
CZECH TECHNICAL UNIVERSITY IN PRAGUE

Faculty of Electrical Engineering

MASTER’S THESIS

Bc. Richard Štec

Scheduling jobs with stochastic processing time on parallel
identical machines

Czech Technical University in Prague, Faculty of Electrical Engineering

Thesis supervisor: Ing. Antońın Novák





ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

434784Osobní číslo:RichardJméno:ŠtecPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatikaStudijní program:

Kybernetická bezpečnostStudijní obor:

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Rozvrhování úloh s neurčitou dobou trvání na paralelních identických strojích

Název diplomové práce anglicky:

Scheduling jobs with stochastic processing time on parallel identical machines

Pokyny pro vypracování:
This thesis addresses a scheduling jobs with stochastic processing time
on parallel processors. The objective is to maximize probability that the
makespan will not exceed a common due date. The aim is to make an
attempt to propose a better algorithm that the one published in [1]. The
particular objectives of the thesis are:
1) Review the existing works in the scheduling domain and analyze
results described in [1].
2) For problem described in [1], devise and implement an exact
scheduling algorithm based on Integer Linear Programming.
3) For the same problem propose and implement a branch-and-price
algorithm.
4) Compare the devised algorithms with results published in [1].

Seznam doporučené literatury:
[1] Mohammad Ranjbar, Morteza Davari, Roel Leus:
Two branch-and-bound algorithms for the robust parallel machine
scheduling problem. Computers & OR 39(7): 1652-1660 (2012)
[2] Shuwan Zhu, Wenjuan Fan, Shanlin Yang, Jun Pei, Panos M.
Pardalos, Operating room planning and surgical case scheduling: a
review of literature, In: Journal of Combinatorial Optimization. Online
first, https://doi.org/10.1007/s10878-018-0322-6, (2019).
[3] Michael L. Pinedo. Scheduling: Theory, Algorithms, and Systems
(3rd ed.). Springer Publishing Company, Incorporated. 2008.

Jméno a pracoviště vedoucí(ho) diplomové práce:

Ing. Antonín Novák, katedra řídicí techniky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Termín odevzdání diplomové práce: 24.05.2019Datum zadání diplomové práce: 29.01.2019

Platnost zadání diplomové práce: 20.09.2020

_________________________________________________________________________________
prof. Ing. Pavel Ripka, CSc.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Antonín Novák

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 1 z 2CVUT-CZ-ZDP-2015.1



III. PŘEVZETÍ ZADÁNÍ
Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VICStrana 2 z 2CVUT-CZ-ZDP-2015.1



Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university thesis.

In Prague, ............................. ...............................................





Acknowledgements

I would like to thank Antońın Novák and Přemysl Š̊ucha for their excellent supervision
and guidance in this thesis process.

I would also like to thank my friends Michal Gabriel and José Arturo Lozano Angulo for
finding a time to read this work and offer suggestions for its improvement.





Abstract

In this work we consider a stochastic parallel machine scheduling problem,
where the jobs have uncertain processing time, described by a normal
probability distribution. The objective is to maximize the probability, that
all the jobs are completed before single common due date. To tackle this
problem, we first introduce a linear approximation of the non-linear model
of the problem. We also provide an exact Branch-and-Price approach
and an algorithm to solve a special case of the problem with exactly two
machines. Furthermore, we introduce a heuristic algorithm to give a lower
bound for the objective function. Experimental results show, that the
Branch-and-Price algorithm and the two-machines algorithm outperform
the existing approaches.

Keywords: stochastic scheduling, β-robust scheduling, robust parallel ma-
chine scheduling problem

Abstrakt

Táto práca sa zaoberá problémom stochastického rozvrhovania, kde tr-
vanie úlohy nie je presne známe, ale je poṕısané normálnym pravdepodob-
nostným rozdeleńım. Úlohou je nájsť taký rozvrh, ktorý maximalizuje
pravdepodobnosť, že všetky úlohy budú dokončené pred jedným spoločným
konečným termı́nom. Aby sme tento problém vyriešili, najprv predstav́ıme
lineárnu aproximáciu nelineárneho modelu problému. Následne zavedieme
exaktný Branch-and-Price postup a algoritmus na vyriešenie špeciálneho
pŕıpadu, kde uvažujeme len dva stroje. Taktiež predstav́ıme heurisitcký
algoritmus, ktorý poč́ıta spodnú medz pre kriteriálnu funkciu. Experi-
menty ukázali, že Branch-and-Price a algoritmus pre pŕıpad dvoch strojov
dávajú lepšie výsledky ako momentálne existujúce postupy.

Kľúčové slová: stochastické rozvrhovanie, β-robustné rozvrhovanie, ro-
bust parallel machine scheduling problem





CONTENTS

Contents

1 Introduction 1

1.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Problem statement 4

2.1 Non-linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Problem properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 vmax calculation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Large Job Allocated First heuristic . . . . . . . . . . . . . . . . . . . . 8

3 Mixed-Integer Linear Program model 10

3.1 Model transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2 Linear approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Model tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4.1 Fraction approximation interval tuning . . . . . . . . . . . . . . . . . . 16
3.4.2 Objective function approximation interval tuning . . . . . . . . . . . . 17
3.4.3 M constant tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Branch-and-Price model 19

4.1 Master Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.1 Dual problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Pricing Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.1 Mixed-Integer Linear Program for the Pricing Problem . . . . . . . . . 23
4.2.2 Variance Enumeration model . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Branching scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Recovery model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Two-machines problem 28

5.1 Reformulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.3 Complete algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Experimental results 35

6.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2 Heuristic performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Non-linear solver performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.4 Mixed-Integer Linear Program performance . . . . . . . . . . . . . . . . . . . 37
6.5 Branch-and-Price performance . . . . . . . . . . . . . . . . . . . . . . . . . . 39
6.6 Two-machines model performance . . . . . . . . . . . . . . . . . . . . . . . . 39

6.6.1 ξ evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Conclusion 42

i



CONTENTS

ii



LIST OF FIGURES

List of Figures

1 An example of piece-wise linear approximation of the fraction. . . . . . . . . 13
2 Diagram of the proposed Branch-and-Price algorithm. . . . . . . . . . . . . . 20
3 Example branching tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4 Example plot of ξ(a) function. . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5 Plot of Equation (5.22) and Equation (5.25). . . . . . . . . . . . . . . . . . . 32
6 Plot of the objective function with highlighted real solution for the maximiza-

tion problem (c = −13, v̄ = 50, v = 5). . . . . . . . . . . . . . . . . . . . . . . 33
7 Histogram showing comparison of initial heuristics objective values. . . . . . . 36
8 Mean running times of Two-machines model . . . . . . . . . . . . . . . . . . . 40
9 Histogram of ξ values calculated from the optimal solution to instances. . . . 41

iii



LIST OF FIGURES

iv



1 INTRODUCTION

1 Introduction

The problem of parallel machine scheduling arises in many real world situations. It is
usually introduced with reference to production optimization [Pinedo, 2012], but finds ap-
plications in many other fields, such as rostering [Ernst et al., 2004] or parallel computation
[El-Rewini and Lewis, 1990]. The deterministic variant (i.e., all parameters are known and
static, no disruptions are assumed, etc.) has been already extensively studied in the 20th
century [Cheng and Sin, 1990]. However, it soon became clear that the application of the
deterministic scheduling models does not suffice for many practical applications, since the in-
fluence of non-deterministic behavior can be too significant to ignore. This has been noted by
several authors, such as [Maccarthy and Liu, 1993] or [Stoop and Wiers, 1996], and eventually
gave rise to the field of stochastic scheduling.

Stochastic behavior can be observed in many factors. The machines can breakdown at
any moment [Adiri et al., 1989] and cannot continue operation until repaired, the supply of
resources might by uncertain [Ramazan and Dimitrakopoulos, 2013], the release dates, due
dates can be stochastic [Pinedo, 1983] and so on.

This work focuses on the problem of parallel machine scheduling, where the processing
time of each job is not precisely known and is given by a probability distribution. The optimal
solution is a schedule that maximizes the probability that all the jobs are finished before a
common specified due date. A good example for the application of such scheduling model is
the scheduling of operations in operation theaters, where [Stepaniak et al., 2009] have shown
that the processing time of a single operation can be modeled by a lognormal distribution.

1.1 Related work

There are many approaches to stochastic scheduling problems. One of the most popular,
is known as the reactive scheduling, whose principle is a real-time response to the breakdown
of a schedule. A summary of such methods is given by [Smith, 1995] or [Sabuncuoglu and
Bayız, 2000].

Another approach was introduced by [Daniels and Kouvelis, 1995], who defined the term
robust scheduling. This approach aims to create a schedule that minimizes the impact of
expected stochastic effects during the execution of the schedule. [Módos et al., 2017] study
a single machine scheduling problem, with uncertain start time of each job. Furthermore,
each job has an energy consumption assigned and the objective is to find a robust schedule
that minimizes the total tardiness with respect to given energy consumption limit. They
propose two exact algorithms (Branch-and-Bound and logic-based Benders decomposition)
and a heuristic algorithm (tabu search). They solve instances up to 15 jobs using the exact
algorithms within the given the time limit. It is also shown that the proposed heuristic tabu
search algorithms solves instances with up to 100 jobs within several seconds and improves
the objective by 40.2% compared to the Earliest Due Date First ordering rule. A different
way to tackle the problem of creating a robust schedule is to employ the fuzzy set theory.
[Dubois et al., 2003] and [Wang, 2004] give overview of such methods.

A notable study is done by [Kouvelis et al., 2000], who devise a Branch-and-Bound method
to solve two-machine flow shop robust scheduling problem, where the processing times of jobs
are uncertain. Apart from other similar studies, they do not assume a priori knowledge of

1/44



1 INTRODUCTION

the distribution of the processing times, and instead describe a more general approach. They
propose a branch-and-bound algorithm and a heuristic to solve the problem, managing to
solve instances with up to 15 jobs, while the time average on the largest instances was 20
minutes. They also introduced a heuristic algorithm that managed to obtain the optimal
solution in 95% of cases, while the run time was only several seconds. Such problems, where
the distributions of the stochastic variables are not precisely known is a field of distributionally
robust optimization. [Chang et al., 2019] study the problem for multiple parallel machines,
where only a moment information about the distribution of the job processing times is known.
They develop an exact second order cone program and managed to solve instances with up
to 100 jobs and 5 machines within several seconds.

