
Masaryk University
Faculty of Informatics

SatisĄability of DQBF Using
Binary Decision Diagrams

MasterŠs Thesis

Juraj Síč

Brno, Spring 2020

Masaryk University
Faculty of Informatics

SatisĄability of DQBF Using
Binary Decision Diagrams

MasterŠs Thesis

Juraj Síč

Brno, Spring 2020

This is where a copy of the official signed thesis assignment and a copy of the
Statement of an Author is located in the printed version of the document.

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Juraj Síč

Advisor: doc. RNDr. Jan Strejček, Ph.D.

i

Acknowledgements

I would like to thank my advisor doc. RNDr. Jan Strejček, Ph.D. for all
his help with writing this thesis, especially for the fruitful discussions
we held and for Ąnding the time to thoroughly read the drafts and
offer very helpful and extensive improvement suggestions.

iii

Abstract

In this thesis, we devise and implement a satisĄability solver DQBDD
for dependency quantified Boolean formulas (DQBFs), which are an ex-
tension of quantified Boolean formulas (QBFs) where the dependencies
between quantiĄers are explicitly given. It uses binary decision diagrams
(BDDs) as an underlying representation of Boolean formulas with
quantiĄer elimination approach for solving. We show that an existing
solution based on quantiĄer elimination, which uses quantiĄer locali-
sation to push quantiĄers inside the formula, is erroneous and propose
a Ąx for it with an enhancement which allows universal quantiĄer
elimination inside subformulas. Finally, we compare the performance
of DQBDD with existing state-of-the-art tools (dCAQE, HQS, iDQ
and iProver) and show that it results in a very competitive solver.

iv

Keywords

dependency quantiĄed Boolean formula, DQBF, binary decision dia-
gram, BDD, satisĄability, quantiĄer elimination, quantiĄer localisation

v

Contents

1 Introduction 1

2 Theory 3
2.1 Boolean Formulas . 3

2.1.1 Conjunctive Normal Form 5
2.1.2 Negation Normal Form 5

2.2 Quantified Boolean Formulas 6
2.3 Dependency Quantified Boolean Formulas 7

2.3.1 Prenex Normal Form 8
2.3.2 Negation Normal Form 10

2.4 Binary Decision Diagrams 13
2.5 Quantifier Trees . 15

3 Transformations of DQBFs 17
3.1 Shifting Quantifiers . 17
3.2 Quantifier Elimination . 23

4 State of the Art 27
4.1 First Solution – DQDPLL 27
4.2 Instantiation – iDQ and iProver 27
4.3 Clausal Abstraction – dCAQE 28
4.4 Quantifier Elimination – HQS 28
4.5 Preprocessing . 31

4.5.1 HQSpre . 31
4.5.2 Approximations 31
4.5.3 PSPACE Subclass 32

5 Suggested Algorithm 33
5.1 High-Level Definition . 33
5.2 Localising Quantifiers . 34
5.3 Transformation to BDD . 41
5.4 Quantifier Elimination . 44

6 Implementation: DQBDD 47

7 Experimental Results 49

vii

7.1 Benchmark Sets . 49
7.2 Preprocessing . 50
7.3 Heuristics Comparison . 51
7.4 Solvers Comparison . 53

7.4.1 PEC1 . 54
7.4.2 PEC2 . 54
7.4.3 PEC3 . 57
7.4.4 CSP . 59
7.4.5 SAT . 60
7.4.6 E19 . 61

7.5 Discussion . 61

8 Conclusion 63
8.1 Future Work . 63

Bibliography 65

A Attached Files 71

B Documentation for DQBDD 73
B.1 Dependencies . 73
B.2 Installation . 73
B.3 Usage . 74
B.4 Examples . 75
B.5 Licence . 76

C DQDIMACS Format 77
C.1 Syntax . 77
C.2 Semantics . 78
C.3 An Example . 79

D DQBF Wrongly Solved by dCAQE 81

viii

1 Introduction

The well known NP-complete SAT problem that determines whether
a Boolean formula is satisĄable or not is one of the most fundamental
problems of computer science. In addition to its theoretical impor-
tance, it has many practical applications. However, sometimes SAT is
not enough, which led to a generalisation of SAT problem called the
quantiĄed Boolean formula (QBF) problem.

The QBF problem is a PSPACE-complete problem of determining
whether a Boolean formula with universal and existential quantiĄers
is satisĄable. This allows for a more succinct representation of prob-
lem descriptions and wider possibilities of applications that resulted
in several different QBF solvers. However, for some applications, for
example partial equivalence checking (PEC) [1], this is still not enough.
We can extend QBF by Henkin quantiĄers [2], which allow to explic-
itly give the dependencies between quantiĄed variables, resulting in
dependency quantified Boolean formula (DQBF) [3]. The problem of de-
ciding satisĄability of DQBF is NEXPTIME-complete [4], which means
that it allows even more succinct problem descriptions.

In recent years, DQBF solving is on a rise (driven mostly by PEC)
which resulted in the Ąrst known solution for DQBF problem using
DPLL algorithm [5]. This was followed by multiple DQBF solvers,
namely iDQ [6], iProver [7], HQS [8, 9, 10], and dCAQE [11], us-
ing different solving techniques. HQS, the most successful of these
(winner of both 2018 and 2019 DQBF track of QBF Evaluation com-
petition [12, 13]) uses quantifier elimination [8]. The quantiĄers are
eliminated one by one using universal expansion (which increases the
size of the formula) until we end up with a QBF on which an existing
QBF solver is run. It also uses a succinct representation of Boolean
formulas called and-inverter graphs (AIGs) [14] that made this solving
method feasible.

Binary decision diagrams (BDDs) [15] are another data structure
that can represent Boolean formulas. Since its introduction, BDDs
have been used in many different applications. Compared to AIGs,
they are a better representation in the way that, for a given variable
ordering, there is only one BDD for each class of equivalent Boolean
formulas.

1

1. Introduction

In this work, we are interested in creating a DQBF solver that uses
BDDs as an underlying representation of formulas combined with
quantiĄer elimination. We use quantifier localisation [10] (also used
in HQS) which allows us to push quantiĄers inside the formula and
eliminate them only ŞlocallyŤ in subformulas. We show that the locali-
sation used in HQS is erroneous and we give a corrected version of the
localisation algorithm. We also give an important missing proof that
shows the localisation can also be used in subformulas and enhance it
with ŞlocalŤ universal expansion.

We present all the needed theory in Chapter 2. In Chapter 3 we give
the aforementioned proofs. Chapter 4 gives an overview of existing
DQBF solving techniques. In Chapter 5 we show the new algorithm
and describe its implementation in Chapter 6 resulting in tool DQBDD.
Finally, we perform an experimental evaluation where we compare
DQBDD with other solvers in Chapter 7.

2

2 Theory

In this chapter we give the deĄnitions for dependency quantified Boolean
formulas (DQBFs), binary decision diagrams (BDDs) and quantifier trees.

For DQBFs, we build up from Boolean formulas (BFs) to which we
add quantiĄers resulting in quantified Boolean formulas (QBFs). After
this, we add explicit dependencies to the deĄnition of QBFs, which
results in DQBFs. For these, we give two forms, one that can only have
quantiĄers at the beginning of the formula and one that allows them
deeper in the formula.

After this, we deĄne BDDs and recall some of their properties. Fi-
nally, we describe quantiĄer trees whichwe can use as a representation
of DQBFs.

2.1 Boolean Formulas

We Ąrst start with deĄning Boolean formulas. For these, we need a
set of variables V = {x1, . . . , xn}. We then deĄne Boolean formulas as
these variables connected by logical operatives and (∧), or (∨) and
negation (¬).

DeĄnition 1. Let V = {x1, . . . , xn} be a set of variables. The set of
Boolean formulas (BFs) overV, denoted by Φ

BF
V , is deĄned as the smallest

set fulĄlling these conditions:

∙ 0, 1 ∈ Φ
BF
V ,

∙ x ∈ Φ
BF
V if x ∈ V,

∙ (φ1 ∧ φ2) ∈ Φ
BF
V if φ1, φ2 ∈ Φ

BF
V ,

∙ (φ1 ∨ φ2) ∈ Φ
BF
V if φ1, φ2 ∈ Φ

BF
V ,

∙ ¬φ ∈ Φ
BF
V if φ ∈ Φ

BF
V .

By φ [φ2/φ1], where φ, φ1, φ2 ∈ Φ
BF
V , we denote the BF φ where each

occurrence of φ1 is replaced by φ2. We also use (φ1 ⇔ φ2) as a short-
hand for the formula ((φ1 ∧ φ2) ∨ (¬φ1 ∧ ¬φ2)).

3

2. Theory

A function v : V → {0, 1} is called a valuation over the set of vari-
ables V and the set of all valuations over V is denoted by AV . A valu-
ation says whether each variable is true or false which we can extend
to BFs: an evaluation of φ ∈ Φ

BF
V in a valuation v ∈ AV , denoted v(φ),

is deĄned as

∙ if φ = 0 then v(φ) = 0,

∙ if φ = 1 then v(φ) = 1,

∙ if φ = xi where xi ∈ V, then v(φ) = v(xi),

∙ if φ = ¬φ′, then v(φ) = 1 if v(φ′) = 0, otherwise v(φ) = 0,

∙ if φ = (φ1 ∧ φ2), then v(φ) = 1 if both v(φ1) = 1 and v(φ2) = 1,
otherwise v(φ) = 0, and

∙ if φ = (φ1 ∨ φ2), then v(φ) = 1 if v(φ1) = 1 or v(φ2) = 1,
otherwise v(φ) = 0.

Each φ ∈ Φ
BF
V represents a Boolean function fφ : AV → {0, 1} over V

such that fφ(v) = v(φ). Conversely, for each Boolean function we
can Ąnd a BF representing it. The set of all Boolean functions over
V is denoted by FV . The support set supp(f) of Boolean function f is
deĄned as the set of variables occurring in a BF φ where φ represents
f and from all the BFs representing f , φ has the smallest number of
variables occurring in it. That is, changing the values of variables that
are not in the support set does not change the output value of f .

An important notion for BFs is satisfiability. We say that φ ∈ Φ
BF
V

is satisfiable if there exists a valuation v ∈ AV in which φ is true, that
is v(φ) = 1. Let φ1, φ2 ∈ Φ

BF
V . We say that they are equivalent, denoted

φ1 ≡ φ2, if for all valuations v it holds that v(φ1) = v(φ2). If they
are either both satisĄable or they are both unsatisĄable, we call them
equisatisfiable, denoted φ1 ≈ φ2. Notice, that two BFs are equivalent iff
they represent the same Boolean function.

Example 1. Let

φ = ((x1 ∧ x2)⇔ (y1 ⇔ y2)).

This formula says that if both x1 and x2 are true, then y1 and y2 must be
the same, otherwise they must be different. It is satisĄable, because in

4

2. Theory

valuation v such that v(x1) = v(x2) = v(y1) = v(y2) = 1 it holds that
φ is evaluated to v(φ) = 1. The Boolean function fφ that φ represents
has the support set supp(fφ) = {x1, x2, y1, y2}.

2.1.1 Conjunctive Normal Form

To work with BFs, it is usually easier to have them in some special
form. The Ąrst one we deĄne is called conjunctive normal form.

DeĄnition 2. We say that Boolean formula φ ∈ Φ
BF
V is in conjuctive

normal form (CNF) if there exist φ1, . . . , φn ∈ Φ
BF
V where

φ = φ1 ∧ · · · ∧ φn

and
φi = li1 ∨ · · · ∨ limi

for each i = 1, . . . , n, and for each lij where j ∈ {1, . . . , mi} either
lij = x or lij = ¬x for some x ∈ V.

Formulas φ1, . . . , φn are called clauses and lij are called literals.
In other words, a Boolean formula is in CNF if it is a conjunction of
clauses, which are disjunctions of literals, where a literal is a variable
or its negation.

Example 2. The formula

φCNF = (x ∨ ¬y) ∧ (¬x ∨ y)

is in CNF with clauses (x ∨ ¬y) and (¬x ∨ y) and literals x,¬y,¬x
and y.

For every BF, φ there exists an equivalent formula in CNF which
can be exponentially larger than φ. However, by using Tseitin trans-
formation [16] we can create an equisatisĄable BF φCNF which is only
polynomially larger than the original BF φ.

2.1.2 Negation Normal Form

DeĄnition 3. We say that BF φ is in negation normal form (NNF) if all
negations occur only in front of variables.

5

2. Theory

Each BF φ can be easily transformed into an equivalent BF φ′ in
NNF by applying these three equivalences:

¬(φ1 ∧ φ2) ≡ (¬φ1 ∨ ¬φ2) (2.1)
¬(φ1 ∨ φ2) ≡ (¬φ1 ∧ ¬φ2) (2.2)

¬¬x ≡ x (2.3)

Example 3. Formula ¬(x1 ∧ (x2 ∨ ¬x3)) that is not in NNF is by (2.1)
equal to (¬x1 ∨¬(x2 ∨¬x3))which is by (2.2) equal to (¬x1 ∨ (¬x2 ∧
¬¬x3)). Finally, by (2.3) we get (¬x1 ∨ (¬x2 ∧ x3)) which is in NNF.

2.2 QuantiĄed Boolean Formulas

Having deĄned BFs, we can move to the next step on the way to
deĄning DQBF by adding quantiĄers. We add existential (∃) and
universal (∀) quantiĄers bounded to variables which result in the
deĄnition of quantified Boolean formulas (QBFs). Usually, deĄnitions of
QBFs allow quantiĄers everywhere inside formula but here we only
deĄne of one special form of QBFs called prenex normal form. In this
form, QBFs allow quantiĄers only at the beginning of the formula.
However, this does not change the expressibility as it is possible to
transform every QBF to an equivalent QBF in prenex normal form [17].

DeĄnition 4. Let V = {x1, . . . , xn} be a set of variables and φ ∈ Φ
BF
V .

A quantified Boolean formula (QBF) ψ over V in prenex normal form is
given by

ψ = Q1x1Q2x2 . . . Qnxn φ

where Qi ∈ {∃, ∀} for all i ∈ {1, 2, . . . , n}.

The BF φ is called the matrix of ψ and Q1x1Q2x2 . . . Qnxn is called
the quantifier prefix of ψ. A variable xi is called existential if Qi = ∃
and universal if Qi = ∀. The set of all existential variables of QBF ψ is
denoted by V∃ψ and the set of all universal variables of ψ is denoted by

V∀ψ . We deĄne a level function l : V → N which maps to each variable
the number of quantiĄers occurring before the variable in the formula.
That is the variable xi ∈ V from QBF ψ of DeĄnition 4 has level
l(xi) = i. We denote the set of variables with level lower than some
n ∈ N as V<n

ψ = { x ∈ V | l(x) < n }.

6

2. Theory

Again, we deĄne satisĄability. Usually, satisĄability for QBFs is
deĄned trough valuation function as in BFs case where evaluation of
QBFs follows the same rules as BFs with two newly added rules for
quantiĄers:

∙ v(∀xQixi . . . Qnxn φ) = 1 if both v(Qixi . . . Qnxn φ [0/x]) = 1 and
v(Qixi . . . Qnxn φ [1/x]) = 1, otherwise it equals 0,

∙ v(∃xQixi . . . Qnxn φ) = 1 if v(Qixi . . . Qnxn φ [0/x]) = 1 or
v(Qixi . . . Qnxn φ [1/x]) = 1, otherwise it equals 0.

We follow different but equal deĄnition based on Skolemisation,
which replaces each existential variable x by some Boolean function
over universal variables with lower level than x. This is better suited
to show a correspondence of QBFs and DQBFs when we add depen-
dencies in the next section. A QBF ψ of DeĄnition 4 is satisĄable if
for each x ∈ V∃ψ there exists a function sx ∈ F

V∀ψ∩V
<l(x)
ψ

(called Skolem

function) such that the matrix φ of ψ, where every x ∈ V∃ψ is replaced
by some BF that represents sx, is evaluated to 1 in every valuation
v : V∀ψ → {0, 1}.

Example 4. Let

ψ = ∀x1∀x2∃y1∃y2 ((x1 ∧ x2)⇔ (y1 ⇔ y2))

be a QBF where the matrix is formula φ from Example 1. This QBF is
satisĄable because for all values of x1, x2 we can Ąnd values of y1 and
y2 such that they are same if x1 = x2 = 1 and different otherwise. The
Skolem functions showing satisĄability of this formula are for example
sy1

which is represented by BF x1 ∧ x2, and sy2 which is represented
by BF 1. If we replace existential variables with their Skolem functions,
we get BF

((x1 ∧ x2)⇔ ((x1 ∧ x2)⇔ 1))

which is true in all valuations.

2.3 Dependency QuantiĄed Boolean Formulas

QuantiĄers have expanded the succinctness of BFs quite considerably.
However, there is still one drawback of QBFs Ů quantiĄed variable x

7

2. Theory

depends on all variables that are quantiĄed before x in the formula.
The question arises whether it is possible deĄne a formula where the
dependency relation is somehow explicitly given. The answer is yes,
we can use dependency quantified Boolean formulas (DQBFs).

DQBFs allow existential variables to be non-linearly dependent
on the set of universal variables by explicitly writing out the set of
universal variables on which each existential variable is dependent.
The universal variables from this set are then used as the support set
of the Skolem function of the existential variable which allows for even
greater succinctness of DQBFs over QBFs.

We start with the deĄnition of DQBFs in prenex normal form on
which we explain the basic notions and then we give the deĄnition of
DQBFs in non-prenex negation normal form which allows quantiĄers
inside formulas.

2.3.1 Prenex Normal Form

The Ąrst deĄnition of DQBF form called prenex normal form is an
analogy of the prenex normal form of QBFs.

DeĄnition 5. Let V = {x1, . . . , xn, y1, . . . , ym} be a set of variables and
φ ∈ Φ

BF
V a BF over V. A dependency quantified Boolean formula (DQBF)

ψ in prenex normal form (PNF) is given by

ψ = ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) φ

where Di ⊆ {x1, . . . , xn} for each i ∈ {1, . . . , m} is a dependency set of
variable yi.

BF φ is the matrix of ψ and ∀x1 . . . ∀xn∃y1(D1) . . . ∃ym(Dm) the
quantifier prefix of ψ. We call the variables from V∃ψ = {y1, . . . , ym}

existential and variables from V∀ψ = {x1, . . . , xn} universal. We also say
that ψ is in prenex conjunctive normal form (PCNF) if it is in PNF where
the matrix is in CNF.

