
Masaryk University
Faculty of Informatics

Spectramosaic: an exploratory
tool for the interactive visual
analysis of magnetic resonance

spectroscopy data

MasterŠs Thesis

Bc. Jakub Vašíček

Brno, Spring 2020





Masaryk University
Faculty of Informatics

Spectramosaic: an exploratory
tool for the interactive visual
analysis of magnetic resonance

spectroscopy data

MasterŠs Thesis

Bc. Jakub Vašíček

Brno, Spring 2020





This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.





Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Jakub Vašíček

Advisor: doc. RNDr. Barbora Kozlíková, Ph.D.

i





Acknowledgements

I would like to thank Laura Garrison, Stefan Bruckner, Helwig Hauser
and the whole VisGroup and MMIV for the opportunity to work on
such an interesting topic, and for the supportive and encouraging
environment they provided for me during my stay in Bergen.

I would also like to thank my supervisor Barbora Kozlíková for
connecting me to VisGroup, helping me organize my stay Bergen and
advising me through the writing process of this thesis.

Most importantly, I want to express gratitude to my family who
supportme by all theirmeans throughmy long years of study.Without
their support, it would not have been possible for me to stay in Norway
and work on this project, and the whole study would be much harder
to manage.

iii



Abstract

Magnetic resonance spectroscopy is a promising method that allows a
noninvasive analysis of the chemical environment of the brain. How-
ever, a visualization tool that would support an interactive visual
analysis of such data, including comparison of different samples and
capturing variance in ratios of tissue metabolites, was not available so
far. Therefore, this problemwas addressed by the research team led by
Laura Garrison at the University of Bergen and Mohn Medical Imag-
ing and Visualization Centre (MMIV), which focuses on developing a
tool allowing intuitive and interactive exploration of tissue metabolite
concentration ratios in spectroscopy clinical and research studies. This
thesis has been conducted as a part of this research initiative.

Based on the already created prototypes of visual design and user
interface, the goal of this thesis is to transfer these sketches into a
working tool. This includes the tasks of selecting suitable technologies,
proposing subtle design changes and procedures of algorithmization,
and implementing the application. The result was used to validate
design choices and propose changes and additional features for future
development of this project. Feedback on this application was given
by three domain experts from the hospital research environment, who
conĄrmed the efficacy of the system. The project was presented at the
9th EG Workshop on Visual Computing for Biology and Medicine in
September 2019 in Brno [1].

iv



Keywords

visual analysis, interactive visualization, medical visualization, data
exploration, magnetic resonance spectroscopy, application design and
implementation, p5.js

v





Contents

Introduction 1

1 Project Context, Task SpeciĄcation 3
1.1 Magnetic Resonance Spectroscopy (MRS) . . . . . . . . . . 3

1.1.1 NMR Spectroscopy Basics . . . . . . . . . . . . . 3
1.1.2 MRS Terminology . . . . . . . . . . . . . . . . . 4
1.1.3 Data Processing Steps . . . . . . . . . . . . . . . 6

1.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.1 Visualization tasks . . . . . . . . . . . . . . . . . 8
1.2.2 Requirements . . . . . . . . . . . . . . . . . . . . 9

2 Related Work 11
2.1 Standard Tools to View MRS Data . . . . . . . . . . . . . . 11

2.1.1 Standard Processing of MR Spectra . . . . . . . 11
2.1.2 Advanced MRS Data Analysis . . . . . . . . . . 12

2.2 Related Visualization Research . . . . . . . . . . . . . . . . 13
2.2.1 Visualization Research Related to Spectroscopy 13
2.2.2 Multidimensional and Heterogeneous Data Vi-

sualization . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Tabular and Unit Visualization . . . . . . . . . . 15

3 Interface and Visualization Design 17
3.1 Interface Components . . . . . . . . . . . . . . . . . . . . . 18

3.1.1 Left Panel: Data Overview . . . . . . . . . . . . . 19
3.1.2 Right Panel: Metabolite Ratio Map . . . . . . . . 21

3.2 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Interactions in the Left Overview . . . . . . . . . 24
3.2.2 Interactions in the Matrix View . . . . . . . . . . 25
3.2.3 Linking the Two Views . . . . . . . . . . . . . . . 25

4 System Design 27
4.1 Benefits of a Web-based Application . . . . . . . . . . . . . 27
4.2 Single-page Application . . . . . . . . . . . . . . . . . . . . 28
4.3 Client Application Components . . . . . . . . . . . . . . . 30

5 Computations and Data Processes 33

vii



5.1 Input Format and Loading . . . . . . . . . . . . . . . . . . 33
5.1.1 Required Format and Structure of Input . . . . . 33
5.1.2 Loading Process . . . . . . . . . . . . . . . . . . 34

5.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 36
5.3 Integral and Ratio Computation . . . . . . . . . . . . . . . 39

5.3.1 Peak Integral Ratios . . . . . . . . . . . . . . . . 40
5.3.2 Subset-aggregated and Individual Ratios . . . . 41

6 Implementation 45
6.1 Source Files . . . . . . . . . . . . . . . . . . . . . . . . . . 45
6.2 Layout of the Page . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Implementation of System Components . . . . . . . . . . . 47

6.3.1 Data Input . . . . . . . . . . . . . . . . . . . . . . 48
6.3.2 Main Panels as p5.js Canvas . . . . . . . . . . . . 50

6.4 Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4.1 Selecting a Voxel for the Analysis . . . . . . . . . 54
6.4.2 Adjusting the Matrix View . . . . . . . . . . . . 55
6.4.3 Highlighting System . . . . . . . . . . . . . . . . 57

7 Conclusion and Future Work 61
7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2 Evaluation and Future Directions . . . . . . . . . . . . . . 62
7.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Bibliography 65

A Low-Ądelity Prototype: Design Sheets 73

viii



List of Figures

1.1 A typical MRS spectrum visualized in a Siemens MR
workstation 5

1.2 A spectral curve with a baseline and model Ąt 7

2.1 jMRUI Clinical Viewer plug-in: metabolite ratio map 13

3.1 Sketch of the interface layout 18
3.2 User interface of the Ąnal application 20
3.3 16 encoding scenarios of nested information in the matrix

view 22
3.4 Spectral voxel selection workĆow 24
3.5 Highlighting system when linking the two panels 26

4.1 Comparison of traditional and single-page web
applications 29

4.2 The roles of system components 31

5.1 Directory structure of an exemplary dataset 34
5.2 Hierarchy of the main data structure 38
5.3 Class diagram of the matrix view data structure 38
5.4 Class diagram of the data structure for nested details 39
5.5 3D plot of the transformed symmetric ratio function 43
5.6 Illustration of computing all types of ratios 44

6.1 Diagram of the system components and source Ąles 46
6.2 Gridster: page divided into Ąve main elements 47
6.3 UML activity diagram for updating the left panel 52
6.4 UML activity diagram for updating the right panel 53
6.5 Layout of the left panel 54
6.6 Layout of the right panel 56

A.1 Design sheet no. 1 74
A.2 Design sheet no. 2 75
A.3 Design sheet no. 3 76
A.4 Design sheet no. 4 77
A.5 Design sheet no. 5 78

ix





Introduction

Magnetic resonance spectroscopy (MRS) is a technique that allows
medical experts to analyze the chemical environment of tissue, uti-
lizing the differences of magnetic Ąelds of atom nuclei. It produces a
spectral curve, where peaks represent the presence and concentration
of various tissue metabolites (products of metabolism). Recently, MRS
witnessed a transition from a purely research technique to one that
has a potential for clinical use. The fact that it can be obtained using a
standard clinical MR unit and commercial or open-source software
hasmade it available to use for early diagnosis of neurological diseases
and other pathologies [2, 3].

As spectroscopy moved into clinical practice, researchers are now
using it for exploring the variations of metabolite concentration in dif-
ferent individuals, over time, and in various locations of the brain [4],
which can further expand the diagnostic potential of MRS. However,
visualization research has paid little attention to spectroscopy and
an interactive, intuitive visualization tool that would support such
analysis is still missing.

This thesis is a part of the research project of Laura Garrison at
the University of Bergen [1], which aims to Ąll this gap and develop a
tool supporting the analysis of variations of metabolite concentration
among various data samples acquired by MRS. Within this thesis,
my goal is to process the initial sketches of the design of the applica-
tion and its user interface provided by Garrison and her team, and
implement a fully working prototype application.

In Chapter 1, I will describe the principles of MRS, the terminology
used in the MRS research environment, and the standard process of
analysis of spectroscopic data. I will also specify the requirements
for our application. In Chapter 2, I will discuss the standard tools
currently used to process spectroscopic data and the related work in
the Ąelds of visualization of spectroscopic data, heterogeneous data
visualization, and table and unit visualization, that is relevant to this
project.

In Chapter 3, I will focus on the interface and visualization de-
sign that Laura Garrison and her team iteratively developed in close
collaboration with the domain experts in MRS, and I will explain

1



the changes in the design made in the implementation phase. Sub-
sequently, in Chapter 4, I will address the choice of the web-based
platform and specify four functional components of the system that
will frame the further speciĄcation of data processes, computations,
and implementation.

Chapter 5 is devoted to the underlying processes and computations
that precede the visualization of the data. I will describe the data
structures and transformations needed to successfully implement the
proposed methods of visualization. Then, in Chapter 6, I will discuss
some of the technical aspects of the implementation, mention the
main obstacles I encountered during the process, and the solutions
I proposed. Finally, in Chapter 7, I will summarize my work on this
project and mention the feedback we received based on the testing of
this prototype, and the possibilities for further improvements of the
application.

I Ąnd it necessary to point out that even though my tasks were
focused mainly on the implementation of this application, the project
was developed in an iterative way, so the implementation process
was intertwined with adjustments of the design. Therefore, I also had
certain inĆuence on the design choices, and the other team members
had their inĆuence on the choices with respect to the implementation.
However, the Ąnal decisions with respect to the design were made
by Laura Garrison, the decisions in the implementation were my re-
sponsibility and the code in the JavaScript Ąles was written by me (the
authorship is speciĄed in each source Ąle).

2



1 Project Context, Task SpeciĄcation

In this chapter, I will discuss the premises of my work on the project. I
will Ąrst brieĆy specify the principles behind MRS and clarify some
of the terms that I will use in the text. Then I will describe the way
acquired data must be processed before it can be used for the analysis,
and I will Ąnish this chapter by outlining the process of data analysis
and exploration that our application aims to support.

1.1 Magnetic Resonance Spectroscopy (MRS)

Discovered in 1949 by research groups of F. Bloch and E. M. Purcell,
the dependency of resonance frequency of protons on the magnetic
Ąeld strength lies at the core of all magnetic resonance techniques [5,
6, 7]. Although originally used in physics and chemistry to analyze
the molecular environment of a substance, the method called Nuclear
Magnetic Resonance (NMR) Spectroscopy can be also used for the
investigation of tissue of living humans and animals, i.e., in vivo. When
speaking about in vivo NMR spectroscopy, the word ŞnuclearŤ has
been dropped and the method is referred to as Magnetic Resonance
Spectroscopy, or MRS [8, 4].

1.1.1 NMR Spectroscopy Basics

When a strong magnetic Ąeld is applied on a molecule, protons will
align themselves along this magnetic Ąeld. To align them in a plane
orthogonal to the magnetic Ąeld, a radio frequency (RF) pulse is ap-
plied Ů the protons gather the energy (proportional to the frequency
of the pulse) which allows a transition to the aligned state. After the
RF pulse is switched off, the protons return to their original state and
release the energy, which is then recorded. The key observation is
that the amount of energy needed to switch between the parallel and
orthogonal alignment is dependent on the environment the proton
is surrounded with [5, 7]. Therefore, by measuring the energy re-
leased by the transition, we get the information about the chemical
environment of the substance in the MR scanner.

3



1. Project Context, Task Specification

Since the energy and frequency of the pulse are proportional, af-
ter the Fourier transformation of the measured signal and a phase-
correction (for details see [5]) we obtain a frequency spectrum with
peaks around the resonant frequencies.

1.1.2 MRS Terminology

Nuclei of various atoms are used for MRS. The most commonly used
nucleus is of the hydrogen atom, where we speak of proton or 1H
spectroscopy (the nucleus of hydrogen consists of a single proton).
Also phosphorus nuclei have been used frequently in clinical studies
[3], and carbon, sodium, and Ćuorine spectroscopy is used less often
[2]. The advantage of proton spectroscopy is that the signal can be
obtained using a standard clinical MR imaging systems [4]. In the
scope of this work, we take into account only proton spectroscopy
since it is the one used by our collaborators.

In Figure 1.1 we can see a typical outcome of a MRS measurement.
On the X axis, instead of a resonant frequency measured in Hz, there
is a chemical shift. Chemical shift is computed as a frequency relative
to a reference value, multiplied by 106, and expressed in ppm (parts
per million). By putting the resonant frequency relative to a reference
value, the result is independent of the static magnetic Ąeld Ćux of the
spectrometer [5]. By convention, the ppm values are decreasing from
left to right, as opposed to a general intuition that values on an axis
increase in this direction.

The peaks of the spectral curve characterizemetabolites, end prod-
ucts of metabolism. Some of these, such as creatine (Cr), choline (Cho)
and N-acetyl aspartate (NAA), are present in healthy tissue, others,
such as lactate (Lac), indicate pathologies [3]. The peaks are char-
acterized by their height and width at half-height. To quantify the
concentration of a metabolite, we calculate the area under the corre-
sponding peak [2].

