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Abstrakt

Diplomova prace se zabyva studiem genové regulace v Clostridium beijerinckii NRRL B-598,
pro nasledné odvozeni genové regulacni sité bakterie C. beijerinckii NRRL B-598.
V teoretické Casti této prace je uvedena obecnd nomenklatura problematiky genové
regulace se zaméfenim na nomenklaturu genovych regulacnich siti. Nasledné jsou zde
popsané laboratorni metody, slouzici pro ziskani vhodnych dat popisujici expresi genti. Tato
data jsou zadkladem pro studium genové regulace a navrhy genovych regulacnich siti. Prace
se zaméfuje predevsim na technologii RNA-Seq a stru¢ny popis laboratornich dat ziskanych
ze zminéné bakterie C. beijerinckii NRRL B-598. V praktické Casti se prace zabyva
predzpracovanim téchto surovych laboratornich dat a ndslednym studiem genové regulace
se zamérenim na odvozeni operond a vytvoreni prvnich genovych regulacnich siti pomoci
riznych pristupt pro C. beijerinckii NRRL B-598.

Klicova slova
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Abstract

The master’s thesis deals with the study of gene regulatory in Clostridium beijerinckii
NRRL B-598 for inference gene regulatory network for C. beijerinckii NRRL B-598.
The theoretic part describes basic nomenclature gene regulatory with the main focus on
gene regulatory networks nomenclature. Laboratory methods which serve to obtain
suitable gene describing express data are described there. These data are based on the study
of gene regulatory and inference gene regulatory networks. The thesis is mainly focused on
the RNA-Seq technology and brief description of laboratory data which were gathered using
the strain C. beijerinckii NRRL B-598. In the practical part of the thesis pre-processing
of these raw laboratory data and following gene regulatory research is performed which
focuses on inference operons and creating first gene regulatory networks for C. beijerinckii
NRRL B-598 using different approaches.
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Gene regulatory, Gene regulatory network, Clostridium beijerinckii, RNA-Seq,
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Rozsireny abstrakt

V dnesni dobé je kladen velky dliraz na vyrobu biopaliv jako obnovitelnych zdroja
kvili stale vétsi snaze o ochranu Zivotniho prostiedi. VyuzZiti bakterii produkujicich
butanol by mohlo byt revolu¢nim ekologickym reSenim. Kmen Clostridium
beijerinckii NRRL B-598 je zndmy jako producent butanolu a jeho genotyp i fenotyp
je jiz za rliznych podminek dobte popsany. Nicméné spojeni téchto dvou piistupt,
které umozni popis mechanismu genové regulace chybi.

Diplomova prace, Genova regulace v Clostridium beijerinckii NRRL B-598, je
zamérena na vytvoreni genové regulacni sité pro C. beijerinckii NRRL B-598. Genova
regulacni sit' slouzi pravé pro popis a snadnéjsi pochopeni rizeni genové exprese
v jednotlivych organismech.

Mezi soucasné hlavni vyzvy voblasti systémové biologie patii studium
genovych regulaci spolecné s popisem nemodelovych organismt. Tyto hlavni cile
systémové biologie jsou novodobé feseny in silico pomoci algoritmi zaloZenych na
principech strojového uceni. JelikoZ se jedna o kombinaci bioinZenyrstvi s umélou
inteligenci, je prace pro snadnéjsi pochopeni tohoto Sirokého spektra rozlozena do
péti hlavnich kapitol, znichz prvni tfi lze povaZovat za souhrn potiebnych
teoretickych znalosti a nasledné dvé popisuji prakticky vyzkum analyzy genovych
expresnich dat z kmene C. beijerinckii NRRL B-598.

Prvni kapitola se zabyva obecnou nomenklaturou genové regulace se
zamérenim na modelovani genovych regulacnich siti. Jedna se o strucny, avsak
dilezity ivod do dané problematiky slouzici pro snadnéjsi orientaci v praci. Dale
zde nalezneme shrnuti potifebnych teoretickych znalosti s rozdélenim do oblasti
statického a dynamického modelovani genovych regulacnich siti.

Druha kapitola se zamétuje na popis ziskavani laboratorni dat, ktera slouZi pro
analyzu genové exprese. Jedna se predevsim o popis sekvenacnich metod vyuzivajici
se vsoucasné dobé. Hlavni diiraz je kladen na objasnéni sekvenacni metody
[llumina, jelikoZ praveé touto metodou jsou ziskana data, kterd nasledné analyzujeme
v této praci. Popis laboratornich metod se piedevsim zaméruje na zisk RNA-Seq dat
slouzici pro popis transkriptomu. V zavéru druhé kapitoly je stru¢ny avsak
specificky uvod do mikrobiologie zaméieny na kmen C. beijerinckii NRRL B-598,
z néhoZ jsou nasnimana konkrétni RNA-Seq data, ktera jsou zde zevrubné popsana.

Treti ¢ast uvadi zakladni piehled algoritmi pouZivanych v soucasné dobé pro
odvozeni siti se zamérenim na problematiku genové regulace. Algoritmy jsou
zaloZeny na principech strojového uceni. Celda kapitola je vyrazné inspirovana
metodami, které byly odvozeny v ramci projektu DREAM4, jehoZ hlavnim cilem bylo
odvozeni simulace genovych regulacnich siti a predikace genové exprese. JelikoZ se
jedna o naro¢nou problematiku, ktera je v dneSni dobé ovSem zakladem pro
studium genové regulace, je tato kapitola rozdélena do péti ¢asti, v nichZ kazda ¢ast
je vyhrazena pro metody zaloZené na jednom principu strojového uceni.



Nasleduji kapitoly, ve kterych je popsan provedeny vyzkum genové exprese
zaméreny na bakteridlni kmen C. beijerinckii NRRL B-598. Prakticka cast je
rozdélena na dvé hlavni kapitoly, konkrétné do Ctvrté a paté kapitoly. Obé casti jsou
vSak pro snadnéjsi pochopeni systematicky rozdélené po jednotlivych krocich
provadéné analyzy.

Ctvrta kapitola pojednava o predzpracovani surovych laboratornich RNA-Seq
dat. Surova laboratorni RNA-Seq data jsou velmi obsahla a jejich zpracovani je
vypoCetné narocné. Celd tato cast prace vyuzivala vypocetni virtualni zdroje
MetaCentrum. Podle postupu dodrzujici vSeobecné podminky pro zpracovani
RNA-Seq dat byly vytvoreny shell-skripty, které jsou reprodukovatelné i pro
zpracovani jinych surovych laboratornich RNA-Seq dat pro razné bakteridlni
kmeny.

Postup predzpracovani surovych laboratornich RNA-Seq dat je rozdélen do
Sesti Casti. Prvni krok zahrnuje vygenerovani reportu kvality nasnimanych dat,
ktery je ndsledné srovnavan s reporty vygenerovanych béhem a po predzpracovani
RNA-Seq dat. Pro vytvareni reportu kvality jsme pouZili FastQC, aplikaci vytvorenou
pro kontrolu kvality dat ziskanych z vysoce vykonného sekvenovani. Vystup z této
aplikace je report ve formatu HTML, kde je uZivatelsky priznivé umoZnén
interaktivni pohled na kvalitu nasnimanych dat. Podrobnéjsi piehled tykajici
se HTML reportli naleznete v Kkapitole 4.1, kde je odkazovano na pftiloZenou
elektronickou piilohu HTML reportt z piredzpracovanych dat.

Dals$imi dtlezitymi kroky v ramci predzpracovani RNA-Seq dat jsou filtrace
ribozomalni RNA (rRNA), trimovani dat a mapovani Cteni k referen¢nimu genomu.
VSechny tyto kroky jsou popsany v kapitolach 4.2 az 4.5. Po kazdém kroku byl
vyhotoven HTML report, pro ovéreni spravnosti provedeného kroku. Cely postup
predzpracovani byl implementovan do shell skriptl. Vystupem z vytvoienych shell
skriptd jsou data ve formatu BAM, kterd jsou dale zpracovana programovacim
jazykem R do formatu ‘count table’ pomoci dvou riznych pristupt. Diky tomuto
kroku si vytvorime dva typy datasetii zaloZenych na odliSném pristupu, ale stejnych
datech, které dale porovnavame a tim ovérujeme spravnosti provedenych analyz.

Poslednim krokem pfi predzpracovani bylo nutno provést normalizaci dat.
V této praci jsme provedli tzv. RPKM normalizaci dat, ktera je v dnesni dobé velmi
popularni, nicméné neni dokonala, jelikoz se prili§ spoléha na neomezeny
dynamicky rozsah dat a proto byl ndasledné implementovan i jiny zptlisob
normalizace dat zaloZeny na negativnim bionickém rozdéleni, tzv. DeSeqZ2. V dalsich
Castech prace dale pracujeme sDeSeq2 normalizovanymi daty. Obé tyto
normalizace byly implementovany do programovaciho jazyka R a byly vytvoreny R
skripty s aplikaci dostupnych funkci ze softwaru Bioconductor.

Vytvoreny toolbox pro zpracovani surovych laboratornich RNA-Seq dat byl
aplikovan na RNA-Seq data ziskana z kmene C. beijerinckii NRRL B-598. Diky
ziskanému vicedimenzionalnimu datasetu jsme pro vizualizaci zvolili analyzu
hlavnich komponent (PCA). Vysledna zobrazeni jsou popsana v kapitole 4.6
auvedena v priloze Attachment B], Attachment C] a Attachment D]. Vysledna



zobrazeni uvedena v priloze Attachment B], Attachment C] a Attachment D] jsou
diikazem splnéni teoretickych predpokladl o spravnosti a reprodukovatelnosti
vytvoreného toolboxu, jelikoZz kontrolni vzorky, které byly snimané za stejnych
podminek, avSak pri jinych experimentech, vytvorili shluky. Po ovéreni
reprodukovatelnosti vytvoreného toolboxu, sloZzeného z shell skripti a z R skriptf,
byl toolbox nahrdan pro verejnou dostupnost na github pod
/JanaSchwarzerova/Analytical-pipeline-rawRNA-Seq.

Posledni ¢ast diplomové prace popisuje vyzkum genové regulace zaloZeny
na expresnich datech z C. beijerinckii NRRL B-598, jedna se o patou kapitolu.
Tato kapitola je rozdélena do tii hlavnich ¢asti. Prvni ¢ast se zaméruje na odvozeni
operond. Operony popisované vnemodelovych organismech, jsou casto
odvozovany pouze pomoci programil zaloZenych na prohledavani databazi
¢i novodobéjSim pristupu programii zaloZenych na predikaci pomoci algoritmi
strojového ucenti jako je online softwarovy nastroj Operon-Mapper. V této praci byl
vytvoren postup implementovany v jazyce R, ktery kombinuje ziskanou informaci
o predikaci operonii zjiz zminovaného dostupného online ndastroje Operon-
Mapperu a informaci ziskanou z nasnimanych a zpracovanych expresnich RNA-Seq
dat. Celkem jsme identifikovali 2 737 operont.

Druha cast v paté kapitole se zabyva vytvoirenim co-expresnich siti pro
C. beijerinckii NRRL B-598, které jsou zaloZené na principu pomoci Pearsonova
korela¢niho koeficientu a vzajemné informace. Oba tyto pristupy byly
implementovany v programovacim jazyce R svyuZitim dostupnych nastroji
z Bioconductoru. Vytvoreni siti z datasetu pro vSech 5 276 ziskanych exprimujicich
genovych informaci neni nic vypocetné jednoduchého, a tak i v této ¢asti byl vyuZzit
virtualni vypocetni prostor, MetaCentrum. Co-expresni sité byly vytvorené pro
vSechny datasety obéma pristupy. Tyto sité byly dale zpracovany statickou analyzou
a porovnany v diskuzich mezi sebou.

Nasledné byly vytvoreny prvni genové regulacni sité C. beijerinckii NRRL
B-598, pomoci tfi rlznych pristupu. Prvni piistup byl zaloZen na metodé
bootstrapingu, druhy na stromové metodé uplatnujicich se v algoritmt nahodnych
lesti a treti pomoci metod zaloZenych na diferencidlnich rovnicich. Prvni dva
pristupy byly implementovany v programovacim jazyce R a tieti pristup, ktery je
zaloZen na principu diferencidlnich rovnic byl implementovan v programovacim
prostiedi Matlab R2019b. Znovu byly vytvoreny sité pro vSechny datasety pomoci
vSech pristupt, které byly statisticky analyzovany a srovnany mezi sebou. Kone¢ny
vysledek vznikl sjednoceni vSech pouzitych ptistupli k odvozeni genové regulacni
sité a nasledného priiniku siti vytvorenych pomoci odlisnych datasetii. Jedna se
o prvni genovou regulacni siti pro C. beijerinckii NRRL B-598 tvotrenou z 8 787 hran.
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Introduction

Clostridium beijerinckii NRRL B-598 is a bacterium, which belongs to the group of non-
model organisms. System biology deals with description gene regulatory of organisms
and the main challenge is description of non-model organisms. C. beijerinckii
NRRL B-598 is a relatively well-described butanol producer, which is in demand,
because nowadays there is a focus on sustainable microbial production of bio-based fuels.

The description of gene regulatory is performed by using gene regulatory
networks. The gene regulatory networks are main challenge for explanation how exactly
genomic sequence encodes the regulation of expression of the sets of genes. This thesis
is focused on studying gene regulatory in C. beijerinckii NRRL B-598 which follows
the creation of gene regulatory network for the strain C. beijerinckii NRRL B-598.

The thesis is divided into five parts for easy understanding. In the first part, there
is description generally but important gene regulatory nomenclature. The second part
mentions the laboratory method for gaining suitable data which are basis for proposal
gene regulatory networks. There is the main focus on technologies of RNA-Seq.
The description of laboratory data using the strain C. beijerinckii NRRL B-598 is also
gathered in this part. The third part of the thesis describes the most used methods for
inference gene regulatory networks currently which are usually based on machine
learning principle.

The practical research is described in the fourth and fifth parts. In the fourth part
the used pipeline for pre-processing raw RNA-Seq data and the following evaluation pre-
processing analysis are written. This pipeline is allowed to obtain the same or even higher
information value from RNA-Seq data than microarray data. The final fifth part is focused
to research gene regulatory in C. beijerinckii NRRL B-598 from obtained express values
of pre-processed RNA-Seq data. The first part of the research is focused on inference
operons in C. beijerinckii NRRL B-598. Then co-expression networks were created by
pre-processed RNA-Seq data and in the end of the research gene regulatory networks for

C. beijerinckii NRRL B-598 was derived.
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1 Gene regulatory networks

Gene regulation is a mechanism for controlling which gene gets expressed and at what
level [1]. Gene regulation is a mechanism that operates to induce and repress
the expression of a gene [2]. These mechanisms include structural and chemical changes
to the genetic material, binding of proteins to specific DNA elements to regulate
transcription, or mechanisms that modulate translation of messenger RNA (mRNA).
Each specific regulatory molecule controls a specific gene that is transcribed
into mRNA [2]. These molecules help or block the transcription enzyme, RNA
polymerase. There is a cluster of genes under control of a single promoter that is known
as an operon. Operon [2] is a cluster on the chromosome, where related genes are located.
Gene regulatory networks (GRN) [3] are represented by the -causality
of developmental processes. Their main challenge is to explain exactly how genomic
sequence encodes the regulation of expression of the sets of genes that increasingly
generate developmental patterns and execute the construction of multiple states

of differentiation.