Notation. When we enumerate the elements of dependency sets in
formula, we do not write curly braces around it, so for example instead
of ∀x1∀x2∃y({x1, x2}) φ, we write ∀x1∀x2∃y(x1, x2) φ.

8

2. Theory

Example 5. Let us use an example by Rabe [18] to explain themeaning
behind dependency sets. Let

ψ = ∀x1∀x2∃y1(x1)∃y2(x2) ((x1 ∧ x2)⇔ (y1 ⇔ y2))

be a DQBF. The matrix is the BF φ from Example 1 and the quantiĄer
preĄx is very similar to the QBF from Example 4 but now both y1

and y2 depend only on one variable, x1 and x2 respectively. The QBF
was satisĄable but this DQBF is not. To show why, we can look at
it as a game where y1 and y2 are trying to satisfy the formula and
x1, x2 are trying to make it false. However, y1 knows only how x1 is
behaving and similarly y2 knows only what x2 is doing. As explained
in Example 1 the matrix says that if both x1 and x2 are true, then y1

and y2 should be same, otherwise they need to be different. However,
this is not possible, because if for example both y1, y2 decide to be
true (similarly for false) when their respective universal variables
are true then if one of the universal variable change, for example x1

turns to false, then y2 does not know about this and stays true. In that
case y1 has to change the value to false so they become different. The
same thing happens to y2 if x2 changes its value to false. So we get
behaviour where both existential variables just copy the behaviour of
their universal variable. But at the end, if both x1 and x2 change their
values to false, then the values of y1 and y2 are the same (false) which
makes the formula ψ false.

With the example in mind, we deĄne satisĄability for DQBF in
PNF similarly to how satisĄability is deĄned for QBFs with Skolem
functions. DQBF ψ of DeĄnition 5 is satisfiable if for each y ∈ V∃ψ there

exists a Skolem function sy ∈ FDy such that φ, where each y ∈ V∃ψ is
replaced by a BF representing Boolean function sy, evaluates to 1 in
every valuation v ∈ AV∀ψ

.

Example 6. The possible Skolem functions sy1
for existential variable

y1 from the previous example are those that are represented by BFs
0, 1, x1 or ¬x1. For y2 the Skolem functions sy2 can be those that are
represented by BFs 0, 1, x2 or ¬x2. However, we cannot choose a pair
sy1

and sy2 such that by replacing y1 and y2 with them, we get a BF
that is true in all valuations. In the previous example we actually used

9

2. Theory

sy1
represented by x1 and sy2 represented by x2, and we got BF

((x1 ∧ x2)⇔ (x1 ⇔ x2))

which is obviously false in some valuations.

Remark. QBFs in PNF can be seen as a special case of DQBFs in PNF
where the dependency sets are linearly ordered by the subset relation
ordering. This means, that a DQBF ψ, where for each two dependency
sets Dy1

and Dy2 it holds that Dy1
⊆ Dy2 or Dy2 ⊆ Dy1

, can be easily
transformed to QBF by reordering the quantiĄers.

2.3.2 Negation Normal Form

In this section we deĄne negation normal form of DQBF which is non-
prenex thus allowing quantiĄers inside the formula. However, nega-
tion is only allowed in front of the variables. This form is also not
closed, meaning that there can be so-called free variables that are not
bounded by any quantiĄer. The deĄnitions in this section are taken
from Ge-Ernst et al. [10].

We Ąrst give the deĄnition of the set Φ
DQBF

V of DQBFs in negation
normal formwhere we use the rules of Figure 2.1. Each rule has the list
of conditions (above the line) that has to hold so that the resulting
formula ψ under the line is in Φ

DQBF

V . We also deĄne the set of existential
V∃ψ , universal V∀ψ , and free Vfree

ψ variables occurring in ψ (the columns

V∃. , V∀. and Vfree
. respectively). We also use VQ

ψ = V∃ψ ∪V∀ψ and Vψ =

VQ
ψ ∪Vfree

ψ . Furthermore, ψ−y results from ψ by removing y from every
dependency set in ψ.

DeĄnition 6. Let V be a set of variables. The set Φ
DQBF

V of DQBFs in
negation normal form (NNF) over V is deĄned to be the smallest set
satisfying the rules from Figure 2.1.

Remark. In the deĄnition by Ge-Ernst et al. [10] the last two rules
in Figure 2.1 have condition x ∈ Vfree

ψ instead of x ∈ V ∖ VQ
V . This

condition is too strong and does not allow some formulas which are
valid. For example, as we show in Section 3.1, we can transformDQBFs
by pushing quantiĄers inside the formula and this way we can end
up with a formula ∀x ψ where x ̸∈ Vψ. However, according to the
aforementioned deĄnition, this would not be a valid formula.

10

2. Theory

rule V∃. V∀. Vfree
.

0 ∈ Φ
DQBF

V 1 ∈ Φ
DQBF

V
∅ ∅ ∅

x ∈ V

x ∈ Φ
DQBF

V

x ∈ V

¬x ∈ Φ
DQBF

V

∅ ∅ {x}

ψ1 ∈ Φ
DQBF

V ψ2 ∈ Φ
DQBF

V (1)

(ψ1 ∧ ψ2) ∈ Φ
DQBF

V

V∃ψ1
∪V∃ψ2

V∀ψ1
∪V∀ψ2

Vfree
ψ1
∪Vfree

ψ2

ψ1 ∈ Φ
DQBF

V ψ2 ∈ Φ
DQBF

V (1)

(ψ1 ∨ ψ2) ∈ Φ
DQBF

V

V∃ψ1
∪V∃ψ2

V∀ψ2
∪V∀ψ2

Vfree
ψ1
∪Vfree

ψ2

ψ ∈ Φ
DQBF

V y ∈ V ∖VQ
ψ (2)

∃y(Dy)ψ−y ∈ Φ
DQBF

V

V∃ψ ∪ {y} V∀ψ Vfree
ψ ∖ {y}

ψ ∈ Φ
DQBF

V x ∈ V ∖VQ
ψ

∀x ψ ∈ Φ
DQBF

V

V∃ψ V∀ψ ∪ {x} Vfree
ψ ∖ {x}

Figure 2.1: The rules deĄning the syntax of DQBFs in NNF (based on
Ge-Ernst et al. [10]) where (1) refers to

Vψ1
∩VQ

ψ2
= ∅ and VQ

ψ1
∩Vψ2 = ∅ (1)

and (2) refers to
Dy ⊆ V ∖ (VQ

ψ ∪ {y}). (2)

11

2. Theory

Remark. Notice that each DQBF ψ in PNF can be transformed into
DQBF ψ′ in NNF by transforming the matrix of ψ to NNF as explained
in Section 2.1.2.

By ψ [x2/x1] where ψ ∈ Φ
DQBF

V , x1, x2 ∈ V, x2 ̸∈ Vψ we denote the
DQBF ψ in which every occurrence of x1 (even in the dependency
sets) is replaced by x2. If x1 ̸∈ VQ

ψ and is not in any dependency set in
ψ then by ψ [κ/x1], where κ ∈ {0, 1}, we denote the DQBF ψ in which
every occurrence of x1 is replaced by κ.

The deĄnition of satisĄability of DQBF in NNF follows the same
way as in the previous section but now we have to decide what to
do with free variables. In non-prenex case of QBFs, free variables are
usually assumed to be existential variables with quantiĄers at the
beginning of the formula. In DQBF case this means that free variables
would have empty dependency sets so the deĄnition needs to follow
that. We Ąrst deĄne a mapping, called Skolem functions mapping which
maps to each existential and free variable some Skolem function fulĄll-
ing conditions given by its dependency set. Then we deĄne semantics
of DQBFs in NNF as the set of Skolem functions mappings which
satisfy the formula.

DeĄnition 7 (Skolem Functions Mapping). Let ψ ∈ Φ
DQBF

V . We say
that a mapping s : (V∃ψ ∪ Vfree

ψ) → FV∀ψ
is a Skolem functions mapping

of ψ if

∙ supp(s(y)) ⊆ (Dy ∩V∀ψ) for all y ∈ V∃ψ and

∙ supp(s(y)) = ∅ for all y ∈ Vfree
ψ , i.e. s(y) is either represented

by 0 or 1.

The set of all Skolem functions mappings of ψ is denoted by Sψ. If
s ∈ Sψ, we write s(ψ) for the formula that results from ψ by replacing
each existential and free variable y by a BF that represents s(y) and
omitting all quantiĄers from ψ. This results in a BF containing only
variables from V∀ψ .

DeĄnition 8 (Semantics). Let ψ ∈ Φ
DQBF

V . We deĄne the semantics JψK
of ψ as follows:

JψK = { s ∈ Sψ | v(s(ψ)) = 1 for all v ∈ AV∀ψ
} .

12

2. Theory

Formula ψ is satisfiable iff JψK ̸= ∅ and the elements of JψK are sat-
isfying Skolem functions mappings of ψ. We say that two formulas ψ1

and ψ2 are equisatisfiable, denoted ψ1 ≈ ψ2, if both are either satisĄable
or both are unsatisĄable.

Example 7. To explain the semantics of DQBF in NNF, we use the
example by Ge-Ernst et al. [10]:

ψ = ∀x1∀x2 ((x1 ⇔ x2) ∨ ∃y(x2)¬(x1 ⇔ y)).

The meaning behind this formula is that either x1 and x2 are the same
or there is some y which is dependent only on x2 which is different
from x1. The Skolem functions mappings of ψ are then Sψ = {y ↦→
f0, y ↦→ f1, y ↦→ fx2 , y ↦→ f¬x2} where f0 is the Boolean function
represented by Boolean formula 0, f1 is represented by 1, fx2 by x2

and f¬x2 by ¬x2. It is obvious that only s = y ↦→ fx2 is a satisfying
mapping of ψ, since only s(ψ) = ((x1 ⇔ x2) ∨ ¬(x1 ⇔ x2)) is true in
all valuations.

2.4 Binary Decision Diagrams

In this section we recall a deĄnition of binary decision diagrams [15],
which is a succinct representation of Boolean functions (and to an
extent Boolean formulas) with an efficient polynomial time implemen-
tation of logical operations.

DeĄnition 9. Let V be a set of variables. A binary decision diagram
(BDD) over V is a rooted directed acyclic graph with terminal nodes
labelled with 0 and 1, and a set N of non-terminal nodes, each labelled
with a variable from V. Each n ∈ N has two child nodes, low child and
high child. For each x ∈ V and every path σ from root to a terminal
node there is at most one n ∈ N in σ representing x.

Let v : V → {0, 1} be a valuation over V. BDD β in this valuation
is evaluated to 0 or 1 by starting in the root and for every n ∈ N,
labelled by some x ∈ V, either moving to the low child if v(x) = 0 or
to the high child if v(x) = 1. The resulting terminal node is then the
evaluation v(β) of β in v. BDD β then represents a Boolean function
f ∈ FV if for each valuation v it holds that f (v) = v(β). Alternatively,

13

2. Theory

x₁

x₂ x₃

x₂ x₂x₃ x₃

0 1 0 1
(a) BDD

x₁

x₂ x₂

x₃ x₃

0 1
(b) ROBDD

Figure 2.2: An example of a BDD and an ROBDD representing the
same BF ((¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬(x2 ⇔ x3))

as each BF represents some Boolean function too, we can look at BDDs
as a representation of (un)satisfying valuations of some BF. That is,
for each BF φ ∈ Φ

BF
V we can Ąnd a BDD β where v(φ) = v(β) for each

v ∈ AV .
In Ągures, non-terminal nodes are denoted by the labelled vari-

ables, terminal nodes are shown as boxes with the labelled constants,
edges to low children are dashed and edges to high children are full.

Example 8. Figure 2.2(a) shows an example of a BDD representing
the BF (¬x1 ∧ x2 ∧ x3) ∨ (x1 ∧ ¬(x2 ⇔ x3)).

To have simpler and more effective algorithms for BDDs, we use
reduced ordered BDDs (ROBDDs) which are BDDs such that

1. there is some linear order of variables where each path from the
root of the BDD to a terminal node complies with it,

2. there are no isomorphic (Şthe same lookingŤ) induced sub-
graphs and

3. there are no nodes with the same high and low child.

ROBDDs have the nice property that for a given variable order, each
BF φ is represented by exactly one ROBDD [15]. Furthermore, it rep-
resents all BFs equivalent to φ. However, the size of two ROBDDs in

14

2. Theory

different variable orders can for the same formula be very different.
We can Ąnd a formula which in one ordering has an ROBDD repre-
sentation whose number of nodes is linear to the size of the formula
and in a different one it is exponential. The problem of Ąnding the
optimal variable ordering is NP-hard [19], therefore we usually use
some heuristics to reduce the size of ROBDDs and we do not look for
the perfect order.

Example 9. Figure 2.2(b) shows anROBDDwhich represents the same
BF as the BDD fromExample 8.While the BDD fromFigure 2.2(a) does
not have ordered variables, the paths from root to terminals in ROBDD
respect the order x1, x2, x3. Also, the leftmost path does not contain
x3, because both its low and high child ended in 0. Furthermore, both
x2 nodes share an isomorphic subgraphs.

For each operation on BFs (∧, ∨, ¬), there is a polynomial-time
algorithm for ROBDDs, which can get the resulting ROBDD repre-
senting the application of the operation. For example, if we have an
ROBDD representing BF ψ1, we can get an ROBDD representing ¬ψ1

by swapping terminal nodes 0 and 1. See for example Andersen [20]
for more details.

In the following chapters, when we use BDD we actually mean
ROBDD.

2.5 QuantiĄer Trees

While BDDs are a good representation of BFs, we also need a represen-
tation of DQBFs. For this we deĄne quantifier treeswhich can represent
DQBFs in NNF.

DeĄnition 10. Let V be a set of variables. A quantifier tree over V is a
rooted tree with labelling l which assigns to each non-terminal node
an operation ◇ ∈ {∧,∨} and to each terminal node a literal from V (a
variable x ∈ V or its negation), and a preĄx mapping Q which maps
to each node some DQBF preĄx.

We denote the set of children of node n as children(n). A quantiĄer
tree with root r can possibly represent a DQBF ψr where:

∙ if l(r) = lr is a literal, then ψr = Q(r) lr,

15

2. Theory

∀x1∃y1(x1)

∧

∨

y2 ¬x1

x1 ∨

x2 ¬y1

∃y2(∅) ∀x2

Figure 2.3: An example of quantiĄer tree

∙ if l(r) = ◇ with ◇ ∈ {∧,∨} and children(r) = {n1, . . . , nm},
then ψr = Q(r)ψn1

◇ · · · ◇ ψnm where ψn1
. . . ψnm are DQBFs rep-

resented by subtrees rooted in children n1, . . . , nm.

Not all trees represent some DQBF, we restrict ourselves only to the
set of quantiĄer trees which represent some formula. However, for
each DQBF there exists a quantiĄer tree representing it.

For a node n, we use Q∃(n) and Q∀(n) to denote the set of exis-
tentially and universally quantiĄed variables in Q(n). The sets Vn, V∃n
and V∀n denote Vψn , V∃ψn

and V∀ψn
respectively, where ψn is DQBF rep-

resented by a subtree rooted in n.
In Ągures, each node n is denoted by its assigned operation or

literal l(n), while the assigned DQBF preĄx Q(n) is always shown on
the edge coming to it (see Figure 2.3). For the root, we add an extra
ŞedgeŤ on which we show this quantiĄer preĄx.

Example 10. Figure 2.3 shows an example of quantiĄer tree represent-
ing DQBF

∀x1∃y1(x1)(∃y2(∅) (y2 ∨ ¬x1) ∧ x1 ∧ ∀x2 (x2 ∨ ¬y1)).

16

3 Transformations of DQBFs

In this chapter, we give theorems showing equisatisĄabilities of some
DQBFs in NNF. Such formulas can be replaced with each other, al-
lowing us to push (pull) quantiĄers inside (from) the formula (Sec-
tion 3.1) or eliminate them (Section 3.2). We use these results in Chap-
ter 5 to develop an algorithm solving DQBFs.

3.1 Shifting QuantiĄers

We start with a theorem that shows some rules by which we can push
(extract) quantiĄers in (from) the formula.

Theorem 3.1 ([10, Theorems 3, 4]). Let ◇ ∈ {∧,∨} and ψ, ψ1, ψ2 ∈
Φ

DQBF

V . We assume that variables x, x1, x2, y, y1, and y2 are not quantified
in ψ, ψ1, and ψ2. We also assume that x′ and y′ are fresh variables, which do
not occur in ψ, ψ1 and ψ2. Then we have:

∀x (ψ1 ∧ ψ2) ≈
(

∀x ψ1 ∧ ∀x′ ψ2 [x
′/x]

)

(a)

∀x (ψ1 ∧ ψ2) ≈
(

ψ−x
1 ∧ ∀x ψ2

)

, if x ̸∈ Vψ1
(b)

∀x (ψ1 ◇ ψ2) ≈ (ψ1 ◇ ∀x ψ2) , if x ̸∈ Vψ1

and x ̸∈ Dy for all y ∈ V∃ψ1

(c)

∃y(Dy) (ψ1 ∨ ψ2) ≈
(

∃y(Dy)ψ1 ∨ ∃y′(Dy)ψ2 [y
′/y]

)

(d)

∃y(Dy) (ψ1 ◇ ψ2) ≈
(

ψ1 ◇ ∃y(Dy)ψ2

)

, if y ̸∈ Vψ1
(e)

∃y1(Dy1
)∃y2(Dy2)ψ ≈ ∃y2(Dy2)∃y1(Dy1

)ψ (f)
∀x1∀x2 ψ ≈ ∀x2∀x1 ψ (g)

∀x∃y(Dy)ψ ≈ ∃y(Dy)∀x ψ, if x ̸∈ Dy. (h)

To make these rules more usable for DQBF in NNF we have to
show that they also work while replacing subformulas. Except for (b),
this was not proven by Ge-Ernst et al. [10] even though they use them
for replacing subformulas. As we will show, this was used erroneously
because the rule (d) does not generally hold. However, for other rules,
there is no problem as we show in Theorem 3.4. But Ąrst, we give some
helpful notions and lemmas we use for the proofs of the following
theorems.