Currently, there are two ways of acquiring MR spectra. Originally,
it was possible to investigate only one spatial sample (voxel) at a time
Ů a technique called single voxel spectroscopy, or SVS. At present,
magnetic resonance spectroscopy imaging (MRSI), also known as
chemical shift imaging (CSI), allows to capture spectra in a 64x64 voxel
grid with slices of 5 mm, covering the whole area of interest at once.

4



1. Project Context, Task Specification

Figure 1.1: Typically, the result of aMRS spectrum acquisition is visual-
ized on the MR workstation as a spectral curve with several identiĄed
metabolites and an anatomical image providing context [9]. Values
on the x-axis represent chemical shift (measured in parts per million,
ppm), metabolite concentrations are computed as integral values of
respective peaks of the curve.

5



1. Project Context, Task Specification

However, SVS still remains to be used due to a better signal-to-noise
ratio [3], and since these provide a more detailed spectra, we focus
on the SVS technique in our work [1].

An important parameter of aMRSmeasurement is echo time (TE),
which is given by a delay between individual RF pulses during the ac-
quisition. A shorter TE (down to 20Ű30 ms) allows for a more detailed
signal, longer TE (often around 140 ms) is used to obtain a smaller
amount of sharp peaks which are easier to analyze [4].

Typically, a MRS acquisition session captures a single moment in
time. However, there are cases where the patient might be instructed
to perform a task during which a spectrum is acquired, and then
another acquisition follows when the patient is resting, resulting in a
variance of metabolite concentration between those two acquisitions.
In this context, we speak of the patient being in an active brain state or
resting brain state [1]. This type of analysis may be used, for example,
to assess the effects of a treatment of neurological disorders, e.g.,
dyslexia [10].

1.1.3 Data Processing Steps

The MRS experiment produces time-dependent data of damped oscil-
lations mixed with noise, which is hard to interpret [11]. Therefore,
a number of steps must be performed to obtain the desired spectral
curve.

First, it is necessary to suppress the water signal as water has a
much higher concentration in tissue than the metabolites of interest.
The time-dependent data is usually multiplied by a window function
to improve signal-to-noise ratio. The signal without water suppres-
sion can be stored separately and used as a reference to correct other
artefacts, such as frequency shift or eddy current artefacts caused by
switching magnetic gradients. After these steps, Fourier transforma-
tion is applied to obtain the frequency spectrum [11].

The spectral data is then processed using availableMRS processing
software which I will discuss in Chapter 2. It is necessary to estimate
a baseline, which can be imagined as a background signal caused
by experimental artefacts and resonances of large molecules. If not
corrected, this can lead to errors in quantiĄcation of metabolites [11].
It is also common to have a prior expectation of the line shape, and

6



1. Project Context, Task Specification

Figure 1.2: A typical visual output of the model Ątting process [12].
The highlighted curve that represents the model Ąt is superimposed
over the raw data, and the baseline estimate is displayed below.

so the peaks can be estimated with a Ąt using a model. However, it is
always a matter of debate whether to use the model since the shape
of in vivo MRS data is not always well known [11].

In Figure 1.2, we can see the baseline estimation below the curve.
The smoother highlighted curve represents the model Ąt, the softer,
more oscillating curve is the raw spectral data obtained by the Fourier
transform.

Our application requires these steps to be performed indepen-
dently, so that the data are available as a series of vectors Ů the raw
data, baseline and model Ąt values to be plotted against the chemical
shift (ppm).

In addition to the spectral data, additional information must be
stored to provide context for the data analysis. The required metadata
consist of:

• Anonymized patient information (identiĄcation, age, gender)

7



1. Project Context, Task Specification

• Time of acquisition

• Echo time (TE) used during the acquisition

• Spatial location of the voxel, including an anatomical reference
image

• Information whether the patient was in a resting or active brain
state

1.2 Data Analysis

In the design study [1], we worked with six domain experts specializ-
ing in MR spectroscopy research in academic hospital setting. Based
on individual and group interviews, we identiĄed a set of core user
tasks and design requirements for our application.

1.2.1 Visualization tasks

We classify the visualization tasks according to the typology intro-
duced by Brehmer and Munzner [13]: data discovery, production,
search, and querying. These form the four key groups of tasks:

• T1 (Data discovery): In the Ąrst place, it is necessary to discover
and verify key information about the data [1]. This includes
visualizing the MRS spectral curve and providing the context
by associating it with the metadata speciĄed above.

• T2 (Production): New data elements are computed from the
raw spectra. This includes computation of the peak integrals,
and subsequently ratios of these integrals. Since the absolute
metabolite concentrations vary signiĄcantly both between and
within individuals, our collaborators, as well as papers focused
onMRS research, repeatedly mention the signiĄcance of metabo-
lite concentration ratios for understanding variability in the data
[1, 2, 4, 10].

• T3 (Search): Often only a subset of the raw and computed data
is of interest for the researcher. It may be desirable to look at

8



1. Project Context, Task Specification

spectra from a given spatial location, examine gender variation,
or explore a single time point in a longitudinal study. Another
search task lies in identifying outliers: these can either indicate
a pathology or a data quality issue [1].

• T4 (Querying): Finally, it is necessary to utilize the results of
a search task for comparison and summary. This is the core
discovery task that our application aims to support: to be able to
identify, compare and summarize metabolite ratios across key
dimensions of interest [1]. This will allow researchers to get a
deeper insight into their data and track variances of these ratios
across spatial locations, time points, or individuals.

1.2.2 Requirements

Based on the tasks, we formulated six requirements for the application
as follows [1]:

• R1: Since our collaborators work in a hospital research environ-
ment and switch between workstations frequently, we have to
provide a web-based solution to avoid the need of downloading
third-party software and ensure that all security and privacy
measures are met.

• R2: All the sensitive patient data must be properly anonymized
before being loaded into the visualization tool. This involves
culling all identifying attributes from the source Ąles in the
preprocessing stage.

• R3: To support tasks in T1, we should map chemical shift values
to metabolite peaks, since this mapping is identical for all proton
MRS spectra.

• R4: We must maintain the visual linkage between the spectral
output and the metadata: voxel sample location and patient-
speciĄc information.

• R5: To support the central analysis in T2ŰT4, we must allow the
computation of concentration ratios (individually and aggre-
gated) for any combination of metabolite peaks in the spectra.

9



1. Project Context, Task Specification

• R6: We must combine the aggregate ratio overview with the
nested information on individual ratios by a layered approach.

Having described the nature of our data, the basics of the acqui-
sition and processing, the tasks that have to be supported by our
application, and the requirements that stem from these tasks, I will
now discuss what tools are currently available in the Ąeld of MRS data
analysis, and will provide the readers with a brief overview of other
visualization research relevant to our project.

10



2 Related Work

In this chapter, I will explore currently available tools and methods
for visualizing MRS data. I will Ąrst describe the standard methods of
viewing the spectra in a MR workstation and in software dedicated to
standard processing of MRS data, and I will address more complex
visualization software for MRS data analysis. Then I will discuss other
relevant Ąelds of visualization research, linked to heterogeneous and
multidimensional data and tabular and unit visualizations.

2.1 Standard Tools to View MRS Data

The tools described in this section are commonly used by MRS re-
searchers for data processing and analysis. It is crucial to understand
their functionality and design since these are the tools our collabora-
tors are familiar with, and our application aims to complement these
to create a complete working set.

2.1.1 Standard Processing of MR Spectra

After the acquisition, theMR spectrum is usually visualized directly at
theMRworkstation. In the case of SVSmeasurement, the visualization
usually consists of the spectral curve with an identiĄcation of the
most signiĄcant metabolite peaks and a referential anatomical image
showing the location of the voxel, as in Figure 1.1.

Subsequently, the process of model Ątting and metabolite quan-
tiĄcation takes place. From the commercial software tools, LCModel
[14] is the most widely used for this step [4, 15]. It is mentioned as an
advantage that for metabolite Ątting, the entire spectral pattern of the
metabolite is used [4], i.e., the case where a metabolite is represented
by multiple peaks at different frequencies is covered. LCModel then
visualizes the output in a way similar to that shown in Figure 1.2, with
the original data and the model Ąt superimposed, and includes an
error estimation for the quality of the model Ąt.

Several open source tools are available. Tarquin has been developed
to be equally robust and accurate as LCModel for use in a clinical
setting [16], offering both a GUI and a command line interface. Since

11



2. Related Work

it is the tool most frequently used by our collaborators, one of the co-
authors of the design study [1] has prepared scripts that use Tarquin
to process the MRS acquisition output into the format required for
our application.

Other open source tools for this level of MRS data processing
include Matlab libraries Gannet [17] and OXSA [18], and also more
advanced software, discussed in the next section, offers this type of
functionality.

2.1.2 Advanced MRS Data Analysis

More advanced software packages allow for further manipulation
and interpretation of MRS data. A widely used open source tool is
jMRUI [19], which offers a similar functionality for quantiĄcation
and model Ątting as the tools mentioned above, but includes also
features for database creation and advanced processing of MRSI data,
such as mapping metabolite concentrations to an anatomical image.
Besides these features, additional plugins are available for purposes
of classiĄcation and diagnosis of pathologies.

The jMRUI Clinical Viewer plugin supports the visualization of
metabolite concentration ratios (see Figure 2.1), which is also one
of our requirements (R5). However, this plugin focuses on multi-
voxel (MRSI) spectroscopy and allows to show only a single ratio at
a time, whereas we aim for a comparison of various combinations of
metabolite ratios in a single-voxel approach.

Similar functionality focused on MRSI is offered by another open
source software, SIVIC [20]. A feature of interest here is the possibility
to track the variation of a metabolite concentration in a time series,
displayed as a time curve. This approach is also used by our application
in the form of a nested sparkline to visualize changes in a metabolite
ratio over time (see Chapter 3 for details).

From our review of the currently available software for MRS data
analysis, it became clear that none of the standard tools known to us
can support the visualization tasks we deĄned in the design study,
and the comparison of metabolite concentrations can be done mostly
by viewing the spectral curve(s), without proper quantiĄcation of the
metabolite ratios.

12



2. Related Work

Figure 2.1: The jMRUI Clinical Viewer allows metabolite ratio compu-
tation and visualization as a heatmap over the anatomical image.

2.2 Related Visualization Research

In this section, I will provide an overview of visualization research
that is relevant to our project. I will focus on the multidimensional and
heterogeneous data visualization, and will also discuss methods of
linking spatial and non-spatial information within the user interface.

2.2.1 Visualization Research Related to Spectroscopy

To the best of my knowledge, relatively few research projects have
taken the visualization of MRS data beyond what the widely used
above-mentioned tools are offering. Feng et al. have tested the effec-
tiveness of Scaled Data-Driven Spheres (SDDS), a glyphŰbased visual-
ization technique for multivariate three-dimensional data, applied to
MRS [21]. The sphere radius represented data magnitude, the color of
the sphere distinguished metabolites. The technique proved to be effi-
cient especially for correlation identiĄcation, and was later extended
by parallel coordinates plots and scatterplots, to include uncertainty

13



2. Related Work

[22]. The focus here is mainly on the identiĄcation of relationships
between anatomical MRI images and metabolite concentrations, but
it relates to our project, as it allows for the comparison of metabolite
concentrations in an abstract way.

A similar approach was used by Nunes et al. [23], who combine a
visual analysis framework ComVis [24] with MITK [25], a framework
for processing and display of medical images. Their goal is also mainly
to provide linkage between metabolite concentration and anatomical
image, however, this tool allows for the computation of metabolite
ratios and a Ćexible comparison of one ratio to another. Similarly,
Marino and Kaufman [26] link attributes acquired from MRS into the
anatomical in a way of importance-driven direct volume rendering in
the context of prostate cancer research.

Where our approach differs is that we focus on the abstract vi-
sualization, support the overview and exploration of all possible
metabolite concentration ratios, provide context with additional data
attributes, and allow for a Ćexible comparison, aggregation, and Ąlter-
ing based on these attributes.

2.2.2 Multidimensional and Heterogeneous Data Visualization

Related to the applications discussed above is InSpectr [27], a tool
linking multiple views and multiple data sources (including spec-
troscopy) to provide information about the chemical composition of a
sample. This solution works with pie-chart glyphs showing the main
components of the spectrum superimposed over a structural image,
and with transfer functions, deĄned over a spectrum, that map to the
color in the structural image. InSpectr was later extended by isosurface
similarity maps introduced by Bruckner and Möller [28]. As before,
our application focuses on the abstract visualization part, but we take
inspiration in combining and nesting multimodal information, and
we apply the concept of isosurface similarity maps to ratio strength
between metabolites.

Meyer et al. presented a way of analyzing the shape of time series
curves in Pathline [29]. The time series data are shown in a matrix
of small multiples the authors call a curvemap (since it resembles a
heatmap), each modality combination (in this case gene type and
species) is represented by an element in the matrix showing the corre-

14



2. Related Work

sponding time series curve. This approachwas adopted byMulteeSum
[30], again to visualize gene expression over time. Our visual encod-
ing of variance of metabolite concentration ratio in time is inspired by
this approach.

