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Abstrakt Diplomová práce se zabývá studiem genové regulace v Clostridium beijerinckii NRRL B-598, pro následné odvození genové regulační sítě bakterie C. beijerinckii NRRL B-598. 

V teoretické části této práce je uvedena obecná nomenklatura problematiky genové regulace se zaměřením na nomenklaturu genových regulačních sítí. Následně jsou zde popsané laboratorní metody, sloužící pro získání vhodných dat popisující expresi genů. Tato data jsou základem pro studium genové regulace a návrhy genových regulačních sítí. Práce se zaměřuje především na technologii RNA-Seq a stručný popis laboratorních dat získaných ze zmíněné bakterie C. beijerinckii NRRL B-598. V praktické části se práce zabývá předzpracováním těchto surových laboratorních dat a následným studiem genové regulace se zaměřením na odvození operonů a vytvoření prvních genových regulačních sítí pomocí různých přístupů pro C. beijerinckii NRRL B-598. 
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Abstract The master’s thesis deals with the study of gene regulatory in Clostridium beijerinckii  

NRRL B-598 for inference gene regulatory network for C. beijerinckii NRRL B-598. 

The theoretic part describes basic nomenclature gene regulatory with the main focus on 

gene regulatory networks nomenclature. Laboratory methods which serve to obtain 

suitable gene describing express data are described there. These data are based on the study 

of gene regulatory and inference gene regulatory networks. The thesis is mainly focused on 

the RNA-Seq technology and brief description of laboratory data which were gathered using 

the strain C. beijerinckii NRRL B-598. In the practical part of the thesis pre-processing 

of these raw laboratory data and following gene regulatory research is performed which 

focuses on inference operons and creating first gene regulatory networks for C. beijerinckii 

NRRL B-598 using different approaches. 
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Rozšířený abstrakt 

V dnešní době je kladen velký důraz na výrobu biopaliv jako obnovitelných zdrojů kvůli stále větší snaze o ochranu životního prostředí. Využití bakterií produkujících butanol by mohlo být revolučním ekologickým řešením. Kmen Clostridium 

beijerinckii NRRL B-598 je známý jako producent butanolu a jeho genotyp i fenotyp je již za různých podmínek dobře popsaný. Nicméně spojení těchto dvou přístupů, které umožní popis mechanismu genové regulace chybí. Diplomová práce, Genová regulace v Clostridium beijerinckii NRRL B-598, je zaměřena na vytvoření genové regulační sítě pro C. beijerinckii NRRL B-598. Genová regulační síť slouží právě pro popis a snadnější pochopení řízení genové exprese 
v jednotlivých organismech. Mezi současné hlavní výzvy v oblasti systémové biologie patří studium genových regulací společně s popisem nemodelových organismů. Tyto hlavní cíle systémové biologie jsou novodobě řešeny in silico pomocí algoritmů založených na 

principech strojového učení. Jelikož se jedná o kombinaci bioinženýrství s umělou inteligencí, je práce pro snadnější pochopení tohoto širokého spektra rozložená do pěti hlavních kapitol, z nichž první tři lze považovat za souhrn potřebných 
teoretických znalostí a následné dvě popisují praktický výzkum analýzy genových expresních dat z kmene C. beijerinckii NRRL B-598. 

První kapitola se zabývá obecnou nomenklaturou genové regulace se zaměřením na modelování genových regulačních sítí. Jedná se o stručný, avšak důležitý úvod do dané problematiky sloužící pro snadnější orientaci v práci. Dále 
zde nalezneme shrnutí potřebných teoretických znalostí s rozdělením do oblasti statického a dynamického modelování genových regulačních sítí. Druhá kapitola se zaměřuje na popis získávání laboratorní dat, která slouží pro analýzu genové exprese. Jedná se především o popis sekvenačních metod využívající 
se v současné době. Hlavní důraz je kladen na objasnění sekvenační metody Illumina, jelikož právě touto metodou jsou získána data, která následně analyzujeme 

v této práci. Popis laboratorních metod se především zaměřuje na zisk RNA-Seq dat sloužící pro popis transkriptomu. V závěru druhé kapitoly je stručný avšak 

specifický úvod do mikrobiologie zaměřený na kmen C. beijerinckii NRRL B-598, 

z něhož jsou nasnímána konkrétní RNA-Seq data, která jsou zde zevrubně popsána. Třetí část uvádí základní přehled algoritmů používaných v současné době pro odvození sítí se zaměřením na problematiku genové regulace. Algoritmy jsou založeny na principech strojového učení. Celá kapitola je výrazně inspirována 

metodami, které byly odvozeny v rámci projektu DREAM4, jehož hlavním cílem bylo odvození simulace genových regulačních sítí a predikace genové exprese. Jelikož se jedná o náročnou problematiku, která je v dnešní době ovšem základem pro 

studium genové regulace, je tato kapitola rozdělena do pěti části, v nichž každá část 
je vyhrazená pro metody založené na jednom principu strojového učení. 



 

 

Následují kapitoly, ve kterých je popsán provedený výzkum genové exprese zaměřený na bakteriální kmen C. beijerinckii NRRL B-598. Praktická část je rozdělena na dvě hlavní kapitoly, konkrétně do čtvrté a páté kapitoly. Obě části jsou však pro snadnější pochopení systematicky rozdělené po jednotlivých krocích prováděné analýzy. Čtvrtá kapitola pojednává o předzpracování surových laboratorních RNA-Seq 

dat. Surová laboratorní RNA-Seq data jsou velmi obsáhlá a jejich zpracování je výpočetně náročné. Celá tato část práce využívala výpočetní virtuální zdroje 
MetaCentrum. Podle postupu dodržující všeobecné podmínky pro zpracování  
RNA-Seq dat byly vytvořeny shell-skripty, které jsou reprodukovatelné i pro 
zpracování jiných surových laboratorních RNA-Seq dat pro různé bakteriální 
kmeny. Postup předzpracování surových laboratorních RNA-Seq dat je rozdělen do šesti částí. První krok zahrnuje vygenerování reportu kvality nasnímaných dat, který je následně srovnáván s reporty vygenerovaných během a po předzpracování 
RNA-Seq dat. Pro vytváření reportu kvality jsme použili FastQC, aplikaci vytvořenou pro kontrolu kvality dat získaných z vysoce výkonného sekvenování. Výstup z této aplikace je report ve formátu HTML, kde je uživatelsky příznivě umožněn interaktivní pohled na kvalitu nasnímaných dat. Podrobnější přehled týkající 
se HTML reportů naleznete v kapitole 4.1, kde je odkazováno na přiloženou 
elektronickou přílohu HTML reportů z předzpracovaných dat. Dalšími důležitými kroky v rámci předzpracování RNA-Seq dat jsou filtrace ribozomální RNA (rRNA), trimování dat a mapování čtení k referenčnímu genomu. Všechny tyto kroky jsou popsány v kapitolách 4.2 až 4.5. Po každém kroku byl vyhotoven HTML report, pro ověření správnosti provedeného kroku. Celý postup předzpracování byl implementován do shell skriptů. Výstupem z vytvořených shell skriptů jsou data ve formátu BAM, která jsou dále zpracována programovacím 

jazykem R do formátu ‘count table‘ pomocí dvou různých přístupů. Díky tomuto 
kroku si vytvoříme dva typy datasetů založených na odlišném přístupu, ale stejných 
datech, které dále porovnáváme a tím ověřujeme správnosti provedených analýz. Posledním krokem při předzpracování bylo nutno provést normalizaci dat. 
V této práci jsme provedli tzv. RPKM normalizaci dat, která je v dnešní době velmi populární, nicméně není dokonalá, jelikož se příliš spoléhá na neomezený dynamický rozsah dat a proto byl následně implementován i jiný způsob normalizace dat založený na negativním bionickém rozdělení, tzv. DeSeq2. V dalších částech práce dále pracujeme s DeSeq2 normalizovanými daty. Obě tyto normalizace byly implementovány do programovacího jazyka R a byly vytvořeny R 

skripty s aplikací dostupných funkcí ze softwaru Bioconductor. Vytvořený toolbox pro zpracování surových laboratorních RNA-Seq dat byl aplikován na RNA-Seq data získaná z kmene C. beijerinckii NRRL B-598. Díky získanému vícedimenzionálnímu datasetu jsme pro vizualizaci zvolili analýzu hlavních komponent (PCA). Výsledná zobrazení jsou popsána v kapitole 4.6 

a uvedená v příloze Attachment B], Attachment C] a Attachment D]. Výsledná 



 

 

zobrazení uvedená v příloze Attachment B], Attachment C] a Attachment D] jsou důkazem splnění teoretických předpokladů o správnosti a reprodukovatelnosti 
vytvořeného toolboxu, jelikož kontrolní vzorky, které byly snímané za stejných podmínek, avšak při jiných experimentech, vytvořili shluky. Po ověření reprodukovatelnosti vytvořeného toolboxu, složeného z shell skriptů a z R skriptů, 
byl toolbox nahrán pro veřejnou dostupnost na github pod 

/JanaSchwarzerova/Analytical-pipeline-rawRNA-Seq. Poslední část diplomové práce popisuje výzkum genové regulace založený 

na expresních datech z C. beijerinckii NRRL B-598, jedná se o pátou kapitolu. 

Tato kapitola je rozdělena do tří hlavních částí. První část se zaměřuje na odvození operonů. Operony popisované v nemodelových organismech, jsou často odvozovány pouze pomocí programů založených na prohledávání databází či novodobějším přístupu programů založených na predikaci pomocí algoritmů strojového učení jako je online softwarový nástroj Operon-Mapper. V této práci byl vytvořen postup implementovaný v jazyce R, který kombinuje získanou informaci 

o predikaci operonů z již zmiňovaného dostupného online nástroje Operon-

Mapperu a informaci získanou z nasnímaných a zpracovaných expresních RNA-Seq 

dat. Celkem jsme identifikovali 2 737 operonů. Druhá část v páté kapitole se zabývá vytvořením co-expresních sítí pro 
C. beijerinckii NRRL B-598, které jsou založené na principu pomocí Pearsonova korelačního koeficientu a vzájemné informace. Oba tyto přístupy byly 

implementovány v programovacím jazyce R s využitím dostupných nástrojů 
z Bioconductoru. Vytvoření sítí z datasetu pro všech 5 276 získaných exprimujících genových informací není nic výpočetně jednoduchého, a tak i v této části byl využit virtuální výpočetní prostor, MetaCentrum. Co-expresní sítě byly vytvořené pro všechny datasety oběma přístupy. Tyto sítě byly dále zpracovány statickou analýzou a porovnány v diskuzích mezi sebou. Následně byly vytvořeny první genové regulační sítě C. beijerinckii NRRL  

B-598, pomocí tří různých přístupu. První přístup byl založen na metodě bootstrapingu, druhý na stromové metodě uplatňujících se v algoritmů náhodných lesů a třetí pomocí metod založených na diferenciálních rovnicích. První dva přístupy byly implementovány v programovacím jazyce R a třetí přístup, který je založen na principu diferenciálních rovnic byl implementován v programovacím prostředí Matlab R2019b. Znovu byly vytvořeny sítě pro všechny datasety pomocí všech přístupů, které byly statisticky analyzovány a srovnány mezi sebou. Konečný výsledek vznikl sjednocení všech použitých přístupů k odvození genové regulační sítě a následného průniku sítí vytvořených pomocí odlišných datasetů. Jedná se 
o první genovou regulační sítí pro C. beijerinckii NRRL B-598 tvořenou z 8 787 hran. 
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Introduction 

Clostridium beijerinckii NRRL B-598 is a bacterium, which belongs to the group of non-

model organisms. System biology deals with description gene regulatory of organisms 

and the main challenge is description of non-model organisms. C. beijerinckii  

NRRL B-598 is a relatively well-described butanol producer, which is in demand, 

because nowadays there is a focus on sustainable microbial production of bio-based fuels. 

The description of gene regulatory is performed by using gene regulatory 

networks. The gene regulatory networks are main challenge for explanation how exactly 

genomic sequence encodes the regulation of expression of the sets of genes. This thesis 

is focused on studying gene regulatory in C. beijerinckii NRRL B-598 which follows 

the creation of gene regulatory network for the strain C. beijerinckii NRRL B-598. 

The thesis is divided into five parts for easy understanding. In the first part, there 

is description generally but important gene regulatory nomenclature. The second part 

mentions the laboratory method for gaining suitable data which are basis for proposal 

gene regulatory networks. There is the main focus on technologies of RNA-Seq. 

The description of laboratory data using the strain C. beijerinckii NRRL B-598 is also 

gathered in this part. The third part of the thesis describes the most used methods for 

inference gene regulatory networks currently which are usually based on machine 

learning principle. 

The practical research is described in the fourth and fifth parts. In the fourth part 

the used pipeline for pre-processing raw RNA-Seq data and the following evaluation pre-

processing analysis are written. This pipeline is allowed to obtain the same or even higher 

information value from RNA-Seq data than microarray data. The final fifth part is focused 

to research gene regulatory in C. beijerinckii NRRL B-598 from obtained express values 

of pre-processed RNA-Seq data. The first part of the research is focused on inference 

operons in C. beijerinckii NRRL B-598. Then co-expression networks were created by 

pre-processed RNA-Seq data and in the end of the research gene regulatory networks for 

C. beijerinckii NRRL B-598 was derived. 
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1 Gene regulatory networks 

Gene regulation is a mechanism for controlling which gene gets expressed and at what 

level [1]. Gene regulation is a mechanism that operates to induce and repress 

the expression of a gene [2]. These mechanisms include structural and chemical changes 

to the genetic material, binding of proteins to specific DNA elements to regulate 

transcription, or mechanisms that modulate translation of messenger RNA (mRNA). 

Each specific regulatory molecule controls a specific gene that is transcribed 

into mRNA [2]. These molecules help or block the transcription enzyme, RNA 

polymerase. There is a cluster of genes under control of a single promoter that is known 

as an operon. Operon [2] is a cluster on the chromosome, where related genes are located. 

Gene regulatory networks (GRN) [3] are represented by the causality 

of developmental processes. Their main challenge is to explain exactly how genomic 

sequence encodes the regulation of expression of the sets of genes that increasingly 

generate developmental patterns and execute the construction of multiple states 

of differentiation. 

 Basic network terminology 

Network represents complex systems which emerges from the orchestrated activity 

of many components that interact each other through pairwise interactions [4]. 

The components are reduced to the series of nodes that are connected to each other by 

links, with each link representing the interaction between two components. 

Network consists of nodes and links. In formal mathematical language, it is 

referred as a graph. GRN has many ways for distribution e.g. we can divide GRN to 

bipartite or directional [5]. Bipartite GRN has two types of nodes. One type is a gene and 

the others are regulators. Although some genes are regulators of proteins or genes 

themselves. Directional means that regulators control genes and often not the other way 

around. 

Establishing cellular networks is not simple. Physical interaction between 

molecules, such as protein-protein, protein-nucleic-acid and so on, can be described 

easily. The conceptualization of node-link nomenclature is used there. Nevertheless, more 

complex functional interactions can also be used within this representation. For example, 
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small-molecule substrates can be envisioned as the nodes of a metabolic network and 

the links as the enzyme-catalysing reactions that transform one metabolite into 

another [4]. 

Networks can be directed or undirected [4]. It depends on the interaction between 

two nodes, has a well-defined direction, which can be represented, for example 

the direction from substrate to a product in a metabolic reaction. These networks are 

called directed. In undirected networks, the links do not have an assigned direction. 

