Satisfiability of DQBF Using Binary Decision Diagrams

Juraj Síč (supervisor: Jan Strejček)
Faculty of Informatics, Masaryk University

Problem

- Decide satisfiability of a given DQBF
- DQBF = dependency quantified Boolean formula
 - Propositional logic formula extended with quantifiers with explicit dependencies between them
- NEXPTIME-complete problem
- Example:
 \[\forall x_1 \forall x_2 \exists y_1 (x_1) \exists y_2 (x_2) \cdot (x_1 \land x_2) \iff (y_1 \leftrightarrow y_2) \]
 - \(y_1 \) depends only on \(x_1 \) (and \(y_2 \) only on \(x_2 \)), meaning that the value of \(y_1 \) cannot change based on the value of \(x_2 \)
 - Formula is unsatisfiable as \(y_1 \) and \(y_2 \) cannot coordinate
- Can be used for solving
 - controller synthesis problem (CSP)
 - partial equivalence checking (PEC) - Can a combinational circuit with black boxes (BB) be equivalent to a given specification?

Method

- Quantifier elimination is used as the basic solving technique
 - Quantifiers are iteratively eliminated until we end up with True or False
- Algorithm improved by quantifier localisation
 - Quantifiers are pushed inside the formula resulting in a faster elimination
- Binary decision diagrams (BDDs) are used to represent propositional subformulas in DQBF
 - The BDD on the right represents \((\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg (x_2 \iff x_3)) \)

Results

- Quantifier localisation improvements
 - Correction of existing results
 - Proved that it can be used in subformulas
 - Proved that universal quantifier elimination can be done locally

Solver DQBDD

- New algorithm solving DQBF satisfiability
- Implemented in C++ using BDDs
- Winner of the DQBF track of QBFEval’20 competition [1]

Experiments

- Comparison of possible quantifier localisation and elimination strategies
- Comparison of DQBF solvers using different benchmarks
- Results:
 - DQBDD is far better than other solvers for PEC
 - Figure below shows a cactus plot comparing runtimes of DQBF solvers for PEC instances

QBFEval’20 Competition

- Comparison of DQBF solvers on selected benchmarks
- Results
 1. DQBDD – 257 solved in 5396 s
 2. HQS – 195 solved in 2662 s
 3. iProver – 170 solved in 17399 s

References