17

3. Transformations of DQBFs

In the proofs we work with Skolem function mappings, which
turn DQBFs to BFs. We will want to show, that some subformulas are
ŞimportantŤ, i.e. changing their evaluation change the evaluation of
the whole formula. Therefore we deĄne the notion of dependency of
Boolean formula on its subformula.

DeĄnition 11. Let φ, φ′ ∈ Φ
BF
V , v ∈ AV and φ′ is subformula of φ. We

say that φ depends on φ′ in v, if v(φ [0/φ′]) ̸= v(φ [1/φ′]).

This means that if φ depends on its subformula φ′ in v, the value
of v(φ) would change if the value of v(φ′) was different.

Remark. If v(φ′) = 1 then v(φ) = v(φ [1/φ′]) and if v(φ′) = 0 then
v(φ) = v(φ [0/φ′]).

The Ąrst lemma we prove shows that if the subformula φ′ occurs in
the tree of operations in φ without negation anywhere before it, then
v(φ) = v(φ′).

Lemma 3.2. Let φ, φ′ ∈ Φ
BF
V , v ∈ AV where φ′ is subformula of φ and φ

depends on φ′ in v. Assume that for each subformula ¬φ′′ of φ we have that
φ′ is not subformula of φ′′. Then v(φ) = v(φ′).

Proof. From assumptions, it holds that φ′ is only in conjunctions and
disjunctions in the tree of operations. Therefore it has to hold that if
v(φ [0/φ′]) = 1 then also v(φ [1/φ′]) = 1. But because φ depends on φ′ in
v, this cannot be, which means that v(φ [0/φ′]) = 0 and v(φ [1/φ′]) = 1.
This means that v(φ) = v(φ′).

Next, we prove a lemma that says that if φ depends on its subfor-
mula φ′ in a valuation v, then φ also depends on φ′ in a valuation v′,
which differs from v only in the variables that do not occur outside φ′.

Lemma 3.3. Let φ, φ′ ∈ Φ
BF
V , v ∈ AV where φ′ is subformula of φ and φ

depends on φ′ in v. Let v′ ∈ AV be a valuation where v′(x) = v(x) for
every x occurring outside the subformula φ′. Then φ depends on φ′ in v′.

Proof. Because we can only change the values of variable inside φ′, it
still holds that v′(φ [1/φ′]) = v(φ [1/φ′]) and v′(φ [0/φ′]) = v(φ [0/φ′]).
Then, from the fact that φ depends on φ′ in v, we have v′(φ [1/φ′]) =
v(φ [1/φ′]) ̸= v′(φ [0/φ′]) = v(φ [0/φ′]) which means that φ depends on
φ′ in v′.

18

3. Transformations of DQBFs

Theorem 3.4. Let φ be the left side formula and φ′ be the right side formula
of the same equisatisfiability other than (d) fromTheorem 3.1. Letψ ∈ Φ

DQBF

V
such that φ is a subformula of ψ and ψ′, which results from ψ by replacing
φ with φ′, is a valid DQBF. Then ψ ≈ ψ′.

Proof. (a) φ = ∀x (ψ1 ∧ ψ2) and φ′ = (∀x ψ1 ∧ ∀x′ ψ2 [x
′/x])

We show that JψK ̸= ∅ iff Jψ′K ̸= ∅. First, let s ∈ JψK. We now
show that for s′, where

∙ s′(y) = s(y) [x′/x]1 for y ∈ V∃ψ2
and

∙ s′(y) = s(y) otherwise,

it holds s′ ∈ Jψ′K. Note that for y ∈ V∃ψ1
we have s′(y) = s(y) as,

according to the way DQBFs are deĄned, ψ1 and ψ2 cannot share the
same quantiĄcation, therefore V∃ψ1

∩V∃ψ2
= ∅.

Let v ∈ AV∀
ψ′
. We need to show that v(s′(ψ′)) = 1. Because s ∈

JψK, it holds that v(s(ψ)) = 1. For the case that v(x′) = v(x) we get
v(s(ψ)) = v(s′(ψ′)), because BFs s(ψ) and s′(ψ′) differ only in some
replacements of x by x′. Therefore we assume that v(x′) ̸= v(x). We
know that ψ and ψ′ differ only in the formulas φ and φ′, therefore we
can only focus on the case where s(ψ) depends on s(φ) in v (otherwise
v(s(ψ)) = v(s′(ψ′))). Also, ψ is in NNF, which means that in the
tree of operations, negation cannot be before φ. We can then apply
Lemma 3.2 and we get v(s(φ)) = 1. This means we need to show that
v(s′(φ′)) = 1.

We have that for v(s(φ)) = v(s(∀x (ψ1 ∧ ψ2))) = v(s(ψ1) ∧ s(ψ2))
to be equal to one, it has to hold that v(s(ψ1)) = 1 and v(s(ψ2)) = 1.
Also, for v′ which is equal to v, except that v′(x) ̸= v(x), it holds that
v′(s(ψ)) = 1 (from s ∈ JψK). Because x is not outside s(φ), we can
use Lemma 3.3 to see that ψ depends on φ in v′ too, and by apply-
ing Lemma 3.2 we get v′(s(φ)) = 1. This means that v′(s(ψ2)) = 1.
Also v′(s(ψ2)) = v(s′(ψ2 [x

′/x])), because v′(x) = v(x′). All in all,
we get v(s(ψ1)) = v(s′(ψ1)) = 1 and v(s′(ψ2 [x

′/x])) = 1 therefore
v(s′(φ′)) = v(s′(∀x ψ1 ∧ ∀x′ ψ2 [x

′/x])) = v(s′(ψ1) ∧ s′(ψ2 [x
′/x])) = 1.

1. By s(y) [x′/x] we mean the BF representing s(y) in which every occurrence of x
is replaced by x′ and to s(y′) we assign Boolean function that s(y) [x′/x] represents.

19

3. Transformations of DQBFs

For the other direction, let s′ ∈ Jψ′K. It can be easily shown by
similar argument that s, where s(y) = s′(y) [x/x′] for y ∈ V∃ψ2

and
s(y) = s′(y) otherwise, is a satisfying Skolem functions mapping of ψ.

(b) This was proven by Ge-Ernst et al. [10, Theorem 4].
(c)(e)(f)(g)(h) Because V∀ψ = V∀ψ′ , V∃ψ = V∃ψ′ , and Vfree

ψ = Vfree
ψ′

and the dependency sets do not change, it holds that Sψ = Sψ′ . Also,
for any s ∈ Sψ it holds that s(ψ) is the same BF as s(ψ′) which means
that JψK = Jψ′K, therefore ψ ≈ ψ′.

As we already mentioned, the rule (d) as it stands cannot be gen-
erally used for replacing subformulas. We show it on the following
formula:

∀x∃y(∅) ((x ∧ y) ∨ (¬x ∧ ¬y)).

It is obviously not satisĄable because whether s(y) = 0 or s(y) = 1
we can always Ąnd valuation inwhich both disjuncts are not true. How-
ever if we assumed that the rule (d) can be also used for subformulas,
we would get

∀x (∃y(∅) (x ∧ y) ∨ ∃y′(∅) (¬x ∧ ¬y′)),

which is satisĄable for s where s(y) = 1 and s(y′) = 0. To Ąx this, we
need to restrict the variables that can occur in the disjuncts. When we
look at this formula, it would appear that the problem arises from
having universal variable x on which y is not dependent in both dis-
juncts. However, we can Ąnd an example when even if both disjuncts
contain different sets of universal variables (other than the ones from
Dy), this rule does not work. For example for unsatisĄable formula

∀x1∀x2 (∃y(∅) ((x1 ∧ y) ∨ (x2 ∧ ¬y)) ∨ (¬x1 ∧ ¬x2)),

we have that (x1 ∧ y) contains x1, which is not in (x2 ∧ ¬y). and x2 is
only in the second disjunct. However, after applying the rule (d) we
get

∀x1∀x2 ((∃y(∅) (x1 ∧ y) ∨ ∃y′(∅) (x2 ∧ ¬y′)) ∨ (¬x1 ∧ ¬x2)),

which becomes satisĄable. The problem here is that x1 and x2 are in
(¬x1 ∧¬x2), which is outside the subformula we are applying the rule
(d) on. Therefore, we can put in a condition that the sets of universal

20

3. Transformations of DQBFs

variables (except the ones from Dy) from the disjuncts are disjoint and,
as the next theorem shows, it is enough that universal variables from
one of these disjuncts are not outside this subformula. We also need
to not only look at the universal variables occurring in the disjuncts,
but also at the ones from the dependency sets of existential variables
occurring in the disjuncts.

Theorem 3.5. Let ψ, ψ1, ψ2 ∈ Φ
DQBF

V such that ∃y(Dy) (ψ1 ∨ ψ2) is a sub-
formula of ψ and y′ be a fresh variable not occurring in ψ. Let

Aψ1
=

{

x ∈ V∀ψ ∖ Dy

∣

∣

∣
x ∈ Vψ1

or x ∈ Dy1
for some y1 ∈ Vψ1

∩V∃ψ

}

and

Aψ2 =
{

x ∈ V∀ψ ∖ Dy

∣

∣

∣
x ∈ Vψ2 or x ∈ Dy2 for some y2 ∈ Vψ2 ∩V∃ψ

}

.

Assume that Aψ1
∩ Aψ2 = ∅ and each variable x from Aψ1

can only occur
in ψ outside the subformula ∃y(Dy) (ψ1 ∨ ψ2) as quantification ∀x or in a
dependency set, but not in the dependency set of any existential variable in
ψ that occurs outside the subformula. Then ψ ≈ ψ′ where ψ′ results from ψ
by replacing the subformula ∃y(Dy) (ψ1 ∨ ψ2) by

(

∃y(Dy)ψ1 ∨ ∃y′(Dy)ψ2 [y
′/y]

)

.

Proof. We prove that JψK ̸= ∅ iff Jψ′K ̸= ∅. Let φ = ∃y(Dy) (ψ1 ∨ ψ2)
and φ′ = (∃y(Dy)ψ1 ∨ ∃y′(Dy)ψ2 [y

′/y]).
First, let s ∈ JψK. It is easy to see that s′, where s′(y′) = s(y) and for

other variables it maps to the same Skolem function as s, is a satisfying
Skolem functions mapping of ψ′, because s(ψ) and s(ψ′) are the same
BFs.

Now, assume that s′ ∈ Jψ′K. In the rest of the proof, for every
valuation v ∈ AV∀ψ

(where it also holds that v ∈ AV∀
ψ′
, because V∀ψ =

V∀ψ′) we use vDy to denote the restriction of v to Dy. Let s be a Skolem
function mapping of ψ such that for v ∈ AV∀ψ

∙ s(y)(v) = s′(y)(v) if for all valuations v′ ∈ AV∀ψ
, for which it

holds that v′Dy
= vDy and s′(ψ′) depends on the subformula

s′(φ′) in v′, we have v′(s′(ψ1)) = 1,

21

3. Transformations of DQBFs

∙ s(y)(v) = s′(y′)(v) otherwise.

For other variables, s maps to the same Skolem function as s′. We show
that s ∈ JψK.

Let v ∈ AV∀ψ
be a valuation. We need to show that v(s(ψ)) = 1.

With similar reasoning as in the proof of case (a) of Theorem 3.4, we
can assume that s′(ψ′) depends on the subformula s′(φ′) in v and
v(s′(φ′)) = 1. Because the only difference between s(ψ) and s′(ψ′) is
in subformulas s(φ) and s′(φ), we only need to show that v(s(φ)) = 1.

Because

s′(φ′) = s′(∃y(Dy)ψ1 ∨ ∃y′(Dy)ψ2 [y
′/y]) = s′(ψ1) ∨ s′(ψ2 [y

′/y])

is a disjunction, it has to hold that v(s′(ψ1)) = 1 or v(s′(ψ2 [y
′/y])) = 1.

If they are both equal to 1, then it does not matter whether s(y)(v) =
s′(y)(v) or s(y)(v) = s′(y′)(v), it will always hold that v(s(φ)) = 1. If
we have v(s′(ψ1)) = 0 and v(s′(ψ2 [y

′/y])) = 1, then from the deĄni-
tion of s, we get s(y)(v) = s′(y′)(v) and so v(s(ψ2)) = v(s′(ψ2 [y

′/y])) =
1 and therefore v(s(φ)) = 1.

For the last case, v(s′(ψ1)) = 1 and v(s′(ψ2 [y
′/y])) = 0, we need to

show that s(y)(v) = s′(y)(v), because then v(s(ψ1)) = v(s′(ψ1)) = 1
therefore v(s(φ)) = 1. For that,we need to show that for each valuation
v′ ∈ AV∀ψ

where v′Dy
= vDy and s′(ψ′) depends on s′(φ′) in v′, it holds

v′(s′(ψ1)) = 1. Assume that this does not hold meaning that there
exists some v′ fulĄlling these conditions where v′(s′(ψ1)) = 0. We
now show contradiction.

Let v′′ ∈ AV∀ψ
be a valuation such that v′′(x) = v′(x) for all

x ∈ Aψ1
and v′′(x) = v(x) otherwise. This means that v′′Dy

= vDy =

v′Dy
. Because s′(ψ1) contains only variables from Aψ1

∪ Dy we have

v′′(s′(ψ1)) = v′(s′(ψ1)) = 0. Moreover, because Aψ1
∩ Aψ2 = ∅ (from

the assumption of the theorem) and s′(ψ2 [y
′/y]) contains only vari-

ables from Aψ2 ∪ Dy, we have v′′(s′(ψ2 [y
′/y])) = v(s′(ψ2 [y

′/y])) = 0.
Together, this means v′′(s′(φ′)) = 0.

Furthermore, because variables from Aψ1
are not ŞoutsideŤ the

subformula s′(φ′) (from the assumption of the theorem) and all the
ŞoutsideŤ variables are set to the same value as v, we can use Lemma 3.3
to show that s′(ψ′) depends on the subformula s′(φ′) in v′′ (as was

22

3. Transformations of DQBFs

the case for v). However, because ψ′ is in NNF and so s′(φ′) does
not have negation anywhere in front of it, we can use Lemma 3.2 to
show that v′′(s′(φ′)) = v′′(s′(ψ′)) = 1 (because s′ ∈ Jψ′K) which is a
contradiction.

Remark. The condition that variables from Aψ1
cannot occur outside

the subformula ∃y(Dy) (ψ1 ∨ ψ2) can be replaced with the same con-
dition for Aψ2 . The proof would then have just minor differences.

3.2 QuantiĄer Elimination

In this section, we show how we can eliminate both universal and
existential quantiĄers. Firstly, we show that for a simple case where
the quantiĄed variable is not in the formula, we can just remove it.

Lemma 3.6. Let ψ1 ∈ Φ
DQBF

V . Assume that variables x and y are not quan-
tified in ψ1 and y is not in any dependency set in ψ1. Then

∀x ψ1 ≈ ψ−x
1 , if x ̸∈ Vψ1

(i)
∃y(Dy)ψ1 ≈ ψ1, if y ̸∈ Vψ1

. (j)

Let ψ ∈ Φ
DQBF

V be a formula such that the left side of one of the previous
equisatisfiabilities is its subformula. Then ψ ≈ ψ′ where ψ′ results from ψ
by replacing this subformula with the equisatisfiable right side.

Proof. We show the general case ψ ≈ ψ′ for both equisatisĄabilities.
(i) Again, we want to prove JψK = Jψ′K. For s ∈ Jψ′K it is obvious

that also s ∈ JψK. For s ∈ JψK we can create s′ where s′(y) = sx=0(y)
where sx=0(y) is a Boolean function that behave like sy where x is
set to 0. Then s′ ∈ Jψ′K because for each valuation v ∈ AV∀ψ

where

v(x) = 0, we have v(s′(ψ′)) = v(s(ψ)) = 1.
(j) Stems from the fact that s(ψ) and s(ψ′) are the same BF for any

s ∈ Sψ.

The next theorem shows how to eliminate universal quantiĄers
generally by universal expansion. This can be always applied to any
universal quantiĄer but by doing so the resulting DQBF can contain
new copies of existential variables. The theorem is based on universal
expansion for DQBFs in PNF [1, 3], here we generalise it to the case
of subformulas in DQBFs in NNF.

23

3. Transformations of DQBFs

Theorem 3.7 (Universal Expansion). Let ψ, ψ1 ∈ Φ
DQBF

V such that ∀x ψ1

is a subformula of ψ where ψ1 does not include any quantifications other
than the ones bounded to variables from the set Ex = { y ∈ V∃ψ | x ∈ Dy }
of all existential variables dependent on x. Let ψ2 be a DQBF that results
from ψ1 by substituting each y ∈ Ex with a fresh variable y′ not occurring
in ψ where we set Dy′ = Dy. Then ψ ≈ ψ′ where ψ′ results from ψ by
replacing the subformula ∀x ψ1 by

ξ = (ψ−x
1 [0/x] ∧ ψ−x

2 [1/x]).

Proof. Note that each y ∈ Ex must be entirely inside ψ1 (even the
Ş∃yŤ bit). This stems from the way the set Φ

DQBF

V is constructed; the
dependency sets of new existential variables can only be formed from
free or completely new variables and if Ş∃yŤ was outside ∀x ψ1, then
x ∈ Dy would have to be a free or new variable. Also, because of the
assumption that only quantiĄers bounded to existential variables from
Ex are in ψ1 it is obvious that ψ′ ∈ Φ

DQBF

V . With that we can now prove
that JψK ̸= ∅ iff Jψ′K ̸= ∅.

First we prove that if JψK ̸= ∅, then Jψ′K ̸= ∅. Let s ∈ JψK. We
build a satisfying Skolem functions mapping s′ of ψ′. For y ∈ Ex and
its copy y′ ∈ V∃ψ2

we set s′(y) = sx=0(y) and s′(y′) = sx=1(y) where
sx=0(y) and sx=1(y) denote Boolean functions that behave like s(y)
where x is set to 0 or 1 respectively. Otherwise we set s′(y) = s(y).
Then s′ is a Skolem functions mapping of ψ′.

To show that it is satisfying, we have to prove that BF s′(ψ′) is
true in all valuations over V∀ψ′ . Notice that V∀ψ′ = V∀ψ ∖ {x}. Let v be

one such valuation and denote vx ↦→0 and vx ↦→1 valuations over V∀ψ
such that v(x′) = vx ↦→0(x′) = vx ↦→1(x′) for x′ ∈ V∀ψ′ , vx ↦→0(x) = 0

and vx ↦→1(x) = 1. It holds that vx ↦→0(s(∀x ψ1)) = v(s′(ψ−x
1 [0/x])) and

vx ↦→1(s(∀x ψ1)) = v(s′(ψ−x
2 [1/x]).