1.1 Basic network terminology

Network represents complex systems which emerges from the orchestrated activity
of many components that interact each other through pairwise interactions [4].
The components are reduced to the series of nodes that are connected to each other by
links, with each link representing the interaction between two components.

Network consists of nodes and links. In formal mathematical language, it is
referred as a graph. GRN has many ways for distribution e.g. we can divide GRN to
bipartite or directional [5]. Bipartite GRN has two types of nodes. One type is a gene and
the others are regulators. Although some genes are regulators of proteins or genes
themselves. Directional means that regulators control genes and often not the other way
around.

Establishing cellular networks is not simple. Physical interaction between
molecules, such as protein-protein, protein-nucleic-acid and so on, can be described
easily. The conceptualization of node-link nomenclature is used there. Nevertheless, more

complex functional interactions can also be used within this representation. For example,
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small-molecule substrates can be envisioned as the nodes of a metabolic network and
the links as the enzyme-catalysing reactions that transform one metabolite into
another [4].

Networks can be directed or undirected [4]. It depends on the interaction between
two nodes, has a well-defined direction, which can be represented, for example
the direction from substrate to a product in a metabolic reaction. These networks are
called directed. In undirected networks, the links do not have an assigned direction.

A B
2

/ y Z
:/ A x// .V'T

4

\

Figure 1: A is undirected network and B is directed network

The degree of node [4] is one of the most important elementary characteristics.
The degree usually refers to & and it tells us how many links the node has to the other
nodes. The degree distribution [4] refers to P(k). It gives the probability that a selected
node has accurately k& links. There is also incoming and outgoing degree. Incoming
degree [4] denotes the number of links which point, to a node. It refers to k. Outgoing
degree [4] refers to ko and denotes the number of links that start from it. In the Figure 1,
we can see two nodes. On the right there is undirected network and on the left we can see
directed network which has nine nodes. The undirected network has node X where degree
is five. In directed network on the left the node X has four incoming degrees and one
outcoming degree.

Biological networks are often scale-free [4]. It depends on their degree distribution
which approximates a power law:

P(k)~ kY. (1)

It indicates ‘proportional to’. The value of y refers to a lot of properties e.g. if y > 3,
the hubs are not relevant. If 2 > y > 3, there is a hierarchy of hubs and when y =2, a hub
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and spoke network emerges. The usual properties of scale-free networks are not valid
only for y < 3. In this situation the dispersion of degree distribution is defined:

o? = (k?) = (k)*, )
where o is diverged and o increases with the number of nodes meaning the series
of unexpected features. It influences high degree of robustness against accidental node
failures. (k) is the average degree.

Path length [4] tells us how many links we need to pass through to travel between
two nodes. Many alternative pathways usually exist — paths between two nodes but there
are one or more of the most important paths, being called the shortest path [4].
The shortest path is mostly the only one and means the path with the smallest number of
links between the selected nodes. The path is connected with distance [4] which
represents /. In directed networks, distance /xy node X to node Y is usually different from
Yto X, it is lyx.

Clustering coefficient [4] is a phenomenon when node X is connected to node Z
and node Z is connected to node P, see Figure 1. Clustering coefficient can be quantified
as:

C,=2n;/k(k—-1), 3)
where C; is clustering, n; is the number of links connecting k, k is a neighbour of node /

to each other.

1.2 Network modelling

The network modelling is characterized by viewing cells in their underlying network
structure at many different levels of detail, it is a cornerstone of systems biology [6]. Two
emerging methodologies in network modelling provide invaluable insights into biological
systems: static large-scale biological network modelling and dynamic quantitative

modelling.

1.2.1 Static large-scale biological network modelling

Static large-scale biological network modelling [6] is focused on integrating, visualizing

and topologically modelling of all kinds of omics data sets which are produced by
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innovative high throughput screening biotechnologies. Static large-scale biological
network modelling includes the following steps.

Firstly, the construction or inference functional biological network from omics
and experimental data. These constructed networks give the whole view of biological
systems. The next step is to integrate hetero-omics data across species and data type by
network model. Researchers try to use constructed network models to integrate all kinds
of type experimental data together.

The following step is to topologically analyse the biological network. Researchers
try to connect the topological features of biological networks with biological function,
design principles of regulation mechanism and evolution of the systems.

The next step is analysis of the biological network. The approach is fairly similar
to BLAST [7] in comparative genomics. The strategy to compare the biological network
across species or systems can offer a valuable framework for addressing many biological
challenges such as deriving unknown biological function or elements by comparison
a network model of well-researched systems with a network model of new research
systems in systems biology.

At the end, visualization biological network and analytical results are done.
Visualization is important because of helping to understand complex biological systems.
However, the huge size of datasets with high heterogeneities is the reason why
the visualization of large-scale biological networks is a current challenge. In this area,
researchers have proposed a wide range of visualization methods, for example 2D, 2.5D

and 3D and develop many software tools such as Cytoscape [8].

1.2.2 Dynamic quantitative modelling

Dynamic quantitative modelling [6] focuses on exploring the dynamics of biological
systems by applying computational simulation and mathematical modelling. There are
many options for developing quantitative model biological systems such as Boolean
networks [9], Bayesian networks [10], Monte-Carlo simulation [11] etc.

In this methodology, a dynamic model is built according to the existing network
structure, investigates system behaviour over time under various conditions and predicts
complex behaviour in response to complex stimuli [6]. These rapid in silico experiments
via dynamical modelling are used to gain first insights, form hypotheses and carry out

meaningful tests. The dynamical modelling is used for understanding critical parameters,
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biologists can technically and statistically design physical experiments for maximum
efficacy. Resultant data from all experiments will be compared against simulations in
various ways to test assumptions and hypotheses, identify new phenomena and spark new

theories.
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2 Laboratory data

Reconstructing GRN is a hard and long-standing challenge [12]. This challenge
researches in the field of Systems Genetics (SG)[13]. SG solves complexity by
integrating the questions and methods of system biology which is connected with
the fundamental problem of interrelating genotype and phenotype in complex traits. SG
data are genotyped data with other datasets that reflect the effect of a perturbation of the
system caused by diverse genotypes.

Genetic studies are regular and consist of only genotype and phenotype data.
It enables the identification of genetic loci which affects a given phenotype. Thus,
measurements of thousands of molecular phenotypes enable algorithms to elucidate
the regulatory networks. A lot of network inference methods have been proposed due to
growing use of Next Generation Sequencing (NGS) [13].

NGS is a high-throughput technology that identifies the nucleic acid sequences
and variants in a sample [ 14]. NGS is often subdivided into second-generation sequencing
and third-generation sequencing. The high-throughput sequencing refers to
the technologies without the physical separation of individual reactions into separate
tubes, capillaries or lanes. Instead of it, the sequencing reactions occur parallelly on
a solid surface, such as glass or beads, depending on the technology, and are only spatially
separated [14]. These methods billions of sequencing reactions occur and are analysed
at the same time. It improves the throughput and decreases the labour compared to
the older methods as first-generation sequencing e.g. Sanger sequencing.

NGS is the time of commercial products, not famous scientific names.
From a commercialization perspective the first NGS was introduced in 2004 by 454 Life
Sciences [14]. Later it was purchased by Roche. Within 2 years, other platforms
developed e.g. SOLiD [15], [llumina [16]. These platforms are going to be described in

more details in the following chapters. In 2011 Iont Torrent [17] was introduced.

2.1 SsoOLiD

SOLiD is an enzymatic method of sequencing. The method uses DNA ligase, it is
an enzyme with the ability to ligate double-stranded DNA strands [15]. Emulsion PCR is

used to immobilise and amplify ssDNA primer-binding region. It is called an adapter.
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The adapter has been conjugated to the target sequence on a bead. These beads are
afterwards deposited onto a glass surface.

Once bead deposition has occurred, a primer of length N is hybridized to
the adapter, then the beads are exposed to a library of 8-mer probes which have different
fluorescent dye at the 5' end and a hydroxyl group at the 3' end [15]. A complementary
probe will hybridize to the target sequence which is adjacent to the primer. DNA ligase
is joined the 8-mer probe to the primer. A phosphorothioate linkage between bases 5 and 6
allows the fluorescent dye to be cleaved from the fragment using silver ions [15]. There
are used four different fluorescent dyes which have different emission spectra. Thus,
cleavage allows fluorescence to be measured and also generated a 5’-phosphate group
which can undergo further ligation. The first round of sequencing is completed when
the extension product is melted off. The second round of sequencing is performed with
a primer of length N-1. The next round of sequencing is used by shorter primers,
subsequently there are e.g. N-2, N-3 etc.

Measuring the fluorescence ensures that the target is sequenced. SOLiD is rarely
used as a method of NGS, because it is slower than other NGS methods and has a problem

with palindromic sequences. SOLiD is used for short read.

2.2 lllumina

[llumina sequencing is a method that generates millions of highly accurate reads making
it much faster and cheaper than other sequencing methods [16]. [llumina sequencing
instruments and reagents support massively parallel sequencing using a proprietary
method that detects single bases as they are incorporated into growing DNA strands [18].
The procedure consists of a few steps. The first step is breaking up the DNA into

more manageable fragments of around 200 to 600 base pairs [16]. Then the adaptors are
attached to the DNA fragments and these fragments are made single-stranded. It is
provided by incubating the fragments with sodium hydroxide. At the moment, when
the fragments are prepared, the fragments are washed across the flowcell. On the surface
of the flowcell there is a complementary DNA which binds to primers and therefore
the DNA that is not attached is washed away. The DNA attached to the flowcell is then
replicated to form small clusters of DNA with the same sequence [16]. During sequencing
each cluster of DNA emits a signal that is detected by a camera. After unlabelled
nucleotide bases, DNA polymerase are added to lengthen and join the strands of DNA
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attached to the flowcell [16]. Thus, bridges of double create stranded DNA between
the primers on the flowcell surface.

If we use heat, the double-stranded DNA is broken down into a single stranded
DNA and it creates several million dense clusters of identical DNA sequences. In the next
step primers and fluorescently-labelled terminators are added to the flowcell and
the primer is attached to the DNA strand. Then the DNA polymerase binds to the primer
and adds the fluorescently-labelled terminator to the DNA. If the base has been added,
there are not more bases which can be added to the DNA strand until the terminator base
is cut from the DNA. Lasers are used to activate the fluorescent label on the nucleotide
base and this fluorescence is detected by a camera. Each of the terminator bases, it means
A, C, G and T, gives off a different colour [16]. After the terminator is removed from
the first base, the next fluorescently-labelled terminator base is added and the process
continues.

The DNA sequence is analysed base-by-base during Illumina sequencing, making
it a highly accurate method [16]. The Illumina sequencing is the cheapest sequencing
technology in current [18]. On the other side this sequencing requires higher
concentration of DNA and the placement of the clusters on the surface is random so
clusters can be overlapped causing confusion nucleotides. The Illumina sequencing

technology is divided into several system branches.

2.2.1 MiSeq

The MiSeq system is one of the Illumina sequencing systems which is used for small-
genome sequencing. Using up-to-date reagents enables us to produce to 15 Gb of data
output with 25 million sequencing reads and 2x300 bp read lengths.

The MiSeq System [19] leverages Illumina sequencing by synthesis (SBS)
technology. This system is the first DNA-to-data sequencing platform, integrating cluster

generation, amplification, sequencing and data analysis into a single instrument.

2.2.2 NextSeq

The NextSeq [20] is the second system of Illumina sequencing technology. This system
1s described in more detail because this thesis uses RNA-Seq data, which were sequenced

in the NextSeq system. The NextSeq system gives the power of high-throughput
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sequencing with the speed, affordability of a benchtop NGS. This system enables
the exploration of the entire genome of any species for the deeper understanding
of biology.

The NextSeq system allows sequencing a broad range of samples per run
e.g. 1to 12 exomes, 1 to 16 transcriptomes, 6 to 96 targeted panels and 12 to 14 gene
profiling samples. This system provides support for paired-end sequencing. Read lengths
2 x 150 bp are defined.

The system is supported by the full suite of Illumina library preparation and target
enrichment solutions, offering library compatibility across the Illumina sequencing
portfolio [20]. SBS technology with the NextSeq gives exceptional accuracy.
This proprietary, reversible, terminator-based method enables the parallel sequencing
of millions of DNA fragments, detecting single bases as they are incorporated into
growing DNA strands [20]. Thanks to it the method system eliminates errors associated

with homopolymer.

2.2.3 HiSeq

The HiSeq system [21] is a high-throughput sequencing system which sequences high-
quality data. This system uses Illumina SBS chemistry. HiSeq sequencing systems
combine Illumina’s proven and widely adopted, reversible terminator-based SBS
chemistry with innovative engineering [21].

Nowadays HiSeq system is declared obsolete and it is written on the website by
[llumina [18] that they will continue to provide full support of the instruments and supply
the reagents through 2024. However, for the sake of the entirety of the thesis, it is

necessary to mention this system which is used in the chapter 2.5.1.

2.2.4 NovaSeq

The NovaSeq [22] allows to get scalable throughput and flexibility for any sequencing
method or genome. This system offers high-throughput sequencing across a wide range
of applications [18]. The NovaSeq is about to leverage proven Illumina NGS technology,
multiple flow cell types, two library loading workflows, and various read length

combinations.
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The NovaSeq allows more cost-effective manner for applications requiring large
amounts of data, such as human whole-genome sequencing or ultradeep exome
sequencing etc. The instrument can be combined with lower output of flow cells for using
less intensive data methods. The NovaSeq system has replaced previously mentioned

HiSeq system as shown in the thesis [23].

2.3 lon Torrent

Ion Torrent technology [17] converts chemically encoded information to digital
information on a semiconductor chip. This approach combinates simple chemistry with
semiconductor technology.

The principle of the method incorporates nucleotides into a strand of DNA by
a polymerase formation of a hydrogen ion which is released. In nature of this principle
a formation of a hydrogen ion is a product. Thanks to this fact, there is a possibility to
measure voltage which indicates chemically encoded information. If there are two
identical bases on the DNA strand, the voltage will be doubled and the chip will record
two identical bases [17]. Ion Torrent technology is a direct detection. It means no

scanning, no camera, no light. Each nucleotide incorporation is recorded in a few seconds.