An idea combining graphical visualization primitives, superim-
posed over a structural image, and showing time series data in amatrix
was introduced by Stoppel et al. in their primitive called graxel [31].
These are small units showing the variance of a value over time, which
can be aggregated or resized dynamically.

2.2.3 Tabular and Unit Visualization

We can see that many of the examples I mentioned are visualizing
data elements as units organized in a matrix or table. This is a crucial
approach for our application as well as for visualization in general,
and deserves more attention. As we formulated in our requirement R5
and the set of tasks T3, we need to compute a ratio of concentrations
for all the combinations of metabolites and then allow the user to
search among them. This will necessarily result in a number of units
that we cannot visualize only as an aggregated value, but we need to
be able to visually distinguish between these units.

Although the term unit visualization has not been used until re-
cently, the principle of having a bijective mapping between data rows
and visual marks can be traced through all human history, even in the
Paleolithic era [32]. One of the Ąrst well-known systematic approaches
to unit visualization is the Şpicture languageŤ ISOTYPE developed by
Otto Neurath in 1930s [33]. However, the repeating icons were used
mainly to express quantity, which is not our goal.

An approach to visualizing units in a matrix was introduced in
1967 by Jacques Bertin [34], who developed a system of reorderable
matrices to support Ąnding patterns in tabular data. It was used and
extended by Perin et al. into BertiĄer [35] Ů an interactive web appli-
cation for creating tabular visualizations. Our approach is inspired
by the matrix view that allows a certain degree of reconĄguration,
although it is not possible to reorder the rows and columns, since
metabolite peaks on the spectral curve do have an ordering given by
their chemical shift.

15



2. Related Work

Within this tabular view, we add a nested layer of unit marks,
inspired by Atom Ů a grammar for unit visualizations developed by
Park et al. [32]. As the authors of Atom are mentioning in their work,
unit visualizations have a weakness of limited scalability and high
potential of creating visual clutter, which is why we chose these to be
a secondary nested level, shown on demand in the tabular overview.

The focus+context technique for the tabular view was introduced
by Rao and Card in Table Lens [36], who use three ways of interaction
with the table: zooming Ů changing Şthe amount of space allocated to
the focal area without changing the number of cells contained in the
focal area [36]Ť, adjusting the amount of content viewed and sliding
Ů changing the location of the focus area. We combine zooming and
sliding in a single interaction that enlarges a cell of interest and shifts
the area of focus.

The authors of Atom also discuss grammars and libraries available
for the implementation of such unit visualizations and conclude that
it is mostly low-level programming libraries, such as D3 or Processing,
that are used [32]. We have reached the same conclusion for our
implementation.

16



3 Interface and Visualization Design

This chapter is devoted to the design of the proposed tool that was
created by Laura Garrison, based on the input from our collaborators,
described in detail in our design study publication [1]. My role in the
design process was to conĄrm the feasibility of the of the design with
respect to its future implementation and suggest changes and possible
improvements. I was also involved in interviews and presentations
with our collaborators to better understand the requirements and
goals of our application.

In this chapter, I will Ąrst describe the proposed design of the
user interface and visual encodings, compare it with their Ąnal form,
and explain the changes that have been made. Then I will discuss the
interaction possibilities we decided to support in our application.

The process of creating the initial low-Ądelity prototypes was
guided by the Five Design-Sheet methodology developed by Roberts
et al. [37]. It involves paper-based sketching of ideas for the Ąrst design
sheet, combining those in three principle designs for sheets 2, 3, and
4, and Ąnally converging to the Ąnal prototype in the Ąfth sheet, that
is meant to be implemented. I attach the Ąve design sheets, created by
Garrison, in Appendix A. Since the design process is not the key part
of this thesis, I will not describe in detail the previous design sheets
but rather focus on the Ąnal design sheet (Figure A.5), and compare
it with the interface of the Ąnal application (Figure 3.2).

To discuss the possible risks and drawbacks of the design, I will use
the terminology introduced by Kindlmann and Scheidegger [38] who
describe the relationship between three structures in the visualization
process: mathematical structure in the underlying data, concrete rep-
resentation of this data in a computer, and the resulting structure of
the visualization. They deĄne three design principles as follows:

Representation Invariance The visual representation should be in-
variant to any changes in the internal data representation. If
changing the representation results in a change in the visualiza-
tion, it has a hallucinator.

17



3. Interface and Visualization Design

Unambiguous Data Depiction On the other hand, any change in the
underlying data should be represented by a change in the visu-
alization. Failing this principle creates a confuser.

Visual-Data Correspondence Related to the previous principle, a sig-
niĄcant change in the underlying data should be represented by
a similarly signiĄcant response in the visualization. If an impor-
tant change is not displayed accordingly, the visualization has a
jumbler.

3.1 Interface Components

The proposed interface is divided into two main sections, illustrated
in Figure 3.1. The left panel shows an overview of the data samples
that are available for the analysis, the right panel shows a heatmap
matrix view representing metabolite concentration ratios in selected
spectra. I will now describe the elements of both views in more detail.

Figure 3.1: A sketch of the Ąnal stage of low-Ądelity prototyping, show-
ing the main components of the interface.

18



3. Interface and Visualization Design

3.1.1 Left Panel: Data Overview

The left panel serves as an overview of the dataset that is currently
loaded in the application. The main feature is an anatomical image
showing the location of the currently selected spectral voxel. Next to
it, there are widgets that allow the selection of a voxel based on the
metadata (patient ID, time of acquisition, brain state).

In the prototype sketch (Figure 3.1), we can see two selectors:
points on the vertical axis represent individual patients, the color of the
point shows whether the acquisition was done with an active (black)
or resting (white) brain state. Originally, the black and white color
was meant to distinguish between proton and phosphorus spectra,
but we decided to focus on proton spectroscopy exclusively, freeing
up this channel for another modality. The horizontal selector contains
the acquisition time points of the patient that is currently selected. The
key part in the left view is an anatomical image of the brain showing
the location of spectral voxels from the selected time point of the given
patient.

Compared to the prototype, there are three noticeable changes in
the implementation of the left panel (see Figure 3.2). First, the element
to select between the active and resting brain state acquisition was
added to the horizontal (time point) selector. The reason for this is
that some acquisitions may have been performed only in one of the
states and others in both states. If the brain state was included in
the patient selector, individual acquisitions on the time point selector
would appear and disappear (creating a possible hallucinator), and
it would not be possible to easily see whether an acquisition was
performed in both states.

Second, the anatomical image contains the location of only one
spectral voxel at a time. After consulting and preparing the scripts for
data preparation, it turned out that showing the location of multiple
three-dimensional voxels on a two-dimensional image would be mis-
leading. With a single viewing plane, a change in the third dimension
would not be shown (i.e., would create a jumbler) and if we show the
location in multiple viewing planes, such as in Figure 1.1, the view
could become cluttered. Therefore, we moved the patient selector to
the top left corner and the vertical selector contains individual spectral

19



3. Interface and Visualization Design

Figure 3.2: The user interface in the Ąnal stage of this version of Spec-
traMosaic

voxels of the given patient during the selected acquisition (time point
and brain state).

Finally, the two buttons above the anatomical image in the pro-
posed sketch were supposed to select all voxels at a speciĄc location
for the analysis. We have decided to omit this feature in the current
version and prepare a more sophisticated functionality of this kind in
the future instead.

Another possible drawback of the design could be the inability to
see the spectral curves in the overview. This renders all the variability
in the spectra invisible at the Ąrst glance, which wemay call a confuser.
However, this tool requires previous processing of acquired data (as
described in Chapter 1), so we can suppose that the researcher has
already seen the individual spectra and is mainly interested in their
comparison. Therefore, this selection can be effectively performed
even without seeing each of the spectral curves Ąrst.

Additional to the voxel selection and overview features, there is
a simple drag-and-drop feature for data loading and a progress bar
showing the loading status.

20



3. Interface and Visualization Design

3.1.2 Right Panel: Metabolite Ratio Map

The key element of the right panel is the matrix view presenting the
metabolite concentration ratios. Spectra are placed along an x- and y-
axis (each axis also contains the chemical shift values, as speciĄed in
requirement R3). They are then divided into 20 adjustable regions Ů
a spectrum typically contains at most 20 interesting metabolite peaks
[1, 39] Ů producing a 20x20 matrix where each cell represents a ratio
of spectral integrals (i.e., metabolite concentrations) of corresponding
regions. The value of each ratio is mapped to a color on a diverging
colormap to allow immediate identiĄcation of regions with major
differences. This waywe can easily compare ratios for any combination
of metabolite peaks (requirement R5).

A change with respect to the initial prototype is a decision to plot
all the spectral curves in black, and distinguish between individual
patients only by dynamically highlighting the curves on interaction,
as described in Section 3.2.

Within each of the matrix cells, we provide an additional nested
structure available on demand. This structure contains a system of
simple glyphs whose color is obtained from an aggregated integral
ratio within a subset of the spectra currently displayed in the right
view (for details about the calculations, see Chapter 5). This way we
can see the overall aggregated ratio, as well as the ratios of individual
voxels and subsets (requirement R6). We deĄne the glyph structure
as follows:

Voxel location: The highest level glyph (a capsule shape) represents
all voxels in a speciĄed location (e.g., left prefrontal region or
right hippocampus-amygdala in our sample dataset).

Patient: If spectra from multiple patients in the same location in the
brain are available, then each of the patients is represented as a
disk shape within the pill glyph. If spectra of only one patient
are available for the location, the disk glyph is not shown.

Brain state during the acquisition: Further on, if the acquisition for
the given patient in the given locationwas performed inmultiple
brain states, we split the disk glyph (or the capsule glyph in the

21



3. Interface and Visualization Design

individ.

1 single single single single

2 single single dualsingle

3 single singlesingle multiple

4 single dualsingle multiple

5 singlesingle multiple single

6 dualsingle multiple single

7 singlesingle multiplemultiple

8 dualsingle multiplemultiple

9 singlemultiple singlesingle

10 dualmultiple singlesingle

11 singlemultiple multiplesingle

12 dualmultiple multiplesingle

13 singlesinglemultiplemultiple

14 dualsinglemultiplemultiple

15 singlemultiplemultiplemultiple

16 dualmultiplemultiplemultiple

Case region time pt state visual individ.Case region time pt state visual

Figure 3.3: The 16 encoding scenarios for nested information in the
matrix view, as presented in [40].

case of a single patient) in half, each half representing one brain
state.

Time series for a given brain state, voxel location, and patient: Finally,
if we have multiple acquisitions for a given patient in the same
location and brain state, we show a sparkline showing the varia-
tion of this particular ratio over time. If the sparkline is nested
inside a disk shape, the disk is transformed to a rounded square
to provide more space for this nested information.

Based on whether these modalities are present in the current set of
spectra, combinations of 16 different encoding scenarios are possible.
These are illustrated in Figure 3.3, created by Garrison for a poster
presented at the EuroVis conference in 2019 [40].

Next to the matrix view, there is a legend explaining the nested
glyph shapes and a mapping of the ratio values to color. We use two
separate diverging color maps to distinguish between a positive and
a negative ratio value (a value on the spectral curve is considered

22



3. Interface and Visualization Design

negative if it lies below the baseline). A red-blue map is used for posi-
tive and a green-gold map for negative ratios. Making this distinction,
rather than computing just the absolute values of the peak integrals,
was mentioned by our collaborators as important. The red-blue col-
ormap was chosen as it is common in scientiĄc visualization and
familiar to our collaborators, the green-gold colormap is an analogy
that can be easily distinguished but does not create toomany disparate
colors in the matrix [1].

Moreover, after a suggestion from the collaborators, we decided to
leave the outer regions of the matrix (corresponding to the chemical
shift values of 0.7 ppm and lower) inactive, as these regions do not
contain any metabolite peaks. However, it was mentioned that we
should still show these parts of the spectral curve as a way of data
quality assurance. Therefore, we decided to show matrix cells in this
area in grey color and disable the interactivity, while keeping the
whole spectral curve displayed. Below the right panel, we placed a
simple table showing the metadata for the spectra currently analyzed
in the matrix view.

3.2 Interaction

To fully support the process of the exploratory analysis, as the title
of our project states, it is crucial to provide a sufficient level of in-
teractivity, and to visually link the left and right panels. To describe
the exploration process, I will use Shneiderman’s well-known Visual
Information Seeking Mantra: Overview first, zoom and filter, then details
on demand [41]. The process of information seeking in our application
is not identical to this mantra: zooming is not necessary in the left view
and in the matrix view, zooming and providing details on demand is
performed in a single step, rather than as two separate actions. Still,
the general workĆow is inspired by Shneiderman’s suggestions as
they provide a reliable means to ensure efficiency of a visualization
system.

In the sections below, I will explain how the data are selected for
the analysis, what types of interaction are possible inside the matrix
heatmap view, and how the two panels are linked.

23



3. Interface and Visualization Design

Figure 3.4: The process of selecting a spectral voxel for the analysis
consists of four steps: 1. selecting a patient, 2. selecting a speciĄc
acquisition (time and brain state), 3. selecting a voxel within this
acquisition and 4. dragging the element over to the right panel.

