
Section 3.4.2) instead of regex and the article [37] also used a different au-
tomaton model than MFA. However, they point out that having multiple
variable occurrences in the context of pattern languages corresponds to back-
references in regex and thus captures the cause of computational complexity
in regex matching [37]. Given a terminal-free pattern it is trivial to produce
regex pattern (and thus also memory automaton) that describes the same lan-
guage. Every first occurrence of a variable is replaced with variable binding in
regex and any subsequent occurrences with variable recalls. As an example,
for the terminal-free pattern x1 · x2 · x2 · x1 · x1 the equivalent regex would
be: x1{Σ

∗}x2{Σ
∗}x2x1x1, where Σ stands for any symbol of the alphabet, in

proper syntax of regex pattern over alphabet Σ = {a1, a2, . . . , ak}, the subex-
pression ‘Σ∗’ would be written as ‘(a1∨a2∨ . . .∨ak)∗’. Both patterns describe
language L = {uw2u2 | u, w ∈ Σ∗}.

The variable distance property could also be extended for regex by defining
it to be the maximal number of occurrences of different variables between any
two consecutive occurrences of a variable x ∈ X. Note that in context of
regex, the term occurrence refers to both variable bindings and variable recalls.
Using this extension, regex pattern produced for a terminal-free pattern in
the previously described way would maintain the value of variable distance
property.

The relation between values of these two properties will now be explored.
If a terminal-free pattern has variable distance bounded by a constant, then
the equivalent regex pattern also has constant active variable degree. Or
specifically, it holds that vd(α) ≤ k implies avd(α′) ≤ k + 1, where k ∈ N,
α is a terminal-free pattern and α′ an equivalent regex (i.e. L(α) = L(α′))
constructed for α as described before. This can be proven using contradiction,
the basic idea of the proof is illustrated on Figure 4.5. Suppose that vd(α) ≤ k,
but avd(α′) > k + 1. Because k ∈ N, it holds that avd(α′) ≥ k + 2 and this
means that in the MFA for α′, there exists a state q with active variable

52

4.5. Deterministic regex

set containing at least k + 2 variables. To be in avs(q), recall of each of
these variables must be reachable from state q and this recall corresponds to
variable occurrence in the original terminal-free pattern α. Let x ∈ avs(q) be
the variable whose occurrence corresponding to its first recall from q occurs
last in α. Additionally, there must be some occurrence of x in α preceding all
the variable occurrences corresponding to recalls. This is because x ⊲def q and
there was an occurrence of x in α corresponding to the variable binding that
caused x ⊲def q. Because of how x was chosen, between these two consecutive
occurrences of x in α are all the occurrences (corresponding to recalls) of the
other k+1 variables from avs(q). This by definition means that vd(α) ≥ k+1,
which is a contradiction.

However, this relation does not hold in the opposite direction, even if avd

is constant, the vd property may not be bounded by a constant. Suppose
terminal-free pattern α = x · x1 · x1 . . . · xn · xn · x and the equivalent regex
α′ = x{Σ∗}(x1{Σ

∗}x1) . . . (xn{Σ
∗}xn)x, where X = {x1, . . . , xn, x} are vari-

ables and n ∈ N. For each i ∈ [n], variable xi is recalled immediately after
its binding in α′ and thus any active variable set can contain at most vari-
able x and one xj , j ∈ [n]. Therefore avd(α′) = 2. However, because there
are n different variables in α between the two occurrences of x, it holds that
vd(α) = n and the vd property is not bounded by a constant.

Because of the above, the set of regex patterns with bounded active vari-
able degree is a proper superset of patterns23 with bounded variable distance.
This also illustrates why the avd property is more useful for practical regex
matching and further justifies the focus of this thesis on memory automata
and the newer research e.g. in [2, 3].

4.5 Deterministic regex

Another subclass of regex with efficiently solvable matching problem is intro-
duced and investigated in [3]. This subclass called deterministic regex is based
on the notion of determinism in regular expressions with backreferences.

For the classical regular expressions, determinism is an established concept,
see for instance [63], where such patterns are called 1-unambiguous. Another
common term, which is also used in [3], is deterministic regular expressions.
Deterministic regular expressions can be defined using the already mentioned
Glushkov’s automaton construction [24]. If the Glushkov automaton for given
regular expression is deterministic (i.e. it is a DFA), then the regular expression
is also deterministic. Note that [63] established the concept using different
definition, but they prove that it is equivalent to the definition using Glushkov
automaton.

23As already discussed, the variable distance can also be extended for regex patterns.

53

4. Memory automata

Not only is the set of deterministic regular expressions a proper subset
of (classical) regular expressions, but such patterns also have significantly
reduced expressive power. In other words, the class of deterministic regular
languages (i.e. languages that can be described by deterministic regular expres-
sions) is a proper subclass of regular languages. This is shown in [63], where an
example of language that can not be described by deterministic regular expres-
sion is provided. The pattern α = (0∨1)∗0(0∨1) over Σ = {0, 1} is not deter-
ministic, and furthermore, the language L(α) = {u0x | u ∈ {0, 1}∗, x ∈ {0, 1}}
is not a deterministic regular language. Another example can be found in [3],

where it is shown that the language L((ab)∗(a ∨ ε)) = {(ab)
1
2

i | i ≥ 0} also
can not be described by any deterministic regular expression.

The deterministic regex defined in [3] are a proper extension of determin-
istic regular expressions. Deterministic regex patterns are proper subset of
regex. They are defined using a variant of memory automata in a similar way
to how determinism was formalized for classical regular expression using the
Glushkov automaton. If memory automaton constructed from a given regex
as described in [3] is deterministic, then the pattern is also deterministic regex.
Determinism for memory automata was first established in [1], but the arti-
cle [3] uses a modification of memory automata called memory automata with
trap state (TMFA).

TMFA are defined very similarly to MFA (see Definition 4.1), but they
additionally have a special state called the trap state. This state is entered
if a memory recall failure occurs during computation, i.e. when the contents
of memory being recalled does not match the current input. When the trap
state is entered, it is not left until the end of computation. TMFA where
the trap state is not an accepting (final) state behaves in the same way as
the corresponding standard MFA. However, setting the trap state to be final
allows to accept complements of some regex languages. This leads to the
property of deterministic TMFA languages being closed under complement24,
which is major reason for this modification. However, for the purpose of
regex matching this difference from MFA is not as important. Intuitively, the
deterministic TMFA are defined by restricting the transition function so that
no more than one transition is possible from a configuration. [3]

The class of languages characterized by deterministic regex is a proper
subset of regex languages, it is a proper superset of deterministic regular lan-
guages, and finally it is incomparable with regular languages [3]. This means
that the practical usability of deterministic regex is limited, because there
are languages that can not be matched by such patterns. The limitations of
deterministic regular expressions were discussed before, the expressive power
of deterministic regex is illustrated on the following examples.

24Note that regex languages do not have this property.

54

4.6. Memory determinism

Example 4.3. The following patterns and languages are due to [3], note that
the article uses a different syntax for regex: variable bindings are written
as ‘〈x : α〉’, variable recalls using ‘&x’. The regex syntax from [2] will be used
here.

Regex patterns α1 = (x{a} ∨ a), α2 = (a∨ x) and α3 = (x{ε} ∨ ε) are not
deterministic. On the other hand, α4 = x{(a∨b)∗}cx is a deterministic regex
and describes language L(α4) = {wcw | w ∈ {a, b}∗}.

The regex α5 = 1+x{0∗}(1+x)∗1+ is not deterministic, but its language
L(α5) can be described by deterministic regex α6 = 1(1+∨(0x{0∗}1+(0x1+)∗)).

The formal language L1 = {a4i+1 | i ≥ 0} ∪ {a4i | i ≥ 1} can not be de-
scribed by any deterministic regex. Similarly, the already mentioned language
L2 = {(ab)

1
2

i | i ≥ 0} is not a deterministic regex language either. �

It is shown in [3] that the regex determinism can be checked in O(|Σ||α|k)
for regex α with k variables and over alphabet Σ, and it is possible to construct
the accepting TMFA at the same time. Furthermore, it is also shown that the
matching problem for deterministic regex can be solved in O(|Σ||α|n+k|w|) for
an input w ∈ Σ∗ with n occurrences of terminal symbols or variable references.
An implementation of deterministic regex matching in Java programming lan-
guage is available at [64].

4.6 Memory determinism

The deterministic regex explored in previous section are rather restricted, since
they can not even describe all regular languages. Another form of memory au-
tomaton determinism is explored in [2]. Because memories are what causes the
matching complexity of regex, the basic idea is to allow the nondeterminism
for active states (as in classical NFA) and focus on restricting nondeterminism
for memories. They introduce a subclass of regex called memory deterministic
regex, which forces synchronization of memories between different computa-
tional branches of an automaton.

It is noted in [2] that formalizing such restriction does not seem to be
possible using only local syntactic properties. Their definition of memory
determinism uses properties of possible computations of MFA and is rather
complicated. Intuitively, MFA is memory deterministic if all different com-
putational branches (i.e. different active states in a computation step) do not
differ in memory contents and statuses. Therefore the “harmless” nondeter-
minism of being in multiple active states is allowed, but the memories must
have the same content and status – they must be synchronized. A regex α is
memory deterministic if its memory automaton M(α) is memory determin-
istic. See [2] for precise definitions and proofs of memory deterministic regex
properties.

55

4. Memory automata

Unlike deterministic regex, memory deterministic regex properly extend
the classical regular expressions – any regular expression is memory determin-
istic (since it has no memories). The subclass of regex languages that can
be described by memory deterministic regex is a proper superset of regular
languages.

Deciding whether a given regex pattern α is memory deterministic can
be done in time O(|α|5) as shown in [2]. Additionally, the matching problem
for memory deterministic regex can be solved efficiently, [2] presented an algo-
rithm that for given memory deterministic regex α over Σ with k variables and
input w ∈ Σ, decides w ∈ L(α) in time O(|w||α|3(|Σ|+ k)). The algorithm re-
sembles the online NFA simulation discussed earlier. The active configurations
are kept by storing all the active states, but the memory contents and statuses
are shared for all active computational branches. This can be done because
memory determinism property ensures that different branches of computation
do not differ in memory contents or statuses.

An elaborate example of memory-deterministic regex is provided in the
appendix of [2]. A simple example of pattern that is memory-deterministic
is α = x{a+}bx. By contrast, pattern β = a∗x{a+}ax is not memory-
deterministic, because there are non-deterministic choices on when the mem-
ory is opened and closed, resulting in possible difference in memory content
and status between the computational branches.

As was the case with active variable degree, the memory determinism prop-
erty can also be extended to describe larger subset of regex. An improvement
called synchronized memory automaton property is investigated in the article.
The matching complexity of the regex subclass induced by this property is the
same as in the case of memory deterministic regex. Unfortunately, deciding
whether this improved property holds for a given MFA is coNP-hard. [2]

56

Chapter 5

Implementation

This chapter describes the regular expression engine (library) based on mem-
ory automata that was implemented as part of this thesis. First, a high level
description of how the memory automaton model was implemented is pro-
vided. The implemented matching algorithms are formalized, and an alterna-
tive algorithm to compute active variables is also discussed. Additionally, our
extension to memory automaton model needed for matching counting con-
straints, a feature often found in practical regular expressions, is described.
Then, the architecture of the solution is discussed and key implementation
details are also provided. Finally, features and regular expression extensions
supported by the engine are described briefly.

5.1 Memory automata for practical regular

expressions

The memory automaton model described in Chapter 4 was used as a basis
for the implementation. A k-memory automaton M = (Q, Σ, δ, q0, F) can
be represented as an edge-labeled directed graph, with vertex for each state
q ∈ Q, and each x-transition q

x
−→δ p represented as an edge from q to p labeled

with x.

To construct memory automaton for a given regex pattern, the algorithm
discussed in Section 4.2 is used. The implementation uses LR parsing [62] to
parse the given pattern into its syntax tree, and then the memory automaton
is constructed. The construction is done recursively, by traversing the syn-
tax tree in post-order, starting in the root node. In each recursive call, the
automaton parts for the at most two child nodes of the current node are con-
structed, then these parts are combined as illustrated in Figure 4.2. This way,
automaton for the whole pattern is incrementally constructed. Additional
details about the grammar and the parser implementation are given later.

57

5. Implementation

ε

α

ε

ε

Figure 5.1: MFA construction for pattern of the form α∗

The construction rules as defined in [2] are generally followed. An ex-
ception is the concatenation construct, where the redundant tm node (the
node between automata parts for α and β in Figure 4.2e) is omitted and an
ε-transition is added directly between the two parts. This maintains properties
of the construction discussed below.

Additionally, patterns of the form α∗ are not constructed by treating them
as α+ ∨ ε, but an equivalent simplified construction depicted on Figure 5.1 is
used instead. This still maintains the required properties and results in lower
number of states in the constructed automaton.

As discussed in Section 4.2, memory automata constructed for regex pat-
terns via the algorithm have at most two outgoing transitions from each state,
both labeled by the same symbol. Because of this, the automaton can be
stored by keeping for each vertex (state) the symbol, for which outgoing edges
exists, and the at most two vertices where the edges lead. Therefore, as [2]
also points out, such memory automata satisfy the following properties:

1. There are O(|Q|) edges in the automaton graph representation, which
also implies |Σ| = O(|Q|). Therefore, the automaton can be stored using
O(|Q|) space.

2. For a given q ∈ Q and x ∈ Σ, all (at most two) states p ∈ Q, such that
p ∈ δ(q, x), can be retrieved in constant time.

3. A BFS traversal of the states can be performed in O(|Q|) time.

As mentioned in Section 4.2, there is a constant number of states con-
structed for each syntax tree node, therefore it also holds that |Q| = O(|α|),
for regex pattern α. The resulting automaton will also have one initial and
one final state, both will be kept.

5.1.1 Matching algorithms

Having constructed the MFA for given regex pattern, the algorithm described
in Section 4.2.1 can be used to match an input string (i.e. given for input w,

58

5.1. Memory automata for practical regular expressions

decide w ∈ L(α)). The algorithm is based on a breadth-first search (BFS)
on the set of automaton configurations. The search starts in the initial con-
figuration and traverses the set of configurations until it reaches an accepting
one.

The BFS matching algorithm was implemented as a typical breath-first
search. The searched space of configurations is not constructed explicitly,
but instead the “neighboring” configurations are computed dynamically dur-
ing search. The neighbor function that given a configuration returns all the
configurations reachable from it in one step is an important part of the algo-
rithm. This function realizes the transition relation ⊢M from Definition 4.1,
the implementation follows this definition closely.

Another alternative algorithm based on backtracking was also implemented.
The algorithm is similar to the one described in Section 3.3. The implementa-
tion also employs the technique described in Section 3.3.1 to prevent infinite
loops by caching some configurations. Specifically, when there are multiple
ε-transitions from current state, the current configuration is cached. When
cached configuration is visited again, we know its neighbors were already
searched, so they are not searched again. Additionally, an option to cache
all visited configurations is provided, in which case the algorithm behaves as
a standard depth-first search (DFS) algorithm.

Both matching by BFS and DFS search guarantee the time complexity
discussed in Section 4.2.1. The backtracking algorithm, which caches con-
figurations only when necessary, behaves similarly as the DFS on memory
automata constructed from regex, but it has significantly lower memory us-
age.

5.1.2 Configurations representation and implementing

memories

According to Definition 4.1, memory automaton configurations are of the form
(q, w, (u1, r1), . . . , (uk, rk)). Remaining part of the input w and the memory
contents ui can be stored as pointers to the original input string. Memory
statuses ri are boolean variables. The current state can be kept as a reference
to the corresponding node in the graph representation of MFA.

The memory contents are represented as two pointers into the input string,
first pointing at the beginning of the stored substring and the second pointing
at the end. It was already discussed that ui always contains substring of the
input. When an o(x) transition is taken, the beginning pointer of correspond-
ing memory x is set to current input position. The second pointer is also set
to the same value, as the memory contents is initially empty.