A 

 

B

 
Figure 1: A is undirected network and B is directed network 

The degree of node [4] is one of the most important elementary characteristics. 

The degree usually refers to k and it tells us how many links the node has to the other 

nodes. The degree distribution [4] refers to P(k). It gives the probability that a selected 

node has accurately k links. There is also incoming and outgoing degree. Incoming 

degree [4] denotes the number of links which point, to a node. It refers to kin. Outgoing 

degree [4] refers to kout and denotes the number of links that start from it. In the Figure 1, 

we can see two nodes. On the right there is undirected network and on the left we can see 

directed network which has nine nodes. The undirected network has node X where degree 

is five. In directed network on the left the node X has four incoming degrees and one 

outcoming degree. 

Biological networks are often scale-free [4]. It depends on their degree distribution 

which approximates a power law: 𝑃(𝑘) ~ 𝑘−𝛾. (1)  

It indicates ‘proportional to’. The value of 𝛾 refers to a lot of properties e.g. if 𝛾 > 3, 

the hubs are not relevant. If 2 > 𝛾 > 3, there is a hierarchy of hubs and when 𝛾 =2, a hub 
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and spoke network emerges. The usual properties of scale-free networks are not valid 

only for 𝛾 < 3. In this situation the dispersion of degree distribution is defined: 𝜎2 = 〈𝑘2〉 − 〈𝑘〉2, (2)  

where 𝜎 is diverged and 𝜎 increases with the number of nodes meaning the series 

of unexpected features. It influences high degree of robustness against accidental node 

failures. 〈𝑘〉 is the average degree. 

Path length [4] tells us how many links we need to pass through to travel between 

two nodes. Many alternative pathways usually exist – paths between two nodes but there 

are one or more of the most important paths, being called the shortest path [4]. 

The shortest path is mostly the only one and means the path with the smallest number of 

links between the selected nodes. The path is connected with distance [4] which 

represents l. In directed networks, distance lXY node X to node Y is usually different from 

Y to X, it is lYX. 

Clustering coefficient [4] is a phenomenon when node X is connected to node Z 

and node Z is connected to node P, see Figure 1. Clustering coefficient can be quantified 

as: 𝐶𝐼 = 2𝑛𝐼/𝑘(𝑘 − 1), (3)  

where 𝐶𝐼 is clustering, 𝑛𝐼 is the number of links connecting 𝑘, 𝑘 is a neighbour of node I 

to each other. 

 Network modelling 

The network modelling is characterized by viewing cells in their underlying network 

structure at many different levels of detail, it is a cornerstone of systems biology [6]. Two 

emerging methodologies in network modelling provide invaluable insights into biological 

systems: static large-scale biological network modelling and dynamic quantitative 

modelling. 

1.2.1  Static large-scale biological network modelling 

Static large-scale biological network modelling [6] is focused on integrating, visualizing 

and topologically modelling of all kinds of omics data sets which are produced by 
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innovative high throughput screening biotechnologies. Static large-scale biological 

network modelling includes the following steps. 

Firstly, the construction or inference functional biological network from omics 

and experimental data. These constructed networks give the whole view of biological 

systems. The next step is to integrate hetero-omics data across species and data type by 

network model. Researchers try to use constructed network models to integrate all kinds 

of type experimental data together. 

The following step is to topologically analyse the biological network. Researchers 

try to connect the topological features of biological networks with biological function, 

design principles of regulation mechanism and evolution of the systems. 

The next step is analysis of the biological network. The approach is fairly similar 

to BLAST [7] in comparative genomics. The strategy to compare the biological network 

across species or systems can offer a valuable framework for addressing many biological 

challenges such as deriving unknown biological function or elements by comparison 

a network model of well-researched systems with a network model of new research 

systems in systems biology. 

At the end, visualization biological network and analytical results are done. 

Visualization is important because of helping to understand complex biological systems. 

However, the huge size of datasets with high heterogeneities is the reason why 

the visualization of large-scale biological networks is a current challenge. In this area, 

researchers have proposed a wide range of visualization methods, for example 2D, 2.5D 

and 3D and develop many software tools such as Cytoscape [8]. 

1.2.2 Dynamic quantitative modelling 

Dynamic quantitative modelling [6] focuses on exploring the dynamics of biological 

systems by applying computational simulation and mathematical modelling. There are 

many options for developing quantitative model biological systems such as Boolean 

networks [9], Bayesian networks [10], Monte-Carlo simulation [11] etc. 

In this methodology, a dynamic model is built according to the existing network 

structure, investigates system behaviour over time under various conditions and predicts 

complex behaviour in response to complex stimuli [6]. These rapid in silico experiments 

via dynamical modelling are used to gain first insights, form hypotheses and carry out 

meaningful tests. The dynamical modelling is used for understanding critical parameters, 
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biologists can technically and statistically design physical experiments for maximum 

efficacy. Resultant data from all experiments will be compared against simulations in 

various ways to test assumptions and hypotheses, identify new phenomena and spark new 

theories. 
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2 Laboratory data 

Reconstructing GRN is a hard and long-standing challenge [12]. This challenge 

researches in the field of Systems Genetics (SG) [13]. SG solves complexity by 

integrating the questions and methods of system biology which is connected with 

the fundamental problem of interrelating genotype and phenotype in complex traits. SG 

data are genotyped data with other datasets that reflect the effect of a perturbation of the 

system caused by diverse genotypes. 

Genetic studies are regular and consist of only genotype and phenotype data. 

It enables the identification of genetic loci which affects a given phenotype. Thus, 

measurements of thousands of molecular phenotypes enable algorithms to elucidate 

the regulatory networks. A lot of network inference methods have been proposed due to 

growing use of Next Generation Sequencing (NGS) [13]. 

NGS is a high-throughput technology that identifies the nucleic acid sequences 

and variants in a sample [14]. NGS is often subdivided into second-generation sequencing 

and third-generation sequencing. The high-throughput sequencing refers to 

the technologies without the physical separation of individual reactions into separate 

tubes, capillaries or lanes. Instead of it, the sequencing reactions occur parallelly on 

a solid surface, such as glass or beads, depending on the technology, and are only spatially 

separated [14]. These methods billions of sequencing reactions occur and are analysed 

at the same time. It improves the throughput and decreases the labour compared to 

the older methods as first-generation sequencing e.g. Sanger sequencing. 

NGS is the time of commercial products, not famous scientific names. 

From a commercialization perspective the first NGS was introduced in 2004 by 454 Life 

Sciences [14]. Later it was purchased by Roche. Within 2 years, other platforms 

developed e.g. SOLiD [15], Illumina [16]. These platforms are going to be described in 

more details in the following chapters. In 2011 Iont Torrent [17] was introduced. 

 SOLiD 

SOLiD is an enzymatic method of sequencing. The method uses DNA ligase, it is 

an enzyme with the ability to ligate double-stranded DNA strands [15]. Emulsion PCR is 

used to immobilise and amplify ssDNA primer-binding region. It is called an adapter. 
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The adapter has been conjugated to the target sequence on a bead. These beads are 

afterwards deposited onto a glass surface. 

Once bead deposition has occurred, a primer of length N is hybridized to 

the adapter, then the beads are exposed to a library of 8-mer probes which have different 

fluorescent dye at the 5' end and a hydroxyl group at the 3' end [15]. A complementary 

probe will hybridize to the target sequence which is adjacent to the primer.  DNA ligase 

is joined the 8-mer probe to the primer. A phosphorothioate linkage between bases 5 and 6 

allows the fluorescent dye to be cleaved from the fragment using silver ions [15]. There 

are used four different fluorescent dyes which have different emission spectra. Thus, 

cleavage allows fluorescence to be measured and also generated a 5’-phosphate group 

which can undergo further ligation. The first round of sequencing is completed when 

the extension product is melted off. The second round of sequencing is performed with 

a primer of length N-1. The next round of sequencing is used by shorter primers, 

subsequently there are e.g. N-2, N-3 etc. 

Measuring the fluorescence ensures that the target is sequenced. SOLiD is rarely 

used as a method of NGS, because it is slower than other NGS methods and has a problem 

with palindromic sequences. SOLiD is used for short read. 

 Illumina 

Illumina sequencing is a method that generates millions of highly accurate reads making 

it much faster and cheaper than other sequencing methods [16]. Illumina sequencing 

instruments and reagents support massively parallel sequencing using a proprietary 

method that detects single bases as they are incorporated into growing DNA strands [18]. 

The procedure consists of a few steps. The first step is breaking up the DNA into 

more manageable fragments of around 200 to 600 base pairs [16]. Then the adaptors are 

attached to the DNA fragments and these fragments are made single-stranded. It is 

provided by incubating the fragments with sodium hydroxide. At the moment, when 

the fragments are prepared, the fragments are washed across the flowcell. On the surface 

of the flowcell there is a complementary DNA which binds to primers and therefore 

the DNA that is not attached is washed away. The DNA attached to the flowcell is then 

replicated to form small clusters of DNA with the same sequence [16]. During sequencing 

each cluster of DNA emits a signal that is detected by a camera. After unlabelled 

nucleotide bases, DNA polymerase are added to lengthen and join the strands of DNA 
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attached to the flowcell [16]. Thus, bridges of double create stranded DNA between 

the primers on the flowcell surface. 

If we use heat, the double-stranded DNA is broken down into a single stranded 

DNA and it creates several million dense clusters of identical DNA sequences. In the next 

step primers and fluorescently-labelled terminators are added to the flowcell and 

the primer is attached to the DNA strand. Then the DNA polymerase binds to the primer 

and adds the fluorescently-labelled terminator to the DNA. If the base has been added, 

there are not more bases which can be added to the DNA strand until the terminator base 

is cut from the DNA. Lasers are used to activate the fluorescent label on the nucleotide 

base and this fluorescence is detected by a camera. Each of the terminator bases, it means 

A, C, G and T, gives off a different colour [16]. After the terminator is removed from 

the first base, the next fluorescently-labelled terminator base is added and the process 

continues. 

The DNA sequence is analysed base-by-base during Illumina sequencing, making 

it a highly accurate method [16]. The Illumina sequencing is the cheapest sequencing 

technology in current [18]. On the other side this sequencing requires higher 

concentration of DNA and the placement of the clusters on the surface is random so 

clusters can be overlapped causing confusion nucleotides. The Illumina sequencing 

technology is divided into several system branches. 

2.2.1 MiSeq 

The MiSeq system is one of the Illumina sequencing systems which is used for small-

genome sequencing. Using up-to-date reagents enables us to produce to 15 Gb of data 

output with 25 million sequencing reads and 2x300 bp read lengths. 

The MiSeq System [19] leverages Illumina sequencing by synthesis (SBS) 

technology. This system is the first DNA-to-data sequencing platform, integrating cluster 

generation, amplification, sequencing and data analysis into a single instrument. 

2.2.2 NextSeq 

The NextSeq [20] is the second system of Illumina sequencing technology. This system 

is described in more detail because this thesis uses RNA-Seq data, which were sequenced 

in the NextSeq system. The NextSeq system gives the power of high-throughput 
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sequencing with the speed, affordability of a benchtop NGS. This system enables 

the exploration of the entire genome of any species for the deeper understanding 

of biology. 

The NextSeq system allows sequencing a broad range of samples per run 

e.g. 1 to 12 exomes, 1 to 16 transcriptomes, 6 to 96 targeted panels and 12 to 14 gene 

profiling samples. This system provides support for paired-end sequencing. Read lengths 

2 x 150 bp are defined. 

The system is supported by the full suite of Illumina library preparation and target 

enrichment solutions, offering library compatibility across the Illumina sequencing 

portfolio [20]. SBS technology with the NextSeq gives exceptional accuracy. 

This proprietary, reversible, terminator-based method enables the parallel sequencing 

of millions of DNA fragments, detecting single bases as they are incorporated into 

growing DNA strands [20]. Thanks to it the method system eliminates errors associated 

with homopolymer. 

2.2.3 HiSeq 

The HiSeq system [21] is a high-throughput sequencing system which sequences high-

quality data. This system uses Illumina SBS chemistry. HiSeq sequencing systems 

combine Illumina’s proven and widely adopted, reversible terminator-based SBS 

chemistry with innovative engineering [21]. 

Nowadays HiSeq system is declared obsolete and it is written on the website by 

Illumina [18] that they will continue to provide full support of the instruments and supply 

the reagents through 2024. However, for the sake of the entirety of the thesis, it is 

necessary to mention this system which is used in the chapter 2.5.1. 

2.2.4 NovaSeq 

The NovaSeq [22] allows to get scalable throughput and flexibility for any sequencing 

method or genome. This system offers high-throughput sequencing across a wide range 

of applications [18]. The NovaSeq is about to leverage proven Illumina NGS technology, 

multiple flow cell types, two library loading workflows, and various read length 

combinations. 
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The NovaSeq allows more cost-effective manner for applications requiring large 

amounts of data, such as human whole-genome sequencing or ultradeep exome 

sequencing etc. The instrument can be combined with lower output of flow cells for using 

less intensive data methods. The NovaSeq system has replaced previously mentioned 

HiSeq system as shown in the thesis [23]. 

 Ion Torrent 

Ion Torrent technology [17] converts chemically encoded information to digital 

information on a semiconductor chip. This approach combinates simple chemistry with 

semiconductor technology. 

The principle of the method incorporates nucleotides into a strand of DNA by 

a polymerase formation of a hydrogen ion which is released. In nature of this principle 

a formation of a hydrogen ion is a product. Thanks to this fact, there is a possibility to 

measure voltage which indicates chemically encoded information. If there are two 

identical bases on the DNA strand, the voltage will be doubled and the chip will record 

two identical bases [17]. Ion Torrent technology is a direct detection. It means no 

scanning, no camera, no light. Each nucleotide incorporation is recorded in a few seconds. 

 RNA-Seq methods 

NGS platforms have a wide variety of methods for obtaining different outputs that is why 

sequencing methods are divided by differing inputs such as DNA or RNA samples [24]. 

Sequencing methods have many variants of libraries but the actual sequencing stage is 

the same, regardless of the method. The various preparation of libraries is destined for 

different types of sequencing e.g. whole-genome sequencing, RNA sequencing (RNA-

Seq), targeted sequencing [24]. 

RNA-Seq [25] is a sequencing technique of NGS which analyses  

the transcriptome [26] of gene expression patterns encoded within our RNA. 

A transcriptome includes mRNA and the information about molecules expressed by 

an organism. 

RNA-Seq is used for understanding the transcriptome which is basic for 

the exploration of the information hidden within genome with its functional protein 
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expression. Transcriptomic approaches are used to study transcriptomes whose main 

challenges of transcriptomics are to catalogue all species of transcript, including mRNAs, 

non-coding RNAs and small RNAs and also determine the transcriptional structure 

of gene, splicing patterns and other post-transcriptional modifications [27]. 

 

Figure 2: Central dogma of molecular biology where is visualized transcriptome [28] 

The regulation of RNA transcription and processing directly affects protein 

synthesis [29]. This is the main reason why RNA-Seq is important for the description 

of gene regulation. RNA-Seq includes: post-translational modifications, RNA splicing, 

RNA bound to RNA-binding proteins, RNA expressed at various stages, unique RNA 

isoforms, RNA degradation and regulation of other RNA species [24]. 