3.2.1 Interactions in the Left Overview

The left panel, serving mainly as an overview of the dataset, does not
require much interaction. The main part of interaction is linked to the
display of metadata. It is necessary to provide the overview in a simple
and fast way, and since showing metadata for all available voxels at
once would be inefficient and create visual clutter, we show these
dynamically when the mouse is hovering over a selector element.

For the time and brain state selector on the x-axis, we show the
corresponding date and brain state as a tooltip next to themouse cursor.
For the spectral voxel selector on the y-axis, we show full metadata
as a heading over the anatomical image, and switch the anatomical
image to the location of the voxel. In the context of this view, the
metadata and switching image could be considered details on demand
in the information seeking process.

The spectra are transferred to the right view for analysis by drag-
ging either an element of the y-axis (a spectral voxel selector), or the
square showing the voxel’s location on the anatomical image, to a
desired axis area in the matrix view. From the point of view of Shnei-
derman’s typology, the filtering part would be selecting the voxels to
include them in further analysis (as illustrated in Figure 3.4).

24



3. Interface and Visualization Design

3.2.2 Interactions in the Matrix View

Once there are spectra on both axes of the matrix view, a heatmap
(overview) appears and the user can explore the integral ratios for any
combination of peaks. Initially, the spectra are divided into 20 blocks
(tiles) of the same size, but these can be adjusted at any time. The tile
borders are marked by ticks on the axis, which can be dragged left
and right (or up and down on the y-axis) to align exactly with a peak
of interest.

Since this gives the user a large degree of freedom when deĄning
the tile regions, we provide a ŞresetŤ button in case it is easier for
the user to start over with the adjustments, rather than re-adjust the
current state of the interface. Once these regions are adjusted, the user
can click on a matrix cell to expand it (zoom) and see the nested glyph
structure (details on demand). Clicking on the expanded cell again will
close it, and only one cell can be expanded at a time (i.e., clicking on
another cell would close the one that is currently expanded).

By hovering the mouse cursor over a matrix cell, or over a glyph
in the nested structure, the user can see the corresponding ratio value
as a tooltip next to the cursor, to provide the exact information that
is impossible to deduce from the element’s color. We also show the
names of metabolites possibly located in the respective regions of a
spectrum for each axis.

There are two ways to remove spectra from the right panel: First,
we provide a button that will remove all the spectra from both axes.
The second way is to double-click on the spectral curves at the axis
and select the voxel to be removed.

3.2.3 Linking the Two Views

To maintain the linkage between the dataset overview on the left, the
glyph structure in the right panel, and the metadata table below, we
developed a system of highlighting (see Figure 3.5). This way, we can
properly fulĄll the requirement R4 and easily link the spectral curves
to their corresponding metadata. When the mouse is hovering over a
glyph in the matrix cell, the following elements will be highlighted:

1. Spectral curves of voxels in the subset represented by the glyph
will highlight in fuchsia.

25



3. Interface and Visualization Design

Figure 3.5: Highlighting system linking the two panels: By interacting
with a glyph element in the nested structure, elements of the interface
representing voxels in the corresponding subset will be highlighted.
These include: 1. spectral curves in the right panel, 2. rows of the
data table, 3. the anatomical image, and 4. the corresponding selector
elements in the left panel. The anatomical image cannot be highlighted,
but it is switched to one of the voxels in the subset. This is sufficient
since all the voxels in a subset, represented by a glyph, are necessarily
in the same spatial location.

2. Rows in the table below corresponding to these voxels will high-
light in fuchsia.

3. The anatomical image in the left view will switch to one of these
voxels (note that voxels in any subset will always be in the same
location in the brain, since location is the top layer of the nested
glyph structure).

4. Selector elements of the corresponding patients, acquisitions,
and individual voxels in the left view will be marked by a grey
box.

26



4 System Design

So far I have deĄned the problem domain, the requirements for our
application, and the design of the user interface. In the following three
chapters, I will address the technical aspects of SpectraMosaic, the
choice of platforms and tools for its implementation, handling of the
data inside of the application, and the computations performed during
the visualization process.

In this chapter, I will discuss the choice of a single-page web appli-
cation as the most suitable platform for our purposes. I will compare
its advantages and disadvantages to other options and provide the
rationale for this choice.

4.1 BeneĄts of a Web-based Application

Besides the advantage of not having to install any third-party soft-
ware, as formulated in our requirement R1 in Chapter 1, there are
more reasons why it is beneĄcial to create SpectraMosaic as a web
application. First, since this project explores an area of research that
is relatively new, we can expect frequent changes based on the input
from our collaborators, so an iterative approach to the development
will be necessary. It is known that websites are typically developed in
such processes that support rapid prototyping and continuous change
[42], but we can also reverse this statement and say that the web en-
vironment well supports frequent changes since there is no need to
redistribute and reinstall new versions of the software, and the de-
ployment is usually trivial, especially for JavaScript applications [43,
44].

Second, thanks to the rapid development of many popular web
browsers, modern implementations of JavaScript are optimized to per-
form well even in tasks that require more intense computation [43]. It
is not the case of SpectraMosaic at this stage, but if there was a decision
to incorporate, for instance, dynamically rendered three-dimensional
anatomical images, the usage of JavaScript would no longer be an issue,
as it would have been in the past [44]. It is already relatively common
to implement visualization tools that require intensive computation
as web-based applications [45, 46].

27



4. System Design

Finally, as the authors of BertiĄer mentioned, the possibility of
online data import is another advantage of web-based tools [35]. In
their case, it is possible to import data from a Google spreadsheet
using a URL. In the case of our application, it would be beneĄcial to
be able to connect to a server in the hospital to import data, rather
than to download them and use them locally (for more discussion on
possible future extensions, see Chapter 7).

4.2 Single-page Application

Typically, the client side of a web application that runs in the user’s
web browser would frequently communicate with a server, where
the main application logic (in a commercial environment referred
to as business logic) would be executed. This was also the approach
for earlier web-based visualization tools, as in ParaWebView, where
an image would be generated by the server, using its parallel data
processing and rendering capabilities [47].

However, there is a tendency of moving more computation to the
client side of the application and restricting communication with the
server to loading the page and scripts. The main reason for this is that
with a traditional model-view-controller server framework, an unrea-
sonable amount of time is spent waiting for a page to load, resulting
in high productivity costs [43] and a discontinuous experience for the
user [44]. This is why a notion of a single-page application (SPA) has
been introduced: in this approach, the entire application is delivered
to the browser at once and is not reloaded during its use [43].

As illustrated in Figure 4.1, the only tasks where the interaction of
the SPA with the server is required are authentication, authorization,
validation, and data storage and retrieval. As none of these are a part
of the prototype being developed so far, we can easily omit the server
side from the system’s architecture (a server that only delivers the web
page would be trivial to implement at any point) and focus exclusively
on the client application itself.

28



4. System Design

Figure 4.1: The comparison of a single-page and traditional approach
to the web application architecture. In the single page application,
all the logic and computation is executed in the client’s browser, and
the remote parts serve mainly for authorization and data storage and
retrieval [43].

29



4. System Design

4.3 Client Application Components

The client application can be divided into four main functional com-
ponents. Two of them correspond to the components of the visual
interface, the additional two are responsible for the underlying Ąle
manipulations and computations. I describe the four functional com-
ponents as follows:

1. C1: Loading: This component is responsible for handling the
drag-and-drop loading operations and processing of the Ąle
structure.

2. C2: Underlying Data Operations: This component handles all
the computations that are not directly tied to the state of the user
interface. This includes normalization of values, up- and down-
sampling of vectors, and any precomputation. Additionally, the
main data structure is maintained here.

3. C3: Left Panel: This component is responsible for rendering
of all visual elements and handling the interactivity in the left
panel.

4. C4: Right Panel: Similarly, all the rendering and interactivity for
the right panel is handled here. In addition, the computation
directly connected to the heatmap visualization is performed in
this component.

Before I describe the functionality and implementation of these
four components in detail, I will provide a general overview of roles
of these components in the data analysis and exploration process, as
illustrated in Figure 4.2.

30



4. System Design

Figure 4.2: This diagram shows the roles of the components in themain
events during the whole process of data analysis, from Ąle loading to
the display of nested glyphs in the matrix view.

31



4. System Design

We can see that the components are interacting more intensively
during the loading and preprocessing stage. Once the data are pre-
pared and stored, the task of C1 is done completely, and C2 serves
mainly as a data storage further on. As the left panel (C3) always
displays the whole dataset, it does not have its own internal data struc-
ture and always takes the data stored by C2. In the right panel (C4),
the user usually explores only a subset of the data, therefore, it is bene-
Ącial to maintain an internal data structure. The reason for this is that
the computation of integrals and ratios is always performed only on
the currently explored subset of data, since it needs to be performed
dynamically during the user interaction with the matrix view. The
actual spectral data in the local structure are referenced rather than
copied, to maintain linkage and not to create any duplicities.

32



5 Computations and Data Processes

In this chapter, I will describe the data structures used in the appli-
cation and the underlying computations that span from loading the
dataset to the display of all visual elements of in matrix view. This
includes loading the data from Ąles into the application, preprocessing
of spectral values, maintaining data structures, and computation of
integrals and ratios.

5.1 Input Format and Loading

The data are processed using Tarquin (see Chapter 1 and Chapter 2)
and stored in a directory structure containing all the required Ąles that
can be loaded into the application using a drag-and-drop feature. Sub-
sequently, a data hierarchy is created corresponding to the hierarchy
of information displayed in the left view, as described in Chapter 3.

5.1.1 Required Format and Structure of Input

As a result of the data preparation process described in Chapter 1, we
obtain a directory tree. The root directory contains subdirectories for
each patient, named with the anonymized patient ID, and a header
Ąle. The header Ąle contains the required metadata (patient’s age and
gender, echo time, brain state, voxel location, and time of acquisition
for all the voxels in the dataset).

The patient’s directory then contains subdirectories representing
individual voxels. These contain a CSV Ąle with the spectral data
in four columns: chemical shift, raw spectral curve, model Ąt, and
baseline (see Chapter 1 for details on spectral data processing and
Figure 1.2 for the visual comparison of these types of data). It also
contains anatomical images with a highlighted location of the spectral
voxel in three orthogonal views: axial, coronal, and sagittal [7]. Addi-
tionally, the voxel directory contains an image generated by Tarquin
that visualizes the spectral data. This generated image is not used
by our application, but is left in the dataset as a standard output of
initial spectral data processing. Figure 5.1 shows the directory tree of
an exemplary dataset with one patient and one voxel.

33



5. Computations and Data Processes

neuroinflammation_set ..........................root directory

neuroinflammation_header_info.csv.............header file

F425...............................................patient ID

P29184............................................voxel ID

P29184.7.coo-output.csv.................spectral data

P29184.7.png........................spectral data graph

P29184_mask_spectramosaic_ax.png.........axial image

P29184_mask_spectramosaic_cor.png......coronal image

P29184_mask_spectramosaic_sag.png.....sagittal image

Figure 5.1: Directory structure of an exemplary dataset

Not all the data and Ąles are currently used by our application.
After a discussion with our collaborators, we decided to use the raw
spectral data rather than the model Ąt for the purpose of quality
assurance. For keeping the simplicity of the left panel, we show only
one of the three anatomical images, which is currently set to be the
axial image. However, we keep the unused Ąles and data in the dataset
in order to be able to easily switch between showing the model Ąt
and raw data or between the axial, coronal, and sagittal image in the
future.

5.1.2 Loading Process

To make the data input as simple as possible for the user, we decided
to use a drag-and-drop feature and process the whole directory tree
automatically. The user can drop either the root directory, or all of its
contents at once, and then all the Ąles are read and connected with
information in the header.

Once all the Ąles are read, a number of calculations have to be
performed to prepare the data for displaying. The following steps are
essential in the preprocessing stage:

All the vectors need to contain the same number of values, so that
the integrals over the same region are comparable. Therefore, it is
necessary to set a Ąxed vector length and resize all vectors to this size.
This is achieved either by linear interpolation, if the original vector is
shorter than desired, or by binning, if the original vector is longer.

The raw data vector must be transformed to deviations from the
baseline, i.e., values from the baseline column are subtracted from the

34



5. Computations and Data Processes

original raw data. As mentioned in Chapter 1, the baseline represents
a background signal that would cause errors during quantiĄcation if
not corrected.

The corrected signal is then stored separately in a normalized
form. Even after subtracting the baseline values, the signal usually
still reaches numbers over 105, so the integral values of peaks would
be extremely high. Therefore, the values are normalized with respect
to peak height, so that the sign is preserved for negative peaks. Given
N vectors of length M and denoting the j-th value in the i-th vector as
vij, the normalized value nij is computed in the following way:

max_peak = max
k<N

max
l<M

(|vkl|)

nij =
vij

max_peak

In addition, a normalization that would be more appropriate for
displaying the data must be performed, which returns values in the
interval [0, 1]. This way, it is easier to scale the spectral curve height
according to the panel size. Similarly as above, the normalized value
n∗

ij is computed in the following way:

global_min = min
k<N

min
l<M

(vkl)

global_max = max
k<N

max
l<M

(vkl)

n∗
ij =

vij − global_min

global_max − global_min

The normalization is always performed with respect to all the spec-
tra currently loaded in the application, so that they remain comparable.
I am aware that changing the values that are already displayed will
break the Principle of Representation Invariance [38], as the displayed
spectra can suddenly ŞshrinkŤ when new data are added. However,
we chose to normalize the values in this way instead of dividing them

35



5. Computations and Data Processes

by a Ąxed factor as the absolute values can vary greatly depending on
the acquisition details [1], and no such factor would be convenient for
all cases.