2.4 RNA-Seq methods

NGS platforms have a wide variety of methods for obtaining different outputs that is why
sequencing methods are divided by differing inputs such as DNA or RNA samples [24].
Sequencing methods have many variants of libraries but the actual sequencing stage is
the same, regardless of the method. The various preparation of libraries is destined for
different types of sequencing e.g. whole-genome sequencing, RNA sequencing (RNA-
Seq), targeted sequencing [24].

RNA-Seq [25] is a sequencing technique of NGS which analyses
the transcriptome [26] of gene expression patterns encoded within our RNA.
A transcriptome includes mRNA and the information about molecules expressed by
an organism.

RNA-Seq is used for understanding the transcriptome which is basic for

the exploration of the information hidden within genome with its functional protein
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expression. Transcriptomic approaches are used to study transcriptomes whose main
challenges of transcriptomics are to catalogue all species of transcript, including mRNAs,
non-coding RNAs and small RNAs and also determine the transcriptional structure

of gene, splicing patterns and other post-transcriptional modifications [27].
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Translation
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Figure 2: Central dogma of molecular biology where is visualized transcriptome [28]

The regulation of RNA transcription and processing directly affects protein
synthesis [29]. This is the main reason why RNA-Seq is important for the description
of gene regulation. RNA-Seq includes: post-translational modifications, RNA splicing,
RNA bound to RNA-binding proteins, RNA expressed at various stages, unique RNA
isoforms, RNA degradation and regulation of other RNA species [24].

While RNA-Seq is emerged as a powerful technology in transcriptome profiling,
the main disadvantage of the standard RNA-Seq protocol is that it loses information about
the strand of origin for each transcript [30]. If we lose strand information, it is impossible
to quantify gene expression levels for gene with overlapping genomic loci accurately
which are transcribed from opposite strands. Currently, there is possible to retain the
strand information by modifying the RNA-Seq protocol known as strand-specific or
stranded RNA-Seq. The comparison of stranded and non-stranded or unstranded RNA-
Seq library methods and also their influence on the interpretation of an analysis is
described in the study by Griffith et al. [31].

From the bioinformatics point of view RNA-Seq offers challenges which include
the development of efficient methods to store retrieve and process large amounts of

data [27]. These methods must reduce errors in analysis, base-calling and also eliminate
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low-quality reads. Then high-quality reads have been obtained, the first step of data
analysis maps the short reads from RNA-Seq to the reference genome or assembles them
into contigs before aligning them to the genomic sequence to reveal transcription
structure [27]. There are usually used programs for mapping reads to the genome but the
short transcriptomic reads cannot be analysed in the same way. These short reads span
exon junctions or contain poly(A) ends. Thus, some genomes have rare splicing. These
genomes such as genome by Saccharomces cervisiae require special attention and only
need to be given to poly(A) tails and to a small number of exon-exon junctions. Poly(A)
tails can be identified simply by the presence of multiple and exon-exon junctions which
can be identified by the presence of a specific sequence context and confirmed by the low
expression of intronic sequences which are removed during splicing which is written in

the study by Wang et al. [27].

2.5 Clostridium beijerinckii NRRL B-598

Clostridium [32] is one of the largest bacterial genera which includes several bacteria
with enormous biotechnological potential and also a few well-known pathogens.
Members of this genus are generally gram-positive and strictly anaerobic bacteria. Thus,
clostridia are in avant-garde of industrially useful microbes.

Due to the required precautions for excluding oxygen during handling, clostridia
were virtually inaccessible at the genetic level for a long time [32]. Fortunately, this
situation has changed thanks to gene cloning, DNA transfer, gene expression modulation
and gene knockout. However, this thesis studies Clostridium beijerinckii NRRL B-598
that is the reason why the attention is focussed on the Clostridium beijerinckii.

C. beijerinckii culture which is cultivated in Peptone Yeast Extract Glucose (PYG)
broth is generally described as straight rods with rounded ends, being motile and
peritrichous, measuring 0.5 — 1.7 um x 1.7 — 0.8 um [33]. These cells occur as single, in
pairs or in short chains. This species is typically gram-stain-positive but become gram-
stain-negative in older cultures. Their spores are oval, eccentric to subterminal and swell
the cell with no exosporium or appendages [33].

Optimum temperature for the growth is 37 °C and the growth is stimulated by a
fermentable carbohydrate, inhibited by 6,5% NaCl or 20% bile acids. The strains of
C. beijerinckii are nutritionally fastidious, requiring a complex mixture of growth factors.
Abundant gas formation is detected in deep cultures in PYG agar [33]. These species are
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used to produce industrial solvents. It has the ability to ferment saccharose and to utilize
the alcohol sugars D- and L- arbitol, dulcitol and inositol but glycerol only weakly [34].
C. beijerincekii has all strains which are able to ferment methyl-glucopyranoside,
turanose, dextrin and pectin.

In the past C. beijerinckii NRRL B-598 was wrongly classified as Clostridium
pasteurianum NRRL B-598 as mentioned in the study by Sedlar et al. [35]. The strain
C. beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its
phenotype under various conditions [36].

In this thesis the laboratory data of C. beijerinckii NRRL B-598 which were
sequenced using RNA-Seq are used. Following chapters describe conditions in which
C. beijerinckii NRRL B-598 were sequenced and they also describe more information
about laboratory data. There are used 7 replicates of RNA-Seq which are called A, B, C,

D, E, F and G. All these replicates are sequenced in six time-points.

2.5.1 Standard cultivation transcriptome

The replicates A, B and C are described in the study by Sedlar et al. [36].The transcription
profile of butanol producer C. beijerinckii NRRL B-598 is presented there. RNA-Seq
dataset covering six time-points with the current highest dynamic range among
solventogenic clostridia is used there.

Six time-points cover all metabolic stages within a period of 23 4. The last 24™
hour was not analysed because there a was large number of dead and lysing cells. The
result of it was the insufficient quality for RNA sequencing. Six time points are mentioned
as {Ty,T,, T3, Ty, Ts, Te}. Individual sampling points were selected based on
the fermentation pattern which was monitored on-line as a change in a pH course [36].

Replicate A consists of reads that were 50 bp but series B and C consisted of reads
that were 75 bp long. The final 2D representation in the study Sedlar et al. [36] shows
that replicates are similar to each other at particular sampling time-points nevertheless
replicates A were slightly more distant to replicates B and C. This is due to the type of
sequencing because replicates A were sequenced using [llumina HiSeq and replicates B
and C were sequenced using Illumina NextSeq whose principals HiSeq and NextSeq
sequencing are contained in the chapter 2.2.

Replicates D and E are described in the study by Patakova et al. [37]. There are

two biological replicates D and E. These technical replicates were analysed for changes
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in the expression of individual gene and gene clusters. Biological meanings for these
expression changes were sought in the study by Patakova et al. [37]. These replicates
were selected in to six time-points, too.

The six time-points are selected as points of time in 3.5 4, 6 h, 8.5 h, 13 h, 18 h
and 23 4 on that account these time-points cell samples were taken from each bioreactor
for RNA extraction. Thanks to this approach, the solventogenic phases of growth as well
as the sporulation cycles were covered.

Library construction and sequencing of samples from technical replicates were
performed by the CEITEC Genomics core facility (Brno, Czechia) on Illumina
NextSeq500, single-end, 75 bp [37]. It is similar to replicates B and C. All these replicates
B, C, D, E are obtained in the study by Vasylkivska et al. [38] as well. It is written that
each broth samples were centrifuged, the cell pellet was washed with sterile distilled

water and stored immediately at -70°C.

2.5.2 Butanol shock transcriptome

The replicates F and G are described in the study by Sedlar et al. [39]. Transcriptomic
data of immediate and later responses towards a non-lethal butanol shock are described
there. It was performed in the phase of transition between the late acidogenic phase and
early start of the solventogenesis. Butanol was added directly after the sample collection
at time 6 /1 [39].

RNA-Seq data set of C. beijerinckii NRRL B-598 is also selected to six time-
points {Ty1, Ty2, T3, Tpar Tps, Tpe}- These time-points are {6 4, 6.5 h,7 h,8 h, 10 h, 12 h}.
Library construction and sequencing of the sample was performed by CEITEC Genomics

core facility (Brno, Czechia) on Illumina NextSeq, single-end, 75 bp [39].
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3 Network inference methods

Systems Biology [13] has a target to decipher the complex behaviour of a living cell.
The effective behaviour of the cell is probably defined through the multiple layers
of interacting entities including DNA, mRNA, noncoding RNA, proteins, and
metabolites [13]. This chapter is focused on the genetic genomics approach [13] that
combines the power of genetics through the polymorphism and unscramble a GRN
together with ability of gene expression. It means the representation of the gene-level
interactions occurring under given conditions.

Genes are represented by vertices in GRN while directed edges represent the direct
causal effect of genes to other genes through gene regulation [13]. Genes in gene
regulation are usually called activators or repressors. We can use deciphering the data set
of gene regulations and identify the most important and possible indirect players in GRN.
These players influence a gene expression or phenotype and so link network structure to
associated functional properties. Thus, more understanding of the way of the gene
interactions appears that controls the overall cell behaviour. A variety of mathematical
formalisms, continuous or discrete defined over time or in stationary states, have been
proposed to represent the complex behaviour of known GRN [13].

GRN learning [13] has high-dimensionality where the number of genes in a typical
genome is included. The number is larger than the number of samples that can be
reasonably produced. Some algorithms decipher GRN structures based on genetic
genomics data have used complex multivariate regression or Bayesian networks. The
analysis of the output of different statistical methods is targeted at learning in a high
dimension (based on the penalized linear regression or penalized Bayesian network
structure learning) and it shows and defines the best performer on different datasets of
simulated genetic genomics data, including up to 1,000 genes [13].

Different statistical models of gene regulation are described in this chapter. These
models have been chosen for their ability to infer gene regulations from expression data
automatically. Through the verification and fair assessment of algorithms, there is a high
importance to learn which algorithms are the most useful for extracting biological insights
from system genetic data [13]. This issue was solved by community effort which is

mentioned in the DREAM project. The DREAM [12] is the Dialogue on Reverse
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Engineering Assessment and Methods project, which is focused on the comprehensive

blind assessment network inference methods.

3.1 Bootstrapping

Bootstrapping [40] is a method that is used to resample and assign measures of accuracy
to sample estimates. Bootstrapping is usually used to estimate summary statistics such as
the standard deviation or the mean. It is used in the applied machine learning to estimate
the skill of machine learning models when making predictions on data not included in the
training data [41].

Bootstrapping provides the estimation of the sampling distribution of any statistics
and it uses only a simple resampling approach. Unfortunately, it means that repeated
computations must be undergone [13]. Bootstrapping includes the approach of sampling
with replacement [42] which selects a sample at random from the set which is returned to
the set and after a second the other element is selected at random. Whenever a sample is
selected, the set contains all data, so the sample can be selected more than once. There is
no change in the size of dataset. We can assume that a sample of any size can be selected
from the given population of any size [43].

In the GRN inference challenge there is each of replicate dataset that is obtained
by random sampling with the replacement from the original sample. For each replicate
dataset, the model is fitted and then it is possible to study the statistical properties of the
distribution of the considered statistics on all resampled datasets [13].

The major use of bootstrapping is to contribute to the construction using
the “confidence score” of edges in the predicted GRN. Bootstrapping is often used in
the random forest algorithm where it allows us to avoid overfitting, thanks to the fact that
bootstrapping has offered further opportunities. Since bootstrap datasets are obtained by
sampling with replacement, each of them is deprived of around 1 — 0,632 = 36,8 % of
the original samples [13]. The main disadvantages of bootstrapping are to multiply
the computational burden and the loss of 36,8 % of the data, it may also affect

the sharpness of estimates on every resampled dataset [13].
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3.2 Regression

Regression analysis [41] is a process for an estimation of the relationships
between outcome variables and predictors. It is divided into a linear and non-linear
regression. In GRN inference it is often used to approach the linear regression.
This approach to GRN inference is based on the assumption that the expression level of
the transcription factors that directly regulates a target gene is the most informative,
among all transcription factors, to predict the expression level of the target gene [12].
Regression analysis using inference challenge in the GRN is penalized by the linear
regression.

A natural approach to solve the network inference problem considers each gene g
individually from the others and also its expression value which can be represented as
a linear function of all other gene expression levels and of all polymorphisms [13].

It represents:

P
Z agyiM; +Zﬁg]E + &g, (4)

}iy
where M; represents the allelic state of the polymorphism associated with gene j, @ is

the p-vector of linear effects of polymorphisms on Eg, E;

is the expression level of gene
J. By is the p-vector of linear effects of other expression levels on E; and ¢, is
the Gaussian residual error term [13].

A dataset needs to be known for the explanation of the linear function which is
defined for each GRN [13]. The dataset includes a sample of n recombinant inbred lines
that are measured for p bi-allelic markers and p gene expression levels. Every
polymorphism is associated with a single gene and may influence either its direct
expression (cis polymorphism occurring in the regulatory region of the gene) or its ability
to regulate other target genes (trans polymorphism in the transcribed gene region itself,
influencing its affinity with other gene regulatory complexes) [13]. A dataset contains
anXp matrix e where e;; is the steady-state expression level of gene ; for
the recombinant inbred lines individual i which is the real number and also a n X p matrix
m where m;; represents the allelic state of the polymorphism associated with gene j for
recombinant inbred lines individual i which is a zero or one. Each e;; is an observation of

the random variable E; and similarly each m;; is an observation of the random

variable M;.
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Parameters a4 and f; are estimates for each gene g from matrix m and e using
linear regression methods. The great advantage for this model is its simplicity which leads
to 2p parameters (a4 and ) for E. It is a desirable property for the estimation in high-
dimensionality settings. We can suppose that regulation networks are sparse so it is
desirable to use some regularization [44] such as the Lasso regression. Penalized
regression methods are used in GRN inference that lead a variable selection. These

methods are described below.

3.2.1 Lasso Regression

Lasso (Least Absolute Shrinkage and Selection Operator) regression [44] is a linear
regression. The linear regression can be explained in the case of a high number of input
variables. It is typical for NGS inference. It is suitable to decrease the model complexity
that is the input of variables or predictors. Removing predictors from the model can be
seen as the setting of their coefficients to zero. Another way is penalizing them if they are
far from zero. This attitude decreases model complexity while keeping all variables in the
model.
The linear regression problem [13]:

Y =X60+ ¢, (%)
where Y is the linear combination of r regressors X = (X 4,...,X ) and ¢ is Gaussian
noise. If we have a sample of size n and Gaussian distributions, the estimation of
parameters is obtained by minimizing the residual sum of square but exclusively for the
Lasso regression penalizes [13] is the residual sum of the square criteria by the sum of
the absolute values:

glasso = grg meinIIY—XHHzZZ + Allell,,, ©)

where  is the estimation of the parameters 6, I, represents norm using the absolute values
of the parameters 6 and [, represents minimizing the residual sum of squares.

