
prof. Ing. Róbert Lórencz, CSc.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague January 5, 2020

ASSIGNMENT OF MASTER�S THESIS

 Title: Detection of HTTPS brute-force attacks in high-speed computer networks

 Student: Bc. Jan Luxemburk

 Supervisor: Ing. Karel Hynek

 Study Programme: Informatics

 Study Branch: Computer Security

 Department: Department of Information Security

 Validity: Until the end of summer semester 2020/21

Instructions

Study the area of network monitoring based on deep packet inspection and (extended) IP Flows.
Study the HTTP(S) protocol and a principle of brute-force attacks over HTTPS protocol.
Set up a virtual environment with existing tools for penetration testing (such as Hydra) to create a dataset
of brute-force attacks against selected virtual servers (e.g., Wordpress, Joomla).
Analyze the created datasets and focus on significant characteristics of brute-force attacks.
Design an algorithm of an automatic attack detection of brute-force attacks (inspired by [1]) based on
observed network traffic.
Develop a software prototype capable of processing of real network traffic.
Evaluate the prototype and its precision with the data provided by the supervisor of this thesis.

References

[1] Hofstede, Rick & Jonker, Mattijs & Sperotto, Anna & Pras, Aiko. (2017). Flow-Based Web Application Brute-Force
Attack and Compromise Detection. Journal of Network and Systems Management. 10.1007/s10922-017-9421-4.

Master’s thesis

Detection of HTTPS brute-force attacks in

high-speed computer networks

Bc. Jan Luxemburk

Department of Information Security

Supervisor: Ing. Karel Hynek

May 31, 2020

Acknowledgements

I would like to thank Ing. Karel Hynek for his guidance and helpful approach.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended. In
accordance with Article 46(6) of the Act, I hereby grant a nonexclusive au-
thorization (license) to utilize this thesis, including any and all computer pro-
grams incorporated therein or attached thereto and all corresponding docu-
mentation (hereinafter collectively referred to as the “Work”), to any and all
persons that wish to utilize the Work. Such persons are entitled to use the
Work in any way (including for-profit purposes) that does not detract from its
value. This authorization is not limited in terms of time, location and quan-
tity. However, all persons that makes use of the above license shall be obliged
to grant a license at least in the same scope as defined above with respect to
each and every work that is created (wholly or in part) based on the Work, by
modifying the Work, by combining the Work with another work, by including
the Work in a collection of works or by adapting the Work (including trans-
lation), and at the same time make available the source code of such work at
least in a way and scope that are comparable to the way and scope in which
the source code of the Work is made available.

In Prague on May 31, 2020 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2020 Jan Luxemburk. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Luxemburk, Jan. Detection of HTTPS brute-force attacks in high-speed com-
puter networks. Master’s thesis. Czech Technical University in Prague, Fac-
ulty of Information Technology, 2020.

Abstract

This thesis presents a review of flow-based network threat detection, with
the focus on brute-force attacks against popular web applications, such as
WordPress and Joomla. A new dataset was created that consists of benign
backbone network traffic and brute-force attacks generated with open-source
attack tools. The thesis proposes a method for brute-force attack detection
that is based on packet-level characteristics and uses modern machine-learning
models. Also, it works with encrypted HTTPS traffic, even without decrypting
the payload. More and more network traffic is being encrypted, and it is crucial
to update our intrusion detection methods to maintain at least some level of
network visibility.

Keywords network monitoring, brute-force attacks, HTTPS, IPFIX

vii

Abstrakt

Tato práce představuje přehled metod pro detekci síťových hrozeb se za-
měřením na útoky hrubou silou proti webovým aplikacím, jako jsouWordPress
a Joomla. Byl vytvořen nový dataset, který se skládá z provozu zachyceného
na páteřní síti a útoků generovaných pomocí open-source nástrojů. Práce
přináší novou metodu pro detekci útoku hrubou silou, která je založena na
charakteristikách jednotlivých paketů a používá moderní metody strojového
učení. Metoda funguje s šifrovanou HTTPS komunikací, a to bez nutnosti
dešifrování jednotlivých paketů. Stále více webových aplikací používá HTTPS
pro zabezpečení komunikace, a proto je nezbytné aktualizovat detekční metody,
aby byla zachována základní viditelnost do síťového provozu.

Klíčová slova monitorování počítačových sítí, útoky hrubou silou, HTTPS,
IPFIX

viii

Contents

Introduction 1

1 Goals and Approach 3

1.1 Problem Description . 3
1.2 Objective of Thesis . 3
1.3 Outline of Thesis . 4

2 Background 5

2.1 Network Security Monitoring 5
2.1.1 Flow Monitoring Architecture 6
2.1.2 NetFlow & IPFIX . 8
2.1.3 Extended Flow Features 10
2.1.4 Threat Detection . 15
2.1.5 Flow Exporters . 20

2.2 Protocols . 21
2.2.1 TLS 1.2 . 21
2.2.2 TLS 1.3 . 23
2.2.3 HTTPS . 26
2.2.4 Web Authentication . 26

2.3 Web Applications Brute-Force Attacks 27
2.3.1 Network-Based Detection 27
2.3.2 Attack Tools . 29

3 Analysis & Design 31

3.1 Datasets . 31
3.1.1 Brute-Force Generator 32
3.1.2 Dataset Structure . 34

3.2 Experiments Workflow . 35
3.3 Flow Aggregation . 36

ix

3.4 Features . 37
3.4.1 Sequence of TLS Record Lengths 37
3.4.2 Merging of TLS Record Sequences 38

3.5 Machine Learning . 41
3.5.1 Performance Metrics . 42

4 Implementation 45

4.1 Implementation of NEMEA Module 45
4.1.1 Joy IPFIX Exporter . 45
4.1.2 IPFIX Collector IPFIXcol2 46
4.1.3 Brute-Force Detection Module 47

4.2 Implementation of Brute-Force Dataset Generator 50
4.3 Implementation of Feature Extraction and Machine-Learning . 51

5 Evaluation 53

5.1 Cross Validation Setup . 54
5.2 Classification . 54

5.2.1 Ensemble Methods . 55
5.2.2 Results . 57

5.3 Discussion . 58
5.3.1 Feature Importances . 58
5.3.2 Future Work . 59

Conclusion 61

Bibliography 63

A Acronyms 69

B Contents of enclosed USB drive 71

x

List of Figures

2.1 Flow monitoring stages. 6
2.2 Various flow monitoring setups. 7
2.3 The relation between an IPFIX data set and a template. 9
2.4 TLS record lengths and inter-arrival times patterns. 13
2.5 A general scheme of network encryption protocols. 17
2.6 An example JSON format of an unidirectional flow. 20
2.7 A TLS record definition. 22
2.8 An example of a successful HTTP authentication attempt. 26

3.1 The setup of the brute-force attack generator. 33
3.2 Workflow of the experiments. 35
3.3 Pseudo code of the flow aggregation algorithm. 37
3.4 Sequential joining of TLS records in an aggregated flow. 38

4.1 The NEMEA brute-force detector setup. 45
4.2 An example of an alert about a possible brute-force attack. 49
4.3 The configuration of attack tools against WordPress. 50
4.4 The feature extraction method. 52

5.1 Learned decision boundaries of the baseline decision tree model. . 56
5.2 The confusion matrix of the optimized LightGBM classifier. 57
5.3 Relative importances of features learned by the AdaBoost classifier. 58

xi

List of Tables

2.1 Common IPFIX Information Elements. 10
2.2 Feature comparison of open-source brute-force tools. 29

3.1 An overview of target web applications. 34
3.2 A summary of selected features. 39

4.1 A summary of added IPFIX information elements. 46
4.2 IPFIX to UniRec mappings. 47

5.1 The number of flows and aggregated flows in the dataset. 53
5.2 The distribution of brute-force samples by the used attack tool. . . 53
5.3 The base-line performance of three basic classifiers. 54
5.4 Hyperparameters of AdaBoost with a decision tree as a classifier. . 55
5.5 Hyperparameters of the LightGBM model. 55
5.6 The performance of optimized AdaBoost and LightGBM. 57

xiii

Introduction

The state of security of Internet-connected systems is constantly changing.
As technology advances, and as more and more devices are connected to the
Internet, the target attack surface is rapidly increasing, and the motivation of
malicious attackers is only getting bigger. Imagine hacking a car or a medical
device, the potential caused harm is obviously enormous. Organizations have
to adapt, but the sad reality is that defenders will always be playing catch-up.
This led to a new threat-centric approach, which embraces that defense cannot
be solely based on prevention. No matter how strong the defenses are or what
proactive steps have been taken, a motivated attacker will eventually find a
way to get in. Prevention eventually fails. That is why detection, response,
and containment are necessary for the incidents that will occur, and that is
why the practice of network security monitoring is a cornerstone of security
for every organization.

Between 2015 and 2019, the percentage of encrypted web traffic from the
Firefox web browser had raised from 35% to 85% [1], and it is expected to
continue growing. This is good news, but it brings a new challenge to network
operators. There is less visibility into the network, and therefore it is harder
to distinguish between legitimate and malicious traffic. Moreover, in 2018, a
new version of the TLS protocol was released, which even more reduced the
available information about encrypted web traffic. It is hence the focus of
current research to find novel ways of effective network monitoring.

This thesis focuses on one particular attack—the brute-force attack against
web applications. A brute-force attack is a method of trial and error. The
attackers run automated scripts that try thousands of passwords each second
in order to take over the target accounts. Hacked accounts are then used for a
range of illegal activities such as spamming, malware hosting, botnet partici-
pation, or financial fraud. With the majority of web traffic being encrypted,
it is even more difficult to detect such attacks on the network level. The thesis
proposes a new detection method that is able to recognize brute-force attacks
inside encrypted HTTPS communication.

1

Chapter 1

Goals and Approach

1.1 Problem Description

This thesis is focused on brute-force attack detection in encrypted HTTPS
communication. Encryption provides confidentiality—without the knowledge
of the secret key, it is impossible to reveal the plaintext. But does that mean
we cannot predict whether an encrypted network session contains regular web
browsing or an active brute-force attack? This work will explore whether such
detection is achievable.

1.2 Objective of Thesis

The objective of this work is to examine the possibilities of HTTPS web traffic
monitoring and to design and implement a detection mechanism for brute-
force attacks against web applications, in particular against popular content
management systems, such as Wordpress, Joomla, and Moodle.

The goals of this thesis can be summarized as follows:

1. Provide an analysis of the architecture of flow-based network security
monitoring.

2. Review the available open-source brute-force tools, discuss their capa-
bilities, and compare them.

3. Create an environment for generating brute-force traffic datasets.

4. Identify flow features suitable for the classification task between normal
(benign) and brute-force traffic. Define the pre-processing steps and
evaluate different machine-learning models.

5. Design and implement a software prototype of the brute-force detection
method.

3

1. Goals and Approach

1.3 Outline of Thesis

This thesis is divided into five chapters. Chapter 2 gives the theoretical back-
ground about the related topics: flow-based network monitoring, extended
flow features, threat detection, and TLS and HTTPS protocols. The dataset
structure and the process of brute-force traffic generation are presented in
Chapter 3, together with the design of the detection method. The method’s
design is divided into several components: flow aggregation, selected extended
flow features, and used machine-learning models. Chapter 4 presents a pro-
duction architecture and an implementation of the proposed method as a de-
tector module into the NEMEA system. Chapter 5 concludes the thesis with
the evaluation of different machine-learning models and discussion of future
work.

4

Chapter 2

Background

This Chapter summarizes the theoretical background important for the area of
flow-based threat detection, with the focus on flow monitoring architecture in
Section 2.1.1, on extended flow features in Section 2.1.3, on flow-based threat
detection in Section 2.1.4, on TLS and HTTPS protocols in Section 2.2, and
finally on web application brute-force attacks in Section 2.3.

2.1 Network Security Monitoring

Security monitoring is a crucial part of network defense. Organizations should
accept that their networks will be eventually compromised and put more focus
and resources on detection and response mechanisms. In [2], network security
monitoring is defined as a cyclic process that consists of three phases: collec-
tion, detection, and analysis. The collection phase is about defining threats,
assessing risks, and selecting appropriate data to be collected. It is not ad-
vised to collect all data sources available, but rather be selective with specific
threats in mind. There is a number of different kinds of data that can be
collected: full packet capture, flow data, and log data. Full packet capture
data, mostly know in the PCAP format, provide a complete transcript of com-
munication between two network devices. Its high degree of detail makes it
valuable for analysis, but otherwise, it is impractical for its huge size. Flow
data represents a summary of communication between two endpoints. It usu-
ally includes information about the communicating hosts, their IP addresses
and ports, the used protocol, timestamps, and the amount of transferred data.
The detection is the process by which the collected data is examined and the
way how alerts are generated based on observed events and a set of signature
rules. The generated alerts are then presented to security analysts for manual
inspection or used for further automatic processing. In this work, I shall focus
on network intrusion detection systems (NIDS) that process flow data in order
to identify threats in monitored traffic.

5

2. Background

2.1.1 Flow Monitoring Architecture

Flow monitoring has become the prevalent method for traffic monitoring in
high-speed networks. While flow data does not provide the same level of detail
as full packet capture, it still carries a lot of valuable information, and it is a
much more scalable solution. The small size of flow records allows for large
scale storage solutions with data retention in months or years, something that
would impossible with full packet capture. This is frequently used to comply
with data retention laws. For example, communication providers in Europe
are required to retain connection data for a period of up to two years for the
purpose of investigation of serious crime [4]. Flow monitoring is usually less
privacy-sensitive because only packet headers are processed. However, this
might not be that case much longer because more application information
(e.g., HTTP user agents, server hostnames) is included in the flow data. The
general scheme of the monitoring process is shown in Figure 2.1 and Figure 2.2.

Packets
Packet Observation

Flow Export Protocol
Flow Metering & Export Data Collection Data Analysis

Flow Exporter / Flow Probe

Figure 2.1: Flow monitoring stages.

A typical flow monitoring architecture is defined in Flow Monitoring Explained
[4], and it consists of four stages: Packet Observation, Flow Metering & Ex-
port, Data Collection, and Data Analysis.

Packet Observation

Packet Observation is the process of capturing packets from an observation
point, which can be ”line to which a probe is attached; a shared medium, such
as an Ethernet-based LAN; a single port of a router; or a set of interfaces
(physical or logical) of a router” [3]. Accurate packet timestamps are essential
for further processing, for example, when packets from different sources are
later merged. Packet capture devices can be positioned in-line or in mirroring
mode. An in-line network tap is a hardware device that is directly connected
to the monitored link. It duplicates all traffic passing through and provides an
additional port for the capture device. Alternatively, many packet forwarding
devices can be configured to mirror all traffic to a specific port to which a
capture device is connected. This method is called port mirroring or SPAN,
and while it is easier to configure, it may introduce delay, jitter, or miss some
packets altogether [5], which is something highly undesirable in high-security
environments.

6

2.1. Network Security Monitoring

Internet

Manual Analysis
Router

Flow Probe 2

Network
Tap

Flow Probe 1
Flow Collector 1

Flow Collector 2

Automated Analysis

Packets
Flow Export Protocol (IPFIX)
File, Web Interface, DBMS

Figure 2.2: Various flow monitoring setups [4].

Flow Metering & Export

In the Flow Metering & Exporting stage, packets are first aggregated into
flows. A flow is defined in [3] as ”a set of IP packets passing an observation
point in the network during a certain time interval, such that all packets
belonging to a particular flow have a set of common properties”. These common
properties are called flow key. A traditional ”5-tuple” flow key is: source
and destination IP addresses, source and destination ports, and a transport
protocol. The time interval defining a flow generally spans from the first
observed packet of the flow to one of three events: either the natural end of
the flow, the idle timeout of the flow, or the active timeout of the flow [6].
The natural end of a flow is determined by observing the state of connection-
oriented protocols. In the case of TCP, a flow will end when a FIN termination
handshake or a RST packet is seen. The idle timeout is the longest period
of time between packets, after which the flow will be considered idle and will
end. This is the natural way to expire flows in connection-less protocols such
as UDP. The active timeout is the longest lifetime a flow is allowed to have.