In recent years, the problem of β-robust scheduling received increased attention. The term
was coined by [Daniels and Carrillo, 1997] and the goal is to create a schedule that optimizes
some objective function with respect to some target level β. They also introduced a method
to build a β-robust schedule for a single machine problem with jobs that have uncertain
processing times, while optimizing the total flow time criterion. They solved instances up to
20 jobs within 30 seconds on average. The same problem is also studied by [Lu et al., 2012],
while also considering a sequence-dependent setup times. These setup times together with
the processing of jobs are uncertain and are represented using intervals. They reformulate the
problem as a robust constrained shortest path problem and develop a simulated annealing
framework where they propose a heuristic to solve it. To compare the performance of the
heuristic they also implement an enumeration method to obtain the optimal value. They test
their approach on test cases with maximum of 8 jobs and generate total of 1215 instances.
In all the cases, the proposed heuristic manged to find the exact solution for the problem
in less than 20 seconds. [Alimoradi et al., 2016] solve robust parallel machine scheduling

problem (RPMSP) with jobs with uncertain processing times and total flow time as criterion.
They stated several theorems and proposed a specific branch-and-bound method to solve the
problem. Instances with up to 45 jobs and 5 machines were solved in less than 20 minutes.

[Ranjbar et al., 2012] propose two branch-and-bound algorithms to solve the problem of
robust parallel machine scheduling, while maximizing the probability that all the jobs are
processed before common due date δ. They also introduce methods to calculate the lower
and upper bound on the objective value and a method to calculate the lower bound on the
number of jobs each machine has to schedule. They solve instances with up to 5 machines and
20 jobs. Their first method, denoted as B&B1, solve the largest instances in about an hour,
while the second branch-and-bound (B&B2) was unable to solve the largest instances due to
limited resources. They however note that under time limit, the B&B2 algorithm is better at
providing heuristic solutions. It is also shown the for the B&B1 the optimal solution is found
early in the search and most of the time is spent on proving its optimality.

The total flow time criterion is useful under certain circumstances, however this work
focuses on problem of maximization of the probability, that the schedule is completed before
single common due date. The proposed exact algorithms have the benefit that they do not
produce symmetries during the search, as compared to [Ranjbar et al., 2012].

2/44



1 INTRODUCTION

1.2 Contribution

The contributions of this work are several:

(i) We propose an extension of the heuristic algorithm given by [Ranjbar et al., 2012],
which in many cases provides significantly better lower bound on the objective value.

(ii) We introduce a linear approximation of the non-linear model of the problem, which can
be used as a standalone solver and as a method to solve a sub-problem of the RPMSP.

(iii) We provide a Branch-and-Price decomposition of the problem, which employs two sup-
port models (the Master Problem and Pricing Problem) and a branching scheme.

(iv) We propose two methods to solve the Pricing Problem.

(v) We describe an exact algorithm for a special case of two machines.

(vi) We conclude that our methods provide better results then the ones proposed by [Ranjbar
et al., 2012]

1.3 Thesis outline

In Section 2 we formally describe the problem and give bounds on the objective value.
We also provide a non-linear model and introduce our proposed heuristic algorithm to solve
the problem. In Section 3, we propose a Mixed-Integer Linear Program for the problem
derived from the non-linear model. We also discuss bounds on the approximation intervals.
The Branch-and-Price decomposition of the problem is introduced in Section 4. We give full
description of how the decomposition was obtained and propose a way how to solve it. In
Section 5 we show how to solve a special case of the problem, when there are exactly 2
machines present. Section 6 shows the results of experiments performed for each proposed
method. We draw conclusions in Section 7.

3/44



2 PROBLEM STATEMENT

2 Problem statement

Consider M identical parallel machines and a set of N jobs J . We wish to distribute them
among the machines such that a criterion function will be optimized. Let us denote j-th job
as Jj . Each of these is given by a processing time πj , which is not exactly known and is given
as a normal probability distribution. In other words, we can associate processing time πj of
each job with some normal distribution, which is described by its mean µj and variance σ2j :

πj ∼ N (µj , σ
2
j ), µj , σ

2
j ∈ N (2.1)

We also consider a common deadline δ, before which all the tasks should be completed.
Our objective is to find a schedule that maximizes the probability that we process all the tasks

before the deadline δ.
Let us consider a set of jobs Si ⊆ J to be scheduled on a machine Mi. Utilizing the

property that the sum of independent normally distributed random variables has a normal
distribution, the time for the machine to complete jobs Si is given by a normal distribution
N (µMi

, σ2Mi
), whose parameters are merely the sum of parameters of the jobs scheduled on

this machine. In other words,

N (µMi
, σ2Mi

) = N





∑

j∈Si

µj ,
∑

j∈Si

σ2j



 (2.2)

The probability, that machineMi finishes processing its scheduled jobs before the deadline
δ, is given by the cumulative standard normal distribution function Φ, as

Pr[Mi finishes before δ] = Φ





δ − µMi
√

σ2Mi



 . (2.3)

Let us call the quantity defined in Equation (2.3) the partial service level. We denote the
partial service level corresponding to i-th machine as Φi. Under the assumption of indepen-
dence, the probability that all the machines finish processing before the deadline is a product
of these probabilities, i.e.,

Pr[All jobs in J are completed before δ] =
M
∏

i=1

Φ





δ − µMi
√

σ2Mi



 . (2.4)

We will denote this quantity as the total service level. In other words, the total service
level is the product of all partial service levels. Since we want to maximize this probability,
we state the objective as

max

M
∏

i=1

Φ





δ − µMi
√

σ2Mi



 . (2.5)

4/44



2 PROBLEM STATEMENT

The problem defined in this way is known as a robust parallel machine scheduling problem

[Ranjbar et al., 2012]. In the Graham’s three-field scheduling notation [Graham et al., 1979],
this problem can be denoted as P |πj ∼ N (µj , σ

2
j )|Pr [Cmax ≤ δ]. This problem is known to

be strongly NP-hard [Ranjbar et al., 2012].
As an example, consider an instance described by set of jobs shown in Table 1. Let δ = 84.

J J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

µ 32 12 2 20 19 35 23 21 26 41
σ2 2 2 1 9 2 4 13 3 8 7

Table 1: Example of a problem instance.

Then, the optimal solution for the instance is

{J1, J5, J9} 7→M1,

{J2, J4, J7, J8} 7→M2,

{J3, J6, J10} 7→M3

and the service level is

Φ

(

84− (32 + 19 + 26)√
2 + 2 + 8

)

·Φ
(

84− (12 + 20 + 23 + 21)√
2 + 9 + 13 + 3

)

·Φ
(

84− (2 + 35 + 41)√
1 + 4 + 7

)

= 0.8796 .

(2.6)
Note that this is not the only optimal solution, because the job assignment can by done for
any permutation of the machine set. We call such solutions symmetrical.

2.1 Non-linear model

With the objective function defined in the Equation (2.5), we can describe the problem
with a non-linear mixed integer program. First, we introduce a binary assignment variables
xi,j , for which it hold that

xi,j =

{

1 if job Jj is scheduled on machine Mi

0 otherwise.
(2.7)

The sum of the means and variances of jobs scheduled on some machine Mi can be then
written as

µMi
=

N
∑

j=1

xi,j · µj ∀i ∈ {1, . . . ,M}, (2.8)

σ2Mi
=

N
∑

j=1

xi,j · σ2j ∀i ∈ {1, . . . ,M}. (2.9)

5/44



2 PROBLEM STATEMENT

The last thing left is to introduce a constraint that enforces that each job is scheduled
exactly once on some machine. We summarize the model as:

max

M
∏

i=1

Φ





δ − µMi
√

σ2Mi



 (2.10)

subject to: µMi
=

N
∑

j=1

xi,j · µj ∀i ∈ {1, . . . ,M}, (2.11)

σ2Mi
=

N
∑

j=1

xi,j · σ2j ∀i ∈ {1, . . . ,M}, (2.12)

M
∑

i=1

xi,j = 1 ∀j ∈ {1, . . . , N} (2.13)

where: xi,j ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (2.14)

The Equation (2.13) represents the constraint that forces the scheduling of each job exactly
once. To solve this problem, one can use an off-the-shelf non-linear mixed-integer program
solver with model (2.10)–(2.13). However, as it will be further shown, its performance is rather
poor. Hence, one needs to develop more efficient approaches.

2.2 Problem properties

In this section, we discuss the properties of the problem and give lower and upper bounds
on the optimal objective value that can be calculated for a given problem instance. We also
introduce our own heuristic algorithm for the problem.

In their work, [Ranjbar et al., 2012] introduce a method to calculate the lower and upper
bounds on a problem instance. The calculation of the lower bound is given by their proposed
initial heuristic and the upper bound is provided by considering a best-case scenario by
scheduling what their denote as virtual jobs. Both these bounds can then be updated during
the run of their proposed algorithms to solve a problem instance. Furthermore, they introduce
a lower bound on the number of jobs that each machine has to schedule, denoted as vmin.
This bound is initially set to 1 and is updated every time the upper bound is recalculated.

We now discuss several properties of the problem. Consider a case where it holds that
N ≤M (i.e the number of machines is larger then or equal to the number of jobs to schedule).
For such problem, the solution is straightforward since we can schedule one job per machine,
potentially leaving some of them empty. For the cases, where it holds that N > M , each
machine has to schedule at least one job, as reflected in the initial value of the vmin bound.
This can be shown from the following example. Consider an instance with M machines and
N jobs to schedule, where N > M . Let the optimal objective value by given as

FoptM =
M
∏

i=1

Φ





δ − µMi
√

σ2Mi



 . (2.15)

6/44



2 PROBLEM STATEMENT

Now consider an instance with M + 1 machines and the same set of N jobs and optimal
objective value FoptM+1

, where N ≥ M + 1. Since this is a relaxation of the same instance
with M machines, it must hold that

FoptM+1
≥ FoptM . (2.16)

To obtain the same objective value, we simply use the same schedule as in the M machine
version of the problem and leave some single machine empty, so the objective value Fobj is
given as

Fobj = lim
σ2
Mi

→0
FoptM · Φ





δ − 0
√

σ2Mi



 = FoptM . (2.17)

Therefore, to obtain a better objective value, at least one job must be scheduled on each
machine.

2.2.1 vmax calculation

In this section, we prove an upper bound on the number of jobs that each machine can
process in an optimal schedule. We will denote this bound as vmax.

Proposition 1. Let J ∗ be an ordered set of virtual jobs described by two parameters (µ[j], σ
2
[j]).

Each such virtual job is created by sorting the parameters of the original jobs J ∈ J for a

given instance in an ascending order, so that it holds

µ[j] ≤ µ[j+1], ∀j ∈ {1, ..., N − 1} (2.18)

σ2[j] ≤ σ2[j+1], ∀j ∈ {1, ..., N − 1}. (2.19)

Let OLB be some lower bound on the objective value of a problem instance. Then the upper

bound on the maximum number of jobs each machine can schedule vmax is such a number for

which it holds that

Φ

(

δ −∑vmax

j=1 µ[j]
∑vmax

j=1 σ2[j]

)

≥ OLB (2.20)

Φ





δ −∑min(vmax+1,N)
j=1 µ[j]

∑min(vmax+1,N)
j=1 σ2[j]



 ≤ OLB, (2.21)

where N is the number of jobs for given instance.