In order to perform integral calculations efficiently, a cumulative
distribution is computed over each data vector after the baseline cor-
rection. With ni standing for the i-th value in the normalized vector,
we can deĄne the i-th value of the cumulative distribution as

di =
i

∑
k=0

nk

This idea is inspired by the approach of Summed Area Tables [48],
simpliĄed to a one-dimensional case. This way, we can compute the
discrete integral over an arbitrary interval [n, m], approximated by the
Riemann sum, by a simple subtraction, instead of summing all values
in the desired region, i.e.,

m

∑
k=n

nk = dm − dn−1

So, for each spectral voxel, we have four different vectors of data
(original data, normalized data, displayed data, and the cumulative
distribution), an anatomical image, and the assigned metadata found
in the header Ąle. According to this metadata, the voxels are sorted
into a data structure which will be described in the following section.

5.2 Data Structures

The main data structure contained in the component C2 (further re-
ferred to as DataContainer) reĆects the hierarchy of information in the
left panel, as described by the voxel selection workĆow in Figure 3.4.
Individual voxels are Ąrst sorted by the patient identiĄcation, then
by time of their acquisition, and Ąnally by the brain state during the
acquisition. To illustrate this hierarchy in Figure 5.2, I am using a UML
class diagram. I Ąnd this to be the most Ątting illustration although I
do not use JavaScript classes in the implementation, as it clearly shows
the relationships between objects.

We can see that the data are divided into a nested hierarchy of
objects that corresponds to the selector elements in the left panel (see

36



5. Computations and Data Processes

Chapter 3 for details): Patient, Timepoint, BrainState and Voxel. Each of
these objects holds the metadata associated to it and an array of objects
at the lower level of the hierarchy. In addition to the metadata, each
object contains the property highlighted, which serves as a Ćag indicat-
ing that the corresponding selector element in the left panel should be
highlighted. The Timepoint object does not have this property since it
is not represented by a single selector element (the acquisitions are
represented by brain state elements, sorted and grouped by time).

By contrast, the matrix view in the right panel (C4), without the
nested glyphs, does not have any hierarchy of elements. Therefore, in
the local data structure of the matrix view (MatrixData), the hierarchy
is ŞĆattenedŤ, so that all the metadata are stored at the same level as
the spectral data, as in Figure 5.3.

There are three vectors of spectral values: scale, which stores the
chemical shift values, values_disp with normalized spectral values
for display and c_sum with the cumulative distribution. These are
stored as a reference to the corresponding arrays in DataContainer, so
that any change (e.g., normalization when new data are loaded) is
immediately visible in the right panel as well.

Two additional vectors of values are present in the matrix view:
tile_values and tile_integrals. These represent the spectral curve divided
into 20 tiles. Tile_values serve for displaying the spectral curve, its
values are taken from values_disp and are split into 20 shorter vectors,
which are resized according to the actual size of the corresponding tiles
in pixels. Tile_integrals are computed using the cumulative distribution
stored in c_sum.

Finally, another hierarchy of data must be constructed for the
nested glyph structure in a cell of the matrix view. As described in
Chapter 3 and Figure 3.3, the elements of this nested structure are
aggregated Ąrst by the voxel location, then by the patient ID, then by
the brain state, and Ąnally by the time of acquisition. Therefore, we
need to maintain a third data structure, containing the elements stored
in the matrix view, which is constructed only when the nested glyph
structure is displayed. I named this data structure ExpandedData, as
the glyph structure is shown only when a matrix cell is expanded, and
it is illustrated by a class diagram in Figure 5.4.

Here, only the metadata needed to identify the respective subset
of voxels (i.e., location, patient ID, time, etc.) are stored. Besides that,

37



5. Computations and Data Processes

Figure 5.2: Class diagram representing the hierarchy of data stored
in the component C2 (DataContainer). It consists of an array of Pa-
tient objects, each Patient object contains metadata associated with
the given patient and an array of Timepoint objects, the Timepoint
contains an array of BrainState objects (there will be two at most since
we distinguish between active and resting state), and the BrainState
contains an array of corresponding Voxels.

Figure 5.3: Data structure for the matrix view (MatrixData). Here, the
voxels are stored without any hierarchical order. Each voxel can be
assigned to one or both axes (the arrays xData and yData represent
respective axes).

38



5. Computations and Data Processes

Figure 5.4: Data structure for the nested glyphs in the matrix view
(ExpandedData). This data structure contains also the computed ratios
for all the subsets of data. Because of issues with the color mapping,
two different ratio values are stored (see Section 5.3).

already computed values of integral ratios are stored. The reason for
the ratio being stored in the data structure, while the overall ratios
are not stored in MatrixData, is that each level of the hierarchy has
its own associated ratio, while there is only one ratio in each cell in
the overview. Therefore, these ratios need to be stored along with the
data hierarchy.

On the other hand, there is no need to store the spectral data here,
as this data structure is reconstructed each time the nested glyph
structure is demanded, and so the ratios can be computed directly. In
the following section, I will focus on the computation of these ratios.

5.3 Integral and Ratio Computation

Asmentioned in Chapter 1 and Chapter 3, exploration of peak integral
ratios is the key task that our application aims to support. I will now
describe how exactly the integrals and their ratios are computed and
how they are mapped to the color of the matrix cell or the nested
element.

39



5. Computations and Data Processes

Tile integrals for each spectrum are computed in the way described
in Section 5.1 (using the cumulative distribution) and stored inMa-
trixData on these occasions:

• a voxel is dragged over to the right panel,

• a tile is readjusted by the user (an axis tick is moved),

• tiles are reset to the default size and position,

• newdata are loaded into the application (all data are normalized
again).

Once stored, the tile integrals are then aggregated over the spectra
at each of the axes, and over all the subsets of spectra (more details in
the following section) when the nested glyph structure is displayed,
and used to compute ratios.

5.3.1 Peak Integral Ratios

Computing a ratio of integrals is very straightforward, once we have
the integrals ready. However, the key problem with visualizing the
ratio is assigning it to a color map. We chose two diverging color maps,
where a white color in the middle represents the case where both
integrals are the same in their absolute value (i.e., the ratio is equal to
1 or -1), and the colors diverge symmetrically to both sides.

However, the ratio r = x
y converges to zero when y gets larger than

x, and diverges to inĄnity in the opposite case, so there is no direct
mapping to the symmetric color gradient. Therefore, the ratio needs
to be transformed in a way that will make it symmetric. I propose to
compute the ratio in the following way:

rsym =







| x
y | − 1 x ≥ y

−| y
x |+ 1 x < y,

rsign = sgn
x

y
.

40



5. Computations and Data Processes

This way, we obtain a function that diverges in both directions,
is continuous and symmetric, and the case where |x| = |y| is repre-
sented by rsym = 0, as illustrated in Figure 5.5. However, we are no
longer able to distinguish between the positive and negative ratio, so
the sign must be stored separately as rsign and then used as a param-
eter when choosing the color map. Moreover, in extreme cases, the
function diverges to inĄnity (or minus inĄnity) so we need to deĄne a
cutoff positive and negative value, after which the color would be the
darkest shade and values will not be distinguishable anymore. After a
consultation with our collaborators, we have set these values of rsym to
-5 and 5, which are equivalent to values of r = [ 1

6 , 6] or r = [− 1
6 ,−6].

In order to be able to show the color map in the legend with the
original ratio values rather than rsym, I have to deĄne a transformation
of rsym to the original ratio value r:

r =







rsign(rsym + 1) rsym ≥ 0

(1 − rsign)(
1

rsym−1) rsym < 0.

In the case where multiple spectra are assigned to an axis, the
ratios are computed using the mean of integrals of all the spectra at
that axis in each tile, so the color of cells in the heatmap overview
always represents the ratio of mean integrals. For the case where the
user is interested in ratios within a speciĄc group (subset) of voxels
or an individual voxel, the glyphs inside an expanded matrix cell can
be used.

5.3.2 Subset-aggregated and Individual Ratios

The nested glyph structure serves for exploring ratios of integrals in a
speciĄc subset of spectral voxels, or even in an individual spectrum in
certain cases. These subsets are created according to the glyph hier-
archy explained in Chapter 3 and represented by the corresponding
data structure (ExpandedData). Here, we are interested in showing
subsets of the dataset in the right panel as a whole, so we are not
showing the ratio of integrals in a subset of spectra at the x-axis to
integrals in a subset of spectra at the y-axis, but the ratio of integrals
within the same subset. During our discussions with the collaborators,

41



5. Computations and Data Processes

this case proved to be non-intuitive. Therefore, it is best illustrated by
Figure 5.6.

For a better illustration of how the subsets are created, we may
also use the metaphor of Şaxis collapsingŤ. The data in both axes are
ŞcollapsedŤ to a single set, which is then subdivided into smaller sets,
each representing a glyph shown in the nested structure. The ratio in
each of these subsets is computed as the ratio of mean integrals in all
the spectra in the subset. Therefore, if we explore the ratio of integrals
in the same region (e.g., the ratio of integrals between chemical shift
1.5 to 2 ppm), the ratio value in all nested glyphs will necessarily be
equal to 1, while the ratio in the overview heatmap cell may differ.

42



5. Computations and Data Processes

Figure 5.5: 3D plot of the transformed ratio function, which is more
suitable to be mapped to a diverging color gradient. Here, the color
mapping is illustrated by a red-blue gradient similar to the one used
in our application for a positive ratio value. The cutoff values over and
below which the color is no longer distinguished are set to -5 and 5.
In the case where x or y is equal to zero, the color is set to gray.

43



5. Computations and Data Processes

Figure 5.6: Illustration of computing all ratios in a simple dataset
consisting of two voxels (created by Laura Garrison [1]): a voxel at
a location V1 of a patient p1, and a voxel at the same location V1 of
a patient p2. The user has chosen to explore the ratio of integrals of
peak A to peak B. In the matrix cell of the overview heatmap, the ratio
is simply the integral of peak A in V1p2 divided by the integral of
peak B in V1p1. Subsequently, there are three glyphs in the nested
structure inside the matrix cell. The bottom-layer glyph denoted as
V1 represents all voxels located at V1. Therefore, its color maps to the
ratio of the average of integrals of peak A in V1p1 and V1p2 to the
average of integrals of peak B in V1p1 and V1p2. In the top layer, there
are two glyphs, representing voxels at the location V1 of patients p1
and p2. In our case, there is a single voxel in each of these subsets, so
the color of the glyph denoted V1p1maps to the ratio of the integral
of peak A in V1p1 and the integral of peak B in V1p1.

44



6 Implementation

I have already outlined the speciĄcs of MRS data analysis, described
the design of the interface and visualization methods used in our ap-
plication, and explained all underlying computations and processes.
The remaining part is to address than the implementation of the ap-
plication itself, and the feedback we received from our collaborators
during the brief user testing sessions.

For its description, I again need to cover the whole data analysis
process, from loading the dataset to exploring the details in the ma-
trix view, and then address the challenges I encountered during the
implementation process. Before doing so, however, I would like to
devote the following section to the structure of the source Ąles and
their assignment to the system components, as deĄned in Chapter 4
and shown in Figure 6.1.

6.1 Source Files

Since SpectraMosaic is a single-page application, there is only one
main HTML Ąle (index.html) that speciĄes the layout of the page and
connects the JavaScript source Ąles. Besides that, there is one more
page (help.html) that serves as a manual for the application, created
by Laura Garrison. This Şhelp pageŤ is always opened in another tab
of the browser so that is does not interrupt the workĆow in the main
page. Associated to these pages, there are two stylesheets, which are
used for formatting the elements of the two pages and are of little
interest in the context of this thesis.

The key part are the scripts that implement all the computation,
logic, and dynamic behavior of the application. These are assigned
to the system components according to their role (see Figure 6.1).
The one Ąle that is not assigned to any component (gridster_main.js)
serves just fur creating the page layout (see the following section) and
initializing some of the libraries and objects used. Now, I will discuss
the implementation of the application, including its layout and system
components.

45



6. Implementation

Figure 6.1: Diagram of the system components and source Ąles

6.2 Layout of the Page

To align the elements in the page in a suitable way, independent of
the window size and stable when changing the size of the page, it is
necessary to use a grid system. Initially, I used the grid system in the
Bootstrap toolkit [49], which is the most commonly used library for
handling front-end components. Later, we decided to use Gridster.js
[50] for the placement of elements in the page while keeping the
internal structure of these elements handled by Bootstrap. The reason
for this change is the possibility of integrating SpectraMosaic into
another project currently developed by Laura Garrison, which uses
Gridster. This way, the main elements are compatible with the Gridster
environment, allowing for a Ćexible integration into a more complex
project, while keeping the original structure within the page elements
as it was implemented before. The elements of the Gridster page
structure are shown in Figure 6.2.

The original purpose of Gridster is to enable the page elements
to be reordered in the page using drag-and-drop operations. This

46



6. Implementation

Figure 6.2: The page is divided into Ąve main elements which form
the cells of the Gridster layout: the left and right panel, the legend, the
element for loading data and the metadata table.

behavior is not suitable for our application as we keep the page layout
Ąrmly given and already use drag-and-drop operations for moving
data into the right panel. For this reason, it was necessary to disable
this default behavior of Gridster and use it only in a static way.