The feature selection problem is solved in [12] with the Lasso procedure, too.
The Lasso procedure can lead to obtaining a sparse linear model such as a model based
only on a few transcription factors. The transcription factors selected by Lasso are

therefore good candidates to regulate the target gene [12].
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3.2.2 The Dantzig Selector

The Dantzig selector [45] is similar such as the penalized linear regression method.
This method is based on [; norm penalization of the parameters subjected to the constraint
bound on the maximum absolute correlation between the residuals and regressors [13]:

pdantzig — arg meinllgllll' IXT (Y —XH)”loo <4, (7

where § is the actual bound of the correlation among the residual and each regressor and
XT is the transpose of X. If the bound tends to zero, Dantzig selector imposes a null
correlation among the residual and the regressors, else the other of these selectors set all
coefficients to zero. This condition is satisfied by the RSS estimate, as it is equivalent to

enforcing a null derivative of the RSS [13].

3.2.3 Confidence Scores

This chapter comments confidence scores and they are meant as confidence scores with
penalized linear regressions and bootstrap [13]. These confidence scores are on the
prediction of each oriented edge j — g where gene j influences gene g. When ag; is not
zero, marker j has an impact on the expression of gene g hypothetically. The converse is
impossible since expression levels cannot affect polymorphism [13]. If B4 is not zero, a
relationship exists between the expressions of genes j and g. However, the causal
orientation is unknown. It means, we do not know, if j influences gene g or conversely.
Choosing the ‘right’ level of penalization in the Lasso regression or in the Dantzig
selector is a difficult model selection problem [13]. Fluente [13] describes the choice of
the penalty term A such as non-fixed value. Nevertheless, all options for penalty values
from zero value are explored, it is not penalization to a maximum value. The infimum' of

the set of all A precludes a single regressor to be included in any of the regressions. If the

total of g use, there are different penalty values from the interval low penalty level }‘";i

to the maximal penalty level A, 4.

"Infimum is the greatest lower bound of a set S, defined as a quantity m in a such way that no member of
the set is less than m, but if € is any positive quantity, however small, there is always one member that is
less than m + € [46].

36



A similar principle can be used for the Dantizig selector where the fraction of
times was used as confidence score, see [13]. This fraction of times is over all

penalizations and a regressor is presented with a nonzero parameter estimate.

3.3 Random Forests

GRN inference can be also used by nonlinear regression methods such as random
forests [47]. However, nonlinear regression methods can be also considered, assuming
that the expression level of Ej is a function of the remaining expression levels E79 and
of allelic states M [13]:

E; = fg(M,E™9), (8)

The use of the random forest for GRN reconstruction from expression data alone has been
originally proposed in GENIE3 [13]. Random forests are the method where each node
splitting considers only a random subset of features. Non-linear regression problem is
between response Y and regressors X. This problem [13] is split recursively into
the observed data with binary tests based on each single regressor variable where
the variance of the response variable in the resulting subsets of samples should be as small
as possible.

In each test there is a binary tree where a node which compares the input variable
value with a threshold. This threshold is determined during the tree growing. The leaves
of the tree represent the predicted value of the response variable. A random forest [13]
includes trees which are grown thanks to two sources of randomness. Each tree is grown
using a random bootstrapped sample of the data and the variable used at each split node
which is selected only from a random subset of all variables [13].

The mean of all the regressions predicted by each tree is the random forest
predicted value. The advantage of random forest is using the bootstrapping to estimate
the importance of any or every regressor. After shuffling the values of the regressor
considered in the samples that have not been used in each bootstrapped sub-sample, it is
possible to compute the resulting increase in the variance of the regression error compared
to non-permuted samples [13]. It gives an assessment of the regressor importance.

The confidence scores [13] by a random forest for oriented edge £ — / are [13]:

m e — 1
Wig =1-—1— )
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where 1} is a global rank by the edge, N represents the largest overall rank. Ranks are
produced by the importance of the factors such as ™ that is normalized by its standard

deviation. For wy; is an analogous definition.

3.4 Bayesian Networks

A Bayesian network is a directed acyclic graphical (DAG) model that captures the joint
distribution probability over a set of variables by a factorization in local conditional
probabilities linking one random variable with its ‘parents’ [13]. Bayesian network is
defined such as a network which can derive directed graph in GRN inference challenge.

The DAG [13] implicitly captures a set of conditional independencies. These

interdependencies are a joint probability distribution between variables and represents:

m

p) = | [ Ptipaqv. (10)
If B represents Bayesian network, i‘lc=c1an be B = (9, Py) denoted where 9 = (V, A) with
vertices representing random discrete variables V = {V;,...,V;,} linked by a set
of directed edges A and a set of conditional probability distributions Py = {Py, ..., By}
and the variables are involved in each conditional probability table P;.
Pa (V;) = {Vj e V] (I/}-,Vl-) € A}. Moreover, Pa is a set of parental nodes of V;
ind [13].

Maximum likelihood estimates the parameters defining the conditional
probability tables therefore it can be computed by simple counting. Then the GRN
learning process is reduced to the problem of learning a DAG structure among these
variables that maximizes P(J|D) < P(D|9)P(9) where D represents the observed
data [13]. Learning Bayesian networks is an NP problem and as a result GRN structure

learning with bootstrapped greedy search is used in [13].

3.5 Other methods

Different statistical models of gene regulation have been already mentioned and have
different ability to infer gene regulations from expression data automatically. Some

methods which are chosen in [13] are described above. However, other methods for GNR
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inference exist and are described in [12]. [12] mainly mentions methods such as Mutual
information and Correlation.

Mutual information [48] defines how much one random variable tells us about
another one. For two discrete variables X and ¥ whose joint probability distribution

is Pyy(x,y), the mutual information between them, denoted I(X,Y) , is given by [48]:

Pyy(x,y) Pxy
¥) = Y log (212 ) Z g, Jog (=21,
I(X Y) xzy:PXY(x y) Og<PX(x)Py(y)> EPXY Og(Pxpy) (11)

where Ep, s thé expected value of the distribution Pyy. In the GRN
implementation [12], X and Y represent a transcript factor and target gene.

Correlation in DREAM is used as Pearson’s correlation and as Spearman’s
correlation. Pearson’s correlation coefficient » was calculated among all transcription
factors x and all target genes y in [12] as follows:

nY. xyy — LXYi
Jn Ext = ECx [n 5y - By (12

where n represents the number of measurements of x and y. Positively correlated gene

Txy =

pairs receive higher confidence.
Spearman’s correlation was calculated among all transcription factors x and all
target genes y in [12] as follow:

6y d?
—1_ 13
pxy 1 n (nz _ 1) ) ( )
where 7 represents the number of conditions that x and y have been sampled and d is the
difference in the rank order between gene x and gene y over the n conditions [12].

The most correlated gene pairs were selected there.
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4 Pre-processing RNA-Seq

RNA-Seq is a method for measuring gene expression, which gives us some information
about mRNA as it was mentioned above, see chapter 2.4 for more information. RNA-Seq
is more difficult for analysis than microarray data, however nowadays RNA-Seq has
defined mature pipelines.

The pre-processing part deals with the pre-processing RNA-Seq process which is
applied to pre-processing RNA-Seq data C. beijerinckii B-NRRL 598. These data were
obtained under different conditions, more information is described in the chapter 2.5.
In Attachment A] you can see a example of shell-script which is used for all samples.
All created shell-scripts were computed using MetaCentrum Virtual Organization
portal [49].

Sequencing Facility

v
FASTQ (Raw)

Quality assessment (QA)
FASTQ (Raw)
rRNA removal Pre-processing RNA-Seq

FASTQ (Filtered)

QA

FASTQ (Filtered)
quality-based trimming
and adapter removal

FASTQ (trimmed)

Alternative based Alternative based
on QA results \L to the reference

BAM

Figure 3: The first part of RNA-Seq pre-processing workflow [50]
This thesis is inspirited by pipelines from the study by Delhomme et al. [50].
These pipelines represent the standard workflows in pre-processing RNA-Seq. Figure 3
shows the graphic representation of the first part of the procedure. There are nodes that

represent data format e.g. fastq, and edges represent the process treatment data.
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The next part of RNA-Seq pre-processing workflow can be divided into QC, read
mapping and alignment, quantification and differential gene expression analysis [51].
The quantification is an approach to quantifying gene expression by RNA-Seq to count
the number of reads belonging to each gene [51]. The count table is created by
R/Bioconductor featureCounts [52] in this thesis. However, read counts are influenced by
factors such as transcript length or the total number of reads. Thus, it is necessary to
normalise the read counts.

The normalisation is usually provided by the RPKM (Reads Per Kilobase of exon
Model per million reads), FPKM (Fragments Per Kilobase of exon Model per million
reads mapped) or TPM (Transcript Per kilobase Million) [52]. The correction for gene
length is not necessary if we compare changes in the gene expression within the same
samples but it is necessary for correct ranking gene expression levels within the sample

to account for the correct long genes accumulate [51].

4.1 RNA Data QC Assessment

The first necessary step is the initial QC assessment [5S0]. The overall sequence quality,
as GC percentage distribution and the presence or absence of overrepresented sequences
are checked here. The output is an HTML document, where some sections show
the specific metrics. HTML documents from each replicate are enclosed in the electronic
attachment.
Sections in our HTML documents are divided to [50]:
a) Basic Statistics: There is self-explanatory metrics. The GC% should be
the expected values for the sample species. Median GC% is 29,6 for
C. beijerinckii NRRL B-598, it is nice agreement with C. beijerinckii [34]
where GC% is 30.
b) Per base sequence quality: The first part is the Phred scale quality.
It represents the probability that the base call is incorrect. The second part
represents details of the Phred scaled quality as a function of the position
in the read.
c) Per sequence quality scores: There is a quality distribution at the read
level. The good quality data are represented as the histogram which is

skewed to the right.
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d)

g)

h)

)

k)

Per base sequence content: The average proportion of individual bases
as a line across the length of the reads is visualized there.

Per base GC content: GC content is visualized as a function of
the position in the read.

Per sequence GC content: The plot shows the distribution of GC content
per read. The red curve represents data and the blue curve represents
theoretical distribution. If the curve shows a region of high GC content, it
means that the sample includes ribosomal RNA (rRNA). However, this
effect can be represented by a contamination by an organism with higher
GC content such as bacteria. A peak on the left side represents AT content
per read.

Per base N content: There is a plot that shows the fraction of
indistinguishable bases. It is represented as a function of the base position
in the reads. This is expected to be close to zero if sequence data is high
quality. Sequencing problems are represented as deviations from
the expected values.

Sequence length distribution: It represents the distribution of read
lengths. There should be only one peak located at the sequenced read
length, prior to trimming.

Sequence duplication level: It represents the level of duplicate sequences
in the library.

Overrepresented sequences: There is a table where are the sequences that
are represented at the unusually large frequency in the reads.

Kmer content: This plot shows details about the occurrence of Kmers.
These are nucleotide sequences of fixed k& length. These nucleotide
sequences are presented higher than the expected frequency as a function

of their position within the read.

rRNA filtering

rRNA filtering is important to maximize the quality of the sequence data. It is necessary
to remove as much rRNA as possible [54]. Wet-lab protocols usually include a rRNA
removal step but it is recommended to do rRNA filtering there. SortMeRNA [55] was

used for rRNA filtering. The algorithm is based on approximate seeds and allows fast and
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sensitive analyses of NGS reads. It was originally developed to identify rRNA in

metagenomics analyses.
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Figure 4: GC distribution data sequences in point-time 8,5 / from replicate C before filtering rRNA
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Figure 5: GC distribution data sequences in point-time 8,5 / from replicate C after filtering rRNA

The filtered data can be subjected to a QC assessment by FastQC again. The GC
content plot should represent the biggest visual change because it is more closely to
the theoretical normal distribution and GC curve should be closer to the expected GC
value of the sample organism [50]. In Figure 4 and Figure 5 we can see graphs which
represent GC distribution before and after rRNA filtering. The red curves are GC count

per read and the blue curves expect theoretical normal distribution. After the application

43



filtered of rRNA step there is a visual change between these graphs where the plot
represents our data and is more closely to the theoretical normal distribution as it is

expected.

FastQC: Per Sequence GC Content

=== Filtered data
= Raw data

“ non-rRNA G2

Percentage

Figure 6: GC distribution data sequences before and after filtering rRNA

Figure 6 was created from all samples of all replicates. This plot is only
the combination GC distribution data sequence before and after rRNA filtering.
Per sequence GC content where green curve represents filtered data is more closely to
the theoretical normal distribution of GC content, too. The modal GC content is
calculated from the observed data and used to build a reference distribution. The green
colour shows sufficient similarity with this theoretical distribution in contrast with the red
colour which represents raw data.

Unfortunately, a specific sample from replicate G which was sequenced in 6.5 &
time-point shows an unexpected result because the orange curve which represents this
filtered samples is not closely to the theoretical normal distribution. This effect can be
caused by contamination that can arise during wet-laboratory step. Filtering using
bacterial rRNA database is provided and thus it can be assumed that with the help of using
another rRNA database e.g. eucaryote rRNA database, it is possible to obtain a better
result after filtering. However, this contamination is filtered during mapping

on the genome in a following step.

44



4.3 Quality trimming and adapter removal

It is known on Illumina sequencers that the quality of a base pair is linked to its position
in the read so bases in the last cycle of the sequencing process have a lower average
quality than the earliest cycles [50]. There is a common approach to increase the mapping
rate of reads by removing the low-quality bases, it is called quality trimming. These reads
are trimmed from the 3’ end until the quality which user selects as Phred-quality threshold
is reached. A threshold of 20 is widely accepted [50].

Next issue connected to Illumina sequencing is the presence of partial adapter
sequences within sequenced reads [50]. This effect occurs if the sample fragment size has
a large variance and if fragments are shorter than the sequencer read-length.
As the resulting reads contain a significant part of the adapter which may not be able to
map such reads. Thus, the ability to identify adapters, follow clip, or trim them, may
consequently significantly increase the aligned read proportion [50].

Trimmomatic tool [56] was used in the step and the data were subjected to
QC, too. FastQC is performed to ensure the quality trimming and adapter removal steps.
Several changes should become in comparison with the previous QC report such as per-
base quality scores should be different, the per-sequence quality distribution should be
shifted to higher scores and sequencing adapters are not identified as over-
represented [50]. We can observe changes mainly in the sector Sequence length
distribution which confirm correct trimming. All sequences from all samples satisfy

theoretical prerequisites.