Proof. Assume that we schedule first k virtual jobs from the set J ∗ to some single machine
in a consecutive order. Let S ⊆ J : |S| ≥ k. It then must hold that

7/44



2 PROBLEM STATEMENT

k
∑

j=1

µ[j] ≤
k
∑

j=1

µj , (2.22)

k
∑

j=1

σ2[j] ≤
k
∑

j=1

σ2j , (2.23)

where [µj , σ
2
j ] ∼ Jj ∈ S. It immediately follows that

Φ





δ −∑k
j=1 µ[j]

√

∑k
j=1 σ

2
[j]



 ≥ Φ





δ −∑k
j=1 µj

√

∑k
j=1 σ

2
j



 . (2.24)

Therefore, assigning k first jobs from the ordered set J ∗ can never give worse objective value
than assigning any k jobs from the set of the original jobs J . Next, note that for any partial
service level Φi it holds that

Φi ≥
M
∏

l=1

Φl (2.25)

since
Φi ∈ [0, 1], ∀i ∈ {1, . . . ,M}, (2.26)

whereM is the number of machines for the given instance. This implies that if a single partial
service level drops below the lower bound OLB, then the whole objective value can never be
higher then this lower bound. Then from the Equation (2.24) it immediately follows

Φ





δ −∑k
j=1 µ[j]

√

∑k
j=1 σ

2
[j]



 ≥ Φ





δ −∑k
j=1 µj

√

∑k
j=1 σ

2
j



 ≥ OLB. (2.27)

The upper bound on the maximum number of jobs each machine can schedule vmax is then
such a number k, for which this equation holds, but does not for k = vmax + 1. Furthermore,
we note that vmax bound is computable in O(n log n) time given the value OLB.

2.2.2 Large Job Allocated First heuristic

In this section, we propose an extension of the heuristic algorithm given by [Ranjbar et

al., 2012]. Their method produces a feasible solution to the problem whose objective value is
then taken as the lower bound for the instance. However, they do not do any sorting of the
jobs beforehand and schedule them in a unsorted order. Our improvement is to introduce an
ordering that would simulate the scheduling of ”large” jobs first (i.e., jobs that would most
likely take a long time to process). We denote this method as Large Job Allocated First or
LJAF heuristic.

Consider an instance described by M machines and N jobs. The proposed heuristic is

8/44



2 PROBLEM STATEMENT

shown in Algorithm 1. It sorts jobs in a non-increasing order of products of means and
variances µj · σ2j . The ties are broken by larger µj . In each step, a job is taken and assigned
to the machine i ∈ {1, . . . ,M} with the currently largest probability πi.

Algorithm 1 LJAF heuristics

let µ1 · σ21 ≥ µ2 · σ22 ≥ . . . ≥ µN · σ2N
ci ← 1 ∀i ∈ {1, . . . ,M}
ai ← 0 ∀i ∈ {1, . . . ,M}
for j ← 1 to N do

i⋆ ← argmaxi∈{1,...,M} ci
ai⋆,j ← 1

ci ← Φ

(

δ−µTai⋆√
σTai⋆

)

end for

return ci,ai ∀i ∈ {1, . . . ,M}

This algorithm is analogical to the LPT-rule (longest processing time first) for P ||Cmax

problem.

9/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

3 Mixed-Integer Linear Program model

In this section, we develop a mixed-integer linear program model to solve the problem.
All the non-linear operations are present in the objective function, namely the product, the
cumulative distribution function, the division and the square root.

We introduce a model transformation that allows an easier linear approximation. Then, we
proceed with the actual piece-wise linear model of the non-linear objective function. Moreover,
we establish finite bounds on the intervals where the non-linearities need to be approximated.

3.1 Model transformation

We begin by transforming the objective function given by Equation (2.10). First, let us
replace the product by exploiting the logarithm property. Hence, we have

max ln





M
∏

i=1

Φ





δ − µMi
√

σ2Mi







 = max

M
∑

i=1

lnΦ





δ − µMi
√

σ2Mi



 , (3.1)

where ln(x) represents the natural logarithm. In the next step, we change the objective func-

tion by using a substitution σMi
≡
√

σ2Mi
. The right-hand side of the equation (3.1) can then

be rewritten as

max

M
∑

i=1

lnΦ

(

δ − µMi

σMi

)

. (3.2)

Now we show how to linearize the division of two continuous variables. We use a similar
trick that is used in the linear fractional programming, known as Charnes-Cooper transfor-

mation [Charnes and Cooper, 1962]. By introducing a variable ti ≡ 1
σMi

and by using the

substitution vi ≡ ti · µMi
, we transform the objective function into

max

M
∑

i=1

lnΦ(δ · ti − vi). (3.3)

We have obtained a new transformed objective function, where the only non-linear term
is the logarithm of the cumulative distribution function. The transformation of the objective
function has introduced several new variables and these have to be reflected in the constraints
as well. We begin by rewriting the original constraints first. Multiplying the equation (2.11)
with ti, we get:

vi = µMi
· ti =

N
∑

j=1

xi,j · ti · µj ∀i ∈ {1, . . . ,M} (3.4)

We set zi,j ≡ xi,j · ti to get the first transformed constraint

vi =
N
∑

j=1

zi,j · µj ∀i ∈ {1, . . . ,M}. (3.5)

10/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

Note that the definition of xi,j and ti necessarily implies that zi,j ∈ {0, ti}. Similarly, we
transform the Equation (2.12) by multiplying both sides with ti:

σ2Mi
· ti =

N
∑

j=1

xi,j · ti · σ2j 7→ ui =
N
∑

j=1

zi,j · σ2j ∀i ∈ {1, . . . ,M}, (3.6)

where we let ui ≡ σ2Mi
· ti.

Finally, we transform Equation (2.13). However, due to the fact that ti is tied to specific
machine and the constraint sums across all the machines, we cannot simply multiply both
sides by some single ti. Instead, we need to employ the following trick. We introduce a new
binary variable wi,j which will serve the same purpose as variable xi,j in the original model
(i.e. the job-machine assignment). We write that

M
∑

i=1

wi,j = 1 ∀j ∈ {1, . . . , N} (3.7)

to enforce that each job is scheduled exactly once. Now we need to create a relation between
the variables wi,j and zi,j . Whenever wi,j is set to 1, the corresponding zi,j must be equal to
its corresponding ti. When we introduce some large constant M, such that M→∞, we can
add the following constraints:

ti − (1− wi,j)M ≤ zi,j ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (3.8)

ti + (1− wi,j)M ≥ zi,j ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (3.9)

wi,j ≥ zi,jM ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (3.10)

Indeed, if some wi,j is equal to 1, it will force the corresponding zi,j to take on the given
ti value. On the other hand, if wi,j will amount to zero, zi,j has to be zero as well. Note that
in Equation (3.6) we have introduced a new variable ui. From the definition of ti, we set

σ2Mi
=

1

t2i
. (3.11)

However, from the definition of ui we get that

ui = σ2Mi
ti =

ti
t2i
. (3.12)

Therefore,

ui =
1

ti
. (3.13)

The transformed non-linear model is given as follows:

max
M
∑

i=1

lnΦ(δ · ti − vi) (3.14)

subject to: vi =
N
∑

j=1

zi,j · µj ∀i ∈ {1, . . . ,M}, (3.15)

11/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

ui =
N
∑

j=1

zi,j · σj ∀i ∈ {1, . . . ,M}, (3.16)

M
∑

i=1

wi,j = 1 ∀j ∈ {1, . . . , N}, (3.17)

ti − (1− wi,j)M ≤ zi,j ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.18)

ti + (1− wi,j)M ≥ zi,j ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.19)

wi,j ≥ zi,jM ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.20)

ui =
1

ti
∀i ∈ {1, . . . ,M} (3.21)

where: ti, vi, ui ∈ R
+, ∀i ∈ {1, . . . ,M}, (3.22)

zi,j ∈ R
+, ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.23)

wi,j ∈ {0, 1}, ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N} (3.24)

3.2 Linear approximation

We are now left with two non-linear expressions to deal with – the fraction (3.21) and the
natural logarithm of the cumulative normalized normal distribution function (3.14). To get
rid of the fraction first, the strategy will be to approximate it around several points across
the whole interval where we need to perform the linearization. This will naturally divide the
interval into L sub-intervals, where we approximate the function. Depending on the argument
in the fraction, we choose such sub-interval, which provides the best approximation. We
approximate the function 1

ti
using the Taylor expansion. We write down the general formula

up to the first order as

T (f(x), a) = f(a) +
df

dx
(a) · (x− a) + ε, (3.25)

where ε is the error term. Applying to our case, we get

T

(

1

ti
, hk

)

≈ 1

hk
− 1

h2k
(ti − hk), (3.26)

with hk representing the values around which we perform the approximation. These points
represent the centers of the above mentioned sub-intervals. Note that the length of two arbi-
trary sub-intervals does not have to be equal.

Now we introduce the corresponding constraints for the model that produce the necessary
effect. The way we go about it is following. We introduce a new variable λi,k, which is equal
to the value of the linearization performed on k-th sub-interval, for the i-th machine. Further,
we enforce that if the fraction argument on the i-th machine falls into the k-th sub-interval,
only the corresponding λi,k value evaluates to its corresponding linearization, while the other
λi,k values for the same machine are set to zero. This means that we can write ui as:

ui =
L
∑

k=1

λi,k ∀i ∈ {1, . . . ,M}. (3.27)

12/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

Figure 1 shows an example piece-wise approximation of the division on interval [0.05, 0.3]. The
yellow dotted lines indicate division into the sub-intervals. The first order Taylor expansion
is evaluated around the center of each of the sub-intervals. The values shown on the x-axis
represent the chosen hk values, each having a corresponding λi,k value, where the i-th value is
given by the machine on which we perform the approximation. If the corresponding ti value
falls into the sub-interval centered around some point hj , only λi,j value is evaluated using
the corresponding linear approximation. Every other λi,k for the given machine is set to zero.

0.0583 0.0833 0.15 0.25

5

10

15

20

Figure 1: An example of piece-wise linear approximation of the fraction.