6.3 Implementation of System Components

Now, I will address the implementation of each of the system compo-
nents, except for C2 (data operations), which is described in Chapter 5.
I will begin with loading the data (C1) and continue with the descrip-
tion of the implementation of the two main panels (C3, C4).

In this section, I describe the main approach to the implementation
of the visualization panels, and discuss the selection of tools that are
the most appropriate. I will address the speciĄcs of interaction within
and between these panels in Section 6.4.

47



6. Implementation

6.3.1 Data Input

As I mentioned in Chapter 5, the intention was to make the data input
as simple as possible for the user. More precisely, we wanted to be able
to process the data exactly in the format provided by the preprocessing
scripts using Tarquin, created by one of our collaborators. Therefore, I
have decided that it is best to process the whole directory tree at once,
and this can be achieved in JavaScript using the File and Directory
Entries API [51]. The documentation page warns that this is a non-
standard feature and should not be used on production sites, as it may
not be supported by every browser and the behavior may change in
the future [51].

In our case, SpectraMosaic is in a prototype stage and the future
versions that could be considered a production site should ideally have
the data preprocessing step integrated, rather than performed by a
separate tool, so this type of Ąle loading would no longer be necessary.
So far, we have tested this feature in Firefox, Google Chrome, Safari,
and Microsoft Edge in the implementation and testing phase, and
encountered no issues with browser compatibility. However, with the
latest update of the File and Directory Entries API (as of April 27,
2020 [52]), there were issues in compatibility with Google Chrome.
After a consultation with the team at the University of Bergen, we have
decided to address this issue in the next version of the application

The issues I did encounter when implementing this feature were
caused by the fact that this API, as well as other functions related
to Ąle processing, is asynchronous and uses callback functions. The
problem with callbacks is the difficulty of managing their execution
order [53], e.g., storing the voxel information only after all the Ąles
assigned to this voxel have been processed, and then normalizing data
only after all voxels have been stored.

These issues have been solved by introducing Promises: objects
serving as placeholders for a value returned by an asynchronous
function, which can register callbacks that will run after this function
succeeds or fails [53]. The main advantage is that it is also possible to
store the Promise objects in an array and register a callback that will
run only after all of these Promises are resolved. I use this approach
as illustrated by the following code excerpt:

48



6. Implementation

// chaining of loading voxel data and preprocessing

// taken from file_reader_master.js

var proms = []; // array of Promises for all voxels

// read all patient directories

foundFiles.forEach((patient) => {

if (patient.isDirectory) {

// read all voxel directories

patient.contents.forEach((voxel) => {

if (voxel.isDirectory) {

proms.push( readVoxel( patient.name,

voxel.name,

voxel.contents ));

}

});

}

});

// normalize after everything is processed

Promise.all(proms).then(() => {

finishLoading();

});

The array foundFiles represents the contents of the root directory:
the header Ąle and patient directories (see Figure 5.1). The function
readVoxel utilizes asynchronous functions to read the CSV and anatom-
ical image Ąles in the voxel directory. Therefore, it returns a Promise
which is successfully resolved only after these two Ąles are processed.
The array proms contains Promises assigned to all the voxels currently
being loaded, and the function finishLoading is executed after all of
them are successfully resolved, i.e., all the Ąles have been successfully
read.

Another issue was caused by the fact that we need to display the
anatomical image on a p5.js canvas (see the following subsection),
therefore, it is necessary to store it as a p5 Image object. However,
the p5 Image cannot be constructed from a JavaScript File object, into
which the image Ąle was loaded by the File and Directory Entries
API. To solve this, it is necessary to convert the image to a base64
string representation [54], which can be processed by the p5 loadImage

49



6. Implementation

function [55]. The File object can be converted to a base64 string using
the FileReader.readDataAsURL method [56].

6.3.2 Main Panels as p5.js Canvas

The Ąrst tool that usually comes into consideration when creating a
web-based visualization interface is the D3 library [57]. While it is
a suitable tool for most types of visualization, it did not prove to be
optimal in our case. The main idea behind D3 is the manipulation of
the standard document object model (DOM) by binding input data to
the document elements [57].

In the earliest stages of our project, Laura Garrison sketched out
the proposed interface and visual encoding on a blank page. The goal
of this work was to transfer these sketches into a working application,
so that the design choices could be properly validated. Using D3 to im-
plement this design would need a substantially different approach to
the visual elements: selecting from a set of standard visual encodings
(although very broad) instead of drawing on a blank canvas. After an
attempt to visualize the spectral curve using a parallel coordinate plot
in D3, we have decided to use an approach more consistent with the
initial ŞsketchingŤ.

The idea of sketching was utilized by Casey Reas and Ben Fry in
Processing [58], a programming language based on Java that is Şbuilt
to act as a software sketchbook [58]Ť but started to be widely used in
thousands of various projects [59]. Processing was later extended to
p5.js [60], a web-based tool based on the same principles, which can
be used to embed interactive graphics on a web page. This approach
allows for simple and fast implementation of visual ideas, especially
in projects that require the Ćexibility to make substantial changes
in a short time [61]. Therefore, p5.js became our tool of choice for
implementing the two main panels of the application’s interface.

The left and right panel (components C3 and C4) both contain a p5
object (sketch) nested in a div element in the corresponding Gridster
cell. At the beginning, a blank canvas is created, and its size is given
by the size of the Gridster cell. Normally, a p5 sketch behaves as an
animation, updating its contents at a speciĄed frame-rate. For a more
static content, this behavior can be disabled, and the sketch is updated
only when necessary. I have chosen the static approach and deĄned a

50



6. Implementation

method updateScene for each sketch, that can be called whenever the
contents need to change. These occasions include:

• change in the underlying data,

• interaction with the sketch,

• changing the browser window size.

Considering that any interaction with the sketch has already been
handled and the properties of the view are set, the updateScene meth-
ods for the left and right panel are described by the UML activity
diagrams in Figure 6.3 and Figure 6.4, respectively.

6.4 Interaction

In this section, I will describe how the interactions deĄned in Sec-
tion 3.2 are handled, in the order of the workĆow illustrated in Fig-
ure 4.2. The disadvantage of the sketching approach is that without
standard visualization elements, I have to manually deĄne even the
trivial interactions, such as clicking on an element or hovering the
mouse over it. I will mention the implementation of these basic in-
teractions only in the Ąrst case, since the approach will be similar in
other cases.

Handling of the interaction always takes place before the sketch is
rendered. Properties of the view are updated according to the user’s
action and then the updateScene method is called. I will focus mainly
on the description of these properties and the way they are computed
or determined.

51



6. Implementation

Figure 6.3: UML activity diagram for updating the left panel: If there
is no ongoing loading process and there are data to be shown, we
handle highlighting according to a message received from the right
panel (more on highlighting in Section 6.4) and display the contents
of this panel accordingly.

52



6. Implementation

Figure 6.4: UML activity diagram for updating the right panel: If there
are data associated only with one axis, we show the corresponding
axis and spectral curve. If there are data at both axes, we compute
integral ratios according to the current properties of the view (more
on adjusting the matrix view in Section 6.4) and display the contents
of this panel accordingly.

53



6. Implementation

6.4.1 Selecting a Voxel for the Analysis

Two types of interaction in the left view are necessary for selecting a
voxel for the analysis: exploring the metadata and viewing the anatom-
ical image. Both of these are provided by the selector elements for
the patient, time of acquisition, brain state, and voxels in the acqui-
sition (see Chapter 3 for details). The elements and image currently
displayed are determined by the properties of the view. For clarity, I
show once again the layout of the left panel in Figure 6.5.

Figure 6.5: Layout of the left panel

Each of the selectors has three associated properties: chosen, dis-
played, and active. To provide an example, let us consider the time
selector. Each timepoint is represented by a square or a pair of squares
(depending on whether both brain states are available) on the hori-
zontal selector. The chosen_timepoint property stores the index of the
timepoint that is currently selected by the user. Displayed_timepoint
determines the index of the timepoint from which the voxels on the
vertical selector are taken. Normally, the displayed and chosen proper-
ties are equivalent (in Figure 6.5, displayed_timepoint is set to 1). In
the case where a voxel from another acquisition is highlighted, we

54



6. Implementation

need to temporarily show this voxel instead of the currently selected
one. Therefore, the displayed_timepoint is changed to the index of the
desired acquisition time. Once there are no more highlighted items,
it is set back to the value of chosen_timepoint. The active property rep-
resents the index if the element the mouse is currently hovering over
(and is set to -1 otherwise). After clicking the mouse button, the chosen
property is set to the value of active, if it is other than -1.

Moreover, the active property is used to show the metadata associ-
ated with the given selector element. The metadata of an acquisition
(time and brain state) are displayed as a tooltip next to the cursor.
The metadata of the voxel, connected with the patient information,
are displayed as a heading above the anatomical image permanently,
determined by displayed_voxel when active_voxel is unavailable. The
anatomical image displayed is determined in the same way.

For dragging a voxel over to the right panel, it is possible to use
either the voxel selector elements (circles on the vertical selector) or
the square highlighting the voxel’s location on the anatomical image.
Whether the mouse is hovering over the square or another part of the
anatomical image is determined simply by the color of the pixel at
the position of the mouse (the voxel’s location is set to be shown in
fuchsia in the preprocessing stage). To determine which voxel to drag
over, the active_voxel property is used.

6.4.2 Adjusting the Matrix View

Interactions in the right panel are linked to the adjustment of the
matrix cells and displaying the nested glyphs inside a cell. The layout
of the right panel with an expanded cell is shown in Figure 6.6.

At the start, all the 21 ticks of both axes, separating the tiles, are
set to be equally distanced. In order to be able to align a tile with a
peak of the spectral curve, it is necessary to move the ticks along the
axis. In addition, when expanding a cell to display the nested glyphs,
it is necessary to move the tick on the sketch but keep its position
with respect to the chemical shift. To achieve this, these properties are
associated with each axis:

Relative tick positions: positions of the ticks with respect to the
chemical shift, where 0 represents the beginning of the axis (4 ppm)

55



6. Implementation

Figure 6.6: Layout of the right panel

and 1 represents the end of the axis (0 ppm). This value changes when
a tick is moved along the axis.

Tile scales: magniĄcation coefficients of the tiles used for cell expan-
sion, where the value of 1 means no change of size. This property is
changed when one cell is expanded and the others shrink accordingly.

It it possible to imagine the cell expansion as a zoom lens. Initially,
all the scales are set to 1. When a cell is expanded, the scale of the
corresponding tiles is set proportional to their current size, so that
they take up at last 1

4 of the axis’ length. Denoting by rk the relative
position of the k-th tick, by axis_len the length of the axis in pixels
and by i the index of the tile to be enlarged, the scale si is deĄned as
follows:

56



6. Implementation

area_exp =







0.25 · (ri+1 − ri) + 0.25 if ri+1 − ri < 0.5

ri+1 − ri otherwise

si =
axis_len · area_exp

axis_len · (ri+1 − ri)− 1

This way, I can ensure that no cell will be too small for the nested
glyphs to be distinguishable but the cells that already take at least half
of the heatmap’s area will not get larger. Similarly, I can deĄne the
scale of the remaining 19 tiles sj (where j 6= i) as:

area_shrink =
1 − area_exp

19

sj =
axis_len · area_shrink

axis_len · (rj+1 − rj)− 1

Absolute tick positions: positions of the ticks on the axis in pixels.
These are used when drawing the heatmap matrix to determine the
positions of the cells. We can compute the absolute position of the i-th
tick ai as follows:

a0 = 0

ai = ai−1 + axis_len · (ri − ri−1) · si−1 i > 0

The absolute positions are computed and stored when the axis
is displayed. Therefore, the X and Y axes must always be the Ąrst
elements that are drawn when the sketch is updated, as shown in
Figure 6.4.

6.4.3 Highlighting System

When the user is hovering the mouse over a nested glyph in the ex-
panded cell, we want elements corresponding to this glyph to be high-
lighted, as illustrated in Figure 3.5. The glyphs are drawn using values

57



6. Implementation

stored in ExpandedData. However, the elements to be highlighted are
based on MatrixData or the object hierarchy in DataContainer. The key
problem with implementing the highlighting system was to connect
these data structures.

As a solution, I propose to use a string identiĄer of a voxel con-
structed according to the hierarchy of the nested glyph structure:
location_patientID_brainstate_time_voxelID. The disadvantage of this ap-
proach is the fact that themetadata cannot contain the underscore char-
acter. However, this can be easily ensured when reading the header
Ąle. Using the string identiĄer, the subset of voxels to be highlighted
can be easily determined simultaneously as the nested glyph structure
is displayed.

When drawing the glyph element, its absolute position on the
sketch is determined. Using this position, it is then trivial to Ąnd out
whether the mouse cursor is hovering over it. If so, the only other
glyphs that the mouse can possibly be hovering over are the ones
nested in the glyph currently being drawn. For instance, when the
mouse hovers over a glyph representing the patient P900 nested in
the glyph representing voxels located in the left prefrontal area, the
voxels in the corresponding subset will be represented by identiĄers
starting with Şleft prefrontal_P900Ť.

