BACKREFERENCES IN PRACTICAL REGULAR EXPRESSIONS

Martin Hron

Faculty of Information Technology, Czech Technical University in Prague

Supervisor: Ing. Ondrej Guth, Ph.D.

FACULTY

OF INFORMATION
TECHNOLOGY
CTU IN PRAGUE

Regular Expressions

Contributions

e Compact description for sets of strings (regular languages in theory).

e Used for searching in text, input validation, vulnerability detection in networking,
in tools for string manipulation (grep, awk, sed, text editors), and so on.

e Available and widely used in most modern programming languages.

Backreferences

e Regular expressions used in practice (called e.g. regex) differ from the theoretical
ones and were over time extended with various new features.

e One of the major extensions are backreferences, which significantly increase
expressive power. They allow to match repeated substrings in input.

e For example, the pattern ‘(again) and \1' will match string ‘again and
again’, and pattern ‘([a-z])\1" any double letters like ‘11" or ‘oo’. In most
implementations, the repeated part is marked using parentheses (and called cap-
turing group), it is referenced using backslash and group index.

e Regular expressions with backreferences have NP-complete matching problem,
meaning that practical implementations face exponential worst case execution
time.

e Traditional implementations that support backreferences are usually based on
recursive backtracking. When the exponential worst case occurs, it is called
catastrophic backtracking.

e Existing implementations (like PCRE, C++ std::regex, Boost, etc.) exhibit catas-
trophic backtracking even on some patterns without backreferences. This has
potential security implications and can lead to vulnerabilities like denial-of-
service (DoS) attacks.

Memory Automata

Memory automaton (MFA) is a model of computation for regex introduced
in [1]. Recent research [2] based on MFA proposes techniques for regex matching
in polynomial time under certain restrictions.

In theory, the complexity upper bound for matching using memory automata is
polynomial provided that the number of referenced groups is bounded by a
constant. This is often the case in practice, some implementations even allow
only up to e.g. 10 groups and more than few groups are rarely used.

Main goal of the thesis was to implement regex matching tool based
on memory automata with support for backreferences, which would
hopefully achieve better complexity properties than existing regex implementa-
tions.

e Regular expressions library based on memory automata was implemented.

e The theoretical memory automaton model and selected algorithms from [2] were adapted
for practical regular expressions.

e An extension of the memory automaton model to handle counting constraints was
proposed and implemented. Our model is illustrated in Figure 1.

e Counting constraints allow to repeat a subpattern number of times given by constant or in
a form of range, like ‘a{1,3} for matching ‘a’, ‘aa’ or ‘aaa’.

Fig. 1: Hlustration of the proposed model to support counting constraints — an automaton with special transitions for handling

backreferences and counting constraints. This example automaton accepts language of PCRE regex *(?:a{1,4} (b*)){2}c\1d{3,}"

e Three matching algorithms were implemented, including a modification of recursive
backtracking with mechanism to prevent catastrophic backtracking.

o Technique based on a property called active variable degree from [2] was implemented
and we proposed and employed a new algorithm to compute this property.

Implementation

o Written in C++, released under the open source MIT licence and available at:
https://gitlab.com/hronmar/mfa-regex

e Library and two command line tools (including a simple imitation of Unix grep tool).
e Supports practical PCRElike syntax (similar to Perl regular expressions).

e Includes support for Unicode (UTF-8).

Evaluation and Results

e Our solution was compared with other existing implementations on various
datasets, including a collection of regex extracted from production code.

e A dataset of “dangerous” (malicious) patterns and inputs, which are known to
cause catastrophic backtracking was assembled and used for evaluation. In the-
ory, our implementation should be immune to catastrophic backtracking
on patterns with limited number of backreferences to different groups. Evalua-
tion confirmed this, as our implementation did not exhibit exponential time on
any of the tested inputs.

e Conversely, the other tested implementations that support backreferences each
exhibited catastrophic backtracking on at least half of the tested malicious in-

puts.
100000 T T T T
10000 £ mfa-regex —r— Ve 1
stdiiregex —x—
Boost
[v
1000 | JpeRE2 o 7
oniguruma —e— ye
T 100
E
P
g
: 10
s
el
2
8
k4 1
01
0.01
0.001
1 5 10 15 20 25

Fig. 2: Example of engines performance on a “dangerous” pattern *(?: .#a)+' for inputs a”b.

e Overall (on “safe” inputs), performance of our implementation was slightly faster
than that of C++ std:regex (tested on GCC 9.3), but it was significantly out-
performed by other backtracking engines like PCRE 2.

e Still, the complexity upper bound makes matching based on memory automata
an interesting alternative to traditional implementations.

References

[1] Markus L. Schmid. “Characterising REGEX languages by regular languages equipped with factor-
referencing”. In: Information and Computation 249 (2016), pp. 1-17. 1sSN: 0890-5401. DOI: 10.
1016/j.1c.2016.02.003. URL: http://www.sciencedirect.com/science/article/pii/
S0890540116000109.

[2] Markus L. Schmid. “Regular Expressions with Backreferences: Polynomial-Time Matching Tech-
niques™. In: ArXiv e-prints (2019). arXiv: arXiv:1903.05896 [cs.FL]. URL: https://arxiv.
org/abs/1903.05896.