An entry per flow is stored in a flow cache table, and once a flow is de-
termined to be complete, it is exported via a flow exporting protocol. The
exported data include both characteristic properties of the flow (e.g., IPs,
port numbers) and measured properties (e.g., packet and byte counters). A
dedicated hardware device for packet capture and flow export is called flow
probe. Flows used to be unidirectional and used to represent only one di-
rection of the connection. Lately, however, bidirectional flows are preferred
because ”many flow analysis tasks benefit from the association of the upstream
and downstream flows of bidirectional communication, e.g., when separating
answered and unanswered TCP requests or calculating round trip times” [7].

7

2. Background

Asymmetric routing is an issue, as only one of the directions may be available
at the observation point. In that case, it is necessary to merge unidirectional
flows (uniflows) into bidirectional flows (biflows) at a flow collector.

Data Collection

The next stage in the flow monitoring architecture is Data Collection. Flow
collectors receive, store, and process data from one or more flow exporters.
Common tasks performed at the flow collectors are data compression, aggre-
gation [8], summary generation, and data anonymization [9]. It is crucial for
flow collectors to support the same export protocol features as the used flow
exporters, such as data encoding, transport protocol, and all exported fields.

Data Analysis

In the final Data Analysis stage, flow data is either automatically processed
or inspected manually. There are three main application areas for flow data
analysis: summaries & reporting, threat detection, and performance monitor-
ing. The focus of this thesis is threat detection, which is discussed more in
Section 2.1.4.

2.1.2 NetFlow & IPFIX

The two main flow exporting protocols are NetFlow from Cisco and the IP
Flow Information Export (IPFIX) protocol standardized by the Internet Engi-
neering Task Force (IETF). NetFlow v5 was introduced in 2002 and was widely
implemented in many packet forwarding devices. NetFlow v5 was later ob-
soleted by the more flexible NetFlow v9, which added support for adaptable
data formats through templates, as well as support for IPv6, VLANs, and
MPLS. NetFlow v9 was selected in 2004 as the basis for the IPFIX protocol,
which was finished in RFC 7011 in 2013 [3].

IP Flow Information Export Protocol

IPFIX is an ”unidirectional, transport-independent protocol with flexible data
representation” [10]. IPFIX is concerned only with the transport of flow data,
leaving the flow measurement as an implementation detail. The basic unit of
data transfer is a message. A message contains a header and one or more sets,
which contain records. The message header contains the protocol version,
message length, export time, sequence number, and an observation domain
ID. A set may be either (1) a template set, containing templates; (2) a data
set, containing data records (i.e., flow records); or (3) an options template set
with metadata information. Each set has an ID in its header that identifies the
set type. Set IDs 2 and 3 are used for template sets and options template sets.
Set IDs 256–65535 are used for data sets, and the ID refers to the template,

8

2.1. Network Security Monitoring

which describes the records in that data set. A template is essentially an
ordered list of information elements identified by a template ID. The relation
between data sets and templates is shown in Figure 2.3.

Template Set

Set ID (2) Length

Template ID = 257 Length = 9 IEs

flowStartMilliseconds (ID = 152)

flowEndMilliseconds (ID = 153)

sourceIPv4Address	(ID	=	8)

destinationIPv4Address	(ID	=	12)

sourceTransportPort	(ID	=	7)

destinationTransportPort	(ID	=	11)

protocolIdentifier	(ID	=	4)

packetDeltaCount	(ID	=	2)

octetDeltaCount	(ID	=	1)

Data Set

Set ID (257) Length

flowStartMilliseconds	=	1582759604007

flowEndMilliseconds	=1582759657967

sourceIPv4Address	=	192.168.1.2

destinationIPv4Address	=	192.168.1.254

sourceTransportPort	=	9469

dstTransportPort	=	80

protocolIdentifier	=	6

packetDeltaCount	=	17

octetDeltaCount	=	3329

Record 1

Record 2

...

Record n

Figure 2.3: The relation between an IPFIX data set and a template.

Information Elements

Fields that can be exported in IPFIX flow records are named information ele-
ments. An information element (often abbreviated as IE) represents a named
data field with a specific data type and meaning. IPFIX provides a registry
of standard IEs administered by the Internet Assigned Numbers Authority
(IANA) [11]. A subset of IEs is shown in Table 2.1, which is often considered
the smallest set of IEs for describing a flow. Besides IANA IEs, enterprise-
specific IEs can be defined, allowing for new fields to be specified without any
alternations to IANA’s registry. IEs have a name, numeric ID, description,
type, length (fixed or variable), status (current or deprecated), and an enter-
prise ID in case of enterprise-specific IEs [12]. Templates are built from IEs the
following way. ”Each template has an IE count N followed by N IE specifiers,
each made up of an IE number and length in bytes. The corresponding data
record is then made up of the same order of fields of the specified lengths” [10].
In RFC 6313 [13], an IPFIX extension was specified to support hierarchical

9

2. Background

structured data and variable-length lists. Three new IEs were defined: basi-
cList, subTemplateList, and subTemplateMultiList. The basicList represents
a list of zero or more instances of any IE and is primarily used for single-
valued data types. Examples are a list of port numbers, a list of MPLS labels,
a list of packet sizes. The subTemplateList represents a list of structured data
defined by a template. SubTemplateMultiList is similar, but every element
has a different template.

Table 2.1: Common IPFIX Information Elements.

ID Name Description

152 flowStartMilliseconds Timestamp of the flow’s first packet
153 flowEndMilliseconds Timestamp of the flow’s last packet
8 sourceIPv4Address Source address in the packet header
12 destinationIPv4Address Destination address in the packet header
7 sourceTransportPort Source port in the transport header
11 destinationTransportPort Destination port in the transport header
4 protocolIdentifier IP protocol number in the packet header
2 packetDeltaCount Number of packets for the flow
1 octetDeltaCount Number of octets for the flow

The IANA registry currently includes 491 information elements of diverse
purposes [11]. Most of the IEs are defined by RFCs related to IPFIX standard,
but also individuals and companies can propose new elements. As of March
2020, Cisco authored most of the non-RFC elements in the registry. The ma-
jority of IEs in the registry are related to network protocols, such as IP, TCP,
VLAN, MPLS, BGP, NAT, ICMP. There are elements concerned with IPFIX
exporting process itself. An example is a flow probe IP address, its network
interface, up-time, and the number of dropped packets. Another category of
IEs is application layer elements. These are not yet very common in the reg-
istry, and exporters have to define them as enterprise-specific elements. For
example, an open-source flow exporter YAF supports, among others, these
application protocols: FTP, HTTP, IMAP, SIP, SMTP, DNS, TLS [14]. For
each protocol, it extracts relevant information from the packets, such as HTTP
headers, DNS queries, or TLS certificate, server name, client ciphers. This ap-
proach is called deep packet inspection (DPI). Although seemingly opposing,
DPI and flow monitoring are increasingly united for increased visibility in
networks.

2.1.3 Extended Flow Features

Researchers are focused on defining new network traffic features that could
be used for detection and classification tasks. An underlying assumption is
that traffic at the network layer has statistical properties that are unique for

10

2.1. Network Security Monitoring

certain classes of applications and that enable different source applications (or
different actions in applications) to be distinguished from each other. Almost
250 potential features for classification of flows are listed in [15]. These in-
clude simple statistics (mean, standard deviation, minimum, maximum, quar-
tiles) about packet-level characteristics, and also information derived from the
transport protocol, such as the number of retransmissions or the number of
roundtrips. More characteristics can be derived from the nature of data ex-
change. A lifetime of a flow can be divided into three modes, and features can
be related to the percent of the time a flow spends in them:

idle: no packets between client and server for more than a couple of seconds,

interactive: data packets moving in both directions, and

bulk: data packets in one direction and only acknowledgments in the other.

Packet-Level Characteristics

Different applications show distinctive properties when their network traffic is
analyzed in terms of packet sizes (PS) and inter-packet times (IPT), also called
inter-arrival times (IAT). Another name used by researchers is the sequence
of packet lengths and times (SPTL). A set of features is extracted from the
first N packets of the flow, considering only packets with a non-zero payload.
Empty packets are mostly used to transmit connection state information, e.g.,
to acknowledge received data or to keep alive a session. They are related to the
transport layer internals, as opposed to being linked to the way each specific
application operates. TCP retransmissions are usually ignored. Formally
these features can be defined as follows:

• S = (s1, s2, . . . sN), where si is the payload size of the i-th packet.

• T = (t1, t2, . . . tN), where ti is the time between the (i − 1)-th and the
i-th packet, with t1 zero.

• D = (d1, d2, . . . dN), where di is the direction of i-th packet (upstream
or downstream).

In [16], authors conclude that packet sizes usually carry more information
about the source application. The reason is that inter-arrival times are affected
by various factors, some that are useful for the classification, others are only
noise without any value. The factors contributing to inter-arrival times are:

• the location of the communicating hosts with reference to the monitoring
node: the response time depends on the route of the packets and on the
number of intermediate nodes they pass through,

• the traffic condition of the network,

11

2. Background

• the transmission direction of the i-th and (i− 1)-th packets: when both
the packets travel in the same direction, they are often the result of TCP
segmentation, and they are sent sequentially with a small or any delay,

• the time required for the processing of the received data and for generat-
ing the response to send in the next packet, e.g., for reading or modifying
a database, for computing cryptographic operations in an authentication
phase, or for interacting with the user.

The first two factors do not give any valuable information about the underlying
application or user actions. Still, it might be impossible to get rid of them,
and the resulting IPT values will always contain noise.

The advantages of studying network traffic by observing IPT and PS values
are the avoidance of any assumptions regarding the application layer proto-
cols, and the possibility to study different kinds of traffic sources in the same
manner [17]. There are multiple ways of how the packet-level characteristics
can be used for statistical models and classification tasks. In [18], a Markov
chain representation is used to model the SPLT data. ”For both the lengths
and times, the values are discretized into equally sized bins, e.g., for the length
data, 150-byte bins are used where any packet size in the range [0,150) will
go into the first bin, any packet size in the range [150,300) will go into the
second bin, etc. A matrix A is then constructed where each entry A[i,j], counts
the number of transitions between the i’th and j’th bin. Finally, the rows of
A are normalized to ensure a proper Markov chain”. The approach in [19]
considers the joint distribution of PS and IPT. They apply strong discretiza-
tion (binning) to the estimate of the joint probability density function and
employ machine-learning algorithms like K-Nearest Neighbor(k-NN) and Sup-
port Vector Machines (SVM). In [19], a single source of traffic is modeled as a
Hidden Markov Model (HMM). The traffic generated by a specific application
is viewed as a sequence of (IPT, PS) pairs generated according to different
distributions depending on the hidden state of the source. One HMM model
for every application is trained in a learning phase. For the predictions, each
HMM is used to compute the likelihood that the tested sequence belongs to
the traffic typology associated with that HMM. The maximum likelihood then
selects the best estimate for the traffic typology. An example of how packet-
level characteristics can be used to build behavioral profiles of applications is
shown in the next Figure 2.4.

12

2.1. Network Security Monitoring

Client Server

(a) Google Search

Client Server

(b) Bestafera Trojan Malware

Figure 2.4: TLS record lengths and inter-arrival times for a typical Google
search and malicious data exfiltration from a trojan malware [20]. Two dif-
ferent TLS sessions are shown: a Google search in Figure 2.4a and a trojan-
initiated connection in 2.4b. The x-axis represents time, the upward lines
represent the size of packets that are sent from the client to the server, and
the downward lines represent packets in the opposite direction. The red lines
show unencrypted TLS handshake messages. The rest of the communication
(black) is encrypted. The differences between those communication sessions
can be explained as follows: ”the Google search follows a typical pattern: the
client’s initial request is in a small outbound packet, followed by large response
spanning many MTU-sized packets. The several alternating packets are due
to Google attempting to auto-complete a search while the user was still typing.
The server that the trojan communicated with began by sending a packet con-
taining a self-signed certificate, which can be seen as the first downward, thin
red line in Figure 2.4b. After the handshake, the client immediately begins
exfiltrating data to the server. Then after a pause, the server sent a regularly
scheduled command and control message.” [20]

13

2. Background

Byte Distributions

The nature of the traffic within a flow can be deduced from the byte distribu-
tion of packet payloads and its Shannon entropy value. A common approach
would be scanning through the first n bytes of captured payload byte-by-
byte and creating a histogram distribution within a 256-entry array. If the
calculated entropy is then scaled to the range 0–255, a value of 255 would
indicate a perfectly random set of data, while a value close to 0 would indi-
cate an extremely redundant set of data with almost no information content.
High entropy values (approximately above 230) indicate data that is either
compressed or encrypted. Lower values centered around 140 likely indicate
something such as an ASCII-based protocol, or English text [14].

TLS Handshake Metadata

A TLS connection starts with a handshake between the client and server,
which is then used to select the best mutually acceptable cryptographic ci-
phers, authentication methods, hashing algorithms, etc. This is conducted in
the clear because the method of cryptography to use has yet to be determined.
The TLS handshake will always begin with a Client Hello packet, which an-
nounces to the server the capabilities of the client, presented in preference
order. By capturing those elements of the Client Hello packet, which remain
static from session to session for each client application, it is possible to build
a fingerprint to recognize a particular application on subsequent sessions. In
a popular TLS fingerprinting tool JA3 [21], these fields are captured: TLS
Version, Accepted Ciphers, List of Extensions, Elliptic Curves, and Elliptic
Curve Formats. Fields are hashed with MD5 to generate a unique fingerprint.
Fingerprints can then be annotated and shared with the security community
on dedicated websites [22].

The most obvious use of TLS Fingerprinting is for passive detection. It
enables the detection of a wide range of potentially unwanted traffic without
requiring access to the hosts. The ability to detect malware or software such as
Tor or PowerShell (which is sometimes used for malicious activities [23]) can
be very valuable. Other potentially unwanted software can also be detected
using this technique. ”The detection of software, which may not be malicious,
but is out of context, could also be worthy of investigation and is simple to
detect. For example, many interfaces should only be accessed by a particular
client or set of clients. If a web server is expecting human interaction via a
browser, detecting the fingerprint of wget could be significant; alternately, an
Exchange server may only ever be accessed by Outlook, thus a connection from
a Python script would be significant” [24].

14

2.1. Network Security Monitoring

2.1.4 Threat Detection

Given the flow export devices are usually deployed at central observation
points where traffic from a large number of hosts can be observer, the result-
ing flow data provides a comprehensive set of connection summaries that in-
clude information about which host has communicated with which other host,
the number of packets and bytes involved, the number of connections, flags,
top-talkers, etc. This kind of information is essential for forensics, network
administration, and incident handling. Moreover, the strategical location of
flow exporters makes them especially useful for the detection of DDoS attacks,
network scans, worm spreading, and botnet communication. These attacks of-
ten result in many small flows with few packets because every connection uses
a different source port number and creates a new flow. Such differences are
used to distinguish between malicious and benign traffic. The rest of this
section presents how different types of attacks can be detected based on flow
characteristics.

DDoS

Four flow metrics that change significantly during a DDoS flooding attack
have been identified in [25]: flow record creations per second, average flow
duration, the average number of bytes per flow, and the average number of
packets per flow. All but the average flow duration can be monitored on a
flow exporter by using only counters. Based on these metrics, different attacks
can be described in terms of traffic patterns. SYN flooding attacks result in
”a large flow count, yet small packet counts, as well as small flow and packet
sizes and no constraints on the bandwidth and the total amount of packets.
That pattern is significantly different from the one generated by an ICMP or
UDP flooding attack, in which we have large bandwidth consumption and the
transfer of a large number of packets” [26]. A lightweight (i.e., with a min-
imal performance footprint) method for detecting large flooding attacks was
proposed in [27]. The method measures the number of flow record creations
and uses an anomaly-based approach called time-series forecasting, which uses
previous measurements to forecast the next value. If the measured value does
not lie within a certain range of the forecasted value, the sample is considered
anomalous, and a potential flooding attempt has been detected. A firewall is
notified of each anomaly, and the subsequent connections from the host that
triggered the anomaly are blocked. This module can be directly integrated
into a flow exporter, allowing for timely detection and timely mitigation.