As per definition of the ⊢M relation, when a memory is open (i.e. rx = O),
all the matched (consumed) symbols are appended to its content. However,

59

5. Implementation

the implementation does not do this explicitly. The ending pointer is instead
set when a c(x) transition is taken. It will now be explained that this still
maintains correctness of the matching algorithms. Because of how the MFA
is constructed for regex variable binding (see Figure 4.2b), each taken o(x)
transition in the resulting automaton is eventually followed by a c(x) transi-
tion. Afterwards, content of memory x must be equal to the string consumed
between taking these two transitions. Because the beginning pointer is set
during o(x) transition and the end pointer during c(x), the stored string will
be correct after taking the c(x) transition, as the pointers enclose exactly the
consumed string.

However, before the c(x) transition is taken, the content behaves as ε,
while according to definition it should instead accumulate consumed symbols.
It remains to see that this does not cause any problems for the matching
algorithms. Firstly, there can not be any memory recall transition before c(x)
is taken, since Definition 2.1 prohibits any subpatterns of the form x{. . . x . . .}.
Secondly, it will not happen that a non-visited configuration would be wrongly
considered visited, because if two configurations differed in the content of
memory x after taking o(x), one of them must have consumed different part
of input, and therefore they must also differ in the remaining input (which is
also part of configuration).

Thanks to this, we do not have to iterate over all memories and potentially
update their memory contents during each transition, but it is only done when
either o(x) or c(x) transition is taken.

5.1.3 Computing active variable sets

As discussed in Section 4.4, to efficiently match regex with bounded active
variable degree, the set of active variables needs to be computed for each
state. This can be done by first computing the ⊲def and ⊲call relations. An
algorithm was described in [2], however, as explained in Section 4.4, follow-
ing this method exactly seems impractical for implementing regex matching.
Alternative algorithm used in our implementation, which is based on BFS
traversal of the MFA graph representation is presented here.

The active variable sets are computed by first finding all variables x ∈ X
that are in ⊲def relation with this state, and then doing the same for the ⊲call

relation. Variable is then active in a state if it is contained in both these sets.
This works, because from definition avs(q) = {x | x ⊲def q} ∩ {x | q ⊲call x}.
We compute avs by first computing these two sets for each state and then
performing intersection between them. The sets will be denoted X⊲def

(q) and
X⊲call

(q) respectively.

Algorithm 2 formalizes this method of computing avs. It is assumed that
MFA constructed from a regex using the algorithm described earlier is given

60

5.1. Memory automata for practical regular expressions

Algorithm 2: Active variable sets computation

Input : MFA M = (Q, Σ, δ, q0, F), represented as directed
graph G(M)

Output: avs(q) for each q ∈ Q

1 for q ∈ Q do X⊲def
(q)← ∅

2 for q ∈ Q do X⊲call
(q)← ∅

/* first compute the ⊲def relation */

3 foreach q ∈ Q do
4 if ∃x ∈ X, |δ(q, o(x))| ≥ 1 ∧ x /∈ X⊲def

(q) then

5 run BFS on G(M) starting from q, for each visited p ∈ Q set:
X⊲def

(p)← X⊲def
(p) ∪ {x}

6 end

7 end
/* compute the ⊲call relation next */

8 Let G̃R(M) be the reverse of G(M) with edges labeled o(x) removed
9 foreach q ∈ Q do

10 if ∃x ∈ X, |δ(q, x)| ≥ 1 ∧ x /∈ X⊲call
(q) then

11 run BFS on G̃R(M) starting from q, for each visited p ∈ Q set:
X⊲call

(p)← X⊲call
(p) ∪ {x}

12 end

13 end
/* compute active variable sets as intersections */

14 for q ∈ Q do avs(q)← X⊲def
(q) ∩X⊲call

(q)

as an input. It is also assumed that the automaton is represented as an edge-
labeled directed graph, as described at the beginning of Section 5.1. This
graph representation is denoted G(M) in the pseudocode.

First the X⊲def
sets are computed. Following Definition 4.2, x ⊲def q if

the state q can be reached from initial state via a path containing at least
one o(x) transition. The loop on lines 3–7 finds all states with outgoing o(x)
transition and runs BFS search from each one, x is added to X⊲def

set of every
reachable state. This correctly computes the X⊲def

sets, because if a state is
reached using the BFS search, there exists a path to it containing25 at least
one edge labeled with o(x), which corresponds to o(x) transition in the MFA.
Additionally, all states in a MFA constructed using the rules from [2] are
reachable from the initial state. Therefore, any x added to X⊲def

(p) on line 5
satisfies x ⊲def p. The BFS is run for all o(x) transitions, so every variable x is
added to all the corresponding sets.

25As established before, all transitions from a state are of the same type in MFA for regex
and thus all paths found by the BFS search have its first edge labeled o(x).

61

5. Implementation

The x /∈ X⊲def
(q) condition on line 4 ensures that the search is not started

from states already visited in a previous BFS run. If x ∈ X⊲def
(q), the state

q was visited in previous BFS and so were by extension any other states
reachable from it, hence x was already added to all their sets and it is not
necessary to run the BFS from q.

Then the X⊲call
sets are computed in a similar way. It follows from Defini-

tion 4.2 that q ⊲call x if there is a path from q that does not contain any edge
labeled with o(x) and its last edge is labeled with variable x. First the reverse
of graph G(M) is computed and all edges labeled with o(x) are removed, for
any variable x. The resulting graph is denoted G̃R(M). Then, on lines 9–13,
breadth-first search is run on G̃R(M) from each state q that has an outgoing
edge labeled with variable x (which corresponds to variable recall). All visited
states have the variable x added to their X⊲call

sets.

This works similarly as the previous computation of X⊲def
sets. If a state

is visited during the BFS run from line 11, there is a path in the original
graph G(M), which starts in q, ends with an x-labeled edge (for variable x),
and does not contain any o(x) edge, because such edges were removed from the
searched graph G̃R(M). The x /∈ X⊲call

(q) condition on line 10 again prevents
an already visited state from being a source of another BFS run, because all
reachable states were already visited before in such case.

After both X⊲def
and X⊲call

sets are computed, intersection between the two
corresponding sets is performed for each state, which according to definition
correctly computes the active variable sets avs(q). Active variable degree can
then be taken as maximum from avs set sizes.

As discussed before, thanks to the properties of MFA for regex, one BFS
traversal runs in time O(|Q|), and it also holds that |Q| = O(|α|). Because of
the conditions on lines 4 and 10, for each variable x ∈ X, every state q ∈ Q
is visited only once. There is also a constant number of edges from each
state and we can check |δ(q, o(x))| ≥ 1 in O(1) time. All the BFS runs thus
would take time O(|X| · |α|) without considering the operations on sets. The
complexity of set operations depend on the chosen representation. Because
the number of variables |X| is known in advance, the X⊲def

and X⊲call
sets,

as well as sets of active variables can be stored in an array of boolean vari-
ables (bit array) for each state. Such representation yields O(1) complexity
for both insertion (set bit to true) and look-up operations. Additionally, in-
tersection can be computed in time O(|X|). This representation was used in
the implementation.

In conclusion, the computations on lines 3–7 and 9–13 take O(|X| · |α|)
time. The graph G̃R(M) can be computed in O(|α|), because G(M) has O(|α|)
vertices and constant number of edges from each, meaning that there are also
O(|α|) edges in the graph. Finally, the computation of avs on line 14 is done
in O(|X| · |α|) time. Therefore, Algorithm 2 has O(|X| · |α|) time complexity.

62

5.1. Memory automata for practical regular expressions

Both graphs G(M) and G̃R(M) require O(|α|) memory. The X⊲def
, X⊲call

,
and avs sets are stored using |Q| ·O(|X|) = O(|α| · |X|) space. Keeping track
of visited states during BFS run requires additional O(|α|) memory. The
algorithm thus has memory complexity O(|X| · |α|).

5.1.4 Matching patterns with bounded active variable degree

The implementation employs the algorithm from [2] discussed in Section 4.4.1,
to efficiently match regex patterns with bounded active variable degree. The
algorithm uses active variable sets computed earlier to simulate memory au-
tomaton using another automaton with (potentially) lower number of mem-
ories – only avd(α) memories are needed. A high level description of the
simulation was presented in the article, the implemented algorithm follows
this description closely. Because pseudocode was not given in the article,
we include pseudocode of our implementation in Algorithm 3 for the sake of
completeness. See also [2] for proof of correctness.

The implementation simulates computation of the MFA(k) M using only
avd(α) memories by working with modified configurations, which include the
memory list M as described in [2]. The configurations will be of the form
(q, w, (u1, r1), . . . , (uk′ , rk′),M), where k′ = avd(α). In fact, they are config-
urations of a k′-memory automaton with added mapping M between the k′

“new” memories and the k “old” memories of the automaton M . The new
memories handle subset of the old memories that are currently active. Algo-
rithm 3 formalizes how the transitions are simulated, it effectively describes
transition relation between the modified configurations.

Let MFA(k) M be an automaton constructed from regex pattern α, with
k′ = avd(α), that is simulated using k′ memories. The modified configurations
are of the form c = (q, w, (u1, r1), . . . , (uk′ , rk′),M), where M ∈ ([k] ∪ ⊥)k′

is
the memory list. In the pseudocode of Algorithm 3, the part of such modified
configuration c without M is denoted base(c). The initial configuration on
input w is (q0, w, (u1, r1), . . . , (uk′ , rk′), (⊥, . . . ,⊥)).

5.1.5 Extending memory automata for counting constraints

An extension commonly found in practical regular expressions are counting
constraints, which were already discussed in Section 2.6. They allow to match
a subpattern repeatedly, with the number of repetitions fixed or from given
allowed range. First, regex patterns extended with counting constraints are
established. Then, our extension to memory automata for efficient matching
of such patterns is described.

Because the curly brackets ‘{’ and ‘}’ used commonly in practice to denote
counting constraints are already used in regex to mark the bounded subpattern
in variable bindings, for our definition angle brackets ‘〈’ and ‘〉’ will be used

63

5. Implementation

Algorithm 3: Simulating transitions of automaton with bounded
active variable degree

Input : MFA(k) M = (Q, Σ, δ, q0, F) for regex α, avd(α) = k′,
avs(q) for each q ∈ Q, current configuration
c = (q, w, (u1, r1), . . . , (uk′ , rk′),M), and the simulated
transition q

x
−→δ p

Output: resulting configuration c′ = (p, w′, (r′
1, u′

1), . . . , (r′
k′ , u′

k′),M′)

1 if x = o(l), l ∈ [k] then /* memory open transition */

2 if l ∈ avs(p) then /* allocate new memory and open it */

3 l′ ← min{i |M[i] = ⊥}
4 M[l′]← l
5 x′ ← o(l′)

6 else /* do not open unused memory (not in avs) */

7 x′ ← ε
8 end

9 else if (x = c(l) ∨ x = l), l ∈ [k] then /* memory recall/close */

10 if ∃i,M[i] = l then
11 l′ ← {i |M[i] = l}
12 else
13 l′ ← ⊥
14 end
15 if l ∈ avs(q) ∧ l′ 6= ⊥ then
16 if x = c(l) then x′ ← c(l′) else x′ ← l′

17 else
18 x′ ← ε
19 end

20 else /* ordinary (non-memory) transition */

21 x′ ← x
22 end

23 execute transition q
x′

−→ p on configuration base(c), save the result in ĉ
24 foreach {i |M[i] /∈ avs(p)} do /* free non-active memories */

25 M[i]← ⊥
26 end
27 return configuration ĉ with M

64

5.1. Memory automata for practical regular expressions

instead. However, the implementation accepts commonly used PCRE-like
syntax, which uses curly brackets for these constructs.

Definition 5.1 (regex with counting constraints). The syntax of regex with
counting constraints over Σ and X (denoted RXCΣ,X) is based on the rules
from Definition 2.1. The recursive rules 1–4 from that definition are the same
for this definition of RXCΣ,X , with three additional rules:

5. For every α ∈ RXCΣ,X and a ∈ N0, (α)〈a〉 ∈ RXCΣ,X

and var((α)〈a〉) = var(α).

6. For every α ∈ RXCΣ,X and a, b ∈ N0, a < b, (α)〈a, b〉 ∈ RXCΣ,X

and var((α)〈a, b〉) = var(α).

7. For every α ∈ RXCΣ,X and a ∈ N0, (α)〈a,〉 ∈ RXCΣ,X

and var((α)〈a,〉) = var(α).

The semantics are defined in the following way. If pattern α ∈ RXCΣ,X

does not contain ‘〈’ or ‘〉’ (i.e. no subpattern was produced by rule 5, 6 or 7),
then also α ∈ RXΣ,X and the language L(α) described by α is defined using
the Definition 2.2 of regex semantics. Otherwise, if pattern α was produced
by rule 5, then α = (β)〈a〉 and the language described by α is defined to be
L((β)〈a〉) = L(βa), i.e. the language of pattern β repeated a times. Addi-
tionally, if α = (β)〈a, b〉 was produced by rule 6, its language is defined as
L((β)〈a, b〉) = L((β)〈a〉 ∨ (β)〈a + 1〉 ∨ . . . ∨ (β)〈b〉). Finally, if α = (β)〈a,〉
was produced by rule 7, its language is L((β)〈a,〉) = L((β)〈a〉 · β∗). Applying
these three rules recursively eventually leads to pattern without ‘〈’ or ‘〉’ and
the regex semantics can be used. △

As seen from Definition 5.1, adding counting constraint does not change
semantic power of regex, meaning that this addition is a mere “syntactic
sugar”. Since such patterns can, by definition, be transformed into regex,
counting constraints could be supported simply by using the above rules and
building an equivalent regex, then matching as usual. However, the problem
with this approach is that the resulting regex would potentially be very large.

Example 5.1. Pattern α1 = (ab∗)〈3〉 ∈ RXC{a,b},∅ describes language of

regex pattern α′
1 = ab∗ab∗ab∗, which is L1 = {abiabjabk | i, j, k ∈ N0}.

Another pattern α2 = (x1{a
+}bx1)〈1, 2〉 ∈ RXC{a,b},{x1} has an equiva-

lent regex pattern α′
2 = (x1{a

+}bx1)∨ (x1{a
+}bx1x1{a

+}bx1), the described
language is L2 = {aibai | i ∈ N} ∪ {ajbaj+kbak | j, k ∈ N}. �

For pattern of the form α = (β)〈k〉 ∈ RXCΣ,X , the equivalent regex would
be α′ = βk. The size of this regex is then |α′| = k · |β|, and if the pattern was

65

5. Implementation

matched using memory automaton, the resulting MFA would grow propor-
tionally to the value of k, which would be rather problematic for large k. In
fact, if the number of repetitions in pattern α is given using base-b positional
numeral system, the size of α′ would be O(b|α|) and therefore exponential in
the size of the original pattern α. Furthermore, this can be problematic in
practice even for smaller number of repetitions if the subpattern is large and
even more so if a range 〈a, b〉 is given.

To match regex with counting constraints efficiently, we propose extending
memory automata with counters. The basic idea is that patterns such as
(β)〈k〉 can be matched using a similar construction as for β+, but counting
how many times the “inner” subpattern β got matched and allowing to take
the transition leading to the final state only when this count is equal to k.
Similarly, patterns of the form 〈a, b〉 can be matched in a similar way, but
checking the count against an interval instead.

Intuitively, this corresponds to replacing the k “copies” of sub-automaton
for β, which would be constructed if (β)〈k〉 was treated as βk, with a single
instance of sub-automaton for β and keeping a counter that is incremented
each time the subpattern is matched. This is somewhat similar to how count-
ing constraints are handled in [35], although it is unclear whether repetitions
of more complicated subpatterns (as opposed to repetitions of single charac-
ters and character classes) were considered in that paper. Also a different
matching algorithm based on online NFA simulation was used in the article,
see Section 3.4.1.

We propose adding integer variables called counters to memory automaton
configurations. Every counting constraint is then associated with a counter.
Each time the repeated subpattern26 is matched, the corresponding counter
is incremented. Transition outside the part of automaton implementing the
counting constraint will then be taken only if value of the associated counter
is either equal to k for constraint (β)〈k〉, inside [a, b] interval for (β)〈a, b〉, or
is greater than a for (β)〈a,〉.