Given the array of identiĄers ids_to_highlight and supposingmouse
interaction has been detected over the glyph representing the patient
pt and voxels in the location l, the array can be simply reduced to the
desired subset of voxels using the JavaScript Array method filter [62]:

ids_to_highlight = ids_to_highlight.filter(function(id){

var ref_id = expanded_data[l].voxel_loc + "_" +

expanded_data[l].patients[pt].patient_id;

return id.startsWith(ref_id);

});

When such Ąltering is performed at every level of the nested glyph
structure where mouse interaction was detected, we are left with the
subset of voxels that will be highlighted. It is then simple to set the
highlighted property of the corresponding voxels in MatrixData, based
on their voxel ID (the last part of the identiĄer string). Using this prop-
erty, the corresponding rows in the data table and the corresponding
spectral curves in the matrix view are highlighted.

58



6. Implementation

To set the properties inside DataContainer (see Figure 5.2), it is
also beneĄcial to use the string identiĄer. For an illustration, let us
consider the case where we highlight the voxels in the location V1
of patients p1 and p2, i.e., the mouse is hovering over the top-level
glyph in Figure 5.6, but not over the glyphs nested inside of it. It is not
possible to show data of two patients at once in the left panel, so the
displayed_patient property would be set to one of the two patients and
the other’s selector element will be highlighted.

Using the string identiĄer, it is simple to determine which patient
will be displayed. Having the array of identiĄers, a list of patient IDs,
whose voxels are highlighted, is easily obtained. If the ID of the patient
that is currently displayed is found inside the list, the displayed_patient
remains unchanged. Otherwise, it is changed to the Ąrst patient in the
list. For all the other Patient objects, the highlighted property is set to
true if their ID is found in the list.

Then, we can construct a list of acquisitions (identiĄed by the
time and brain state) of the displayed patient, containing highlighted
voxels. In a similar way, the displayed_timepoint and displayed_state are
determined, and the highlighted property of the remaining BrainState
objects corresponding to the list is set as true.

Finally, we obtain a list of voxel IDs of the given patient (dis-
played_patient) during the given acquisition (displayed_timepoint, dis-
played_state) that are highlighted, determine the displayed_voxel, and set
the highlighted property as true for all the other Voxel objects. Note that
with the displayed_voxel property, the anatomical image will change as
well.

59





7 Conclusion and Future Work

SpectraMosaic is currently a fully functional prototype that allows
for the exploration of variance of metabolite concentration ratios in
data acquired by magnetic resonance spectroscopy (MRS). My work,
focused on the implementation of this application, took place mainly
during my Erasmus exchange semester at the University of Bergen as
a part of the research project led by Laura Garrison [1], in cooperation
with Mohn Medical Imaging and Visualization Centre in Bergen.

7.1 Summary

In Chapter 1, I have described the principles of magnetic resonance
spectroscopy, the standard ways of processing spectroscopic data and
the tasks our application aims to support. These tasks are centered
around the exploratory analysis of metabolite concentration ratios
in MRS data, and the subsequent tracking of the variance of these
ratios across time, various locations in the brain, varying state of brain
activity or across different patients. Subsequently, I described the
requirements for our application, discussed the related work relevant
to our project in Chapter 2, and came to the conclusion that no existing
tool that we are aware of could fully support the tasks speciĄed in
this project, but many of the discussed work can serve as a source
of inspiration for our project. These include not only previous work
related to the spectroscopic data, but also other work in the realms of
heterogeneous data visualization and unit and tabular visualization.

Next, in Chapter 3, I described the interface and visualization de-
sign provided mainly by Laura Garrison, and addressed the changes
that were made during the implementation process. These changes
were only minor as the functional prototype served mainly for the
evaluation of the design choices and as a foundation for further de-
velopment. In Chapter 4, I provided the rationale for the choice of a
single-page web-based application as the platform suitable for this
application. The web-based solution was requested as it does not re-
quire the installation of any additional software, and I have chosen
the single-page approach as it is efficient in terms of network usage
and response time for smaller-scale projects as this one.

61



7. Conclusion and Future Work

Then, I have divided the application’s functionality with respect
to the implementation into four system components, which served
as a framework for the description of the underlying data processes
and computations in Chapter 5. These include the normalization of
the data values so that they can be efficiently displayed and remain
mutually comparable, computation of integrals of the spectral curves
and their transformed ratio value that can be simply mapped to a
symmetric diverging color gradient. Finally, in Chapter 6, I have ad-
dressed the speciĄcs of the implementation of this application. I have
discussed the choice of p5.js as the suitable tool for displaying the
main interface components, as it is based on the idea of ŞsketchingŤ,
which is consistent with the design process in this project.

The speciĄcations of the tasks and requirements, along with the
discussion of some of the related work, the proposed design, and the
results of the evaluation of the implemented prototype (addressed
here in Section 7.2) were included in the design study, presented at
the 9th EG Workshop on Visual Computing for Biology and Medicine
in September 2019 in Brno [1].

7.2 Evaluation and Future Directions

The Ąnal prototype was evaluated in two case studies conducted by
Laura Garrison, using a dataset from the area of neuroinĆammation
research. Three volunteer participants from the hospital research en-
vironment took part, provided feedback and suggested possible im-
provements and additional features [1].

The feedback we received was mostly positive, highlighting the
comfortable use of the drag-and-drop features, the aligned display
of metabolite ratios in the matrix view, and generally stating that
this application would augment their workĆow, especially in the case
of group comparison [1]. As a possible improvement, there was a
suggestion to allow selecting between the axial, coronal, and sagittal
anatomical image (see Chapter 5) to be shown in the left panel. Ev-
ery user also indicated an interest in the possibility of exporting the
metabolite ratios displayed in the heatmap into a CSV Ąle that would
be used for a subsequent statistical analysis [1].

62



7. Conclusion and Future Work

A drawback of the current approach of quantifying metabolite con-
centrations as peak integrals is the fact that we are not able to properly
quantify the concentration of a metabolite that is represented by mul-
tiple peaks [1]. Given that the standard software for processing MR
spectra, such as LCModel or Tarquin, is capable of such quantiĄcation
[14, 16], it would be beneĄcial to make the quantiĄcation of metabolite
concentrations a step in the preprocessing stage, and use the resulting
values instead of computing the peak integrals. However, the possibil-
ity to see the spectral curves was mentioned as important [1], and by
simply replacing the spectral curves with quantiĄed metabolite ratios,
this possibility would be lost, so the improvement would require a
more substantial change in the design.

Another drawback lies in the Ąxed limit values of the color map-
ping scale. So far, the diverging color mapping is effective for explor-
ing larger differences, but even slight variations, represented by ratios
close to 1, are meaningful to explore in certain cases [1]. Therefore, a
user-deĄned color mapping system would be beneĄcial.

In addition, a suggestion was made that this tool would be useful
for the visualization of large cohort data. For this purpose, it would be
necessary to divide the data into groups, and then treat the groups in a
similar way individual voxels are treated at the moment [1]. This pro-
vides the opportunity for a feature that would allow the user to create
some groups manually, while other would be created automatically
based on the associated metadata.

Finally, once the application is ready to be used in clinical practice
or hospital research, it would be beneĄcial to load the data from a
local server, instead of having to store them in a Ąrmly given directory
structure and then load them manually. This way, the privacy require-
ments would still be met, but the application would be well integrated
into a set of tools available in the hospital environment.

63



7. Conclusion and Future Work

7.3 Conclusion

SpectraMosaic proved to be a tool that is capable of augmenting
the workĆow of researchers working with magnetic resonance spec-
troscopy data. It is efficient for displaying the variance of metabolite
concentration ratios in the spectra, and fully supports the tasks of the
exploratory analysis. Within the scope of this thesis, I was involved
in the iterative development and implementation of this application.
The resulting prototype was fully functional, proved to be useful for
testing the efficiency of the design choices, and is a good foundation
for future development and a continued work on this project.

64



Bibliography

1. GARRISON, Laura; VAŠIČEK, Jakub; GRÜNER, Renate; SMIT,
Noeska; BRUCKNER, Stefan. SpectraMosaic: An Exploratory
Tool for the Interactive Visual Analysis of Magnetic Resonance
Spectroscopy Data. In: Proceedings of 9th EG Workshop on Visual
Computing for Biology and Medicine (VCBM). 2019.

2. CASTILLO, Mauricio; KWOCK, Lester; MUKHERJI, Suresh K.
Clinical applications of protonMR spectroscopy.American journal
of neuroradiology. 1996, vol. 17, no. 1, pp. 1Ű15.

3. YOUSEM, David M; GROSSMAN, Robert I. Neuroradiology: the
requisites. 4th ed. Elsevier Health Sciences, 2017.

4. GRAAF, Marinette van der. In vivo magnetic resonance spec-
troscopy: basic methodology and clinical applications. European
Biophysics Journal. 2010, vol. 39, no. 4, pp. 527Ű540.

5. FRIEBOLIN, Horst; BECCONSALL, Jack K. Basic one-and two-
dimensional NMR spectroscopy. 3rd ed. VCH Weinheim, 1998.

6. MACOMBER, Roger S. A complete introduction to modern NMR
spectroscopy. Wiley New York, 1998.

7. PREIM, Bernhard; BOTHA, Charl P.Visual computing for medicine:
theory, algorithms, and applications. Newnes, 2013.

8. LINDON, John C; TRANTER, George E; KOPPENAAL, David.
Encyclopedia of spectroscopy and spectrometry. Academic Press, 2016.

9. Single Voxel Spectroscopy [online]. Erlangen: Siemens Healthi-
neers Global, 2020 [visited on 2020-03-27]. Available from: https:

/ / www . siemens - healthineers . com / magnetic - resonance -

imaging / options - and - upgrades / clinical - applications /

single-voxel-spectroscopy.

10. RICHARDS, Todd L et al. Effects of a phonologically driven
treatment for dyslexia on lactate levels measured by proton MR
spectroscopic imaging. American Journal of Neuroradiology. 2000,
vol. 21, no. 5, pp. 916Ű922.

65

https://www.siemens-healthineers.com/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/single-voxel-spectroscopy
https://www.siemens-healthineers.com/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/single-voxel-spectroscopy
https://www.siemens-healthineers.com/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/single-voxel-spectroscopy
https://www.siemens-healthineers.com/magnetic-resonance-imaging/options-and-upgrades/clinical-applications/single-voxel-spectroscopy


BIBLIOGRAPHY

11. DER GRAAF, Marinette van; HEERSCHAP, Arend, et al. Com-
mon processing of in vivo MR spectra. NMR in biomedicine. 2001,
vol. 14, no. 4, pp. 224.

12. VANDERGRAAFF, MM et al. MR spectroscopy Ąndings in early
stages of motor neuron disease. American journal of neuroradiology.
2010, vol. 31, no. 10, pp. 1799Ű1806.

13. BREHMER, Matthew; MUNZNER, Tamara. A multi-level typol-
ogy of abstract visualization tasks. IEEE transactions on visualiza-
tion and computer graphics. 2013, vol. 19, no. 12, pp. 2376Ű2385.

14. PROVENCHER, Stephen W. Estimation of metabolite concen-
trations from localized in vivo proton NMR spectra. Magnetic
resonance in medicine. 1993, vol. 30, no. 6, pp. 672Ű679.

15. WAGENINGEN, Heidi van; JØRGENSEN, Hugo A; SPECHT,
Karsten; HUGDAHL, Kenneth. A 1H-MR spectroscopy study
of changes in glutamate and glutamine (Glx) concentrations in
frontal spectra after administration of memantine. Cerebral Cortex.
2010, vol. 20, no. 4, pp. 798Ű803.

16. WILSON, Martin; REYNOLDS, Greg; KAUPPINEN, Risto A;
ARVANITIS, Theodoros N; PEET, Andrew C. A constrained
least-squares approach to the automated quantitation of in vivo
1H magnetic resonance spectroscopy data. Magnetic resonance in
medicine. 2011, vol. 65, no. 1, pp. 1Ű12.

17. MULLINS, Paul G; MCGONIGLE, David J; O’GORMAN, Ruth
L; PUTS, Nicolaas AJ; VIDYASAGAR, Rishma; EVANS, C John;
EDDEN, Richard AE, et al. Current practice in the use of MEGA-
PRESS spectroscopy for the detection of GABA.Neuroimage. 2014,
vol. 86, pp. 43Ű52.

18. PURVIS, Lucian AB; CLARKE, William T; BIASIOLLI, Luca;
VALKOVIČ, Ladislav; ROBSON,MatthewD; RODGERS, Christo-
pher T. OXSA: An open-source magnetic resonance spectroscopy
analysis toolbox in MATLAB. PloS one. 2017, vol. 12, no. 9.

19. STEFAN, DDCF et al. Quantitation of magnetic resonance spec-
troscopy signals: the jMRUI software package.Measurement Sci-
ence and Technology. 2009, vol. 20, no. 10, pp. 104035.

66



BIBLIOGRAPHY

20. CRANE, Jason C; OLSON, Marram P; NELSON, Sarah J. SIVIC:
open-source, standards-based software for DICOM MR spec-
troscopy workĆows. International journal of biomedical imaging.
2013, vol. 2013.