As mentioned above, when we fix the i index, the ui will be equal only to one specific
value λi,k since others will be zero. To be able to do this though, we need to introduce another
binary decision variable yi,k for which it will hold that

yi,k =

{

1 if the corresponding ti value falls into the k-th subinterval

0 otherwise.
(3.28)

We now have everything we need to finish the linearization. Let ∆hk be the length of the
k-th sub-interval. In other words, k-th sub-interval can be written as [hk − ∆hk

2 , hk + ∆hk

2 ].
Remember, we want to linearize the term 1

ti
, so the ti is our argument. If ti falls into some

sub-interval given by the point hk, it means that

hk −
∆hk
2
≤ ti ≤ hk +

∆hk
2
. (3.29)

By splitting this into two inequalities and a subtraction we get the following:

− ∆hk
2
≤ ti − hk (3.30)

ti − hk ≤
∆hk
2

(3.31)

The only thing left to do is to incorporate the yi,k variable to these inequalities so they switch
the corresponding assignment variables accordingly. We introduce the following constraints:

ti − hk ≥ −(1− yik)M − ∆hk
2

∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.32)

13/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

ti − hk ≤
∆hk
2

+ (1− yik)M ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L} (3.33)

We see that at least one set of equations (3.32)–(3.33) has to hold for the yi,k variables to
be switched. It is also desired that for each machine only one yi,k is activated, so we introduce
additional constraint

L
∑

k=1

yi,k = 1 ∀i ∈ {1, . . . ,M}. (3.34)

Finally, with these constraints set, we can assign the corresponding linear approximations

λi,k ≥
1

hk
− 1

h2k
(ti − hk)− (1− yik)M ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.35)

λi,k ≤
1

hk
− 1

h2k
(ti − hk) + (1− yik)M ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.36)

λi,k ≤ yi,kM ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}. (3.37)

These constraints force the λi,k to evaluate to its corresponding value, or to zero if we are
not evaluating the approximation on the given sub-interval.

3.3 Complete model

Only non-linear term left is the objective function with its cumulative distribution function.
We could proceed similarly as in the fraction linearization, however we choose no to due to
the following:

(i) Cumulative normal distribution function does not have an analytic form

(ii) In our implementation we use solver feature that has support for piece-wise linear ap-

proximation of the objective function implemented by a specialized simplex method.

The complete model can be stated as follows:

max
M
∑

i=1

lnΦ(δ · ti − vi) (3.38)

subject to: vi =
N
∑

j=1

µj · zi,j ∀i ∈ {1, . . . ,M}, (3.39)

ui =
N
∑

j=1

σ2j · zi,j ∀i ∈ {1, . . . ,M}, (3.40)

M
∑

i=1

wi,j = 1 ∀j ∈ {1, . . . , N}, (3.41)

14/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

ti − (1− wi,j)M ≤ zi,j ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.42)

zi,j ≤ ti + (1− wi,j)M ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.43)

zi,j ≤ wi,jM ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.44)

N
∑

j=1

zi,j ≥ ti ∀i ∈ {1, . . . ,M}, (3.45)

ui =
L
∑

k=1

λi,k ∀i ∈ {1, . . . ,M}, (3.46)

L
∑

k=1

yi,k = 1 ∀i ∈ {1, . . . ,M}, (3.47)

λi,k ≥
1

hk
− 1

h2k
(ti − hk)− (1− yi,k)M ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L},

(3.48)

λi,k ≤
1

hk
− 1

h2k
(ti − hk) + (1− yi,k)M ∀i ∈ {1, . . . ,M}∀k ∈ {1, . . . , L},

(3.49)

λi,k ≤ yi,kM ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.50)

ti − hk ≥ −(1− yi,k)M − ∆hk
2

∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.51)

ti − hk ≤
∆hk
2

+ (1− yi,k)M ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L} (3.52)

where: ti, vi, ui ∈ R
+ ∀i ∈ {1, . . . ,M}, (3.53)

zi,j ∈ R
+ ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.54)

λi,k ∈ R
+ ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L}, (3.55)

wi,j ∈ {0, 1} ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}, (3.56)

yi,k ∈ {0, 1} ∀i ∈ {1, . . . ,M}, ∀k ∈ {1, . . . , L} (3.57)

3.4 Model tuning

From the practical standpoint of view we also need to consider an additional thing and
that is the actual implementation of the approximation (sub)intervals. It is obvious that
the smoother the interval division is, the more precise results will be. On the other hand,
smooth division induces many sub-intervals and therefore causes longer running time of the
solver. Therefore, we impose bounds on the approximation intervals to make them as narrow
as possible. Note that in theory, it can be done precisely, since our instances work only with
integers. We then try to find a trade-off between the precision of the model and the smoothness
of the approximation.

15/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

3.4.1 Fraction approximation interval tuning

In this section, we establish bounds on the interval on which we will approximate the
function ui =

1
ti
, by using the vmin and vmax bounds described in Section 2. We also introduce

a method in which the sub-intervals are generated. We begin by discussing the lower bound.
We wish to minimize the value of ui which in turn means maximizing the value of ti. Remember

that this value is defined as ti =
1

σMi

, σMi
=
√

σ2Mi
. Therefore, we want to make the value

of σMi
as small as possible. The first option would be to take the lowest possible value of σ2j

which corresponds to scheduling a single job. We know, that each machine has to schedule at
least vmin jobs. Let σ∗ denote an ordered set of all available variances. Let σ2[i] denote an i-th
element of the set σ∗. It holds that

σ2[j] ≤ σ2[j+1], ∀j ∈ {1, . . . , N − 1}. (3.58)

The lower bound FLB of the fraction approximation interval is then given as

FLB =
1

tmax
=

√

√

√

√

vmin
∑

j=1

σ2[j]. (3.59)

To get the upper bound we need to make the term ui as large as possible. This implies
scheduling as many jobs with as high variances as possible. Since we know that no machine
can schedule more than vmax jobs, the upper bound FUB is given as

FUB =
1

tmin
=

√

√

√

√

N
∑

j=N−vmax+1

σ2[j]. (3.60)

We now turn attention to the question as how to design the sub-intervals. There are many
possible approaches, the most obvious being creating equidistant splits of the whole domain of
the interval. However, we decided to split the interval equidistantly with respect to the range
of the approximated function. Let bk, bk+1 be the two boundary points of k-th sub-interval.
We require that

∣

∣

∣

∣

1

bk
− 1

bk+1

∣

∣

∣

∣

= const. ≡ ∆H, ∀k ∈ {1, . . . , L}. (3.61)

Since 1
ti
is monotonously decreasing function, we omit the absolute value. From the equation

above we derive a recursive formula for the calculation of the boundary points that represent
the sub-intervals:

1

bk
− 1

bk+1
= ∆H (3.62)

bk+1

bk
− 1 = ∆H · bk+1 (3.63)

bk+1

(

1

bk
−∆H

)

= 1 (3.64)

bk+1 =
bk

1−∆H · bk
(3.65)

16/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

It holds that b1 = FLB, bk ∈ [FLB, FUB], ∀k ∈ {2, . . . , L} and bL+1 = FUB. The central point
hk of the k − th sub-interval is then given as

hk =
bk + bk+1

2
. (3.66)

3.4.2 Objective function approximation interval tuning

This section describes lower and upper bounds placed on the objective function. To establish
the lower bound, we calculate a heuristic solution to obtain some feasible schedule. The lower
bound OLB is then given as the logarithm of the service level calculated from the heuristic
solution.

To obtain the upper bound, we need to consider the best case scenario. Let J ∗ denote
an ordered set of virtual jobs created from the set of the original jobs J , by recombining the
means and variances of the jobs in such way that it holds that µ[j] ≤ µj+1 and σ2[j] ≤ σ2j+1 for
every job J[j] ∈ J ∗. The upper bound OUB on the objective value is then given as

OUB = lnΦ





δ −∑vmin

j=1 µ[j]
√

∑vmin

j=1 σ2[j]



 . (3.67)

To create the division of the interval into R sub-intervals we use and equidistant split in
the domain of the function, so for the two boundary points ok, ok+1 of the k-th sub-interval,
it holds that

|ok − ok+1| = ∆F, ∀k ∈ {1, . . . , R}. (3.68)

Since the objective function is increasing, we can again omit the absolute value but we need
to change the sign. The recursive relation for the sub-interval boundaries is then given as

ok+1 = ∆F + ok (3.69)

It holds that o1 = Φ−1(OLB), ok ∈ [Φ−1(OLB),Φ
−1(OUB)], ∀k ∈ {2, . . . , R} and oR+1 =

Φ−1(OUB), where Φ
−1(x) is the inverse cumulative normal distribution function known as the

probit function. We do not calculate the central points, since the approximation is done auto-
matically by the Gurobi solver piece-wise linear objective feature, from the interval boundary
points.

3.4.3 M constant tuning

In this section, we discuss how to set properly theM constant. Since the bigM constant
arises in various sets of constraints, we are going to make the following distinction:

M 7→M1 for constraints (3.42) – (3.44) (3.70)

M 7→M2 for constraints (3.48) – (3.50) (3.71)

M 7→M3 for constraints (3.51) – (3.52) (3.72)

17/44



3 MIXED-INTEGER LINEAR PROGRAM MODEL

The constant M1 sets the zi,j variables. If we consider the worst case scenario (ti =
tmax, wi,j = 0), we see that by letting M1 = tmax = 1

min(σ) the constraints will still set the
variables properly:

tmax − tmax ≤ zi,j
zi,j ≤ tmax + tmax

zi,j ≤ 0.

The constant M2 sets the λi,k variables. We consider the worst case scenario and set
M2 = λmax = 1

FLB
. Note that from Figure 1 we see that the actual approximation lies

beneath the actual function. We could therefore provide even tighter bound by evaluating the
approximation at the lower bound as

M2 =
1

h1
− 1

h21
(FLB − h1). (3.73)

Finally M3 variable arises in constraint that are responsible for setting the proper sub-
interval switching variable yi,k. We set M3 = FUB. In the worst scenario it holds that ti =
FUB, hk = h1 and yi, 1 = 0. We see that

FUB − h1 ≥ −FUB −
∆h1
2
,

FUB − h1 ≤
∆h1
2

+ FUB.

18/44



4 BRANCH-AND-PRICE MODEL

4 Branch-and-Price model

In this chapter, we propose a Branch-and-Price [Barnhart et al., 1998] decomposition to
solve the problem. In general, Branch-and-Price algorithms consist of two support models:
the Master Problem and the Pricing Problem. The Master Problem is a reformulation of the
original problem, so that we don’t assign the jobs one by one, but instead create sets of jobs
(denoted as patterns) which we assign to machines. LetM denote the number of machines for
given instance. We then select M patterns such that they maximize the objective function,
given the constraint that each job is scheduled.

There is an exponential number of possible patterns, so we start by assuming only a small
portion of them. This is called a restricted Master Problem. Depending on the solution of this
problem, we generate additional patterns by a procedure known as the column generation

[Desaulniers et al., 2006].
In the column generation procedure, we pass the dual variables from the Master Problem,

which represent costs of scheduling specific jobs, to the Pricing Problem, which in turn gen-
erates additional pattern. The Pricing Problem is directly derived from the dual formulation
of the Master Problem. We update the already existing set of patterns with its solution and
solve the Master Problem again. We repeat the process until we cannot find a pattern that
has a negative reduced cost (i.e., the objective value of the Pricing Problem).