Multiple counters may be required to match patterns such as ((a)〈k〉b+)〈l〉.
When matching the subpattern (a)〈k〉 in this pattern, a counter is required
to keep the number of matched a symbols, but another counter is also needed
for matching the whole subpattern inside the enclosing (. . .)〈l〉 constraint.

On the other hand, once a subpattern of the form (β)〈k〉 (or other variants
of counting constraint) gets matched, value of the corresponding counter is no
longer required for matching rest of the pattern. Therefore, it is possible to
reuse counters for matching multiple counting constraints provided that they
are not nested as they were in the pattern from previous paragraph. For
example, to match (a)〈k〉(bc+)〈l〉, only one counter is sufficient. It would first

26e.g. β in (β)〈k〉

66

5.1. Memory automata for practical regular expressions

store the number of matched a symbols (until its value reaches k), and then
it would be reused for matching (bc+)〈l〉. This sharing of a counter can be
done as long as the two counting constraints are not nested (and thus are
independent), i.e. if one is not parent of the other in the pattern’s syntax tree.

Now the counters in memory automata will be established formally, by in-
troducing an extension of the MFA model from Definition 4.1. Configurations
are extended with counters, and two special symbols that represent two new
types of transitions are added.

Definition 5.2 (memory automaton with counters). For l ∈ N, we define
Ξl = {INC(x, a, b), OUT(x, a, b) | x ∈ [l], a ∈ N0, b ∈ N0 ∪ {∞}, a ≤ b}, where
∞ is a special value satisfying ∀x ∈ N0, x <∞. Additionally, we will use Σε,k

and Γk as established in Definition 4.1.

For k, l ∈ N, a k-memory automaton with l counters (denoted CMFA(k, l))
is syntactically an NFA (Q, ∆′, δ, q0, F), where ∆′ = Σε,k ∪ Γk ∪ Ξl. The
semantics are defined by extending semantics of k-memory automaton.

Configurations are of the form c = (q, w, (u1, r1), . . . , (uk, rk), (C1, . . . , Cl)),
where base(c) = (q, w, (u1, r1), . . . , (uk, rk)) is a configuration of MFA(k) on
the same alphabet Σ, and Ci ∈ N0 for i ∈ [l] are values of the counters.
Initial configuration on input w ∈ Σ∗ is (q0, w, (ε, C), . . . , (ε, C), (0, . . . , 0)).
Configuration c is accepting if q ∈ F and w = ε.

The transition relation ⊢M is defined on the set of configurations as follows.
For CMFA(k, l) configurations c = (q, w, (u1, r1), . . . , (uk, rk), (C1, . . . , Cl))
and c′ = (p, w′, (u′

1, r′
1), . . . , (u′

k, r′
k), (C ′

1, . . . , C ′
l)), it holds c ⊢M c′ if one of

these conditions apply:

1. base(c) ⊢ base(c′) as per Definition 4.1, and ∀j ∈ [l], C ′
j = Cj .

2. p ∈ δ(q, INC(x, a, b)) ∧ w′ = w ∧ (∀i ∈ [k], (u′
i, r′

i) = (ui, ri)) ∧
∧ (∀j 6= x, C ′

j = Cj), and either of these apply:

a) b ∈ N0 ∧ Cx < b, then C ′
x = Cx + 1,

b) b =∞∧ Cx < a, then C ′
x = Cx + 1,

c) b =∞∧ Cx = a, then C ′
x = Cx.

3. p ∈ δ(q, OUT(x, a, b)) ∧ w′ = w ∧ (∀i ∈ [k], (u′
i, r′

i) = (ui, ri)) ∧
∧ (∀j 6= x, C ′

j = Cj) ∧ (a ≤ Cx ≤ b), then C ′
x = 0.

The accepted language, computations of CMFA, and other concepts are
defined in an analogous way to how they were defined for MFA. △

To construct CMFA accepting language of a given regex with counting
constraints, an extension of the rules from Section 4.2 will be used. Figure 5.2

67

5. Implementation

INC(x, a, b)

α

ε

OUT(x, a, b)

ε

ε

Figure 5.2: Construction of CMFA for cregex pattern of the form (α)〈a, b〉. If
the given pattern is of the form (α)〈a〉 instead, the same construction will be
used with b = a. Similarly, for constraint (α)〈a,〉, we set b =∞.

shows how an automaton constructed for each of the counting constraint vari-
ants will look like. Structure of the resulting automaton will satisfy the prop-
erties discussed at the beginning of Section 5.1, because there are still at most
two outgoing transition from each state and both are in that case labeled with
the same symbol. The ε-transitions in the diagram are there specifically for
the purpose of satisfying these properties. Adding this rule thus preserves
the complexity characteristics of memory automata outlined earlier. Using
the rule along with the other construction rules described in Section 4.2, any
cregex pattern can be recursively transformed into an equivalent CMFA.

Two special transitions can be seen on the diagram in Figure 5.2. The tran-
sition labeled with INC(x, a, b) leads into the part of automaton constructed
from subpattern α that is subjected to the counting constraint. According
to rule 2 in Definition 5.2, this transition can be taken only if value of the
corresponding counter Cx is lower than b, where b is in fact the upper bound
on number of allowed subpattern α repetitions. When the transition is taken,
the corresponding counter is incremented. This is natural, since the purpose
of the counter is to keep track of how many times the subpattern was matched
and after taking this transition the subpattern will be matched before return-
ing back to the source state. If the constraint is of the form (α)〈a,〉, it is only
incremented until it reaches the value of a, after that INC transition does not
increase the value further. This is done to restrict the number of possible con-
figurations, which leads to better complexity properties, since time complexity
of the matching algorithms described earlier depends on the size of the set of
possible configurations.

The second special transition labeled with OUT(x, a, b) can be taken only if
the counter’s value is inside allowed range (e.g. [a, b] for (α)〈a, b〉) defined by
the constraint, as described by rule 3 in Definition 5.2. After this transition

68

5.1. Memory automata for practical regular expressions

is taken, the corresponding counter is set to zero so that it can be potentially
reused for another counting constraints appearing further in the pattern.

The construction from Figure 5.2 has the same effect as repeating the pat-
tern (and the corresponding automaton part) explicitly. Instead of explicitly
copying the part for subpattern α, we reuse it and keep count of how many
times the subpattern was matched, effectively matching the same pattern.
When handling counting constraint of type (α)〈a,〉, the counter stops incre-
menting at a and then the automaton part behaves as α∗ construct, which is
consistent with the fact that (α)〈a,〉 can be rewritten to (α)〈a〉α∗, according
to Definition 5.1.

The only issue left is how to choose the counter x in the automaton con-
struction from Figure 5.2. As discussed earlier, nested counting constraints
can not be handled by the same counter. Otherwise, we can reuse one counter
for multiple counting constraints if they are independent. Analogously as for
memories, it is desirable to minimize number of counters used by automaton.
This is because, as per Definition 5.2, counters are part of configurations and
so they contribute to the configuration size and thus the memory needed to
store the configurations. More importantly, having more counters also in-
creases size of the searched space of automaton configurations.

The implementation chooses counters by assigning counter number 1 to
the most nested counting constraint subexpression (i.e. whose node in the
syntax tree has the largest distance from root) and any enclosing counting
constraint will have counter number larger by one. To define this rule pre-
cisely, we set next counter(γ) = 1 for any cregex pattern γ produced by
rule 1 or rule 3 from Definition 2.1. If γ was produced by rule 2, we set
next counter(γ) = max{next counter(α), next counter(β)}. For rule 4 we
set next counter(γ) = next counter(α). Finally, if γ was produced by rule
5, 6 or 7 from Definition 5.1, we choose the counter as x = next counter(α)
and set next counter(γ) = next counter(α) + 1. It can be seen that the
CMFA constructed from pattern α as described will have next counter(α)−1
counters.

As described earlier in Section 5.1, the automaton construction is done re-
cursively, by first constructing the automata parts (fragments) for child nodes
and then combining them using construction rule according to the type of
current node. Implementation of the rules for assigning counters as described
above is trivial, we can keep the values of next counter in the automaton
fragments and compute the value according to child nodes and node type.
Algorithm 4 formalizes how the assignment of counters is done and also illus-
trates the overall automaton construction process. We use the same symbols
for denoting syntax tree node types as were used in [2], and additionally use
[〈a〉], [〈a, b〉], and [〈a,〉] to denote the tree types of counting constraints.

69

5. Implementation

Algorithm 4: Construction of CMFA and assignment of counters

Input : Pattern α ∈ RXCΣ,X , its syntax tree T
Output: CMFA M , such that L(M) = L(α)

1 return Construct(root(T))

2 Function Construct (node t)
3 if type(t) ∈ {[∨], [·]} then
4 frLeft← Construct(t.leftChild)
5 frRight← Construct(t.rightChild)
6 fragment← construct automaton fragment by combining

frLeft and frRight according to construction rule for type(t)
7 fragment.next counter← max{frLeft.next counter, frRight.next counter}

8 else if type(t) ∈ {[+], [∗], [x{}] | x ∈ X} then
9 frInner← Construct(t.child)

10 fragment← construct automaton fragment from frInner
according to rule for type(t)

11 fragment.next counter← frInner.next counter

12 else if type(t) ∈ {[a], [x] | a ∈ Σε, x ∈ X} then
13 fragment← construct automaton fragment according to rule

for type(t)
14 fragment.next counter← 1

15 else if type(t) ∈ {[〈a〉], [〈a, b〉], [〈a,〉]} then
16 frInner← Construct(t.child)
17 fragment← construct fragment from frInner according to rule

for counting constraint of type type(t) (see Figure 5.2), use
counter with number x = frInner.next counter

18 fragment.next counter← frInner.next counter + 1

19 end
20 return fragment

Example 5.2. Figure 5.3 shows memory automaton with counters constructed
for pattern (a〈1, 4〉x1{b

∗})〈2〉cx1(d)〈3, 〉, the automaton does not entirely fol-
low the construction rules, ε transitions were omitted from the diagram, since
they are not important for this example.

The pattern contains three counting constraints. Following rules outlined
above, the automaton counters were assigned to them as follows: the nested
a〈1, 4〉 constraint is handled by counter number 1, the enclosing (. . .)〈2〉 is
handled by counter 2, and the last constraint (d)〈3, 〉, which is independent
from the former two, will reuse counter 1. The automaton thus has two
counters (and one memory).

The accepted language is {aibjakblcbldm | i, k ∈ [4], j, l ∈ N0, m ≥ 4}. To
illustrate how the CMFA operates, computation on input w = abaaabbcbbdddd

70

5.2. Solution architecture and implementation details

I

N

C

(

1

,

3

,

∞

)

OUT(1, 3,∞)

I

N

C

(

1

,

1

,

4

)

O

U

T

(

1

,

1

,

4

)

I

N

C

(

2

,

2

,

2

)

1

6
O

U

T

(

2

,

2

,

2

)

3

4 5
o(1)

b

2

a

c(1)

c
8

9
d

107
1

Figure 5.3: An 1-memory automaton with 2 counters (i.e. CMFA(1, 2)) ac-
cepting the language of pattern (a〈1, 4〉x1{b

∗})〈2〉cx1(d)〈3, 〉

is shown below. For brevity, the current input string is written as a suffix of
input w, the suffix starting at i-th symbol of w is denoted wi, i.e. it holds
wi = w[i] . . . w[|w|] and w1 = w. Additionally, it is indicated if an input
symbol is consumed during transition. The computation runs27 as follows:

(1, w1, (ε, C), (0, 0)) ⊢ (2, w1, (ε, C), (0, 1)) ⊢ (3, w1, (ε, C), (1, 1)) ⊢a

(2, w2, (ε, C), (1, 1)) ⊢ (4, w2, (ε, C), (0, 1)) ⊢ (5, w2, (ε, O), (0, 1)) ⊢b

(5, w3, (b, O), (0, 1)) ⊢ (1, w3, (b, C), (0, 1)) ⊢ (2, w3, (b, C), (0, 2)) ⊢
(3, w3, (b, C), (1, 2)) ⊢a (2, w4, (b, C), (1, 2)) ⊢ . . . ⊢a (2, w5, (b, C), (2, 2)) ⊢ . . . ⊢a

(2, w6, (b, C), (3, 2)) ⊢ (4, w6, (b, C), (0, 2)) ⊢ (5, w6, (ε, O), (0, 2)) ⊢b

(5, w7, (b, O), (0, 1)) ⊢b (5, w8, (bb, O), (0, 2)) ⊢ (1, w8, (bb, C), (0, 2)) ⊢
(6, w8, (bb, C), (0, 0)) ⊢c (7, w9, (bb, C), (0, 0)) ⊢bb (8, w11, (bb, C), (0, 0)) ⊢
(9, w11, (bb, C), (1, 0)) ⊢d (8, w12, (bb, C), (1, 0)) ⊢ . . . ⊢d (8, w13, (bb, C), (2, 0)) ⊢
(9, w13, (bb, C), (3, 0)) ⊢d (8, w14, (bb, C), (3, 0)) ⊢ (9, w14, (bb, C), (3, 0)) ⊢d

(8, ε, (bb, C), (3, 0)) ⊢ (10, ε, (bb, C), (0, 0)) ⊢ accept
�

Finally, the matching technique based on active variable degree described
in previous section can also be applied for memory automata with counters,
because, as also seen on Example 5.2, the function of counting constraints and
memories are independent. We implemented both these techniques.

5.2 Solution architecture and implementation

details

The implemented regular expression engine was called mfa-regex, as it is based
on memory automata. The implementation was written in C++ programming
language, using the C++14 standard.

27There were some non-deterministic choices during the computation, the transition lead-
ing to shortest accepting computation was always taken. In practice, the sequence of visited
configurations would depend on used matching algorithm.

71

5. Implementation

Use

builds

AvdOptimizedMFA
is a wrapper over
MemoryAutomaton,
with modified
configurations. It
has the same
interface as
MemoryAutomaton.

Use

MemoryAutomaton

...

MFABuilder

+ build()

AvdOptimizedMFA

... Matcher

+ match()
+ search()

BFSMatcher

+ match()
+ search()

BacktrackMatcher

+ match()
+ search()

Figure 5.4: Class diagram of the mfa-regex implementation

Class diagram illustrating the mfa-regex implementation design is pre-
sented in Figure 5.4. The implementation consist of three main parts. First
is the construction algorithm that converts (compiles) given regex pattern
into the memory automaton representation. This is realized by MFA Builder

class. It accepts the pattern in form of a string, the string is parsed using a
LR parser, or precisely LALR(1), generated by GNU Bison [65] parser gen-
erator. The MFA Builder class uses the Bison generated parser to transform
the pattern into its syntax tree. Then, memory automaton is constructed for
the pattern incrementally from fragments, using the algorithm discussed in
Section 4.2 with modifications from Section 5.1 and Section 5.1.5. This is
done using a recursive construction function operating on the syntax tree, as
illustrated in pseudocode of Algorithm 4.

The representation of memory automaton is the second main part of the
solution architecture. Class MemoryAutomaton stores the MFA as described in
Section 5.1, it holds the graph representation of states and transitions. Addi-
tionally, this class implements the transition relation between configurations,
function to obtain the initial configuration on an input, and other related
functions. However, this class does not implement the matching algorithms,
these are separate and form the third main part of the implementation. Con-
figurations are represented as described in Section 5.1.2.

The matching algorithms form a separate class hierarchy, with their inter-
face defined as a C++ abstract class and the concrete algorithms derived from
it. As described in Section 5.1.1, BFS and backtracking based matching algo-
rithms were implemented, with the backtracking algorithm having an option
to cache all visited configurations and thus behaving as DFS.

Additionally, the efficient matching technique based on active variable de-
gree is implemented by AvdOptimizedMFA class. The modified algorithm used

72

5.2. Solution architecture and implementation details

to compute active variables was discussed in Section 5.1.3. The class is im-
plemented as a wrapper over the MemoryAutomaton class, having the same
interface but using different configurations and a modified transition relation
over these configurations, as described in Section 5.1.4. The matching algo-
rithms work independently on which of the automaton classes is used, this is
realized using C++ templates.