Therefore, if vx ↦→0(s(∀x ψ1)) = vx ↦→1(s(∀x ψ1)) = κ, where κ ∈
{0, 1}, then v(s′(ξ)) = κ. If vx ↦→0(s(∀x ψ1)) ̸= vx ↦→1(s(∀x ψ1)) then
v(s′(ξ)) = 0 where either vx ↦→0(s(∀x ψ1)) = 0 or vx ↦→1(s(∀x ψ1)) = 0.
This means that v(s′(ξ)) is equal to vx ↦→0(s(∀x ψ1)) or vx ↦→1(s(∀x ψ1)).
Also, because s ∈ JψK, it has to hold that vx ↦→0(s(ψ)) = vx ↦→1(s(ψ)) =
1. Furthermore, the only difference in s(ψ) and s(ψ′) are the subfor-
mulas s(∀x ψ1) and s′(ξ). This all means that v(s′(ψ′)) = 1.

24

3. Transformations of DQBFs

Now we prove the other direction. Let s′ ∈ Jψ′K. We build a sat-
isfying Skolem functions mapping s of ψ. For y ∈ Ex with a copy
y′ ∈ V∃ψ2

we set s(y) to Boolean function that is represented by BF
((¬x ∧ s′(y)) ∨ (x ∧ s′(y′))) where s′(y) and s′(y′) are replaced with
BFs representing them. Otherwise we set s(y) = s′(y). It is obviously
a Skolem functions mapping, thus we need to prove that s(ψ) is true
in all valuations. Let v be a valuation over V∀ψ . Without loss of gen-
erality assume that v(x) = 0. Then v(s(y)) = v(s′(y)). This means
that v(s(∀x ψ1)) = v(s(ψ−x

1 [0/x])). Again we show that v(s(ψ)) = 1
from the facts that v(s′(ψ′)) = 1 (because s′ ∈ Jψ′K) and that the only
difference in s(ψ) and s(ψ′) are the subformulas s(∀x ψ1) and s′(ξ). If
v(s′(ξ)) = 1 then v(s(∀x ψ1)) = v(s′(ψ−x

1 [0/x]) = 1 and from the pre-
vious facts it means that v(s(ψ)) = 1. For the case when v(s′(ξ)) = 0
we have to realise that because ψ′ is in NNF, s′(ξ) occurs in s′(ψ′) in a
tree of ∧ and ∨ operations. That means that even if we replaced s′(ξ)
with s(∀x ψ1) and v(s(∀x ψ1)) = 1, this cannot change the value of
the resulting formula v(s(ψ)) from 1 to 0, therefore v(s(ψ)) = 1.

Example 11. Let

ψ = ∀x1∀x2 ((x1 ⇔ x2) ∨ ∃y(x2)¬(x1 ⇔ y)).

be the DQBF from Example 7. Using universal expansion we can
transform it to

ψ′ = ∀x1 ((x1 ⇔ 0) ∨ ∃y(∅)¬(x1 ⇔ y)) ∧

((x1 ⇔ 1) ∨ ∃y′(∅)¬(x1 ⇔ y′))

which (like ψ) is satisĄable.

The conditions when existential elimination is possible are more
strict. We can eliminate an existential variable y from subformula
∃y(Dy)ψ1 of ψ only if ψ1 is quantiĄer-free and universal variables
occurring in ψ1 or in dependency sets of existential variables in ψ1 are
all in Dy.

Theorem 3.8 ([10, Theorem 5]). Let ψ, ψ1 ∈ Φ
DQBF

V such that ∃y(Dy)ψ1

is a subformula of ψ where ψ1 does not include any quantification and in-
cludes only variables from Dy ∪Vfree

ψ ∪ { y′ ∈ V∃ψ | Dy′ ⊆ Dy }. Then ψ ≈

ψ′ where ψ′ results from ψ by replacing the subformula ∃y(Dy)ψ1 by

(ψ1 [0/y] ∨ ψ1 [1/y]).

25

3. Transformations of DQBFs

Example 12. Let

ψ = ∀x1∀x2∃y1(x1) (((x1 ∧ x2)⇔ y1) ∨

∃y2(x1, x2) ((x1 ⇔ y2) ∧ (y1 ⇔ y2)))

be a DQBF that says that either y1 has the same value as x1 ∧ x2 (which
is impossible because y1 depends only on x1) or there is some y2 which
is equal to both y1 and x1 (which is possible because both y1 and y2

depend on x1). This means that this formula is satisĄable. Because the
subformula ∃y2(x1, x2) (x1 ⇔ y2) ∧ (y1 ⇔ y2) fulĄlls the conditions
from the theorem, ψ can be transformed to

ψ = ∀x1∀x2∃y1(x1) (((x1 ∧ x2)⇔ y1) ∨

(((x1 ⇔ 0) ∧ (y1 ⇔ 0)) ∨ ((x1 ⇔ 1) ∧ (y1 ⇔ 1))))

which is still satisĄable.

26

4 State of the Art

In this chapter, we give an overview of existing solutions and solvers
for the satisĄability problem of DQBF. Because there are alreadymulti-
ple surveys about DQBF [21, 22, 23], we give only a short overview of
most solvers and techniques. However, we go into more details for the
solver HQS, because it is currently the best performing solver (winner
of the DQBF track of the QBF Evaluation 2018 [12] and 2019 [13])
and the methods we use for developing our solver are based on the
workings of this solver.

4.1 First Solution Ű DQDPLL

The Ąrst solver that tackled the satisĄability problem for DQBF was
based on the DPLL algorithm [24] which is successfully used for BF
andQBF solvers. This algorithmworks on Boolean formulas in CNF by
searching for a satisfying assignment based on the clauses in CNF. By
recursively choosing an assignment for literals and checking whether
the remaining clauses contain an empty one (which implies unsatisĄ-
ability), DPLL searches trough all assignments until a satisfying one
is found or all of them are decided to be unsatisfying. An adaptation
called DQDPLL [5] was introduced for DQBF (in PCNF) which ex-
tended existing solutions for QBF by adding so-called Skolem clauses
which encode the dependencies between existential and universal
variables. However, by doing so the algorithm becomes too slow and
results in an uncompetitive solver.

4.2 Instantiation Ű iDQ and iProver

The Ąrst efficient DQBF solver, called iDQ [6], is based on an instantia-
tion technique used for solving Effectively Propositional Logic (EPR) [7].
This solver also works only on formulas in PCNF where in each step
of the algorithm it tries to create a BF φ that is an overapproximation
of an input DQBF. This is done by instantiating some set of clauses,
that is it applies universal expansion locally to them. This BF φ is then
checked for satisĄability, where if φ is unsatisĄable then the input

27

4. State of the Art

DQBF is also not satisĄable, while if it is satisĄable, it must be checked
if the resulting valuation is valid for the input DQBF. If it is not, then
it is used to create more clause instances which are then used to reĄne
this overapproximation.

Furthermore, a solver for EPR can also be used directly for DQBF.
Because EPR belongs to the same complexity class as DQBF, there
exists a polynomial-time reduction from DQBF to EPR [6]. This is
used by EPR solver iProver [7] which transforms a DQBF in PCNF to
an EPR instance and then solves this.

4.3 Clausal Abstraction Ű dCAQE

Another DQBF solver called dCAQE [11] is based on clausal abstrac-
tion [25]. This solver Ů working again on DQBF in PCNFŮ Ąrst puts
universally and existentially quantiĄed variables to some sets (called
nodes) which are then divided into levels based on the ordering of
dependencies of existential variables. The algorithm then constructs
for each node on each level a BF that represents which clauses in CNF
it can satisfy (for existential node) or falsify (for universal node). The
algorithm then builds a candidate valuation by processing each level.
For each level either this valuation is extended, or there is some conĆict
which means that the algorithm has to backtrack to some lower level
and reĄne the abstraction, or the candidate valuation is a satisfying
one which ends the algorithm.

4.4 QuantiĄer Elimination Ű HQS

The next solver is based on quantiĄer elimination. This solverŠs basic
premise is simple Ů it iteratively chooses some universal variable
for universal expansion (Theorem 3.7) thus eliminating it and then
eliminates all existential quantiĄers that are dependent on all leftover
universal quantiĄers using Theorem 3.8.

Gitina et al. [1] introduced the basic algorithm for solving DQBF
in PCNF in this way. Algorithm 1 shows simple pseudocode of this. In
every step, this algorithm chooses (using some heuristic) a universal
variable to eliminate. The authors used a heuristic where the univer-
sal variable is chosen based on the number of existential ones that

28

4. State of the Art

Algorithm 1 QuantiĄer elimination algorithm

1: function SolveDQBF(DQBF ψ in PCNF)
2: while V∀ψ is not empty do

3: choose x from V∀ψ
4: ψ = ∀-expansion(x, ψ) ⊲ Theorem 3.7
5: for all y ∈ V∃ψ s. t. Dy = V∀ψ do

6: ψ = ∃-elimination(y, ψ) ⊲ Theorem 3.8
7: end for
8: end while
9: return SAT(ψ)

10: end function

depend on it Ů they choose the one that has the minimal number of
dependencies. After that, all the existential variables that depend on
everything are also eliminated. To use this algorithm it is important
to choose a good representation of the matrix of the DQBF. For this,
the authors chose and-inverter graphs [14].

Following this technique, solver HQS was introduced [8] which
was enhanced by using QBF solver as a subprocedure. They still elim-
inate quantiĄers in a similar fashion but now they do it until the
formula can be transformed to QBF (that is the dependency sets are
linearly ordered). On this QBF they then run already existing solver
for QBF called AIGSolve [26] which can use more effective techniques
developed for QBFs. Universal quantiĄers to eliminate are chosen in
the beginning in such a way that the number of universal eliminations
is as small as possible while still the resulting formula is QBF. For
this they build a dependency graph in which nodes are existential
variables where yi is connected to yj if for their dependency sets it hold
that Dyi

̸⊆ Dyj
. They noticed that if this graph is acyclic, the formula

can be seen as QBF. Furthermore, there is a cycle in this graph iff there
is a simple cycle (between two nodes) in the graph. They use this to
create an instance of MaxSAT problem which is a problem of Ąnding a
valuation of one BF while maximizing another formula. This instance
then encodes which universal variables have to be eliminated so the
dependency graph becomes acyclic while minimising the number of
universal variables to eliminate. After Ąnding the set of variables to

29

4. State of the Art

eliminate, they follow with an improved quantiĄer elimination algo-
rithm. They also improved it by adding a preprocessing step (see
Section 4.5) and elimination of special types of variables called unit
and pure.

The algorithm was changed a bit again by Wimmer et al. [9]. The
authors were interested in whether it is possible to somehow remove
speciĄc dependencies from the list of dependencies of an existential
variable. They have shown that it is possible, albeit at the expense
of adding a new existential variable. This is similar to the universal
expansion (Theorem 3.7), but by removing just one dependency we
add just one new existential variable. Let for example

ψ = ∀x1 . . . ∀xn∃y1(Dy1
) . . . ∃ym(Dym) φ

be a prenex DQBF where φ is a BF and x1 ∈ Dy1
. We can now remove

x1 from Dy1
by adding a copy of y1 resulting in an equisatisĄable

DQBF

∀x1 . . . ∀xn∃y0
1(Dy1

∖ {x1})∃y1
1(Dy1

∖ {x1})∃y2(Dy2) . . . ∃ym(Dym)

φ
[

((¬x1 ∧ y0
1) ∨ (x1 ∧ y1

1))/y1

]

.

Using this the authors do not look for the set of universal variables
to eliminate, but for partial dependencies whose removal will result
in a DQBF which can be transformed into QBF. Again, they create a
dependency graph which is acyclic iff DQBF can be seen as QBF. But
now they create a bipartite graph whose two sets of nodes are the set
of universal variables and the set of existential variables which are
connected based on whether a universal variable is in the dependency
set of existential one. Similarly to previous, they use this graph to solve
an optimization problem that encodes which dependencies to remove
to get QBF which can then be solved with AIGSolve.

Last but not least, Ge-Ernst et al. [10] have given theoretical founda-
tions for non-prenex DQBFs and the possibility to push and eliminate
quantiĄers inside formulas as explained in Sections 3.1 and 3.2. Us-
ing this they improve HQS by adding another step in the algorithm,
so-called localisation, where they Ąrst push quantiĄers as much as
possible into the formula, eliminate the existential variables using
Theorem 3.8 and then return the formula to the prenex form. After

30

4. State of the Art

this, they start with the elimination of universal quantiĄers as was
explained in previous paragraphs.

4.5 Preprocessing

In previous sections, we gave an overview of techniques used for
implementations of different solvers. This section explains some tech-
niques that are used before the actual solvers run, called Ąttingly
preprocessing.

4.5.1 HQSpre

The Ąrst and only preprocessing engine for DQBF, called HQSpre [27,
28, 29], took many techniques used for QBF preprocessing and lifted
them to the DQBF case. It takes as an input a DQBF in PCNF and
transforms it into a simpler DQBF. It can also sometimes solve the
input formula during this simpliĄcation.

We explain here only one technique, called gate extraction. As was
mentioned in Section 2.1.1, Tseitin transformation of BF to an equi-
satisĄable formula in CNF can result in a polynomial increase of the
size of the formula by adding new variables. Gate extraction works in
the opposite direction Ů it tries to Ąnd and extract these newly intro-
duced variables and turn the formula back into one that is not in CNF.
For example, if we had (x1 ∧ x2) somewhere in the original non-CNF
formula, Tseitin transformation would swap it with a new variable y
and add new clauses (¬y ∨ x1), (¬y ∨ x2), and (y ∨ ¬x1 ∨ ¬x2). Gate
extraction then looks for these clauses and if it Ąnds them, it removes
them and replace the variable y back with x1 ∧ x2.

However, this technique can only be used by solvers which can
work on DQBFs whose matrix is not in CNF. Currently, that is only
HQS. For a thorough explanation of other techniques used by HQSpre,
we refer the reader to the work by Wimmer et al. [29].

4.5.2 Approximations

Another techniquewhich is used in some solvers as preprocessing step
is to Ąnd some BF or QBF approximations which can be used with ex-
isting solvers for BFs/QBFs to potentially give us faster result about the

31

4. State of the Art

input DQBF (satisĄability for underapproximations, unsatisĄability
for overapproximations). First QBF approximations used for DQBF [1]
were created by changing the dependencies of existential variables that
result in QBF with the same matrix. However, these approximations
can be precise only up to some level. By adding some information to
these QBF overapproximations (thus changing the matrix), it is pos-
sible to create more and more precise QBF overapproximations [30].
For a more thorough explanation of these approximations see again
the work by Wimmer et al. [29, Section 3].

4.5.3 PSPACE Subclass

The last preprocessing technique is simply put just a check whether
DQBF does not belong to a subclass of problems which are in PSPACE

and if it does, it is transformed to QBF (which is PSPACE-complete)
on which an existing QBF solver is run.

The simplest such subclass would be those DQBFs whose depen-
dency sets are linearly ordered. We can check for this by comparing
all the dependency sets of the same size. If they are the same, then
we can check if they form a linear order and if they do reorder the
quantiĄers based on it, thus creating QBF.

Scholl et al. [31] investigated whether there is another DQBF sub-
class which is in PSPACE. They show that DQBFs where the depen-
dency sets are either equal or pairwise disjoint can be transformed into
QBFs with just linear increase in size. Thus having a check on whether
an input DQBF belongs to this class before running a DQBF solver
and if it does transforming it into QBF and running a QBF solver can
improve the efficiency. They show this by adding this preprocessing
step to HQS which increases the number of solved instances.

32

5 Suggested Algorithm

In this chapter, we describe the algorithm for solving the satisĄability
of DQBF using BDDs. This algorithm is based on the localisation
algorithm for HQS [10] which follows in a similar vein. However, we
update it with the corrected procedure for localisation of quantiĄers
as explained in Section 3.1 and we add more thorough elimination of
quantiĄers using theorems from Section 3.2.

5.1 High-Level DeĄnition

Algorithm 2 DQBF solver

1: function Solve(DQBF ψ in NNF as quantiĄer tree rooted in r)
2: Localise(r)
3: φ = TurnToBDD(r)
4: EliminateAllQuantifiers(r, φ)
5: return φ
6: end function

Algorithm 2 gives a high-level deĄnition of our algorithm. In the
next sections, we explain more thoroughly each part of the algorithm.
It takes as an input a DQBF ψ in NNF represented using a quantiĄer
tree. We assume that it does not contain free variables and all variables
are quantiĄed in Q(r). Firstly, function Localise recursively pushes
the quantiĄers inside the formula by using Theorems 3.1, 3.4 and 3.5.
Next, we transform this quantiĄer tree into a BDD by recursively
turning children of each node into BDDs and then combining them.
While doing this, quantiĄers are pulled from formula and potentially
eliminated using theorems for quantiĄer eliminations (Section 3.2).
After that we end up with a DQBF with updated preĄx Q(r) with all
the quantiĄers (which were not eliminated) pulled back and BDD φ
representing the matrix of the formula. Finally, the leftover quantiĄers
in the preĄx are eliminated resulting in simple BDD which represents
either 0 or 1 which indicates formula satisĄability.

33

5. Suggested Algorithm

5.2 Localising QuantiĄers

In this section, we give an explanation of function Localise from
Algorithm 2 which uses the rules of Theorem 3.1 to push quantiĄers
as deep inside a formula as it is possible.

Algorithm 3 QuantiĄer localisation

1: function Localise(node n)
2: if l(n) = ∧ then
3: LocaliseAND(n)
4: else if l(n) = ∨ then
5: LocaliseOR(n)
6: else if l(n) = v or l(n) = ¬v then
7: if v ∈ Q∀(n) then
8: Q(n) = ∀v
9: else if v ∈ Q∃(n) then
10: Q(n) = ∃v(Dv ∖Q∀(n))
11: else
12: set Q(n) to empty preĄx
13: end if
14: end if
15: for all n′ ∈ children(n) do
16: Localise(n′)
17: end for
18: end function

Algorithm 3 shows the implementation of localising quantiĄers.
On a nonterminal node, function Localise calls either LocaliseAND
(line 3) or LocaliseOR (line 5) according to the operation assigned to
the node. These functions push variables from Q(n) to the children of
n based on the rules of Theorem 3.1. For terminal nodes representing
a literal with a variable x, it uses rules (i) and (j) of Lemma 3.6 to
remove all quantiĄers which are not quantifying x. After that, the
algorithm recursively runs Localise on the children of n.