The Master Problem relaxes the pattern assignment variables and may not provide an
integer solution. In that case, we need to apply a branching scheme, that creates two copies of
the original problem, but imposes a constraint that some two jobs must be scheduled together
or a constraint that the same jobs cannot be scheduled together. We then attempt to solve
both those problems. If some of them does not yield an integer solution, we must perform the
branching decision again. This creates a branching tree.

Once all the leaves of the branching tree are closed (i.e., integer solution was found) we
take the best solution, which then represents the optimal solution to the given instance.

The whole procedure is shown in Figure 2. The initial heuristic generates the original set
of patterns, which are then used in the Master Problem. The dual costs from the Master
Problem are used in the Pricing Problem to get a new pattern. The Master problem is solved
again with the updated set of patterns and recalculates the dual costs. The procedure repeats
itself until no pattern with negative reduced cost can be found anymore. If the solver does
not yield and integer solution we apply the branching mechanism. Once all the leaves of the
branching tree are closed, we pick the best solution.

The main advantage of the Branch-and-Price approach is that we get rid of the symmetries
while searching for the solution and that we push the non-linearity to separate procedure. This
is a consequence of omitting the job-machine assignment and replacing it with the pattern-
machine assignment method. In the following sections, we describe each part of the algorithm
in details.

4.1 Master Problem

In the original non-linear model of the problem, we assigned individual jobs to machines.
In Branch-and-Price decomposition, we use the variable lifting procedure. We create the set
of all possible combinations of jobs on a single machine. Then, one could choose exactly

19/44



4 BRANCH-AND-PRICE MODEL

Initial heuristic

Master Problem

Dual variable
extraction

Pricing Problem

Negative  
reduced  

cost?

Add new pattern

No

Extract the last
solution from the
Master ProblemBranch

(add pairing
constraint)

Prune existing
patterns

Yes

Integer  
solution?

Test run Master
Problem

Feasible?

Generate additional
patterns & recovery

model

No

Yes

Begin

End

Feasible?
Yes

No

Discard

Figure 2: Diagram of the proposed Branch-and-Price algorithm.

M (i.e., the number of machines) of such combinations to form a feasible schedule, so that
the objective function is maximized subject to condition that each job is scheduled. This is
the foundation of Master Problem definition. We represent each such combination as a binary
vector pk = {0, 1}N , where N is the number of jobs to schedule. We call such vector a pattern.
As an example, consider an instance of 4 jobs and 2 machines. An example pattern might be
ps = (1, 1, 0, 0). This indicates that the pattern schedules jobs 1 and 2. When we say that we
assign (schedule) this pattern to machine 1, we mean that we schedule jobs 1 and 2 on the
machine numbered as 1.

It immediately follows that to cover all the possibilities of job-machine assignments, we
would have to generate 2N patterns. Let us denote the set of all patterns by P. However,
complete representation of P is costly. The trick of the Branch-and-Price approach is that
we can start with some initial subset of patterns, which can be relatively small and we can
generate further suitable patterns along the way. We denote this reduced set of patterns as
P ′. Moreover, in order to prove optimality of the solution, one does not typically need to
generate the whole set P.

Additionally, we define a cost of k-th pattern, denoted as ln(ck), which is calculated as
the logarithm of the partial service level of a single machine on which we schedule the given
pattern.

20/44



4 BRANCH-AND-PRICE MODEL

As an example consider again the pattern ps = (1, 1, 0, 0). Lets say that the instance is
given by deadline δ = 35, two parallel machinesM = 2 and jobs J1 = (12, 7), J2 = (18, 2), J3 =
(7, 3), J4 = (13, 5). The cost ln(cs) of pattern ps is then

ln(cs) = lnΦ

(

δ − µ1 − µ2
√

σ21 + σ22

)

= lnΦ

(

5√
9

)

= ln(0.95) . (4.1)

An element pk,j , for which it holds that

pk,j =

{

1 if job Jj is in pattern pk

0 otherwise,
(4.2)

then indicates whether k-th pattern schedules j-th job. We can then write

max

|P|
∑

k=1

yk · ln ck (4.3)

subject to:

|P|
∑

k=1

yk · pk,j ≥ 1 ∀j ∈ {1, . . . , N}, (4.4)

|P|
∑

k=1

yk ≤M, (4.5)

where: yk ∈ {0, 1} ∀k ∈ {1, . . . , |P|}. (4.6)

The yk is a binary decision variable that indicates if we choose the k-th pattern to be scheduled
or not. The constraint (4.4) says that we cannot use more than M patterns, i.e. the number
of available resources. The other set of constraints specifies that each job has to be scheduled
on some machine.

The Master Problem is then a relaxation of the model (4.3) – (4.6), where we allow the
yk variables to take real positive values and the full-sized set of patterns P is relaxed with
subset P ′ ⊆ P, i.e.:

max

|P ′|
∑

k

yk · ln ck (4.7)

subject to:

|P ′|
∑

k=1

yk · pk,j ≥ 1 ∀j ∈ {1, . . . , N}, (4.8)

|P ′|
∑

k=1

yk ≤M (4.9)

where: yk ∈ R
+
0 ∀k ∈ {1, . . . , |P ′|} (4.10)

4.1.1 Dual problem

Since we begin with an initial limited set of patterns, we are faced with the question which
further patterns to generate. We will derive this procedure from the dual problem. The duality

21/44



4 BRANCH-AND-PRICE MODEL

principle states, that to every Linear Program (denoted as a primary problem) there exists a
dual problem, such that the number of variables is the same as the number of constraints in
the original one (i.e. to every constraint of original problem there is a dual variable) and the
sense of the optimization is reversed (i.e. one problem is stated as maximization and the other
as minimization). Furthermore, it can be shown that our problem satisfies so-called strong

duality and both the problems are therefore equivalent.
To construct such model, we assign to each constraint (4.8) – (4.9) a dual variable:

|P ′|
∑

k=1

yk · pk,j ≥ 1 7→ ψj ≤ 0, ∀j ∈ {1, . . . , N} (4.11)

|P ′|
∑

k=1

yk ≤M 7→ γ ≥ 0 (4.12)

Each of these new variables will be present in the objective function, with the coefficient equal
to the right side of their corresponding constraint. We invert the sense of the optimization of
the primary problem and the objective is thus given as

min
ψ,γ

N
∑

j=1

ψj +M · γ, (4.13)

where M is the number of machines for the given instance.
The original model works with the set of variables yk, for k ∈ {1, . . . , |P ′|}. This implicates

that our model has to have |P ′| constraints, to which the yk variables map. The constraints
are given by:

N
∑

j=1

ψj · pk,j + γ ≥ ln ck ∀k ∈ {1, . . . , |P ′|} (4.14)

We summarize the dual problem as:

min

N
∑

j=1

ψj +M · γ (4.15)

subject to:

N
∑

j=1

ψj · pk,j + γ ≥ ln ck ∀k ∈ {1, . . . , |P ′|}, (4.16)

where: γ ∈ R
+
0 , (4.17)

ψk ∈ R
−
0 ∀k ∈ {1, . . . , |P ′|} (4.18)

Note that the vector ψ is of dimension N . Therefore, each of its components corresponds
to a single specific job. This vector constitutes the desired rewards for scheduling each job
according to current Master Problem solution. The final question is how to obtain the initial
set of patterns. This is easily solved by computing heuristic solution for the instance. From
the feasible schedule it produces, we extract the patterns as scheduled on each machine. This
constitutes the initial set of patterns P ′ for the Master Problem.

22/44



4 BRANCH-AND-PRICE MODEL

4.2 Pricing Problem

In this section, we derive so called Pricing Problem, that suggests which pattern to generate.
We derive the objective function from the constraint given by Equation (4.16). We subtract
ln ck from both sides of the equation and get

N
∑

j=1

ψj · pk,j + γ − ln ck ≥ 0. (4.19)

We want to break the constraint (4.19) as much as possible. We introduce a decision variable
xj , which says if job j is to be scheduled in the newly generated pattern. Note that in this case
we consider only one machine and the variables xj represent a single vector, so the objective
is to minimize the term

min
x
−ψTx+ γ − lnΦ

(

δ − µTx√
σTx

)

, (4.20)

where we substituted the definition of ck, replaced the pk,j variables with the xj assignment
variables and let µ = (µ1, µ2, . . . , µN ), σ = (σ21, σ

2
2, . . . , σ

2
N , ), ψ = (−ψ1,−ψ2, . . . ,−ψN ) and

x = (x1, x2, . . . , xN ). Since γ is a constant for the pricing problem, we can omit it from the
objective. Further, we multiply the objective by minus one and write it as

max
x

lnΦ

(

δ − µTx√
σTx

)

+ψTx, (4.21)

which is the final form of the objective function.
The objective value of the solution of the Pricing Problem is called the reduced cost. With

the initial set of patterns we solve the Master Problem and extract the dual solutions ψ and
γ. We then pass the vector ψ to the Pricing Problem. The Pricing Problem assigns some
binary value to the variables xj . This represents the new pattern, which we add to our set of
available patterns P ′. We then solve the Master Problem again and obtain the updated dual
prices ψ and γ and repeat the process.

Furthermore, we make several remarks here. First, the model is non-linear and cannot be
solved directly using a linear program. Moreover, the problem can be shown to be at least
weakly NP-hard by reduction from the Knapsack Problem [Štec et al., to appear 2019]. All
this implies that compared to the Master Problem which is linear, most of the processing
time is going to be spent on the Pricing Problem. It is therefore critical not only to solve this
problem, but also to give the solution as fast as possible. To this end, we provide two possible
approaches to tackle this problem.

4.2.1 Mixed-Integer Linear Program for the Pricing Problem

The first approach we propose is to solve it using the already established mixed-integer
linear model from the Section 3. Since the Pricing Problem considers only a single machine,
we simplify the model by removing the dimension i, which identifies the different machines.
Moreover, since we do not require that all the jobs are scheduled, we discard the constraint
(3.41). Finally, we update the objective with the reward term from the current dual prices as

max lnΦ(δ · t− v) +ψTw. (4.22)

23/44



4 BRANCH-AND-PRICE MODEL

4.2.2 Variance Enumeration model

Another possible approach we propose is to fix the value
√
σTx ≡ √v in the Pricing

Problem objective value (4.21) and perform optimization over all the possible v values. Let
σ2[j] be an element of an ordered set VO of values in σ, such that ∀σ2[j] ∈ VO : σ2[j] ≥ σ2[j+1].

Let V = {min(σ),min(σ) + 1, . . . ,
∑vmax

j=1 σ2[j]}. We can then transform the problem into |V|
sub-problems as

max
v∈V

max
x

log Φ

(

δ − µTx√
v

)

+ψTx, (4.23)

subject to: v = σTx. (4.24)

Since v is constant for given sub-problem, the only non-linearity is the cumulative distribution
function. We can approximate that by using the piece wise linear objective feature provided
by the Gurobi MIP solver. From all the computed solutions, we choose the one with the
highest objective value. The main benefit of this approach is that each sub-problem can be
solved independently of others in parallel for varying values of v.