Network Scans

Network scans are characterized by many small packets that probe the target
systems. It is easy to imagine that network scanning can quickly create a
large number of flows this way. Scans can be divided based on how they

15

2. Background

are targeted: (1) a host scanning a specific port on many destination hosts
(horizontal scan), (2) a host scanning several ports on a single destination
host (vertical scan), (3) a combination of both (block scan). Regardless of the
type, network scanning will cause a variation in the flow traffic, but at the
same time, scanning is less likely to have an impact on the total traffic volume
in the network.

A computer worm is a malware program that replicates across networks to
infect other computers. It explores the network in order to find more vulnera-
ble systems. This target discovery process is similar to network scanning, and
the detection can be the same. A totally different approach is based on a graph
view of computer networks consisting of nodes (computers) and edges (time-
series of communications between computers). A worm spreading through a
network is detected by measuring a deviation from a baseline activity model
of the network. ”Communications between computers which have not com-
municated in the past (new edges) can provide a strong statistical signal for
detecting attackers. As they move laterally through a network, attackers tend
to violate the historic connectivity patterns in the network. Knowledge of these
patterns is perhaps the primary advantage defenders have over attackers” [28].
The challenge is to handle updating of the parameters of baseline models in a
way that balances acceptable false alarm rates with rapid updating to adjust
for changes in the baseline behavior [28].

Botnets

Botnets consist of malware-infected hosts that are controlled remotely using a
command & control server (C&C). They have become one of the major secu-
rity threats credited for DDoS attacks, spamming, phishing, and many other
cybercrimes. Botnets rely on communication channels varying from central-
ized IRC or HTTP to decentralized peer-to-peer networks. Domain generation
algorithms are commonly used by C&C servers to avoid hard-coded domain
names and IP addresses in the malware executables because these would give
defenders an easy way to blacklist and block the botnet communication. De-
tection of a botnet is relatively more difficult than the detection of network
scanning and worms. Since bots are not longer harmful once the control server
is isolated, a straightforward mitigation approach is to identify the control
server, and either filter the traffic towards this server or take the server down
with the help of law enforcement. C&C communication is usually different
from communication with a regular server, and these differences can be seen
on the flow level.

A large-scale botnet detection system based on flow data [29] is using three
groups of features that allow distinguishing between C&C and benign commu-
nication: (1) Flow sizes in bytes; C&C communication flows are expected to
be smaller to minimize their observable impact on the network, and the sizes
should not fluctuate significantly. Furthermore, the regularity of flow size be-

16

2.1. Network Security Monitoring

havior over time can be measured by mean and standard deviation values, and
repeating patterns that are common in C&C communication can be identi-
fied with an autocorrelation function over a sequence of flow sizes. (2) Client
access patterns; all clients of a C&C server (i.e., bots) should exhibit similar
access patterns, and they should connect to the control server in a periodic
fashion. This can be identified by flow inter-arrival times, which is a sequence
of time differences between consecutive flows. (3) Temporal behavior; benign
traffic follows the well-known diurnal pattern—high volume during the day,
and very little during the night. On the other hand, the majority of botnets
is configured to contact the C&C independently of daytime, and the flows are
therefore distributed uniformly throughout the day [29].

Figure 2.5: A general scheme of network encryption protocols [30].

Encrypted Traffic Analysis

Identifying threats in encrypted traffic is a significant challenge. Nevertheless,
the security community has put forth several solutions to this problem. A so-
lution standard in enterprise networks is called TLS inspection. It is a security
process that allows enterprises to decrypt traffic, inspect the decrypted content
for threats, and then re-encrypt the traffic before it enters or leaves the net-
work. Once the traffic is decrypted, traditional signature-based methods, such
as Snort [31] or Suricata [32], can be used for threat detection. Although this
approach breaks the privacy of users, monitoring, detection, and mitigation of
malware and forbidden user actions are legitimate needs (for example, when
tracking illegal activities in the financial sector). Another method of identi-
fying threats in encrypted traffic leverages flow data and encryption protocol
metadata. Most of the encryption protocols can be divided into two main
phases: the initialization of the connection and the transport of encrypted
data, as depicted in Figure 2.5. The first phase can be further divided into
algorithms negotiation, authentication of the communication parties, and es-
tablishment of shared secret keys, which are then used for encrypting and
authenticating transferred data in the second phase.

The initialization phase is usually not encrypted, and a great deal of meta-
data can be extracted that identify different operating systems, web browsers,
and other applications together with their versions. Researchers at Cisco [18]
were able to identify 18 malware families in encrypted traffic. They used flow

17

2. Background

statistics, the sequence of packet lengths and times, byte distribution, and
TLS metadata, such as the length of the public key, the selected cipher suite,
the number of certificates, the number of subjectAltName names, certificate
validity in days, and whether any certificate was self-signed [33]. Passive
monitoring of certificates in the network enables not only the identification of
communicating peers but also gives the ability to check whether certificates
are valid and use proper security algorithms to fulfill local security policies.

Packets exchanged during the transport phase usually contain only the
encrypted payload and information about the packet itself, such as the length
and type. The packet lengths, however, still leak information about the na-
ture of the traffic. Fingerprinting of HTTPS websites presented in [34] is
based on the sequence of packet lengths. An attacker prepares a model of a
target website in advance, which consists of packet size patterns for each page
within the target website. By monitoring the sizes of packets coming from
a victim, it is possible to identify a specific page that the victim is visiting
even though the traffic is encrypted. Such an attack can be used for exposing
personal details, including medical conditions, financial and legal affairs, or
sexual orientation. Authors of the paper test this technique on ”three websites
related to healthcare, since the page views of these websites have the potential
to reveal whether a pending procedure is an appendectomy or an abortion, or
whether a chronic medication is for diabetes or HIV/AIDS. We also examine
legal websites, offering services spanning divorce, bankruptcy, and wills and
legal information regarding LGBT rights, human reproduction, and immigra-
tion” [34]. A padding-based defense that reduces the attack accuracy by 25%
is also proposed in the paper.

Brute-Force Detection

A dictionary attack is a form of brute-force attack for breaking an authen-
tication mechanism by trying a huge number of likely possibilities. Lists of
the most commonly used passwords are readily available on the Internet, and
brute-force tools are usually open-source and shared on GitHub. So even an
unskilled attacker can perform dictionary attacks against any web application.
Detection of brute-force attacks can be easily done by the web application or
by automatic analysis of the server logs. A well-known example of this host-
based approach is intrusion prevention software Fail2Ban [35], which scans
log files (e.g., /var/log/auth.log) and bans IP addresses that show mali-
cious behavior (i.e., too many authentication failures) by adding a rule to the
firewall to reject that IP address. This solution, however, is not scalable, does
require access to individual servers, and can miss slow attacks that try to stay
”under the radar”.

On the other hand, a network-level approach is based on analyzing flow
data and can be implemented, for example, by an ISP or web hosting provider.
Many types of brute-force attacks are ”known to exhibit a characteristic flat

18

2.1. Network Security Monitoring

behavior at the network level, meaning that connections belonging to an attack
feature a similar number of packets and bytes, and duration. Flat traffic usually
results from repeating similar application-layer actions, such as login attempts
in a brute-force attack. For typical attacks, hundreds of attempts span over
multiple connections, with each connection containing the same, small number
of attempts” [36]. Many flow-based detection mechanisms were proposed for
SSH and HTTP. The paper [37] introduced an intrusion detection system
for SSH called SSHCure. It is built on the assumption that a brute-force
attack consists of three phases (a scan phase, a brute-force phase, and a die-
off phase), and that the traffic in the brute-force phase exhibits characteristic
flat behavior. Metrics, such as the number packets per flow or the number of
flows per time interval, help to identify attack phases, and eventually detect
brute-force attempts and successful compromises.

Network-based detection of brute-force attacks against web applications will
be more discussed in Section 2.3.

19

2. Background

2.1.5 Flow Exporters

Joy

Joy [38] is a libpcap-based open-source package for processing live traffic (on-
line mode) and packet capture files (offline mode). It converts the network
data into flows represented in a JSON format that contains all the relevant
data features. The JSON format is flexible and well-suited for data analysis
task and modern programming environments, such as Python and Scikit-learn
[39]. Joy can obtain flow data while preserving privacy by avoiding full data
capture and by anonymizing IP addresses. In the online mode, raw network
data is not retained. It is aware of several important protocols, including
HTTP, TLS, DNS, and DHCP, in the sense of being able to store their meta-
data elements in the output JSON stream. There is also support for extended
flow features, such as payload byte distribution and its entropy, and packet-
level characteristics. In Joy, the flow key is the conventional 5-tuple, and both
unidirectional and bidirectional flows are supported. Apart from the JSON
output, Joy can be configured to export flows via IPFIX or Netflow version 9.
This functionality, however, is relatively limited, and only the export of the
basic fields is supported.

{

"sa": "192.168.0.1", // IP source address

"da": "255.255.255.255", // IP destination address

"pr": 17, // IP protocol number (17 = UDP)

"sp": 68, // UDP source port

"dp": 67, // UDP destination port

"bytes_out": 900, // bytes sent from sa to da

"num_pkts_out": 3, // packets sent from sa to da

"time_start": 1479227824, // start time in seconds since the epoch

"time_end": 1479227829, // end time in seconds since the epoch

"packets": [// array of packet information

{

"b": 300, // bytes in UDP Data field

"dir": ">", // direction: sa -> da

"ipt": 0 // 0 ms since time_start

},

{

"b": 300, // bytes in UDP Data field

"dir": ">", // direction: sa -> da

"ipt": 5006 // 5006 ms since last packet

},

],

"expire_type": "i"

}

Figure 2.6: An example JSON format of an unidirectional flow.

20

2.2. Protocols

YAF

YAF (Yet Another Flowmeter) was created as a reference implementation of
an IPFIX Metering and Exporting Process (described in Section 2.1.1), and
to provide a platform for experimentation and rapid deployment of new flow
meter capabilities. The authors actively participated in the IPFIX standard-
ization process within the IETF. ”We set out to build a standards-conformant,
high-performance, bidirectional network flow meter. Standards-conformance
was important to ensure a long operational lifecycle and wide interoperability.
The performance was of utmost concern given the scale of the networks we
needed to monitor, and the ever-increasing link speeds of the Internet back-
bone and large enterprise borders. Bidirectionality was important to enable
analysis on both sides of communication, as well as to slightly increase ex-
port efficiency by eliminating redundant information” [6]. YAF can export
extended information about a large number of protocols via its application la-
beling functionality. Labeling runs at the flush-and-export time (i.e., once the
flow payload is known to be complete). YAF provides two methods for defin-
ing labeling rules. ASCII or UTF-8 based protocols, such as SMTP, IMAP,
and SIP, lend themselves to textual analysis based on regular expressions.
Conversely, for binary protocols, such as DNS, a C-callable plugin can be cre-
ated. The extraction of packet-level characteristics is not supported. YAF is
actively maintained, and the last version was published in March 2019.

2.2 Protocols

In this section, I shall briefly review protocols that underlie secure web com-
munication. The focus will be on matters related to the analysis of encrypted
web traffic.

2.2.1 TLS 1.2

Transport Layer Security (TLS) is a new version of the Secure Sockets Layer
(SSL) protocol, which is no longer recommended for use due to its security
vulnerabilities. It provides confidentiality, data integrity, non-repudiation,
replay protection, and authentication through digital certificates directly on
top of the TCP protocol (or any other reliable transport protocol). TLS is
currently used for securing the most well-known Internet protocols, such as
HTTP, FTP, and SMTP. In this work, I shall focus on the use of TLS within
the HTTP protocol that is known as HTTPS, which is probably the most
common use of TLS. The TLS protocol consists of two primary components:
the TLS Record Protocol and the TLS Handshake Protocol.

21

2. Background

TLS Record Protocol At the lowest level, layered on top of TCP, is the record
protocol that provides connection security with two basic properties:

• The connection is private. Symmetric cryptography is used for data
encryption (mostly AES). The keys for this symmetric encryption are
generated uniquely for each connection and are based on a secret nego-
tiated by the handshake protocol.

• The connection is reliable. Message transport includes an integrity check
using a keyed message authentication code (MAC). Secure hash func-
tions (e.g., SHA-2) are used for MAC computations.

The TLS Record Protocol ”takes messages to be transmitted, fragments the
data into manageable blocks, protects the records, and transmits the result.
Received data is verified, decrypted, reassembled, and then delivered to higher-
level clients” [40]. Four TLS subprotocols that sit on top of the record protocol
are defined: the handshake protocol, the alert protocol, the change cipher spec
protocol, and the application data protocol. Each record has an unencrypted
header with content type, protocol version, and payload length. More formally,
the TLS record fields are defined as follows:

struct {

uint8 major;

uint8 minor;

} ProtocolVersion;

enum {

change_cipher_spec (20),

alert (21),

handshake (22),

application_data (23)

} ContentType;

struct {

ContentType type;

ProtocolVersion version;

uint16 length; /* Maximum length is 2**14 (16,384) bytes. */

opaque fragment[TLSPlaintext.length];

} TLSPlaintext;

Figure 2.7: A TLS record definition [41].

22

2.2. Protocols

TLS Handshake Protocol The handshake protocol allows the server and client
to authenticate each other and to negotiate an encryption algorithm and cryp-
tographic keys before the application protocol transmits the first byte of data.
Handshake messages are supplied to the record protocol and transmitted in
the plaintext because no secret keys are yet established. The handshake pro-
tocol provides connection security that has three basic properties, which hold
even in the face of an attacker who has complete control of the network:

• The peer’s identity can be authenticated using asymmetric (public key)
cryptography (e.g., RSA, DSA, ECDSA). This authentication can be
made optional but is generally required for at least one of the peers. In
the case of the HTTPS protocol, usually only the server is authenticated.

• The negotiation of a shared secret is secure: the negotiated secret is
unavailable to eavesdroppers. For any authenticated connection, the
secret cannot be obtained even by an attacker who can place himself in
the middle of the connection.

• The handshake is reliable: no attacker can modify the handshake com-
munication without being detected by the communication parties.

TLS Application Data Protocol The application data protocol carries appli-
cation messages, which are just buffers of data as far as TLS is concerned. The
messages are fragmented and encrypted by the record layer, using the current
connection security parameters. TLS does not hide the length of the data
it transmits. However, newer TLS version 1.3 introduced support for record
padding, and endpoints are now able to pad the records in order to obscure
lengths and improve protection against traffic analysis techniques [40].

2.2.2 TLS 1.3

The new version TLS 1.3 was published in August 2018 nearly ten years after
the previous version. The protocol has major improvements in the areas of
security, performance, and privacy. It is now supported in most of the libraries
and web browsers. Both Mozilla Firefox and Google Chrome use it as default.
In contrast to TLS 1.2, TLS 1.3 provides additional privacy for data exchanges
by encrypting more of the handshake messages to protect them from eaves-
droppers. This enhancement helps protect the identities of the participants
and makes traffic analysis less effective. TLS 1.3 also provides forward secrecy
by default, which means that the compromise of long term secrets used in the
protocol does not allow the decryption of data communicated while those long
term secrets were in use [42].

23

2. Background

Some of the major differences from TLS 1.2 as listed in the TLS 1.3 specifi-
cation [40]:

• The list of supported symmetric encryption algorithms has been pruned
of all algorithms that are considered legacy. Those that remain are
all authenticated encryption with associated data (AEAD) algorithms
(e.g., AES-GCM), which combine confidentiality and data integrity into
a single cryptographic primitive. Old hash functions, such as MD5, were
also removed.

• All handshake messages after the ServerHello are now encrypted. The
newly introduced EncryptedExtensions message allows various exten-
sions previously sent in the clear in the ServerHello to also enjoy confi-
dentiality protection. Most notably, the server’s Certificate handshake
message is now encrypted.

• Static Diffie-Hellman and RSA for key exchange have been removed. All
public-key based key exchange mechanisms now provide forward secrecy,
i.e., they give assurances that session keys will not be compromised even
if the private key of the server is compromised.

• The TLS handshake is now completed in one round-trip (1-RTT). An
optional zero round-trip time (0-RTT) mode was added, saving a round
trip at connection setup for the first application data, at the cost of
certain security properties.

