
Backreferences in practical regular expressions

Martin Hron Supervisor: Ing. Ondřej Guth, Ph.D.

Faculty of Information Technology, Czech Technical University in Prague

Backreferences in practical regular expressions

Martin Hron Supervisor: Ing. Ondřej Guth, Ph.D.

Faculty of Information Technology, Czech Technical University in Prague

Regular Expressions

• Compact description for sets of strings (regular languages in theory).

• Used for searching in text, input validation, vulnerability detection in networking,
in tools for string manipulation (grep, awk, sed, text editors), and so on.

• Available and widely used in most modern programming languages.

Backreferences

• Regular expressions used in practice (called e.g. regex) differ from the theoretical
ones and were over time extended with various new features.

• One of the major extensions are backreferences, which significantly increase
expressive power. They allow to match repeated substrings in input.

• For example, the pattern ‘(again) and \1’ will match string ‘again and

again’, and pattern ‘([a-z])\1’ any double letters like ‘ll’ or ‘oo’. In most
implementations, the repeated part is marked using parentheses (and called cap-
turing group), it is referenced using backslash and group index.

• Regular expressions with backreferences haveNP-completematching problem,
meaning that practical implementations face exponential worst case execution
time.

• Traditional implementations that support backreferences are usually based on
recursive backtracking. When the exponential worst case occurs, it is called
catastrophic backtracking.

• Existing implementations (like PCRE, C++ std::regex, Boost, etc.) exhibit catas-
trophic backtracking even on some patterns without backreferences. This has
potential security implications and can lead to vulnerabilities like denial-of-
service (DoS) attacks.

Memory Automata

• Memory automaton (MFA) is a model of computation for regex introduced
in [1]. Recent research [2] based on MFA proposes techniques for regex matching
in polynomial time under certain restrictions.

• In theory, the complexity upper bound for matching using memory automata is
polynomial provided that the number of referenced groups is bounded by a
constant. This is often the case in practice, some implementations even allow
only up to e.g. 10 groups and more than few groups are rarely used.

• Main goal of the thesis was to implement regex matching tool based
on memory automata with support for backreferences, which would
hopefully achieve better complexity properties than existing regex implementa-
tions.

Contributions

• Regular expressions library based on memory automata was implemented.

• The theoretical memory automaton model and selected algorithms from [2] were adapted
for practical regular expressions.

• An extension of the memory automaton model to handle counting constraints was
proposed and implemented. Our model is illustrated in Figure 1.

• Counting constraints allow to repeat a subpattern number of times given by constant or in
a form of range, like ‘a{1,3} for matching ‘a’, ‘aa’ or ‘aaa’.

I

N

C

(

1

,

3

,

∞

)

OUT(1, 3,∞)

I

N

C

(

1

,

1

,

4

)

O

U

T

(

1

,

1

,

4

)

I

N

C

(

2

,

2

,

2

)

1

6
O

U

T

(

2

,

2

,

2

)

3

4 5
o(1)

b

2

a

c(1)

c
8

9
d

107
1

Fig. 1: Illustration of the proposed model to support counting constraints – an automaton with special transitions for handling

backreferences and counting constraints. This example automaton accepts language of PCRE regex ‘(?:a{1,4}(b*)){2}c\1d{3,}’.

• Three matching algorithms were implemented, including a modification of recursive
backtracking with mechanism to prevent catastrophic backtracking.

• Technique based on a property called active variable degree from [2] was implemented
and we proposed and employed a new algorithm to compute this property.

Implementation

• Written in C++, released under the open source MIT licence and available at:
https://gitlab.com/hronmar/mfa-regex

• Library and two command line tools (including a simple imitation of Unix grep tool).

• Supports practical PCRE–like syntax (similar to Perl regular expressions).

• Includes support for Unicode (UTF-8).

Evaluation and Results

• Our solution was compared with other existing implementations on various
datasets, including a collection of regex extracted from production code.

• A dataset of “dangerous” (malicious) patterns and inputs, which are known to
cause catastrophic backtracking was assembled and used for evaluation. In the-
ory, our implementation should be immune to catastrophic backtracking
on patterns with limited number of backreferences to different groups. Evalua-
tion confirmed this, as our implementation did not exhibit exponential time on
any of the tested inputs.

• Conversely, the other tested implementations that support backreferences each
exhibited catastrophic backtracking on at least half of the tested malicious in-
puts.

	0.001

	0.01

	0.1

	1

	10

	100

	1000

	10000

	100000

	1 	5 	10 	15 	20 	25

E
x
e
c
u
ti
o
n
	t
im

e
	[
m
s
]

n

mfa-regex

std::regex

Boost

ICU

JPCRE2

Oniguruma

Fig. 2: Example of engines performance on a “dangerous” pattern ‘(?:.*a)+’ for inputs anb.

• Overall (on“safe” inputs), performance of our implementation was slightly faster
than that of C++ std::regex (tested on GCC 9.3), but it was significantly out-
performed by other backtracking engines like PCRE 2.

• Still, the complexity upper bound makes matching based on memory automata
an interesting alternative to traditional implementations.

References

[1] Markus L. Schmid.“Characterising REGEX languages by regular languages equipped with factor-
referencing”. In: Information and Computation 249 (2016), pp. 1–17. issn: 0890-5401. doi: 10.
1016/j.ic.2016.02.003. url: http://www.sciencedirect.com/science/article/pii/
S0890540116000109.

[2] Markus L. Schmid.“Regular Expressions with Backreferences: Polynomial-Time Matching Tech-
niques”. In: ArXiv e-prints (2019). arXiv: arXiv:1903.05896 [cs.FL]. url: https://arxiv.
org/abs/1903.05896.