4.3 Branching scheme

With the Master and Pricing Problem defined, we put our algorithm together. At the core
it relies on an interplay of those two models. The Master Problem evaluates the jobs we have
to schedule by exploiting the duality theorem, while Pricing Problem, depending on the dual
costs, generates additional patterns that are inserted to the set of patterns P ′. The Master
Problem is resolved again with the updated set of patterns and determines new dual costs for
the jobs. Once we cannot find a pattern with a negative reduced cost, the Master Problem is
solved optimally. Then, we extract the optimal schedule by looking at the variables yk from
the last solution of the Master Problem. However, we note that the Master Problem is relaxed
and the yk values do not necessarily have to be integers. Hence, a branching mechanism that
ensures an integer solution has to be implemented.

In such cases, we add additional constraints on a pair of jobs – we create two copies of the
Master Problem adding constraint that enforces that they have to be scheduled on the same
machine and the opposite constraint stating that they must be scheduled separately to the
other copy. We then run the whole algorithm again, with the addition of these constraints
to the Pricing Problem solver, that must respect them in the new pattern generation. If the
next iteration of the solver again stops with an non-integer solution, we need to apply the
constraints to some other two jobs again.

This procedure creates a branching tree, where each node represents a single Master Prob-
lem with constraints given by the current and parent nodes up to the root. If in some node
we find an integer solution, we stop the execution and close the node. Otherwise, we need to
branch and continue until an integer solution is found. Once all the leaves are closed, we take
the best solution we could find as it represents the optimal schedule. We denote a single such
branch as a branching decision.

24/44



4 BRANCH-AND-PRICE MODEL

∅

X0 + X1 <= 1 X0 = X1

X2 = X3X2 + X3 <= 1

X4 + X5 <= 1 X4 = X5

Figure 3: Example branching tree.

Figure 3 depicts an example branching tree, where each node represents a single Master
Problem. Constraints of type Xi = Xj indicates that the jobs Ji and Jj have to be scheduled
together on some machine. Constraints written as Xi + Xj ≤ 1 mean that they cannot be
assigned to the same machine. The node labeled as ∅ indicates the initial node where no
branching constraints are enforced.

To make the branching tree as balanced as possible, to each job Jj we assign a variable
Dj , called a constraint degree of the job. Its value corresponds to the number of constraints
generated by this branching scheme, where the given job plays a role. Then we create an or-
dered set of all the jobs, denoted as JD, where we sort the jobs with respect to their constraint
degree in ascending order. In this way, the jobs on which we branch the least will always be
at the front.

To add new pair of constraints we simply take the first two jobs in this ordered set JD.
Here we can run into two possible issues. The first is that we can try to create a constraint
that already exists. This can be simply checked and if we were about to do it, we simply
replace the second job with the one next in order. If the situation repeats, we again take the
next following job.

The second issue are the conflicts in the generated constraints. As an example, assume
we have 2 constraints at the current Master Problem - that job J1 and job J2 have to be
scheduled on the same machine and that job J2 and J3 have to be scheduled on the same
machine. Obviously, if we were to add the constraint saying that job J1 and job J3 cannot be
scheduled on the same machine, we would have a contradiction in our hands.

To prevent this, we introduce two safeguards. The first one is a conflict avoidance mecha-
nism. Each job is represented as a single node of a graph. Each constraint on their pairing is
then represented as an edge. If it corresponds to enforced pairing (the jobs must be scheduled
on the same machine), the two nodes may be seen as a single one (i.e. the jobs are merged
into one). The other constraint (must not be together) is just a simple edge. When we are
about to add a constraint, we first perform a check whether any conflict would be formed.
This can be seen as a variation of the union find problem. If it would, we take look at the

25/44



4 BRANCH-AND-PRICE MODEL

next variable in the ordered set JD and try to apply constraint there. The whole procedure
is shown in Algorithm 2, where B is a set of elements defined as tuple (a, b, e), where e is
true if jobs a and b must be scheduled on the same machine and false otherwise. B therefore
represents the set of non-conflicting branching decisions.

Algorithm 2 Conflict avoidance mechanism

d← {0}N
B ← ∅
while some branching node still open do

run Branch-and-Price
if integer solution found then

close node
else

JD ← sort J with respect to d
i1 ← 0
i2 ← 1
while (JD[i1],JD[i2]) ∈ B ∨ unionFind(JD[i1],JD[i2]) do

i2 ← i2 + 1
if i2 ≥ N then

i1 ← i1 + 1
i2 ← i1 + 1

end if

end while

d[i1]← d[i1] + 1
d[i2]← d[i2] + 1
branch on JD[i1],JD[i2]

end if

end while

If we come to the point where we need to introduce a constraint on the pairing of jobs,
we need to remove the already existing patterns that violate it. This in turn can cause an
infeasibility of the Master Problem model, since we can end up with insufficient number
of patterns (i.e. less than the number of machines) or none of the remaining patterns would
schedule some subset of jobs. So after we prune the existing patterns, we need to check for the
feasibility of the model and if we cannot proceed, with need to regenerate additional patterns
with respect to the given constraints. A check for the feasibility of the Master problem and
additional pattern generation is done by the second safeguard, which is called the recovery

model and is described in the following section.

4.3.1 Recovery model

The purpose of the recovery model is to test the feasibility of the model under given
branching decisions. Additionally, the recovery model generates additional patterns for the
Master Problem, if the current set proves to be insufficient. Let xi,j be a binary assignment

26/44



4 BRANCH-AND-PRICE MODEL

variable for i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}. Then we formulate the objective function as a
minimization of the sum across all these variables:

min
M
∑

i=1

N
∑

j=1

xi,j (4.25)

The model has to schedule all the jobs, the same as the original model, so we introduce the
constraint:

M
∑

i=1

xi,j = 1. (4.26)

Furthermore, we need to ensure that the model takes into the account all the pairing con-
straints introduced by the branching scheme.

Now consider a general case where we have M machines and N jobs. Furthermore assume
a single pairing constraint on jobs J1 and J2 saying that they must be scheduled together.
Therefore, nothing prevents the model to create a solution where a first pattern is a unit
vector 1 and all other M − 1 patterns are zero vector 0. Similarly, for a case where we would
prohibit the paired scheduling of those two jobs, we might end up with a pattern that does
not schedule only this single job and then a pattern that only schedules this job, with the
rest of the patterns again being zero vectors.

To prevent such disproportionate distribution of jobs in patterns, we introduce the con-
straint stating that no pattern can schedule more than vmax (introduced in Section 2) jobs:

N
∑

j=1

xi,j ≤ vmax ∀i ∈ {1, . . . ,M} (4.27)

This will ensure that the generated patterns are more balanced. To summarize, the complete
model is given by the following integer linear program:

min

M
∑

i=1

N
∑

j=1

xi,j (4.28)

subject to:
M
∑

i=1

xi,j = 1 ∀j ∈ {1, . . . , N}, (4.29)

N
∑

j=1

xi,j ≤ vmax ∀i ∈ {1, . . . ,M}, (4.30)

xa,i = xb,i ∀(a, b, true) ∈ B, ∀i ∈ {1, . . . ,M}, (4.31)

xa,i + xb,i ≤ 1 ∀(a, b, false) ∈ B, ∀i ∈ {1, . . . ,M} (4.32)

where: xi,j ∈ {0, 1} ∀i ∈ {1, . . . ,M}, ∀j ∈ {1, . . . , N}. (4.33)

The recovery model performs a test run of the problem with current branching decisions
and tests its feasibility. If some conflict in the introduced branching decisions is present, the
model fails to produce a result and we cut the node off of the branching tree.

27/44



5 TWO-MACHINES PROBLEM

5 Two-machines problem

In this section, we introduce an algorithm for a special case of the problem with exactly
two parallel machines. We first reformulate the problem statement for this special case. Then
we show that the relaxation of this problem leads to maximization of a concave function of a
single variable. Finally, we show that from the solution of the relaxed problem we obtain the
optimal schedule by solving two sub-problems.

5.1 Reformulation

Let µ = (µ1, µ2, . . . , µN ), σ = (σ21, σ
2
2, . . . , σ

2
N ) and xi = (xi,1, xi,2, . . . , xi,N ) be vectors of

means, variances and job-machine assignment variables xi,j . We begin by writing the objective
function for the case of two machines. We get:

max
x1,x2

2
∏

i=1

Φ

(

δ − µTxi
√

σTxi

)

(5.1)

By applying the logarithm and expanding the sum we write that

max
x1,x2

lnΦ

(

δ − µTx1
√

σTx1

)

+ lnΦ

(

δ − µTx2
√

σTx2

)

. (5.2)

Since we schedule all the given tasks, the vectors x1 and x2 have to be mutually exclusive
on a corresponding components. We can therefore write that

µTx2 = µ
T1− µTx1, (5.3)

σTx2 = σ
T1− σTx1, (5.4)

where 1 is the unit vector. In other words, the sum of means on one machine is equal to
the total sum of all available means minus the sum of the means on the other machine. Let
v̄ = σT1 and V = {min(σ),min(σ) + 1, . . . , ⌈ v̄2⌉}. We then reformulate the problem as

max
v∈V

max
x

lnΦ

(

δ − µTx√
v

)

+ lnΦ

(

δ − µT1+ µTx√
v̄ − v

)

(5.5)

subject to: σTx = v (5.6)

where: x ∈ {0, 1}N , (5.7)

where N is the number of jobs to schedule. We will solve the problem similarly as in Sec-
tion 4.2.2. It is sufficient to test the values up to ⌈ v̄2⌉ due to the symmetry of the two machines.
For each fixed v ∈ V, we solve the problem only in terms of x variables. We show how in the
following section.