While RNA-Seq is emerged as a powerful technology in transcriptome profiling, 

the main disadvantage of the standard RNA-Seq protocol is that it loses information about 

the strand of origin for each transcript [30]. If we lose strand information, it is impossible 

to quantify gene expression levels for gene with overlapping genomic loci accurately 

which are transcribed from opposite strands. Currently, there is possible to retain the 

strand information by modifying the RNA-Seq protocol known as strand-specific or 

stranded RNA-Seq. The comparison of stranded and non-stranded or unstranded RNA-

Seq library methods and also their influence on the interpretation of an analysis is 

described in the study by Griffith et al. [31]. 

From the bioinformatics point of view RNA-Seq offers challenges which include 

the development of efficient methods to store retrieve and process large amounts of 

data [27]. These methods must reduce errors in analysis, base-calling and also eliminate 
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low-quality reads. Then high-quality reads have been obtained, the first step of data 

analysis maps the short reads from RNA-Seq to the reference genome or assembles them 

into contigs before aligning them to the genomic sequence to reveal transcription 

structure [27]. There are usually used programs for mapping reads to the genome but the 

short transcriptomic reads cannot be analysed in the same way. These short reads span 

exon junctions or contain poly(A) ends. Thus, some genomes have rare splicing. These 

genomes such as genome by Saccharomces cervisiae require special attention and only 

need to be given to poly(A) tails and to a small number of exon-exon junctions. Poly(A) 

tails can be identified simply by the presence of multiple and exon-exon junctions which 

can be identified by the presence of a specific sequence context and confirmed by the low 

expression of intronic sequences which are removed during splicing which is written in 

the study by Wang et al. [27]. 

 Clostridium beijerinckii NRRL B-598 

Clostridium [32] is one of the largest bacterial genera which includes several bacteria 

with enormous biotechnological potential and also a few well-known pathogens. 

Members of this genus are generally gram-positive and strictly anaerobic bacteria. Thus, 

clostridia are in avant-garde of industrially useful microbes. 

Due to the required precautions for excluding oxygen during handling, clostridia 

were virtually inaccessible at the genetic level for a long time [32]. Fortunately, this 

situation has changed thanks to gene cloning, DNA transfer, gene expression modulation 

and gene knockout. However, this thesis studies Clostridium beijerinckii NRRL B-598 

that is the reason why the attention is focussed on the Clostridium beijerinckii. 

C. beijerinckii culture which is cultivated in Peptone Yeast Extract Glucose (PYG) 

broth is generally described as straight rods with rounded ends, being motile and 

peritrichous, measuring 0.5 – 1.7 μm × 1.7 – 0.8 μm [33]. These cells occur as single, in 

pairs or in short chains. This species is typically gram-stain-positive but become gram-

stain-negative in older cultures. Their spores are oval, eccentric to subterminal and swell 

the cell with no exosporium or appendages [33]. 

Optimum temperature for the growth is 37 °C and the growth is stimulated by a 

fermentable carbohydrate, inhibited by 6,5% NaCl or 20% bile acids. The strains of 

C. beijerinckii are nutritionally fastidious, requiring a complex mixture of growth factors. 

Abundant gas formation is detected in deep cultures in PYG agar [33]. These species are 
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used to produce industrial solvents. It has the ability to ferment saccharose and to utilize 

the alcohol sugars D- and L- arbitol, dulcitol and inositol but glycerol only weakly  [34]. 

C. beijerincekii has all strains which are able to ferment methyl-glucopyranoside, 

turanose, dextrin and pectin. 

In the past C. beijerinckii NRRL B-598 was wrongly classified as Clostridium 

pasteurianum NRRL B-598 as mentioned in the study by Sedlar et al. [35]. The strain 

C. beijerinckii NRRL B-598 is a relatively well-described butanol producer regarding its 

phenotype under various conditions [36]. 

In this thesis the laboratory data of C. beijerinckii NRRL B-598 which were 

sequenced using RNA-Seq are used. Following chapters describe conditions in which 

C. beijerinckii NRRL B-598 were sequenced and they also describe more information 

about laboratory data. There are used 7 replicates of RNA-Seq which are called A, B, C, 

D, E, F and G. All these replicates are sequenced in six time-points. 

2.5.1 Standard cultivation transcriptome 

The replicates A, B and C are described in the study by Sedlar et al. [36].The transcription 

profile of butanol producer C. beijerinckii NRRL B-598 is presented there. RNA-Seq 

dataset covering six time-points with the current highest dynamic range among 

solventogenic clostridia is used there. 

Six time-points cover all metabolic stages within a period of 23 h. The last 24th 

hour was not analysed because there a was large number of dead and lysing cells. The 

result of it was the insufficient quality for RNA sequencing. Six time points are mentioned 

as {𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6}. Individual sampling points were selected based on 

the fermentation pattern which was monitored on-line as a change in a pH course [36]. 

Replicate A consists of reads that were 50 bp but series B and C consisted of reads 

that were 75 bp long. The final 2D representation in the study Sedlar et al. [36] shows 

that replicates are similar to each other at particular sampling time-points nevertheless 

replicates A were slightly more distant to replicates B and C. This is due to the type of 

sequencing because replicates A were sequenced using Illumina HiSeq and replicates B 

and C were sequenced using Illumina NextSeq whose principals HiSeq and NextSeq 

sequencing are contained in the chapter 2.2. 

Replicates D and E are described in the study by Patakova et al. [37]. There are 

two biological replicates D and E. These technical replicates were analysed for changes 
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in the expression of individual gene and gene clusters. Biological meanings for these 

expression changes were sought in the study by Patakova et al. [37]. These replicates 

were selected in to six time-points, too. 

The six time-points are selected as points of time in 3.5 h, 6 h, 8.5 h, 13 h, 18 h 

and 23 h on that account these time-points cell samples were taken from each bioreactor 

for RNA extraction. Thanks to this approach, the solventogenic phases of growth as well 

as the sporulation cycles were covered. 

Library construction and sequencing of samples from technical replicates were 

performed by the CEITEC Genomics core facility (Brno, Czechia) on Illumina 

NextSeq500, single-end, 75 bp [37]. It is similar to replicates B and C. All these replicates 

B, C, D, E are obtained in the study by Vasylkivska et al. [38] as well. It is written that 

each broth samples were centrifuged, the cell pellet was washed with sterile distilled 

water and stored immediately at -70°C. 

2.5.2 Butanol shock transcriptome 

The replicates F and G are described in the study by Sedlar et al. [39]. Transcriptomic 

data of immediate and later responses towards a non-lethal butanol shock are described 

there. It was performed in the phase of transition between the late acidogenic phase and 

early start of the solventogenesis. Butanol was added directly after the sample collection 

at time 6 h [39]. 

RNA-Seq data set of C. beijerinckii NRRL B-598 is also selected to six time-

points {𝑇𝑏1, 𝑇𝑏2, 𝑇𝑏3, 𝑇𝑏4, 𝑇𝑏5, 𝑇𝑏6}. These time-points are {6 h, 6.5 h, 7 h, 8 h, 10 h, 12 h}. 

Library construction and sequencing of the sample was performed by CEITEC Genomics 

core facility (Brno, Czechia) on Illumina NextSeq, single-end, 75 bp [39]. 
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3 Network inference methods 

Systems Biology [13] has a target to decipher the complex behaviour of a living cell. 

The effective behaviour of the cell is probably defined through the multiple layers 

of interacting entities including DNA, mRNA, noncoding RNA, proteins, and 

metabolites [13]. This chapter is focused on the genetic genomics approach [13] that 

combines the power of genetics through the polymorphism and unscramble a GRN 

together with ability of gene expression. It means the representation of the gene-level 

interactions occurring under given conditions. 

Genes are represented by vertices in GRN while directed edges represent the direct 

causal effect of genes to other genes through gene regulation [13]. Genes in gene 

regulation are usually called activators or repressors. We can use deciphering the data set 

of gene regulations and identify the most important and possible indirect players in GRN. 

These players influence a gene expression or phenotype and so link network structure to 

associated functional properties. Thus, more understanding of the way of the gene 

interactions appears that controls the overall cell behaviour. A variety of mathematical 

formalisms, continuous or discrete defined over time or in stationary states, have been 

proposed to represent the complex behaviour of known GRN [13]. 

GRN learning [13] has high-dimensionality where the number of genes in a typical 

genome is included. The number is larger than the number of samples that can be 

reasonably produced. Some algorithms decipher GRN structures based on genetic 

genomics data have used complex multivariate regression or Bayesian networks. The 

analysis of the output of different statistical methods is targeted at learning in a high 

dimension (based on the penalized linear regression or penalized Bayesian network 

structure learning) and it shows and defines the best performer on different datasets of 

simulated genetic genomics data, including up to 1,000 genes [13]. 

Different statistical models of gene regulation are described in this chapter. These 

models have been chosen for their ability to infer gene regulations from expression data 

automatically. Through the verification and fair assessment of algorithms, there is a high 

importance to learn which algorithms are the most useful for extracting biological insights 

from system genetic data [13]. This issue was solved by community effort which is 

mentioned in the DREAM project. The DREAM [12] is the Dialogue on Reverse 
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Engineering Assessment and Methods project, which is focused on the comprehensive 

blind assessment network inference methods. 

 Bootstrapping 

Bootstrapping [40] is a method that is used to resample and assign measures of accuracy 

to sample estimates. Bootstrapping is usually used to estimate summary statistics such as 

the standard deviation or the mean. It is used in the applied machine learning to estimate 

the skill of machine learning models when making predictions on data not included in the 

training data [41]. 

Bootstrapping provides the estimation of the sampling distribution of any statistics 

and it uses only a simple resampling approach. Unfortunately, it means that repeated 

computations must be undergone [13]. Bootstrapping includes the approach of sampling 

with replacement [42] which selects a sample at random from the set which is returned to 

the set and after a second the other element is selected at random. Whenever a sample is 

selected, the set contains all data, so the sample can be selected more than once. There is 

no change in the size of dataset. We can assume that a sample of any size can be selected 

from the given population of any size [43]. 

In the GRN inference challenge there is each of replicate dataset that is obtained 

by random sampling with the replacement from the original sample. For each replicate 

dataset, the model is fitted and then it is possible to study the statistical properties of the 

distribution of the considered statistics on all resampled datasets [13]. 

The major use of bootstrapping is to contribute to the construction using 

the “confidence score” of edges in the predicted GRN. Bootstrapping is often used in 

the random forest algorithm where it allows us to avoid overfitting, thanks to the fact that 

bootstrapping has offered further opportunities. Since bootstrap datasets are obtained by 

sampling with replacement, each of them is deprived of around 1 – 0,632 = 36,8 % of 

the original samples [13]. The main disadvantages of bootstrapping are to multiply 

the computational burden and the loss of 36,8 % of the data, it may also affect 

the sharpness of estimates on every resampled dataset [13]. 
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 Regression 

Regression analysis [41] is a process for an estimation of the relationships 

between outcome variables and predictors. It is divided into a linear and non-linear 

regression. In GRN inference it is often used to approach the linear regression. 

This approach to GRN inference is based on the assumption that the expression level of 

the transcription factors that directly regulates a target gene is the most informative, 

among all transcription factors, to predict the expression level of the target gene [12]. 

Regression analysis using inference challenge in the GRN is penalized by the linear 

regression. 

A natural approach to solve the network inference problem considers each gene g 

individually from the others and also its expression value which can be represented as 

a linear function of all other gene expression levels and of all polymorphisms [13]. 

It represents: 

𝐸𝑔 = ∑ 𝛼𝑔𝑗𝑀𝑗𝑝
𝑗=1 + ∑ 𝛽𝑔𝑗𝐸𝑗𝑝

𝑗=1𝑗≠𝑔
+ 𝜀𝑔, (4)  

where 𝑀𝑗 represents the allelic state of the polymorphism associated with gene j, 𝛼𝑔 is 

the p-vector of linear effects of polymorphisms on 𝐸𝑔, 𝐸𝑗 is the expression level of gene 

j, 𝛽𝑔 is the p-vector of linear effects of other expression levels on 𝐸𝑔 and 𝜀𝑔 is 

the Gaussian residual error term [13]. 

A dataset needs to be known for the explanation of the linear function which is 

defined for each GRN [13]. The dataset includes a sample of n recombinant inbred lines 

that are measured for p bi-allelic markers and p gene expression levels. Every 

polymorphism is associated with a single gene and may influence either its direct 

expression (cis polymorphism occurring in the regulatory region of the gene) or its ability 

to regulate other target genes (trans polymorphism in the transcribed gene region itself, 

influencing its affinity with other gene regulatory complexes) [13]. A dataset contains 

a n × p matrix e where 𝑒𝑖𝑗 is the steady-state expression level of gene j for 

the recombinant inbred lines individual i which is the real number and also a n × p matrix 

m where 𝑚𝑖𝑗 represents the allelic state of the polymorphism associated with gene j for 

recombinant inbred lines individual i which is a zero or one. Each 𝑒𝑖𝑗 is an observation of 

the random variable 𝐸𝑗 and similarly each 𝑚𝑖𝑗 is an observation of the random 

variable 𝑀𝑗. 
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Parameters 𝛼𝑔 and 𝛽𝑔 are estimates for each gene g from matrix m and e using 

linear regression methods. The great advantage for this model is its simplicity which leads 

to 2p parameters (𝛼𝑔 and 𝛽𝑔) for 𝐸𝑔. It is a desirable property for the estimation in high-

dimensionality settings. We can suppose that regulation networks are sparse so it is 

desirable to use some regularization [44] such as the Lasso regression. Penalized 

regression methods are used in GRN inference that lead a variable selection. These 

methods are described below. 

3.2.1 Lasso Regression 

Lasso (Least Absolute Shrinkage and Selection Operator) regression [44] is a linear 

regression. The linear regression can be explained in the case of a high number of input 

variables. It is typical for NGS inference. It is suitable to decrease the model complexity 

that is the input of variables or predictors. Removing predictors from the model can be 

seen as the setting of their coefficients to zero. Another way is penalizing them if they are 

far from zero. This attitude decreases model complexity while keeping all variables in the 

model. 

The linear regression problem [13]: 𝑌 = 𝑋𝜃 +  𝜀, (5)  

where Y is the linear combination of r regressors 𝑋 = ( 𝑋 1, … , 𝑋 𝑟) and  𝜀 is Gaussian 

noise. If we have a sample of size n and Gaussian distributions, the estimation of 

parameters is obtained by minimizing the residual sum of square but exclusively for the 

Lasso regression penalizes [13] is the residual sum of the square criteria by the sum of 

the absolute values: 𝜃𝑙𝑎𝑠𝑠𝑜 = 𝑎𝑟𝑔 min𝜃 ‖𝑌 − 𝑋𝜃‖𝑙22 + 𝜆‖𝜃‖𝑙1 , (6)  

where 𝜃 is the estimation of the parameters 𝜃, 𝑙1 represents norm using the absolute values 

of the parameters 𝜃 and 𝑙2 represents minimizing the residual sum of squares. 

The feature selection problem is solved in [12] with the Lasso procedure, too. 

The Lasso procedure can lead to obtaining a sparse linear model such as a model based 

only on a few transcription factors. The transcription factors selected by Lasso are 

therefore good candidates to regulate the target gene [12]. 
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3.2.2 The Dantzig Selector 

The Dantzig selector [45] is similar such as the penalized linear regression method. 