Regarding TLS 1.3 and its impact on TLS client fingerprinting, a Cisco re-
searcher explains: ”while more of the TLS handshake goes dark with TLS 1.3,
client fingerprinting still provides a reliable way to identify the TLS client. In
fact, TLS 1.3 has increased the parameter space of TLS fingerprinting due to
the added data features in the ClientHello. While there are currently only five
cipher suites defined for TLS 1.3, most TLS clients released in the foresee-
able future will be backwards compatible with TLS 1.2 and will therefore offer
many ”legacy” cipher suites. In addition to the five TLS 1.3-specific cipher
suites, there are several new extensions, such as supported versions” [43]. JA3
authors also state that TLS 1.3 has no effect on the JA3 fingerprint [44].

TLS 1.3 & Network Visibility

Although TLS 1.3 obscures most of the handshake, including the server cer-
tificate, there are several other channels that allow an on-path attacker to
determine the domain name the client is trying to connect to, including: (1)
cleartext client DNS queries, (2) visible server IP addresses, assuming the
server is not doing domain-based virtual hosting, and (3) cleartext Server
Name Indication (SNI) in ClientHello handshake messages [45]. DNS over

24

2.2. Protocols

HTTPS (DoH) and DNS over TLS (DoT) provide mechanisms for clients to
conceal DNS lookups from network inspection, and many TLS servers host
multiple domains on the same IP address. In such environments, SNI is the
only explicit signal used to determine the server’s identity. Encrypted SNI
(ESNI) specification [45] is currently being developed, and it is already sup-
ported in Firefox Nightly and by Cloudflare servers.

An IETF memo called TLS 1.3 Impact on Network-Based Security [46]
summarizes the impact of TLS 1.3 changes on network visibility from the
point of view of enterprises, public sector, and cloud service providers. In
these environments, security solutions such as firewalls and intrusion preven-
tion systems rely on some level of network traffic inspection to implement
perimeter-based security policies. A traffic monitoring middlebox may, for
example, perform vulnerability detection, intrusion detection, crypto audit,
compliance monitoring, etc. The following changes were found problematic
according to the memo:

• Encrypted Server Certificate Organizations may have policies around
acceptable ciphers and certificates on their servers. Examples include
no use of self-signed certificates, black or white-list Certificate Author-
ity, valid certificate expiration time, etc. In TLS 1.2, the Certificate
message was sent in clear-text, however, in TLS 1.3, the message is en-
crypted, thereby preventing both a network-based auditing and policy
enforcement around acceptable server certificates.

• Removal of Static RSA and Diffie-Hellman Cipher Suites TLS 1.2 sup-
ports static RSA and Diffie-Hellman cipher suites, which enables the
server’s private key to be shared with server-side middleboxes. TLS 1.3
has removed support for these cipher suites in favor of supporting only
ephemeral mode Diffie-Hellman in order to provide forward secrecy. As
a result of this, it is no longer possible for a server to share a key with the
middlebox a priori, which in turn implies that the middlebox cannot gain
access to the TLS session data without being active man-in-the-middle.

• Version Negotiation and Downgrade Protection In TLS 1.3, the random
value in the ServerHello handshake message includes a special value
in the last eight bytes when the server negotiates TLS 1.2 and below.
The special value enables a TLS 1.3 client to detect an active attacker
launching a downgrade attack when the client did indeed reach a TLS 1.3
server. The primary impact is that TLS 1.3 requires the TLS middlebox
to be an active man-in-the-middle from the start of the handshake in
order to change these last eight bytes.

25

2. Background

2.2.3 HTTPS

Hypertext Transfer Protocol (HTTP) is an application protocol that under-
lies web communication on the Internet since the 1990s. The HTTP is a
request/response, text-based, and stateless protocol. A client sends a request
to the server in the form of a request method, URI, and HTTP version, fol-
lowed by a MIME-like message containing request headers, client information,
and possible body content over a TCP connection with a server. The server
responds with a status line, including the HTTP version and a success or
error code, followed by a MIME-like message containing server information,
response headers, and possible body content. Three versions of the protocol
are used: HTTP/1.0, HTTP/1.1, and HTTP/2. New HTTP/3 specification
is being developed. HTTP Secure (HTTPS) is an extension in which the
plaintext communication is wrapped in a secure channel provided by TLS.

2.2.4 Web Authentication

HTTP cookies are the most common way to do session management and user
authentication in web applications. An HTTP cookie is a small piece of data
that a server sends to the user’s web browser via the Set-Cookie response
header. The web browser stores it and sends it back with subsequent requests
to the same server in the Cookie request header. This way, the server can
determine that the HTTP requests came from the same user. To obtain a
session cookie, a user has to provide login credentials. This is usually done by
making a POST request to an authentication endpoint with a username and
a password in the request body.

POST /login HTTP/1.1

Host: www.example.com

Content-Type: application/x-www-form-urlencoded

Content-Length: 42

username=Bob&password=XII1sSM26cy5bN8YQ3wc

(a) A simplified web authentication via a POST request.

HTTP/1.1 200 OK

Date: Thu, 09 Apr 2020 12:15:53 GMT

Set-Cookie: Session-Id=XihmxFoKQ52YnLrdzHAAXI; Domain=www.example.com

Content-Length: 0

(b) A response with a session cookie called Session-Id.

Figure 2.8: An example of a successful HTTP authentication attempt into a
web application. Note that without the TLS protection, the user password
would be visible in plaintext for every on-path observer.

26

2.3. Web Applications Brute-Force Attacks

In case of an incorrect password, the server does not provide a session
cookie, and the user has to try again. This can easily be exploited by attack
tools that repeatedly try different passwords and check whether the authen-
tication was successful. A common practice is to include a random nonce
(also known as CSRF token) in the login form, which has to be sent during
authentication and is verified by the server. To perform a brute-force attack,
an attacker has to fetch the login page prior to every password attempt to
obtain the correct nonce. This, however, is not supported in some available
brute-force attack tools, and therefore can deter low-skilled attackers.

2.3 Web Applications Brute-Force Attacks

Examples of common web applications are content management systems (CMSs),
such as WordPress, Joomla, Drupal, or an e-shop solution Shopify. The popu-
larity of CMSs is underlined by numbers—according to W3Techs [47], Word-
Press powers 35% of all the websites on the Internet; Joomla, Drupal, and
Shopify have around 4% share each. The widespread use of these CMSs also
comes with a risk: the fact that anybody can use them, even people with
limited technical skills that are unaware of security threats, leads to outdated
and vulnerable configurations, and reliance on weak administrator passwords.
As such, CMSs end up being a prime brute-force attack target.

In [48], the authors have focused on the defense against brute-force attacks
from the perspective of web hosting providers. Three major security threats
were identified: (1) brute-force attacks result in an increased load on the
underlying infrastructure; (2) following a compromise, malicious scripts can
be installed, such as remote access shells; (3) web applications can be misused
for a range of illegal activities: distribution of malware, spam campaigns,
participation in botnets and DDoS attacks, etc. In such cases, the entire
IP space owned by the hosting company may get blacklisted, thus a security
mistake made by a single customer potentially impacts all other customers
of the hosting company. Detecting attacks against web applications can be
done in several ways. Host-based detection protection can be realized, for
example, by using CAPTCHA or IP-based authentication blockers. However,
such blockers must be implemented and maintained by the customers, who
generally have limited technical skills.

2.3.1 Network-Based Detection

In this section, a network-based detection mechanism proposed in Flow-Based
Web Application Brute-Force Attack and Compromise Detection [48] will be
discussed in greater detail, because the solution presented in this thesis is
inspired by it. The detection approach in [48] is based on unidirectional flow
data exported by a flow exporter using IPFIX, and as with many flow-based

27

2. Background

solutions, the detection operates on flow data chunks that have been received
in fixed-length time intervals, typically in the order of several minutes.

Preselection Phase The preselection phase serves to make a rough data se-
lection so that the amount of data to be processed in further steps is reduced.
To qualify for preselection, a host must have generated at least N flows to-
wards a target server. The threshold N was set to 20 as this value causes
benign failed login attempts to be filtered out implicitly, and, on the other
hand, reduces the load caused by small attacks and noise. Since the goal
of preselection is data filtering and not detection, exceeding the threshold is
often easy, even for benign applications, such as web crawlers and calendar
fetchers. These two and generally asynchronous requests via AJAX are prone
to be misclassified, because, on the network level, they tend to produce a flat
traffic pattern similar to a brute-force attack [49]. It is then up the detection
phase to classify these cases as benign. The output of the preselection is a list
of connection tuples (source and destination IP address, a source port, and
a possible hostname) that in the current time window created more than N
flow records.

Detection Phase The detection is based on packet-level characteristics (dis-
cussed in Section 2.1.3), particularly on packet sizes in the form of a histogram.
A histogram is created from sizes of all not-empty packets in the flow, with
every unique size having its own bin. Empty packets are ignored because
they likely are TCP acknowledgments, window updates, or other control in-
formation. The next step in identifying brute-force attacks is to aggregate his-
tograms into clusters. Histograms of attack traffic are similar since repeated
authentication attempts result in the same packet sizes. As a consequence, the
brute-force traffic is clustered. The bottom-up Hierarchical Cluster Analysis
(HCA) method is used with Minimum Difference of Pair Assignment (MDPA)
as a distance metric, which takes into account the bin sizes. The detection of
the brute-force attack is always done using the largest cluster of a connection
tuple because it is assumed that attack traffic is dominant enough to comprise
a (large) cluster by itself. In cases of non-attack traffic, the largest cluster may
contain histograms that are not very similar, meaning that distances between
histograms are rather big. To filter out such candidates, the method calculates
the average intra-cluster distance for the largest cluster. In case it exceeds a
predefined threshold, the connection tuple is labeled as benign. Otherwise,
a potential brute-force attack was found. Finally, once the largest cluster is
found to feature a brute-force attack, a sanity check to rule out false positives
is performed: ”in case the set of clusters features many small clusters, i.e.,
clusters with only one or two histograms, we overrule the detection. Many
small clusters indicate that the network traffic was highly variable in terms of
payload, therefore contradicting our definition of typical attack behavior.” [48]

28

2.3. Web Applications Brute-Force Attacks

2.3.2 Attack Tools

Brute-forcing web application authentication via POST requests is supported
in many open-source tools. Usually, a brute-forcer is configured to attack a
login endpoint on a specific host. The attacker provides a list of usernames
and passwords, the format of the request body, and the request method (usu-
ally POST). Moreover, a pattern that can reliably distinguish between failed
and successful authentication attempts has to be specified. If the target web
application is protected by an access token served as a cookie or a nonce in-
cluded in a login form, the access token has to be prefetched and extracted
via a given regex pattern before every authentication request. The following
tools have been studied and used in this thesis:

• Ncrack from the Nmap authors. It has a command-line syntax similar
to Nmap and a dynamic engine that can adapt its behavior based on
network feedback. A special WordPress module is included. The last
release was in August 2019. [50]

• Thc-hydra. Written in C, it can perform rapid dictionary attacks against
more than 50 protocols, including HTTP and HTTPS. The last release
was in May 2019. [51]

• Patator. A multi-purpose, multi-threaded brute-forcer with a modular
design and flexible usage. Written in Python. The last release was in
March 2020. [52]

Table 2.2: Feature comparison of open-source brute-force tools.

Custom Headers Conn. Reuse Prefetch Tokens

Patator X X X

Thc-hydra X

Ncrack X X

29

Chapter 3

Analysis & Design

3.1 Datasets

For the evaluation of my work, I need a representative benign traffic dataset
and an HTTPS brute-force attack traffic dataset. A typical approach to this
problem is to create your own attacks and mix them with benign, realistic
traffic. Freely available datasets usually do not focus on a single specific
attack, such as brute-force. The most common attack categories in datasets
are DoS attacks, botnet communication, and port scanning. In the case of
brute-force attacks, the focus in available datasets is usually on attacks in
SSH and FTP. Also, as noted in section 2.3.2, brute-force tools have different
behavior patterns (for example, whether connections are reused), and the
attack network traffic depends on the target website (which can either use
access tokens or not). I need a brute-force dataset that captures this diversity
and contains attacks from multiple tools targeted to various websites. I created
my own brute-force dataset. Doing it manually would be cumbersome and
time-intensive, and would not allow for repeating the same attacks with a
different set of parameters. I, therefore, automated the process with a solution
based on Docker containers, which is presented in Section 3.1.1. The challenge
with the benign traffic dataset was to include enough diversity. As noted
earlier, web crawlers, calendar fetchers, and content delivery networks tend to
produce similar traffic patterns as brute-force attacks do. It is thus crucial to
have such traffic included in the benign dataset, otherwise, any model based
on the data would have an unacceptably high number of false positives.

The final dataset consists of three parts:

• Brute-force traffic data generated by the brute-force simulator. This
data includes attacks from Patator, Thc-hydra, and Ncrack towards
these web applications: WordPress, Joomla, Moodle, Mediawiki, Ph-
pbb, Discourse, and Ghost. It was generated by multiple runs of the

31

3. Analysis & Design

brute-force simulator, each with a different set of parameters and vari-
ous lengths of the password list.

• Traffic from CESNET’s backbone network. To obtain the most realis-
tic benign traffic, the data was captured at the perimeter of CESNET’s
infrastructure in Autumn 2019 and Spring 2020. CESNET fulfills the
role of the national research and education network (NREN) within the
Czech Republic. Determining that a set of network connections from
the backbone network is truly benign is often impossible, and I realize
that the backbone traffic could contain a small number of brute-force
attacks. However, as long as the proportion of brute-force attacks is min-
imal, the machine-learning models should cope with those miss-labeled
samples (probably by ignoring them as noise). Thus, all backbone traffic
is considered as benign.

• StratosphereIPS benign network capture. Stratosphere project [53] pub-
lished benign HTTPS dataset created by František Střasák. The ap-
proach was to browse regular websites, such as Facebook, Twitter, Gmail,
and more of the top 500 domains. This dataset contains 13 PCAP files,
each around three hours long. The capturing was done by the Fire-
fox browser on Windows 7 running on a virtual machine and by the
Iceweasel browser on Kali Linux in April 2017.

3.1.1 Brute-Force Generator

In order to generate brute-force traffic data in a repeatable and automatic
way, I created a brute-force attack simulator. The main requirement was to
support multiple attack tools, various target web applications, and the setup
to be as realistic as possible. Target web applications were run in Docker.
This way, it is simple to start/stop the applications and to run them one after
another. Applications were downloaded from Bitnami’s application catalog,
which includes popular web applications packaged as Docker containers. The
next step was to provide support for TLS communication. TLS is supported
in some applications provided by Bitnami, but it would be cumbersome to
set up a TLS server or to install a TLS certificate in every Docker container
individually. I, therefore, decided to put Nginx as a reverse TLS proxy in
front of the Docker containers. The whole setup is presented in Figure 3.1.

The central part is a run script and a remote server with Docker, Nginx,
and Tcpdump installed. A valid TLS certificate has to be provided. Target
applications are defined in docker-compose files, which include configuration
such as required Docker images, environment variables, volumes, and for-
warded ports. The applications generally need at least two containers—one
for the application itself and one for a database. Fortunately, everything is
configured out of the box in the application definitions downloaded from Bit-
nami. Only the port forwarding had to be changed manually to connect the

32

3.1. Datasets

Remote Server

Attack
Application

Nginx Reverse Proxy

Victim CMS

 (3) Run Attack Tool

(2) Start Capture

(1) Start Application in Docker
Run Script

Store Pcap

Tcpdump

Brute-Force Attack Tools

TLS Connection

Commands Via SSH

Internet

Figure 3.1: The setup of the brute-force attack generator.

application with the reverse proxy properly. Attack tools have to be config-
ured individually for each of the target applications, because they use different
HTTP headers and different names for session cookies, and user and password
fields. I have used Burp Proxy to determine all required fields for valid authen-
tication. It is crucial to verify that the attack tools are configured correctly,
such that the authentication attempts are all valid; otherwise, the captured
traffic would not be similar to a realistic attack.

Brute-force traffic data is generated in the following way:

1. The run script connects to the remote server via SSH and starts a
docker container with the target application. Docker containers are
started/stopped one after another for every defined application. An
overview of applications is presented in Table 3.1.