The implementation of LocaliseAND is shown in Algorithm 4.
We Ąrst push existential variables on lines 2-13 and then universal on
lines 15-25. We do it in this order because according to the rule (h)
of Theorem 3.1 we can only push universal variables if there are no

34

5. Suggested Algorithm

Algorithm 4 QuantiĄer localisation for conjunction

1: function LocaliseAND(n)
2: while Q∃(n) ̸= ∅ do
3: y← GetNextExistVarToPush()
4: yChildren← { n′ ∈ children(n) | y ∈ Vn′ }
5: if yChildren = children(n) then
6: break
7: else
8: ny ← CombineChildren(yChildren,∧)
9: children(n)← (children(n) ∖ yChildren) ∪ {ny}
10: PushVar(y, ny)
11: remove y from Q(n)
12: end if
13: end while
14: U ← { x ∈ Q∀(n) | x ̸∈ Dy for all y ∈ Q∃(n) }
15: for all x ∈ U do
16: for all n′ ∈ children(n) do
17: if x ∈ Vn′ then
18: PushVar(x, n′)
19: ReplaceVarWithFreshVar(x, n′)
20: else
21: remove x from dependencies of all y ∈ V∃n′
22: end if
23: end for
24: remove x from Q(n)
25: end for
26: end function

existential variables in the preĄx that depend on them. By pushing
existential quantiĄers Ąrst, the number of universal variables that we
can push might increase. Also, according to (f) and (g) it does not
matter in what order we push variables.

In the part that pushes existential variables, we want to apply the
rule (e) for as many existential variables from Q(n) as possible. On
line 3 we Ąrst get the existential variable y to apply the rule on. We
choose the one that occurs in fewest children of n, that is the size of
the set yChildren on line 4 is minimal from all the existential variables

35

5. Suggested Algorithm

in Q(n). This is because to apply the rule (e) we need to combine the
children from the set yChildren to create a new child ny (lines 8 and 9)
and choosing the variable that combines the fewest children could
possibly allow us to push other variables in more children. We use
function CombineChildren(children, ◇) which returns a new node n′

where l(n′) = ◇, Q(n′) is empty preĄx and children(n′) = children.
However, if children contains only one child n′, it does not create a
new node but just returns n′.

We then apply the rule (e) and push variable y into ny (lines 10
and 11) using function PushVar(v, n′). This function pushes the vari-
able v with its quantiĄer and possible dependency set to the beginning
of Q(n′). Therefore, the new child ny is a root of a quantiĄer tree with
l(ny) = ∧, Q(ny) = ∃y(Dy) and children(ny) = yChildren.

The sets of children containing each existential variables are actu-
ally computed before the while loop so we can easily Ąnd the variable
with the minimal set. They are also only updated, not recomputed,
whenever we combine children to a new child on lines 8 and 9.

The while loop Ąnishes after either all existential variables were
pushed inside or we got to a variable that is in every child (line 5) and
therefore it is not possible to push it inside. Also, when we Ąnd such
a variable, because all other variables have to have the sets yChildren
at least as large as the found variable, this means that all remaining
variables are also in all children.

After pushing all possible existential variables we can start pushing
universal ones using the rules (a) and (b). First, we Ąnd the set U of
all universal variables in Q(n) such that no leftover existential variable
in Q(n) depends on them. According to (h), we can only push these.
Therefore we push each such variable x into every child (line 18) using
the rule (a), or if a child does not contain x, we can use the rule (b)
and delete x from all dependency sets in the child (line 21). Here, we
use function ReplaceVarWithFreshVar(x, n′) which replaces each
occurrence of x in the subtree rooted in n′ (meaning in preĄxes, depen-
dency sets or terminal nodes) with some fresh variable not occurring
anywhere else. This comes from the rule (a).

Algorithm 5 shows the function LocaliseOR. This function Ąrst
tries to push existential quantiĄers using the rule (d) according to
Theorem 3.5 (lines 2-11). Then, using the rule (e), we try to do the
same thing with leftover existential and universal variables as was

36

5. Suggested Algorithm

Algorithm 5 QuantiĄer localisation for disjunction

1: function LocaliseOR(n)
2: for all y ∈ Q∃(n) do
3: yChildren← { n′ ∈ children(n) | y ∈ Vn′ }
4: if yChildren fulĄll the conditions from Theorem 3.5 then
5: for all n′ ∈ yChildren do
6: PushVar(y, n′)
7: ReplaceVarWithFreshVar(y, n′)
8: end for
9: remove y from Q(n)
10: end if
11: end for
12: while Q(n) is not empty do
13: v← GetNextVarToPush()
14: vChildren← { n′ ∈ children(n) | v ∈ Vn′ or v ∈ Dy for

some y ∈ Vn′ }
15: if vChildren = children(n) then
16: break
17: else
18: nv ← CombineChildren(vChildren,∨)
19: children(n)← (children(n) ∖ vChildren) ∪ {nv}
20: PushVar(v, nv)
21: remove v from Q(n)
22: end if
23: end while
24: end function

done with existential variables in LocaliseAND: we take the variable
occurring in the smallest number of children, create a new child from
these children and push this variable inside (lines 12-23). However,
by pushing both universal and existential variables at the same time,
we need to look for universal variables which can become pushable
according to the rule (h).

In the part where we try to apply the rule (e) according to Theo-
rem 3.5 we go trough each existential variable y and check if it fulĄls
the conditions of Theorem 3.5. However, we can Ąrst apply the rule (e)
to divide children of y to those that do not contain y and those that

37

5. Suggested Algorithm

contain it and only work with those that contain it. On line 3 we Ąnd
the set of children containing y and then check if they fulĄll the condi-
tions from Theorem 3.5 (line 4). To fulĄl them, we Ąnd for each child
n′ ∈ yChildren the set An′ of universal variables which are not in Dy

such that they occur in the subtree rooted in n′ (as literal in terminal
node) or in the dependency set of some existential variable in Vn′ . If
all these sets are pairwise disjoint and variables from at most one of
these sets are occurring outside the subtree rooted in the correspond-
ing node, we can push y into every child in yChildren (line 6). Again,
according to (d) we need to create a copy of y, which is accomplished
by the call to function ReplaceVarWithFreshVar on line 7.

After doing this, we start applying the rules (c) for universal
and (e) for existential variables similarly as was done in Algorithm 4.
We do it at the same time, so we always push the variable with
fewest number of children to combine. This means that function
GetNextVarToPush on line 13 returns a variable for which the set
vChildren on line 14 has fewest number of elements. However, it
does not take all universal variables into consideration, some of them
might not be pushable per the rule (h). Therefore it computes the set
{ x ∈ Q∀(n) | x ̸∈ Dy for all y ∈ Q∃(n) } from which universal vari-
ables can be chosen (the same set is used on line 14 of Algorithm 4).

The set vChildren is then for an existential variable, by the rule (e),
the set of all children containing v, while for a universal variable,
by the rule (c), a set of all children containing v or containing some
existential variable dependent on v. Again, we stop when we get to a
variable whose vChildren is the set of all children (line 15), otherwise
we create a new child combining the children from vChildren (except
in the case that vChildren contains only one child) and push v into it
(lines 18-21).

Example 13. Figure 5.1 shows an example of localisation. We start
by calling LocaliseOR on the root of the tree in Figure 5.1(a). This
Ąrst tries to push existential quantiĄers y1 and y2 by using (d) and
Theorem 3.5. This is only possible for y1. For y2, both children nodes
of root that contain y2, contain also universal variable x2, which is not
in its dependency set. In Figure 5.1(b) the aftermath of this action
is shown in red. Notice that y was renamed not only in the preĄx
but also in terminal nodes. In blue we show where x3 was pushed

38

5. Suggested Algorithm

∀x1∀x2∀x3∃y1(x1)∃y2(∅)

∨

∧

x1 y1

∧

x2 y1

∧

x2 y2

∧

¬x2 ¬y2 x3

(a) The starting tree

∀x1∀x2∃y2(∅)

∨

∧

x1 y′1

∧

x2 y′′1

∧

x2 y2

∧

¬x2 ¬y2 x3

∃y′1(x1)

∃y′′1 (x1)

∀x3

(b) After pushing y1 and x3

Figure 5.1: An example of localisation

39

5. Suggested Algorithm

∀x2

∨

∨

∧

x1 y′1

∧

x2 y′′1

∨

∧

x2 y2

∧

¬x2 ¬y2 x3

∀x1

∃y′1(x1) ∃y′′1 (x1)

∃y2(∅)

∀x3

(c) After localising the root

∀x2

∨

∨

∧

x1 y′1

∧

x2 y′′1

∨

∧

x2 y2

∧

¬x2 ¬y2 x3

∀x1

∃y′1(x1) ∃y′′1 (x1)

∃y2(∅)

∀x3

(d) The Ąnal tree

Figure 5.1: An example of localisation (cont.)

40

5. Suggested Algorithm

after Ąnishing the processing of existential variables and starting the
second part of the algorithm. Here, we Ąrst push x3, because only
one child contains it. Also, for the same reason, we do not create a
new child for it. This is not true for y2 and x1 which are both in two
children, therefore we have to create new children for them combining
the children that contain them. In Figure 5.1(c) we can see the result
of LocaliseOR for the root. In red is the newly created child to which
x1 was pushed and in blue the child to which y2 was pushed. Variable
x2 was not pushed, because both resulting children contain it. After
this, we start localising for children and their children which results in
the tree in Figure 5.1(d). It shows how function LocaliseAND pushed
variables for each ∧ node.

5.3 Transformation to BDD

In this section, we give an overview of the function TurnToBDDwhich
as the name suggests turns the matrix of the formula to BDD. During
this, local elimination of quantiĄers in subformulas can occur, which
may result in a simpler Ąnal BDD.

Algorithm 6 QuantiĄer tree to BDD

1: function TurnToBDD(node n)
2: if l(n) is a literal then
3: return BDD for l(n)
4: else
5: childBDDs = ∅

6: for all n′ ∈ children(n) do
7: φn′ = TurnToBDD(n′)
8: EliminateQuantifiers(n′, φn′)
9: Q(n′) = RenameVarsBack(Q(n′))
10: Q(n) = Q(n)Q(n′)
11: childBDDs = childBDDs ∪ {φn′}
12: end for
13: return ApplyOperation(l(n), childBDDs)
14: end if
15: end function

41

5. Suggested Algorithm

Algorithm 6 shows an implementation of this function. Based on
the type of the node n, it decides what to do. For terminal nodes, it just
return the BDD representing the literal l(n) (line 3). For non-terminal
nodes, it calls itself recursively for all children of n (line 7), eliminates
some variables in it (line 8), and Ąnally pulls quantiĄers from them
(line 10, Q(n)Q(n′) is the concatenation of the two preĄxes). The
quantiĄers can be pulled from the children based on the rules (a), (c),
(d) and (e) of Theorem 3.1. Also, according to (a) and (d) we can
rename the copies of variables which we created during localising
back to the original name and we do so on line 9. On line 13, the
algorithm returns the resulting BDD which is the application of the
operation l(n) on the children BDDs.

Function EliminateQuantifiers on line 8 can eliminate these quan-
tiĄers:

∙ None Ű we do not eliminate any variables from the BDD,

∙ Simple Ű we eliminate the universal variables using Theorem 3.7
only if they do not create new variables (i.e., no existential
variable depends on them) and all possible existential vari-
ables using Theorem 3.8 (this elimination technique is used
in HQS [10]),

∙ All Ű we iteratively eliminate universal variables using Theo-
rem 3.7 and again all possible existential variables using Theo-
rem 3.8. This is the same elimination as in function EliminateAl-
lQuantifiers on line 4 of Algorithm 2, see Section 5.4 for details.

Example 14. Figure 5.2 shows the transformation to BDD for the quan-
tiĄer tree from Example 13 which uses Simple quantiĄer elimination.
The algorithm starts with the leftmost nodes where it transform the
terminal node that represents ∃y′1(x1) y′1 to 0∨ 1 ≡ 1 by eliminating y′1
using Theorem 3.8. Similarly for the y′′ node. Figure 5.2(b) then shows
the tree after transforming the ∧ nodes in the left subtree to BDDs. The
nodes x1 and x2, which are not in circle, actually represent the BDDs
which are in childBDDs of the left ∨ node. After this, we create the
BDD for x1 ∨ x2 and perform universal expansion for x1 (as no existen-
tial variable depends on it) which results in (0∨ x2) ∧ (1∨ x2) ≡ x2.
Moving to the right subtree, we turn the left ∧ node to the BDD for

42

5. Suggested Algorithm

∀x2

∨

∨

∧

x1 y′1

∧

x2 y′′1

∨

∧

x2 y2

∧

¬x2 ¬y2 x3

∀x1

∃y′1(x1) ∃y′′1 (x1)

∃y2(∅)

∀x3

(a) The starting tree

∀x2

∨

∨

x1 x2

∨

∧

x2 y2

∧

¬x2 ¬y2 x3

∀x1 ∃y2(∅)

∀x3

(b) After transforming ∧ nodes in the left subtree

∀x2

∨

x2 ∨

x2 ∧ y2 0

∃y2(∅)

(c) After transforming further nodes

∀x2∃y2(∅)

∨

x2 x2 ∧ y2

(d) The Ąnal tree

Figure 5.2: Transformation of a quantiĄer tree to BDD
43

5. Suggested Algorithm

x2 ∧ y2. In the right one, we can eliminate x3, resulting in BDD for
¬x2 ∧ ¬y2 ∧ 0∧ 1 ≡ 0. Figure 5.2(c) shows the state of the tree after
these transformations. Here, we cannot eliminate y2 in the ∨ node,
because it contains x2, which is not in the dependency set of y2. That
is why we extract it back to root resulting in the tree in Figure 5.2(d).
And because x2 ∨ (x2 ∧ y2) ≡ x2 ∧ y2, the resulting BDD represents
the formula ∀x2∃y2(∅) (x2 ∧ y2).

5.4 QuantiĄer Elimination

In this section we present the algorithm for eliminating all possible
quantiĄers. This algorithm is implemented as function EliminateAll-
Quantifiers, which is used in Algorithm 2 for eliminating all quan-
tiĄers in the Ąnal formula (line 4) and can also be used to eliminate
quantiĄers during transformation to BDDs (line 8 of Algorithm 6, it is
an implementation of All option).

Algorithm 7 QuantiĄer elimination algorithm

1: function EliminateAllQuantifiers(n, φn)
2: while Q∀(n) is not empty do
3: choose x from Q∀(n)
4: φn = ∀-expansion(x, φn) ⊲ Theorem 3.7
5: add created copies of existential variables to Q(n)
6: remove x from Q(n) and all dependency sets
7: Q∀ = { x ∈ Vφn | x ∈ Q∀(n

′) for some ancestor1 n′ of n }

8: Q∃ = { y ∈ Vφn | y ∈ Q∃(n
′) for some ancestor1 n′ of n }

9: E = { y ∈ Q∃(n) | Q∀ ⊆ Dy and Dy′ ⊆ Dy for all y′ ∈ Q∃ }
10: for all y ∈ E do
11: φn = ∃-elimination(y, φn) ⊲ Theorem 3.8
12: remove y from Q(n)
13: end for
14: end while
15: end function

Algorithm 7 takes as input a node n and a BDD φn representing
the matrix of DQBF given by the subtree rooted in n. This algorithm

1. we assume that n is an ancestor to itself

44

5. Suggested Algorithm

is similar to Algorithm 1 which is used in HQS. However, while that
one was used only for DQBF in PNF, this algorithm works for any
subformula. It iteratively eliminates universal variables occurring in
preĄx Q(n) using universal expansion (Theorem 3.7) and also all
possible existential variables using Theorem 3.8.

The next universal variable x to eliminate is chosen on line 3 by
some heuristic after which we eliminate it from φn and remove it from
the quantiĄer preĄx of n (lines 4 and 6). We can do this, because
according to (f), (g) and (h), we can reorder the quantiĄers in the
preĄx Q(n) so that at the end of the preĄx we will have the variable
x followed by only those existential variables that are dependent on
x which is the condition of Theorem 3.7. Also, we use (e) to pull the
existential variables and its created copies back to Q(n) on line 5.

On lines 7 and 8 the sets Q∀ and Q∃ are initialized to all variables
occurring in φn that are universally or existentially quantiĄed in the
quantiĄer tree. We Ąnd them by going through quantiĄer preĄxes
of all ancestors of n (we assume that n is an ancestor to itself). On
line 9 we use these sets to compute the set E of all existential variables
from preĄx Q(n) which fulĄll the conditions set by Theorem 3.8: for
each y ∈ E, it holds that all universal variables in φn and all universal
variables in dependency sets of existential variables in φn are in Dy.
The variables from E are then eliminated on lines 10-13.

We use three heuristics for choosing the next universal variable to
eliminate on line 3:

∙ AtBeginning: The order of universal variables from Q∀(n) is set
at the beginning based on the number of existential variables
that depend on them (from lowest to highest). We do this to
keep the number of newly created existential variables low. As
an example, let

∀x1∀x2∀x3∃y1(x1, x2)∃y2(x1, x2)∃y3(x3)∃y4(x3)∃y5(x3)

be the quantiĄer preĄx Q(n). The order is either x1, x2, x3 or
x2, x1, x3, because for both x1 and x2 only two existential vari-
ables y1 and y2 depend on them while for x3 it is three (y3, y4,
y5). This heuristic was introduced with HQS [8],

∙ CurrentLowest: The next heuristic is similar, but the order is not
set at the beginning. The next universal variable to eliminate is

45

5. Suggested Algorithm

then the one with the current lowest number of existential vari-
ables that depend on it. This means that the existential variables
which were created as copies during universal expansion also
count here. For example, take Q(n) from the previous example.
In this heuristic, at the beginning, either x1 or x2 is chosen as
in the previous one because two existential variables depend
on them while on x3 three depend. Assume that x1 was chosen
and eliminated without any other variable getting removed. The
quantiĄer preĄx Q(n) is then

∀x2∀x3∃y1(x2)∃y2(x2)∃y′1(x2)∃y′2(x2)∃y3(x3)∃y4(x3)∃y5(x3)

where y′1 and y′2 were created as copies of y1 and y2 during
universal expansion. Now, in the previous heuristic x2 would be
chosen. However, here x3 is chosen because it still depends only
on three variables, while x2 now depends on four. This heuristic
was introduced by Gitina et al. [1].