4.4 Read alignment to a reference

The final step is the reads alignment to a reference. This process is an active field
of research and novel aligners are frequently published. Unfortunately, there is no ‘silver
bullet’ so the choice of aligners will be dependent on the reference used in [50].
The aligner is usually chosen according to the type of available reference. The usage
of STAR [57] is recommended for the genome based alignment of RNA-Seq data. Using
e.g. BWT FM-index [58] is recommended for alignment of RNA-Seq data to a reference
transcriptome.

Figure 7 shows the summary of the result alignment of all samples from all
replicates. These results are written in Attachment B]. The mean of all samples from all
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replicates is 8,3 million uniquely mapped reads. The maximum is 19,6 million uniquely

mapped reads and the minimum is 1,3 uniquely mapped reads from all datasets.

The standard deviation of uniquely mapped reads is 4,8 million.
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Figure 7: Summary alignment results of STAR tool

In this moment, the data using Integrative Genomics Viewer software (IGV) [59]

is being checked and the replicates B, C, D, E, F and G are strand-specific RNA-Seq

datasets are being revealed.
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Figure 8: Example of samples A1, B3 and F2 visualization using IGV
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In Figure 8 some specific samples — A1, B3 and F2 — and the visualization of these
samples using IGV are chosen. We can see that in the section with replicates A there are
reads which have random direction but in the section with replicates B or replicates F we
can see that the direction of reads is exactly reverse as features in genome.gff3 — the last
section in Figure 8. It means that during B, C, D, E, F and G sequencing the modifying
of the RNA-Seq protocol known as stranded RNA-Seq was used how it is described in
the chapter 2.4. In the end, it was decided to continue in the work without replicate A.
Thus, the next reason for continuing the work without replicate A which is unstranded
RNA-Seq dataset.

However, converting BAM files into count tables without stranded information
cannot be considered as a false step. It is only under-utilization of the whole information
so basic statistical analysis between non-stranded and reversely-strand obtained count
tables is offered there. The evaluation differences between non-stranded and reversely

stranded datasets is described using dimensionality reduction in the following chapter.

4.5 Normalization RNA-Seq

The step before normalization RNA-Seq data creates a count table from BAM files.
The quantification approach is based on quantifying gene expression by the RNA-Seq
count number of reads mapped to each gene. The approach to create a count table is based
on R/Bioconductor featureCounts [52]. Two types of count tables are created there.
The first type is based on the unique mapping reads which are counted only to one feature.
The second approach is multimapping reads which is counted to standardized features.

BAM

Bioconductor
\l/ — featureCounts

Count Table

/ \ Normalization RNA-Seq

BASELINE EXPRESSION DIFFERENTIAL EXPRESSION
RPKM DESeq2
Quantile normalization Differential analysis

Figure 9: The second part of RNA-Seq pre-processing workflow [51]
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Figure 9 shows the second part of RNA-Seq pre-processing workflow which is
focused on normalization RNA-Seq data. The study by Schurch et. al. [60] describes
the advantages and disadvantages among tools. This study recommends using edgeR or
DESeq?2 tool if you have fewer than 12 replicates.

RPKM normalization is typically used as a quantile normalization in the baseline
expression. The tool R/edgeR rpkm [61] is used in this thesis. Currently, the RPKM is
one of the most used methods for normalised data. This normalization is not perfect
because it relies on the unlimited dynamic range of the RNA-Seq too much. It is not
perfect for the comparison of the expression of one gene thought samples. However,
RPKM is the most popular normalization and it is the reason why the RPKM is used.
On the other side the decision of using this normalization in pre-processing data allows
the possibility of future way for analysis RNA-Seq data from baseline expression view.

In the Table 1, there is an example of using normalization. We can see some
samples of replicate A which were sequenced in time 8.5 4, 13 4 and 18 /. On the left
side of the Table 1 there are raw count data and on the right side there are RPKM
normalised count data. Locus is the position of the described gene that is expressed.
We used signification locus tag which is changeless and hence we can determine

the properties of the expression of particular gene in the future correctly.

Table 1: The example using RPKM normalization

Replicates A
Locus tag Raw count data RPKM normalised data
T3 T4 Ts T3 T4 Ts
X276_26735 54 103 52 40.60 57.59 35.03
X276_26730 58 117 76 43.61 65.42 51.19
X276_26725 49 98 47 36.84 54.80 31.66
X276_26720 83 88 44 11.01 8.68 5.23
X276_26715 1146 743 427 22.53 10.86 7.52
X276_26710 1322 1540 785 24.20 20.96 12.87

Another way is a differential expression analysis means taking the normalised
count data and performing statistical analysis to discover quantitative changes in
expression levels between experimental groups [51]. R/Bioconductor DESeq2 [62] can
be called for differential expression analysis. This function prints a message for various
steps, it performs such as the estimation of size factors, the estimation of dispersion values
for each gene and fitting a generalized linear model [63].

DESeq?2 function is based on the negative binomial as the reference distribution.

The disadvantage of negative binomial distribution is the noise which is presented for
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small-scale. In such cases, simpler methods are based on the Poisson distribution or
empirical distributions although the absence of biological replication means no
population inference and hence any p value calculation is invalid [52]. Fortunately, seven
replicates {A, B, C, D, E, F, G} are available for this research and other replicates are being

prepared. Thus, DESeq2 function has been chosen for the analysis of our replicates.

4.6 Dimensionality reduction

In the fact our dataset includes two types of count tables of all replicates. One of them is
based on the unique mapping reads that are counted only to one feature. These count
tables are called FTFF. The second of them is multimapping reads which are counted to
the standardized features. These types of count tables are called FTTT. In summary seven
replicates exist which include six point-times samples and these seven replicates can be
created by two approaches. Designation FTFF and FTTT was derived by the arguments
which are different setting — True (T) or False (F) — between these two count tables, see

in Table 2.

Table 2: Different setting arguments in R/Bioconductor featureCounts [S2] between FTFF and

FTTT.
Arguments Description Setting
logical indicating whether the read summarization
should be performed at the feature level or meta-
useMetaFeatures False
feature level.
logical indicating if a read is allowed to be assigned
. to more than one feature (or meta-feature) if it is
allowMultiOverlap ) ( ) True / False
found to overlap with more than one feature.
logical indicating if multi-mapping reads should be
countMultiMappingReads | counted. True / False
logical indicating if fractional counts will be
Fraction produced for multi-mapping reads. True / False

We have 5 276 protein coding genes that are signification as Locus Tag. Thus,
there are 5 276 dimensionalities in our count tables. It is necessary to verify that pipeline
which was used in the pre-processing RNA-Seq is correct. It is the reason for creating
visualization which is based on the dimensionality reduction. Software packages that have

functions to enable the visualization of the results such as DESeq2 in Bioconductor were
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used. Considering the complexity of transcriptomes, the display of information is still
a challenge. Thus, all of the tools are evolving rapidly and more comprehensive tools with
desirable features can be expected in the future [52]. The global quality of the RNA-Seq
dataset is essential to be assessed. It leads to checking the reproducibility among
replicates. Reproducibility among technical replicates should be high but there are not

any clear standards for biological replicates because they depend on the heterogeneity of

the experimental system [52].

PC2: 12% variance
PC2: 12% variance

Butanol shock transcriptome Butanol shock transcriptome

* Standard cultivation transcriptome * Standard cultivation transcriptome

PC1: 64% variance PC1: 63% variance

Figure 10: On the left there is visualization from FTFF non-stranded dataset using variance regularized
transformation and on the right there is visualization from FTFF non-stranded dataset using variance
stabilizing transformation

It is expected in the principal component analysis (PCA) that biological replicates
of the same condition become clusters. It can be theoretical prerequisites for samples B2,
C2, D2, E2, F1 and G1 because these samples are obtained from three different studies
but same conditions, see in the chapters 2.5.1 and 2.5.2. PCA is used for the visualization
of sample-to-sample distance [56]. The data points are projected onto the 2D plane. These
two directions show most of the differences. The PC1 axis separates the data point
the most and the PC2 axis represents the direction with the largest variance subjected to

the constraint that must be orthogonal to the first direction [56].
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In the Figure 10 we can see PCA plots which were created from FTFF dataset by
all replicates. There is applied R/Bioconductor pcaMethods [64]. On the left there is
a PCA plot in which variance regularized transformation was used, on the right we can
see PCA plot where the approach with variance stabilizing transformation was used.
We can see that using of regularized transformation has higher 1 % PC1 variance than
using stabilizing transformation in this case. In the both of PCA plots we can see that B2,
C2, D2, E2, F1 and GI1 become a cluster. It can be considered a fulfilment theoretical
prerequisite which was predicated. The samples from replicate A are shown on remote
locations in the Figure 10. This fact is probably caused by different sequencing replicates.
As it was mentioned above, the replicate A was sequenced using HiSeq method but other
replicates were sequenced using NextSeq method. It is the reason why the work for
analysis gene regulatory only with replicates B, C, D, E, F and G is going to be continued
with.
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Figure 11: FTTT reversely stranded RNA-Seq dataset with used regularized transformation

Another utilization of PCA plots is shown differently between specific strand and
non-strand dataset which is described by basic statistics using created PCA plots with
their scree plots for all types of datasets which can be obtained. These plots are visualized
in the Attachment C] and the Attachment D]. The scree plots confirm the correct using of
PCA plots for our datasets because the first and the second principal components
represent significantly larger variability than other principal components. Differences

between unstranded and reversely stranded FTTT dataset are not huge. This fact shows
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similarities in PCA plots in the Attachment C]. However, reversely stranded RNA-Seq
count tables give more information than unstranded RNA-Seq count tables.

In the Attachment E] there are applications of UPGMA algorithm for evaluation
PCA plots analysis. We used R/phangorn upgma [65] where the average from Euclidean
distance between samples were applied. Our theoretical prerequisite that samples B2, C2,
D2, E2, F1 and G1 become the cluster and it is confirmed in all obtained datasets.
Figure 11 shows thanks to the red frame that our theoretical prerequisite has been
confirmed. This prerequisite is confirmed by using the knowledge of Euclidean distance

which in applied in the UPGMA method.
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5 Gene regulation for C. beijerinckii NRRL B-598

Gene regulation for C. beijerinckii NRRL B-598 is derived only by reversely stranded
FTFF and FTTT datasets. The omission of replicate A is justified in the chapter 4.6.
It means that we have a great possibility to create two datasets which were sequenced

from the same conditions and provide checking results.

5.1 Infer Operons dataset

Operon is the cluster of genes that have the same promoter and genes are transcribed and
regulated as a single large mRNA including multiple structural genes as described
in the chapter 1. We can see the operon in Figure 12. The operon structure [66] is one

of features of prokaryotes.

Operon
A
Control region Structural genas ‘
’ A ‘!' A,
{ P o | X y .4 ‘
(e ] ) ) )] T
| N
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gene
Figure 12: Operon structure [67]

Transcription unit (TU) [68] is a concept which was defined to make
the understanding of operon function easier. TU is obtained from the genes that transcribe
and regulate simultaneously. The identification of TUs is a challenge for resolving
the understanding of the transcriptional regulation. TUs mapping can be used for
the identification of new ruboswitches, non-coding RNA etc. The same TU can have
multiples transcription start sites (TSSs) and transcription ends, alternative TSSs in
bacteria are found for 15-60 % genes and operons [66]. We need to combine
the information about transcription and translation with genomics data. There is
anecessary complex where a new pipeline is created, see Figure 13, for prediction

operons which is based on both pieces of information.
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Genome Sequence (.gff3)
\L Operon mapper [69]
List of Operons (.csv)
Transcription marked locus tag
Count Tables with predicted Operons (.csv)
Divide operons using computing

express correlation
Count Tables with modification predicted Operons (.csv)

Finding operons which express one gene
and using these operons as growing seeds

Count Tables with final predicted Operons (.csv)

Figure 13: The processing workflow for obtaining operons

In this thesis Operon-mapper was used [69]. It is a web server that predicts
the operons of any bacterial or archaeal genome sequence. This web server predicts
operon using knowledges about intergenic distance of neighbouring genes as well as
the functional relationships of their protein-coding products.

Operon-mapper is based on an artificial neural network (ANN). This algorithm
was tested on a set of experimentally defined operons in Escherichia coli and
Bacillus subtilis and reached accuracies of 94,6 % and 93,3 % [69]. ANN has inputs that
are the intergenic distance of contiguous genes and score which thinks of the functional
relationships between the protein products. Operon mapper predicts 3 357 operons in
C. beijerinckii NRRL B-598. This prediction is based only on information that is obtained
from genome format .gff3 number CP011966.3 [36]. After removing pseudogenes, tRNA
and rRNA applied to the transcription mark using locus tag, 3 217 predicted operons, are
obtained. However, we need a complex view where the transcription must be included
which can be obtained from our created count tables. It was the reason for creating
R scripts in the version 3.6.1.

This processing workflow for obtained operons was used to FTTT dataset which
include B, C, D, E, F and G reversely stranded RNA-Seq replicates. This choice is based
on prerequisite that using FTFF dataset can obtain more false positive results thanks to

the loss of multimapping information. The first step is dividing predicted operons use to
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computing correlation coefficient and dividing one predicted operon to two operons
if the value of correlation coefficient is less than 30 %, we obtain 3249 operons.

Then we applied our created algorithm. It can be called growing operons seeds.
The main idea is using precedent information predicted operons where operons are found
that express only one gene and the express value from these operons are used to the next
computing correlation between the express values from upstream predicted operons or
downstream predicted operons in sequence. The choice of upstream predicted operons or
downstream predicted operons depends on the higher value of correlation coefficient.
If the correlation coefficient is more than 75 % and the distance between these operons is
less than defined threshold in bp, we assume that it is one operon and these operons are
concatenation. The threshold was defined as a mean distance between the predicted
operons which is 374 bp. This process repeats until all correlation coefficients are more
than 75 % or the distance between operons is higher than 5 000 bp. After the application
of this algorithm, 2 737 operons are obtained. In Figure 14 there are the first five obtained

operons that visualize using of the sunburst plot in MS Excel Office v. 16.
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Figure 14: First five obtained operons, light green colour represents other operons
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5.2 Gene co-expression network

Network inference methods have different approaches as it was mentioned in the
chapter 3. This thesis is focus on the co-expression-based resources for infer GRN.
Another type of network is shown importantly and is often used to describe gene
regulatory, too. It is gene co-expression network (GCN) [70]. GCN are increasingly used
to study the system level functionality of genes [70].

The concept of GCN construction is quite easy to understand. Nodes represent
genes. Nodes are connected if the corresponding genes are significantly co-expressed
across appropriately chosen tissues samples [70]. The main reason between GCN and
GRN is the fact that GCN always obtains undirected edges. We choose several tools for
the inference of GCNs and application to our datasets. Our data were divided to three
datasets. The first dataset is BCDE dataset represented by standard cultivation
transcriptome, see chapter 2.5.1. The second dataset is FG dataset represented by butanol

shock transcriptome, see chapter 2.5.2 and final dataset is BCDEFG dataset which

includes all these samples.