2. For every application, defined attack tools are run against it. Before
each attack, a Tcpdump capture is started on the remote server. The
result is PCAP files with brute-force traffic, one for every pair of attack
tool and target application.

3. Pcaps are downloaded from the remote server.

33

3. Analysis & Design

Table 3.1: An overview of target web applications. When a form authenti-
cation is used, the response of an authentication attempt contains the whole
HTML document. When AJAX is used, the authentication is performed with-
out reloading the web page, and the response typically contains only a small
JSON and a session cookie.e

CMS Authentication Method Require Access Tokens

WordPress Form

Joomla Form X

Moodle Form X

MediaWiki Form X

Ghost AJAX X

Discourse AJAX X

PhpBB Form X

3.1.2 Dataset Structure

Each capture in the dataset contains a Joy output file with flows in the JSON
format (one per line) and a readme file with information about the captured
traffic, such as the used Tcpdump filter, the date of the capture, and in case
of brute-force traffic, the attack tools parameters. The Joy exporter was used
because it supports plenty of flow features, and it outputs data in the JSON
format, which is well-suited for further data processing with Python.

Every flow in the capture has the following structure:

• Source and destination IPv4 addresses
• Protocol number (e.g., 6 for TCP)
• Source and destination ports
• Time start and time end as unix timestamps
• Number of sent and received bytes
• Number of sent and received packets
• Flow expiration type: ”i” for idle, ”a” for active
• A list of packets contained in the flow; every packet has:

– Size in bytes
– Time delay between this and the previous packet in milliseconds
– Direction of the packet (either ”>” or ”<”)

• A TLS structure with:

– Client and server TLS versions
– Server certificate
– Server name indicator (SNI)
– Ciphersuits offered by the client and the one selected by the server

34

3.2. Experiments Workflow

– Client and server extensions
– Sequence of the record lengths and times (SRLT); every record has:

∗ Size in bytes
∗ Time delay between this and the previous record in millisec-
onds

∗ Direction of the record (either ”>” or ”<”)
∗ Content type (e.g., application data, handshake, alert)
∗ A list of handshake messages included in the record (if any),
for example Client Hello, Server Hello, or Certificate

3.2 Experiments Workflow

I have designed the brute-force detector in an iterative manner as shown in
Figure 3.2. By using this workflow, I was able to test and verify various
hypotheses, manually analyze data, and feed the insights into improving the
preprocessing steps and the dataset.

Flows
Dataset

Aggregated Flows
Flow Aggregation

Feature Vectors
Feature Extraction

Improve aggregation mechanism

Try different features

Manual Analysis

Train

Test

Test Train SplitML ModelEvaluate

Data
Feedback

Figure 3.2: Workflow of the experiments.

Flow Aggregation After the dataset preparation, it is important to select
a suitable representation of samples for machine-learning (ML) algorithms.
There are plenty of possibilities, and there is no best option in general, because
it depends on the purpose of the algorithm, size of the dataset, and the selected
machine-learning algorithm. For example, one ML sample could be: gather all
flows with the same source IP, destination IP, destination port, and protocol;
or gather all flows going in and out from one IP. Why and how I decided to
aggregate flows is summarized in Section 3.3.

Feature Extraction The next step is feature extraction. Commonly used flow
features were reviewed in Section 2.1.3. I mostly experimented with packet-
level characteristics and statistics over them. The results are presented in
Section 3.4.

35

3. Analysis & Design

3.3 Flow Aggregation

In some applications, it would be possible to consider each flow individually
for classifications, but in case of the brute-force detection, some kind of ag-
gregation is needed for the following reasons:

1. Attack tools usually open multiple concurrent connections towards the
target, with each having a different source port and thus resulting in a
different flow. If flows were considered individually, information about
the context of a possible attack (that there are multiple connections)
would be lost.

2. Some attack tools, for example, Thc-hydra, open a new connection for
every password attempt. Resulting flows look benign as they contain
just a few packets. But they form an attack when considered together.

3. Attacks which are longer than the flow active timeout (for example,
because they try to ”stay under the radar”) are split into multiple flows.

For those reasons, the following aggregation mechanism was used. Flows were
aggregated by this flow key: source address, destination address, destination
port, and TLS server name indicator. The omission of source port causes
aggregation of all flows originating from a specific source address towards the
target web application. This solves the problem with attack tools like Thc-
hydra that open a new connection for every attempt. In contrast with the
usual practice, the flow aggregation is not time-based. Instead, flows are being
aggregated until the number of packets is bigger than some threshold. This
addresses the issue with slower attacks. The pseudo code of the aggregation
mechanism is presented in Figure 3.3.

NAT Problem The omission of the source port in the aggregation flow key
poses one problem. Traffic from different clients that are behind Network
Address Translation (NAT) router will be aggregated together. They share
the same IP address and the source port, which normally distinguishes them,
is ignored in the aggregation. If two hosts that communicate with a target
application are both behind the same NAT, and one of them is legitimate,
while the other one is launching a brute-force attack, their traffic will be
aggregated together, and as a result, the attack might not be detected. This
problem could be partially solved by including a TLS client fingerprint (e.g.,
JA3) in the aggregation key. This way, traffic originating from multiple hosts
behind NAT is not aggregated unless the hosts share the same TLS fingerprint
(i.e., have the same web browser in the same version, or the same TLS library),
which still might happen, but the chance should be lower. Another option
would be to include TCP fingerprint.

36

3.4. Features

Function is_full(af: aggregated_flow): bool
return whether the aggregated flow is considered full

Function add_flow(af: aggregated_flow, f: flow): void
add a flow to the aggregated flow

active_aggregated_flows ← empty hashmap
foreach flow do

flow_key ← (flow.srcaddr, flow.dstaddr, flow.dstport, f low.sni)
if flow_key in active_aggregated_flows then

aggregated_flow ← active_aggregated_flows[flow_key]
add_flow(aggregated_flow, flow)
if is_full(aggregated_flow) then

classify aggregated_flow and remove it from the hashmap
end

else

create new aggregated_flow
if is_full(aggregated_flow) then

classify aggregated_flow
else

active_aggregated_flows [flow_key] ← aggregated_flow
end

end

end

Figure 3.3: Pseudo code of the flow aggregation algorithm.

3.4 Features

The purpose of this section is to describe how I proceeded with feature ex-
traction. The goal is to detect brute-force attacks in encrypted traffic. Due
to the encryption, no features can be extracted from the payload itself apart
from byte distribution and its entropy. However, this has no value in detect-
ing brute-force attacks because both benign and attack traffic are the same
encrypted HTTP request, and there should not be differences in the entropy
values. On the other hand, packet-level characteristics, such as the sequence
of packet lengths, look promising. The underlying idea is that during a brute-
force attack, the repeated authentication attempts should exhibit a periodic
pattern in network traffic (especially in the sequence of packet sizes).

3.4.1 Sequence of TLS Record Lengths

I have decided to use the sizes of TLS records instead of packets. This way,
the values are closer to the sizes of HTTP requests and responses (or they are

37

3. Analysis & Design

equal to them if the TLS connection is using a cipher in a counter mode). Also,
the size of a packet is limited by the maximum transmission unit (typically
1500), which, for example, causes an HTTP response of size 4000 bytes to
be split into three packets—1500, 1500, and 1000. When viewed as a TLS
record, however, the real size of 4500 bytes could be observed because a TLS
record has a maximum size of 16KB. Another advantage is that the sequence of
TLS records can be filtered by the content type (handshake, application data,
alert). For the task of brute-force detection, only application data records are
interesting. Thus only lengths of application data records are considered for
feature extraction.

3.4.2 Merging of TLS Record Sequences

The next question is how the packet-level features should be extracted from
aggregated flows, which combine a number of flows. One option would be to
compute packet-level features for every flow individually and then combine
them, for example, by averaging. Conversely, one could first merge the se-
quences of TLS records and only compute the statistics afterward. It is not
clear whether or how the merging should be done because the flows in one
aggregated flow could in fact be running in parallel. In this work, I decided to
sort the flows by their start time and concatenate the record sequences before
feature computation. The reasoning is that: (1) Some flows (for example,
the case of Thc-hydra traffic) might not contain enough records for calcula-
tion of statistics, such as standard deviations and correlation. (2) Computing
features over a single merged sequence of records is more efficient. And (3),
the error, which is introduced by sequentially concatenating sequences that
are running in parallel, is not significant for the used features (mostly means,
standard deviations, and correlation). The merging process is illustrated in
Figure 3.4.

Flow 1

Flow 2

Flow 3

Flow 1 Flow 2 Flow 3

Aggregated Flow

Flow 1 Time Start = Aggregated Flow Time Start

Flow 3 Time End = Aggregated Flow Time End

Figure 3.4: Sequential joining of TLS records in an aggregated flow.

38

3.4. Features

Table 3.2: A summary of selected features.

Feature Name Type

Flows Count in the Aggregated Flow Int

Application Data Records Count Int

Time Duration Int [milliseconds]

Mean Flow Duration Float

Bytes Sent Int

Bytes Received Int

Sent/Received Ratio Float

Request Size STD Float

Response Size STD Float

Mean Request Packets Float

Mean Response Packets Float

Roundtrips Count Int

Roundtrips per Second Float

Request Response Autocorrelation Float

Autocorrelation Shift Int

One more preprocessing step is performed on the merged sequence of record
lengths: consecutive records in the same direction are merged. The result is a
sequence of lengths of requests (i.e., out direction, sent) and responses (i.e., in
direction, received). An illustration of this step is shown below. The lengths
of the received records are represented as negative numbers; the lengths of
sent records as positive.

[300, 250,−2000,−2500, 350,−3000,−3000,−3000, 100,−100]

↓

[550,−4500, 350,−9000, 100,−100]

The reasoning for merging consecutive packets is that the derived features
should help to find patterns of repeated actions (in case of this work, repeated
authentication attempts). The lengths of requests and responses are more
likely to identify repeated actions rather than the record-level view. As an
example, an HTTP request or response could be split into two (or more) TLS
records, one for the headers and second (or the rest) for the body. These
records are sent one after another, and by summing their sizes, the size of the
transmitted HTTP request or response can be obtained.

39

3. Analysis & Design

The final selected features are listed in Table 3.2. The features are:

• Aggregation Counts. How many flows were aggregated and the total
count of application data records. Note that even though the aggregation
is bounded by a threshold of the number of records, the actual number
of records can be smaller or bigger than this threshold. It could be
bigger because flows are added to the aggregated flow until the number
of records is bigger than the threshold, and it could be smaller because,
for some aggregation keys, there are not enough flows in the observed
traffic to fill the aggregated flow. There are, however, other thresholds
in place to skip classification of those aggregated flows, which do not
include enough records.

• Time Duration. The time span of an aggregation flow starts when the
first of its flows starts and ends when the last of its flows ends. The
duration is calculated as the difference between those. Also, the average
flow duration is computed.

• Byte Counts. The total number of bytes sent/received in application
records and the ratio of these two values. This ratio can be expected
to be around one for authentication attempts done via AJAX requests
as the HTTP response contain only a session cookie and thus has a
similar size as the POST request. When the authentication is done by
a form submission, the ratio is expected to by bigger than one because
the HTTP response contains an HTML document of the website, which
is much bigger than a POST request. Extreme values of this ratio are
indicators of bulk download/upload.

• Roundtrips. One request-response pair is called roundtrip. In brute-
force traffic, each authentication attempt can be seen as one roundtrip.
A request without response could not be an authentication attempt as
the attacker would not be able to get to know if the authentication
was successful or not. Thus, the number of roundtrips can be seen as
the top bound of the number of possible authentication attempts in
the communication. Roundtrip count is computed as the minimum of
the number of requests and the number responses—these two numbers
differ at most by one due to their alternating nature. The number of
roundtrips per second is also computed.

• Request Response Statistics. Standard deviation is a measure of
variation. If the variation of the sizes of either requests or responses is
small, it could be an indication of repeated patterns in the communica-
tion. Means of response and request sizes are not used because these are
specific for every web application (web applications are arbitrarily big),
and they do not carry any value in distinguishing between benign and

40

3.5. Machine Learning

brute-force traffic (legitimate authentication request has the same size
as a brute-force password attempt). The average number of packets a
request or a response is comprised of (due to the aforementioned merg-
ing) is also calculated. The idea is that these could help to distinguish
between types of traffic, such as browsing, video streaming, or CDN
traffic. As an example, it is unlikely that an HTTP request carrying
an authentication attempt is divided into more than, for example, five
TLS records. This kind of features could help to reduce the chance of
misclassification for traffic types other than browsing.

• Autocorrelation. The Pearson correlation coefficient of the request-
response sequence with a shifted version of itself is calculated. Note that
the sequence is encoded as positive numbers for requests and negative
numbers for responses. The purpose is to find a periodic signal in the
sequence, which would indicate repeated actions in the communication.
The autocorrelation is computed for different lags (how much is the se-
quence shifted), specifically for lags in the range [2, Min(Len(X)/3, 10)],
Len(X) being the sequence length. Lower bound two is chosen because
the lag of one would only show whether all values in the sequence are
equal (which are not due to the alternating nature of requests and re-
sponses). Upper bound is set for performance reasons. The highest auto-
correlation value together with its lag are used as features. A brute-force
attack on a web application without access token protection can be ex-
pected to have high autocorrelation with a lag of two. If an application
is protected by an access token, which has to be fetched before every
authentication attempt, then the highest autocorrelation is expected to
be at the lag of four.

3.5 Machine Learning

The task of brute-force detection is a binary classification problem (benign,
negative versus brute-force, positive) with a high class imbalance—benign
traffic is generally prevalent. Learning a machine-learning model can be either
supervised when the dataset is labeled or unsupervised when it is not. The
dataset in this thesis is labeled, and thus I shall use the methods of supervised
learning. Decision trees were chosen as a starting point because they are one
of the most commonly used supervised machine-learning methods for network
traffic classification. A decision tree uses a divide-and-conquer approach to
solve the classification task by asking a series of questions about the features
of the input. Decision trees are relatively efficient to learn and are easy to
interpret, i.e., a set of decision rules can be associated with each output.
However, they are biased when learned on an unbalanced dataset, which is
the case of the dataset in this thesis, where the benign traffic is dominant.

41

3. Analysis & Design

The solution for class imbalance can be either under-sampling (taking a
subset) of the majority class, or over-sampling of the minority class, or both
combined. When over-sampling, the minority samples can be repeated mul-
tiple times, or completely new minority samples can be created. The later is
generally preferred, and it is the standard way to tackle the class imbalance.
Specifically, a minority over-sampling technique called SMOTE [54] was used
to synthetically generate brute-force samples. Note that the generated sam-
ples are used only for the training of a model and never for testing. To further
improve the classification accuracy, it is common to combine more models
together in so-called ensembles. The results from individual models are ei-
ther averaged (possibly with weights) or a majority vote decides the outcome.
I have used a method called adaptive boosting (AdaBoost), which consists
of multiple decision trees (or possibly other classifiers) that are learned in a
loop. Information gathered at each iteration about the relative hardness of
the training samples is fed into the tree learning algorithm such that later
trees tend to focus on harder-to-classify samples. The results from individual
trees are weighted so that the trees with high accuracy on the training data
have a higher weight, and the trees with low accuracy have a lower weight. I
have also experimented with an algorithm called LightGBM (Light Gradient
Boosting Machine) [55], which is similar to AdaBoost. It also uses multiple
decision trees, but the learning is viewed as a numerical optimization problem
where the objective is to minimize the loss function of the model by adding
more trees.

3.5.1 Performance Metrics

In a binary classification task, a tested sample is either: (1) correctly classified
as positive, which is called true positive (TP), or (2) correctly classified as
negative, which is called true negative (TN), or (3) incorrectly classified as
positive when the actual label is negative, which is called false positive (FP),
and lastly (4) incorrectly classified as negative when the actual label is positive,
which is called false negative (FN). The classification errors, FN and FP, are
generally not equal, and it depends on a particular domain to decide, which
one is more important. The counts of TP, TN, FP, FN are usually presented
in a 2x2 confusion matrix. To transform the confusion matrix into a single
score, multiple different measures of classification accuracy exists, but only
some are suitable in the presence of class imbalance—recall, precision, false
positive rate, and f-score are among the most commonly used.

