Satisfiability of DQBF Using Binary Decision Diagrams

Juraj Síč (supervisor: Jan Strejček)

Faculty of Informatics, Masaryk University

Problem

- Decide satisfiability of a given DQBF
- DQBF = dependency quantified Boolean formula
 Propositional logic formula extended with quantifiers with explicit dependencies between them
- NEXPTIME-complete problem
- Example:

$\forall x_1 \forall x_2 \exists y_1(x_1) \exists y_2(x_2) . (x_1 \land x_2) \Leftrightarrow (y_1 \Leftrightarrow y_2)$

- y_1 depends only on x_1 (and y_2 only on x_2), meaning that the value of y_1 cannot change based on the value of x_2
- Formula is **unsatisfiable** as y_1 and y_2 cannot coordinate
- Can be used for solving
 - controller synthesis problem (CSP)
 - partial equivalence checking (PEC) Can a combinational circuit with black boxes (BB) be equivalent to a given specification?

• Figure above [2] shows a PEC problem encoded by a DQBF

 $\forall x_1 \forall x_2 \exists y_1(x_1) \exists (x_2).((y_1 \lor y_2) \lor (x_1 \land \neg x_2)) \Leftrightarrow (x_1 \oplus x_2)$

Method

- Quantifier elimination is used as the basic solving technique
- Quantifiers are iteratively eliminated until we end up with True or False
- Algorithm improved by quantifier localisation
 - Quantifiers are pushed inside the formula resulting in a faster elimination
- Binary decision diagrams (BDDs) are used to represent propositional subformulas in DQBF
- The BDD on the right represents $(\neg x_1 \land x_2 \land x_3) \lor (x_1 \land \neg (x_2 \Leftrightarrow x_3))$

Results

Quantifier localisation improvements

- Correction of existing results
- Proved that it can be used in subformulas
- Proved that universal quantifier elimination can be done locally

Solver **DQBDD**

- New algorithm solving DQBF satisfiability
- Implemented in C++ using BDDs
- Winner of the DQBF track of QBFEval'20 competition [1]

Publications under preparation

- Joint journal paper with the HQS team (University of Freiburg)
- Publication about the new algorithm of DQBDD

Experiments

- Comparison of possible quantifier localisation and elimination strategies
- Comparison of DQBF solvers using different benchmarks
- Results:
 - **DQBDD** is far **better** than other solvers for PEC
 - Figure below shows a cactus plot comparing runtimes of DQBF solvers for PEC instances

• DQBDD is nearly as good as the best solvers for CSP

QBFEval'20 Competition

- Comparison of DQBF solvers on selected benchmarks
- Results
- 1. DQBDD -257 solved in 5396 s
- 2. HQS -195 solved in 2662 s
- 3. iProver -170 solved in 17399 s

References

- [1] QBF evaluation 2020. http://www.qbflib.org/qbfeval20.php.
- [2] Karina Gitina et al. Equivalence checking of partial designs using dependency quantified boolean formulae. In ICCD'13.