This method is based on 𝑙1 norm penalization of the parameters subjected to the constraint 

bound on the maximum absolute correlation between the residuals and regressors [13]: 𝜃𝑑𝑎𝑛𝑡𝑧𝑖𝑔 = 𝑎𝑟𝑔 𝑚𝑖𝑛𝜃 ‖𝜃‖𝑙1 , ‖𝑋𝑇(𝑌 − 𝑋𝜃)‖𝑙∞ ≤ 𝛿, (7)  

where 𝛿 is the actual bound of the correlation among the residual and each regressor and 𝑋𝑇 is the transpose of X. If the bound tends to zero, Dantzig selector imposes a null 

correlation among the residual and the regressors, else the other of these selectors set all 

coefficients to zero. This condition is satisfied by the RSS estimate, as it is equivalent to 

enforcing a null derivative of the RSS [13]. 

3.2.3 Confidence Scores 

This chapter comments confidence scores and they are meant as confidence scores with 

penalized linear regressions and bootstrap [13]. These confidence scores are on the 

prediction of each oriented edge j ⟶ g where gene j influences gene g. When 𝛼𝑔𝑗 is not 

zero, marker j has an impact on the expression of gene g hypothetically. The converse is 

impossible since expression levels cannot affect polymorphism [13]. If 𝛽𝑔𝑗 is not zero, a 

relationship exists between the expressions of genes j and g. However, the causal 

orientation is unknown. It means, we do not know, if j influences gene g or conversely.  

Choosing the ‘right’ level of penalization in the Lasso regression or in the Dantzig 

selector is a difficult model selection problem [13]. Fluente [13] describes the choice of 

the penalty term λ such as non-fixed value. Nevertheless, all options for penalty values 

from zero value are explored, it is not penalization to a maximum value. The infimumI of 

the set of all λ precludes a single regressor to be included in any of the regressions. If the 

total of q use, there are different penalty values from the interval low penalty level 
λ𝑚𝑎𝑥𝑞  

to the maximal penalty level λ𝑚𝑎𝑥.  

 
I Infimum is the greatest lower bound of a set S, defined as a quantity m in a such way that no member of 

the set is less than m, but if ϵ is any positive quantity, however small, there is always one member that is 

less than m  + ϵ [46]. 
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A similar principle can be used for the Dantizig selector where the fraction of 

times was used as confidence score, see [13]. This fraction of times is over all 

penalizations and a regressor is presented with a nonzero parameter estimate.  

 Random Forests 

GRN inference can be also used by nonlinear regression methods such as random 

forests [47]. However, nonlinear regression methods can be also considered, assuming 

that the expression level of 𝐸𝑔 is a function of the remaining expression levels 𝐸−𝑔 and 

of allelic states M [13]: 𝐸𝑔 = 𝑓𝑔(𝑀, 𝐸−𝑔), (8)  

The use of the random forest for GRN reconstruction from expression data alone has been 

originally proposed in GENIE3 [13]. Random forests are the method where each node 

splitting considers only a random subset of features. Non-linear regression problem is 

between response Y and regressors X. This problem [13] is split recursively into 

the observed data with binary tests based on each single regressor variable where 

the variance of the response variable in the resulting subsets of samples should be as small 

as possible. 

In each test there is a binary tree where a node which compares the input variable 

value with a threshold. This threshold is determined during the tree growing. The leaves 

of the tree represent the predicted value of the response variable. A random forest [13] 

includes trees which are grown thanks to two sources of randomness. Each tree is grown 

using a random bootstrapped sample of the data and the variable used at each split node 

which is selected only from a random subset of all variables [13]. 

The mean of all the regressions predicted by each tree is the random forest 

predicted value. The advantage of random forest is using the bootstrapping to estimate 

the importance of any or every regressor. After shuffling the values of the regressor 

considered in the samples that have not been used in each bootstrapped sub-sample, it is 

possible to compute the resulting increase in the variance of the regression error compared 

to non-permuted samples [13]. It gives an assessment of the regressor importance. 

The confidence scores [13] by a random forest for oriented edge k ⟶ l are [13]: 𝑤𝑘𝑙𝑚 = 1 − 𝑟𝑘𝑙𝑚 − 1𝑁 , (9)  
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where 𝑟𝑘𝑙𝑚 is a global rank by the edge, N represents the largest overall rank. Ranks are 

produced by the importance of the factors such as 𝑓𝑔𝑚 that is normalized by its standard 

deviation. For 𝑤𝑘𝑙𝑒  is an analogous definition. 

 Bayesian Networks 

A Bayesian network is a directed acyclic graphical (DAG) model that captures the joint 

distribution probability over a set of variables by a factorization in local conditional 

probabilities linking one random variable with its ‘parents’ [13]. Bayesian network is 

defined such as a network which can derive directed graph in GRN inference challenge.  

The DAG [13] implicitly captures a set of conditional independencies. These 

interdependencies are a joint probability distribution between variables and represents: 

𝑃(𝑉) = ∏ 𝑃(𝑉𝑖|𝑃𝑎(𝑉𝑖))𝑚
𝑖=1 . (10) 

If B represents Bayesian network, it can be B = (𝜗, 𝑃𝜗) denoted where 𝜗 = (𝑉, 𝐴) with 

vertices representing random discrete variables 𝑉 =  {𝑉1, … , 𝑉𝑚} linked by a set 

of directed edges A and a set of conditional probability distributions 𝑃𝜗 =  {𝑃1, … , 𝑃𝑚} 

and the variables are involved in each conditional probability table 𝑃𝑖. 𝑃𝑎 (𝑉𝑖) =  {𝑉𝑗  ∈  𝑉 | (𝑉𝑗, 𝑉𝑖) ∈ 𝐴 }. Moreover, 𝑃𝑎 is a set of parental nodes of 𝑉𝑖 
in 𝜗 [13]. 

Maximum likelihood estimates the parameters defining the conditional 

probability tables therefore it can be computed by simple counting. Then the GRN 

learning process is reduced to the problem of learning a DAG structure among these 

variables that maximizes 𝑃(𝜗|𝐷) ∝ 𝑃(𝐷|𝜗)𝑃(𝜗) where D represents the observed 

data [13]. Learning Bayesian networks is an NP problem and as a result GRN structure 

learning with bootstrapped greedy search is used in [13]. 

 Other methods 

Different statistical models of gene regulation have been already mentioned and have 

different ability to infer gene regulations from expression data automatically. Some 

methods which are chosen in [13] are described above. However, other methods for GNR 
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inference exist and are described in [12]. [12] mainly mentions methods such as Mutual 

information and Correlation. 

Mutual information [48] defines how much one random variable tells us about 

another one. For two discrete variables X and Y whose joint probability distribution 

is 𝑃𝑋𝑌(𝑥, 𝑦), the mutual information between them, denoted 𝐼(𝑋, 𝑌) , is given by [48]: 𝐼(𝑋, 𝑌) = ∑ 𝑃𝑋𝑌(𝑥, 𝑦)𝑥,𝑦 log ( 𝑃𝑋𝑌(𝑥, 𝑦)𝑃𝑋(𝑥)𝑃𝑌(𝑦)) = 𝐸𝑃𝑋𝑌 log ( 𝑃𝑋𝑌𝑃𝑋𝑃𝑌), (11) 

where 𝐸𝑃𝑋𝑌  is the expected value of the distribution 𝑃𝑋𝑌. In the GRN 

implementation [12], X and Y represent a transcript factor and target gene. 

Correlation in DREAM is used as Pearson’s correlation and as Spearman’s 

correlation. Pearson’s correlation coefficient r was calculated among all transcription 

factors x and all target genes y in [12] as follows: 𝑟𝑥𝑦 = 𝑛 ∑ 𝑥𝑖𝑦𝑦 − ∑ 𝑥𝑖𝑦𝑖√𝑛 ∑ 𝑥𝑖2 − (∑ 𝑥𝑖)2√𝑛 ∑ 𝑦𝑖2 − (∑ 𝑦𝑖)2 , 
(12) 

where n represents the number of measurements of x and y. Positively correlated gene 

pairs receive higher confidence. 

Spearman’s correlation was calculated among all transcription factors x and all 

target genes y in [12] as follow: 𝜌𝑥𝑦 = 1 − 6 ∑ 𝑑𝑖2𝑛(𝑛2 − 1) , (13) 

where n represents the number of conditions that x and y have been sampled and d is the 

difference in the rank order between gene x and gene y over the n conditions [12]. 

The most correlated gene pairs were selected there. 
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4 Pre-processing RNA-Seq 

RNA-Seq is a method for measuring gene expression, which gives us some information 

about mRNA as it was mentioned above, see chapter 2.4 for more information. RNA-Seq 

is more difficult for analysis than microarray data, however nowadays RNA-Seq has 

defined mature pipelines. 

The pre-processing part deals with the pre-processing RNA-Seq process which is 

applied to pre-processing RNA-Seq data C. beijerinckii B-NRRL 598. These data were 

obtained under different conditions, more information is described in the chapter 2.5. 

In Attachment A] you can see a example of shell-script which is used for all samples. 

All created shell-scripts were computed using MetaCentrum Virtual Organization 

portal [49].  
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Figure 3: The first part of RNA-Seq pre-processing workflow [50] 

This thesis is inspirited by pipelines from the study by Delhomme et al. [50]. 

These pipelines represent the standard workflows in pre-processing RNA-Seq. Figure 3 

shows the graphic representation of the first part of the procedure. There are nodes that 

represent data format e.g. fastq, and edges represent the process treatment data. 
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The next part of RNA-Seq pre-processing workflow can be divided into QC, read 

mapping and alignment, quantification and differential gene expression analysis [51]. 

The quantification is an approach to quantifying gene expression by RNA-Seq to count 

the number of reads belonging to each gene [51]. The count table is created by 

R/Bioconductor featureCounts [52] in this thesis. However, read counts are influenced by 

factors such as transcript length or the total number of reads. Thus, it is necessary to 

normalise the read counts. 

The normalisation is usually provided by the RPKM (Reads Per Kilobase of exon 

Model per million reads), FPKM (Fragments Per Kilobase of exon Model per million 

reads mapped) or TPM (Transcript Per kilobase Million) [52]. The correction for gene 

length is not necessary if we compare changes in the gene expression within the same 

samples but it is necessary for correct ranking gene expression levels within the sample 

to account for the correct long genes accumulate [51]. 

 RNA Data QC Assessment  

The first necessary step is the initial QC assessment [50]. The overall sequence quality, 

as GC percentage distribution and the presence or absence of overrepresented sequences 

are checked here. The output is an HTML document, where some sections show 

the specific metrics. HTML documents from each replicate are enclosed in the electronic 

attachment. 

Sections in our HTML documents are divided to [50]: 

a) Basic Statistics: There is self-explanatory metrics. The GC% should be 

the expected values for the sample species. Median GC% is 29,6 for 

C. beijerinckii NRRL B-598, it is nice agreement with C. beijerinckii [34] 

where GC% is 30. 

b) Per base sequence quality: The first part is the Phred scale quality. 

It represents the probability that the base call is incorrect. The second part 

represents details of the Phred scaled quality as a function of the position 

in the read. 

c) Per sequence quality scores: There is a quality distribution at the read 

level. The good quality data are represented as the histogram which is 

skewed to the right. 
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d) Per base sequence content: The average proportion of individual bases 

as a line across the length of the reads is visualized there. 

e) Per base GC content: GC content is visualized as a function of 

the position in the read. 

f) Per sequence GC content: The plot shows the distribution of GC content 

per read. The red curve represents data and the blue curve represents 

theoretical distribution. If the curve shows a region of high GC content, it 

means that the sample includes ribosomal RNA (rRNA). However, this 

effect can be represented by a contamination by an organism with higher 

GC content such as bacteria. A peak on the left side represents AT content 

per read. 

g) Per base N content: There is a plot that shows the fraction of 

indistinguishable bases. It is represented as a function of the base position 

in the reads. This is expected to be close to zero if sequence data is high 

quality. Sequencing problems are represented as deviations from 

the expected values. 

h) Sequence length distribution: It represents the distribution of read 

lengths. There should be only one peak located at the sequenced read 

length, prior to trimming. 

i) Sequence duplication level: It represents the level of duplicate sequences 

in the library. 

j) Overrepresented sequences: There is a table where are the sequences that 

are represented at the unusually large frequency in the reads. 

k) Kmer content: This plot shows details about the occurrence of Kmers. 

These are nucleotide sequences of fixed k length. These nucleotide 

sequences are presented higher than the expected frequency as a function 

of their position within the read. 

 rRNA filtering 

rRNA filtering is important to maximize the quality of the sequence data. It is necessary 

to remove as much rRNA as possible [54]. Wet-lab protocols usually include a rRNA 

removal step but it is recommended to do rRNA filtering there. SortMeRNA [55] was 

used for rRNA filtering. The algorithm is based on approximate seeds and allows fast and 
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sensitive analyses of NGS reads. It was originally developed to identify rRNA in 

metagenomics analyses. 

 

Figure 4: GC distribution data sequences in point-time 8,5 h from replicate C before filtering rRNA 

 

Figure 5: GC distribution data sequences in point-time 8,5 h from replicate C after filtering rRNA 

The filtered data can be subjected to a QC assessment by FastQC again. The GC 

content plot should represent the biggest visual change because it is more closely to 

the theoretical normal distribution and GC curve should be closer to the expected GC 

value of the sample organism [50]. In Figure 4 and Figure 5 we can see graphs which 

represent GC distribution before and after rRNA filtering. The red curves are GC count 

per read and the blue curves expect theoretical normal distribution. After the application 
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filtered of rRNA step there is a visual change between these graphs where the plot 

represents our data and is more closely to the theoretical normal distribution as it is 

expected. 

 

Figure 6: GC distribution data sequences before and after filtering rRNA 

Figure 6 was created from all samples of all replicates. This plot is only 

the combination GC distribution data sequence before and after rRNA filtering. 

Per sequence GC content where green curve represents filtered data is more closely to 

the theoretical normal distribution of GC content, too. The modal GC content is 

calculated from the observed data and used to build a reference distribution. The green 

colour shows sufficient similarity with this theoretical distribution in contrast with the red 

colour which represents raw data. 

Unfortunately, a specific sample from replicate G which was sequenced in 6.5 h 

time-point shows an unexpected result because the orange curve which represents this 

filtered samples is not closely to the theoretical normal distribution. This effect can be 

caused by contamination that can arise during wet-laboratory step. Filtering using 

bacterial rRNA database is provided and thus it can be assumed that with the help of using 

another rRNA database e.g. eucaryote rRNA database, it is possible to obtain a better 

result after filtering. However, this contamination is filtered during mapping 

on the genome in a following step. 
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 Quality trimming and adapter removal 

It is known on Illumina sequencers that the quality of a base pair is linked to its position 

in the read so bases in the last cycle of the sequencing process have a lower average 

quality than the earliest cycles [50]. There is a common approach to increase the mapping 

rate of reads by removing the low-quality bases, it is called quality trimming. These reads 

are trimmed from the 3’ end until the quality which user selects as Phred-quality threshold 

is reached.  A threshold of 20 is widely accepted [50]. 

Next issue connected to Illumina sequencing is the presence of partial adapter 

sequences within sequenced reads [50]. This effect occurs if the sample fragment size has 

a large variance and if fragments are shorter than the sequencer read-length. 

As the resulting reads contain a significant part of the adapter which may not be able to 

map such reads. Thus, the ability to identify adapters, follow clip, or trim them, may 

consequently significantly increase the aligned read proportion [50]. 