Recall (True Positive Rate) =
TP

TP + FN

False Positive Rate =
FP

FP + TN

42

3.5. Machine Learning

Precision =
TP

TP + FP

Fβ-score is a measure combining precision and recall such that recall is β times
more important than precision.

Fβ = (1 + β2) ·
Precision ·Recall

(β2 · Precision) + Recall

Two commonly used values for β are 2, which weighs recall higher than pre-
cision (by placing more emphasis on false negatives), and 0.5, which weighs
precision higher than recall (by placing more emphasis on false positives). Due
to the scale of monitored network traffic and the expensive remediation ac-
tions (e.g., investigating a possible incident), maintaining a low false positive
rate is more important. Therefore, I used the F0.5 score as the metric for the
evaluation of the machine-learning models.

43

Chapter 4

Implementation

4.1 Implementation of NEMEA Module

The brute-force detector was implemented as a detection module into a sys-
tem for network traffic analysis and anomaly detection called NEMEA [56].
The final production architecture is presented in the following Figure 4.1.
In this section, I will discuss how the individual parts are implemented and
configured.

Flow Probe with Joy

IPFIX Export IPFIX Flow Records
ipfixcol2

Nemea FrameworkDetection Module

Alerts in IDEA format

 Flows In Unirec Format

Unirec Plugin

Flow aggregation, feature extraction
and classification

Flow Collector

Figure 4.1: The NEMEA brute-force detector setup.

4.1.1 Joy IPFIX Exporter

Even though Joy supports IPFIX export, the number of fields that can be ex-
ported was fairly limited. Namely, Joy exported only source and destination
IPv4 addresses, ports, and start and end times. Joy is written in C and the
source code is hosted on Github. I extended the IPFIX exporting functionality
to include all fields that are needed by the detection module in order to com-
pute all machine-learning features. The changes were merged into CESNET’s
fork of Joy.

45

4. Implementation

Table 4.1: Summary of added IPFIX information elements. Private Enter-
prise Numbers (PEN) are used to define IPFIX elements outside of the IANA
registry.

Information Element PEN Id

IPFIX_PPI_TLS_REC_LENGTHS 8057 (CESNET) 1010

IPFIX_PPI_TLS_REC_TIMES 8057 1011

IPFIX_PPI_TLS_CONTENT_TYPES 8057 1012

IPFIX_PPI_PKT_LENGTHS 8057 1013

IPFIX_PPI_PKT_TIMES 8057 1014

IPFIX_PPI_PKT_FLAGS 8057 1015

IPFIX_PPI_PKT_DIRECTIONS 8057 1016

IPFIX_TLS_SNI 39499 (Flowmon) 338

A new IPFIX template extended_template was defined, which includes
standard IEs (source and destination addresses, ports, start and end times)
together with newly added IEs listed in Table 4.1. All added fields (ex-
cept IPFIX_TLS_SNI) are implemented as IPFIX structured elements (ba-
sicLists) of variable length. Joy can be run in an exporter mode with the
extended_template by using these command-line arguments:

• ipfix_export_template=extended. To use an extended IPFIX tem-
plate with the new information elements.

• tls=1, bidir=1, ppi=1. To report TLS session metadata, to use bidi-
rectional flows, and to report TCP per-packet information.

• ipfix_export_remote_port, ipfix_export_remote_host, and
ipfix_export_port. To configure IPFIX collector address and port and
the local exporter port.

4.1.2 IPFIX Collector IPFIXcol2

IPFIXcol2 is a high-performance Netflow and IPFIX collector developed by
CESNET [57]. The key features are support for bidirectional flows and support
for structured data types (e.g., basicLists). It is able to output the flow data
in an UniRec format, which is the native format of the NEMEA system.
The collector: (1) listens on a specified port and receives IPFIX message, (2)
processes the flow records and converts IEs to UniRec fields according to the
mappings listed in Table 4.2, and (3) outputs the flow data to a specified
interface, from where the data is processed by NEMEA detection modules.

46

4.1. Implementation of NEMEA Module

Table 4.2: IPFIX to UniRec mappings. For example, e0id291/e8057id1010
means that basicList (id 291) of IPFIX_PPI_TLS_REC_LENGTHS (spec-
ified in 4.1) elements should be converted into an UniRec field with name
PPI_TLS_REC_LENGTHS and type array of int16.

UniRec Name UniRec Type IPFIX IEs

PPI_TLS_REC_LENGTHS int16* e0id291/e8057id1010

PPI_TLS_REC_TIMES unt16* e0id291/e8057id1011

PPI_TLS_CONTENT_TYPES uint8* e0id291/e8057id1012

PPI_PKT_LENGTHS int16* e0id291/e8057id1013

PPI_PKT_TIMES uint16* e0id291/e8057id1014

PPI_PKT_FLAGS int8* e0id291/e8057id1015

PPI_PKT_DIRECTIONS int8* e0id291/e8057id1016

TLS_SNI string e339499id338

4.1.3 Brute-Force Detection Module

I have decided to implement the brute-force detection module in Python 3.
The core functionality of the module can be summarized as follows. On initial-
ization, the module loads a learned classifier from a file in the Pickle format,
which is a protocol for serializing and de-serializing Python objects. Then,
flow aggregation is continuously performed on received data as described in
Section 3.3. The resulting aggregated flows are stored in a table implemented
as a Python dictionary. To keep the table in a managable size, a separate
thread is run every N seconds that timeouts all records that are inactive for
more then M seconds. When an aggregated flow is full or is timeouted, the
predict method of the classifier is called to decide whether the sample is
brute-force or not. In both cases, the record is removed from the table.

The input of flow data and output of the alerts is done via the Pytrap
library, which implements communication interfaces for NEMEA modules. It
ensures that the data on the input has the required set of fields, and throws
an exception otherwise.

The expected UniRec fields for the brute-force detection module:

• ipaddr SRC_IP - the source address.

• ipaddr DST_IP - the destination address.

• uint16 SRC_PORT - the source port.

• uint16 DST_PORT - the destination port.

• uint8 PROTOCOL - the protocol identifier.

47

4. Implementation

• time TIME_FIRST - the flow start time.

• time TIME_LAST - the flow end time.

• int16* PPI_TLS_REC_LENGTHS - an array of TLS record lengths. The
directions of the records is encoded as a negative number for received
records, and as a positive number for sent records.

• uint8* PPI_TLS_CONTENT_TYPES - an array of TLS record content types.

• string TLS_SNI - the server name indicator (i.e., domain).

The output format for brute-force alerts:

• ipaddr SRC_IP - the attacker source address.

• ipaddr DST_IP - the attack destination address.

• uint16 DST_PORT - the attack destination port.

• string TLS_SNI - the target server name indicator.

• time EVENT_TIME_START - the event start time is the aggregated flow
start time.

• time EVENT_TIME_END - the event end time is the aggregated flow end
time.

Configuration

The available command-line arguments of the detection module.

• -i, --ifspec. Configure the input interface, from where the module should
read flow data, and the output interface where the module should send
alerts; separated by comma.

• -v, --verbose. Tell the module to output debug information, such as the
current number of aggregated flows in the table.

• -c, --classifier. A pickle file from which to read the classifier, the default
is classifier.pickle.

• --idle_timeout. After how many seconds should an aggregated flow be
considered inactive and thus be classified and removed from the table.
The default is 180 seconds.

• --timeout_interval. How often should a separate thread run to timeout
idle aggregated flows. The default is 60 seconds.

48

4.1. Implementation of NEMEA Module

Alerts in IDEA Format

When a possible brute-force attack is detected, an alert is created and sent to
the output interface, which also use the UniRec format. These alerts are then
converted to an Intrusion Detection Extensible Alert (IDEA) format, which
is a JSON format for intrusion detection alerts and other security events [58].
This is the final output of the brute-force detection module.

{

"Format": "IDEA0",

"ID": "07775df5-6ee3-4e5f-a694-8b3212768856",

"DetectTime": "2020-04-26T14:36:39Z",

"CreateTime": "2020-04-26T14:36:39Z",

"EventTime": "2020-04-17T08:19:21Z",

"CeaseTime": "2020-04-17T08:19:48Z",

"Category": ["Attempt.Login"],

"Description": "Possible bruteforce attack in HTTPS.",

"Note": "Detected a traffic pattern similar to a bruteforce

attack. Detection is based on per packet information,

such as packet sizes and inter-arrival times.",

"Source": [

{

"Proto": ["tls"],

"IP4": ["80.112.137.128"]

}

],

"Target": [

{

"Proto": ["tls"],

"Port": [443],

"Hostname": ["dev.luxemburk.com"],

"IP4": ["172.105.77.10"]

}

],

"Node": [

{

"Name": "com.example.nemea.https_bruteforce_detector",

"SW": ["Nemea", "https_bruteforce_detector"],

"Type": ["Flow", "Statistical"]

}

]

}

Figure 4.2: An example of an alert about a possible brute-force attack in the
IDEA format.

49

4. Implementation

4.2 Implementation of Brute-Force Dataset

Generator

The brute-force generator is written in Python 3. The remote server, where
the Docker containers run and the traffic is captured, is an Ubuntu 18.04
with Nginx, Docker, and Tcpdump installed. A TLS certificate was obtained
from the Let’s Encrypt certificate authority, which offers free certificates and
provides the Certbot tool that simplifies the configuration of Nginx as a TLS
server and automates the certificate renewal. The run script authenticates to
the remote server by an SSH key, which was installed in advance. Also, all
commands to the remote server, such as the start of a Docker container or
the start of a Tcpdump capture, are performed via the SSH protocol, which
is implemented by a Python library called Paramiko.

Configuration

Attack tools are configured in the run script as Python dictionaries with
f-strings used to substitute variables such as the target host, the username
that should be attacked, the password list (with one password per line; this
define how big the attack is), and the number of threads. I have mostly run
the generator with password lists of size 2000. An example of the WordPress
attack configuration is shown in Figure 4.3.

"wordpress": {

"login_url": "/wp-login.php",

"attacks": {

"hydra": f"""

{HYDRA_PATH} -I -S -T {THREADS} -l {TARGET_USER}

-P {PASSWORDS_FILE} {HOST}

https-post-form /wp-login.php:log=^USER^&pwd=^PASS^:incorrect""",

"ncrack": f"""

{NCRACK_PATH} -P {PASSWORDS_FILE}

--user {TARGET_USER} wordpress-tls://{HOST}""",

"patator": f"""

{PATATOR_PATH} http_fuzz url=https://{HOST}/wp-login.php

method=POST body="log={TARGET_USER}&pwd=FILE0" 0={PASSWORDS_FILE}

-x ignore:code=200 --threads {THREADS} persistent={PERSISTENT}""",

}

Figure 4.3: The configuration of Thc-hydra, Ncrack, and Patator attack tools
against WordPress.

50

4.3. Implementation of Feature Extraction and Machine-Learning

4.3 Implementation of Feature Extraction and

Machine-Learning

The ML part was also written in Python 3 as an interactive notebook, using
standard libraries such as Numpy, Pandas, and Scikit-learn [39]. For deci-
sion trees, Scikit-learn implements an optimized version of the CART [59]
algorithm. For the adaptive boosting ensemble it implements the AdaBoost-
SAMME.R algorithm [60]. The main process of fitting (i.e., learning) a clas-
sifier and of doing experiments can be divided into several tasks:

1. Load the dataset, which is divided into two directories: normal and
bruteforce. The data saved on disk is in the form of gunziped JSON
files. It has to be loaded, aggregated, and converted to feature vectors.
The method for extraction of the features is shown in an abbreviated
form in Figure 4.4. The resulting Pandas DataFrame (i.e., table) is saved
to disk so that it can be later loaded without the need to re-create it,
which is only done when new features are added.

2. The standard next step is to divide the data into two parts: train data
and test data. The train subset is used to learn the model, which is then
evaluated on the test subset. This way, the performance can be measured
on data that the model has not seen during the learning. A more robust
approach is called cross validation: the data is split into N parts, and the
model is learned N times. In each iteration, the model is trained with N-
1 subsets and tested on the one that is left out. After the last iteration,
each subset was used exactly once for testing. The class predictions from
each iteration are merged together to compute the final score—this is
preferable to computing the score in each iteration and averaging them
because that introduces bias [61]. Stratified cross validation ensures
that the proportion of brute-force and benign samples is the same in
each split, which is needed for accurate scoring in the presence of class
imbalance. An issue related to the standard cross validation and the
dataset presented in this work is discussed in Section 5.1.

3. Visualizing the results is necessary to get meaningful insights into how
and why a model makes decisions. Some classifiers, for example a single
decision tree, can have their whole internal structure plotted to show
the decision boundaries and important features. With ensemble models,
this becomes impractical as the number of classifiers can be in the order
of tens or hundreds. In all cases, a plot of a confusion matrix with the
distribution of TP, TN, FP, FN is helpful. For the figures in the Evalua-
tion Chapter, I have mostly used the Matplotlib library and Scikit-learn
plotting functions.

51

4. Implementation

def to_feature_dict(self):

time_duration = self.time_end - self.time_start

app_packets = merge_app_packets(self.flow_list)

d = {

"sa": self.key[0],

"da": self.key[1],

"dp": self.key[2],

"tls_fingerprint": self.key[3],

"sni": self.key[4],

"time_duration": time_duration,

"num_app_pkts": self.packets_count,

"label": self.label,

"app_packets": app_packets,

"no_flows": len(self.flow_list),

FLAG_BENIGN: None,

"time_start": self.time_start,

"time_end": self.time_end,

"mean_flow_duration":

np.mean(list(map(lambda f: f.time_duration, self.flow_list))),

}

if self.packets_count < APP_PKTS_MIN:

d[FLAG_BENIGN] = BenignReason.NOT_ENOUGH_APP_PACKETS

return d

rr_sizes, req_sizes, resp_sizes, req_pkt_counts, resp_pkt_counts \

= get_requests_responses(app_packets)

roundtrips = min(len(request_sizes), len(response_sizes))

d["roundtrips"] = roundtrips

if roundtrips < ROUNDTRIP_MIN:

d[FLAG_BENIGN] = BenignReason.NOT_ENOUGH_ROUNDTRIPS

return d

d["request_response_sizes"] = rr_sizes

d["app_bytes_out"] = sum([p for p in app_packets if p > 0])

d["app_bytes_in"] = abs(sum([p for p in app_packets if p < 0]))

d["in_out_ratio"] = d["app_bytes_in"] / d["app_bytes_out"]

d["request_sizes_std"] = np.std(req_sizes)

d["response_sizes_std"] = np.std(resp_sizes)

d["request_pkts_mean"] = np.mean(req_pkt_counts)

d["response_pkts_mean"] = np.mean(resp_pkt_counts)

d["request_pkts_std"] = np.std(req_pkt_counts)

d["response_pkts_std"] = np.std(resp_pkt_counts)

d["roundtrips_per_sec"] = roundtrips / time_duration

d["rr_autocorr"], d["rr_lag"] = compute_autocorrelation(rr_sizes)

d["rr_periods"] = d["num_app_pkts"] // d["rr_lag"]

d["packets_per_flow"] = d["num_app_pkts"] / d["no_flows"]

return d

Figure 4.4: The feature extraction method that converts an aggregated flow
to a dictionary, which is then loaded into Pandas DataFrame.

52

Chapter 5

Evaluation

This Chapter presents an evaluation of the brute-force attack detection tech-
nique. For the measurements, I have used the dataset described in Section
3.1. The size of the final dataset and the distribution of benign/brute-force
samples is shown in Table 5.1. The numbers of brute-force samples from dif-
ferent attack tools are shown in Table 5.2. The class imbalance in the dataset
is one brute-force sample for every 75 benign samples.

Table 5.1: The number of flows and aggregated flows in the dataset. The
brute-force samples (aggregated flows) accounted for 1.3% of all samples
(1:75 ratio).

Flows Aggregated Flows

Benign Brute-Force Benign Brute-Force

A
tt

a
c
k

s

WordPress 10 818 494
Joomla 2 763 209
Moodle 584 65

MediaWiki 1 140 22
PhpBB 828 36
Ghost 2 064 97

Discourse 319 21

CESNET 1 709 106 67 007
P. Stratosphere 256 539 2 444

Total 1 965 645 18 516 69 451 944

Table 5.2: The distribution of brute-force samples by the used attack tool.