The MFA Builder class does not need to be used explicitly when construct-
ing memory automata, since the MemoryAutomaton (and AvdOptimizedMFA

too) has constructor accepting regex pattern in form of a string. In this way,
the construction process can be transparent when using the library and users
only need to deal with memory automata and matcher classes. The library
interface is similar to other regular expression implementations. For instance,
the regex package in Java has Pattern class serving as a representation of
compiled regular expression, with similar role as our MemoryAutomaton class.
Then they also have Matcher class, which provides the matching functionality.

The mfa-regex regular expression engine is provided as a C++ library. It
also comes with a command line tool to match given regex pattern and a
simple imitation of GNU grep called mfa-grep. See Appendix B for the user
documentation of mfa-regex library.

5.2.1 Supported features

A brief overview of features that are supported by mfa-regex is provided in
this section along with key details of how they are realized. The complete
syntax is described in Appendix B.

The syntax is generally based on POSIX ERE and PCRE syntax. The
implementation attempts to support as many of the common extensions found
in practical regular expressions as possible, fielding a relatively rich regex
syntax.

The standard numbered backreferences, as well as named capture groups
and backreferences to them are supported. Unlike most implementations,
we also allow capture group content redefinitions (i.e. bounding more than
one capture group to the same variable name) using a special syntax. This
is done so that the regex patterns from [1] (as per Definition 2.1) are sup-
ported. For instance, regex pattern α = x{a+}xb∗x{c+}x would be written
as ‘(?<x>a+)\k<x>b*(?<&x>c+)\k<x>’ in our syntax. The named capture
group construct ‘(?<x>a+)’ and the ‘k<x>’ that is backreference to it are both
also part of the PCRE syntax. However, using the same variable name for
another capture group would trigger an error in PCRE and most other li-
braries. Unlike PCRE, we allow to bind variable with another capture group
if its name is prefixed with ‘&’ in subsequent captures. This behaves the same
as variable binding in regex patterns.

73

5. Implementation

For references to capturing groups whose content is not yet defined, we
use ε-semantics as established earlier in Chapter 2.

Additionally, counting constraints are supported by implementing the count-
ing memory automata model proposed in Section 5.1.5. We also support char-
acter classes and other common constructs.

The library can be compiled with support for Unicode (UTF-8) encoding.
We make use of the open source utf-cpp [66] library for this purpose.

The engine also supports searching in input (i.e. finding match anywhere
inside the input text), this is done by running the matching algorithm from
each position of the input, starting with the first. The left-most match is
reported. Start of string and end of string anchors, as well as word boundary
assertions are also supported.

Finally, some pattern optimizations were implemented. As this was not the
main focus, these are very basic optimizations. Alternation of characters are
transformed into character classes where applicable, for example “a|b|c” into
“[abc]”. Character classes between alternation terms are also merged where
possible, such as “[abc]|[x0-9]” into “[abcx0-9]”. Other simple transfor-
mations are performed for quantifiers, such as converting “(?:a*)*” into “a*”.

Optionally, the engine can also convert unused capturing groups into non-
capturing groups (i.e. their contents is not stored in memory). We call this
optimization unused memories removal. During construction, we keep track
of which capturing groups (memories) are recalled anywhere in pattern. The
capturing groups that are not recalled are then converted into non-capturing
ones and number of automaton memories is decreased correspondingly. The
k remaining memories are then re-numbered so that their indexes28 are in-
side {0, . . . , k−1}, naturally all memory recall transitions in automaton must
also be changed accordingly to point to the correct memory. However, this
optimization is disabled by default, because it limits the provided submatch
information.

5.2.2 Testing

To ensure correctness of the implementation, unit tests were developed. The
Catch 2 [67] testing framework was used to implement tests. As many as
possible cases were tested, with focus on edge cases. All combinations of
automaton and matcher classes, as well as possible values of parameters, were
tested. The test suite checks several thousands assertions for the different
combinations of matching algorithms and other parameters.

Additionally, during experimental evaluation, the results of matching tested
inputs on patterns were compared against outputs given by other regular ex-
pression engines to check consistency with established implementations.

28We number memories from 0 internally, but this is just an implementation detail.

74

5.2. Solution architecture and implementation details

5.2.3 Source code publication and licensing

Source codes of the implemented regular expressions library and tools are en-
closed with this thesis, and they are also available at https://gitlab.com/

hronmar/mfa-regex. The implementation was published under the MIT li-
cense.

We make use of two header-only C++ libraries [66, 67] both published un-
der the Boost Software License 1.0 (BSL 1.0). BSL is very similar license to
MIT, with the difference that it is slightly more permissive and does not re-
quire preservation of copyright and license notices for binary distributions [68].
These two licenses are compatible.

75

https://gitlab.com/hronmar/mfa-regex
https://gitlab.com/hronmar/mfa-regex

Chapter 6

Experimental evaluation

This chapter describes experimental evaluation of the implemented mfa-regex

library. The algorithms available in our implementation are compared. Perfor-
mance and practical usability of the matching technique based on active vari-
able degree is investigated, and it is compared to the simple unused memories
removal optimization. Then, the implemented mfa-regex library is compared
with other existing regular expression engines on various datasets. Finally,
complexity properties and resistance to algorithmic complexity attacks via
catastrophic backtracking are explored.

6.1 Methodology

The time complexity of deciding the matching problem was measured. In
practice, this means to check if the whole input matches the given regular
expression pattern. Most libraries provide some test function to perform this,
but for cases where only searching is supported, each pattern was wrapped
inside ‘ˆ’ and ‘$’ anchors so that each engine performs the same matching
test.

For individual matching, the time execution was measured. For calculat-
ing performance on whole datasets of multiple patterns and inputs, the time
for each run was divided by the input size, resulting in a measure of “match-
ing speed” in the form of time

input length , this performance measure can then be
averaged over multiple inputs and patterns. The input length is measured in
number of characters of the input string, but since all inputs in the datasets
contain only ascii characters, this coincides with input size in bytes. The
used datasets of patterns and inputs are described in Section 6.1.1 below,
further details about the datasets are provided in Appendix C.

Execution times were measured using the built-in C++ time measurement
capabilities, via the std::chrono library. The measured times of tested algo-
rithms were averaged over multiple runs for each input, where possible, the

77

6. Experimental evaluation

algorithm was run 10 000 times for each input. However, when catastrophic
backtracking occurred for some engines, this was indeed not possible. A lower
number of runs was performed in such cases. Before the measured runs, 3 un-
measured “warm-up” runs were performed to reduce the influence of caching
on the measured execution times.

The programs used for the experiments were compiled using the g++ 9.3.0
compiler, with -O3 flag enabled. Versions of the other tested libraries are listed
in Section 6.3.

6.1.1 Datasets

The following datasets of regular expression patterns were used for experi-
mental evaluation.

regexlib A set of 6 regular expressions taken from regexlib.com [69].

lingua-franca Set of 40 regular expression patterns chosen randomly from
the Regex corpus published as part of [70]. The patterns were picked
randomly without replacement, but patterns containing unsupported
constructs (such as positive/negative look-ahead and look-behind) were
not chosen. The patterns were modified by wrapping them inside the be-
gin and end anchors (as described earlier), and other minor changes were
necessary in some cases. The source corpus contains 537 806 patterns
extracted from 193 524 software projects [70]. It would be impractical
to test the implementations on such large corpus, our sample of 40 pat-
terns covers a wide range of cases and should be sufficient for estimating
practical regular expression engines performance.

lingua-franca-backref A set of 20 patterns containing backreferences picked
randomly from the same Regex corpus as our previous dataset. The
sampling was done in the same way, but only choosing from patterns
with at least one backreference. The patterns were modified similarly as
in the previous case.

catastrophic-backtrack Set of 20 “dangerous” regular expression patterns
that may cause catastrophic backtracking when run on a backtracking
engine, collected from various sources.

6.1.1.1 Inputs

For the pattern from lingua-franca and lingua-franca-backref, input
strings were generated randomly using the open source randexp.js [71] tool,
which for a given regular expression constructs a random string that matches
the pattern. Length of the generated string is limited, quantifiers (such as *, +)
have number of repetitions limited by 100. This way, one matching input was

78

6.2. Comparison of algorithms and options provided by mfa-regex

generated for each pattern. Second input, which does not match, was then gen-
erated by changing random characters of the matching input. If possible, only
one character was modified. Therefore, we have 2 inputs for each pattern, one
that matches and one that does not. For lingua-franca that is 80 different
runs (for pattern, input pairs) in total, and 40 for lingua-franca-backref.

Inputs for patterns from regexlib and catastrophic-backtrack datasets
were constructed manually. For the former, two inputs were provided for each
pattern, again one that matches and one that does not. For the latter dataset,
“dangerous” inputs were chosen that will potentially result in catastrophic
backtracking.

6.1.2 Platform specifications

The experiments were run on a system with the following characteristics:

Operating system: Arch Linux (Linux kernel version 4.9.221)
Processor: Intel R© CoreTM2 Duo CPU T6570 @ 2.10GHz × 2
Architecture: 64 bit
Memory size (RAM): 4 GB
L2 cache size: 2048 kB
Compiler: g++ 9.3.0

6.2 Comparison of algorithms and options

provided by mfa-regex

This section provides comparison between the different matching algorithms
available in our implementation. Then performance of the matching technique
based on active variable degree is evaluated.

6.2.1 Comparison of matching algorithms

Performance of the three implemented algorithms was compared, as described
earlier in Section 5.1.1, these are the algorithm based on recursive backtrack-
ing, DFS (i.e. backtracking with caching every configuration), and BFS.

To get a basic idea of their performance, the algorithms were first run
on the 6 patterns from regexlib set. The results can be seen in Table 6.1.
Each pattern was matched against two input strings, the first one matching
and the second one causing a mismatch. Execution times in milliseconds
and relative performances are shown. On each of the tested patterns and
inputs, backtracking was the fastest from measured matching methods. The
additional caching of all visited configurations contributes to the slow down
in case of the DFS algorithm.

79

6
.

E
x

p
e
r

im
e
n

t
a

l
e
v
a

l
u

a
t

io
n

Table 6.1: Comparison of matching algorithms available in mfa-regex on regexlib patterns

Pattern Input Res. Backtrack DFS BFS

ˆ.+@[ˆ.].*\.[a-z]{2,}$ John.Doe 1234@example.domain.cz T 1
(0.086 ms)

1.78
(0.153 ms)

2.55
(0.219 ms)

ˆ.+@[ˆ.].*\.[a-z]{2,}$ John.Doe 1234@example.domain.c F 1
(0.098 ms)

1.96
(0.192 ms)

2.10
(0.206 ms)

ˆ#?([a-f]|[A-F]|[0-9]){3}(([a-

f]|[A-F]|[0-9]){3})?$
#7171C6 T 1

(0.048 ms)
1.40
(0.067 ms)

1.56
(0.075 ms)

ˆ#?([a-f]|[A-F]|[0-9]){3}(([a-

f]|[A-F]|[0-9]){3})?$
#7171CG F 1

(0.049 ms)
1.39
(0.068 ms)

1.47
(0.072 ms)

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$
"a correctly \\ escaped \"C-sty

le\" string.\n"
T 1

(0.072 ms)
1.50
(0.108 ms)

3.50
(0.252 ms)

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$
"incorrectly \\escaped \"C-styl

e" string.\n"
F 1

(0.111 ms)
1.75
(0.194 ms)

1.77
(0.197 ms)

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.\d{1

,3})?|\d{1,3}(\.\d{3})?)$
123’456’789.123 T 1

(0.075 ms)
1.45
(0.109 ms)

2.36
(0.177 ms)

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.\d{1

,3})?|\d{1,3}(\.\d{3})?)$
123’45’6789.123 F 1

(0.070 ms)
1.47
(0.103 ms)

1.59
(0.111 ms)

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|]+\\
[ˆ/\\:*?"<>|]+)(\\[ˆ/\\:*?"<>

|]+)+(\.[ˆ/\\:*?"<>|]+)$

\c\example\path\file 123.txt T 1
(0.096 ms)

1.49
(0.143 ms)

2.07
(0.199 ms)

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|]+\\
[ˆ/\\:*?"<>|]+)(\\[ˆ/\\:*?"<>

|]+)+(\.[ˆ/\\:*?"<>|]+)$

\c\example\path\file 123. F 1
(0.108 ms)

1.59
(0.172 ms)

1.59
(0.172 ms)

ˆ<(\w+)(\s(\w*=".*?")?)*((/>)

|((/*?)>.*?</\1>))$

<example attr1="value1" attr2=

"value2"><childNode/></examp

le>

T 1
(0.135 ms)

1.76
(0.238 ms)

4.18
(0.564 ms)

ˆ<(\w+)(\s(\w*=".*?")?)*((/>)

|((/*?)>.*?</\1>))$

<example attr1="value1" attr2=

"value2"><childNode/></examp

l>

F 1
(0.245 ms)

2.14
(0.525 ms)

2.29
(0.560 ms)

8
0

6.2. Comparison of algorithms and options provided by mfa-regex

Table 6.2: Comparison of matching algorithms on lingua-franca dataset

Algorithm Avg. time
input size

[ms/byte] Relative perf.

Backtrack 0.00253 1
DFS 0.00357 1.411
BFS 0.00426 1.684

Furthermore, in case of BFS, the manner in which the space of configu-
rations is searched results in the method being significantly slower than the
other two. This is because while the backtracking algorithm (and DFS) tries
to explore the branch of computation as far as possible and backtracks only
when necessary, so that final configuration is reached quickly, BFS explores
the space “evenly” and thus a lot of unnecessary configurations are visited.
As a result of this, there was not such a large difference for BFS between ac-
cepting and rejecting an input on some patterns, as was the case of the other
two algorithms. For instance, on the last tested pattern, both backtracking
and DFS had significantly larger execution time on the rejected (second) in-
put than on the first, e.g. for backtracking it was 0.135 ms versus 0.245 ms.
The rejected input is almost the same as the accepted (first) input with minor
modification near the end of the strings, and therefore the two algorithms
had to backtrack to a large extent, whereas on the accepted input the match
was reported quickly. By contrast, because of how BFS searches the space
of configurations, it had insubstantial difference between the two inputs, even
being slightly faster on the rejected one (0.564 ms versus 0.560 ms).

Additionally, the algorithms were run on the lingua-franca dataset, the
measured performances are listed in Table 6.2. As described earlier, com-
putation time divided by input size was used as a measure of performance
on individual inputs, and this quantity was averaged over the whole dataset.
The results are consistent with the findings on patterns from regexlib, the
fastest algorithm was again backtracking, while DFS was in average slower by
approximately 41%, and BFS was more than 68% slower than backtracking.

In conclusion, there seems to be no reason for choosing other matching
algorithm than the one based on backtracking. The other two algorithms are
interesting for theory, i.e. providing a bound for asymptotic complexity, but
in practice backtracking clearly outperforms them. As shown in Section 6.2.2
below, this also holds for patterns with backreferences. Finally, as presented
later in Section 6.3.1, the algorithm was resistant to the tested traditional
algorithmic complexity attacks.

81

6. Experimental evaluation

Table 6.3: Average automaton construction times on lingua-franca-backref

dataset

Algorithm Avg. constr. time [ms] Relative slowdown

Only basic optimizations 0.0424 1
Unused memories removal 0.0441 1.04
Active variable degree opt. 0.1433 3.38

6.2.2 Active variable degree and optimizing memories

In this section, performance of the matching technique based on active variable
degree is investigated. We also attempt to estimate the practical usability of
this method. The matching algorithm based on active variable degree is com-
pared to the simpler optimization of removing unused memories (i.e converting
un-referenced capturing groups to non-capturing) mentioned in Section 5.2.1,
and also to the basic matching algorithm with no memory optimizations.