Trimmomatic tool [56] was used in the step and the data were subjected to 

QC, too. FastQC is performed to ensure the quality trimming and adapter removal steps. 

Several changes should become in comparison with the previous QC report such as per-

base quality scores should be different, the per-sequence quality distribution should be 

shifted to higher scores and sequencing adapters are not identified as over-

represented [50]. We can observe changes mainly in the sector Sequence length 

distribution which confirm correct trimming. All sequences from all samples satisfy 

theoretical prerequisites. 

 Read alignment to a reference 

The final step is the reads alignment to a reference. This process is an active field 

of research and novel aligners are frequently published. Unfortunately, there is no ‘silver 

bullet’ so the choice of aligners will be dependent on the reference used in [50]. 

The aligner is usually chosen according to the type of available reference. The usage 

of STAR [57] is recommended for the genome based alignment of RNA-Seq data. Using 

e.g. BWT FM-index [58] is recommended for alignment of RNA-Seq data to a reference 

transcriptome. 

Figure 7 shows the summary of the result alignment of all samples from all 

replicates. These results are written in Attachment B]. The mean of all samples from all 
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replicates is 8,3 million uniquely mapped reads. The maximum is 19,6 million uniquely 

mapped reads and the minimum is 1,3 uniquely mapped reads from all datasets. 

The standard deviation of uniquely mapped reads is 4,8 million. 

 

Figure 7: Summary alignment results of STAR tool 

In this moment, the data using Integrative Genomics Viewer software (IGV) [59] 

is being checked and the replicates B, C, D, E, F and G are strand-specific RNA-Seq 

datasets are being revealed. 

 

Figure 8: Example of samples A1, B3 and F2 visualization using IGV 
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In Figure 8 some specific samples – A1, B3 and F2 – and the visualization of these 

samples using IGV are chosen. We can see that in the section with replicates A there are 

reads which have random direction but in the section with replicates B or replicates F we 

can see that the direction of reads is exactly reverse as features in genome.gff3 – the last 

section in Figure 8. It means that during B, C, D, E, F and G sequencing the modifying 

of the RNA-Seq protocol known as stranded RNA-Seq was used how it is described in 

the chapter 2.4. In the end, it was decided to continue in the work without replicate A. 

Thus, the next reason for continuing the work without replicate A which is unstranded 

RNA-Seq dataset. 

However, converting BAM files into count tables without stranded information 

cannot be considered as a false step. It is only under-utilization of the whole information 

so basic statistical analysis between non-stranded and reversely-strand obtained count 

tables is offered there. The evaluation differences between non-stranded and reversely 

stranded datasets is described using dimensionality reduction in the following chapter. 

 Normalization RNA-Seq 

The step before normalization RNA-Seq data creates a count table from BAM files. 

The quantification approach is based on quantifying gene expression by the RNA-Seq 

count number of reads mapped to each gene. The approach to create a count table is based 

on R/Bioconductor featureCounts [52]. Two types of count tables are created there. 

The first type is based on the unique mapping reads which are counted only to one feature. 

The second approach is multimapping reads which is counted to standardized features. 

                                             BAM   

                                                       Bioconductor  

                                                        – featureCounts 

 

                                        Count Table  

 

 

 

                                

 

 

 

                   

                       

                 Normalization RNA-Seq      
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Figure 9: The second part of RNA-Seq pre-processing workflow [51] 
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Figure 9 shows the second part of RNA-Seq pre-processing workflow which is 

focused on normalization RNA-Seq data. The study by Schurch et. al. [60] describes 

the advantages and disadvantages among tools. This study recommends using edgeR or 

DESeq2 tool if you have fewer than 12 replicates. 

RPKM normalization is typically used as a quantile normalization in the baseline 

expression. The tool R/edgeR rpkm [61] is used in this thesis. Currently, the RPKM is 

one of the most used methods for normalised data. This normalization is not perfect 

because it relies on the unlimited dynamic range of the RNA-Seq too much. It is not 

perfect for the comparison of the expression of one gene thought samples. However, 

RPKM is the most popular normalization and it is the reason why the RPKM is used. 

On the other side the decision of using this normalization in pre-processing data allows 

the possibility of future way for analysis RNA-Seq data from baseline expression view. 

In the Table 1, there is an example of using normalization. We can see some 

samples of replicate A which were sequenced in time 8.5 h, 13 h and 18 h. On the left 

side of the Table 1 there are raw count data and on the right side there are RPKM 

normalised count data. Locus is the position of the described gene that is expressed. 

We used signification locus tag which is changeless and hence we can determine 

the properties of the expression of particular gene in the future correctly. 

Table 1: The example using RPKM normalization 

Locus tag 

Replicates A  

Raw count data RPKM normalised data 

T3 T4 T5 T3 T4 T5 

X276_26735 54 103 52 40.60 57.59 35.03 

X276_26730 58 117 76 43.61 65.42 51.19 

X276_26725 49 98 47 36.84 54.80 31.66 

X276_26720 83 88 44 11.01 8.68 5.23 

X276_26715 1146 743 427 22.53 10.86 7.52 

X276_26710 1322 1540 785 24.20 20.96 12.87 

 

Another way is a differential expression analysis means taking the normalised 

count data and performing statistical analysis to discover quantitative changes in 

expression levels between experimental groups [51]. R/Bioconductor DESeq2 [62] can 

be called for differential expression analysis. This function prints a message for various 

steps, it performs such as the estimation of size factors, the estimation of dispersion values 

for each gene and fitting a generalized linear model [63]. 

DESeq2 function is based on the negative binomial as the reference distribution. 

The disadvantage of negative binomial distribution is the noise which is presented for 



49 

 

small-scale. In such cases, simpler methods are based on the Poisson distribution or 

empirical distributions although the absence of biological replication means no 

population inference and hence any p value calculation is invalid [52]. Fortunately, seven 

replicates {A, B, C, D, E, F, G} are available for this research and other replicates are being 

prepared. Thus, DESeq2 function has been chosen for the analysis of our replicates. 

 Dimensionality reduction 

In the fact our dataset includes two types of count tables of all replicates. One of them is 

based on the unique mapping reads that are counted only to one feature. These count 

tables are called FTFF. The second of them is multimapping reads which are counted to 

the standardized features. These types of count tables are called FTTT. In summary seven 

replicates exist which include six point-times samples and these seven replicates can be 

created by two approaches. Designation FTFF and FTTT was derived by the arguments 

which are different setting – True (T) or False (F) – between these two count tables, see 

in Table 2. 

Table 2: Different setting arguments in R/Bioconductor featureCounts [52] between FTFF and 

FTTT. 

Arguments Description Setting 

useMetaFeatures 

logical indicating whether the read summarization 

should be performed at the feature level or meta-

feature level. 

 

False 

allowMultiOverlap 

logical indicating if a read is allowed to be assigned 

to more than one feature (or meta-feature) if it is 

found to overlap with more than one feature. 

 

True / False 

countMultiMappingReads 

logical indicating if multi-mapping reads should be 

counted. 

 

True / False 

Fraction 

logical indicating if fractional counts will be 

produced for multi-mapping reads. 

 

True / False 

 

We have 5 276 protein coding genes that are signification as Locus Tag. Thus, 

there are 5 276 dimensionalities in our count tables. It is necessary to verify that pipeline 

which was used in the pre-processing RNA-Seq is correct. It is the reason for creating 

visualization which is based on the dimensionality reduction. Software packages that have 

functions to enable the visualization of the results such as DESeq2 in Bioconductor were 
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used. Considering the complexity of transcriptomes, the display of information is still 

a challenge. Thus, all of the tools are evolving rapidly and more comprehensive tools with 

desirable features can be expected in the future [52]. The global quality of the RNA-Seq 

dataset is essential to be assessed. It leads to checking the reproducibility among 

replicates. Reproducibility among technical replicates should be high but there are not 

any clear standards for biological replicates because they depend on the heterogeneity of 

the experimental system [52]. 

 

Figure 10: On the left there is visualization from FTFF non-stranded dataset using variance regularized 

transformation and on the right there is visualization from FTFF non-stranded dataset using variance 

stabilizing transformation  

It is expected in the principal component analysis (PCA) that biological replicates 

of the same condition become clusters. It can be theoretical prerequisites for samples B2, 

C2, D2, E2, F1 and G1 because these samples are obtained from three different studies 

but same conditions, see in the chapters 2.5.1 and 2.5.2. PCA is used for the visualization 

of sample-to-sample distance [56]. The data points are projected onto the 2D plane. These 

two directions show most of the differences. The PC1 axis separates the data point 

the most and the PC2 axis represents  the direction with the largest variance subjected to 

the constraint that must be orthogonal to the first direction [56]. 
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In the Figure 10 we can see PCA plots which were created from FTFF dataset by 

all replicates. There is applied R/Bioconductor pcaMethods [64]. On the left there is 

a PCA plot in which variance regularized transformation was used, on the right we can 

see PCA plot where the approach with variance stabilizing transformation was used. 

We can see that using of regularized transformation has higher 1 % PC1 variance than 

using stabilizing transformation in this case. In the both of PCA plots we can see that B2, 

C2, D2, E2, F1 and G1 become a cluster. It can be considered a fulfilment theoretical 

prerequisite which was predicated. The samples from replicate A are shown on remote 

locations in the Figure 10. This fact is probably caused by different sequencing replicates. 

As it was mentioned above, the replicate A was sequenced using HiSeq method but other 

replicates were sequenced using NextSeq method. It is the reason why the work for 

analysis gene regulatory only with replicates B, C, D, E, F and G is going to be continued 

with. 

 
 

Figure 11: FTTT reversely stranded RNA-Seq dataset with used regularized transformation 

Another utilization of PCA plots is shown differently between specific strand and 

non-strand dataset which is described by basic statistics using created PCA plots with 

their scree plots for all types of datasets which can be obtained. These plots are visualized 

in the Attachment C] and the Attachment D]. The scree plots confirm the correct using of 

PCA plots for our datasets because the first and the second principal components 

represent significantly larger variability than other principal components. Differences 

between unstranded and reversely stranded FTTT dataset are not huge. This fact shows 
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similarities in PCA plots in the Attachment C]. However, reversely stranded RNA-Seq 

count tables give more information than unstranded RNA-Seq count tables. 

In the Attachment E] there are applications of UPGMA algorithm for evaluation 

PCA plots analysis. We used R/phangorn upgma [65] where the average from Euclidean 

distance between samples were applied. Our theoretical prerequisite that samples B2, C2, 

D2, E2, F1 and G1 become the cluster and it is confirmed in all obtained datasets.  

Figure 11 shows thanks to the red frame that our theoretical prerequisite has been 

confirmed. This prerequisite is confirmed by using the knowledge of Euclidean distance 

which in applied in the UPGMA method. 
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5 Gene regulation for C. beijerinckii NRRL B-598 

Gene regulation for C. beijerinckii NRRL B-598 is derived only by reversely stranded 

FTFF and FTTT datasets. The omission of replicate A is justified in the chapter 4.6. 

It means that we have a great possibility to create two datasets which were sequenced 

from the same conditions and provide checking results. 

 Infer Operons dataset  

Operon is the cluster of genes that have the same promoter and genes are transcribed and 

regulated as a single large mRNA including multiple structural genes as described 

in the chapter 1.  We can see the operon in Figure 12. The operon structure [66] is one 

of features of prokaryotes.  

 

Figure 12: Operon structure [67] 

Transcription unit (TU) [68] is a concept which was defined to make 

the understanding of operon function easier. TU is obtained from the genes that transcribe 

and regulate simultaneously. The identification of TUs is a challenge for resolving 

the understanding of the transcriptional regulation. TUs mapping can be used for 

the identification of new ruboswitches, non-coding RNA etc. The same TU can have 

multiples transcription start sites (TSSs) and transcription ends, alternative TSSs in 

bacteria are found for 15-60 % genes and operons [66]. We need to combine 

the information about transcription and translation with genomics data. There is 

a necessary complex where a new pipeline is created, see Figure 13, for prediction 

operons which is based on both pieces of information. 
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Figure 13: The processing workflow for obtaining operons 

In this thesis Operon-mapper was used [69]. It is a web server that predicts 

the operons of any bacterial or archaeal genome sequence. This web server predicts 

operon using knowledges about intergenic distance of neighbouring genes as well as 

the functional relationships of their protein-coding products. 

Operon-mapper is based on an artificial neural network (ANN). This algorithm 

was tested on a set of experimentally defined operons in Escherichia coli and 

Bacillus subtilis and reached accuracies of 94,6 % and 93,3 % [69]. ANN has inputs that 

are the intergenic distance of contiguous genes and score which thinks of the functional 

relationships between the protein products. Operon mapper predicts 3 357 operons in 

C. beijerinckii NRRL B-598. This prediction is based only on information that is obtained 

from genome format .gff3 number CP011966.3 [36]. After removing pseudogenes, tRNA 

and rRNA applied to the transcription mark using locus tag, 3 217 predicted operons, are 

obtained. However, we need a complex view where the transcription must be included 

which can be obtained from our created count tables. It was the reason for creating 

R scripts in the version 3.6.1. 

This processing workflow for obtained operons was used to FTTT dataset which 

include B, C, D, E, F and G reversely stranded RNA-Seq replicates. This choice is based 

on prerequisite that using FTFF dataset can obtain more false positive results thanks to 

the loss of multimapping information. The first step is dividing predicted operons use to 



55 

 

computing correlation coefficient and dividing one predicted operon to two operons 

if the value of correlation coefficient is less than 30 %, we obtain 3249 operons. 

Then we applied our created algorithm. It can be called growing operons seeds. 

The main idea is using precedent information predicted operons where operons are found 

that express only one gene and the express value from these operons are used to the next 

computing correlation between the express values from upstream predicted operons or 

downstream predicted operons in sequence. The choice of upstream predicted operons or 

downstream predicted operons depends on the higher value of correlation coefficient. 

If the correlation coefficient is more than 75 % and the distance between these operons is 

less than defined threshold in bp, we assume that it is one operon and these operons are 

concatenation. The threshold was defined as a mean distance between the predicted 

operons which is 374 bp. This process repeats until all correlation coefficients are more 

than 75 % or the distance between operons is higher than 5 000 bp. After the application 

of this algorithm, 2 737 operons are obtained. In Figure 14 there are the first five obtained 

operons that visualize using of the sunburst plot in MS Excel Office v. 16. 

 

 

Figure 14: First five obtained operons, light green colour represents other operons 
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 Gene co-expression network 

Network inference methods have different approaches as it was mentioned in the 

chapter 3. This thesis is focus on the co-expression-based resources for infer GRN. 

Another type of network is shown importantly and is often used to describe gene 

regulatory, too. It is gene co-expression network (GCN) [70]. GCN are increasingly used 

to study the system level functionality of genes [70]. 

The concept of GCN construction is quite easy to understand. Nodes represent 

genes. Nodes are connected if the corresponding genes are significantly co-expressed 

across appropriately chosen tissues samples [70]. The main reason between GCN and 

GRN is the fact that GCN always obtains undirected edges. We choose several tools for 

the inference of GCNs and application to our datasets. Our data were divided to three 

datasets. The first dataset is BCDE dataset represented by standard cultivation 

transcriptome, see chapter 2.5.1. The second dataset is FG dataset represented by butanol 

shock transcriptome, see chapter 2.5.2 and final dataset is BCDEFG dataset which 

includes all these samples. 