Attack Tool Patator Ncrack Thc-hydra

Aggregated Flows 570 57 317

53

5. Evaluation

5.1 Cross Validation Setup

After initial experiments, I have discovered a problem with the brute-force
part of the dataset. The samples created with one configuration of an attack
tool and a target web application (e.g., Patator and WordPress) are sometimes
too similar to each other. Such samples are called near duplicates or twins.
The result is that when the data is split to test and train subsets, there is a
chance that almost identical samples end up in both train and test data, and as
a consequence, the classifier exhibits a surprisingly high accuracy because it is
tested on data that it has already seen during learning. To overcome this issue,
I have devised a new approach to splitting the data during the cross valida-
tion. The brute-force data is divided into eleven groups according to the used
attack tool, web application, and whether connections were reused. Examples
are: joomla_patator, wordpress_ncrack, ghost_no_persistent_patator,
etc. Then, in each iteration of the cross validation, two groups of the brute-
force data are held out for testing, and the normal data is randomly divided
with 0.3 test ratio. There is an iteration for every combination of 2 from 11
brute-force groups, which is 55 iterations in total. This new splitting tech-
nique models a more realistic scenario when the classifier has to label traffic
from a previously unseen attack tool or against a previously unseen web ap-
plication. The classifiers are expected to perform worse when evaluated with
the leave-groups-out cross validation, but that is favorable as it gives a space
for improvement (for example, by using better/more features).

5.2 Classification

To establish a base-line performance, I have measured three models: logistic
regression, k-nearest neighbors (KNN), and a single decision tree. The param-
eters of the models were not optimized. The results are presented in Table
5.3. Only the decision tree was able to recognize a considerable portion of
brute-force samples while keeping the number of false positives moderately
low, but still unacceptably high for network monitoring purposes.

Table 5.3: The base-line performance of three basic classifiers. The KNN
considered 10 nearest neighbors. The maximum depth of the decision tree
was set to 5, and the tree learning algorithm was further constrained with
a minimal split impurity decrease parameter. Other parameters were the
defaults of Scikit-learn. The decision tree is shown in Figure 5.1.

F0.5 Score Recall False Positive Rate

Logistic Regression 0.242 0.879 0.028 (1:35)

Decision Tree 0.754 0.719 0.002 (1:500)

KNN 0.280 0.232 0.004 (1:250)

54

5.2. Classification

5.2.1 Ensemble Methods

Next, I evaluated ensemble methods: AdaBoost and LightGBM (implemented
in Scikit-learn as class HistGradientBoostingClassifier). I have experi-
mented with multiple ameters with the goal of finding the most performant
classifier in the leave-groups-out cross validation measured by F0.5 score and
false positive rate. The analyzed hyperparameters, their defaults in Scikit-
learn, and the tested values, are shown in Table 5.4 for AdaBoost and in
Table 5.5 for LightGBM.

Table 5.4: Hyperparameters of AdaBoost with a decision tree as a classifier.
The tree max features parameter defines the number of features to consider
when looking for the best split during the learning of a tree (note that the
features are randomly shuffled before taking sqrt/log2 of them). The criterion
is a function to measure the quality of a split; options are either information
gain (i.e., the decrease of the entropy after a split), or Gini impurity.

Default Tested

Number of Estimators 50 50,75,100,125,150

Tree Max Depth None 3,5,8

Tree Max Features All Log2,Sqrt,All

Tree Split Criterion Gini Gini,Entropy

SMOTE Sampling Ratio 1 0.5,0.7,1

Table 5.5: Hyperparameters of the LightGBM model. Before training, each
feature is binned into integer-valued bins. The number of bins is limited by
the max bins parameter; there could be at most 255 bins. The learning rate
parameter is set to prevent over-fitting by slowing down the learning process.

Default Tested

Maximum Iterations 100 100,150,175,200

Tree Max Depth None 3,5,8

Learning Rate 0.1 0.01,0.1,0.2

Max Bins 255 50,100,150,200,255

SMOTE Sampling Ratio 1 0.5,0.7,1

For both classifiers, the best SMOTE ratio was one, i.e., over-sample so
that the number of both classes is the same. The best AdaBoost peformance
was measured with 75 trees having the max depth of 3, considering square
root of the number of features at each split. The criterion function has no
impact on the performance. The best LightGBM performance was measured
with: maximum 175 iterations, max tree depth of 3, learning rate at its default
value 0.1, and with 50 maximum bins.

55

5. Evaluation

Figure 5.1: Learned decision boundaries of the baseline decision tree model.
The nodes with brute-force majority are colored blue; the nodes with benign
majority are colored orange. The hue of the color represents how strong the
majority is, i.e., white means half and half split with no majority. The root
node is white because SMOTE was used to over-sample brute-force data to a
one-to-one ratio.

56

5.2. Classification

Table 5.6: The performance of optimized AdaBoost and LightGBM compared
to the base-line decision tree.

F0.5 Score Recall False Positive Rate

Base-line Tree 0.754 0.719 0.002 (1:500)

AdaBoost 0.902 0.723 0.00004 (1:25000)

LightGBM 0.953 0.844 0.0001 (1:10000)

5.2.2 Results

The ensemble methods performed substantially better than the best base-line
classifier, the single decision tree. The final results are shown in Table 5.6. The
F0.5 score raised from 0.75 to 0.9 with AdaBoost and to 0.95 with LightGBM.
The main improvement, however, is in the false positive rate, which lowered
from 1:500 ratio to 1:25000 with AdaBoost and to 1:10000 with LightGBM.

The LightGBM classifier has the best recall of 0.84, and I would consider
it as the best brute-force classifier with the right balance between the number
of detected brute-force attacks and the number of false positives. The exact
numbers of false positives, false negatives, etc., are shown in a confusion matrix
in Figure 5.2.

Figure 5.2: The confusion matrix of the optimized LightGBM classifier. The
matrix was summed across all splits of the leave-groups-out cross validation.

57

5. Evaluation

5.3 Discussion

5.3.1 Feature Importances

After the AdaBoost classifier is learned on the train data, it provides statistics
about how much individual features are useful for the classification task. The
importance of a feature is measured as the total information gain of tree
nodes that use that feature for splitting the data. The feature importances
are averaged from each cross validation split and are rescaled such that their
sum is one. The final feature importances are shown in Figure 5.3. Each
feature was created based on a specific idea of why and how it should help
in the brute-force detection task as described in Section 3.4. Next, I would
like to review whether the most important features are those as expected and
whether their significance can be explained.

Figure 5.3: Relative importances of features learned by the AdaBoost classi-
fier.

The top five features are: (1) the standard deviation of request sizes, (2)
the received/sent ratio, (3) the number of roundtrips per second, (4) the sum
of sent bytes, and (5) the autocorrelation of the request-response sequence.

58

5.3. Discussion

A low standard deviation of request sizes is a sign of repeated user actions
(e.g., authentication attempts), which could constitute a brute-force attack.
Received/sent ratio helps to distinguish between different network activities,
such as mostly download/upload or balanced. Having the received/sent ra-
tio smaller than, for example, 0.5 (i.e., 2 times more sent than received), is
improbable for any web application authentication mechanism. Therefore,
such traffic can be quickly labeled as benign. The number of roundtrips per
second gives the upper bound of the frequency of password attempts, i.e.,
when this number is moderately low, the potential attack would be slow and
ineffective (however, an attacker can arbitrarily slow the attack in order to
prevent detection). The autocorrelation helps to find periodic patterns in the
sequence of requests and responses, which are expected in brute-force traffic
because one action is repeated over and over. Overall, the order of features
have met the expectations and the importance of the top features is clearly
interpenetratable.

5.3.2 Future Work

In this section, I would like to discuss how future work could improve and
extend the solution proposed in this thesis. As a next step, I would propose
to design and implement a system for validation of the brute-force detection
solution on real-world data in a production environment. However, in order to
validate the results in production, ground truth labels are needed, and it is not
clear how to get them. One possible approach could be like this: (1) get access
to a set of production web servers running WordPress, (2) install WordPress
Fail2ban plugin that logs all successful and unsuccessful login attempts (3),
configure Fail2ban to send alerts to a remote server, (4) deploy the detection
module proposed in this thesis such that it could monitor all network traffic
towards the web servers, and finally (5) compare the alerts generated by the
detection module and by Fail2ban. This way, it would be possible to compare
the network level detection with ground truth from web server logs.

Future research could also investigate if TLS record sizes can be replaced
with packet sizes for feature computation without losing much detection per-
formance. This would simplify the requirements for the used flow exporters.
Also, limiting the number of packets that are captured in each flow could
further reduce the workload of the flow exporters while possibly keeping the
same detection performance.

59

Conclusion

The detection of brute-force attacks against web applications is mostly per-
formed at the host level with access to the log files. However, host-based
detectors come with drawbacks; most notably, they require access to the pro-
tected servers, and they are cumbersome to deploy and maintain at scale.
This thesis proposes a new brute-force detection method that is applicable at
the network level. The advantages of the method are that it does not require
access to the log files, is more scalable, is based on open standards such as
IPFIX, and most importantly, it works with encrypted HTTPS traffic. More
and more network traffic is being encrypted, and it is crucial to update our in-
trusion detection methods in order to maintain at least some level of network
visibility. The proposed solution could be particularly useful for web host-
ing providers, who would like to protect their customers against brute-force
attacks without the need to have access to individual servers. Also, an orga-
nization could use the method to detect outgoing brute-force attacks, which
would indicate a compromised device in the network of the organization.

The thesis reviewed the current state of the art in brute-force detection
and summarized the theoretical background needed for creating a functional
brute-force detector.

As part of the thesis, a new dataset was created that consists of benign
HTTPS traffic from CESNET’s backbone network and brute-force traffic gen-
erated with open-source attack tools and popular web applications run in
Docker. The dataset is publicly available and will be used in future research.

The thesis described a design of a brute-force attack detection method,
which is based on packet-level characteristics, such as packet sizes, and on a
novel flow aggregation approach specialized for the detection of brute-force
attacks coming from different tools. The best detection performance was
achieved with the LightGBM model, which discovered 84% of attacks with
a false positive rate of 1:10 000. Last but not least, documentation and im-
plementation of a detector module for the NEMEA system was provided.

61

Bibliography

1. Let’s Encrypt Stats - Let’s Encrypt - Free SSL/TLS Certificates [online]
[visited on 2020-05-27]. Available from: https://letsencrypt.org/

stats/.

2. SANDERS, Chris; SMITH, Jason. Applied Network Security Monitor-
ing: Collection, Detection, and Analysis. Syngress, 2013. ISBN 978-0-12-
417208-1.

3. TRAMMELL, Brian; CLAISE, Benoit. Specification of the IP Flow In-
formation Export (IPFIX) Protocol for the Exchange of Flow Information
[online] [visited on 2020-02-16]. Available from: https://tools.ietf.

org/html/rfc7011.

4. HOFSTEDE, Rick; CELEDA, Pavel; TRAMMELL, Brian; DRAGO,
Idilio; SADRE, Ramin; SPEROTTO, Anna; PRAS, Aiko. Flow Moni-
toring Explained: From Packet Capture to Data Analysis With NetFlow
and IPFIX. IEEE Communications Surveys & Tutorials [online]. 0024–
2014, vol. 16, no. 4, pp. 2037–2064 [visited on 2020-02-11]. ISSN 1553-
877X. Available from DOI: 10.1109/COMST.2014.2321898.

5. ZHANG, Jian; MOORE, Andrew. Traffic Trace Artifacts Due to Moni-
toring Via Port Mirroring. In: 2007 Workshop on End-to-End Monitoring
Techniques and Services. 2007, pp. 1–8. Available from DOI: 10.1109/

E2EMON.2007.375317.

6. INACIO, Chris; TRAMMELL, Brian. YAF: Yet Another Flowmeter.

7. TRAMMELL, Brian H.; BOSCHI, Elisa. Bidirectional Flow Export Using
IP Flow Information Export (IPFIX) [online] [visited on 2020-02-25].
Available from: https://tools.ietf.org/html/rfc5103.

8. WAGNER, Arno; TRAMMELL, Brian; CLAISE, Benoit. Flow Aggre-
gation for the IP Flow Information Export (IPFIX) Protocol [online]
[visited on 2020-02-21]. Available from: https : / / tools . ietf . org /

html/rfc7015.

63

https://letsencrypt.org/stats/
https://letsencrypt.org/stats/
https://tools.ietf.org/html/rfc7011
https://tools.ietf.org/html/rfc7011
https://doi.org/10.1109/COMST.2014.2321898
https://doi.org/10.1109/E2EMON.2007.375317
https://doi.org/10.1109/E2EMON.2007.375317
https://tools.ietf.org/html/rfc5103
https://tools.ietf.org/html/rfc7015
https://tools.ietf.org/html/rfc7015

Bibliography

9. TRAMMELL, Brian; BOSCHI, Elisa. IP Flow Anonymization Support
[online] [visited on 2020-02-21]. Available from: https://tools.ietf.

org/html/rfc6235.

10. TRAMMELL, Brian; BOSCHI, Elisa. An Introduction to IP Flow Infor-
mation Export (IPFIX). IEEE Communications Magazine. 2011, vol. 49,
no. 4, pp. 89–95. ISSN 1558-1896. Available from DOI: 10.1109/MCOM.

2011.5741152.

11. IP Flow Information Export (IPFIX) Entities [online] [visited on 2020-02-26].
Available from: https://www.iana.org/assignments/ipfix/ipfix.

xhtml.

12. TRAMMELL, Brian; CLAISE, Benoit. Information Model for IP Flow
Information Export (IPFIX) [online] [visited on 2020-02-26]. Available
from: https://tools.ietf.org/html/rfc7012.

13. DHANDAPANI, Gowri; AITKEN, Paul; YATES, Stan; CLAISE, Benoit.
Export of Structured Data in IP Flow Information Export (IPFIX) [on-
line] [visited on 2020-03-11]. Available from: https://tools.ietf.org/

html/rfc6313.

14. YAF - Documentation [online] [visited on 2020-03-12]. Available from:
https://tools.netsa.cert.org/yaf/yafdpi.html.

15. MOORE, Andrew W.; ZUEV, Denis; CROGAN, Michael L. Discrimina-
tors for Use in Flow-Based Classification. 2005.

16. ESTE, Alice; GRINGOLI, Francesco; SALGARELLI, Luca. On the Sta-
bility of the Information Carried by Traffic Flow Features at the Packet
Level. ACM SIGCOMM Computer Communication Review [online]. 2009,
vol. 39, no. 3, pp. 13 [visited on 2020-03-29]. ISSN 01464833. Available
from DOI: 10.1145/1568613.1568616.

17. DAINOTTI, Alberto; PESCAPE, Antonio; SALVO ROSSI, Pierluigi Salvo;
IANNELLO, Giulio; PALMIERI, Francesco; VENTRE, Giorgio. QRP07-
2: An HMM Approach to Internet Traffic Modeling. In: IEEE Globecom
2006. 2006, pp. 1–6. ISSN 1930-529X. Available from DOI: 10.1109/

GLOCOM.2006.453.

18. ANDERSON, Blake; PAUL, Subharthi; MCGREW, David. Deciphering
Malware’s Use of TLS (without Decryption) [online]. 2016 [visited on
2020-03-01]. Available from arXiv: 1607.01639.

19. DAINOTTI, Alberto; PESCAPE, Antonio; KIM, Hyun-chul. Traffic Clas-
sification through Joint Distributions of Packet-Level Statistics. In: 2011
IEEE Global Telecommunications Conference - GLOBECOM 2011. 2011,
pp. 1–6. ISSN 1930-529X. Available from DOI: 10.1109/GLOCOM.2011.

6134093.