First, the overhead caused by these optimizations was estimated on the
ligua-franca-backref dataset. Table 6.3 shows average times taken to con-
struct memory automaton for regex patterns from the dataset, compared be-
tween the three variants of memory optimizations. When the algorithm based
on active variable degree is used, it is necessary to compute active variables
during the pattern compilation phase (as shown in Section 5.1.3), after the
automaton structure is constructed. This computation of avd causes signif-
icant overhead, when it was done, the construction times were more than
three times slower in average. However, construction times are usually not
as crucial as matching times, because construction complexity does not grow
with input string size, which is usually much larger than pattern size, and if
the same pattern is used to match larger number of inputs, the construction
time contributes minimally to the overall execution time. Conversely, unused
memories removal caused minimal slowdown.

Comparison of matching times of the three variants on patterns from
ligua-franca-backref dataset are shown in Figure 6.1. Only the match-
ing times excluding the automaton construction times are plotted in this case.
Because no pattern in the ligua-franca-backref dataset contain more than
two referenced capturing groups, and the only pattern that has two backrefer-
ences to different capturing groups also has avd = 2, the optimization based
on active variables can not help more than simple removal of unused memo-
ries. In case of unused memories removal, the matching times were in average
approximately 19% smaller for backtracking algorithm. However, implemen-
tation of the technique based on active variables introduced some overhead to
the matching algorithm, and this overhead out-weights the speed up gained
by removing unused memories on this dataset. In average, the matching times

82

6.2. Comparison of algorithms and options provided by mfa-regex

0

0.005

0.01

0.015

0.02

0.025

Backtrack DFS BFS

A
v
g
.
m

at
ch

in
g
 t

im
e

p
er

 i
n
p
u
t

ch
ar

.
[m

s/
b
y
te

]

Algorithm

Basic optimizations only

Unused memories removal

Active variable degree

Figure 6.1: Comparison of matching times for different optimizations on
lingua-franca-backref dataset. Automaton construction times were not
included in these measurements.

were almost 60% larger in case of backtracking. This could likely be reduced
to some extent by optimizing the implementation more.

Additionally, these results further confirm that the backtracking is in prac-
tice fastest from the three base matching algorithms, as it had again the small-
est matching times for all three variants.

As stated above, the avd matching technique could not (even in theory)
provided significant improvement on patterns from ligua-franca-backref

dataset, because the resulting automaton had low number of memories (usu-
ally just one). To investigate the practicality of this method and estimate
the number of (referenced) capturing groups that must be present in pat-
tern for the method to yield an improved time compared to basic backtrack-
ing, we run the following experiment. For n ∈ {1, 2, . . .}, we matched pat-
tern “.*(.+).*\1.*(.+).*\2*(.+).*\n” against an input of the form
a2

1a2
2 . . . a2

n, where Σ = {a1 = a, a2 = b, . . .}, using backtracking with and
without the optimization based on active variable degree. It can be seen that
the pattern has active variable degree equal to 1, while the number of refer-
enced capturing group in patterns is given by n.

Result of this experiment is shown on Figure 6.2. Execution times were
measured, which include both the automaton construction time (plus avd

computation) and the time spent actually matching the input. We compared
the base backtracking algorithm (with only the basic optimizations) and the

83

6. Experimental evaluation

	0.01

	0.1

	1

	10

	100

	1000

	10000

	1 	2 	3 	4 	5 	6 	7 	8 	9 	10 	11 	12 	13 	14 	15

E
x
e
c
u
ti
o
n
	t
im
e
	[
m
s
]

n

Backtracking	(basic)

Backtracking	with	AVD	opt.

Figure 6.2: Time to match pattern .*(.+).*\1.*(.+).*\2*(.+).*\n on
input a2

1a2
2 . . . a2

n, where Σ = {a1 = a, a2 = b, . . .}, using backtracking with
and without the optimization based on active variable degree.

matching technique based on active variable degree. Note that the simple
unused memories removal would have no effect on this pattern, because every
capturing group is referenced.

As can be seen on the graph, execution times for the basic backtracking al-
gorithm grow exponentially with the number of backreferences in pattern. In
this case, the theoretical worst case described29 in Section 4.2.1 occurred and
the algorithm time complexity was exponentially in the size of the pattern.
For larger values of n, the times achieved when the active variable degree opti-
mization was used were significantly lower than in case of simple backtracking.
For n = 15, the avd based algorithm had execution time approximately 93 mil-
liseconds, while the standard backtracking took 7494 milliseconds (i.e. almost
7.5 seconds) to match. These times would likely further grow with pattern or
input size. For the tested patterns, avd matching outperformed the standard
backtracking for number of memories (capturing groups) n ≥ 6.

29Note that the complexity was proven in [2] for searching the space of configurations
via BFS. However, DFS has the same asymptotic time complexity, and backtracking is a
modified version of DFS.

84

6.3. Comparison with other implementations

The usability of the matching technique based on active variables thus
depends heavily on the number of capturing groups and backreferences in
patterns, and also on the pattern structure. For large number of backrefer-
ences to different capturing groups, the method may yield significant speed
up compared to simple backtracking. It is a question to what extend are such
patterns used in practice. However, the method may still be useful if it is
desirable to have better algorithmic complexity upper bound, even if it is paid
for by some overhead.

6.3 Comparison with other implementations

The implemented mfa-regex library was compared to other existing regular
expression engines. For the comparison, backtracking algorithm was used for
mfa-regex, with only the basic and the unused memories removal optimiza-
tion. Table 6.4 shows the other libraries (engines) included in the performance
comparison and their respective versions.

Table 6.4: Tested libraries and their versions

Library Version

std::regex GCC 9.3.0 (libstdc++.so.6.0.28)
Boost.Regex Boost 1.72.0
ICU Regular Expressions ICU 67.1
JPCRE2 (C++ wrapper for PCRE2) 10.31.04 (PCRE2 10.34)
Oniguruma 6.9.5
RE2 2020-05-01

For the PCRE2 library, we used the JPCRE2 [72] C++ wrapper and we
did not enable the JIT compilation (this is the default setting in JPCRE2).
We also included RE2 library into the comparison, but we note that unlike
other tested libraries, RE2 uses different algorithm that is not based on back-
tracking, see Section 3.5.10 and [61]. RE2’s matching algorithm guarantees
linear time complexity [61], but this is achieved by abandoning support for
backreferences and other features. Because RE2 does not support backrefer-
encing, matching problem for its supported regular expression patterns is in
P. Therefore, the comparison with backtracking engines may not be fair, but
we included this library to get an idea of how alternative algorithms perform.

The measured execution times of tested libraries on regexlib patterns
are shown in Table 6.5. Because of space restrictions, inputs for regexlib

dataset were not listed again in this table (only patterns), see Table 6.1 or
Appendix C for list of inputs.

85

6
.

E
x

p
e
r

im
e
n

t
a

l
e
v
a

l
u

a
t

io
n

Table 6.5: Comparison of engines on regexlib patterns

Pattern Res. mfa-regex std::regex Boost ICU JPCRE2 Onig. RE2

ˆ.+@[ˆ.].*\.[a-z]{2,}$ T 9.56
(0.086 ms)

15.00
(0.135 ms)

1.56
(0.014 ms)

2.67
(0.024 ms)

1.00
(0.009 ms)

1.78
(0.016 ms)

6.33
(0.057 ms)

ˆ.+@[ˆ.].*\.[a-z]{2,}$ F 9.80
(0.098 ms)

13.50
(0.135 ms)

1.30
(0.013 ms)

2.40
(0.024 ms)

1.00
(0.010 ms)

1.50
(0.015 ms)

5.40
(0.054 ms)

ˆ#?([a-f]|[A-F]|[0-9]){3}((

[a-f]|[A-F]|[0-9]){3})?$
T 3.69

(0.048 ms)
30.69
(0.399 ms)

1.77
(0.023 ms)

2.92
(0.038 ms)

1.00
(0.013 ms)

2.00
(0.026 ms)

2.77
(0.036 ms)

ˆ#?([a-f]|[A-F]|[0-9]){3}((

[a-f]|[A-F]|[0-9]){3})?$
F 3.77

(0.049 ms)
31.54
(0.410 ms)

1.62
(0.021 ms)

3.00
(0.039 ms)

1.00
(0.013 ms)

2.00
(0.026 ms)

2.77
(0.036 ms)

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$ T 7.20
(0.072 ms)

13.60
(0.136 ms)

2.10
(0.021 ms)

2.20
(0.022 ms)

1.00
(0.010 ms)

1.70
(0.017 ms)

5.20
(0.052 ms)

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$ F 4.83
(0.111 ms)

—
(>10 min)

—
(error)

1
(0.023 ms)

382739
(≈8803 ms)

153304
(≈3526 ms)

2.35
(0.054 ms)

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.

\d{1,3})?|\d{1,3}(\.\d{3})?

)$

T 6.25
(0.075 ms)

32.58
(0.391 ms)

2.75
(0.033 ms)

14.58
(0.175 ms)

1.00
(0.012 ms)

3.42
(0.041 ms)

5.83
(0.070 ms)

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.

\d{1,3})?|\d{1,3}(\.\d{3})?

)$

F 7.00
(0.070 ms)

38.60
(0.386 ms)

3.10
(0.031 ms)

17.40
(0.174 ms)

1.00
(0.010 ms)

4.00
(0.040 ms)

6.10
(0.061 ms)

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|

]+\\[ˆ/\\:*?"<>|]+)(\\[ˆ/\
\:*?"<>|]+)+(\.[ˆ/\\:*?"<

>|]+)$

T 6.86
(0.096 ms)

22.86
(0.320 ms)

2.86
(0.040 ms)

2.86
(0.040 ms)

1.00
(0.014 ms)

2.07
(0.029 ms)

8.21
(0.115 ms)

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|

]+\\[ˆ/\\:*?"<>|]+)(\\[ˆ/\
\:*?"<>|]+)+(\.[ˆ/\\:*?"<

>|]+)$

F 7.20
(0.108 ms)

20.60
(0.309 ms)

2.67
(0.040 ms)

2.93
(0.044 ms)

1.00
(0.015 ms)

1.93
(0.029 ms)

7.40
(0.111 ms)

ˆ<(\w+)(\s(\w*=".*?")?)*((

/>)|((/*?)>.*?</\1>))$
T 9.00

(0.135 ms)
12.00
(0.180 ms)

1.67
(0.025 ms)

1.40
(0.021 ms)

1.00
(0.015 ms)

2.60
(0.039 ms)

not
supported

ˆ<(\w+)(\s(\w*=".*?")?)*((

/>)|((/*?)>.*?</\1>))$
F 11.14

(0.245 ms)
9.05
(0.199 ms)

1.18
(0.026 ms)

1.00
(0.022 ms)

1.05
(0.023 ms)

1.86
(0.041 ms)

not
supported

8
6

6.3. Comparison with other implementations

The fastest from tested libraries on majority of inputs was PCRE2 (via
the JPCRE2 wrapper). Other implementations that performed consistently
well on most inputs, with one exception that will be investigated later, were
Oniguruma and the Boost Regex library. Our implementation performed sig-
nificantly slower than PCRE2, but it still outperformed the C++ standard
std::regex library on every input except one.

On the pattern “ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$” (6-th row), most back-
tracking engines exhibited catastrophic backtracking when matching an input
“"incorrectly \\escaped \"C-style" string.\n"”. This was caused by
the nested * quantifier. The input is eventually rejected, but a large number
of backtracking takes place in traditional backtracking engines. Boost Regex
engine threw an exception (runtime error) when catastrophic backtracking was
detected. Both PCRE2 and Oniguruma libraries have a limit of backtrack-
ing that can take place, and for default values of the limits, both libraries
interrupted the matching prematurely on this input and reported an error.
To estimate time complexity of the algorithms even on such inputs, the lim-
its were disabled for testing. Unfortunately, to the author’s knowledge, such
option to disable the backtracking limit is not provided by Boost.

Unlike most other backtracking implementations, mfa-regex did not ex-
hibit catastrophic backtracking. This is thanks to the selective caching of
configurations as described earlier. It seems that one of the advantages of
mfa-regex could be the resistance to catastrophic backtracking. This will be
investigated later in Section 6.3.1.

Additionally, performance of the libraries was measured on lingua-franca

and lingua-franca-backref datasets. The measured average matching times
per input character are presented in Figure 6.3. Note that construction times
were included. The results are mostly consistent with the regexlib bench-
mark presented above. Catastrophic backtracking did not occur on any input
here. The fastest library was again PCRE2. Our implementation was in av-
erage cca. 5.5 times slower than PCRE2 on lingua-franca patterns and 8.5
times slower on lingua-franca-backref dataset. Still, the execution times
were relatively comparable to other regular expression engines, and the im-
plementation performance could likely be improved with more optimizations.

6.3.1 Susceptibility to catastrophic backtracking

In this section, we investigate and compare susceptibility of tested backtrack-
ing libraries to catastrophic backtracking. Catastrophic backtracking was dis-
cussed in Section 3.3.4, it is a situation when the worst case exponential time
behavior occurs for backtracking algorithms. This is often caused by pat-
terns with nested quantifiers. One example of pattern and input causing this
behavior was seen earlier on the regexlib dataset.

87

6. Experimental evaluation

0

0.001

0.002

0.003

0.004

0.005

0.006

lingua−franca lingua−franca−backref

A
v
g
.
m

at
ch

in
g
 t

im
e

p
er

 i
n
p
u
t

ch
ar

.
[m

s/
b
y
te

]

Dataset

mfa−regex

std::regex

Boost Regex

ICU

JPCRE2

Oniguruma

RE2

Figure 6.3: Comparison of regular expression engines on lingua-franca and
lingua-franca-backref datasets

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	10000

	100000

	1 	5 	10 	15 	20 	25

E
x
e
c
u
ti
o
n
	t
im

e
	[
m
s
]

n

mfa-regex

std::regex

Boost

ICU

JPCRE2

Oniguruma

Figure 6.4: Time to match pattern “(?:.*a)+” on input anb

88

6.3. Comparison with other implementations

To illustrate how algorithms behave when catastrophic backtracking oc-
curs, the tested backtracking engines were run on pattern “(?:.*a)+” and
inputs of the form anb, for n = 1, 2, . . . , 25. The results are presented in
Figure 6.4. The matching times of the other backtracking libraries grew expo-
nentially, for n = 25 the execution took cca. 2208 milliseconds (i.e. more than
two seconds) for the Oniguruma library, and even more for other implementa-
tions. Our implementation (mfa-regex) did not exhibit exponential behavior
in this case, even for n = 25, the execution time was 0.07 milliseconds.

As described in Section 4.2.1, matching regex pattern with constant num-
ber of backreferences using memory automata has polynomial time complexity.
Therefore, in theory, our implementation based on MFA should never exhibit
catastrophic backtracking, unless there is a very large number of backrefer-
ences to different capturing groups in pattern.

We collected a dataset of 20 patterns and inputs that may potentially lead
to catastrophic backtracking. This dataset of “dangerous” regular expressions
contains patterns collected from various sources, see Appendix C for details.
To test susceptibility of the implementations to catastrophic backtracking,
the tested libraries were run on this dataset. If matching took longer than
1000 milliseconds, it was considered a catastrophic backtracking. Note that
on inputs of size within few tens of characters, the matching usually took
significantly less than one millisecond, when catastrophic backtracking did
not occur. The results of this experiment are listed in Table 6.6.

Table 6.6: Susceptibility of libraries to catastrophic backtracking tested on
inputs from catastrophic-backtrack dataset

Library
Number of inputs on which
catastrophic behavior occurred

mfa-regex 0
std::regex 19
Boost.Regex 19
ICU Regular Expressions 10
JPCRE2 (PCRE2) 12
Oniguruma 19

Experiments further confirmed the theoretical upper bound for matching
complexity when using memory automata with constant number of memories,
the mfa-regex implementation did not exhibit catastrophic backtracking on
any input. From other tested libraries, ICU Regular Expressions and PCRE2
were the most resistant, likely because these engines handle common special
cases leading to exponential behavior. However, each of these two libraries
still exhibited catastrophic backtracking on at least half of tested inputs. The

89

6. Experimental evaluation

remaining three libraries std::regex, Boost, and Oniguruma each exhibited the
exponential slowdown on 19 of the tested 20 inputs.