 

Figure 15: Example of gene co-expression network from RNA-Seq dataset containing gene expression profiles 

of 5276 genes from C. beijerinckii NRRL B-598 
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We have used R/Bioconductor CoexNet [71]. This package offers two different 

methods for reconstruction of co-expression networks. Pearson correlation coefficient 

and mutual information, these methods are described in the 3.5 chapter. The CoexNet 

package was applied to our datasets. 

Figure 15 shows co-expression network which was created by R/Bioconductor 

CoexNet using MetaCentrum Virtual Organization portal and visualized by using 

Cytoscape. The computing was provided to input parameters which include a correlation 

method and threshold. We found the threshold using the function ‘findThreshold’ which 

is included in the packages R/Bioconductor CoexNet. It finds the threshold value to 

establish the cut off to define the edges in the final co-expression network from two steps. 

Firstly, the threshold is obtained by the subtraction from clustering coefficient values 

of the real and random networks created from the possible threshold values 

in the correlation matrix. In the second step, a Kolmogorov-Smirnov test is used which 

has been made to evaluate the degree distribution respecting normality. In Figure 15 there 

is co-expression network which has threshold value 0.94. The network has 3 052 nodes 

and 82 634 edges. This network includes FTFF BCDE dataset, it is a standard cultivation 

transcriptome, see 2.5.1. 

This locus tag X276_18480 indicates gene Spo0A which is known as a global 

regulator as mentioned in the study by Patakova [37]. Thus, the thesis is focused on this 

gene and this significant locus tag X276_18480 is visualized using the yellow colour. 

In the study by Sedlar [72] it is written that gene Spo0A is a sporulation initiator factor 

such as transcription factor for sol operon. However, the sporulation is not a necessary 

condition for solventogenesis and that sporulation can be achieved only under specific 

culture conditions [37]. Figure 15 shows that locus tag X276_18480 is adjacent to 

X276_25055 and X276_01040. Both of locus tags are protein coding. Specifically, 

X276_25055 codes A0A0K2MKB7 protein [73] whose length is 270 amino acids and 

X276_01040 is glgD gene which codes A0A0K2M7P6 protein [74]. 

Attachment F] shows examples of two co-express networks where locus tag 

X276_18480 is significant. Both of networks are created by the same parameters but the 

different dataset. One is from FTFF datasets and the other one is from FTTT datasets. 

This distribution of datasets was provided for checking and we can see that adjacent to 

X276_25055 and X276_01040 was correct because both of datasets have match. 
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Table 3: Basic static analysis co-expression networks based on correlation method 

 BCDE FG BCDEFG 

FTFF FTTT FTFF FTTT FTFF FTTT 

Number of nodes 3 052 3 143 5 249 2 746 5 013 2 233 

Number of edges 82 634 85 603 478 451 20 109 1 637 789 35 873 

Clustering coefficient  0.503 0.507 0.433 0.353 0.605 0.525 

Connected components 114 134 2 131 9 168 

Network density 0.018 0.017 0.035 0.005 0.130 0.014 

Characteristic path length 4.592 4.639 3.156 6.418 2.370 4.853 

Average no. of neighbours 54.151 54.472 181.302 14.646 653.417 32.130 

Network heterogeneity 1.197 1.229 0.950 1.264 0.983 1.356 
 

Table 4: Basic static analysis co-expression networks based on mutual information method 

 BCDE FG BCDEFG 

FTFF FTTT FTFF FTTT FTFF FTTT 

Number of nodes 2 543 2 622 1 141 1 171 711 766 

Number of edges 713 312 731 518 137 993 148 509 12 019 12 261 

Clustering coefficient  0.628 0.622 0.551 0.551 0.671 0.643 

Connected components 4 8 4 8 49 53 

Network density 0.220 0.213 0.212 0.217 0.048 0.042 

Characteristic path length 1.875 1.885 1.797 1.792 3.540 3.350 

Average no. of neighbours 560.339 557.985 241.881 253.654 33.809 32.013 

Network heterogeneity 0.703 0.720 0.468 0.472 1.348 1.323 

 

In sum we created 12 different co-expression networks. The co-expression 

networks were created by correlation and mutual information method, see in the 

chapter 3.5. Static network analysis was provided using NetworkAnalyzer [75]. 

The conclusion of results are shown in the Table 3 and Table 4. Table 3 shows basic static 

analysis from all co-expression networks which were created by correlation method and 

Table 4 shows the conclusion of results which has been created by mutual information 

method. Network parameters obtained by FTFF datasets and obtained by FTTT datasets 

are very similar. It points out to checking correction because we can assume similar 

results of these datasets created by same transcriptome data. 

Number of nodes and edges are affected by threshold value which was obtained 

using ‘findThreshold’. The threshold values which are found by FTFF datasets are same 

as the threshold values which are found by FTTT. However calculated threshold values 

were different between correlation and mutual information approaches. It is reason why 

we can see huge difference between the number of nodes or edges between these different 

approaches. If we used threshold value such as 0.94, the final co-express networks have 

3 052 nodes and 82 634 edges or 3 142 nodes and 85 603 edges, these networks were 
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created by BCDE datasets using correlation approach, see Table 3. On the other side, 

if we used threshold value such as 0.37, the final co-express networks have 1 141 nodes 

and 137 993 edges or 1 171 nodes and 148 509 edges, these networks are created by FG 

datasets using mutual information approach, see Table 4. Thus, when lower threshold 

value is used, the graph has more number of edges. 

Clustering coefficient is defined in the chapter 1.1. Thus, the network clustering 

coefficient is the average of the clustering coefficients for all nodes in the network [76]. 

The premised is that nodes with less than two neighbours have a clustering 

coefficient of 0. The mean of clustering coefficient is higher in mutual information 

approach than correlation approach because the mean of clustering coefficients from 

correlation approach is 0.49 and the mean of clustering coefficients from mutual 

information approach is 0.61. 

The most distinct difference between results of static analysis between correlation 

and mutual information methods is visible in the results of connected components. 

Number of connected components [76] indicates the connectivity of a network. It means 

that the lower number of connected components suggests a stronger connectivity. 

The mutual information approach has significant values of connected components then 

the correlation approach. Thus, networks which were created by mutual information 

approach has stronger connectivity. 

The network density [76] is normalized version of the average number of 

neighbours. The average number of neighbours [76] indicates the average connectivity of 

a node in the network. The network density shows how densely the network is populated 

with edges. The mean of network density is higher using mutual information method. 

In opposite the mean of characteristic path length is higher using correlation approach. 

The characteristic path length [76] is also known as the average shortest path and gives 

the expected distance between two connected nodes. 

The network heterogeneity [76] reflects the tendency of a network to contain hub 

nodes. The mean of network heterogeneity from the Table 3 is 1.16 and the mean of 

network heterogeneity from the Table 4 is 0.84. It means that co-expression networks 

using correlation approach have higher network heterogeneity than co-expression 

networks using mutual information method. 

Final step in reconstruction co-express network for Clostridium beijerinckii 

NRRL B-598 is based on intersection above created co-express networks. The merging 

is visualization in Figure 16. This merging was made for all FTTT and FTFF co-
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expression networks which was created by mutual information or correlation. The final 

results of co-express network are four co-expression networks. 

 

Figure 16: The merging co-expression networks 

Table 5: Basic static analysis final co-expression networks 

 Correlation Mutual information 

FTFF FTTT FTFF FTTT 

Number of nodes 3 039 1 430 139 144 

Number of edges 10 543 1 516 102 98 

Clustering coefficient  0.240 0.213 0.140 0.126 

Connected components 1 316 743 63 70 

Network density 0.002 0.001 0.011 0.010 

Characteristic path length 6.648 5.667 3.892 4.481 

Average no. of neighbours 6.938 2.120 1.468 1.361 

Network heterogeneity 1.987 1.682 1.035 1.134 

 

Table 5 shows final results of co-express networks which were created by 

RNA-Seq from C. beijerinckii NRRL B-598. We created four co-expression networks for 

C. beijerinckii NRRL B-598. Co-expression networks from FTTT and FTFF datasets 

were created for the verification of correct results because we assume that networks which 

have been created by the same method will be similar. The values of parameters network 

by FTFF and FTTT datasets in the Table 5 can be considered a fulfilment prerequisites. 

The final comparison between correlation and mutual information shows that 

mutual information approach is stricter than correlation because co-expression networks 

which were created by mutual information method has significantly less number of nodes 

and edges than co-expression networks which were created by correlation. However, 

the co-expression networks based on mutual information has higher values of network 

density. Despite less number of nodes and edges the co-expression networks based on 

mutual information is higher populated with edges. 

Unfortunately, co-expression networks based on mutual information lose 

information about genes which has not higher express value in samples such as Spo0A 

gene. Thus, after the final step merging information about this gene is lost in co-
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expression networks based on mutual information. However, merging co-expression 

networks based on correlation preserved information about Spo0A gene so we can declare 

the dependence between Spo0A and glgD gene. 

 Gene regulatory network 

The co-expression-based resources for infer GRN is used in this thesis. We showed GCN 

in the previous chapter where is mentioned that GCN is always an undirected graph. It is 

different between GCN and GRN. GRN is mentioned as a directed graph but co-

expression based resources tools for infer GRN are insufficient for the infer directed 

graph. 

Co-expression-based tools [77] have been widely adopted after the introduction 

of transcriptome scale quantification methods of transcript abundances. Two genes are 

deemed co-expressed if a significant dependency is determined between their transcript 

expression [77]. Currently, several available tools were created for the reverse 

engineering of GRNs based on this approach. 

5.3.1 Bootstrap-based GRN 

The bootstrapping approach is described in the chapter 3.1. There is used R/Bioconductor 

bc3net [78]. The main idea of bc3net is based on the bootstrap aggregation. Bc3net is an 

ensemble method that is based on bagging the C3NET algorithm, which means it 

corresponds to a Bayesian approach with non-informative priors [78]. 

Bc3net was applied to our datasets such as in the previous chapter 5.2. 

Unfortunately, bc3net is one of their tools which are not sufficient for the infer directed 

graph. Thus, all GRN which is created to using bc3net are undirected. We provided static 

analysis NetworkAnalyzer, see Table 6. Table 6 shows really similar network parameters. 

It means that all created GRNs based on the bootstrap report similar dependence between 

genes and this fact is not dependent to different obtaining datasets. 
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Table 6: Basic static analysis GRNs based on bootstrapping 

 BCDE FG BCDEFG 

FTFF FTTT FTFF FTTT FTFF FTTT 

Numbers of nodes 5276 5276 5 282 5 282 5 278 5 278 

Numbers of edges 31 514 30 794 31 436 30 364 30 409 30 483 

Clustering coefficient  0.165 0.170 0.082 0.083 0.161 0.168 

Connected components 1 3 7 7 4 4 

Network density 0.002 0.002 0.002 0.002 0.002 0.002 

Characteristic path length 4.714 4.893 4.163 4.200 4.666 4.783 

Average no. of neighbours 11.946 11.673 11.903 11.497 11.523 11.551 

Network heterogeneity 0.343 0.361 0.325 0.310 0.393 0.403 

 

GRNs were visualised using Cytoscape where we created example of the first 

neighbourhood of Spo0A, see Attachment H]. The Attachment H] shows that the 

connection between X276_01040 and X276_18480 is conformed in all first 

neighbourhood of Spo0A. Thanks to it fulfilment dependence between Spo0A and glgD 

gene, again. 

The final GRNs which were created such as intersection above networks, the same 

principle is shown in Figure 16. It means we obtained two resulting networks. The first 

checking of results shows the similar networks parameters of FTFF datasets and FTTT 

datasets in the Table 7. The number of edges is 617 for FTFF datasets and 644 for FTTT 

datasets. If we compare edges in these datasets, we obtain 412 edges which are the same 

in the both final networks. It means we declare 412 edges which report dependence in 

GRNs based on the bootstrap approach. 

Table 7: Basic static analysis for two final GRNs based on bootstrapping 

 FTFF FTTT 

Numbers of nodes 5276 5276 

Numbers of edges 617 644 

Clustering coefficient  0.011 0.014 

Connected components 4 698 4 680 

Network density 0 0 

Characteristic path length 2.058 1.643 

Average no. of neighbours 0.234 0.244 

Network heterogeneity 2.469 2.392 

 

Table 7 shows that network parameters are different such as network parameter in 

the Table 6. The value of clustering coefficient is less in the Table 7 then in the Table 6 

such as the value of average no. of neighbours, characteristic path length and network 

density. The value of network density is zero. It causes the high number of gene which is 

not connected with other genes after execution intersection. In the opposite value of 
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network heterogeneity is higher in the Table 7 then in the Table 6. It reports that the final 

networks which have been created by intersection have a higher tendency of the network 

to contain hub nodes. 

We have focused on Spo0A in the other view of static analysis in GRNs which 

have been created by bootstrapped approach. In total is 412 edges which we have declared 

such as dependences among genes because these edges are the same in final FTFF and 

FTTT networks, see Table 7. Spo0A has been found and visualized by its neighbours. 

Unfortunately, the neighbourhoods have obtained only two genes but these genes are 

X276_01040 and X276_18480. The dependence between Spo0A and glgD gene are 

fulfilment, again. 

5.3.2 Tree-based GRN 

The decision tree-based method is described in the chapter 3.3. R/Bioconductor 

GENIE3 [79] has been applied to our datasets which was divided such as in the previous 

chapters. The GENIE3 is a decision tree-based method which has emerged as the best 

performer in the DREAM4 [12]. This inference method based on the variable selection 

of ensembled regression trees. It produces directed graphs of regulatory interactions 

allowing the presence of feedback loops in the network, it obtains realistic GRNs [77]. 

The GRNs which has been created by GENIE3 has had to compute using the 

MetaCentrum Virtual Organization portal. We have had to filter GRNs using empirically 

set threshold. This value has been set for a purpose obtained by GRNs which include 

about 5 000 edges because the GENIE3 output is adjacency list and this file format is 

computationally demanding for the visualization and following static analysis. 

The threshold value for samples from the standard cultivation transcriptome is 0.0095, 

the threshold value for samples from butanol shock transcriptome is 0.0074 and the 

threshold value for all samples is set as 0.0108. If there are more variable and larger 

dataset, we need to set higher threshold. 

In sum 6 GRNs have been created whose approach has been based on the tree 

methods. The basic static analysis has been provided by NetworkAnalyzer and visualized 

in the Table 8. There is the same situation such as above where the first checking of results 

shows the similar networks parameters of FTFF datasets and FTTT datasets 

in the Table 8. 
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Networks parameters in the Table 8 is provided static analysis of GRN which is 

specific for directed graph. The difference between Table 6 and Table 8 is important. 

Number of nodes and edges in the Table 6 is much higher than in the Table 8. This fact 

is caused by a higher computational complexity during visualized directed networks than 

during the usage of undirected networks. 

Table 8: Basic static analysis GRNs based on tree method 

 BCDE FG BCDEFG 

FTFF FTTT FTFF FTTT FTFF FTTT 

Numbers of nodes 2 404 2 490 2 854 2 758 2 693 2 756 

Numbers of edges 5 063 4 879 5 070 3 709 5 025 4 814 

Clustering coefficient  0.063 0.061 0.032 0.027 0.064 0.069 

Connected components 147 139 209 166 251 291 

Characteristic path length 11.593 13.421 12.904 7.616 8.301 7.738 

Average no. of neighbours 3.831 3.583 3.180 2.613 3.286 3.091 

Multi-edge node pairs 458 418 532 105 601 554 

 

The values of clustering coefficient is less in the Table 8 than in the Table 6. 