64

https://tools.ietf.org/html/rfc6235
https://tools.ietf.org/html/rfc6235
https://doi.org/10.1109/MCOM.2011.5741152
https://doi.org/10.1109/MCOM.2011.5741152
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://www.iana.org/assignments/ipfix/ipfix.xhtml
https://tools.ietf.org/html/rfc7012
https://tools.ietf.org/html/rfc6313
https://tools.ietf.org/html/rfc6313
https://tools.netsa.cert.org/yaf/yafdpi.html
https://doi.org/10.1145/1568613.1568616
https://doi.org/10.1109/GLOCOM.2006.453
https://doi.org/10.1109/GLOCOM.2006.453
https://arxiv.org/abs/1607.01639
https://doi.org/10.1109/GLOCOM.2011.6134093
https://doi.org/10.1109/GLOCOM.2011.6134093

Bibliography

20. ANDERSON, Blake; MCGREW, David. Machine Learning for Encrypted
Malware Traffic Classification: Accounting for Noisy Labels and Non-
Stationarity. In: Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining [online]. Hali-
fax, NS, Canada: Association for Computing Machinery, 2017, pp. 1723–
1732 [visited on 2020-03-12]. KDD ’17. ISBN 978-1-4503-4887-4. Avail-
able from DOI: 10.1145/3097983.3098163.

21. ALTHOUSE, John B.; ATKINSON, Jeff; ATKINS, Josh. Salesforce/Ja3
[online]. 2020 [visited on 2020-03-05]. Available from: https://github.

com/salesforce/ja3.

22. SSL Fingerprint JA3 [online] [visited on 2020-03-30]. Available from:
https://ja3er.com/.

23. EmpireProject/Empire [online]. 2020 [visited on 2020-03-30]. Available
from: https://github.com/EmpireProject/Empire.

24. SquareLemon [online] [visited on 2020-03-30]. Available from: https :

//blog.squarelemon.com/tls-fingerprinting/.

25. SADRE, Ramin; SPEROTTO, Anna; PRAS, Aiko. The Effects of DDoS
Attacks on Flow Monitoring Applications. In: 2012 IEEE Network Oper-
ations and Management Symposium. 2012, pp. 269–277. ISSN 1542-1201.
Available from DOI: 10.1109/NOMS.2012.6211908.

26. SPEROTTO, Anna; SCHAFFRATH, Gregor; SADRE, Ramin; MORARIU,
Cristian; PRAS, Aiko; STILLER, Burkhard. An Overview of IP Flow-
Based Intrusion Detection. IEEE Communications Surveys Tutorials.
2010, vol. 12, no. 3, pp. 343–356. ISSN 2373-745X. Available from DOI:
10.1109/SURV.2010.032210.00054.

27. HOFSTEDE, Rick; BARTOŠ, Václav; SPEROTTO, Anna; PRAS, Aiko.
Towards Real-Time Intrusion Detection for NetFlow and IPFIX. In: Pro-
ceedings of the 9th International Conference on Network and Service
Management (CNSM 2013). 2013, pp. 227–234. ISSN 2165-963X. Avail-
able from DOI: 10.1109/CNSM.2013.6727841.

28. NEIL, Joshua; UPHOFF, Benjamin; HASH, Curtis; STORLIE, Curtis.
Towards Improved Detection of Attackers in Computer Networks: New
Edges, Fast Updating, and Host Agents. In: 2013 6th International Sym-
posium on Resilient Control Systems (ISRCS). 2013, pp. 218–224. ISSN
null. Available from DOI: 10.1109/ISRCS.2013.6623779.

29. BILGE, Leyla; BALZAROTTI, Davide; ROBERTSON,William; KIRDA,
Engin; KRUEGEL, Christopher. Disclosure: Detecting Botnet Command
and Control Servers through Large-Scale NetFlow Analysis. In: Proceed-
ings of the 28th Annual Computer Security Applications Conference on -
ACSAC ’12 [online]. Orlando, Florida: ACM Press, 2012, p. 129 [visited

65

https://doi.org/10.1145/3097983.3098163
https://github.com/salesforce/ja3
https://github.com/salesforce/ja3
https://ja3er.com/
https://github.com/EmpireProject/Empire
https://blog.squarelemon.com/tls-fingerprinting/
https://blog.squarelemon.com/tls-fingerprinting/
https://doi.org/10.1109/NOMS.2012.6211908
https://doi.org/10.1109/SURV.2010.032210.00054
https://doi.org/10.1109/CNSM.2013.6727841
https://doi.org/10.1109/ISRCS.2013.6623779

Bibliography

on 2020-03-04]. ISBN 978-1-4503-1312-4. Available from DOI: 10.1145/

2420950.2420969.

30. VELAN, Petr; ČERMÁK, Milan; ČELEDA, Pavel; DRAŠAR, Martin.
A Survey of Methods for Encrypted Traffic Classification and Analysis.
International Journal of Network Management [online]. 2015, vol. 25, no.
5, pp. 355–374 [visited on 2020-03-05]. ISSN 10557148. Available from
DOI: 10.1002/nem.1901.

31. Snort - Network Intrusion Detection & Prevention System [online] [vis-
ited on 2020-03-05]. Available from: https://www.snort.org/.

32. Suricata [online] [visited on 2020-03-05]. Available from: https://suricata-

ids.org/.

33. ANDERSON, Blake; MCGREW, David. Identifying Encrypted Malware
Traffic with Contextual Flow Data. In: Proceedings of the 2016 ACM
Workshop on Artificial Intelligence and Security - ALSec ’16 [online]. Vi-
enna, Austria: ACM Press, 2016, pp. 35–46 [visited on 2020-03-01]. ISBN
978-1-4503-4573-6. Available from DOI: 10.1145/2996758.2996768.

34. MILLER, Brad; HUANG, Ling; JOSEPH, A. D.; TYGAR, J. D. I Know
Why You Went to the Clinic: Risks and Realization of HTTPS Traffic
Analysis. In: Privacy Enhancing Technologies [online]. Springer Interna-
tional Publishing, 2014, vol. 8555, pp. 143–163 [visited on 2020-03-04].
ISBN 978-3-319-08506-7. Available from DOI: 10.1007/978-3-319-

08506-7_8.

35. Fail2ban [online] [visited on 2020-03-05]. Available from: http://www.

fail2ban.org/.

36. JONKER, Mattijs; HOFSTEDE, Rick; SPEROTTO, Anna; PRAS, Aiko.
Unveiling Flat Traffic on the Internet: An SSH Attack Case Study. In:
2015 IFIP/IEEE International Symposium on Integrated Network Man-
agement (IM) [online]. Ottawa, ON, Canada: IEEE, 2015, pp. 270–278
[visited on 2020-02-11]. ISBN 978-1-4799-8241-7. Available from DOI:
10.1109/INM.2015.7140301.

37. HELLEMONS, Laurens; HENDRIKS, Luuk; HENDRIKS, Luuk; HOF-
STEDE, R. J.; SPEROTTO, Anna; SADRE, R.; PRAS, Aiko. SSHCure:
A Flow-Based SSH Intrusion Detection System. Proceedings of the 6th In-
ternational Conference on Autonomous Infrastructure, Management, and
Security (AIMS 2012) [online]. 2012, pp. 86–97 [visited on 2020-03-05].
Available from DOI: 10.1007/978-3-642-30633-4_11.

38. MCGREW, David; ANDERSON, Blake. Cisco/Joy [online]. 2020 [visited
on 2020-03-31]. Available from: https://github.com/cisco/joy.

39. Scikit-Learn: Machine Learning in Python — Scikit-Learn 0.22.2 Doc-
umentation [online] [visited on 2020-03-31]. Available from: https://

scikit-learn.org/.

66

https://doi.org/10.1145/2420950.2420969
https://doi.org/10.1145/2420950.2420969
https://doi.org/10.1002/nem.1901
https://www.snort.org/
https://suricata-ids.org/
https://suricata-ids.org/
https://doi.org/10.1145/2996758.2996768
https://doi.org/10.1007/978-3-319-08506-7_8
https://doi.org/10.1007/978-3-319-08506-7_8
http://www.fail2ban.org/
http://www.fail2ban.org/
https://doi.org/10.1109/INM.2015.7140301
https://doi.org/10.1007/978-3-642-30633-4_11
https://github.com/cisco/joy
https://scikit-learn.org/
https://scikit-learn.org/

Bibliography

40. RESCORLA, Eric. The Transport Layer Security (TLS) Protocol Version
1.3 [online] [visited on 2020-04-07]. Available from: https://tools.

ietf.org/html/rfc8446.

41. RESCORLA, Eric. The Transport Layer Security (TLS) Protocol Version
1.2 [online] [visited on 2020-04-01]. Available from: https://tools.

ietf.org/html/rfc5246.

42. TLS 1.3 Updates the Most Important Security Protocol on the Internet,
Delivering Superior Privacy, Security, and Performance [online] [visited
on 2020-04-08]. Available from: https://ietf.org/blog/tls13/.

43. TLS Fingerprinting in the Real World [online]. 2019 [visited on 2020-04-08].
Available from: https://blogs.cisco.com/security/tls-fingerprinting-

in-the-real-world.

44. TLS Fingerprinting with JA3 and JA3S - Salesforce Engineering [on-
line] [visited on 2020-04-08]. Available from: https://engineering.

salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967.

45. OKU, Kazuho; WOOD, Christopher; RESCORLA, Eric; SULLIVAN,
Nick. Encrypted Server Name Indication for TLS 1.3 [online] [visited on
2020-04-08]. Available from: https://tools.ietf.org/html/draft-

ietf-tls-esni-06.

46. ANDREASEN, F. TLS 1.3 Impact on Network-Based Security [online].
2019 [visited on 2020-04-08]. Available from: https://tools.ietf.org/

id/draft-camwinget-tls-use-cases-05.html.

47. Usage Statistics and Market Share of Content Management Systems,
April 2020 [online] [visited on 2020-04-09]. Available from: https://

w3techs.com/technologies/overview/content_management.

48. HOFSTEDE, Rick; JONKER, Mattijs; SPEROTTO, Anna; PRAS, Aiko.
Flow-Based Web Application Brute-Force Attack and Compromise De-
tection. Journal of Network and Systems Management [online]. 2017,
vol. 25, no. 4, pp. 735–758 [visited on 2020-02-11]. ISSN 1064-7570, 1573-
7705. ISSN 1064-7570, 1573-7705. Available from DOI: 10.1007/s10922-

017-9421-4.

49. Van der TOORN, Olivier; HOFSTEDE, Rick; JONKER, Mattijs; SPER-
OTTO, Anna. A First Look at HTTP(S) Intrusion Detection Using Net-
Flow/IPFIX. In: 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM) [online]. Ottawa, ON, Canada: IEEE,
2015, pp. 862–865 [visited on 2020-02-11]. ISBN 978-1-4799-8241-7. Avail-
able from DOI: 10.1109/INM.2015.7140395.

50. Nmap/Ncrack [online]. 2020 [visited on 2020-04-11]. Available from: https:

//github.com/nmap/ncrack.

51. HAUSER, van. Vanhauser-Thc/Thc-Hydra [online]. 2020 [visited on 2020-04-11].
Available from: https://github.com/vanhauser-thc/thc-hydra.

67

https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://ietf.org/blog/tls13/
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://blogs.cisco.com/security/tls-fingerprinting-in-the-real-world
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967
https://tools.ietf.org/html/draft-ietf-tls-esni-06
https://tools.ietf.org/html/draft-ietf-tls-esni-06
https://tools.ietf.org/id/draft-camwinget-tls-use-cases-05.html
https://tools.ietf.org/id/draft-camwinget-tls-use-cases-05.html
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management
https://doi.org/10.1007/s10922-017-9421-4
https://doi.org/10.1007/s10922-017-9421-4
https://doi.org/10.1109/INM.2015.7140395
https://github.com/nmap/ncrack
https://github.com/nmap/ncrack
https://github.com/vanhauser-thc/thc-hydra

Bibliography

52. LANJELOT. Lanjelot/Patator [online]. 2020 [visited on 2020-04-11]. Avail-
able from: https://github.com/lanjelot/patator.

53. GARCIA, Sebastian. Malware Capture Facility Project [online] [visited
on 2020-05-05]. Available from: https://stratosphereips.org.

54. CHAWLA, N. V.; BOWYER, K. W.; HALL, L. O.; KEGELMEYER,
W. P. SMOTE: Synthetic Minority Over-Sampling Technique. Journal
of Artificial Intelligence Research [online]. 2002, vol. 16, pp. 321–357
[visited on 2020-05-06]. ISSN 1076-9757. Available from DOI: 10.1613/

jair.953.

55. KE, Guolin; MENG, Qi; FINLEY, Thomas; WANG, Taifeng. Light-
GBM: A Highly Efficient Gradient Boosting Decision Tree. In: Proceed-
ings of the 31st International Conference on Neural Information Pro-
cessing Systems. Long Beach, California, USA: Curran Associates Inc.,
2017, pp. 3149–3157. NIPS’17. ISBN 978-1-5108-6096-4.

56. CESNET/Nemea [online]. 2020 [visited on 2020-05-09]. Available from:
https://github.com/CESNET/Nemea.

57. CESNET/Ipfixcol2 [online]. 2020 [visited on 2020-05-09]. Available from:
https://github.com/CESNET/ipfixcol2.

58. Intrusion Detection Extensible Alert [IDEA] [online] [visited on 2020-05-09].
Available from: https://idea.cesnet.cz/.

59. BREIMAN, L.; FRIEDMAN, J.; OLSHEN, R.; STONE, C. Classification
and Regression Trees. 1984.

60. HASTIE, Trevor; ROSSET, Saharon; ZHU, Ji; ZOU, Hui. Multi-Class
AdaBoost. Statistics and Its Interface [online]. 2009, vol. 2, no. 3, pp. 349–
360 [visited on 2020-05-06]. ISSN 19387989, 19387997. ISSN 19387989,
19387997. Available from DOI: 10.4310/SII.2009.v2.n3.a8.

61. FORMAN, George; SCHOLZ, Martin. Apples-to-Apples in Cross-Validation
Studies: Pitfalls in Classifier Performance Measurement. Vol. 12, no. 1,
pp. 9.

68

https://github.com/lanjelot/patator
https://stratosphereips.org
https://doi.org/10.1613/jair.953
https://doi.org/10.1613/jair.953
https://github.com/CESNET/Nemea
https://github.com/CESNET/ipfixcol2
https://idea.cesnet.cz/
https://doi.org/10.4310/SII.2009.v2.n3.a8

Appendix A

Acronyms

AJAX Asynchronous JavaScript and XML

CMS Content management system

DNS Domain Name System

DPI Deep packet inspection

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IDEA Intrusion Detection Extensible Alert

IE Information Element

IPFIX Internet Protocol Flow Information Export

ISP Internet service provider

JSON JavaScript Object Notation

MPLS Multiprotocol Label Switching

NAT Network address translation

PPI Per-Packet information

RFC Request for Comments

TCP Transmission Control Protocol

TLS Transport Layer Security

UDP User Datagram Protocol

69

Appendix B

Contents of enclosed USB drive

readme.txt..................the file with USB drive contents description
src...the directory of source codes

detection......the directory of source codes of the detection module
thesis...............the directory of LATEX source codes of the thesis

text.. the thesis text directory
thesis.pdf........................the thesis text in the PDF format

71

	Introduction
	Goals and Approach
	Problem Description
	Objective of Thesis
	Outline of Thesis

	Background
	Network Security Monitoring
	Flow Monitoring Architecture
	NetFlow & IPFIX
	Extended Flow Features
	Threat Detection
	Flow Exporters

	Protocols
	TLS 1.2
	TLS 1.3
	HTTPS
	Web Authentication

	Web Applications Brute-Force Attacks
	Network-Based Detection
	Attack Tools

	Analysis & Design
	Datasets
	Brute-Force Generator
	Dataset Structure

	Experiments Workflow
	Flow Aggregation
	Features
	Sequence of TLS Record Lengths
	Merging of TLS Record Sequences

	Machine Learning
	Performance Metrics

	Implementation
	Implementation of NEMEA Module
	Joy IPFIX Exporter
	IPFIX Collector IPFIXcol2
	Brute-Force Detection Module

	Implementation of Brute-Force Dataset Generator
	Implementation of Feature Extraction and Machine-Learning

	Evaluation
	Cross Validation Setup
	Classification
	Ensemble Methods
	Results

	Discussion
	Feature Importances
	Future Work

	Conclusion
	Bibliography
	Acronyms
	Contents of enclosed USB drive