∙ VarsInConjuncts: Another heuristic we use is based on the num-
ber of variables in the BDDs representing the two conjuncts used
for universal expansion in Theorem 3.7. That is, let x ∈ Q∀(n)
and ψ−x

1 [0/x], ψ−x
2 [1/x] be the two conjuncts from Theorem 3.7

as if we were doing universal expansion. Because the operation
of replacing variables with constants is fast for BDDs, we can
create BDDs for these two formulas and check for the number
of variables in both of them, that is the number of variables in
the set Vψ−x

1 [0/x] ∪Vψ−x
2 [1/x]. Because BDDs remove the variables

which are not needed, the number of variables in this union
for BDDs can be smaller than we would expect. We can do this
for all universal variables and choose the one with the lowest
number of variables in the corresponding union. Notice, that
this heuristic behaves like the previous one if no variables are
removed in BDDs.

46

6 Implementation: DQBDD

We have implemented the algorithm of Chapter 5 in a new tool called
DQBDD1 (see Appendix B for documentation). The tool is written in
C++ using version 3.0.0 of the CUDD2 package [32] for BDD manipu-
lation, version 2.2.0 of the cxxopts3 library for parsing command-line
arguments, and preprocessor HQSpre [28], more speciĄcally the ver-
sion that was used with HQS with quantiĄer localisation [10].

The tool takes as an input a Ąle in DQDIMACS format [6] (see Ap-
pendix C) on which we can run the preprocessor HQSpre. As was
explained in Section 4.5, HQSpre can extract logical gates from vari-
ables in the formula that can be then replaced by them resulting in
formula with fewer variables. This results in a formula that may not
be in PCNF, which most solvers cannot handle. However, as HQS, our
solver can work with non-PCNF formulas, stemming from the fact
that we represent DQBFs as quantiĄer trees. This means that we can
use this feature of HQSpre similarly as it is used in HQS.

We run preprocessor twice. In the Ąrst run, we run it normally on
a copy of the formula, without extracting any gates, just to check if
HQSpre can solve it. If it cannot, we run the preprocessor with gate
preservation set on. This will ensure that during preprocessing, no
clause, from which these gates can be extracted, is touched and at
the end of preprocessing, we can extract these gates while creating
a quantiĄer tree. However, if there are just a few gates (we use less
than 5), then their preservation does not make sense and we run
preprocessor just once, normally, without extracting any gates. During
this creation, we use the equalities from Section 2.1.2 to push negations
to variables so that the resulting formula is in NNF.

We then runAlgorithm 2 on the preprocessed formula with chosen
heuristics for the elimination of quantiĄers (Section 5.3) and for the
choice of the next universal variable to eliminate (Section 5.4). If we
chooseNone as the elimination heuristic as explained in Section 5.3,
we can skip localisation and create BDD directly from the output

1. the source code can be found at https://github.com/jurajsic/DQBDD and also
as an attachment of this thesis Ű see Appendix A
2. https://github.com/ivmai/cudd

3. https://github.com/jarro2783/cxxopts

47

https://github.com/jurajsic/DQBDD
https://github.com/ivmai/cudd
https://github.com/jarro2783/cxxopts

6. Implementation: DQBDD

of the preprocessor. Also, during the Ąnal elimination of quantiĄers
(line 4 of Algorithm 2), we can stop after the Ąnal universal variable
is eliminated and we can keep all the existential variables. Then if
the resulting BDD is 0, the formula is unsatisĄable. Otherwise, it is
satisĄable. This stems from the fact that for unsatisĄable formulas all
paths over the leftover existential variables in the resulting BDD go to
0, while for satisĄable ones, there is at least one path going to 1.

Furthermore, while applying any operation on BDDs, some vari-
ables can disappear from it, because the formula does not depend
on their value. We can use this and apply the rules (i) and (j) to re-
move unneeded quantiĄers whenever we change the formula. This can
speed up quantiĄer elimination because some irrelevant dependencies
can be removed.

As explained in Section 2.4, the size of a BDD depends on the
order of the variables. This is why we also use dynamic reordering
provided by CUDDwhich reorders the variables using some heuristics
whenever the BDDs grow too big. We use CUDDŠs implementation of
RudellŠs sifting algorithm [33].

Additionally, as an optimisation, we do not create copies of vari-
ables on line 19 of Algorithm 4 or on line 7 of Algorithm 5. Even though
this results in something that is not a valid DQBF, it does not cause
problems as we would rename them back on line 9 of Algorithm 6
anyway. However, we do lose some ability in pushing existential vari-
ables according to Theorem 3.5, because the variables from the set Aψ1

of this theorem can sometimes occur outside the subformula, while
normally there would be only copies of them outside the subformula.

We can also optimise Algorithm 6 by checking on line 7 whether
the child BDD corresponds to 0 (or 1). If it does and l(n) = ∧ (or ∨),
then we can directly return 0 (or 1).

48

7 Experimental Results

This chapter shows the experimental results of DQBDD heuristics
comparison and its comparison with other publicly available DQBF
solvers (iDQ v1.01, iProver v3.12, dCAQE v4.0.13, and HQS with the
erroneous quantiĄer localisation4). All our benchmarkswere run on 24
core machine with 2.10 GHz Intel Xeon CPU (with at most 6 different
runs in parallel) using BenchExec v2.2 [34], a framework for reliable
benchmarking and rescource measurement, where we set the runtime
limit at 900 s of CPU time and the memory consumption limit at 4 GB
per benchmark.

All used benchmarks with the results and BenchExec deĄnitions
can be found in a github repository5 and as an attachment of this
thesis (see Appendix A).

7.1 Benchmark Sets

We use these benchmark sets for the experimental evaluation:

PEC1 The Ąrst set consists of 1200 DQBF encodings of partial equiv-
alence checking (PEC) problem [35] for incomplete circuits used by
Fröhlich et al. for evaluating their DQBF solver iDQ [6]. Incomplete
circuits are combinational circuits containing some missing parts, so-
called black-boxes. For these we only know their input and output
signals, the functionality is unknown. The partial equivalence checking
problem answers the question whether there exists an implementation
of black-boxes in some given incomplete circuit such that a different
complete circuit is equivalent to it.

1. http://fmv.jku.at/idq/

2. http://www.cs.man.ac.uk/~korovink/iprover/, run with “--qbf_mode

true --inst_out_proof false --res_out_proof false”

3. https://github.com/ltentrup/caqe/

4. https://abs.informatik.uni-freiburg.de/src/projects_view.php?

projectID=21

5. https://github.com/jurajsic/DQBFbenchmarks

49

http://fmv.jku.at/idq/
http://www.cs.man.ac.uk/~korovink/iprover/
https://github.com/ltentrup/caqe/
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=21
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=21
https://github.com/jurajsic/DQBFbenchmarks

7. Experimental Results

PEC2 This is another set of DQBF encodings for PEC, these are
from Finkbeiner et al. [30]. This set contains 2000 instances with over-
proportionally many unsatisĄable ones.

PEC3 One more set of 1116 PEC encodings [1, 35].

CSP This set consists of 461 instances of controller synthesis problem
(CSP) [36] in which we try to Ąnd a safe controller for a controllable
transition system. A controllable transition system is composed of states
and two types of inputs Ű uncontrollable and controllable Ű which
decide to which state the system moves. A controller decides the
controllable inputs and a safe controller is such a controller that the
transition system always stays in a given set of safe states.

SAT The next set is created from 34 SAT instances which are trans-
formed into equisatisĄable DQBF with an exponentially smaller num-
ber of variables [37].

E19 The last benchmark set consists of 334 instances used for evalua-
tion of DQBF solvers at QBF Evaluation 2019 [13], which is a selected
combination of previous benchmarks with some extra instances not
occurring in any of the previous sets.

7.2 Preprocessing

First, we run preprocessor HQSpre on all benchmarks. Table 7.1 shows
the results with the number of solved (both SatisĄable and UnsatisĄ-
able) and unsolved (?) instanced by HQSpre.

We removed the solved instances from the benchmarks sets and
we run the solvers only on the remaining instances in the prepro-
cessed form. The resulting times of these runs are then a combination
of HQSpre and solver runtime. Technically, we do not run HQS and
DQBDD on these simpliĄed instances, as both of these solvers incor-
porate HQSpre in their solving routine (as explained in Chapter 6),
therefore we run them on the original instances. We still run them
only on the instances that were not solved by HQSpre. The time of

50

7. Experimental Results

Table 7.1: Results of HQSpre, where S is the number of solved satisĄ-
able instances, U the number of solved unsatisĄable instances, and ?
the number of unsolved instances.

PEC1 PEC2 PEC3 CSP SAT E19

S 86 0 25 33 4 33

U 681 0 198 6 8 55

? 433 2000 893 422 22 246

HQSpre is then not added to these solvers, because the runtime of
preprocessing is included in the runtime of those two solvers.

7.3 Heuristics Comparison

Before we compare DQBDD to other solvers, it is important to choose
the right heuristics for choosing the universal variables to be elim-
inated (AtBeginning, CurrentLowest, or VarsInConjuncts, see Sec-
tion 5.4) and for which quantiĄers to eliminate in quantiĄer tree dur-
ing transformation to BDD (None, Simple, or All, see Section 5.3).
For this, we compare these heuristics on E19 benchmark set as it is a
selected combination of other benchmarks and it is reasonably small.

Table 7.2 shows this comparison where we run every possible
combination of heuristics. It shows the number of solved instances (#)
and from these the number of SatisĄable and UnsatisĄable instances.

For the choice of which quantiĄers to eliminate, it is obvious that
using None is not as good as the other two heuristics. For Simple and
All, we examine their comparison for each heuristic for choosing the
next universal variable:

∙ AtBeginning Ű Simple solved all of those that were solved by
All and four more (all satisĄable), while there was only one
instance which All solved faster by more than one second (it
was 2.54 s faster),

∙ CurrentLowest Ű Simple solved six more instances (all satisĄ-
able) than All, whileAll solved two more (both satisĄable) and
from those that were solved by both, Simple solved faster by

51

7. Experimental Results

Table 7.2: Comparison of DQBDD heuristics for the choice of the next
universal variable to eliminate (Section 5.4) and which quantiĄers to
eliminate during transformation to BDD (Section 5.3) on E19 bench-
mark with the total number of solved instances (#) and the numbers
of satisĄable (S) and unsatisĄable (U) from these.

Order of the next QuantiĄers to eliminate in Algorithm 6

universal variable None Simple All

to eliminate # S U # S U # S U

AtBeginning 94 41 53 139 43 96 134 38 96

CurrentLowest 94 41 53 138 42 96 134 38 96

VarsInConjuncts 94 41 53 139 43 96 135 40 95

more than one second four instances (by 1.21 s, 1.76 s, 3.33 s, and
22.68 s), while All two (by 5.04 s and 7.33 s),

∙ VarsInConjuncts Ű Simple solved all except one instance (sat-
isĄable) solved by Allwith further 5 (from which one was un-
satisĄable), and from those that were solved by both, Simple
solved faster by more than one second 13 instances (by up to
177.31 s), while All four (by up to 3.36 s).

From these we can see that Simple is better than All and we use it in
the comparison with other solvers. However, Allwas not that much
worse, and there were still some cases that were solved only by All.

For the heuristic that chooses the next universal variable to elimi-
nate, it is not obvious which one is the best. The numbers of solved
instances are pretty much the same (for a given heuristic of which
quantiĄers to eliminate) across all three heuristics AtBeginning, Cur-
rentLowest, and VarsInConjuncts. We can, however, compare the
total runtimes of all solved instances. In the Simple case, we get that
there are 136 instances solved by all three heuristics and for these, At-
Beginning took 3268.9 s to solve, CurrentLowest took 3258.76 s, and
VarsInConjuncts took 4018.18 s.

Furthermore, looking at the number of instances which took at
least one second faster for one heuristic to solve over another, we get
that

52

7. Experimental Results

∙ AtBeginning solved 4 instance faster than CurrentLowest (by
up to 16.08 s) and 33 faster than VarsInConjuncts (by up to
125.53 s),

∙ CurrentLowest solved 4 instances faster than AtBeginning (by
up to 17.28 s) and 32 faster than VarsInConjuncts (by up to
129.92 s), and

∙ VarsInConjuncts solved two and one instances faster over At-
Beginning and CurrentLowest respectively (by up to 15.81 s).

We can therefore decide that CurrentLowest is not as useful as the
other two. Both AtBeginning and CurrentLowest heuristics are com-
parable and we have decided to use AtBeginning as it solved one
instance more than CurrentLowest.

To also show that it is better to use dynamic reordering of BDD vari-
ables, we run DQBDD (with the heuristics Simple and AtBeginning)
without dynamic reordering. We get that the run without dynamic
reordering solved only 84 instances (with 37 satisĄable and 47 unsat-
isĄable), which is much less than the run with dynamic reordering.
When we also run using the other two heuristics for choosing univer-
sal variable (CurrentLowest and VarsInConjuncts) the number of
solved instances was even less, for both of them it was 73.

7.4 Solvers Comparison

We can now compare DQBDDwith the chosen heuristics (Simple and
AtBeginning)with other solvers.We show results for each benchmark
set in Tables 7.3-7.8 which for each solver show the number of solved
instances (#) and the total time of solving these. They also show the
number of solved SatisĄable and UnsatisĄable instances with the
number of uniquely (*) solved instances. Furthermore, they show
the reasons for unsolved instances where solvers either reached their
Time or Memory limit or they did not Ąnish for some Other reason.
Only HQS sometimes does not Ąnish for other reason, which is either
an error during computation or termination of computation caused
by the solver for the optimisation problem used for computing the set
of universal variables to eliminate (to end up with QBF) as explained
in Section 4.4.

53

7. Experimental Results

7.4.1 PEC1

Table 7.3 shows the comparison of all solvers for PEC1 benchmarks that
were not solved by HQSpre and Figure 7.2(a) shows the cactus plot for
PEC1wherewe plot the sorted solving times for each solver. All solvers
solved most of the instances, while dCAQE solved all 433 instances.
This is followed by DQBDD and iProver which did not solve only three
or six instances respectively. For the three instances that DQBDD did
not solve, it reached the memory limit during quantiĄer localisation.
Furthermore, the total runtime of DQBDD for 424 instances that were
solved by all three of these is 18.17 s, while for dCAQE it is 123.95 s
and for iProver 9083.85 s. This means that, on average, it took DQBDD
0.04 s to solve one instance from these, while dCAQE took 0.29 s and
iProver took 21.42 s per instance. The comparison of solving times for
DQBDD and dCAQE is shown in Figure 7.1(a).

The remaining two solvers Ű HQS and iDQ Ű solved 413 instances
each where HQS was 249 times faster than iDQ. Also notice that
even though HQS solved fewer instances than DQBDD, DQBDD total
runtime was still signiĄcantly smaller than HQS total runtime.

Table 7.3: Comparison of solvers for PEC1 benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 433 134.89 48 385 0 0 0 0

DQBDD 430 18.38 47 383 0 0 3 0

HQS 413 68.06 44 369 0 2 0 18

iDQ 413 16 943.53 40 373 0 20 0 0

iProver 427 9118.53 43 384 0 6 0 0

7.4.2 PEC2

The comparison of all solvers on all 2000 benchmarks from PEC2
benchmark set (as none of them were solved by HQSpre) is shown
in Table 7.4 while Figure 7.2(b) shows the cactus plot. Here, dCAQE,
iDQ and iProver solved just a few instances whereas DQBDD and

54

7. Experimental Results

10−3 10−2 10−1 100 101 102
10−3

10−2

10−1

100

101

102

DQBDD

d
C
A
Q
E

(a) DQBDD vs dCAQE for PEC1

10−1 100 101 102
10−1

100

101

102

DQBDD

H
Q
S

(b) DQBDD vs HQS for PEC2

10−1 100 101 102

10−1

100

101

102

DQBDD

H
Q
S

(c) DQBDD vs HQS for PEC3

10−2 10−1 100 101 102
10−2

10−1

100

101

102

DQBDD

H
Q
S

(d) DQBDD vs HQS for E19

10−2 10−1 100 101 102
10−2

10−1

100

101

102

DQBDD

d
C
A
Q
E

(e) DQBDD vs dCAQE for CSP

10−2 10−1 100 101 102
10−2

10−1

100

101

102

DQBDD

H
Q
S

(f) DQBDD vs HQS for CSP

Figure 7.1: Comparison of solving times in seconds, where satisĄable
instances are red and unsatisĄable are blue.

55

7. Experimental Results

50 100 150 200 250 300 350 400 450

10−2

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(a) PEC1

200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(b) PEC2

Figure 7.2: Cactus plots for PEC1 and PEC2

56

7. Experimental Results

HQS solved most of them. For DQBDD, there was only one unsolved
instance (caused by reaching memory limit during quantiĄer localisa-
tion) while HQS did not solve 278. Even with this, DQBDD was still
more than twice as fast compared with HQS. Figure 7.1(b) shows the
comparison of solving times of DQBDD and HQS.

The success of DQBDD and HQS for this benchmark set could
be explained by gate extraction as explained in Section 4.5, which
simpliĄes input formulas. This stems from the fact that PEC problems
encode circuits, which means there are possibly many gates to extract
which can result in much more simpliĄed formula compared to the
formula in PCNF.

Table 7.4: Comparison of solvers for PEC2 benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 34 134.12 0 34 0 1961 5 0

DQBDD 1999 19 618.36 123 1876 278 0 1 0

HQS 1722 51 769.75 80 1642 1 246 0 32

iDQ 4 292.66 0 4 0 1996 0 0

iProver 41 3382.37 1 40 0 9 1950 0

7.4.3 PEC3

The results for the last PEC benchmark set are shown in Table 7.5 and
in the cactus plot in Figure 7.3(a). Again, DQBDD and HQS solved
the most instances (possibly because of gate extraction) followed by
dCAQE, iProver, and Ąnally by iDQ. Furthermore, DQBDD solved 132
instances more than HQS, where, on 416 instances solved by both of
them, DQBDD took 866.27 s, which is on average 2.08 s per instance,
while HQS took 3427.75 s, which is on average 8.24 s per instance. Fig-
ure 7.1(c) shows the comparison of their runtimes for this benchmark
set.