28/44



5 TWO-MACHINES PROBLEM

5.2 Relaxation

We fix the value v and get a sub-problem which we solve from its relaxation. We will use
the substitutions

a ≡ δ − µTx, (5.8)

c ≡ −2 · δ + µT1 (5.9)

and the following identity:
Φ(z) = 1− Φ(−z), z ∈ R (5.10)

We then write the relaxed problem as

max
a

lnΦ

(

a√
v

)

+ ln

(

1− Φ

(

c+ a√
v̄ − v

))

(5.11)

where: a ∈ R. (5.12)

Further, using the definition of the normal cumulative distribution function, we get that

Φ(x) =

∫ x

−∞
φ(t)dt =

1√
2π

∫ x

−∞
e−

t
2

2 dt, (5.13)

where φ(x) is the normal probability density function. We then write the objective as

ln

(

1√
2π

∫ a√
v

−∞
e−

t
2

2 dt

)

+ ln

(

1− 1√
2π

∫ c+a√
v̄−v

−∞
e−

t
2

2 dt

)

= g(a). (5.14)

Note that g(a) is a concave function.
We now wish to find a maximum of this function, which is the problem of finding an

extrema of a function:
dg

da
= 0 (5.15)

Note the function is only a function of a variable a, since we hold the v variable fixed.
Moreover, the a variable is only present in the bound of the integral. To find a derivative of
such function with respect to a, we use the Leibniz integral rule, that states the following:

d

dx

(

∫ b(x)

a(x)
f(x, t)dt

)

= f(x, b(x)) · d
dx
b(x)− f(x, a(x)) · d

dx
a(x) +

∫ b(x)

a(x)

∂

∂x
f(x, t)dt (5.16)

Since our function f inside the integral is the probability density function φ(t) and the lower
bound of the integral is a constant, the second and third term evaluate to zero:

∫ a

−∞

d

da
φ(t)dt = 0 (5.17)

φ(t) · d
dx

(−∞) = 0. (5.18)

Now to find the derivative, we get

d

da
g(a) =

1

Φ
(

a√
v

)

d

da
Φ

(

a√
v

)

− 1

1− Φ
(

c+a√
v̄−v

)

d

da
Φ

(

c+ a√
v̄ − v

)

. (5.19)

29/44



5 TWO-MACHINES PROBLEM

We then find the corresponding derivatives using the Equation (5.16):

d

da
Φ

(

a√
v

)

= φ

(

a√
v

)

· 1√
v

(5.20)

d

da
Φ

(

c+ a√
v̄ − v

)

= φ

(

c+ a√
v̄ − v

)

· 1√
v̄ − v (5.21)

So we rewrite the derivative as

d

da
g(a) =

φ
(

a√
v

)

Φ
(

a√
v

) · 1√
v
−

φ
(

c+a√
v̄−v

)

1− Φ
(

c+a√
v̄−v

) · 1√
v̄ − v = 0. (5.22)

We then multiply both sides with the term 1− Φ
(

c+a√
v̄−v

)

> 0,

ξ ·
φ
(

a√
v

)

√
v
− φ

(

c+ a√
v̄ − v

)

· 1√
v̄ − v = 0, (5.23)

where

ξ ≡
1− Φ

(

c+a√
v̄−v

)

Φ
(

a√
v

) . (5.24)

We conjecture, that Equation (5.22) is analytically unsolvable due to presence of a variable
a both in the cumulative distribution function Φ and the probability distribution function φ.
However, we show that for our test cases, it holds that ξ ≈ 1. Figure 4 shows a plot of the
function ξ(a) for fixed value of c and varying v parameter. As it can be seen, the ξ value is
close to 1, with the exception of the borders of the interval. By assuming ξ = 1 we obtain a

10 20 30 40 50 60 70 80 90 100

a [-]

0.5

1

1.5

2

(a
) 

[-
]

v = 15
v = 10
v = 5

Figure 4: Example plot of ξ(a) function.

surrogate equation:
1√
v
· φ
(

a√
v

)

− 1√
v̄ − v · φ

(

c+ a√
v̄ − v

)

= 0 (5.25)

30/44



5 TWO-MACHINES PROBLEM

We then employ the definition of the normal probability density function φ(t):

1√
2π
e−

a
2

2v =
1√
2π
e
− (c+a)2

2(v̄−v) ·
√
v√

v̄ − v (5.26)

By multiplying by the constant
√
2π and applying the natural logarithm to both sides we get

that

− a2

2v
= − (c+ a)2

2(v̄ − v) +
1

2
ln

(

v

v̄ − v

)

. (5.27)

We continue expanding the term given by the Equation (5.27). Multiplying the equation by
−2 we get that

a2

v
=

(c+ a)2

(v̄ − v) − ln

(

v

v̄ − v

)

. (5.28)

We expand the term (c+ a)2 and get the following:

a2 + 2ac+ c2

(v̄ − v) − ln

(

v

v̄ − v

)

=
a2

v
(5.29)

a2

v
− a2

(v̄ − v) −
2ac

(v̄ − v) −
c2

(v̄ − v) + ln

(

v

v̄ − v

)

= 0 (5.30)

a2 ·
(

1

v
− 1

v̄ − v

)

− a · 2c

v̄ − v −
c2

(v̄ − v) + ln

(

v

v̄ − v

)

= 0 (5.31)

This is a quadratic equation with variable a and we solve it using the standard formula. First,
we evaluate the determinant D:

D =
4c2

(v̄ − v)2 − 4 ·
(

1

v
− 1

v̄ − v

)

·
(

− c2

v̄ − v

)

− 4 ·
(

1

v
− 1

v̄ − v

)

· ln
(

v

v̄ − v

)

(5.32)

To proceed further, we calculate that

1

v
− 1

v̄ − v =
v̄ − 2v

v · (v̄ − v) , (5.33)

so the second term of the determinant evaluates to

(

1

v
− 1

v̄ − v

)

·
(

− c2

v̄ − v

)

=
−c2 · (v̄ − 2v)

v · (v̄ − v)2 . (5.34)

We substitute this into the determinant and do additional changes:

D = 4 ·
(

c2

(v̄ − v)2 ·
(

1 +
v̄ − 2v

v

)

−
(

1

v
− 1

v̄ − v

)

· ln
(

v

v̄ − v

))

(5.35)

Finally, since we can write

1 +
v̄ − 2v

v
= 1 +

v̄ − v
v
− v

v
=
v̄ − v
v

, (5.36)

31/44



5 TWO-MACHINES PROBLEM

we get the final formula for the determinant:

D = 4 ·
(

c2

(v̄ − v) · v −
(

1

v
− 1

v̄ − v

)

· ln
(

v

v̄ − v

))

(5.37)

After the substitution into the quadratic root formula, we get that

a∗1,2 =

c
v̄−v
±
√

c2

(v̄−v)·v −
(

1
v
− 1

v̄−v

)

· ln
(

v
v̄−v

)

1
v
− 1

v̄−v

. (5.38)

a∗1,2 are solutions for the surrogate Equation (5.25). However, since ξ is not exactly 1, we need
to find the true global optimum of (5.11) by a gradient descent procedure.

5.3 Complete algorithm

The Equation (5.38) gives us two real solutions to the surrogate problem, but only one
solution is valid, because the second solution was introduced due to the approximation of the
ξ value. Figure 5 shows the plot of the original function (5.22) and the surrogate function
(5.25). Note, that the surrogate function (5.25) is a subtraction of two normal distributions,
divided by different coefficients.

0 20 40 60 80 100 120

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Figure 5: Plot of Equation (5.22) and Equation (5.25).

The first root of the quadratic equation is located between the two normal distributions
as seen in Figure 5. The second root is a result of the two distributions converging to zero at
different ratios from different sides of the x-axis. Since we set 1 ≤ v ≤ ⌈ v̄2⌉, it holds that

1√
v
≥ 1√

v̄ − v . (5.39)

This implies that the first distribution decreases at higher rate than the other one. Therefore
at some point, where a ≤ 0, the slower decrease of the second distribution overtakes the faster
decrease of the first one and drags the whole functional value below zero, resulting in second
root. This is contrary to the original equation, where the ξ term drives the whole function to

32/44



5 TWO-MACHINES PROBLEM

3 3.5 4 4.5 5 5.5 6 6.5 7

-0.2

-0.18

-0.16

-0.14

Figure 6: Plot of the objective function with highlighted real solution for the maximization
problem (c = −13, v̄ = 50, v = 5).

infinity. Only the root a∗2 is valid and we set it as the starting point of the gradient descent
procedure, since a∗2 is very close to the true global optimum of (5.11).

To solve the original problem, we must find such integer value of a that maximizes
the objective function. First we improve the solution by performing a gradient descent to
maximize the relaxed objective and get maximal value a∗. We need to do this step, since we
performed estimation of the ξ value. Then, since the g(a) is a concave function, we know that
optimal integer solution is going to be located on the interval [⌊a∗⌋, ⌈a∗⌉]. Figure 6 depicts
this situation. We then find the corresponding pattern by solving two mixed-integer linear
programs given as

MILP+(a∗, v) :

min a

subject to: a ≥ ⌈a∗⌉,
a = δ − µTx,

v = σTx

where: a ∈ Z,

x ∈ {0, 1}N

MILP−(a∗, v) :

max a

subject to: a ≤ ⌊a∗⌋
a = δ − µTx

v = σTx

where: a ∈ Z,

x ∈ {0, 1}N

The outputs of the linear programs are two patterns x∗
+,x

∗
−. We consider only a single

pattern that generates schedule with the better service level. The whole algorithm is shown
in Algorithm 3.

33/44



5 TWO-MACHINES PROBLEM

Algorithm 3 Two-machines model

hbest ← 0,xbest ← ∅
for v in V do

a∗ ←
c

v̄−v
−
√

c2

(v̄−v)·v−(
1
v
− 1

v̄−v
)·ln( v

v̄−v
)

1
v
− 1

v̄−v

while g(a∗) < max(g(a∗ − 1), g(a∗ + 1)) do
if g(a∗) < g(a∗ − 1) then

a∗ ← a∗ − 1
else

a∗ ← a∗ + 1
end if

end while

x∗
+ ← MILP+(a∗, v)
x∗
− ← MILP−(a∗, v)
x∗ ← argmax(h(x∗

+), h(x
∗
−))

if h(x∗) > hbest then
hbest ← h(x∗)
xbest ← x∗

end if

end for

return hbest,xbest

The h(x) is a function that calculates the service level from schedule generated by pattern
x.

34/44



6 EXPERIMENTAL RESULTS

6 Experimental results

In this section, we provide computational experiments for the methods proposed in the
thesis.

6.1 Experimental setup

To compare our proposed algorithms, we implemented the better one of two exact Branch-
and-Bound algorithms proposed by [Ranjbar et al., 2012] (named B&B1) as a reference. All
the methods (with the exception of the Two-machines model and the Non-linear model) were
implemented in C++. The Two-machines and Non-linear model were implemented in Python.
We used the Gurobi 8.0 solver to solve the mixed-integer linear program models. The Non-
linear model was solved using the SCIP 6.0.0 solver.

All experiments were run on a server with two Intel Xeon E5-2620 v4 processors, each
having 28 cores, 252 GB RAM memory and a 64-bit operating system. For the Mixed-Integer
Linear Program and Branch-and-Price experiments, 16 cores of one CPU were allocated.
Since the reference Branch-and-Bound implementation does not perform any computations
in parallel, only a single core was allocated. A single core was allocated for the Non-linear
model as well. The Two-machines model was separately tested using 1, 4, 8 and 16 cores to
observe the speed-up effect of the increased number of CPUs available.

All instances were generated using the method described by [Ranjbar et al., 2012]. The
exact value of the parameters used for the instance generation varied depending on the tested
model.

