Requirements Metamodeling, Modeling, Verification and Validation

Ing. Ferencik Frantisek
Supervisor: Zdenek Havlice, Ph.D., Assoc.Prof.

ABSTRACT

This paper points out the possibility of facilitating and
streamlining processes during the development of a
software system, starting with the design, through its
implementation to maintenance, including verification
and validation of requirements. The article focuses on a
specific category of software, which is the area of web
applications based on the MVC architecture. In the first
stage, a method was developed together with a
methodology for modeling critical parts of such
systems. This method uses the principles of DSM
domain-specific modeling. In the second stage, the
CASE tool MVCStudio was developed for this method
and was built on the WebGME generic modeling
platform. For this purpose, a DSML language of
domain-specific modeling was created and
implemented in the WebGME environment using
metamodeling. In the third stage, several extensions of
the CASE tool were implemented to support
automation and more efficient development processes.

WEB APPLICATION
MODELING METHOD

Critical parts

In order to create a method for modeling a specific
category of systems, it is necessary to identify its critical
parts, and these parts must be supported by models.
Based on the principles of the MVC design pattern as
well as experience with the development of such web
applications, we have identified, that critical parts are
data layer, GUI graphical user interface, control of data
flow and application state management.

CREATING A METHOD

ferencik f@gmail.com
zdenek.havlice@tuke.sk

DATA LAYER MODELING

It is necessary to model data entities
persisted in the database and the
relationships between them. The
inspiration for the model diagram is the
physical ERD entityrelational diagram.

™

STATE CONTROL MODELING

The user switches between different screens on
which he performs certain actions. We perceive
the set of these screens and transitions as
states and transitions between them. The
inspiration for the ControllerDiagram is the
STD diagram of state transitions.

USER INTERFACE MODELING

This ViewDiagram is not just about the GUI. After processing
the request, it is necessary to returh data that can be in
various formats. The most used is the HTML code that the
browser interprets into the GUI. There are other data transfer
formats that are used to communicate with other programs.

The model diagram contains the following elements:

» Entity - database table {user, product, order, etc

» Entity attribute - table column; characterizes the type of information;

«Index - a structure that improves the speed of operations

« Primary key - uniquely identifies the record in the table;

» Foreign key - primary key reference; identifies relationships between entities;
«Relation - defines the connection of entities;

- Cardinality - number of entity occurrences in this relationship;

- Relational handling restrictions - enlargement compared to the ERD; Rl protection.

Fraduer

The classical ERD diagram has been extended by
defining the rules for ensuring Rl reference
integrity. These rules can be defined for U-update
and D- te operations. Rl security methods are
restrictiv | setting and cascading. In figure a
ModelDiagr containing 3 data entities with
defined attributes and relationships is displayed.
It is a simple scheme for linking orders and
products, which ensures that one order can
contain multiple products and at the same time
one product can be assigned to multiple orders.

The ControllerDiagram contains the following components:

- Start and end terminators — initial or final state of the application.

« Action - state analogy in STD. Processing the URL of the request triggers a specific
action, and thus specific state is entered within the application when loading

e URL.

« Contraller — combines several actions, such as displaying the product in the e-shop.
« Transition - oriented state connection. It is possible to add a transition invacation

condition, for example, after authent

tion redirection to the list of orders. If the

transition does not lead to a specific action kut only to the controller, then the action
marked as an index is automatically considered to be the destination of the transition.
Infigure is a state diagram of a simple e-commerce. After

coming to the

website, the user is on

the home page, and after using the search, he gets to the

list
prog

continue to

of products,

where he can add the
ct to the cart. He can return to the product list or
process the order. After

equipping it, he finishes working in the application.

ControllerDiagram diagrams can group controllers within larger logical
units - modules. In figure we see the connection of application modules.
The Front module contains the primary e-commerce business logic
services and the Admin module contains order fulfillment services.

The components of the ViewDiagram are:
» Format - response type

+HTML el
input to be
recorded. For example, title, form, textinput, link, etc.

N, File and others

text form of the

It is, for example, the JSON format. The file can also be the

[..

= l‘r-vrmnﬂ'|

Bapamse Uy

B8 |8

nt — base unit containing inforration or enabling user

hject — used for JSON format. It contains data in a structured

In figure we can see the product screen.
The page contains the name, description,
product price, available quantity in stock
and a form for adding to the basket
containing another model of the form
containing field for entering the quantity
and a button for adding to the basket.

ArcTalanfomur

DATA FLOW MODELING

In order for the origin of the processed data to be
clear and where the results of operations are stored
or displayed, it is necessary to model this process in
the DataFlowDiagram.

DU

o |

Department of Electronics and Multimedia Communications, Faculty of Electrical

It is inspire:
components:

oninputs, such as
s of creating an order with sending noti
tput - process input and output dat;

emails.
pectively; for

Seitrgn W P

y the DFD data flow diagram and contains the following

+ Process - any process that changes data and produces output based

The DataFlowDiagram in figure contains a
process that retrieves from the product
EAN database and APl access data.
Subsequently, with this data, the API calls
the vendor, which retums the number of
pieces in stock. This number is finally
assigned to the corresponding element of
the GUI template.

>kpi @

-~

DEVELOPMENT OF METHODOLOGY

There is no general and universal procedure for
designing a system and compiling its individual models.
However, we recommend finding inspiration in our
approach and adapting the individual steps to one’s
needs according to the current situation:

1. Based on the defined system requirements, it is
necessary to design and model the data layer. It is not a
problem if certain errors and inconsistencies appear in
the original models, because these models can be
modified at any time later. It will also help to detect
design errors in a timely manner. Thus, even if the
structure of the data is not yet completely clear at the
beginning, it is necessary to model at least what is
known and other elements will be continuously
supplemented during the design and compilation of
other models.

2. The main system functions are also hidden in the
system requirements definitions. These functions need
to be identified and divided into interrelated groups. Itis
a good practice to focus these groups on larger
functional units and create modules from them (e.g.
administration, user profile, front module, etc.).

3. In this step, for each module, we re-examine the
functions of the system and again try to divide them into
interrelated smaller groups. We perceive these groups as
the states of the application in which the user is
currently located (e.g. home screen, product list,
shopping cart, etc) Within these states, certain bases
can also be defined, which we refer to as actions. They
are important in supporting the partial functions
provided by the given controller {e.g. checking the
condition of the product in stock).

4. In the next step, we need to design and model the GUI
and possibly other types of views {HTML template, JSON
string or file). Each type of view contains its specific
compenents, from which it is necessary to compile this
view according to the defined requirements. For
example, when modeling a GUI template, components
such as a form, various input fields, links, buttons, and
many other elements are available.

5. In this last step, we have modeled and have made
available everything necessary to create a data flow
diagram. It is advisable to have the previous diagrams
already created, because it uses them to a large extent.
Therefore, we recommend modeling this type of
diagram completely at the end. The data stream can
connect the data layer with the view layer through
processes in the controllers.

Engineering and Informatics, Technical University of Kosice, Slovak Republic