In this benchmark there were also three discrepancies: dCAQE
solved three instances as satisĄable while HQS or DQBDD solved
them as unsatisĄable (each solved two of them; iDQ and iProver did

57

7. Experimental Results

50 100 150 200 250 300 350 400 450 500 550 600

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(a) PEC3

5 10 15 20 25 30 35 40 45

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

(b) CSP

Figure 7.3: Cactus plots for PEC3 and CSP

58

7. Experimental Results

not solve them). This cannot be explained by the erroneous imple-
mentation of quantiĄer localisation in HQS because it can only turn
unsatisĄable formulas to satisĄable ones. As both HQS and DQBDD
use similar techniques for solving, it is hard to tell whether there is
a mistake in dCAQE or HQS and DQBDD. However, as we show in
Appendix D, we can Ąnd a simple unsatisĄable DQBF which dCAQE
determines as satisĄable. Also, because dCAQE works with the result
of HQSpre without gate extraction and both HQS and DQBDD work
with the result with gate extraction, the mistake could be in HQSpre.
However, we tried running all three instances using DQBDDwith only
the preprocessing without gate extraction and it determined all three
as unsatisĄable, therefore we dismiss the possibility of mistake in
HQSpre. This is why we believe that these instances are unsatisĄable
and dCAQE solved them incorrectly.

Table 7.5: Comparison of solvers for PEC3 benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 328 19 271.73 96 232 3 565 0 0

DQBDD 566 10 293.71 193 373 169 222 105 0

HQS 434 6825.99 142 292 29 444 0 15

iDQ 119 4778.43 39 80 4 774 0 0

iProver 184 6769.89 55 129 0 8 701 0

7.4.4 CSP

Table 7.6 and Figure 7.3(b) shows the results and cactus plot for CSP
benchmark set. For these, dCAQE, DQBDD, and HQS solved compara-
tively many instances (with dCAQE the most) while iProver and iDQ
solved less. There are 31 instance solved by all three of those solvers,
where dCAQE took 198.56 s to solve them, DQBDD took 211.84 s and
HQS took 318 s. On average, this is for dCAQE 6.41 s per instance,
for DQBDD 6.83 s per instance and for HQS 10.26 s per instance. Fig-
ures 7.1(e) and 7.1(f) show solving time comparison of DQBDD with
dCAQE and HQS respectively.

59

7. Experimental Results

Table 7.6: Comparison of solvers for CSP benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 44 1373.30 44 0 9 378 0 0

DQBDD 40 681.86 40 0 2 334 48 0

HQS 42 504.51 42 0 1 82 0 298

iDQ 10 281.18 10 0 0 407 5 0

iProver 30 1032.42 30 0 0 0 392 0

7.4.5 SAT

The results for the SAT benchmark set are in Table 7.7. This set consists
of only a few instances, therefore the comparison is not very interesting.
However, we can see that DQBDD did not solve any formula from this
set. This was caused by either not even Ąnishing the creation of the
quantiĄer tree (three cases where DQBDD reached the memory limit)
or getting stuck while creating the BDD (the cases where DQBDD
reached the time limit). This benchmark therefore shows that BDDs
can sometimes suffer from scalability problems.

Table 7.7: Comparison of solvers for SAT benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 7 2141.37 3 4 0 15 0 0

DQBDD 0 0 0 0 0 19 3 0

HQS 7 3030.71 5 2 2 15 0 0

iDQ 9 2546.24 4 5 1 13 0 0

iProver 8 3260.57 3 5 0 14 0 0

60

7. Experimental Results

7.4.6 E19

Finally, Table 7.8 shows the comparison of solvers for E19 benchmark
set with the cactus plot in Figure 7.4. As this set is a combination
of previous sets (with also some new benchmarks), it is the most
interesting for ŞrealŤ comparison. However, this set is still dominated
by PEC benchmarks, which shows up in the results: both DQBDD and
HQS solved the most benchmarks, with 139 each (see Figure 7.1(d) for
their runtime comparison). This is followed by dCAQE which solved
111 instances, then iProver with 50 instances, and Ąnally iDQ with
only 27 instances.

Even though DQBDD (with HQS) solved the most, it was still the
fastest, taking only 3440.76 s for all of its solved instances. Looking
at the 120 instances solved by both DQBDD and HQS, we get that
DQBDD took 1405.04 s to solve them with 11.71 s on average while
HQS took 2479.87 s with 20.67 s on average.

There was also a discrepancy in this benchmark set. One instance,
which is not in other benchmark sets, was deemed satisĄable by
dCAQE while HQS claimed its unsatisĄability. Again, we believe that
dCAQE solved it incorrectly.

Table 7.8: Comparison of solvers for E19 benchmark set

Solved Unsolved
Solver

Time (s) S U * T M O

dCAQE 111 4335.81 37 74 1 135 0 0

DQBDD 139 3440.76 43 96 14 90 17 0

HQS 139 6796.64 51 88 5 53 0 54

iDQ 27 3698.26 13 14 1 218 1 0

iProver 50 7490.16 23 27 0 17 179 0

7.5 Discussion

The heuristics comparison shows that for the choice of which quanti-
Ąers to eliminate it is best to use Simple heuristic and for the choice

61

7. Experimental Results

20 40 60 80 100 120 140

10−1

100

101

102

103

Number of solved instances

C
P
U

ti
m
e
(s
)

dCAQE
DQBDD
HQS
iDQ

iProver

Figure 7.4: Cactus plot for E19

of the next universal variable to eliminate, it is (just a slightly) better
to use AtBeginning heuristic.

The results also show that for PEC benchmarks, DQBDD is in
the terms of total times and total solved instances (except for PEC1
benchmark set, where it solved only three instances less than dCAQE)
the best solver. For CSP benchmark set, dCAQE is clearly the winner,
with HQS and DQBDD not too far behind. The SAT benchmark set,
where DQBDD was not able to solve anything, shows that the BDD
based approach has its limits. Finally, DQBDD and HQS solved the
most instances for the E19 benchmark set, with DQBDD being faster.

There were also some discrepancies between dCAQE and other
solvers (three in PEC3 and one in E19) which we believe were caused
by a bug in dCAQE. Furthermore, the error caused by pushing exis-
tential variables (as explained in Section 3.1) for HQS [10] was not
detected in the experiments. We believe that this was caused by the
data structures used in HQS, where they have something similar to
quantiĄer trees (quantiĄer graphs), which can share children. They
also do not push quantiĄer if all parents of the same child do not
contain it, therefore the possible wrong pushes are limited. Note that
for DQBFs in PCNF, the problem cannot occur, it can only be caused
by gate extraction and usually, extracted gates have multiple parents.

62

8 Conclusion

In this thesis, we have proposed and implemented a DQBF solver
DQBDD that uses binary decision diagrams as an underlying repre-
sentation of formulas. This solver is based on quantiĄer elimination
and uses quantiĄer localisationwhichwe have corrected and enhanced
by adding a possibility to eliminate universal variables in subformulas.

Additionally, we experimentally evaluated different heuristics used
in DQBDD and compared the best one with other DQBF solvers. We
have shown that DQBDD performs very well, especially for partial
equivalence checking problem.

8.1 Future Work

For future work there are multiple things possible to do:

∙ We are planning to evaluate the impact of the ordering of vari-
ables in BDDs. We can check whether it would make sense to set
up some initial ordering and to decide what this ordering should
be. We are also planning to try different reordering techniques
used for BDDs, especially those that are already implemented
in CUDD. They can be used dynamically, as we do now, but we
can also gauge whether it is not better to decide when exactly
we should reorder the variables in the algorithm.

∙ Another line of thinking would be to somehow combine HQS
and DQBDD, similarly how it is done in QBF solver AIGSol-
ve [26]. This solver uses mainly AIGs to represent the matrix of
the formula, but during quantiĄer elimination, it can be turned
into BDD with some size limitations. If this BDD is created,
quantiĄer elimination is done on it (as it is faster for BDDs than
for AIGs) and then it is turned back to AIG, otherwise, quantiĄer
elimination is done directly on AIG. We could also use AIG
or some similar structure during the localisation phase, where
DQBDD sometimes hits the memory limit. This structure would
reuse subtrees representing the same subformula (reducing the
memory usage), and theywould be copied only if some variables

63

8. Conclusion

are being pushed into them. A similar structure is already used
in HQS, called quantiĄer graph [10].

∙ We are also planning to use more preprocessing techniques, es-
pecially the QBF approximations as explained in Section 4.5.2
and the check whether an input formula can be effectively trans-
formed into QBF as explained in Section 4.5.3. For these, we
could also use some state of the art QBF solver.

∙ Another possible direction is to implement the quantiĄer elim-
ination of only those universal variables which result in QBF
as is done in HQS and possibly design and implement a QBF
solver using BDDs which could solve it.

64

Bibliography

1. GITINA, Karina; REIMER, Sven; SAUER, Matthias; WIMMER,
Ralf; SCHOLL, Christoph; BECKER, Bernd. Equivalence check-
ing of partial designs using dependency quantiĄed Boolean for-
mulae. In: 2013 IEEE 31st International Conference on Computer
Design (ICCD). 2013, pp. 396Ű403. Available from DOI: 10.1109/

ICCD.2013.6657071.

2. HENKIN, Leon. Some remarks on inĄnitely long formulas. In:
Infinitistic Methods: Proceedings of the Symposium on Foundations of
Mathematics. 1961, pp. 167Ű183.

3. BALABANOV, Valeriy; CHIANG, Hui-Ju Katherine; JIANG, Jie-
Hong Roland. Henkin quantiĄers and Boolean formulae: A certi-
Ącation perspective of DQBF. Theoretical Computer Science. 2014,
vol. 523, pp. 86Ű100. Available from DOI: 10.1016/j.tcs.2013.

12.020.

4. PETERSON, Gary; REIF, John; AZHAR, Salman. Lower bounds
for multiplayer noncooperative games of incomplete information.
Computers &Mathematics with Applications. 2001, vol. 41, no. 7, pp.
957Ű992. Available fromDOI: https://doi.org/10.1016/S0898-

1221(00)00333-3.

5. FRÖHLICH, Andreas; KOVÁSZNAI, Gergely; BIERE, Armin. A
DPLL Algorithm for Solving DQBF. In: Pragmatics of SAT (PoS
2012, aff. to SAT 2012). 2012. Available also from: http://fmv.

jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf.

6. FRÖHLICH, Andreas; KOVÁSZNAI, Gergely; BIERE, Armin;
VEITH, Helmut. iDQ: Instantiation-Based DQBF Solving. In:
POS-14. Fifth Pragmatics of SATworkshop. 2014, pp. 103Ű116. Avail-
able from DOI: 10.29007/1s5k.

7. KOROVIN, Konstantin. iProver Ű An Instantiation-Based Theo-
rem Prover for First-Order Logic (System Description). In: Au-
tomated Reasoning. 2008, pp. 292Ű298. Available from DOI: 10.

1007/978-3-540-71070-7_24.

65

http://dx.doi.org/10.1109/ICCD.2013.6657071
http://dx.doi.org/10.1109/ICCD.2013.6657071
http://dx.doi.org/10.1016/j.tcs.2013.12.020
http://dx.doi.org/10.1016/j.tcs.2013.12.020
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(00)00333-3
http://dx.doi.org/https://doi.org/10.1016/S0898-1221(00)00333-3
http://fmv.jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf
http://fmv.jku.at/papers/FroehlichKovasznaiBiere-POS12.pdf
http://dx.doi.org/10.29007/1s5k
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-540-71070-7_24

BIBLIOGRAPHY

8. GITINA, Karina; WIMMER, Ralf; REIMER, Sven; SAUER,
Matthias; SCHOLL, Christoph; BECKER, Bernd. Solving DQBF
through quantiĄer elimination. In: 2015 Design, Automation Test
in Europe Conference Exhibition (DATE). 2015, pp. 1617Ű1622.
Available from DOI: 10.7873/DATE.2015.0098.

9. WIMMER, Ralf; KARRENBAUER, Andreas; BECKER, Ruben;
SCHOLL, Christoph; BECKER, Bernd. From DQBF to QBF by
Dependency Elimination. In: Theory and Applications of Satisfia-
bility Testing – SAT 2017. 2017, pp. 326Ű343. Available from DOI:
10.1007/978-3-319-66263-3_21.

10. GE-ERNST, Aile; SCHOLL, Christoph; WIMMER, Ralf. Localiz-
ing QuantiĄers for DQBF. In: 2019 Formal Methods in Computer
Aided Design (FMCAD). 2019, pp. 184Ű192. Available from DOI:
10.23919/FMCAD.2019.8894269.

11. TENTRUP, Leander; RABE, Markus N. Clausal abstraction for
DQBF. In: Theory and Applications of Satisfiability Testing – SAT
2019. 2019, pp. 388Ű405. Available from DOI: 10.1007/978-3-

030-24258-9_27.

12. PULINA, Luca; SEIDL, Martina. QBF Evaluation 2018
[online]. 2018 [visited on 2020-03-14]. Available from:
http://www.qbflib.org/event_page.php?year=2018.

13. PULINA, Luca; SEIDL,Martina; SHUKLA,Ankit.QBFEvaluation
2019 [online]. 2019 [visited on 2020-03-14]. Available from: http:

//www.qbflib.org/event_page.php?year=2019.

14. MISHCHENKO, Alan; CHATTERJEE, Satrajit; BRAY-
TON, Robert. FRAIGs: A unifying representation for logic
synthesis and verification. 2005. Available also from:
https://people.eecs.berkeley.edu/~alanmi/publications/

2005/tech05_fraigs.pdf. Technical report. EECS Dept., UC
Berkeley.

15. BRYANT, Randal E. Graph-Based Algorithms for Boolean Func-
tion Manipulation. IEEE Transactions on Computers. 1986, vol. 35,
no. 8, pp. 677Ű691. Available from DOI: 10 . 1109 / TC . 1986 .

1676819.

66

http://dx.doi.org/10.7873/DATE.2015.0098
http://dx.doi.org/10.1007/978-3-319-66263-3_21
http://dx.doi.org/10.23919/FMCAD.2019.8894269
http://dx.doi.org/10.1007/978-3-030-24258-9_27
http://dx.doi.org/10.1007/978-3-030-24258-9_27
http://www.qbflib.org/event_page.php?year=2018
http://www.qbflib.org/event_page.php?year=2019
http://www.qbflib.org/event_page.php?year=2019
https://people.eecs.berkeley.edu/~alanmi/publications/2005/tech05_fraigs.pdf
https://people.eecs.berkeley.edu/~alanmi/publications/2005/tech05_fraigs.pdf
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819

BIBLIOGRAPHY

16. TSEITIN, Grigorii Samuilovich. On the Complexity of Derivation
in Propositional Calculus. In: Automation of Reasoning: 2: Clas-
sical Papers on Computational Logic 1967–1970. 1983, pp. 466Ű483.
Available from DOI: 10.1007/978-3-642-81955-1_28.

17. EGLY, Uwe; SEIDL, Martina; TOMPITS, Hans; WOLTRAN, Ste-
fan; ZOLDA, Michael. Comparing Different Prenexing Strate-
gies for QuantiĄed Boolean Formulas. In: Theory and Applications
of Satisfiability Testing. 2004, pp. 214Ű228. Available from DOI:
10.1007/978-3-540-24605-3_17.

18. RABE, Markus N. A Resolution-Style Proof System for DQBF. In:
Theory and Applications of Satisfiability Testing – SAT 2017. 2017,
pp. 314Ű325. Available from DOI: 10.1007/978-3-319-66263-

3_20.

19. BOLLIG, Beate; WEGENER, lngo. Improving the variable order-
ing of OBDDs is NP-complete. IEEE Transactions on Computers.
1996, vol. 45, no. 9, pp. 993Ű1002. Available from DOI: 10.1109/

12.537122.

20. ANDERSEN, Henrik Reif. An Introduction to Binary Decision Di-
agrams. IT University of Copenhagen, 1999. Available also from:
https://www.cmi.ac.in/~madhavan/courses/verification-

2011/andersen-bdd.pdf. Lecture notes for Efficient Algorithms
and Programs.

21. KOVÁSZNAI, Gergely. A Survey on DQBF: Formulas, Applica-
tions, Solving Approaches. 2015. Available also from: http://fmv.

jku.at/quantify15/Kovasznai_QUANTIFY2015.pdf. Talk given
at International Workshop on QuantiĄcation Ű QUANTIFY 2015.

22. KOVÁSZNAI, Gergely. What is the state-of-the-art in DQBF solv-
ing. In: MaCS-16. Joint Conference on Mathematics and Computer
Science. 2016. Available also from: http://ceur-ws.org/Vol-

2046/kovasznai.pdf.

23. SCHOLL, Christoph; WIMMER, Ralf. Dependency QuantiĄed
Boolean Formulas: An Overview of Solution Methods and Appli-
cations. In: Theory and Applications of Satisfiability Testing – SAT
2018. 2018, pp. 3Ű16. Available from DOI: 10.1007/978-3-319-

94144-8_1.

67

http://dx.doi.org/10.1007/978-3-642-81955-1_28
http://dx.doi.org/10.1007/978-3-540-24605-3_17
http://dx.doi.org/10.1007/978-3-319-66263-3_20
http://dx.doi.org/10.1007/978-3-319-66263-3_20
http://dx.doi.org/10.1109/12.537122
http://dx.doi.org/10.1109/12.537122
https://www.cmi.ac.in/~madhavan/courses/verification-2011/andersen-bdd.pdf
https://www.cmi.ac.in/~madhavan/courses/verification-2011/andersen-bdd.pdf
http://fmv.jku.at/quantify15/Kovasznai_QUANTIFY2015.pdf
http://fmv.jku.at/quantify15/Kovasznai_QUANTIFY2015.pdf
http://ceur-ws.org/Vol-2046/kovasznai.pdf
http://ceur-ws.org/Vol-2046/kovasznai.pdf
http://dx.doi.org/10.1007/978-3-319-94144-8_1
http://dx.doi.org/10.1007/978-3-319-94144-8_1

BIBLIOGRAPHY

24. DAVIS, Martin; LOGEMANN, George; LOVELAND, Donald. A
Machine Program for Theorem-Proving. Commun. ACM. 1962,
vol. 5, no. 7, pp. 394Ű397. Available from DOI: 10.1145/368273.

368557.