In conclusion, traditional backtracking implementations may provide fastest
matching times on most inputs, but in some cases they exhibit exponential
matching times. As discussed earlier, this can lead to security vulnerabili-
ties and other problems. Our implementation, on the other hand, provides an
upper bound on matching time complexity, as long as the number of backrefer-
ences to different capturing groups is limited. Additionally, using the matching
technique based on active variables, even patterns with larger number of ref-
erenced capturing groups may be matched in reasonable time provided that
their active variable degree is low. It may be desirable to have an upper limit
on time complexity, even at the cost of slightly increased matching times,
especially if potentially dangerous inputs (or patterns) must be processed.

Other existing libraries, such as RE2, also provide an upper bound on
matching times. However, they usually achieve this by abandoning support
for backreferences and other extensions, as is the case of RE2. Using memory
automata as a matching tool provides support for backreferences, and also
gives upper bound for the matching time complexity (see Section 4.2.1).

90

Conclusion

This thesis focused on regular expression matching, especially on the variants
of practical regular expressions extended with backreferences. Backreferences
were originally invented on purely implementation level, formalization of such
patterns and investigation of their theoretical properties was only done later.
Chapter 2 provides an overview of the different formalizations established for
backreferences and summarizes existing research into properties of such pat-
terns and their language classes. Notably, the matching problem for patterns
with backreferences is NP-complete.

Research of existing algorithms and approaches for regular expression
matching, with focus on handling the backreferences, is presented in Chap-
ter 3. An overview of existing implementations is also included in the chapter.

As part of this thesis, regular expression library was implemented named
mfa-regex, as it was based on a computational model of memory automata (or
MFA for short) introduced in [1]. First, an overview of this automaton model
was given in Chapter 4, along with an outline of its theoretical properties.
Then, the recently published matching methods based on memory automata
were discussed. We focused in particular on the efficient matching technique
based on active variable degree, this algorithm was also implemented into our
engine. A relation of the active variable degree property to earlier research on
a similar concept is also discussed in the chapter.

Implementation of the regular expression was described in Chapter 5. We
first described how the memory automaton model was adapted for practi-
cal regular expression matching, the chosen representation of the automaton,
and how the construction of MFA from a regular expression pattern was im-
plemented. We implemented the matching algorithm based on breadth-first
search of automaton configuration as used in the article [2], and also an alter-
native algorithm based on recursive backtracking.

91

Conclusion

Additionally, we implemented the matching method based on active vari-
ables from [2]. A new alternative algorithm used by our implementation to
compute the active variable sets and active variable degree was described in
Chapter 5 and its complexity was examined. We also provided a formalization
of the matching algorithm in form of a pseudocode.

Furthermore, we also proposed an extension to memory automaton model
for handling counting constraints, an extension commonly found in practical
regular expressions. The proposed counters for memory automata were used
in our implementation to handle the counting constraints.

Further details about the implementation and the solution architecture
were provided in Chapter 5. The implemented mfa-regex library was pub-
lished under the open source MIT license.

Our implementation was compared to other existing regular expression
matching tools and the results were presented in Chapter 6. We performed
experimental evaluation on datasets of patterns collected from various sources
to estimate the practicability and usability of the implemented approaches
based on memory automata. Our implementation was among the slower en-
gines on most tested patterns, but it still outperformed the C++ standard
std::regex library.

However, traditional backtracking engines suffer from an effect called catas-
trophic backtracking, where on some “dangerous” patterns, an input may trig-
ger exponential worst case matching time. This can happen even for patterns
without backreferences. It was discussed that if there is a constant number
of referenced capturing groups in pattern (i.e. a constant number of memo-
ries in resulting MFA), the matching algorithm based on memory automata
has polynomial time complexity. Therefore, unlike the traditional backtrack-
ing engines, our implementation (in theory) does not suffer from catastrophic
backtracking, unless there is a very large number of backreferences. We con-
firmed this property on a dataset of “dangerous” patterns, where the other
tested libraries that provide support for backreferences each exhibited catas-
trophic backtracking on at least half of tested inputs. By contrast, for our
implementation this behavior never occurred.

The main advantage of matching based on memory automata over the tra-
ditional backtracking implementations thus seems to be the time complexity
upper bound. Other existing implementations, such as the RE2 library, pro-
vide polynomial (or even linear) upper bounds for the matching time complex-
ity. However, this is generally achieved at the cost of not including support for
backreferences and other extensions. The implemented matching tool based
on memory automata both supports backreferences and provides time com-
plexity upper bound, which is polynomial for constant number of referenced
capturing groups. Upper bound on matching time may be useful especially

92

if the patterns or inputs come from outside sources (e.g. from user), which
might pose security risks for the traditional backtracking engines.

Finally, we investigated performance and practicability of the technique
based on active variables. We have shown that this method can yield signifi-
cantly faster matching times on patterns with large number of backreferences
to different capturing groups and low active variable degree. However, it is
unclear to what extent are such patterns used in practice.

Future work

Apart from the implemented method based on active variable degree, the
article [2] presented an additional matching technique for subset of memory
automata with a property called memory determinism, which was discussed
in Chapter 4. It might be interesting to also implement this method and
compare it to the other approaches.

Additionally, during the research of other extensions used in practical regu-
lar expressions, we found that subpattern recursion, an extension that further
significantly increases the expressive power, is not much researched from the
theoretical perspective. It would be interesting to formalize this extension
and investigate the exact expressive power of regular expressions extended
with both backreferences and subpattern recursion. It seems that the lan-
guage class of such patterns is a proper superset of context-free languages,
but the exact relation with context-sensitive languages is unclear (i.e. whether
every context-sensitive language can be expressed). Furthermore, it might be
possible to extend memory automaton model to support this feature.

93

Bibliography

[1] Schmid, M. L. Characterising REGEX languages by regular languages
equipped with factor-referencing. Information and Computation, volume
249, 2016: pp. 1 – 17, ISSN 0890-5401, doi:10.1016/j.ic.2016.02.003.
Available from: http://www.sciencedirect.com/science/article/

pii/S0890540116000109

[2] Schmid, M. L. Regular Expressions with Backreferences: Polynomial-
Time Matching Techniques. ArXiv e-prints, 2019, arXiv:1903.05896.
Available from: https://arxiv.org/abs/1903.05896

[3] Freydenberger, D. D.; Schmid, M. L. Deterministic regular expressions
with back-references. Journal of Computer and System Sciences, volume
105, 2019: pp. 1 – 39, ISSN 0022-0000, doi:10.1016/j.jcss.2019.04.001.
Available from: http://www.sciencedirect.com/science/article/

pii/S0022000018301818

[4] Hopcroft, J. E.; Motwani, R.; et al. Introduction to Automata Theory,
Languages, and Computation. USA: Addison-Wesley Longman Publish-
ing Co., Inc., third edition, 2006, ISBN 0321462254.

[5] Myhill, J. Linear Bounded Automata. Wright Air Development Division,
1960. Available from: https://ci.nii.ac.jp/naid/10006925353/en/

[6] Kuroda, S.-Y. Classes of languages and linear-bounded automata.
Information and Control, volume 7, no. 2, 1964: pp. 207 –
223, ISSN 0019-9958, doi:https://doi.org/10.1016/S0019-9958(64)90120-
2. Available from: http://www.sciencedirect.com/science/article/

pii/S0019995864901202

[7] Kleene, S. C. Representation of Events in Nerve Nets and Finite Au-
tomata. In Automata Studies. (AM-34), volume 34, Princeton University
Press, 1956, pp. 3–42, doi:10.1515/9781400882618-002.

95

http://www.sciencedirect.com/science/article/pii/S0890540116000109
http://www.sciencedirect.com/science/article/pii/S0890540116000109
arXiv:1903.05896
https://arxiv.org/abs/1903.05896
http://www.sciencedirect.com/science/article/pii/S0022000018301818
http://www.sciencedirect.com/science/article/pii/S0022000018301818
https://ci.nii.ac.jp/naid/10006925353/en/
http://www.sciencedirect.com/science/article/pii/S0019995864901202
http://www.sciencedirect.com/science/article/pii/S0019995864901202

Bibliography

[8] Aho, A. V.; Hopcroft, J. E. The Design and Analysis of Computer Algo-
rithms. USA: Addison-Wesley Longman Publishing Co., Inc., first edition,
1974, ISBN 0201000296.

[9] Aho, A. V. Handbook of Theoretical Computer Science (Vol. A): Al-
gorithms and Complexity, chapter Algorithms for Finding Patterns in
Strings. Cambridge, MA, USA: MIT Press, 1991, ISBN 0444880712, pp.
255–300.

[10] Friedl, J. Mastering regular expressions. Sebastopol, CA: O’Reilly, 2006,
ISBN 0596528124.

[11] Goyvaerts, J. Regular expressions cookbook. Sebastopol, CA: O’Reilly Me-
dia, 2012, ISBN 1449319432.

[12] Berglund, M.; van der Merwe, B. Regular Expressions with Backrefer-
ences Re-examined. In Proceedings of the Prague Stringology Conference
2017, edited by J. Holub; J. Žd’árek, 2017, pp. 30–41.

[13] Campeanu, C.; Salomaa, K.; et al. A Formal Study Of Practical Regular
Expressions. Int. J. Found. Comput. Sci., volume 14, dec 2003: pp. 1007–
1018, doi:10.1142/S012905410300214X.

[14] Carle, B.; Narendran, P. On Extended Regular Expressions. In Language
and Automata Theory and Applications, edited by A. H. Dediu; A. M.
Ionescu; C. Mart́ın-Vide, Berlin, Heidelberg: Springer Berlin Heidelberg,
2009, ISBN 978-3-642-00982-2, pp. 279–289.

[15] Schmid, M. L. Inside the Class of REGEX Languages. In Developments in
Language Theory, edited by H.-C. Yen; O. H. Ibarra, Berlin, Heidelberg:
Springer Berlin Heidelberg, 2012, ISBN 978-3-642-31653-1, pp. 73–84.

[16] Dominus, M. J.; et al. Perl Regular Expression Matching is NP-Hard.
Accessed: 2020-02-28. Available from: https://perl.plover.com/NPC/

[17] Angluin, D. Finding patterns common to a set of strings. Journal of
Computer and System Sciences, volume 21, no. 1, 1980: pp. 46 – 62, ISSN
0022-0000, doi:10.1016/0022-0000(80)90041-0. Available from: http://

www.sciencedirect.com/science/article/pii/0022000080900410

[18] Fernau, H.; Schmid, M. L. Pattern matching with variables: A mul-
tivariate complexity analysis. Information and Computation, volume
242, 2015: pp. 287 – 305, ISSN 0890-5401, doi:10.1016/j.ic.2015.03.006.
Available from: http://www.sciencedirect.com/science/article/

pii/S0890540115000218

96

https://perl.plover.com/NPC/
http://www.sciencedirect.com/science/article/pii/0022000080900410
http://www.sciencedirect.com/science/article/pii/0022000080900410
http://www.sciencedirect.com/science/article/pii/S0890540115000218
http://www.sciencedirect.com/science/article/pii/S0890540115000218

Bibliography

[19] Freydenberger, D. D. Extended Regular Expressions: Succinctness and
Decidability. Theory of Computing Systems (ToCS), volume 53, no. 2,
2013: pp. 159–193, doi:10.1007/s00224-012-9389-0.

[20] POSIX.1-2017: The Open Group Base Specifications Issue 7, 2018 edi-
tion. IEEE and The Open Group, 2018, accessed: 2020-03-15. Available
from: https://pubs.opengroup.org/onlinepubs/9699919799/

[21] Popov, N. The true power of regular expressions. 2012, accessed: 2020-03-
15. Available from: https://nikic.github.io/2012/06/15/The-true-

power-of-regular-expressions.html

[22] Cox, R. Implementing Regular Expressions. Accessed: 2020-03-02. Avail-
able from: https://swtch.com/˜rsc/regexp/

[23] Thompson, K. Programming Techniques: Regular Expression Search Al-
gorithm. Communications of the ACM, volume 11, no. 6, June 1968:
p. 419–422, ISSN 0001-0782, doi:10.1145/363347.363387. Available from:
https://doi.org/10.1145/363347.363387

[24] Glushkov, V. M. The abstract theory of automata. Russian Mathematical
Surveys, volume 16, no. 5, oct 1961: pp. 1–53.

[25] Brzozowski, J. A. Derivatives of Regular Expressions. J. ACM, vol-
ume 11, no. 4, Oct. 1964: p. 481–494, ISSN 0004-5411, doi:
10.1145/321239.321249. Available from: https://doi.org/10.1145/

321239.321249

[26] Cox, R. Regular Expression Matching: the Virtual Machine Ap-
proach. Accessed: 2020-03-06. Available from: https://swtch.com/

˜rsc/regexp/regexp2.html

[27] Berglund, M.; Drewes, F.; et al. Analyzing Catastrophic Backtrack-
ing Behavior in Practical Regular Expression Matching. Electronic Pro-
ceedings in Theoretical Computer Science, volume 151, 05 2014, doi:
10.4204/EPTCS.151.7.

[28] Dominus, M. J. How Regexes Work. Accessed: 2020-03-02. Available
from: https://perl.plover.com/Regex/article.html

[29] regex - Henry Spencer’s regular expression libraries. Accessed: 2020-03-
02. Available from: https://garyhouston.github.io/regex/

[30] Schumacher, D. Software solutions in C. Boston: AP Professional, 1994,
ISBN 9780126323603.

[31] ICU Regular Expressions. Accessed: 2020-05-17. Available from: http:

//userguide.icu-project.org/strings/regexp

97

https://pubs.opengroup.org/onlinepubs/9699919799/
https://nikic.github.io/2012/06/15/The-true-power-of-regular-expressions.html
https://nikic.github.io/2012/06/15/The-true-power-of-regular-expressions.html
https://swtch.com/~rsc/regexp/
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/321239.321249
https://doi.org/10.1145/321239.321249
https://swtch.com/~rsc/regexp/regexp2.html
https://swtch.com/~rsc/regexp/regexp2.html
https://perl.plover.com/Regex/article.html
https://garyhouston.github.io/regex/
http://userguide.icu-project.org/strings/regexp
http://userguide.icu-project.org/strings/regexp

Bibliography

[32] Kirrage, J.; Rathnayake, A.; et al. Static Analysis for Regular Expres-
sion Denial-of-Service Attacks. In Network and System Security, edited
by J. Lopez; X. Huang; R. Sandhu, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2013, ISBN 978-3-642-38631-2, pp. 135–148.

[33] Shen, Y.; Jiang, Y.; et al. ReScue: Crafting Regular Expression DoS
Attacks. In Proceedings of the 33rd ACM/IEEE International Confer-
ence on Automated Software Engineering, ASE 2018, New York, NY,
USA: Association for Computing Machinery, 2018, ISBN 9781450359375,
p. 225–235, doi:10.1145/3238147.3238159. Available from: https://

doi.org/10.1145/3238147.3238159

[34] Davis, J. C. Rethinking Regex Engines to Address ReDoS. In Proceed-
ings of the 2019 27th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, New York, NY, USA: Association for
Computing Machinery, 2019, ISBN 9781450355728, p. 1256–1258, doi:
10.1145/3338906.3342509. Available from: https://doi.org/10.1145/

3338906.3342509

[35] Becchi, M.; Crowley, P. Extending Finite Automata to Efficiently
Match Perl-Compatible Regular Expressions. In Proceedings of the 2008
ACM CoNEXT Conference, CoNEXT ’08, New York, NY, USA: As-
sociation for Computing Machinery, 2008, ISBN 9781605582108, doi:
10.1145/1544012.1544037. Available from: https://doi.org/10.1145/

1544012.1544037

[36] Yang, L.; Ganapathy, V.; et al. A novel algorithm for pattern match-
ing with back references. In 2015 IEEE 34th International Performance
Computing and Communications Conference (IPCCC), 2015, pp. 1–8,
doi:10.1109/PCCC.2015.7410264.

[37] Reidenbach, D.; Schmid, M. L. A Polynomial Time Match Test for Large
Classes of Extended Regular Expressions. In Implementation and Ap-
plication of Automata, edited by M. Domaratzki; K. Salomaa, Berlin,
Heidelberg: Springer Berlin Heidelberg, 2011, ISBN 978-3-642-18098-9,
pp. 241–250.