X276_08895

X276_04340 e ez

X276 18480  X276_00525

X276_01040

Figure 15: Example of gene co-expression network from RNA-Seq dataset containing gene expression profiles
of 5276 genes from C. beijerinckii NRRL B-598
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We have used R/Bioconductor CoexNet [71]. This package offers two different
methods for reconstruction of co-expression networks. Pearson correlation coefficient
and mutual information, these methods are described in the 3.5 chapter. The CoexNet
package was applied to our datasets.

Figure 15 shows co-expression network which was created by R/Bioconductor
CoexNet using MetaCentrum Virtual Organization portal and visualized by using
Cytoscape. The computing was provided to input parameters which include a correlation
method and threshold. We found the threshold using the function ‘findThreshold’ which
is included in the packages R/Bioconductor CoexNet. It finds the threshold value to
establish the cut off to define the edges in the final co-expression network from two steps.
Firstly, the threshold is obtained by the subtraction from clustering coefficient values
ofthe real and random networks created from the possible threshold values
in the correlation matrix. In the second step, a Kolmogorov-Smirnov test is used which
has been made to evaluate the degree distribution respecting normality. In Figure 15 there
is co-expression network which has threshold value 0.94. The network has 3 052 nodes
and 82 634 edges. This network includes FTFF BCDE dataset, it is a standard cultivation
transcriptome, see 2.5.1.

This locus tag X276 18480 indicates gene SpoOA which is known as a global
regulator as mentioned in the study by Patakova [37]. Thus, the thesis is focused on this
gene and this significant locus tag X276 18480 is visualized using the yellow colour.
In the study by Sedlar [72] it 1s written that gene SpoOA is a sporulation initiator factor
such as transcription factor for sol operon. However, the sporulation is not a necessary
condition for solventogenesis and that sporulation can be achieved only under specific
culture conditions [37]. Figure 15 shows that locus tag X276 18480 is adjacent to
X276 25055 and X276 01040. Both of locus tags are protein coding. Specifically,
X276 25055 codes AOAOK2MKBY7 protein [73] whose length is 270 amino acids and
X276 01040 1s glgD gene which codes AOAOK2M7P6 protein [74].

Attachment F] shows examples of two co-express networks where locus tag
X276 18480 is significant. Both of networks are created by the same parameters but the
different dataset. One is from FTFF datasets and the other one is from FTTT datasets.
This distribution of datasets was provided for checking and we can see that adjacent to

X276 25055 and X276 01040 was correct because both of datasets have match.
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Table 3: Basic static analysis co-expression networks based on correlation method

BCDE FG BCDEFG
FTFF FTTT FTFF FTTT FTFF FTTT
Number of nodes 3052 3143 5249 2746 5013 2233
Number of edges 82634 | 85603 | 478451 20109 | 1637789 35873
Clustering coefficient 0.503 0.507 0.433 0.353 0.605 0.525
Connected components 114 134 2 131 9 168
Network density 0.018 0.017 0.035 0.005 0.130 0.014
Characteristic path length 4.592 4.639 3.156 6.418 2.370 4.853
Average no. of neighbours | 54.151 54.472 | 181.302 14.646 653.417 32.130
Network heterogeneity 1.197 1.229 0.950 1.264 0.983 1.356

Table 4: Basic static analysis co-expression networks based on mutual information method

BCDE FG BCDEFG
FTFF FTTT FTFF FTTT FTFF FTTT
Number of nodes 2543 2622 1141 1171 711 766
Number of edges 713312 | 731518 | 137993 | 148509 | 12019 12 261
Clustering coefficient 0.628 0.622 0.551 0.551 | 0.671 0.643
Connected components 4 8 4 8 49 53
Network density 0.220 0.213 0.212 0.217 | 0.048 0.042
Characteristic path length 1.875 1.885 1.797 1.792 | 3.540 3.350
Average no. of neighbours | 560.339 | 557.985 | 241.881 | 253.654 | 33.809 32.013
Network heterogeneity 0.703 0.720 0.468 0.472 | 1.348 1.323

In sum we created 12 different co-expression networks. The co-expression
networks were created by correlation and mutual information method, see in the
chapter 3.5. Static network analysis was provided using NetworkAnalyzer [75].
The conclusion of results are shown in the Table 3 and Table 4. Table 3 shows basic static
analysis from all co-expression networks which were created by correlation method and
Table 4 shows the conclusion of results which has been created by mutual information
method. Network parameters obtained by FTFF datasets and obtained by FTTT datasets
are very similar. It points out to checking correction because we can assume similar
results of these datasets created by same transcriptome data.

Number of nodes and edges are affected by threshold value which was obtained
using ‘findThreshold’. The threshold values which are found by FTFF datasets are same
as the threshold values which are found by FTTT. However calculated threshold values
were different between correlation and mutual information approaches. It is reason why
we can see huge difference between the number of nodes or edges between these different
approaches. If we used threshold value such as 0.94, the final co-express networks have

3 052 nodes and 82 634 edges or 3 142 nodes and 85 603 edges, these networks were
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created by BCDE datasets using correlation approach, see Table 3. On the other side,
if we used threshold value such as 0.37, the final co-express networks have 1 141 nodes
and 137 993 edges or 1 171 nodes and 148 509 edges, these networks are created by FG
datasets using mutual information approach, see Table 4. Thus, when lower threshold
value is used, the graph has more number of edges.

Clustering coefficient is defined in the chapter 1.1. Thus, the network clustering
coefficient is the average of the clustering coefficients for all nodes in the network [76].
The premised is that nodes with less than two neighbours have a clustering
coefficient of 0. The mean of clustering coefficient is higher in mutual information
approach than correlation approach because the mean of clustering coefficients from
correlation approach is 0.49 and the mean of clustering coefficients from mutual
information approach is 0.61.

The most distinct difference between results of static analysis between correlation
and mutual information methods is visible in the results of connected components.
Number of connected components [76] indicates the connectivity of a network. It means
that the lower number of connected components suggests a stronger connectivity.
The mutual information approach has significant values of connected components then
the correlation approach. Thus, networks which were created by mutual information
approach has stronger connectivity.

The network density [76] is normalized version of the average number of
neighbours. The average number of neighbours [76] indicates the average connectivity of
a node in the network. The network density shows how densely the network is populated
with edges. The mean of network density is higher using mutual information method.
In opposite the mean of characteristic path length is higher using correlation approach.
The characteristic path length [76] is also known as the average shortest path and gives
the expected distance between two connected nodes.

The network heterogeneity [76] reflects the tendency of a network to contain hub
nodes. The mean of network heterogeneity from the Table 3 is 1.16 and the mean of
network heterogeneity from the Table 4 is 0.84. It means that co-expression networks
using correlation approach have higher network heterogeneity than co-expression
networks using mutual information method.

Final step in reconstruction co-express network for Clostridium beijerinckii
NRRL B-598 is based on intersection above created co-express networks. The merging

is visualization in Figure 16. This merging was made for all FTTT and FTFF co-
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expression networks which was created by mutual information or correlation. The final

results of co-express network are four co-expression networks.
BCDE
FG - BCDE N FG M BCDEFG

BCDEFG

Figure 16: The merging co-expression networks

Table 5: Basic static analysis final co-expression networks

Correlation Mutual information
FTFF FTTT FTFF FTTT

Number of nodes 3039 1430 139 144
Number of edges 10543 1516 102 98
Clustering coefficient 0.240 0.213 0.140 0.126
Connected components 1316 743 63 70
Network density 0.002 0.001 0.011 0.010
Characteristic path length 6.648 5.667 3.892 4.481
Average no. of neighbours 6.938 2.120 1.468 1.361
Network heterogeneity 1.987 1.682 1.035 1.134

Table 5 shows final results of co-express networks which were created by
RNA-Seq from C. beijerinckii NRRL B-598. We created four co-expression networks for
C. beijerinckii NRRL B-598. Co-expression networks from FTTT and FTFF datasets
were created for the verification of correct results because we assume that networks which
have been created by the same method will be similar. The values of parameters network
by FTFF and FTTT datasets in the Table 5 can be considered a fulfilment prerequisites.

The final comparison between correlation and mutual information shows that
mutual information approach is stricter than correlation because co-expression networks
which were created by mutual information method has significantly less number of nodes
and edges than co-expression networks which were created by correlation. However,
the co-expression networks based on mutual information has higher values of network
density. Despite less number of nodes and edges the co-expression networks based on
mutual information is higher populated with edges.

Unfortunately, co-expression networks based on mutual information lose
information about genes which has not higher express value in samples such as Spo0A

gene. Thus, after the final step merging information about this gene is lost in co-
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expression networks based on mutual information. However, merging co-expression
networks based on correlation preserved information about Spo0OA gene so we can declare

the dependence between Spo0OA and glgD gene.

5.3 Gene regulatory network

The co-expression-based resources for infer GRN is used in this thesis. We showed GCN
in the previous chapter where is mentioned that GCN is always an undirected graph. It is
different between GCN and GRN. GRN is mentioned as a directed graph but co-
expression based resources tools for infer GRN are insufficient for the infer directed
graph.

Co-expression-based tools [77] have been widely adopted after the introduction
of transcriptome scale quantification methods of transcript abundances. Two genes are
deemed co-expressed if a significant dependency is determined between their transcript
expression [77]. Currently, several available tools were created for the reverse

engineering of GRNs based on this approach.

5.3.1 Bootstrap-based GRN

The bootstrapping approach is described in the chapter 3.1. There is used R/Bioconductor
be3net [78]. The main idea of be3net 1s based on the bootstrap aggregation. Be3net is an
ensemble method that is based on bagging the C3NET algorithm, which means it
corresponds to a Bayesian approach with non-informative priors [78].

Bc3net was applied to our datasets such as in the previous chapter 5.2.
Unfortunately, bc3net is one of their tools which are not sufficient for the infer directed
graph. Thus, all GRN which is created to using be3net are undirected. We provided static
analysis NetworkAnalyzer, see Table 6. Table 6 shows really similar network parameters.
It means that all created GRNs based on the bootstrap report similar dependence between

genes and this fact is not dependent to different obtaining datasets.
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Table 6: Basic static analysis GRNs based on bootstrapping

BCDE FG BCDEFG
FTFF FTTT FTFF FTTT FTFF FTTT
Numbers of nodes 5276 5276 5282 5282 5278 5278
Numbers of edges 31514 30794 31436 30364 30 409 30483
Clustering coefficient 0.165 0.170 0.082 0.083 0.161 0.168
Connected components 1 3 7 7 4 4
Network density 0.002 0.002 0.002 0.002 0.002 0.002
Characteristic path length 4.714 4.893 4.163 4.200 4.666 4.783
Average no. of neighbours 11.946 11.673 11.903 11.497 11.523 11.551
Network heterogeneity 0.343 0.361 0.325 0.310 0.393 0.403

GRNs were visualised using Cytoscape where we created example of the first
neighbourhood of Spo0OA, see Attachment H]. The Attachment H] shows that the
connection between X276 01040 and X276 18480 is conformed in all first
neighbourhood of Spo0A. Thanks to it fulfilment dependence between SpoOA and glgD
gene, again.

The final GRNs which were created such as intersection above networks, the same
principle is shown in Figure 16. It means we obtained two resulting networks. The first
checking of results shows the similar networks parameters of FTFF datasets and FTTT
datasets in the Table 7. The number of edges is 617 for FTFF datasets and 644 for FTTT
datasets. If we compare edges in these datasets, we obtain 412 edges which are the same
in the both final networks. It means we declare 412 edges which report dependence in

GRNs based on the bootstrap approach.

Table 7: Basic static analysis for two final GRNs based on bootstrapping

FTFF FTTT
Numbers of nodes 5276 5276
Numbers of edges 617 644
Clustering coefficient 0.011 0.014
Connected components 4698 4 680
Network density 0 0
Characteristic path length 2.058 1.643
Average no. of neighbours 0.234 0.244
Network heterogeneity 2.469 2.392

Table 7 shows that network parameters are different such as network parameter in
the Table 6. The value of clustering coefficient is less in the Table 7 then in the Table 6
such as the value of average no. of neighbours, characteristic path length and network
density. The value of network density is zero. It causes the high number of gene which is

not connected with other genes after execution intersection. In the opposite value of
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network heterogeneity is higher in the Table 7 then in the Table 6. It reports that the final
networks which have been created by intersection have a higher tendency of the network
to contain hub nodes.

We have focused on SpoOA in the other view of static analysis in GRNs which
have been created by bootstrapped approach. In total is 412 edges which we have declared
such as dependences among genes because these edges are the same in final FTFF and
FTTT networks, see Table 7. SpoOA has been found and visualized by its neighbours.
Unfortunately, the neighbourhoods have obtained only two genes but these genes are
X276 01040 and X276 18480. The dependence between Spo0OA and glgD gene are

fulfilment, again.

5.3.2 Tree-based GRN

The decision tree-based method is described in the chapter 3.3. R/Bioconductor
GENIE3 [79] has been applied to our datasets which was divided such as in the previous
chapters. The GENIE3 is a decision tree-based method which has emerged as the best
performer in the DREAM4 [12]. This inference method based on the variable selection
of ensembled regression trees. It produces directed graphs of regulatory interactions
allowing the presence of feedback loops in the network, it obtains realistic GRNs [77].

The GRNs which has been created by GENIE3 has had to compute using the
MetaCentrum Virtual Organization portal. We have had to filter GRNs using empirically
set threshold. This value has been set for a purpose obtained by GRNs which include
about 5 000 edges because the GENIE3 output is adjacency list and this file format is
computationally demanding for the visualization and following static analysis.
The threshold value for samples from the standard cultivation transcriptome is 0.0095,
the threshold value for samples from butanol shock transcriptome is 0.0074 and the
threshold value for all samples is set as 0.0108. If there are more variable and larger
dataset, we need to set higher threshold.

In sum 6 GRNs have been created whose approach has been based on the tree
methods. The basic static analysis has been provided by NetworkAnalyzer and visualized
in the Table 8. There is the same situation such as above where the first checking of results
shows the similar networks parameters of FTFF datasets and FTTT datasets

in the Table 8.
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Networks parameters in the Table 8 is provided static analysis of GRN which is
specific for directed graph. The difference between Table 6 and Table 8 is important.
Number of nodes and edges in the Table 6 is much higher than in the Table 8. This fact
is caused by a higher computational complexity during visualized directed networks than

during the usage of undirected networks.