25. RABE, Markus N.; TENTRUP, Leander. CAQE: A Certifying QBF
Solver. In: Proceedings of the 15th Conference on Formal Methods in
Computer-aided Design (FMCAD’15). 2015, pp. 136Ű143. Available
from DOI: 10.1109/FMCAD.2015.7542263.

26. PIGORSCH, Florian; SCHOLL, Christoph. An AIG-based QBF-
solver using SAT for preprocessing. In:Design Automation Confer-
ence. 2010, pp. 170Ű175. Available from DOI: 10.1145/1837274.

1837318.

27. WIMMER, Ralf; GITINA, Karina; NIST, Jennifer; SCHOLL, Chris-
toph; BECKER, Bernd. Preprocessing for DQBF. In: Theory and
Applications of Satisfiability Testing – SAT 2015. 2015, pp. 173Ű190.
Available from DOI: 10.1007/978-3-319-24318-4_13.

28. WIMMER, Ralf; REIMER, Sven; MARIN, Paolo; BECKER, Bernd.
HQSpre Ű An Effective Preprocessor for QBF and DQBF. In: Tools
and Algorithms for the Construction and Analysis of Systems. 2017,
pp. 373Ű390. Available from DOI: 10.1007/978-3-662-54577-

5_21.

29. WIMMER, Ralf; SCHOLL, Christoph; BECKER, Bernd. The
(D)QBF Preprocessor HQSpre Ű Underlying Theory and
Its Implementation. Journal on Satisfiability, Boolean Modeling
and Computation. 2019, vol. 11, pp. 3Ű52. Available from DOI:
10.3233/SAT190115.

30. FINKBEINER, Bernd; TENTRUP, Leander. Fast DQBFRefutation.
In: Theory and Applications of Satisfiability Testing – SAT 2014. 2014,
pp. 243Ű251. Available from DOI: 10.1007/978-3-319-09284-

3_19.

31. SCHOLL, Christoph; JIANG, Jie-Hong Roland; WIMMER, Ralf;
GE-ERNST, Aile. A PSPACE Subclass of Dependency Quan-
tiĄed Boolean Formulas and Its Effective Solving. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence. 2019, vol. 33,
pp. 1584Ű1591. No. 1. Available fromDOI: 10.1609/aaai.v33i01.

33011584.

68

http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1145/368273.368557
http://dx.doi.org/10.1109/FMCAD.2015.7542263
http://dx.doi.org/10.1145/1837274.1837318
http://dx.doi.org/10.1145/1837274.1837318
http://dx.doi.org/10.1007/978-3-319-24318-4_13
http://dx.doi.org/10.1007/978-3-662-54577-5_21
http://dx.doi.org/10.1007/978-3-662-54577-5_21
http://dx.doi.org/10.3233/SAT190115
http://dx.doi.org/10.1007/978-3-319-09284-3_19
http://dx.doi.org/10.1007/978-3-319-09284-3_19
http://dx.doi.org/10.1609/aaai.v33i01.33011584
http://dx.doi.org/10.1609/aaai.v33i01.33011584

BIBLIOGRAPHY

32. SOMENZI, Fabio. CUDD: CU Decision Diagram Package Release
3.0.0. Department of Electrical, Computer, and Energy
Engineering, University of Colorado at Boulder, 2015. Available
also from: https : / / pdfs . semanticscholar . org / cb3c /

a92ebe93b1076aef5fcd6c8f215a06694424.pdf.

33. RUDELL, Richard. Dynamic variable ordering for ordered binary
decision diagrams. In: Proceedings of 1993 International Conference
on Computer Aided Design (ICCAD). 1993, pp. 42Ű47. Available
from DOI: 10.1109/ICCAD.1993.580029.

34. WENDLER, Philipp; BEYER, Dirk. sosy-lab/benchexec: Release 2.2.
2019. Version 2.2. Available fromDOI: 10.5281/zenodo.3463154.

35. SCHOLL, Christoph; BECKER, Bernd. Checking equivalence
for partial implementations. In: Proceedings of the 38th Design Au-
tomation Conference (IEEE Cat. No.01CH37232). 2001, pp. 238Ű243.
Available from DOI: 10.1145/378239.378471.

36. BLOEM, Roderick; KÖNIGHOFER, Robert; SEIDL, Martina. SAT-
Based Synthesis Methods for Safety Specs. In: Lecture Notes in
Computer Science. 2014, pp. 1Ű20. Available from DOI: https :

//doi.org/10.1007/978-3-642-54013-4_1.

37. BALABANOV, Valeriy; JIANG, Jie-Hong Roland. Reducing satis-
fiability and reachability to DQBF. 2015. Available also from: http:

//fmv.jku.at/qbf15/qbf15- summary.pdf. Talk given at In-
ternational Workshop on QuantiĄed Boolean Formulas Ű QBF
2015.

38. BIERE, Armin. PicoSAT Essentials. Journal on Satisfiability,
Boolean Modeling and Computation (JSAT). 2008, vol. 4, pp. 75Ű97.
Available also from: http : / / fmv . jku . at / papers / Biere -

JSAT08.pdf.

39. GNU Lesser General Public License. Free Software
Foundation, 2007. Version 3. Available also from:
https://www.gnu.org/licenses/lgpl-3.0.html.

40. QDIMACS standard. 2005. Version 1.1. Available also from: http:

//www.qbflib.org/qdimacs.html.

69

https://pdfs.semanticscholar.org/cb3c/a92ebe93b1076aef5fcd6c8f215a06694424.pdf
https://pdfs.semanticscholar.org/cb3c/a92ebe93b1076aef5fcd6c8f215a06694424.pdf
http://dx.doi.org/10.1109/ICCAD.1993.580029
http://dx.doi.org/10.5281/zenodo.3463154
http://dx.doi.org/10.1145/378239.378471
http://dx.doi.org/https://doi.org/10.1007/978-3-642-54013-4_1
http://dx.doi.org/https://doi.org/10.1007/978-3-642-54013-4_1
http://fmv.jku.at/qbf15/qbf15-summary.pdf
http://fmv.jku.at/qbf15/qbf15-summary.pdf
http://fmv.jku.at/papers/Biere-JSAT08.pdf
http://fmv.jku.at/papers/Biere-JSAT08.pdf
https://www.gnu.org/licenses/lgpl-3.0.html
http://www.qbflib.org/qdimacs.html
http://www.qbflib.org/qdimacs.html

A Attached Files

As a part of this thesis, these attachments, which can be found in the
Information System of Masaryk University as well as linked github
repositories, are included:

∙ dqbdd.zip1 Ű the source code of DQBDD,

∙ benchmarks.zip2 Ű the used benchmark sets, benchmarks deĄ-
nitions for BenchExec, and raw results,

∙ thesis.zip3 Ű the LATEX source of this thesis.

1. https://github.com/jurajsic/DQBDD

2. https://github.com/jurajsic/DQBFbenchmarks

3. https://github.com/jurajsic/mastersthesis

71

https://github.com/jurajsic/DQBDD
https://github.com/jurajsic/DQBFbenchmarks
https://github.com/jurajsic/mastersthesis

B Documentation for DQBDD

DQBDD is a dependency quantiĄed Boolean formula (DQBF) solver
that uses binary decision diagrams (BDDs) as an underlying repre-
sentation of formulas. It is written in C++ and it reads DQBFs encoded
in DQDIMACS format [6] for which it checks their satisĄability using
quantiĄer elimination. The source codes with binaries can be found at
https://github.com/jurajsic/DQBDD.

B.1 Dependencies

There is no need to install any dependency, all of them are compiled
with DQBDD. They are these:

∙ antom1 Ű SAT solver used in HQSpre,

∙ CUDD v3.0.02 [32] Ű BDD library,

∙ cxxopts v2.2.03 Ű argument parser

∙ Easylogging++ v9.96.74 Ű C++ logger used in HQSpre,

∙ HQSpre5 [29] Ű DQBF preprocessor,

∙ PicoSAT6 [38] Ű SAT solver used in HQSpre.

B.2 Installation

To compile DQBDD, a C++ compiler supporting C++14 standard and
CMake7 is needed.

1. https://projects.informatik.uni-freiburg.de/projects/antom

2. https://github.com/ivmai/cudd

3. https://github.com/jarro2783/cxxopts

4. https://github.com/zuhd-org/easyloggingpp

5. https://abs.informatik.uni-freiburg.de/src/projects_view.php?

projectID=21

6. http://fmv.jku.at/picosat/

7. https://cmake.org/

73

https://github.com/jurajsic/DQBDD
https://projects.informatik.uni-freiburg.de/projects/antom
https://github.com/ivmai/cudd
https://github.com/jarro2783/cxxopts
https://github.com/zuhd-org/easyloggingpp
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=21
https://abs.informatik.uni-freiburg.de/src/projects_view.php?projectID=21
http://fmv.jku.at/picosat/
https://cmake.org/

B. Documentation for DQBDD

Execute

mkdir Release

cd Release

cmake -DCMAKE_BUILD_TYPE=Release ..

make

to build DQBDD which will be located in Release/src/.

B.3 Usage

Run DQBDD with

DQBDD [OPTION...] <input file>

where <input file> should be formula to solve in DQDIMACS for-
mat. The possible options are

-h, --help Print usage

-v, --version Print the version number

-l, --localise arg Use quantifier tree with

localisation of

quantifiers (default: 1)

-p, --preprocess arg Use preprocessing

(default: 1)

-e, --elimination-choice arg Decide what to eliminate on

each level of quantifier

tree during transformation

to formula (default: 1)

-u, --uvar-choice The heuristics by which the

next universal variable for

elimination is chosen

(default: 0)

-d, --dyn-reordering Allow dynamic reordering of

variables in BDDs

(default: 1)

74

B. Documentation for DQBDD

where for --localise, --preprocess and --dyn-reordering the ar-
guments are 0 or 1 to turn off or on the corresponding option. The
option --elimination-choice is used only if we localise and then we
have these possible arguments:

∙ 0 Ű nothing is eliminated (None),

∙ 1 Ű simple quantiĄers are eliminated (Simple),

∙ 2 Ű all possible quantiĄers are eliminated (All).

For the option --uvar-choice we have:

∙ 0 Ű the order of the universal variables is set at beginning (At-
Beginning),

∙ 1 Ű the variable with the currently lowest number of dependen-
cies is chosen (CurrentLowest),

∙ 2 Ű the order is based on the number of variables in conjuncts of
universal expansion (VarsInConjuncts).

After Ąnishing, DQBDDoutputs SATwith exitcode 10 for satisĄable
formula and UNSAT with exitcode 20 for unsatisĄable one.

B.4 Examples

Running DQBDD as

∙ DQBDD file.dqdimacs

solves the formula in file.dqdimacs with the default settings,

∙ DQBDD --preprocess 0 --dyn-reordering 0 file.dqdimacs

solves the formula in file.dqdimacs without running the preproces-
sor HQSpre Ąrst and without using dynamic reordering of variables
in BDDs as implemented in CUDD,

∙ DQBDD --localise 0 --uvar-choice 1 file.dqdimacs

75

B. Documentation for DQBDD

solves the formula in file.dqdimacs without localising quantiĄers
(or creating quantiĄer tree) where the next universal variable for
universal expansion is always the one that has the minimal number
of dependent existential variables,

∙ DQBDD --localise 1 --elimination-choice 2 file.dqdimacs

solves the formula in file.dqdimacs with localising quantiĄers where
it eliminates all universal and possible existential variables while cre-
ating the Ąnal BDD from the quantiĄer tree.

B.5 Licence

DQBDD is licensed under version 3 of GNU Lesser General Public
License [39].

76

C DQDIMACS Format

In this appendix, we deĄne the DQDIMACS format [6], which can repre-
sent DQBFs in PCNF.

C.1 Syntax

The format is deĄned by this BNF grammar (based on the one for
QDIMACS format [40]):

<input> ::= <preamble> <prefix> <matrix> EOF

<preamble> ::= [<comment_lines>] <problem_line>

<comment_lines> ::= <comment_line> <comment_lines>

| <comment_line>

<comment_line> ::= c <text> EOL

<problem_line> ::= p cnf <pnum> <pnum> EOL

<prefix> ::= [<quant_sets>]

<quant_sets> ::= <quant_set> <quant_sets> | <quant_set>

<quant_set> ::= <quantifier> <atom_set> 0 EOL

<quantifier> ::= e | a | d

<atom_set> ::= <pnum> <atom_set> | <pnum>

<matrix> ::= <clause_list>

<clause_list> ::= <clause> <clause_list> | <clause>

<clause> ::= <literal> <clause> | <literal> 0 EOL

<literal> ::= <num>

<text> ::= {A sequence of non-special ASCII characters}

<num> ::= {A 32-bit signed integer different from 0}

<pnum> ::= {A 32-bit signed integer greater than 0}

where the terminal symbols EOL and EOF stand for the end-of-line
and end-of-Ąle markers respectively, [<expr>] denotes that <expr> is
an optional expression, and concatenation of expressions has prece-

77

C. DQDIMACS Format

dence over choice between expressions. Furthermore, we have these
additional constraints:

∙ The Ąrst <pnum> in <problem_line> corresponds to the maximal
possible number of distinct atoms appearing in the preĄx and
the matrix, i.e., all the members of the quantiĄed sets and the
absolute value of each literal in all the clauses is less than or
equal to this number.

∙ The second <pnum> in <problem_line> corresponds to the num-
ber of clauses appearing in the matrix, i.e., the number of
<clause> expressions which <matrix> is comprised of.

∙ Each atom in the preĄx must appear in the matrix.

∙ It is not possible to have two <quant_set> after each other, where
both have a or both have e as <quantifier>.

∙ The same atom cannot appear in the preĄxmore than once except
for atoms occurring in the second and further place of atom_set

with d as <quantifier>. These atoms have to appear somewhere
before in the preĄx in <quant_set> with a quantiĄer.

C.2 Semantics

The prefix represents the DQBF preĄx where atoms appearing in
<atom_set> following <quantifier> equal to

∙ a are universally quantiĄed variables,

∙ e are existentially quantiĄed variables where each of them is
dependent on all universally quantiĄed variables which already
appeared before and

∙ d are an existential variable with universal variables in its de-
pendency set, that is the Ąrst atom is the existential variable y
and all others are universal variables in the dependency set Dy.

The matrix represents the BF in CNF with clauses in
<clause_list> where the number n in <literal> represents

78

C. DQDIMACS Format

either the variable xn if it is positive or ¬xn if it is negative. Further-
more, all variables which appear in the matrix but do not appear in
the preĄx are existentially quantiĄed with empty dependency sets.

Note, that DQDIMACS is, by removing d quantiĄers, backwards com-
patible with QDIMACS (used for QBFs) format and, by removing the
whole preĄx, with DIMACS (used for BFs) format.

C.3 An Example

As an example, we have that

c Simple example

p cnf 5 2

a 1 2 0

e 3 0

d 4 1 0

-1 2 3 0

-2 -4 5 0

represents DQBF

∀x1∀x2∃x3(x1, x2)∃x4(x1)∃x5(∅) ((¬x1∨ x2∨ x3)∧ (¬x2∨¬x4∨ x5)).

79

D DQBF Wrongly Solved by dCAQE

The DQBF

∀x1∀x2∀x3∀x6∃y4(x1, x2, x3)∃y5(x1, x2, x3)∃y7(x6)∃y8(x6)

((¬x1 ∨ x2 ∨ x3 ∨ y4 ∨ y5)

∧ (¬x1 ∨ x2 ∨ x3 ∨ ¬y4)

∧ (¬x1 ∨ x2 ∨ x3 ∨ ¬y5 ∨ y7)

∧ (x1 ∨ ¬x2 ∨ x3 ∨ y4 ∨ y5)

∧ (x1 ∨ ¬x2 ∨ x3 ∨ ¬y4 ∨ y8)

∧ (x1 ∨ ¬x2 ∨ x3 ∨ ¬y5)

∧ (x1 ∨ x2 ∨ x3 ∨ y4 ∨ y5)

∧ (x1 ∨ x2 ∨ x3 ∨ ¬y4 ∨ ¬x6 ∨ ¬y7)

∧ (x1 ∨ x2 ∨ x3 ∨ ¬y5 ∨ x6 ∨ ¬y8))

which in DQDIMACS format has the form

p cnf 8 9

a 1 2 3 0

e 4 5 0

a 6 0

d 7 6 0

d 8 6 0

-1 2 3 4 5 0

-1 2 3 -4 0

-1 2 3 -5 7 0

1 -2 3 4 5 0

1 -2 3 -4 8 0

1 -2 3 -5 0

1 2 3 4 5 0

1 2 3 -4 -6 -7 0

1 2 3 -5 6 -8 0

is deemed as satisĄable by dCAQE. However, it is not satisĄable, as

∙ the Ąrst three clauses force x7 to be true no matter what x6 is
evaluated to,

81

D. DQBF Wrongly Solved by dCAQE

∙ the fourth to sixth clauses force x8 to be true too, and

∙ the last three clauses then say that x4 and x5 would need to be
dependent on x6, which is not the case.

Other solvers (DQBDD, HQS, iDQ, iProver, and also preprocessor
HQSpre) correctly decide its unsatisĄability.

82

	Introduction
	Theory
	 Boolean Formulas
	 Conjunctive Normal Form
	 Negation Normal Form

	 Quantified Boolean Formulas
	 Dependency Quantified Boolean Formulas
	 Prenex Normal Form
	 Negation Normal Form

	 Binary Decision Diagrams
	 Quantifier Trees

	Transformations of DQBFs
	 Shifting Quantifiers
	 Quantifier Elimination

	State of the Art
	 First Solution – DQDPLL
	 Instantiation – iDQ and iProver
	 Clausal Abstraction – dCAQE
	 Quantifier Elimination – HQS
	 Preprocessing
	 HQSpre
	 Approximations
	 PSPACE Subclass

	Suggested Algorithm
	 High-Level Definition
	 Localising Quantifiers
	 Transformation to BDD
	 Quantifier Elimination

	Implementation: DQBDD
	Experimental Results
	 Benchmark Sets
	 Preprocessing
	 Heuristics Comparison
	 Solvers Comparison
	 PEC1
	 PEC2
	 PEC3
	 CSP
	 SAT
	 E19

	 Discussion

	Conclusion
	 Future Work

	Bibliography
	Attached Files
	Documentation for DQBDD
	 Dependencies
	 Installation
	 Usage
	 Examples
	 Licence

	DQDIMACS Format
	 Syntax
	 Semantics
	 An Example

	DQBF Wrongly Solved by dCAQE