However, it is important to mentioned that the clustering coefficient is defined in directed 

networks [76]: 𝐶𝑛 = 𝑒𝑛(𝑘𝑛(𝑘𝑛 − 1)) , (14) 

where 𝑘𝑛 is the number of neighbours of n and 𝑒𝑛 is the number of connected pairs 

between all neighbours of n. The values of connected components are much higher in the 

directed networks, see Table 8 than in the undirected networks, see Table 6. Table 8 also 

shows network parameter which is typical for directed networks, it is multi-edge node 

pairs. This attribute indicates if n is a partner of node pairs with multiple edges [76]. 

The highest value of the multi-edge node pairs parameter belongs GRN which have been 

created by all samples from all replicates. It is caused to large datasets which creates 

GRN. 

Figure 17 shows the example of GRN which has been created by the standard 

cultivation transcriptome obtained such as FTFF datasets. We visualized significant locus 

tag X276_18480 which represents Spo0A. GRN created by tree-based approach shows 

Spo0A with 7 indegree and 3 outdegree parameters. Unfortunately, the visualized 

neighbours do not show X276_01040 like in the undirected graphs. However, we can see 

others 8 possibilities of candidate for interaction with Spo0A gene. The description of 

these 8 candidates is in the Table 9. 
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Figure 17: Example of GRN from RNA-Seq dataset containing gene expression profiles of 5276 genes from 

C. beijerinckii NRRL B-598 

Table 9: Basic description of 8 candidates for interaction with Spo0A 

Locus tag Protein ID  Product 

X276_02845 ALB44287.1 dCTP deaminase 

X276_02840 ALB44286.1 hypothetical protein 

X276_23685 ALB48059.1 Nitrogenase 

X276_18850 ALB47156.1 alpha/beta hydrolase 

X276_25055 ALB48296.1 lytic transglycosylase domain-containing protein 

X276_00115 ALB43814.1 MazG-like family protein 

X276_15115 ALB46480.1 cobyrinate a%2Cc-diamide synthase 

X276_08895 ALB45387.2 class D beta-lactamase 

 

Locus tags X276_02845 and X276_02840 are part of operon no. 1911 which is 

inference in chapter the 5.1. X276_02845 codes deoxycytidine triphosphate deaminase 

(dCTP deaminase) [80] product. It is an enzyme which is involved in the nucleotide 

metabolism. It catalyses the formation of deoxyuridine triphosphate (dUTP) which is turn 

in degraded by dUTPase to produce deoxyuridine monophosphate (dUMP). Dump is the 

immediate precursor of thymidine nucleotides [80]. In opposite the X276_02840 has the 

product which is described as a hypothetical protein. It means that the protein has been 

predicted nevertheless there is a lack of experimental evidence which is expressed in vivo. 

The products from other candidates for interaction with Spo0A are situated  

in the Table 9. Table 9 shows the description from CP011966.3 [36]. 
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Attachment H] represents other examples of GRN which have been created by 

tree-based methods where visualized significant locus tag X276_18480 which represents 

Spo0A. In Attachment H] there is missed GRNs  created by butanol shock transcriptome 

of FTFF datasets because in this GRN there is not visible locus tag X276_18480. It does 

not mean that these GRNs do not obtain the node which represents Spo0A but thanks to 

the usage of threshold we have persevered the nodes that have edges with higher weight. 

However, in other GRNs which have been created by the tree-based approach 

X276_18480 is visible, see Attachment H]. In addition X276_18480 has common edge 

with X276_01040 in GRNs which have been created by all samples. This fact can show 

the correct prediction of dependence correlation between Spo0A and glgD genes. 

Table 10: Basic static analysis two final GRNs based on random forest method 

 FTFF FTTT 

Numbers of nodes 739 718 

Numbers of edges 160 6 

Clustering coefficient 0.011 0 

Connected components 711 712 

Characteristic path length 1.701 1.143 

Average no. of neighbours 0.349 0.017 

Multi-edge node pairs 31 0 

 

The final GRNs which have been created such as the intersection above networks, 

again – see in the Figure 16. It means we have obtained two resulting networks. Table 10 

shows static analysis for these GRNs. The first sight is obvious huge difference between 

the numbers of edges. GRN from FTTT datasets obtains only 6 edges and these edges are 

mismatched with edges in GRN from FTFF datasets. Thus, we can declare that we need 

more samples for inference tree-based GRN which can be causality. 

Eventually, a selected part of GRN constructed as an intersection of FTFF datasets 

in shown the Figure 18. We highlighted locus X276_12610 which is a possible candidate 

for transcription factor coding protein ALB46023.1 annotated as transposase. 

Transposase [81] is the enzyme that cuts out the DNA and moves it to a different place. 

The predicted regulon of X276_12610 contains six genes: X276_04705, X276_19385, 

X276_00985, X276_10490, X276_10945, and X276_00235. 
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Figure 18: Sub-graph of intersection of tree-based GRN from FTFF datasets 

Figure 18 shows example which have been analysed using CountTriplets [82]. 

It is the Cytoscape app that counts triplets motifs and computes z-scores against randomly 

generated networks. The CountTriplets performs abundance and significance 

analysis [82]. The triplets motifs are visualized in Attachment I]. The z-score [83] is 

defined as: 𝑧(𝑔𝑘) = 𝑓𝑖𝑛𝑝𝑢𝑡 − 𝑓𝑟𝑎𝑛𝑑𝑜𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅√𝜎𝑟𝑎𝑛𝑑𝑜𝑚2  , (15) 

where 𝑓𝑖𝑛𝑝𝑢𝑡 is the sub-graph frequency in the input network 𝑓𝑟𝑎𝑛𝑑𝑜𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is the mean 

of frequencies of 𝑔𝑘 in the random network. 𝑔𝑘 represents sub-graph with a size k. Thus 

the z-score is  the difference of 𝑓𝑖𝑛𝑝𝑢𝑡 and 𝑓𝑟𝑎𝑛𝑑𝑜𝑚̅̅ ̅̅ ̅̅ ̅̅ ̅̅  divided by the standard deviation 𝜎𝑟𝑎𝑛𝑑𝑜𝑚2 . A motif is regarded as statistically significant if the associated z-score value is 

higher than 2. 

The sub-graph in the Figure 18 has 27 nodes and 158 edges and the analysis of 

CountTriplets is visualized using triplets profile in Figure 19. It shows significance 

profile. The significance profile reports the profile of the network analysed as a line 

chart [82]. The significance profile has been computes against randomly generated sub-

graph, see Figure 18. Figure 19 shows that the sub-graph in Figure 18 

obtains 11 significant motifs because 11 motifs have higher z-score value than 2. 

FLLAAA was found among significant motifs, see in Attachment I]. The FFLAAA 

represents general Coherent Feedforward Loop (C1-FFL) motif which is found much 
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more frequently in the transcription network of Escherichia coli and yeast than the other 

types of motif [83]. 

 

Figure 19: Triplets profile of example in Figure 18 

5.3.3 Differential equation-based GRN 

Differential equation-based GRN is the approach which is based on the ordinary 

differential equation (ODE) [77]. ODEs are learned from gene expression data, from 

multiple samples in GRN reconstruction. This approach is naturally suited to the model 

also non-linear relationships, because ODE methods are essentially RNA chemical 

reactions that can show a wide range of kinetic behaviours. Introducing the constraints 

of known kinetic parameters knowledge of GRN structure can be extremely beneficial to 

ODE-based methods [77]. 

In this thesis we used Time Series Network Identification (TSNI) algorithm which 

is a differential equations-based GRNs inference method and is available as MATLAB 

package [84]. The aim of this algorithm is to infer the local network of gene-gene 

interaction surrounding a gene of interest by measuring at multiple time points [77]. 

This package has been incorporated and used as a modification to our datasets. We have 

created ‘GRN_main.m’ script which has included several steps. 

The first step is the loading our datasets but in this infer GRN our dataset has been 

divided to six datasets which represents each of replicates. It was necessary because 
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inputs of ‘tsni.m’ [84] requires chronologically arranged data. Thus, we have obtained six 

gene regulatory networks for each of replicates. In the following step we have created 

‘penetration.m’ function which has been applied to these six gene regulatory to obtain 

one final GRN in the main script. The procedure of penetration is visualization 

in the Figure 20. Figure 20 shows standard cultivation transcriptome as blue colour and 

butanol shock transcriptome as green colour. 

 

Figure 20: Diagram of penetration procedure for creation GRN 

The evaluation of created GRNs has been provided to FTFF and FTTT datasets, 

see Table 11. The visualization GRNs has been used by Cytoscape and aMatReader [85]. 

The results have been obtained by using NetworkAnalyzer for basic static network 

analysis. We can see that results obtained by FTFF datasets that are similar to the FTTT 

datasets, again and so it is checking correction results. 

Table 11: Basic static analysis GRNs based on differential equation 

 FTFF FTTT 

Numbers of nodes 5 276 5 276 

Numbers of edges 194 541 195 489 

Clustering coefficient  0.602 0.566 

Connected components 1 013 1 117 

Characteristic path length 2.530 2.552 

Average no. of neighbours 61.217 61.415 

Multi-edge node pairs 27 774 28 200 

 

We can see that we have the same numbers of nodes such as GRNs which is based 

on bootstrapping because the output of our ‘tsni’ toolbox is weighted by edge matrix. 

Thus, we do not need high threshold like in the tree-based approach. There is a fact that 

we have 194 541 numbers of edges for FTFF datasets and 195 489 numbers of edges for 

FTTT datasets obtained by the highest values of numbers of edges from all used 
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approaches. However, these values have included edges which have reflected express 

influence themselves gene. It means that if we hide these themselves expressed edges we 

obtain about 190 000 edges. 

Table 11 shows the parameters of directed GRNs. Thus the evaluation is provided 

between the Table 10 where parameters of tree based GRN are shown and the Table 11. 

The clustering of coefficient is significantly higher in the Table 11 than in the Table 10. 

The values of connected components and other parameters in the Table 11 are higher than 

parameters in the Table 10, too. This fact is affected by the numbers of nodes and edges. 

The ODE based networks are not computationally intensive and so the ODE based 

networks describe more gene regulatory information than tree based GRNs. The edges of 

ODE based networks are identical in 170 119 cases. 

In this case it can be confused to locus tag X276_18480, again. In the Figure 21 

there is X276_18480 such as a transcription factor with its first neighbourhood. We can 

predict that Spo0A is a transcription factor for these visible 27 genes including 5 operons 

which is obtained in the chapter 5.1. 

Unfortunately, no genes which are connected above in others approaches are 

visible there. It is caused by a little number of time-points samples included only 6 time-

points. Thus ‘tsni’ method creates 6 initial gene regulatory networks which are 

followingly connected by a penetration, see Figure 20. If we have more samples 

sequenced in more time-points, the results of GRNs would be more causality. However, 

we can predict that Spo0A is a transcription factor which affects more operons and genes 

than only the sporulation sol operon such as written in the study by Sedlar [72]. 

 

Figure 21: Part of GRN included locus tag X276_18480 with its 1st neighbourhood  
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Operon no. 1 786 includes X276_04665 and X276_04670 locus tags, 

the X276_04665 coding ALB44621.1 protein which produces glutamate synthase large 

subunit and X276_04670 coding ALB44622.1 which produces glutamate synthase 

subunit beta. As we see the similar products, we can adduce that the operon no. 1786 is 

correct inference. Figure 6 shows genes from operon no. 481 which is the only part of 

this operon because the predicted operon no. 481 includes X276_20380 locus tag, too. 

Its absence can cause small numbers of time-points sequencing, such as mentioned above. 

In the next chapter we will predict the finial GRNs using the interconnection of 

all above mentioned approaches, we need to create ODE based networks which include 

about 10 000 edges. It means the 5 276 edges represent themselves express influence gene 

and other edges represent express influence among the different genes. We can see 

the basic static parameters of network in the Table 12. There are fewer parameters than 

in the Table 11. These networks are more strict than previous networks, see Table 11, 

because they are filtered by visible edges with higher weight value. The intersection of 

these networks obtains 8 785 edges which are identical. 

 

Table 12: Basic static analysis filtered GRNs based on differential equation  

 FTFF FTTT 

Numbers of nodes 5 276 5 276 

Numbers of edges 9 639 9 332 

Clustering coefficient  0.078 0.067 

Connected components 4 566 4 645 

Characteristic path length 3.291 3.199 

Average no. of neighbours  1.460 1.326 

Multi-edge node pairs 512 559 
 

 

Figure 22: Sub-graph of intersection final ODE based networks  



72 

 

In Figure 22 there is a sub-graph of the intersection of final ODE based networks 

which shows the locus tag X276_23685 and its first neighbourhood. This locus tag codes 

protein ALB48059.1 and its product is nitrogenase. The locus tag X276_23685 is a 

possible candidate for transcription factor and its regulon is shown in Figure 22. The sub-

graph in Figure 22 has 17 nodes and 21 edges. This network was analysed using 

CountTriplets similarly to the network in Figure 18. The significance profile has been 

computes against randomly generated sub-graph, see Figure 22.  Figure 23 shows that the 

example of network in Figure 22 contains 10 significant motifs. 

The most significant motifs are marked as IAA, IAI and III. In Attachment I] there 

are these motifs in part of linear triplets. The higher values of z-score for linear triplets 

motifs than closed triplets motifs have been caused by network architecture. It is caused 

by special example of sub-graph which has been created to visualize regulon of 

X276_23685. When we analysed the whole neighbourhood of X276_23685, we obtained 

11 significant motifs, among them, also FFLAAA motif was detected, similarly to the 

sub-graph in Figure 18. It is caused by the size of network because the neighbourhood of 

X276_23685 contained 30 nodes and 143 edges. Here, triplets profile only for a selected 

sub-graph representing a possible regulon of X276_23685 is shown, see Figure 22. 

However, it is necessary to mention that the most significant motifs such as IAA, IAI and 

III have been found with the highest values of z-score in a sub-graph for neighbourhood 

of X276_23685, too. 

 

Figure 23: Triplets profile of example in Figure 22 
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5.3.4 Interconnection of approaches 

The inference causality GRN for the non-model organism is important holistic approach 

and so we decided to use the interconnection of all used approaches in this thesis. Thus, 

the final results of GRNs are obtained by the interconnection of approaches whose 

description is described above. We have provided the union networks for all created 

networks from FTFF and FTTT datasets. This procedure is based on the merging GRNs 

based on bootstrapping, tree and ODE approaches. 

The created final networks are undirected because the bootstrapping based 

networks are undirected and after applying merging to our GRNs in the Cytoscape the 

directed information is lost. Table 13 shows static parameters of networks from the final 

inference GRNs. The checking of FTFF and FTTT GRNs shows the correct approach 

because the parameters are similar. The checking is provided during the whole research 

for checking because we create GRN for the non-model organism and so we have any 

possibility for checking of our results. 

GRNs include 10 416 edges for FTFF data and 9 982 edges for FTTT data. 

At the sight numbers of edges are huge but these numbers include edges which represent 

themselves express influence information. Thus, if we subtract these themselves edges, 

we obtain 5 140 edges among different genes for FTFF dataset and 4 706 edges among 

different genes for FTTT dataset. The part of example of final GRNs is shown in 

the Attachment J]. 