Table 8: Basic static analysis GRNs based on tree method

BCDE FG BCDEFG
FTFF FTTT FTFF FTTT FTFF FTTT
Numbers of nodes 2404 2490 2854 2758 2693 2756
Numbers of edges 5063 4879 5070 3709 5025 4814
Clustering coefficient 0.063 0.061 0.032 0.027 0.064 0.069
Connected components 147 139 209 166 251 291
Characteristic path length 11.593 13.421 12.904 7.616 8.301 7.738
Average no. of neighbours 3.831 3.583 3.180 2.613 3.286 3.091
Multi-edge node pairs 458 418 532 105 601 554

The values of clustering coefficient is less in the Table 8 than in the Table 6.
However, it is important to mentioned that the clustering coefficient is defined in directed
networks [76]:

co—___°n

" Uenen — 1) (14)
where k,, is the number of neighbours of n and e, is the number of connected pairs
between all neighbours of n. The values of connected components are much higher in the
directed networks, see Table 8 than in the undirected networks, see Table 6. Table 8 also
shows network parameter which is typical for directed networks, it is multi-edge node
pairs. This attribute indicates if n is a partner of node pairs with multiple edges [76].
The highest value of the multi-edge node pairs parameter belongs GRN which have been
created by all samples from all replicates. It is caused to large datasets which creates
GRN.

Figure 17 shows the example of GRN which has been created by the standard
cultivation transcriptome obtained such as FTFF datasets. We visualized significant locus
tag X276 18480 which represents SpoOA. GRN created by tree-based approach shows
Spo0OA with 7 indegree and 3 outdegree parameters. Unfortunately, the visualized
neighbours do not show X276 01040 like in the undirected graphs. However, we can see
others 8 possibilities of candidate for interaction with SpoOA gene. The description of

these 8 candidates is in the Table 9.
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Figure 17: Example of GRN from RNA-Seq dataset containing gene expression profiles of 5276 genes from
C. beijerinckii NRRL B-598

Table 9: Basic description of 8 candidates for interaction with Spo0A

Locus tag Protein ID Product

X276_02845 ALB44287.1 | dCTP deaminase

X276_02840 ALB44286.1 | hypothetical protein

X276_23685 ALB48059.1 | Nitrogenase

X276_18850 ALB47156.1 | alpha/beta hydrolase

X276_25055 ALB48296.1 | lytic transglycosylase domain-containing protein
X276_00115 ALB43814.1 MazG-like family protein

X276_15115 ALB46480.1 | cobyrinate a%2Cc-diamide synthase
X276_08895 ALB45387.2 | class D beta-lactamase

Locus tags X276 02845 and X276 02840 are part of operon no. 1911 which is
inference in chapter the 5.1. X276 02845 codes deoxycytidine triphosphate deaminase
(dCTP deaminase) [80] product. It is an enzyme which is involved in the nucleotide
metabolism. It catalyses the formation of deoxyuridine triphosphate (dUTP) which is turn
in degraded by dUTPase to produce deoxyuridine monophosphate ({UMP). Dump is the
immediate precursor of thymidine nucleotides [80]. In opposite the X276 02840 has the
product which is described as a hypothetical protein. It means that the protein has been
predicted nevertheless there is a lack of experimental evidence which is expressed in vivo.

The products from other candidates for interaction with SpoOA are situated

in the Table 9. Table 9 shows the description from CP011966.3 [36].
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Attachment H] represents other examples of GRN which have been created by
tree-based methods where visualized significant locus tag X276 18480 which represents
SpoOA. In Attachment H] there is missed GRNs created by butanol shock transcriptome
of FTFF datasets because in this GRN there is not visible locus tag X276 18480. It does
not mean that these GRNs do not obtain the node which represents SpoOA but thanks to
the usage of threshold we have persevered the nodes that have edges with higher weight.

However, in other GRNs which have been created by the tree-based approach
X276 18480 is visible, see Attachment H]. In addition X276 18480 has common edge
with X276 01040 in GRNs which have been created by all samples. This fact can show

the correct prediction of dependence correlation between SpoOA and glgD genes.

Table 10: Basic static analysis two final GRNs based on random forest method

FTFF FTTT

Numbers of nodes 739 718
Numbers of edges 160 6
Clustering coefficient 0.011 0

Connected components 711 712

Characteristic path length 1.701 1.143
Average no. of neighbours | 0.349 0.017
Multi-edge node pairs 31 0

The final GRNs which have been created such as the intersection above networks,
again — see in the Figure 16. It means we have obtained two resulting networks. Table 10
shows static analysis for these GRNs. The first sight is obvious huge difference between
the numbers of edges. GRN from FTTT datasets obtains only 6 edges and these edges are
mismatched with edges in GRN from FTFF datasets. Thus, we can declare that we need
more samples for inference tree-based GRN which can be causality.

Eventually, a selected part of GRN constructed as an intersection of FTFF datasets
in shown the Figure 18. We highlighted locus X276 12610 which is a possible candidate
for transcription factor coding protein ALB46023.1 annotated as transposase.
Transposase [81] is the enzyme that cuts out the DNA and moves it to a different place.
The predicted regulon of X276 12610 contains six genes: X276 04705, X276 19385,
X276 _00985, X276 10490, X276 10945, and X276 _00235.
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Transcription factor
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Figure 18: Sub-graph of intersection of tree-based GRN from FTFF datasets

Figure 18 shows example which have been analysed using CountTriplets [82].
It is the Cytoscape app that counts triplets motifs and computes z-scores against randomly
generated networks. The CountTriplets performs abundance and significance
analysis [82]. The triplets motifs are visualized in Attachment I]. The z-score [83] is

defined as:

Z(gk) _ finput : frandom , (15)

Orandom

where finpy: 1s the sub-graph frequency in the input network frqngom 18 the mean
of frequencies of g in the random network. g;, represents sub-graph with a size k. Thus

the z-score is the difference of fin,y and frangom divided by the standard deviation

0 ndom- A motif is regarded as statistically significant if the associated z-score value is

higher than 2.

The sub-graph in the Figure 18 has 27 nodes and 158 edges and the analysis of
CountTriplets is visualized using triplets profile in Figure 19. It shows significance
profile. The significance profile reports the profile of the network analysed as a line
chart [82]. The significance profile has been computes against randomly generated sub-
graph, see Figure 18. Figure 19 shows that the sub-graph in Figure 18
obtains 11 significant motifs because 11 motifs have higher z-score value than 2.
FLLAAA was found among significant motifs, see in Attachment I]. The FFLAAA

represents general Coherent Feedforward Loop (C1-FFL) motif which is found much
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more frequently in the transcription network of Escherichia coli and yeast than the other

types of motif [83].
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Figure 19: Triplets profile of example in Figure 18

5.3.3 Differential equation-based GRN

Differential equation-based GRN is the approach which is based on the ordinary
differential equation (ODE) [77]. ODEs are learned from gene expression data, from
multiple samples in GRN reconstruction. This approach is naturally suited to the model
also non-linear relationships, because ODE methods are essentially RNA chemical
reactions that can show a wide range of kinetic behaviours. Introducing the constraints
of known kinetic parameters knowledge of GRN structure can be extremely beneficial to
ODE-based methods [77].

In this thesis we used Time Series Network Identification (TSNI) algorithm which
is a differential equations-based GRNs inference method and is available as MATLAB
package [84]. The aim of this algorithm is to infer the local network of gene-gene
interaction surrounding a gene of interest by measuring at multiple time points [77].
This package has been incorporated and used as a modification to our datasets. We have
created ‘GRN_main.m’ script which has included several steps.

The first step is the loading our datasets but in this infer GRN our dataset has been

divided to six datasets which represents each of replicates. It was necessary because
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inputs of ‘#zsni.m’ [84] requires chronologically arranged data. Thus, we have obtained six
gene regulatory networks for each of replicates. In the following step we have created
‘penetration.m’ function which has been applied to these six gene regulatory to obtain
one final GRN in the main script. The procedure of penetration is visualization
in the Figure 20. Figure 20 shows standard cultivation transcriptome as blue colour and

butanol shock transcriptome as green colour.
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Figure 20: Diagram of penetration procedure for creation GRN

The evaluation of created GRNs has been provided to FTFF and FTTT datasets,
see Table 11. The visualization GRNs has been used by Cytoscape and aMatReader [85].
The results have been obtained by using NetworkAnalyzer for basic static network
analysis. We can see that results obtained by FTFF datasets that are similar to the FTTT
datasets, again and so it is checking correction results.

Table 11: Basic static analysis GRNs based on differential equation

FTFF FTTT

Numbers of nodes 5276 5276
Numbers of edges 194 541 195 489
Clustering coefficient 0.602 0.566
Connected components 1013 1117
Characteristic path length 2.530 2.552
Average no. of neighbours 61.217 61.415
Multi-edge node pairs 27 774 28 200

We can see that we have the same numbers of nodes such as GRNs which is based
on bootstrapping because the output of our ‘zsni’ toolbox is weighted by edge matrix.
Thus, we do not need high threshold like in the tree-based approach. There is a fact that
we have 194 541 numbers of edges for FTFF datasets and 195 489 numbers of edges for
FTTT datasets obtained by the highest values of numbers of edges from all used
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approaches. However, these values have included edges which have reflected express
influence themselves gene. It means that if we hide these themselves expressed edges we
obtain about 190 000 edges.

Table 11 shows the parameters of directed GRNs. Thus the evaluation is provided
between the Table 10 where parameters of tree based GRN are shown and the Table 11.
The clustering of coefficient is significantly higher in the Table 11 than in the Table 10.
The values of connected components and other parameters in the Table 11 are higher than
parameters in the Table 10, too. This fact is affected by the numbers of nodes and edges.
The ODE based networks are not computationally intensive and so the ODE based
networks describe more gene regulatory information than tree based GRNs. The edges of
ODE based networks are identical in 170 119 cases.

In this case it can be confused to locus tag X276 18480, again. In the Figure 21
there is X276 18480 such as a transcription factor with its first neighbourhood. We can
predict that SpoOA is a transcription factor for these visible 27 genes including 5 operons
which is obtained in the chapter 5.1.

Unfortunately, no genes which are connected above in others approaches are
visible there. It is caused by a little number of time-points samples included only 6 time-
points. Thus ‘tsmi’ method creates 6 initial gene regulatory networks which are
followingly connected by a penetration, see Figure 20. If we have more samples
sequenced in more time-points, the results of GRNs would be more causality. However,
we can predict that SpoOA is a transcription factor which affects more operons and genes

than only the sporulation sol operon such as written in the study by Sedlar [72].
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K76 D4BES X2T6_12605 Operon no. 481
- 578 12635 Operon no. 995
KETE_00440 - Operon no. 1079
H2TE_13300 Operon no. 1 758
L Operon no. 1 786
W2TE 24720 X2TE_13305 Other genes
K2TE_13310
HETH_26625
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X276, 20385

XITE_20385 W2¥E_ 20390

Figure 21: Part of GRN included locus tag X276_18480 with its 1% neighbourhood
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Operon no. 1786 includes X276 04665 and X276 04670 locus tags,
the X276 04665 coding ALLB44621.1 protein which produces glutamate synthase large
subunit and X276 04670 coding ALB44622.1 which produces glutamate synthase
subunit beta. As we see the similar products, we can adduce that the operon no. 1786 is
correct inference. Figure 6 shows genes from operon no. 481 which is the only part of
this operon because the predicted operon no. 481 includes X276 20380 locus tag, too.
Its absence can cause small numbers of time-points sequencing, such as mentioned above.

In the next chapter we will predict the finial GRNs using the interconnection of
all above mentioned approaches, we need to create ODE based networks which include
about 10 000 edges. It means the 5 276 edges represent themselves express influence gene
and other edges represent express influence among the different genes. We can see
the basic static parameters of network in the Table 12. There are fewer parameters than
in the Table 11. These networks are more strict than previous networks, see Table 11,
because they are filtered by visible edges with higher weight value. The intersection of

these networks obtains 8 785 edges which are identical.

Table 12: Basic static analysis filtered GRNs based on differential equation

FTFF FTTT
Numbers of nodes 5276 5276
Numbers of edges 9639 9332
Clustering coefficient 0.078 0.067
Connected components 4566 4 645
Characteristic path length 3.291 3.199
Average no. of neighbours 1.460 1.326
Multi-edge node pairs 512 559

XA 2T e wami 18250

mmﬂs
i D0

HK2PE 15180

¥3TE_5865

PO |

Qﬂmu ; KIT_IHG

HETE_R5200

XaTE 15185

B Transcription factor
Operon no. 1 120
Other genes

XITE_ 15195

HETE_ 15205

Figure 22: Sub-graph of intersection final ODE based networks
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In Figure 22 there is a sub-graph of the intersection of final ODE based networks
which shows the locus tag X276 23685 and its first neighbourhood. This locus tag codes
protein ALB48059.1 and its product is nitrogenase. The locus tag X276 23685 is a
possible candidate for transcription factor and its regulon is shown in Figure 22. The sub-
graph in Figure 22 has 17 nodes and 21 edges. This network was analysed using
CountTriplets similarly to the network in Figure 18. The significance profile has been
computes against randomly generated sub-graph, see Figure 22. Figure 23 shows that the
example of network in Figure 22 contains 10 significant motifs.

The most significant motifs are marked as IAA, IAI and III. In Attachment I] there
are these motifs in part of linear triplets. The higher values of z-score for linear triplets
motifs than closed triplets motifs have been caused by network architecture. It is caused
by special example of sub-graph which has been created to visualize regulon of
X276 23685. When we analysed the whole neighbourhood of X276 23685, we obtained
11 significant motifs, among them, also FFLAAA motif was detected, similarly to the
sub-graph in Figure 18. It is caused by the size of network because the neighbourhood of
X276 23685 contained 30 nodes and 143 edges. Here, triplets profile only for a selected
sub-graph representing a possible regulon of X276 23685 is shown, see Figure 22.
However, it is necessary to mention that the most significant motifs such as IAA, IAI and
IIT have been found with the highest values of z-score in a sub-graph for neighbourhood
of X276 23685, too.

Triplets Profile
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TS ST T ESTTE TSNS I I
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Figure 23: Triplets profile of example in Figure 22
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5.3.4 Interconnection of approaches

The inference causality GRN for the non-model organism is important holistic approach
and so we decided to use the interconnection of all used approaches in this thesis. Thus,
the final results of GRNs are obtained by the interconnection of approaches whose
description is described above. We have provided the union networks for all created
networks from FTFF and FTTT datasets. This procedure is based on the merging GRNs
based on bootstrapping, tree and ODE approaches.

The created final networks are undirected because the bootstrapping based
networks are undirected and after applying merging to our GRNs in the Cytoscape the
directed information is lost. Table 13 shows static parameters of networks from the final
inference GRNs. The checking of FTFF and FTTT GRNs shows the correct approach
because the parameters are similar. The checking is provided during the whole research
for checking because we create GRN for the non-model organism and so we have any
possibility for checking of our results.