21. FENG, David; LEE, Yueh; KWOCK, Lester; TAYLOR, Russell M.
Evaluation of glyph-based multivariate scalar volume visualiza-
tion techniques. In: Proceedings of the 6th Symposium on Applied
Perception in Graphics and Visualization. 2009, pp. 61Ű68.

22. FENG, David; KWOCK, Lester; LEE, Yueh; II, Russell M. Taylor.
Linked exploratory visualizations for uncertain MR spectroscopy
data. In: PARK, Jinah; HAO,Ming C.;WONG, Pak Chung; CHEN,
Chaomei (eds.). Visualization and Data Analysis 2010. SPIE, 2010,
vol. 7530, pp. 33Ű44. Available from DOI: 10.1117/12.839818.

23. NUNES,Miguel; ROWLAND, Benjamin; SCHLACHTER,Matthias;
KEN, Soléakhéna; MATKOVIC, Kresimir; LAPRIE, Anne; BÜH-
LER, Katja. An integrated visual analysis system for fusing MR
spectroscopy and multi-modal radiology imaging. In: 2014 IEEE
conference on visual analytics science and technology (VAST). 2014,
pp. 53Ű62.

24. MATKOVIC, Kresimir; FREILER, Wolfgang; GRACANIN, Denis;
HAUSER, Helwig. Comvis: A coordinated multiple views sys-
tem for prototyping new visualization technology. In: 2008 12th
international conference information visualisation. 2008, pp. 215Ű220.

25. WOLF, Ivo; VETTER, Marcus; WEGNER, Ingmar; NOLDEN,
Marco; BOTTGER, Thomas; HASTENTEUFEL, Mark; SCHOB-
INGER,Max; KUNERT, Tobias; MEINZER, Hans-Peter. Themed-
ical imaging interaction toolkit (MITK): a toolkit facilitating the
creation of interactive software by extending VTK and ITK. In:
Medical Imaging 2004: Visualization, Image-Guided Procedures, and
Display. 2004, vol. 5367, pp. 16Ű27.

26. MARINO, Joseph; KAUFMAN, Arie. Prostate cancer visualiza-
tion fromMR imagery and MR spectroscopy. In: Computer Graph-
ics Forum. 2011, vol. 30, pp. 1051Ű1060. No. 3.

67

https://doi.org/10.1117/12.839818


BIBLIOGRAPHY

27. AMIRKHANOV, Artem; FRÖHLER, Bernhard; KASTNER, Jo-
hann; GRÖLLER, Eduard; HEINZL, Christoph. InSpectr: Multi-
Modal Exploration, Visualization, and Analysis of Spectral Data.
In: Computer Graphics Forum. 2014, vol. 33, pp. 91Ű100. No. 3.

28. BRUCKNER, Stefan; MÖLLER, Torsten. Isosurface similarity
maps. In: Computer Graphics Forum. 2010, vol. 29, pp. 773Ű782.
No. 3.

29. MEYER,Miriah;WONG, Bang; STYCZYNSKI,Mark;MUNZNER,
Tamara; PFISTER, Hanspeter. Pathline: A tool for comparative
functional genomics. In: Computer Graphics Forum. 2010, vol. 29,
pp. 1043Ű1052. No. 3.

30. MEYER, Miriah; MUNZNER, Tamara; DEPACE, Angela; PFIS-
TER, Hanspeter. MulteeSum: a tool for comparative spatial and
temporal gene expression data. IEEE transactions on visualization
and computer graphics. 2010, vol. 16, no. 6, pp. 908Ű917.

31. STOPPEL, Sergej; HODNELAND, Erlend; HAUSER, Helwig;
BRUCKNER, Stefan. Graxels: Information Rich Primitives for the
Visualization of Time-Dependent Spatial Data. In: Proceedings of
VCBM 2016. Bergen, Norway, 2016, pp. 183Ű192. Available from
DOI: 10.2312/vcbm.20161286.

32. PARK, Deokgun; DRUCKER, Steven M; FERNANDEZ, Roland;
ELMQVIST, Niklas. Atom: A grammar for unit visualizations.
IEEE transactions on visualization and computer graphics. 2017, vol. 24,
no. 12, pp. 3032Ű3043.

33. NEURATH, Otto. International Picture Language. The First Rules of
Isotype: With Isotype Pictures. Kegan Paul & Company, 1936.

34. BERTIN, Jacques. Semiology of graphics; diagrams networks maps.
University of Wisconsin Press, 1983.

35. PERIN, Charles; DRAGICEVIC, Pierre; FEKETE, Jean-Daniel.
Revisiting bertin matrices: New interactions for crafting tabu-
lar visualizations. IEEE transactions on visualization and computer
graphics. 2014, vol. 20, no. 12, pp. 2082Ű2091.

68

https://doi.org/10.2312/vcbm.20161286


BIBLIOGRAPHY

36. RAO, Ramana; CARD, Stuart K. The table lens:merging graphical
and symbolic representations in an interactive focus+ context
visualization for tabular information. In: Proceedings of the SIGCHI
conference on Human factors in computing systems. 1994, pp. 318Ű
322.

37. ROBERTS, J.C.; HEADLEAND, C.; RITSOS, P.D. Sketching De-
signs Using the Five Design-Sheet Methodology. Visualization
and Computer Graphics, IEEE Transactions on. 2015, vol. PP, no. 99,
pp. 1Ű1. ISSN 1077-2626. Available from DOI: 10.1109/TVCG.

2015.2467271.

38. KINDLMANN, Gordon; SCHEIDEGGER, Carlos. An algebraic
process for visualization design. IEEE transactions on visualization
and computer graphics. 2014, vol. 20, no. 12, pp. 2181Ű2190.

39. POSSE, Stefan; OTAZO, Ricardo; DAGER, Stephen R; ALGER,
Jeffry. MR spectroscopic imaging: principles and recent advances.
Journal ofMagnetic Resonance Imaging. 2013, vol. 37, no. 6, pp. 1301Ű
1325.

40. GARRISON, Laura; VAŠIČEK, Jakub; GRÜNER, Renate; SMIT,
Noeska; BRUCKNER, Stefan.Proceedings of the EuroVis Conference -
Posters (EuroVis ’19). A Visual Encoding System for Comparative
Exploration of Magnetic Resonance Spectroscopy Data [Poster
presented at the EuroVis conference 2019]. 2019.

41. SHNEIDERMAN, Ben. The eyes have it: A task by data type
taxonomy for information visualizations. In: Proceedings 1996
IEEE symposium on visual languages. 1996, pp. 336Ű343.

42. RICCA, F.; TONELLA, P. Analysis and testing of Web applica-
tions. In: Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001. 2001, pp. 25Ű34.

43. MIKOWSKI, Michael; POWELL, Josh. Single page web applications:
JavaScript end-to-end. Manning Publications Co., 2013.

44. VORA, Pawan.Web application design patterns. Morgan Kaufmann,
2009.

69

https://doi.org/10.1109/TVCG.2015.2467271
https://doi.org/10.1109/TVCG.2015.2467271


BIBLIOGRAPHY

45. GANGLBERGER, Florian; SWOBODA, Nicolas; FRAUENSTEIN,
Lisa; KACZANOWSKA, Joanna; HAUBENSAK, Wulf; BÜHLER,
Katja. BrainTrawler: A visual analytics framework for iterative ex-
ploration of heterogeneous big brain data. Computers & Graphics.
2019, vol. 82, pp. 304Ű320.

46. SCHLACHTER, Matthias; RAIDOU, Renata Georgia; MUREN,
Ludvig P; PREIM, Bernhard; PUTORA, Paul Martin; BÜHLER,
Katja. State-of-the-Art Report: Visual Computing in Radiation
Therapy Planning. In: Computer Graphics Forum. 2019, vol. 38,
pp. 753Ű779. No. 3.

47. JOURDAIN, Sebastien; AYACHIT, Utkarsh; GEVECI, Berk. Par-
aViewWeb: A Web Framework for 3D Visualization and Data
Processing. IADIS international conference on web virtual reality and
three-dimensional worlds. 2010, vol. 7.

48. CROW, Franklin C. Summed-area tables for texture mapping. In:
Proceedings of the 11th annual conference on Computer graphics and
interactive techniques. 1984, pp. 207Ű212.

49. Grid system [online]. Bootstrap, 2020 [visited on 2020-05-12].
Available from: https://getbootstrap.com/docs/4.0/layout/

grid/.

50. gridster.js [online]. Ducksboard, 2020 [visited on 2020-05-12].
Available from: http://dsmorse.github.io/gridster.js/.

51. File and Directory Entries API [online]. Mountain View, CA: MDN
Web Docs, 2013Ű2019 [visited on 2020-05-10]. Available from:
https://developer.mozilla.org/en-US/docs/Web/API/File_

and_Directory_Entries_API.

52. File and Directory Entries API [online]. W3C Community Group,
2020 [visited on 2020-05-15]. Available from: https://wicg.

github.io/entries-api/.

53. PARKER, Daniel. JavaScript with Promises: Managing Asynchronous
Code. "O’Reilly Media, Inc.", 2015.

54. JOSEFSSON, Simon et al. The base16, base32, and base64 data en-
codings. 2006. Technical report. RFC 4648, October.

55. p5.js reference [online]. Processing Foundation, 2020 [visited on
2020-05-11]. Available from: https://p5js.org/reference/.

70

https://getbootstrap.com/docs/4.0/layout/grid/
https://getbootstrap.com/docs/4.0/layout/grid/
http://dsmorse.github.io/gridster.js/
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API
https://developer.mozilla.org/en-US/docs/Web/API/File_and_Directory_Entries_API
https://wicg.github.io/entries-api/
https://wicg.github.io/entries-api/
https://p5js.org/reference/


BIBLIOGRAPHY

56. FileReader [online]. Mountain View, CA: MDN Web Docs, 2013Ű
2019 [visited on 2020-05-11]. Available from: https://developer.

mozilla.org/en-US/docs/Web/API/FileReader.

57. BOSTOCK, Michael; OGIEVETSKY, Vadim; HEER, Jeffrey. D3

data-driven documents. IEEE transactions on visualization and
computer graphics. 2011, vol. 17, no. 12, pp. 2301Ű2309.

58. REAS, Casey; FRY, Ben. Processing: a programming handbook for
visual designers and artists. Mit Press, 2007.

59. FRY, Ben. Visualizing data: Exploring and explaining data with the
processing environment. "O’Reilly Media, Inc.", 2008.

60. MCCARTHY, Lauren; REAS, Casey; FRY, Ben. Getting Started
with P5. js: Making Interactive Graphics in JavaScript and Processing.
Maker Media, Inc., 2015.

61. GROSS, Benedikt; BOHNACKER, Hartmut; LAUB, Julia; LAZZE-
RONI, Claudius. Generative Design: Visualize, Program, and Create
with JavaScript in p5. js. Chronicle Books, 2018.

62. Array [online]. Mountain View, CA: MDN Web Docs, 2013Ű2020
[visited on 2020-05-13]. Available from: https://developer.

mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_

Objects/Array.

71

https://developer.mozilla.org/en-US/docs/Web/API/FileReader
https://developer.mozilla.org/en-US/docs/Web/API/FileReader
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array




A Low-Ądelity Prototype: Design Sheets

Below are the Ąve sketches drawn by Laura Garrison during the
low-Ądelity prototyping phase, created using the Five Design-Sheets
methodology [37].

73



A. Low-fidelity Prototype: Design Sheets

Figure A.1: Design sheet no. 1

74



A. Low-fidelity Prototype: Design Sheets

Figure A.2: Design sheet no. 2

75



A. Low-fidelity Prototype: Design Sheets

Figure A.3: Design sheet no. 3

76



A. Low-fidelity Prototype: Design Sheets

Figure A.4: Design sheet no. 4

77



A. Low-fidelity Prototype: Design Sheets

Figure A.5: Design sheet no. 5

78


	Introduction
	Project Context, Task Specification
	 Magnetic Resonance Spectroscopy (MRS)
	 NMR Spectroscopy Basics
	 MRS Terminology
	 Data Processing Steps

	 Data Analysis
	 Visualization tasks
	 Requirements


	Related Work
	 Standard Tools to View MRS Data
	 Standard Processing of MR Spectra
	 Advanced MRS Data Analysis

	 Related Visualization Research
	 Visualization Research Related to Spectroscopy
	 Multidimensional and Heterogeneous Data Visualization
	 Tabular and Unit Visualization


	Interface and Visualization Design
	 Interface Components
	 Left Panel: Data Overview
	 Right Panel: Metabolite Ratio Map

	 Interaction
	 Interactions in the Left Overview
	 Interactions in the Matrix View
	 Linking the Two Views


	System Design
	 Benefits of a Web-based Application
	 Single-page Application
	 Client Application Components

	Computations and Data Processes
	 Input Format and Loading
	 Required Format and Structure of Input
	 Loading Process

	 Data Structures
	 Integral and Ratio Computation
	 Peak Integral Ratios
	 Subset-aggregated and Individual Ratios


	Implementation
	 Source Files
	 Layout of the Page
	 Implementation of System Components
	 Data Input
	 Main Panels as p5.js Canvas

	 Interaction
	 Selecting a Voxel for the Analysis
	 Adjusting the Matrix View
	 Highlighting System


	Conclusion and Future Work
	 Summary
	 Evaluation and Future Directions
	 Conclusion

	Bibliography
	Low-fidelity Prototype: Design Sheets