[38] Shinohara, T. Polynomial time inference of extended regular pattern lan-
guages. In RIMS Symposia on Software Science and Engineering, edited
by E. Goto; K. Furukawa; R. Nakajima; I. Nakata; A. Yonezawa, Berlin,
Heidelberg: Springer Berlin Heidelberg, 1983, ISBN 978-3-540-39442-6,
pp. 115–127.

[39] Laurikari, V. NFAs with tagged transitions, their conversion to deter-
ministic automata and application to regular expressions. In SPIRE 2000,
2000, ISBN 0-7695-0746-8, pp. 181–187, doi:10.1109/SPIRE.2000.878194.

98

https://doi.org/10.1145/3238147.3238159
https://doi.org/10.1145/3238147.3238159
https://doi.org/10.1145/3338906.3342509
https://doi.org/10.1145/3338906.3342509
https://doi.org/10.1145/1544012.1544037
https://doi.org/10.1145/1544012.1544037

Bibliography

[40] D’Antoni, L.; Ferreira, T.; et al. Symbolic Register Automata. In Com-
puter Aided Verification, edited by I. Dillig; S. Tasiran, Cham: Springer
International Publishing, 2019, ISBN 978-3-030-25540-4, pp. 3–21.

[41] Saarikivi, O.; Veanes, M.; et al. Symbolic Regex Matcher. In Tools and Al-
gorithms for the Construction and Analysis of Systems, edited by T. Vo-
jnar; L. Zhang, Cham: Springer International Publishing, 2019, ISBN
978-3-030-17462-0, pp. 372–378.

[42] Hopcroft, J. An n log n algorithm for minimizing states in a finite au-
tomaton. In Theory of Machines and Computations, edited by Z. Kohavi;
A. Paz, Academic Press, 1971, ISBN 978-0-12-417750-5, pp. 189 – 196.

[43] Hyperscan 5.2 Developer’s Reference Guide. Intel Corporation, 2019,
accessed: 2020-03-14. Available from: http://intel.github.io/

hyperscan/dev-reference/

[44] Pike, R. The Text Editor sam. SOFTWARE—PRACTICE AND EXPE-
RIENCE, volume 17, no. 11, 1987: pp. 813–845.

[45] Herczeg, Z. Extending the PCRE Library with Static Backtracking Based
Just-in-Time Compilation Support. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO
’14, New York, NY, USA: Association for Computing Machinery, 2014,
ISBN 9781450326704, p. 306–315, doi:10.1145/2581122.2544146. Avail-
able from: https://doi.org/10.1145/2581122.2544146

[46] PCRE - Perl Compatible Regular Expressions. Accessed: 2020-03-14.
Available from: https://www.pcre.org/

[47] pcre2matching man page. Accessed: 2020-03-14. Available from: https:

//www.pcre.org/current/doc/html/pcre2matching.html

[48] The PCRE Open Source Regex Library — Regular-Expressions.info.
Accessed: 2020-03-14. Available from: https://www.regular-

expressions.info/pcre.html

[49] Standard ECMA-262 ECMAScript 2019 Language Specification, 10th
edition. ECMA International, 2019, accessed: 2020-04-03. Avail-
able from: https://www.ecma-international.org/publications/

standards/Ecma-262.htm

[50] Corry, E.; Hansen, C. P.; et al. Irregexp, Google Chrome’s New Reg-
exp Implementation. Chromium Blog, 2009, accessed: 2020-04-03. Avail-
able from: https://blog.chromium.org/2009/02/irregexp-google-

chromes-new-regexp.html

99

http://intel.github.io/hyperscan/dev-reference/
http://intel.github.io/hyperscan/dev-reference/
https://doi.org/10.1145/2581122.2544146
https://www.pcre.org/
https://www.pcre.org/current/doc/html/pcre2matching.html
https://www.pcre.org/current/doc/html/pcre2matching.html
https://www.regular-expressions.info/pcre.html
https://www.regular-expressions.info/pcre.html
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html
https://blog.chromium.org/2009/02/irregexp-google-chromes-new-regexp.html

Bibliography

[51] Oniguruma. Accessed: 2020-03-14. Available from: https://

github.com/kkos/oniguruma

[52] Shaughnessy, P. Exploring Ruby’s Regular Expression Algorithm. 2012,
accessed: 2020-03-14. Available from: http://patshaughnessy.net/

2012/4/3/exploring-rubys-regular-expression-algorithm

[53] Boost.org regex module. Accessed: 2020-03-14. Available from: https:

//github.com/boostorg/regex

[54] Berglund, M.; Bester, W.; et al. Formalising Boost POSIX Regular Ex-
pression Matching. In Theoretical Aspects of Computing – ICTAC 2018,
edited by B. Fischer; T. Uustalu, Cham: Springer International Publish-
ing, 2018, ISBN 978-3-030-02508-3, pp. 99–115.

[55] Maddock, J. A Proposal to add Regular Expressions to the Standard
Library. 2003, accessed: 2020-03-14. Available from: http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2003/n1429.htm

[56] ISO. ISO/IEC 14882:2011 Information technology — Programming
languages — C++. Geneva, Switzerland: International Organi-
zation for Standardization, Feb. 2012, 1338 (est.) pp. Avail-
able from: http://www.iso.org/iso/iso_catalogue/catalogue_tc/

catalogue_detail.htm?csnumber=50372

[57] The GNU C Library (glibc). Accessed: 2020-03-14. Available from:
https://www.gnu.org/software/libc/

[58] Wang, X.; Hong, Y.; et al. Hyperscan: A Fast Multi-pattern Regex
Matcher for Modern CPUs. In 16th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 19), Boston, MA:
USENIX Association, Feb. 2019, ISBN 978-1-931971-49-2, pp. 631–
648. Available from: https://www.usenix.org/conference/nsdi19/

presentation/wang-xiang

[59] Hyperscan. Accessed: 2020-03-14. Available from: https://github.com/

intel/hyperscan

[60] Laurikari, V. TRE. Accessed: 2020-03-14. Available from: https://

github.com/laurikari/tre

[61] RE2. Accessed: 2020-03-14. Available from: https://github.com/

google/re2/

[62] Aho, A. V.; Lam, M. S.; et al. Compilers: Principles, Techniques, and
Tools (2nd Edition). USA: Addison-Wesley Longman Publishing Co.,
Inc., 2006, ISBN 0321486811.

100

https://github.com/kkos/oniguruma
https://github.com/kkos/oniguruma
http://patshaughnessy.net/2012/4/3/exploring-rubys-regular-expression-algorithm
http://patshaughnessy.net/2012/4/3/exploring-rubys-regular-expression-algorithm
https://github.com/boostorg/regex
https://github.com/boostorg/regex
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1429.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2003/n1429.htm
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372
https://www.gnu.org/software/libc/
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://www.usenix.org/conference/nsdi19/presentation/wang-xiang
https://github.com/intel/hyperscan
https://github.com/intel/hyperscan
https://github.com/laurikari/tre
https://github.com/laurikari/tre
https://github.com/google/re2/
https://github.com/google/re2/

Bibliography

[63] Brüggemann-Klein, A.; Wood, D. One-Unambiguous Regular Lan-
guages. Information and Computation, volume 142, no. 2, 1998: pp.
182 – 206, ISSN 0890-5401, doi:https://doi.org/10.1006/inco.1997.2695.
Available from: http://www.sciencedirect.com/science/article/

pii/S089054019792695X

[64] Braun, M. moar – Deterministic Regular Expressions with Backrefer-
ences. 2016, accessed: 2020-04-04. Available from: https://github.com/

s4ke/moar

[65] GNU Bison. The GNU Project, accessed: 2020-04-26. Available from:
https://www.gnu.org/software/bison/

[66] Trifunovic, N.; et al. UTF8-CPP: UTF-8 with C++ in a Portable Way.
Accessed: 2020-04-28. Available from: https://github.com/nemtrif/

utfcpp

[67] Catch2. Accessed: 2020-05-01. Available from: https://github.com/

catchorg/Catch2

[68] Dawes, B. Boost Software License. Accessed: 2020-05-25. Available from:
https://www.boost.org/users/license.html

[69] RegExLib.com — Regular Expression Library. Accessed: 2020-05-17.
Available from: http://regexlib.com/

[70] Davis, J. C.; Michael IV, L. G.; et al. Why Aren’t Regular Expres-
sions a Lingua Franca? An Empirical Study on the Re-Use and Porta-
bility of Regular Expressions. In Proceedings of the 2019 27th ACM
Joint Meeting on European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering, ESEC/FSE 2019,
New York, NY, USA: Association for Computing Machinery, 2019,
ISBN 9781450355728, p. 443–454, doi:10.1145/3338906.3338909. Avail-
able from: https://doi.org/10.1145/3338906.3338909

[71] randexp.js. Accessed: 2020-05-17. Available from: https://github.com/

fent/randexp.js

[72] Hamid, J. JPCRE2. Accessed: 2020-05-22. Available from: https://

github.com/jpcre2/jpcre2

101

http://www.sciencedirect.com/science/article/pii/S089054019792695X
http://www.sciencedirect.com/science/article/pii/S089054019792695X
https://github.com/s4ke/moar
https://github.com/s4ke/moar
https://www.gnu.org/software/bison/
https://github.com/nemtrif/utfcpp
https://github.com/nemtrif/utfcpp
https://github.com/catchorg/Catch2
https://github.com/catchorg/Catch2
https://www.boost.org/users/license.html
http://regexlib.com/
https://doi.org/10.1145/3338906.3338909
https://github.com/fent/randexp.js
https://github.com/fent/randexp.js
https://github.com/jpcre2/jpcre2
https://github.com/jpcre2/jpcre2

Appendix A

Acronyms

AST Abstract syntax tree

avd Active variable degree

avs Active variable set

BFS Breadth-first search

DFA Deterministic finite automaton

DFS Depth-first search

HTTP Hypertext Transfer Protocol

JIT Just-in-time

LBA Linear bounded automaton

MFA Memory automaton

NFA Nondeterministic finite automaton

OS Operating system

PCRE Perl Compatible Regular Expressions

POSIX Portable Operating System Interface

TMFA Memory automaton with trap state

rewbr Regular expressions with backreferences

VM Virtual machine

103

Appendix B

Documentation for mfa-regex

User documentation of the mfa-regex regular expression library implemented
as part of this thesis follows. Instructions for building the library are provided.
The C++ programming API of the library is documented and the supported
syntax is specified. Additionally, usage of the tools included with the library
is described.

105

Building the library

Prerequisites

The project uses CMake (cmake.org) build generator, CMake version 3.1 or newer is
required. To compile you need a C++ compiler with support for C++14 standard.
GCC (g++) version 9.3.0 and clang version 10.0 are both confirmed to work, but any
C++14 compliant compiler should do.

Additionally, GNU Bison (www.gnu.org/software/bison/) version at least 3.2 is needed
for generating the parser. Finally, the Doxygen (doxygen.nl) tool is needed for building
the documentation. All the above are standard tools and should also be available as
packages on most Linux distributions.

Building and installation

See https://cmake.org/runningcmake/ for instructions on how to use CMake. For
example, on Linux the project can be build by running the following commands from
the mfa-regex root directory:

mkdir build && cd build

cmake ..

make

To run the tests, execute:

make test

Additionally, the documentation may be built by running:

make doc

Finally, the library and its utilities can be installed using:

make install

The install path can be chosen during the CMake configuration. Depending on the
path, it may be necessary to run the above command as a super user.

Library overview

The mfa-regex library API consists of two main parts: automaton classes, which
represent the compiled regex patterns, and matcher classes, which implement the
matching algorithms. A brief overview of the API along with examples is provided
here, for further details see relevant pages in the Doxygen generated documentation.

The basic automaton class is MemoryAutomaton. Its constructor accepts the pattern
from which the automaton will be compiled. Second automaton class (with equivalent
interface) is AvdOptimizedMFA. This class implements the optimization based on
active variable degree (see the previously linked article), which has some overhead,
but may speed up matching on patterns with large number of capturing groups.

Two matching algorithms are provided: BacktrackMatcher and BFSMatcher. It is
strongly recommended to use the former (BacktrackMatcher), especially if information
about the match is required. This is because the breadth-first search algorithm will
find any match, and may not strictly follow the matching semantics (e.g. greedy, lazy
quantifiers). The matches (and submatches) reported by backtracking algorithm will

B. Documentation for mfa-regex

106

always follow the matching semantics: the quantifier variants behave as described in
the Supported syntax section below, when searching, the leftmost match is returned.
The two following functions are provided by the matchers:

Function Description

match Attempts to match an entire input on
given automaton.

search Attempts to match any part of input
(i.e. performs search) on given
automaton.

Both functions return boolean value indicating whether a match was found, and
optionally also provide information about the matched substring and contents of the
capturing groups. Note that the match function returns true only if the whole input is
matched, whereas search will report match anywhere inside the input string.

Example code

To illustrate the library usage, the following simple example code is provided. See also
how the utilities in src/tools folder are implemented for another examples.

#include <mfa-regex/memory_automaton.h>

#include <mfa-regex/backtrack_matcher.h>

#include <iostream>

int main() {

// create automaton for regex pattern (a+)b*\1

mfa::MemoryAutomaton automaton("(a+)b*\\1");

mfa::MatchResult result; // this will store the match details

/* search for given pattern inside input text "bbaabbaabb"

using the backtracking algorithm */

mfa::BacktrackMatcher<mfa::MemoryAutomaton> matcher{};

if (matcher.search(&automaton, "bbaabbaabb", &result)) {

std::cout << "found match of length " << result.getLength()

<< ", starting on position " << result.getPosition()

<< std::endl;

std::cout << "matched string: '" << result.getMatchedString() << "'"

<< std::endl;

std::cout << "capture group 1 contents: '" << result[1] << "'"

<< std::endl;

} else {

std::cout << "no match" << std::endl;

}

return 0;

}

Running this program would produce the following output:

found match of length 6, starting on position 2

107

matched string: 'aabbaa'

capture group 1 contents: 'aa'

Additionally, to use the technique based on active variable degree, simply use AvdOp-
timizedMFA class instead of MemoryAutomaton in the above code (and also include
the avd_optimized_mfa.h header).

Utilities

Two command-line utilities are included with the library. The first one is
mfa-regex-test, which is an interactive command-line tool to test regular expression
patterns on given inputs, it also presents syntax tree of the pattern for better
understanding of what is happening.

The second tool is a (rather minimalistic) imitation of the Unix grep command, it is
run as:

mfa-grep PATTERN [FILE]...

Supported syntax

The syntax is based on POSIX ERE and PCRE syntax. Each character in pattern
matches itself, except the following special characters (metacharacters):

. [{ } () \ * + ? | ^ $

To match one of the special characters, prefix it with backslash: for instance * to
match ‘*’ as a literal character.

Basic syntax

Token Description

* Matches the preceding element zero or
more times (greedy).

+ Matches the preceding element one or
more times (greedy).

? Matches the preceding element zero or
one times (greedy).

*? +? ?? Lazy variants of the three preceding
constructs (see below for semantics).

\| Alternation, pattern of the form (a\|b)

matches either the a or the b
subexpression.

{k} Matches the preceding element exactly k
times.

{k,l} Matches the preceding element at least
k and at most l times.

{k,} Matches the preceding element at least
k times.

{ }? Lazy variant of any of the preceding
counting constraints.

. Matches any single character.

B. Documentation for mfa-regex

108

Token Description

ˆ Matches only at the starting position in
the input string.

$ Matches only at the ending position of
the input string.

By default, all quantifiers behave as greedy, they always consume as many input
characters as possible. For instance, given input “aaab”, the pattern a+ would match
“aaa”. In contrast, lazy quantifiers match as few characters as possible. For the same
example, the pattern a+? would match only “a”.

Bracket expressions

Bracket expression is a construct of the form [...] and matches any character
between the brackets. For instance [xyz] matches ‘x’, ‘y’, or ‘z’. Bracket expressions
can also contain character ranges like [a-z], or character classes [:class_name:].
The standard C++ localization library std::locale is used for character classes support,
see https://en.cppreference.com/w/cpp/header/locale for available character classi-
fications. Additionally, [:word:] class is supported and has the same meaning as
[[:alnum:]_].