Figure 24 is the example of interconnected approach. We have taken the first 

neighbourhood of X276_12610 from FTTT dataset, see Attachment J]. The X276_12610 

is locus tag which is visible and described in the chapter 5.3.2. We have also taken 

X276_18480 locus tag and created final sub-graph which visualises these specific genes 

such as the possible candidate of transcription factor. This sub-graph includes not only 

all approaches which are based on the different methods but also the information about 

predict operons. The information about the directed edges which come out of 

transcription factor are taken from R/bioconductor Genie3 method and ‘tsni.m’ toolbox. 

The X276_12610 is a possible candidate of the transcription factor for 6 operons 

and 17 other genes in the Figure 24. The X276_18480 which represents Spo0A is visible 

connection with X276_01040, again. Thus, we declare that Spo0A has significant 

dependency with glgD gene. 
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Table 13: Basic static analysis union GRNs 

 FTFF FTTT 

Numbers of nodes 5 276 5 276 

Numbers of edges 10 416 9 982 

Clustering coefficient  0.101 0.092 

Connected components 4 123 4190 

Characteristic path length 3.044 2.914 

Average no. of neighbours  1.733 1.559 

 

 

Figure 24: Example of interconnected approach 

At the end we have created the adjacency list for the inference GRN which 

originated by the intersection FTTT and FTFF final networks. This adjacency list includes 

8 787 edges which can be declared as significant edges in GRN for C. beijerinckii NRRL 

B-598. However, we need more replicates for obtaining more causality results which are 

sequenced in more time-points. Thus, in this thesis we have predicted the first GRN for 

C. beijerinckii NRRL B-598 including 8 787 possible candidates of edges which can be 

considered as the predecessor for more causality results in future. 
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Conclusion 

The master’s thesis deals with the study of gene regulation in Clostridium beijerinckii 

NRRL B-598. The thesis is focused on the description of gene regulatory nomenclature, 

inference gene regulatory networks, description of laboratory methods for obtained 

laboratory data which are usually used for studying gene regulatory. The described 

laboratory methods are mainly focused on the technologies of RNA-Seq and brief 

description laboratory data which have been got for examined bacterium C. beijerinckii 

NRRL B-598. The following part of the thesis is the theoretical description of the network 

inference methods which are the most used methods in current and also used in the 

chapters for inference gene regulatory networks for C. beijerinckii NRRL B-598. 

The practical part of the thesis starts with pre-processing raw laboratory data 

obtained from C. beijerinckii NRRL B-598. This pipeline of pre-processing can be used 

for the pre-processing raw laboratory data of other bacterium therefore it is uploaded in 

the git hub /JanaSchwarzerova/Analytical-pipeline-rawRNA-Seq where is available. The 

results of pre-processing steps were evaluated using PCA plots where is shown that the 

samples sequenced in the same conditions become the clusters. Thus, it represents 

correctness of created analytical pipeline. 

The outputs of pre-processing step are count tables which represent gene express 

values. We have created the count tables by two different approaches which we have 

called as FTFF and FTTT, more information in the chapter 4.6. The separation of data is 

done for following checking. We assumed the similar results of parameters gene 

regulatory networks. This checking is done during all procedure of inference the first gene 

regulatory networks for C. beijerinckii NRRL B-598. 

The first step of the research of gene regulatory in C. beijerinckii NRRL B-598 is 

focused on the inference operons list. The inference operons list is obtained for the using 

of the combination machine learning approach which is included in the online tool 

Operon-mapper and expresses the gene value which has been obtained from 

C. beijerinckii NRRL B-598. We have predicted 2 737 operons. The final steps in this 

thesis have derived the first gene regulatory network for C. beijerinckii NRRL B-598 as 

an adjacency list which includes 8 787 edges. These edges are obtained by the 

interconnected different approaches and intersection of the two final gene regulatory 

networks from FTFF and FTTT datasets. 

https://github.com/JanaSchwarzerova/Analytical-pipeline-rawRNA-Seq
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Attachments 

Attachment A] Example of Pre-processing shell-script 

## Pre-processing raw data RNA-Seq  

##************************************************************************* 

## X-replicate 

##_______________________________________________________________________ 

 

## Quality assesment (QA) Raw data***************************************** 

cd /auto/ … /RNASeq_repX 
# Add module fastQC  
module add fastQC-0.11.5 
# Take all files "*.gz" and is done quality check;  
# results will be write in to "raw_data_qa" 
fastqc -o raw_data_qa *.gz  
# Add multiQC 
module add python36-modules-gcc 
pip freeze | grep network 
#networkx==2.0 
# Go to raw_data_qa file  
cd raw_data_qa 
# run Multiqc 
multiqc .  
# add necessarilly modules  
export LC_ALL=C.UTF-8 
export LANG=C.UTF-8  
# run Multiqc 
multiqc .  
gunzip *.gz 
 
## Delete rRNA ************************************************************ 

cd /auto/…/RNASeq_C_beijerinckii_NRRL_598/sortmerna-2.1-linux-64 
 
#samples: X01, X02, X03, X04, X05, X06 
for i in 1 2 3 4 5 6 
do 
./sortmerna --ref ./rRNA_databases/silva-bac-16s-id90.fasta,./index/silva-bac-
16s-db:\ 
./rRNA_databases/silva-bac-23s-id98.fasta,./index/silva-bac-23s-db\ 
 --reads /auto/…/raw_X0${i}.fastq\ 
 --aligned /auto/…/X_${i} --fastx\ 
 --other /auto/…/X_${i}_non_RNA --log -v -a 10 -m 4096 
done  
 
## QA nonrRNA ************************************************************* 

# Similar procedure such as section QA raw data 
 
## Trimming dat *********************************************************** 

module add trimmomatic-0.36 
for i in 1 2 3 4 5 6 
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do 
java -jar /software/trimmomatic/0.36/dist/jar/trimmomatic-0.36.jar SE -threads 
10 X_${i}_non_RNA.fastq X_${i}_non_RNA_trim.fq ILLUMINACLIP:TruSeq3-SE:2:30:10 
LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36 
done 
 
## QA Non-rRNA-Trim ****************************************************** 

# Similar procedure such as section QA raw data 
 
## Mapping sequences ****************************************************** 

# Add module STAR 
module add star-2.5.2b 
# Go to genome_annotation file  
cd /auto/…/genome_annotation 
module add cufflinks-2.2.1 
gffread -E -O -T genome.gff3 -o genome.gtf 
 
## Index genome ... ONLY ONCE! 
STAR --runThreadN 10 --runMode genomeGenerate\  
--genomeDir /auto/…/genome_annotation\  
--genomeFastaFiles /auto/…/genome_annotation/genome.fasta\  
--sjdbGTFfile /auto/…/genome_annotation/genome.gtf\  
--sjdbOverhang 48 --sjdbGTFfeatureExon CDS 
 
# Itself mapping to index genome 
for i in 1 2 3 4 5 6 
do 
STAR --runThreadN 10 --genomeDir /auto/…/genome_annotation\ 
--readFilesIn /auto/…/X_${i}_non_RNA_trim.fq\ 
--outFileNamePrefix /auto/…/X${i}\  
--outFilterMultimapNmax 5 --outReadsUnmapped Fastx 
done 
 
## Quality Assesment (QA) mapping ***************************************** 

# Go to Mapping_sequences file 
cd /auto/…/index_genome 
 
# run Multiqc 
multiqc .  
 
## Sort SAM to BAM  ******************************************************* 

## before building count table is necessary SAM sorts 
module add samtools-1.4 
 
for i in 1 2 3 4 5 6 
do 
samtools sort -l 9 -o X_${i}.bam X${i}Aligned.out.sam 
done 
 
## Creating count table  ************************************************** 

module add subread-1.5.2 
subread-buildindex 
subread-align --help 
           
featureCounts -T 2 -a /auto/…/genome.gff3 -o /auto/…/Count_table_X.txt -t gene -
g locus_tag -O X_1.bam X_2.bam X_3.bam X_4.bam X_5.bam X_6.bam 
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Attachment B] Results of read alignment to a reference 

Table 14: Results of read alignment to reference from all samples 

Sample Name % Aligned M Aligned Sample Name % Aligned M Aligned 

A1 95.9% 11,8 E1 96.3% 10,1 

A2 96.3% 11,8 E2 96.4% 7,9 

A3 95.7% 14,2 E3 96.2% 7,8 

A4 96.2% 19,6 E4 95.7% 9,3 

A5 94.4% 16,8 E5 95.9% 6,9 

A6 92.8% 7,1 E6 94.4% 5,2 

B1 95.9% 14,6 F1 84.4% 4,1 

B2 96.2% 9,1 F2 80.5% 4,0 

B3 96.6% 15,1 F3 89.6% 2,6 

B4 96.0% 17,9 F4 89.2% 2,5 

B5 96.4% 13,2 F5 77.7% 2,2 

B6 95.7% 8,0 F6 91.9% 2,6 

C1 95.3% 11,9 G1 89.5% 4,7 

C2 96.0% 11,7 G2 78.5% 3,1 

C3 96.1% 10,5 G3 93.3% 2,1 

C4 95.8% 8,4 G4 94.6% 1,3 

C5 96.0% 9,3 G5 94.8% 1,3 

C6 95.6% 6,9 G6 90.8% 1,5 

D1 95.5% 8,8  

D2 95.3% 6,3  M Aligned 

D3 96.1% 8,6 Mean 8,3 

D4 96.6% 14,8 Maximum 19,6 

D5 95.8% 7,6 Minimum 1,3 

D6 94.9% 5,5 Standard deviation 4,8 

 

Table 15: Results of read alignment to reference from each replicates 

Replicate 
Mean 

M Aligned 

Maximum 

M Aligned 

Minimum 

M Aligned 

Standard deviation 

M Aligned 

A 13,55 19,60 7,10 4,37 

B 12,98 17,90 8,00 3,77 

C 9,78 11,90 6,90 1,96 

D 8,60 14,80 5,50 3,30 

E 7,87 10,10 5,20 1,74 

F 3,00 4,10 2,20 0,83 

G 2,33 4,70 1,30 1,35 
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Attachment C] Figures PCA plots 

Non-stranded dataset 

Regularized transformation Stabilized transformation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTFF dataset from all replicates (A, B, C, D, E, F, G) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTFF dataset from all replicates (A, B, C, D, E, F, G) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTFF dataset from B, C, D, E, F and G replicates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTFF dataset from B, C, D, E, F and G replicates 
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Non-stranded dataset 

Regularized transformation Stabilized transformation 

FTTT dataset from all replicates  FTTT dataset from all replicates  

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 
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Reversely-strand dataset 

Regularized transformation Stabilized transformation 

FTFF dataset from B, C, D, E, F and G replicates 

FTFF dataset from B, C, D, E, F and G replicates 

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 



89 

Attachment D] Figures Scree plots 

Non-stranded dataset 

Regularized transformation Stabilized transformation 

FTFF dataset from all replicates (A, B, C, D, E, F, G) FTFF dataset from all replicates (A, B, C, D, E, F, G) 

FTFF dataset from B, C, D, E, F and G replicates FTFF dataset from B, C, D, E, F and G replicates 
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Non-stranded dataset 

Regularized transformation Stabilized transformation 

FTTT dataset from all replicates  FTTT dataset from all replicates  

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 
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Reversely-strand dataset 

Regularized transformation Stabilized transformation 

FTFF dataset from B, C, D, E, F and G replicates FTFF dataset from B, C, D, E, F and G replicates 

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 
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Attachment E] Figures UPGMA plots 

Non-stranded dataset 

Regularized transformation Stabilized transformation 

FTFF dataset from all replicates (A, B, C, D, E, F, G) FTFF dataset from all replicates (A, B, C, D, E, F, G) 

FTFF dataset from B, C, D, E, F and G replicates FTFF dataset from B, C, D, E, F and G replicates 
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Non-stranded dataset 

Regularized transformation Stabilized transformation 

FTTT dataset from all replicates FTTT dataset from all replicates 

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 
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Reversely-strand dataset 

Regularized transformation Stabilized transformation 

FTFF dataset from B, C, D, E, F and G replicates FTFF dataset from B, C, D, E, F and G replicates 

FTTT dataset from B, C, D, E, F and G replicates FTTT dataset from B, C, D, E, F and G replicates 
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Attachment F] Co-expression networks 

Standard cultivation transcriptome – BCDE dataset 

FTFF 

 

FTTT 
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Attachment G] Bootstrapped-based GRN 

FTFF BCDE – The first neighbourhood of spo0A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTTT BCDE – The first neighbourhood of Spo0A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



97 

 

FTFF FG – The first neighbourhood of Spo0A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTTT FG – The first neighbourhood of Spo0A 
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FTFF BCDEFG – The first neighbourhood of Spo0A 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FTTT BCDEFG – The first neighbourhood of Spo0A 
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Attachment H] Tree-based GRN 

FTTT BCDE – Example of the first neighbourhood of Spo0A 

 

 
 

 

FTTT FG – Example of the first neighbourhood of Spo0A 
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FTFF BCDEFG – Example of the first neighbourhood of Spo0A 

 

 

 

FTTT BCDEFG – Example of the first neighbourhood of Spo0A 
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Attachment I] Classification of triplet network motifs 

 

Figure 25: Classification of triplet network motifs [82] 

The two main classes are coloured in yellow (Closed Triplets) and blue (Linear Triplets). Motifs highlighted in orange are 

isomorphism and thus indistinguishable. Incoherent loops are loops where the target node [82] 
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Attachment J] Interconnected-based GRN 

FTFF – Example of the first neighbourhood of X276_12610 

 

 
 

 

FTTT – Example of the first neighbourhood of X276_12610 
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Attachment K] List of electronic attachments 

▪ Brief description of electronic attachments:  

\Jana_Schwarzerova_MT_attachments\READ_ME.txt 

▪ R.scripts which creates count table for different type of approach created datasets: 

\Jana_Schwarzerova_MT_attachments \ FTFF_&_FTTT 

▪ All scripts which create gene regulatory network and final created network saves as 

adjacency list "Interconnected_GRN.csv": 

\Jana_Schwarzerova_MT_attachments \ GRN 

▪ Shell scripts and R scripts with approach based on bootstrapping : 

\Jana_Schwarzerova_MT_attachments \ GRN \ Bc3net 

▪ Shell scripts and R scripts with approach based on mutual information and 

correlation coefficient: 

\Jana_Schwarzerova_MT_attachments \ GRN \ CoexNet 

▪ csv files which using such as input datasets (count tables): 

\Jana_Schwarzerova_MT_attachments \ GRN \ DataSet 

▪ Shell scripts and R scripts with approach based on tree: 

\Jana_Schwarzerova_MT_attachments \ GRN \ GENIE3 

▪ Shell scripts and R scripts with approach based on differential-equation: 

\Jana_Schwarzerova_MT_attachments \ GRN \ tsni 

▪ The processing workflow for obtaining operons: 

\Jana_Schwarzerova_MT_attachments \ Operon 

▪ R script and csv file in step where is add gene express information: 

\Jana_Schwarzerova_MT_attachments \ Operon \ Add_express_information 

▪ Results obtained from online tool OperonMapper: 

\Jana_Schwarzerova_MT_attachments \ Operon \ Operon_mapper 

▪ Transcription from obtained results of OperonMapper to useful format: 

\Jana_Schwarzerova_MT_attachments \ Operon \ R_transcription_to_LocusTag 

▪ Results (such as HTML reports) and shell scripts for whole pre-processing part: 

\Jana_Schwarzerova_MT_attachments \ Pre-processing 

 