GRNs include 10416 edges for FTFF data and 9 982 edges for FTTT data.
At the sight numbers of edges are huge but these numbers include edges which represent
themselves express influence information. Thus, if we subtract these themselves edges,
we obtain 5 140 edges among different genes for FTFF dataset and 4 706 edges among
different genes for FTTT dataset. The part of example of final GRNs is shown in
the Attachment J].

Figure 24 is the example of interconnected approach. We have taken the first
neighbourhood of X276 12610 from FTTT dataset, see Attachment J]. The X276 12610
is locus tag which is visible and described in the chapter 5.3.2. We have also taken
X276 18480 locus tag and created final sub-graph which visualises these specific genes
such as the possible candidate of transcription factor. This sub-graph includes not only
all approaches which are based on the different methods but also the information about
predict operons. The information about the directed edges which come out of
transcription factor are taken from R/bioconductor Genie3 method and ‘#sni.m’ toolbox.

The X276 12610 is a possible candidate of the transcription factor for 6 operons
and 17 other genes in the Figure 24. The X276 18480 which represents Spo0A is visible
connection with X276 01040, again. Thus, we declare that SpoOA has significant
dependency with glgD gene.
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Table 13: Basic static analysis union GRNs

FTFF FTTT
Numbers of nodes 5276 5276
Numbers of edges 10416 9982
Clustering coefficient 0.101 0.092
Connected components 4123 4190
Characteristic path length 3.044 2.914
Average no. of neighbours 1.733 1.559
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Figure 24: Example of interconnected approach

At the end we have created the adjacency list for the inference GRN which
originated by the intersection FTTT and FTFF final networks. This adjacency list includes
8 787 edges which can be declared as significant edges in GRN for C. beijerinckii NRRL
B-598. However, we need more replicates for obtaining more causality results which are
sequenced in more time-points. Thus, in this thesis we have predicted the first GRN for
C. beijerinckii NRRL B-598 including 8 787 possible candidates of edges which can be

considered as the predecessor for more causality results in future.
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Conclusion

The master’s thesis deals with the study of gene regulation in Clostridium beijerinckii
NRRL B-598. The thesis is focused on the description of gene regulatory nomenclature,
inference gene regulatory networks, description of laboratory methods for obtained
laboratory data which are usually used for studying gene regulatory. The described
laboratory methods are mainly focused on the technologies of RNA-Seq and brief
description laboratory data which have been got for examined bacterium C. beijerinckii
NRRL B-598. The following part of the thesis is the theoretical description of the network
inference methods which are the most used methods in current and also used in the
chapters for inference gene regulatory networks for C. beijerinckii NRRL B-598.

The practical part of the thesis starts with pre-processing raw laboratory data
obtained from C. beijerinckii NRRL B-598. This pipeline of pre-processing can be used
for the pre-processing raw laboratory data of other bacterium therefore it is uploaded in
the git hub /JanaSchwarzerova/Analytical-pipeline-rawRNA-Seq where is available. The
results of pre-processing steps were evaluated using PCA plots where is shown that the
samples sequenced in the same conditions become the clusters. Thus, it represents
correctness of created analytical pipeline.

The outputs of pre-processing step are count tables which represent gene express
values. We have created the count tables by two different approaches which we have
called as FTFF and FTTT, more information in the chapter 4.6. The separation of data is
done for following checking. We assumed the similar results of parameters gene
regulatory networks. This checking is done during all procedure of inference the first gene
regulatory networks for C. beijerinckii NRRL B-598.

The first step of the research of gene regulatory in C. beijerinckii NRRL B-598 is
focused on the inference operons list. The inference operons list is obtained for the using
of the combination machine learning approach which is included in the online tool
Operon-mapper and expresses the gene value which has been obtained from
C. beijerinckii NRRL B-598. We have predicted 2 737 operons. The final steps in this
thesis have derived the first gene regulatory network for C. beijerinckii NRRL B-598 as
an adjacency list which includes 8 787 edges. These edges are obtained by the
interconnected different approaches and intersection of the two final gene regulatory

networks from FTFF and FTTT datasets.
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Attachments

Attachment A] Example of Pre-processing shell-script

## Pre-processing raw data RNA-Seq
e K ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok 3k ok sk ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok sk ok s ok ok ok ok ok ok ok ok ok

## X-replicate
#i#t

Hit Quality assesment (QA) Raw data*****************************************
cd /auto/ .. /RNASeq_repX

# Add module fastQC

module add fastQC-0.11.5

# Take all files "*.gz" and is done quality check;
# results will be write in to "raw_data_ga"
fastqc -o raw_data_qga *.gz

# Add multiQC

module add python36-modules-gcc

pip freeze | grep network

#networkx==2.0

# Go to raw_data_ga file

cd raw_data_ga

# run Multiqc

multiqc .

# add necessarilly modules

export LC_ALL=C.UTF-8

export LANG=C.UTF-8

# run Multiqc

multiqc .

gunzip *.gz

Hit Delete rRNA 3k 3k 3k 3k 3k 3k ok 3k 3k 3k 3k 3k 3k k 3k 3k 3k sk %k 3%k 3k 3k 3k %k 3%k 3k 3k 3k 3k 3k %k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k %k 3k 3k 3%k 3k >k %k %k %k %k %k %k %k %k %k
cd /auto/../RNASeq_C_beijerinckii_NRRL_598/sortmerna-2.1-1inux-64

#tsamples: X01l, X002, X03, X04, X05, X06
for i in 123456
do
./sortmerna --ref ./rRNA_databases/silva-bac-16s-id90.fasta,./index/silva-bac-
16s-db:\
./rRNA_databases/silva-bac-23s-id98.fasta, ./index/silva-bac-23s-db\
--reads /auto/../raw_X0${i}.fastq\
--aligned /auto/../X_${i} --fastx\
--other /auto/../X_${i} _non_RNA --log -v -a 10 -m 4096
done

Hit QA nonrRNA 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k %k 3k 3k 3k %k %k 3%k 3k %k 3k %k 3%k %k 3%k %k %k 3k %k %k %k *k
# Similar procedure such as section QA raw data

i Tpimming dat ko sk ok ok ok sk ok sk ok sk ok ok sk ok sk ok ok sk ok sk ok s ok 3k sk 3k sk ok 3k ok 3k sk ok 3k 3k ok sk ok 3 3k ok 3k ok ok 3k ke dk ok ok ok ok ok %k ok ok

module add trimmomatic-0.36
for i in1 23 456

&3




do

java -jar /software/trimmomatic/@.36/dist/jar/trimmomatic-0.36.jar SE -threads
10 X_${i} _non_RNA.fastq X_${i}_non_RNA_ trim.fq ILLUMINACLIP:TruSeq3-SE:2:30:10

LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36
done

Hit QA Non-rRNA-Trim 3k 3k 3k 3k 3k 3k 2k %k 3k 3%k 3k 3k 3k 3k 3%k 3k %k 3k %k 3k 3k %k 3k %k 3k %k 3k %k %k 3k %k 3k %k 3%k %k %k 3k %k 3k %k %k 3k %k 3k %k %k %k %k %k % %k %k %k k
# Similar procedure such as section QA raw data

Hit Mapping sequences 3k 3k 3k 3k ok %k ok 5k ok ok 5k 3k ok 5k %k 3k 5k 3k ok 3k 3k ok 5k 5k 3k 5k %k 3k %k 3k ok 5k 3k >k 5k %k 3k 5k %k ok %k %k ok 5k %k %k k %k %k %k %k %k %k k

# Add module STAR

module add star-2.5.2b

# Go to genome_annotation file

cd /auto/../genome_annotation

module add cufflinks-2.2.1

gffread -E -0 -T genome.gff3 -o genome.gtf

## Index genome ... ONLY ONCE!

STAR --runThreadN 10 --runMode genomeGenerate\

--genomeDir /auto/../genome_annotation\

--genomeFastaFiles /auto/../genome_annotation/genome.fasta\
--sjdbGTFfile /auto/../genome_annotation/genome.gtf\
--sjdbOverhang 48 --sjdbGTFfeatureExon CDS

# Itself mapping to index genome

for i in 123456

do

STAR --runThreadN 10 --genomeDir /auto/../genome_annotation\
--readFilesIn /auto/../X_${i} non_RNA_ trim.fq\
--outFileNamePrefix /auto/../X${i}\

--outFilterMultimapNmax 5 --outReadsUnmapped Fastx

done

Hit Quality Assesment (QA) mapping 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k 3k 3k %k 3%k 3k 3k 3k 3k 3%k 3k 3%k 3k 3k 3k %k %k %k % %k %k %k k
# Go to Mapping_sequences file
cd /auto/../index_genome

# run Multiqc
multiqc .

## Sort SAM to BAM 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k >k 3k 5k 3k 3k 3k 3k 3k %k 3k 3k 3k 3k 3k %k 3k 3k 5k 5k 3k 3k 3k %k %k >k 5k 3%k 3k 3k 3k %k %k %k %k %k 3k %k %k %k %k >k 5k 5k %k k

## before building count table is necessary SAM sorts
module add samtools-1.4

for i in 123456

do

samtools sort -1 9 -o X_${i}.bam X${i}Aligned.out.sam
done

## Creating count table 3K 3k 3K 3k 3k sk 3k sk 3k sk sk 3k sk 3k sk sk sk 3k sk 3k sk 3k sk 3k sk 3k sk 3k sk 3K sk 3K 3k sk 3k 3k 3k 3k 3k ok 3k ok 3k %k ok sk sk sk k k.
module add subread-1.5.2

subread-buildindex

subread-align --help

featureCounts -T 2 -a /auto/../genome.gff3 -o /auto/../Count_table_X.txt -t gene -

g locus_tag -0 X_1.bam X_2.bam X_3.bam X_4.bam X_5.bam X_6.bam
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Attachment B] Results of read alighment to a reference

Table 14: Results of read alignment to reference from all samples

Sample Name | % Aligned | M Aligned | Sample Name | % Aligned | M Aligned
Al 95.9% 11,8 El 96.3% 10,1
A2 96.3% 11,8 E2 96.4% 7,9
A3 95.7% 14,2 E3 96.2% 7,8
A4 96.2% 19,6 E4 95.7% 9,3
A5 94.4% 16,8 E5 95.9% 6,9
A6 92.8% 7,1 E6 94.4% 5,2
Bl 95.9% 14,6 F1 84.4% 4,1
B2 96.2% 9,1 F2 80.5% 4,0
B3 96.6% 15,1 F3 89.6% 2,6
B4 96.0% 17,9 F4 89.2% 2,5
B5 96.4% 13,2 F5 77.7% 2,2
B6 95.7% 8,0 F6 91.9% 2,6
C1 95.3% 11,9 G1 89.5% 4,7
Cc2 96.0% 11,7 G2 78.5% 3,1
Cc3 96.1% 10,5 G3 93.3% 2,1
ca 95.8% 8,4 G4 94.6% 1,3
C5 96.0% 9,3 G5 94.8% 1,3
Cc6 95.6% 6,9 G6 90.8% 1,5
D1 95.5% 8,8
D2 95.3% 6,3 M Aligned
D3 96.1% 8,6 Mean 8,3
D4 96.6% 14,8 Maximum 19,6
D5 95.8% 7,6 Minimum 1,3
D6 94.9% 5,5 Standard deviation 4,8

Table 15: Results of read alignment to reference from each replicates

Replicate M?an Maxi.mum Mini.mum Standard.deviation
M Aligned M Aligned M Aligned M Aligned
A 13,55 19,60 7,10 4,37
B 12,98 17,90 8,00 3,77
C 9,78 11,90 6,90 1,96
D 8,60 14,80 5,50 3,30
E 7,87 10,10 5,20 1,74
F 3,00 4,10 2,20 0,83
G 2,33 4,70 1,30 1,35
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Attachment C] Figures PCA plots
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Reversely-strand dataset
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Attachment D] Figures Scree plots
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Reversely-strand dataset
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Attachment E] Figures UPGMA plots
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Reversely-strand dataset
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Attachment F] Co-expression networks

Standard cultivation transcriptome — BCDE dataset

FTFF
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Attachment G] Bootstrapped-based GRN

FTFF BCDE — The first neighbourhood of spo0OA

FTTT BCDE - The first neighbourhood of Spo0OA
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FTFF FG — The first neighbourhood of Spo0OA

FTTT FG — The first neighbourhood of Spo0OA

97



FTFF BCDEFG — The first neighbourhood of Spo0OA

FTTT BCDEFG - The first neighbourhood of Spo0OA
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Attachment H] Tree-based GRN

FTTT BCDE — Example of the first neighbourhood of Spo0OA
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FTFF BCDEFG — Example of the first neighbourhood of Spo0OA
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Attachment l] Classification of triplet network motifs
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Figure 25: Classification of triplet network motifs [82]

The two main classes are coloured in yellow (Closed Triplets) and blue (Linear Triplets). Motifs highlighted in orange are
isomorphism and thus indistinguishable. Incoherent loops are loops where the target node [82]
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Attachment J] Interconnected-based GRN

FTFF — Example of the first neighbourhood of X276_12610
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Attachment K] List of electronic attachments

* Brief description of electronic attachments:
\Jana Schwarzerova MT attachments\READ ME.txt

= R.scripts which creates count table for different type of approach created datasets:
\Jana Schwarzerova MT attachments \ FTFF & FTTT

= All scripts which create gene regulatory network and final created network saves as
adjacency list "Interconnected GRN.csv'":
\Jana Schwarzerova MT attachments \ GRN

= Shell scripts and R scripts with approach based on bootstrapping :
\Jana Schwarzerova MT attachments \ GRN \ Bc3net

= Shell scripts and R scripts with approach based on mutual information and
correlation coefficient:
\Jana Schwarzerova MT attachments \ GRN \ CoexNet

= csv files which using such as input datasets (count tables):
\Jana Schwarzerova MT _attachments \ GRN \ DataSet

= Shell scripts and R scripts with approach based on tree:
\Jana Schwarzerova MT attachments \ GRN \ GENIE3

= Shell scripts and R scripts with approach based on differential-equation:
\Jana_Schwarzerova MT attachments \ GRN \ tsni

* The processing workflow for obtaining operons:
\Jana_Schwarzerova MT attachments \ Operon

* R script and csv file in step where is add gene express information:
\Jana_Schwarzerova MT attachments \ Operon \ Add express_information

= Results obtained from online tool OperonMapper:
\Jana_Schwarzerova MT attachments \ Operon \ Operon_mapper

* Transcription from obtained results of OperonMapper to useful format:
\Jana_Schwarzerova MT attachments \ Operon \ R transcription to LocusTag

= Results (such as HTML reports) and shell scripts for whole pre-processing part:

\Jana_Schwarzerova MT _attachments \ Pre-processing
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