Special characters lose their original meaning inside brackets. Symbol] stands for
itself only if it is the first character in bracket expression. Similarly, - is treated as a
literal if it is the first or the last character. ˆ matches itself anywhere except the first
position inside brackets.

Bracket expression that begins with ˆ is negated, it matches the complement of
characters that a bracket expression without the ˆ would match. For example, [ˆab]

matches any characters except ‘a’ and ‘b’.

Escape sequences

The following escape sequences have a special meaning. If \ is not followed by a
special character or any of the below escape sequences, the pattern is invalid.

Escape Description

\a alarm (0x07)
\e escape (0x1B)
\f form feed (0x0C)
\n newline (0x0A)
\r carriage return (0x0D)
\t tab (0x09)
\Odd character with octal code 0dd
\o{ddd..} character with octal code 0ddd..
\Xdd character with hexadecimal code 0xdd
\X{ddd..} character with hexadecimal code

0xddd..
\C any single character (even with

Unicode)
\A start of string (like ˆ)

109

Escape Description

\Z end of string (like $)
\d \l \s \u \w same as [[:digit:]] [[:lower:]]

[[:space:]] [[:upper:]]

[[:word:]] respectively
\D \L \S \U \W negated variants of the above
\b word boundary, matches between a

character matched by \w and a
character matched by \W or vice versa
(also at the beginning or at the end of
the string if the first/last character is a
word character)

\B not a word boundary (see \b)

Grouping and backreferences

Expression Description

(...) capturing group
\n backreference to n-th capturing group
\gn \g{n} backreference to n-th capturing group
\g-n \g{-n} relative reference to n-th capturing

group before the current position
(?<name>...) named capturing group
(?<&name>...) named capturing group redefinition (see

below)
\k<name> backreference to named capturing group
(?:...) non-capturing group
(?\|...) non-capturing group, reset capturing

group index for each alternation term of
...

Capturing groups are numbered based on the order of their left (opening) parentheses
in pattern, starting with 1. Non-capturing groups of any type (such as (?:...)) do
not participate in this numbering. Non-capturing group of the form (?|...) changes
the numbering for patterns inside it, each alternative is numbered independently
starting with the same number. For instance, in (?|(a|(b(c))) both the group (a)

and (b) have number 1, while (c) has number 2.

Groups can be referred to by their number, and in case of named groups also by their
name. Two groups with different numbers can not be given the same name, in such
case redefinition must be used instead. Capture group content is empty by default,
if backreference is reached before the corresponding group definition, it matches an
empty string.

Unlike most regex engines, mfa-regex supports named capturing group redefinitions.
Group of the form (?<&name>...) has the effect that the content of the group with
given name is redefined. For example, the pattern (?<x>a*)\k<x>(?<&x>b+)\k<x>

first records string matched by a* into group named ‘x’, matches it again, and then it
records string matched by b+ into the same group. Groups of the form (?<&name>...)

B. Documentation for mfa-regex

110

are not numbered unless there is no preceding (?<name>...), in which case the first
(?<&name>...) acts as a named capturing group (?<name>...) and is numbered
accordingly. For example, the pattern (?:(?<&x>a)|(?<&x>b))\k<x> is the same
as (?:(?<x>a)|(?<&x>b))\k<x> and contains one capture group with name ‘x’ and
number 1. Another alternative pattern to this can be constructed using the resetting
non-capture group as (?|(<x>a)|(<x>b))\k<x>, but capturing groups redefinitions
allow to create even more complex patterns. Using both named and numbered
backreferences to reference named capturing group is possible but discouraged, since
it can lead to confusing patterns.

111

Appendix C

Datasets used for experimental

evaluation

Details about the four datasets that were used for experimental evaluation are
provided in this section. The datasets are part of contents of the enclosed CD.

Table C.1 lists each pattern/input pair from regexlib dataset, the last
column contains T (true) or F (false) indicating whether given input matches
the pattern.

Table C.2 shows first 15 patterns from the lingua-franca dataset, the
dataset contains in total 40 patterns. Table C.3 contains all patterns from the
lingua-franca-backref dataset.

Finally, Table C.4 lists all patterns and corresponding inputs that are part
of the catastrophic-backtrack dataset, including sources from which the
patterns were collected (if any).

113

C
.

D
a
t
a

s
e
t

s
u

s
e
d

f
o

r
e
x

p
e
r

im
e
n

t
a

l
e
v
a

l
u

a
t

io
n

Table C.1: Patterns and inputs of the regexlib dataset

Pattern Input Res.

ˆ.+@[ˆ.].*\.[a-z]{2,}$ John.Doe 1234@example.domain.cz T

ˆ.+@[ˆ.].*\.[a-z]{2,}$ John.Doe 1234@example.domain.c F

ˆ#?([a-f]|[A-F]|[0-9]){3}(([a-f]|[A-F]|[0-9]){3})?$ #7171C6 T

ˆ#?([a-f]|[A-F]|[0-9]){3}(([a-f]|[A-F]|[0-9]){3})?$ #7171CG F

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$
"a correctly \\ escaped \"C-style\" strin

g.\n"
T

ˆ"([ˆ"](?:\\.|[ˆ\\"]*)*)"$
"incorrectly \\escaped \"C-style" string.

\n"
F

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.\d{1,3})?|\d{1,3}(\.\d{3})?)$ 123’456’789.123 T

ˆ(\d{1,3}’(\d{3}’)*\d{3}(\.\d{1,3})?|\d{1,3}(\.\d{3})?)$ 123’45’6789.123 F

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|]+\\[ˆ/\\:*?"<>|]+)(\\[ˆ/\\:

?"<>|]+)+(\.[ˆ/\\:?"<>|]+)$
\c\example\path\file 123.txt T

ˆ([a-zA-Z]:|\\[ˆ/\\:*?"<>|]+\\[ˆ/\\:*?"<>|]+)(\\[ˆ/\\:

?"<>|]+)+(\.[ˆ/\\:?"<>|]+)$
\c\example\path\file 123. F

ˆ<(\w+)(\s(\w*=".*?")?)*((/>)|((/*?)>.*?</\1>))$
<example attr1="value1" attr2="value2">

<childNode/></example>
T

ˆ<(\w+)(\s(\w*=".*?")?)*((/>)|((/*?)>.*?</\1>))$
<example attr1="value1" attr2="value2">

<childNode/></exampl>
F

1
1
4

Table C.2: First 15 patterns of the lingua-franca dataset

ˆ(.*?):(.*)$

ˆ[0-9]{11}$

ˆ(::)|(127\.0\.0\.1)$

ˆmysql|maria|sqlite|sqlserver$

ˆ# Filesort: (\w+)\s+Filesort on disk: (\w+)\s+Merge passes: (\d+)$

ˆ(\(|\)|\s|")$

ˆ([0-9]+).*\.sql$

ˆ\w+: .*$

ˆ([0-9]+x[0-9]*|[0-9]+)$

ˆ\d\d\d\d\d\d?$

ˆ[a-zA-Z0-9][-a-zA-Z0-9 #]*$

ˆ$dps/registrations/PUT/iotdps-register/\?$rid=$

ˆ.*?([0-9]+)\.model\.npz\.SUCCESS$

ˆ<!--\s*LI3 PERF TOOLBAR\s*-->$

ˆ(-?\d+\.\d+E[-+]?\d+)[FL]?$

Table C.3: List of patterns in the lingua-franca-backref dataset

ˆ(.+?)\1+$

ˆheight=(’|")(\d+)\1$

ˆ(\r?\n|\r)\s*\1$

ˆ(/|\\)\.\.?\1$

ˆsource=([’|"])(.*?)\1[|}]$

ˆurl\(([’"]?)(.*)\1\)$

ˆ\s*mx-diff(?:\s*=\s*([’"])[ˆ’"]+\1)?$

ˆ([’"])\s?\+\s?\1$

ˆ(--|*{4,}| {4,}|={4,})(?:\r?\n|\r)(?:.*(?:\r?\n|\r))*?\1$

ˆ(<(h([1-9][0-9]*))[ˆ>]*?>)(.*?)(</\2>)$

ˆ<(filter|macro|typo):([a-zA-z0-9]+)([ˆ>]*)>(.*?)</\1:\2>$

ˆ(["’])((?:\\\1|.)*?)(\1)$

ˆx(...)\1\1$

ˆRELEASE += +([\"\’])(\d(\w|\.)+)\1$

ˆ([’"])(.*)\1$

ˆ(@[a-z]+) or not\(\1\)$

ˆ(VERSION\s*=\s*(["’]))\d+\.\d+\.\d+\2$

ˆ[ˆ,]+\.(css|js)(,[ˆ,]+\.\1)*$

ˆ\[(img)\](.*?)\[/\1\]$

ˆ\s*(\d+\.?\d*)\s*(?:;(?:\s*url\s*=\s*([’"]?)(\S*)\2)?\s*)?$

115

C. Datasets used for experimental evaluation

Table C.4: Patterns and inputs of the catastrophic-backtrack dataset

Pattern Input Source

ˆ(x+x+)+y$ x26 https://mail.python.org/pipermail/

python-dev/2003-May/035916.html

ˆ(a+)+$ a29b —

ˆ(a+)+b$ a40
https://www.benfrederickson.com/python-

catastrophic-regular-expressions-and-

the-gil/

ˆa?40a40$ a40 https://swtch.com/˜rsc/regexp/

regexp1.html

ˆ([a-zA-Z]+)*$ a24!

https://owasp.org/www-community/

attacks/Regular_expression_Denial_of_

Service_-_ReDoS

ˆ(.*a){20}$ a24!

https://owasp.org/www-community/

attacks/Regular_expression_Denial_of_

Service_-_ReDoS

ˆ(.*a)+$ a24b —

ˆ([a-zA-Z0-9])(([\-.]|[]+)

?([a-zA-Z0-9]+))*(@){1}[a-

z0-9]+[.]{1}(([a-z]{2,3})|

([a-z]{2,3}[.]{1}[a-z]{2,3}
))$

a24!
http://regexlib.com/

REDetails.aspx?regexp_id=1757

ˆ(([a-z])+.)+[A-Z]([a-z])+$ a39!

https://owasp.org/www-community/

attacks/Regular_expression_Denial_of_

Service_-_ReDoS

ˆ(x+x+)+y(?:\1)?$ x30 —

ˆ(a+)+b(?:\1)?$ a30 —

ˆA(B|C+)+D(?:\1)*$ AC34 —

ˆ(a|aa)+(?:\1)?$ a34! —

ˆ(a|a?)+(?:\1)?$ a24! —

ˆ(\w+\s?)*$ (a)

https://medium.com/better-programming/

everything-you-need-to-know-about-

regular-expressions-in-javascript-

59807f758cbd

ˆ\[(([0-9]*\],\[[0-9]*)*|[

0-9]*)\]$
(b)

https://stackoverflow.com/questions/

29751230/regex-pattern-catastrophic-

backtracking

ˆ(a|a?)+(?:\1)?$ a24! —

ˆ(A+)*B$ A27 https://www.rexegg.com/regex-explosive-

quantifiers.html

ˆ(?:[A-Za-z0-9]+[.]?){1,}[

A-Za-z0-9]+@(?:(?:[A-Za-z0

-9]+[-]?){1,}[A-Za-z0-9]+\
.){1,}$

(c)
http://userguide.icu-project.org/

strings/regexp

ˆ([ˆb]|a)$ a49b —

(a) this will cause catastrophic back tracking.
(b) [1234567],[89023432],[124534543],[4564362],[1234543],[12234567],[124567],[

1234567],[1234567]]
(c) abcdefghijklmnopq

116

https://mail.python.org/pipermail/python-dev/2003-May/035916.html
https://mail.python.org/pipermail/python-dev/2003-May/035916.html
https://www.benfrederickson.com/python-catastrophic-regular-expressions-and-the-gil/
https://www.benfrederickson.com/python-catastrophic-regular-expressions-and-the-gil/
https://www.benfrederickson.com/python-catastrophic-regular-expressions-and-the-gil/
https://swtch.com/~rsc/regexp/regexp1.html
https://swtch.com/~rsc/regexp/regexp1.html
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
http://regexlib.com/REDetails.aspx?regexp_id=1757
http://regexlib.com/REDetails.aspx?regexp_id=1757
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://medium.com/better-programming/everything-you-need-to-know-about-regular-expressions-in-javascript-59807f758cbd
https://medium.com/better-programming/everything-you-need-to-know-about-regular-expressions-in-javascript-59807f758cbd
https://medium.com/better-programming/everything-you-need-to-know-about-regular-expressions-in-javascript-59807f758cbd
https://medium.com/better-programming/everything-you-need-to-know-about-regular-expressions-in-javascript-59807f758cbd
https://stackoverflow.com/questions/29751230/regex-pattern-catastrophic-backtracking
https://stackoverflow.com/questions/29751230/regex-pattern-catastrophic-backtracking
https://stackoverflow.com/questions/29751230/regex-pattern-catastrophic-backtracking
https://www.rexegg.com/regex-explosive-quantifiers.html
https://www.rexegg.com/regex-explosive-quantifiers.html
http://userguide.icu-project.org/strings/regexp
http://userguide.icu-project.org/strings/regexp

Appendix D

Contents of enclosed CD

/

readme.txt....................the file with CD contents description
mfa-regex........directory containing the mfa-regex implementation
text.......................................the thesis text directory

thesis.pdf........................the thesis text in PDF format
src the directory of LATEX source codes of the thesis

benchmarks...............directory with files used for benchmarking
measuring.........scripts and programs used for the experiments
data ... the datasets

117

	Introduction
	Preliminaries
	Basic notation
	Alphabet, string and language
	Finite automata
	Other automata models
	Language hierarchy
	Regular expressions
	Other preliminaries

	Regular expressions with backreferences
	Introduction
	Formalizing backreferences
	Early formalization using variables
	Formalization of rewbr with numbered backreferences
	Formalizing rewbr via factor-referencing

	Properties of the regex language class
	Relation to other language classes
	Closure under operations

	The regex matching problem
	Submatch addressing and searching in text
	Other extensions in practical regular expressions
	Subpattern recursion

	The POSIX standard

	Regular expression matching algorithms and approaches
	Thompson’s algorithm
	Basic approaches
	DFA based
	NFA based with backtracking
	NFA based without backtracking

	Recursive backtracking
	Preventing infinite loops
	Backreference support
	Practical implementations
	Complexity and catastrophic backtracking

	Approaches overview
	Extending Finite Automata
	Method description
	Multiple capturing groups and backreferences

	Polynomial time matching for rewbr subclasses
	Tagged automata
	Tagged NFA with constraints
	Symbolic register automata
	Symbolic regex matcher
	Pattern optimizations
	Virtual machine approach and JIT compilation

	Overview of major implementations
	Perl Compatible Regular Expressions
	Java
	JavaScript
	Oniguruma
	Boost regex
	ICU Regular Expressions
	GNU C library and POSIX
	Hyperscan
	TRE
	RE2

	Memory automata
	Memory automaton model
	Memory automata for regex patterns
	Matching regex using memory automata

	Properties of memory automata and relation to regex languages
	Active variable degree
	Matching regex with bounded active variable degree
	Strong active variable degree
	Relation to variable distance

	Deterministic regex
	Memory determinism

	Implementation
	Memory automata for practical regular expressions
	Matching algorithms
	Configurations representation and implementing memories
	Computing active variable sets
	Matching patterns with bounded active variable degree
	Extending memory automata for counting constraints

	Solution architecture and implementation details
	Supported features
	Testing
	Source code publication and licensing

	Experimental evaluation
	Methodology
	Datasets
	Inputs

	Platform specifications

	Comparison of algorithms and options provided by mfa-regex
	Comparison of matching algorithms
	Active variable degree and optimizing memories

	Comparison with other implementations
	Susceptibility to catastrophic backtracking

	Conclusion
	Bibliography
	Acronyms
	Documentation for mfa-regex
	Datasets used for experimental evaluation
	Contents of enclosed CD