The non-linear model was tested using set of instances with 2, 3 and 4 machines and N ∈
{10, 11, 12, 13, 14, 15} jobs. The c parameter (as defined by [Ranjbar et al., 2012], influences
the variance of the distribution which generates the job variances) was set to either 0.25
or 0.75. For each such combination (M,N, c) 10 instances were generated, with total of 240
instances in the whole test set.

The Mixed-Integer Linear Program instance set was generated using fixed values of the
number of machines and the number of jobs, namely M = 3, N = 12. The only variable
was the c parameter, which took the values of 0.25, 0.50, 0.75 and 1.00. For each such triplet
(3, 12, c), 10 instances were generated, with 40 instances in the whole set in total.

For the Branch-and-Price, we created instances with 2, 3, 4, 5 and 6 machines and 14, 16,
18 and 20 jobs. The c parameter was set either to 0.25 or 0.75 . For each such triplet (M,N, c),
10 instances were generated, giving a total of 400 instances. Heuristic methods were tested
on the same test suite.

The subset of the Branch-and-Price instances whereM = 2 was used for the comparison of
the reference Branch-and-Bound, proposed Branch-and-Price and the Two-machines model.
This set was then extended with instances having 40, 80, 200 and 500 jobs, which were also
solved by the Two-machines model, Branch-and-Price and Branch-and-Bound. This was done
to showcase the scaling properties of the model. We also calculate the corresponding ξ value
for each optimal solution to instances from this set, to see if our approximation of Equation
(5.22) is justified.

For each tested algorithm we set the timeout of an one hour, after which if the program
did not finish its computation, it was stopped. Such instances, where we were not able to

35/44



6 EXPERIMENTAL RESULTS

find or prove an optimal solution in the given time, were not included in the mean runtime
and expanded nodes calculation. We however provide percentage of such instances with each
method.

6.2 Heuristic performance

Figure 7 shows a histogram of objective values calculated using the initial heuristic proposed
by [Ranjbar et al., 2012] and of values obtained using our LJAF heuristic.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

20

40

60

80

100

120

Figure 7: Histogram showing comparison of initial heuristics objective values.

Since both approaches give a feasible schedule, their objective values serve as a lower
bound on the objective. It is clear that our approach is more likely to produce a tighter lower
bound and is therefore better suited for the problem.

6.3 Non-linear solver performance

Table 2 shows a comparison of the Non-linear model run against the reference Branch-and-
Bound. The non-linear model suffers from the same problem of finding symmetrical solutions
as the reference algorithm. To combat this issue we introduced a symmetry-breaking con-
straint stating that the sum of mean values on the i-th machine has to be greater or equal
than the sum of means on the (i+ 1)-th machine, i.e. µMi

≥ µMi+1 , ∀i ∈ {1, . . . ,M − 1}.
The columns 3 and 4 show the performance of the Non-linear model with the symmetry-

breaking constraint, the next two columns the same model but without the symmetry-breaking
constraint, the last columns show results for the reference Branch-and-Bound algorithm. For
each approach we give the mean runtime and the mean number of expanded nodes together
with their standard deviation.

We note that the symmetry-breaking constraint had significant effect on the performance
of the non-linear model. On the largest tested instances the speed-up was approximately
seven-fold. This is also reflected in a lower number of expanded nodes for each instance. Com-
pared to the Branch-and-Bound algorithm the non-linear model does not perform well. On the
smallest instances (M = 2, N ∈ {10, 11, 12}) the reference algorithm was able to solve them in

36/44



6 EXPERIMENTAL RESULTS

less than 100 milliseconds. On the largest instances (M = 3, N = 15 and M = 4, N = 15) the
reference algorithm still outperformed the non-linear solver, although the number of expanded
nodes is significantly higher in every case.

Table 2: Comparison of Non-linear solver and the reference Branch-and-Bound.

Non-linear model Non-linear model (No symmetry break) Branch-and-Bound [Ranjbar et al., 2012]
machines jobs runtime [s] nodes [–] runtime [s] nodes [–] runtime [s] nodes [–]

M = 2

N = 10 1.1 (±0.4) 76.0 (±44.1) 1.4 (±0.4) 232.8 (±191.6) 0.0 (±0.0) 503.8 (±64.2)
N = 11 1.0 (±0.4) 108.3 (±53.5) 1.8 (±0.6) 353.1 (±242.1) 0.0 (±0.0) 1.0K (±126.6)
N = 12 1.3 (±0.5) 160.2 (±97.1) 1.9 (±0.4) 393.6 (±199.0) 0.0 (±0.0) 1.9K (±246.9)
N = 13 1.3 (±0.7) 255.8 (±200.8) 2.9 (±1.0) 1.0K (±609.3) 0.1 (±0.0) 4.0K (±495.4)
N = 14 1.5 (±0.8) 294.6 (±268.1) 2.8 (±1.1) 1.1K (±1.2K) 0.2 (±0.0) 8.3K (±803.5)
N = 15 2.1 (±1.1) 746.4 (±735.3) 3.7 (±1.3) 1.3K (±610.8) 0.4 (±0.0) 16.4K (±1.2K)

M = 3

N = 10 3.8 (±1.4) 503.8 (±261.0) 6.6 (±2.2) 2.3K (±1.3K) 0.1 (±0.0) 2.5K (±613.5)
N = 11 5.1 (±1.4) 977.9 (±509.1) 13.0 (±8.6) 4.7K (±4.0K) 0.2 (±0.0) 8.5K (±1.6K)
N = 12 8.5 (±2.9) 2.1K (±863.2) 25.4 (±11.9) 9.5K (±4.9K) 0.6 (±0.1) 24.1K (±4.7K)
N = 13 14.9 (±5.3) 4.5K (±2.4K) 55.7 (±28.2) 21.9K (±12.8K) 1.8 (±0.4) 71.2K (±14.2K)
N = 14 35.5 (±28.9) 14.8K (±13.0K) 207.3 (±188.0) 66.7K (±50.9K) 6.0 (±1.3) 236.5K (±53.1K)
N = 15 70.4 (±41.3) 29.0K (±18.5K) 586.5 (±534.3) 139.5K (±101.5K) 18.5 (±3.8) 729.9K (±157.1K)

M = 4

N = 10 5.9 (±2.5) 1.1K (±649.0) 19.8 (±9.3) 6.5K (±3.2K) 0.1 (±0.0) 2.7K (±971.0)
N = 11 9.7 (±2.2) 2.6K (±1.1K) 58.9 (±36.8) 19.1K (±12.6K) 0.3 (±0.1) 9.4K (±2.5K)
N = 12 20.3 (±11.0) 6.9K (±5.0K) 129.6 (±107.9) 40.1K (±34.2K) 1.3 (±0.4) 42.1K (±13.1K)
N = 13 50.0 (±38.4) 16.9K (±12.5K) 390.8 (±319.6) 123.5K (±98.0K) 5.3 (±1.6) 172.1K (±56.0K)
N = 14 112.2 (±75.5) 37.7K (±24.0K) 750.9 (±552.2) 204.1K (±164.7K) 23.3 (±7.2) 766.5K (±237.8K)
N = 15 267.0 (±131.8) 79.0K (±40.2K) 1.3K (±979.3) 304.4K (±149.6K) 91.9 (±18.0) 3.0M (±589.1K)

6.4 Mixed-Integer Linear Program performance

Mixed-Integer Linear Program (MILP) was tested on 40 instances with fixed parameters
M = 3 and N = 12. Table 3 shows the results of the test run of the MILP approach. The first
column represents the resolution of the approximation interval for the division approximation
(denoted as ∆H, see Section 3.4.1), the second column the resolution of the approximation
interval for the objective function (denoted as ∆F , see Section 3.4.2). The next three columns
show the values calculated from the test run of those 40 instances for the given pair of precision
parameters. The first one shows the mean runtime in seconds with corresponding standard
deviation. The second column shows the percentage (out of 40) of instances where the actual
optimal solution was found and the last one informs about the mean percentual gap of the
MILP objective function from the actual optimum for the non-optimally solved instances.

The results of the MILP were compared to the results of the reference Branch-and-Bound.
However, since the instances were rather homogeneous (fixed M,N) we use a single reference
runtime given as tBB = 0.02 seconds, which expresses the mean runtime needed by the ref-
erence algorithm to solve the instances to optimum. There are several remarks to be made
here. First, it is clear that even on the lowest approximation resolution the model lacks in
the runtime performance compared to the reference algorithm. This was expected and is the
reason why we did not expand the test set further. The second thing to note is that even
with the highest degree of approximation, the linear approximation did not find the optimal
schedule and objective value in all the cases.

Further, it appears that the precision of the division approximation does not influence
the resulting objective value significantly, but influences the total runtime greatly. This is in
contrast to the objective function approximation resolution, which with smoother approxima-

37/44



6 EXPERIMENTAL RESULTS

Table 3: Performance of the Mixed-Integer Linear Program model.

∆H ∆F Runtime [s] Optimally solved [%] Objective gap [%]

2

1 6.31 (±2.7) 7.5 4.1704
0.5 6.79 (±3.3) 35 7.7836
0.2 8.41 (±4.1) 67.5 0.9431
0.1 7.78 (±3.5) 72.5 17.4540

1.5

1 7.58 (±3.8) 5 2.2137
0.5 7.97 (±4.3) 35 2.3423
0.2 8.96 (±4.1) 75 10.1730
0.1 9.93 (±5.1) 82.5 0.2784

1

1 9.73 (±4.8) 15 3.0768
0.5 10.81 (±6.0) 45 4.6470
0.2 11.15 (±6.0) 82.5 0.0994
0.1 11.81 (±5.6) 85 11.1124

0.5

1 17.46 (±10.5) 10 0.9718
0.5 18.68 (±11.0) 42.5 3.6036
0.2 19.49 (±11.4) 82.5 0.0202
0.1 19.39 (±11.1) 95 0.0121

0.2

1 48.91 (±30.9) 12.5 0.9851
0.5 53.96 (±35.6) 45 7.3513
0.2 53.69 (±34.2) 82.5 11.0859
0.1 58.39 (±36.7) 97.5 0.0080

0.1

1 135.44 (±91.4) 17.5 9.0054
0.5 138.94 (±109.6) 45 8.3037
0.2 150.26 (±117.5) 82.5 29.6101
0.1 155.85 (±123.0) 95 38.6506

tion step improves the result and does not worsen the runtime that significantly. As expected
however, with the increasing precision of the approximations, the found solution approaches
the optimal one.

The difference in the increase of the runtimes is explained by the fact, that the approx-
imation of the division is simulated by placement of additional constraints on the model,
while the approximation of the objective function is handled by the Gurobi solver using the
implemented piece-wise linear objective function.

Gurobi also provides the option to tweak certain parameters of the solver to improve the
solving procedure. We experimented with the changing of priorities of certain model variables
on which the algorithm branches and reducing or increasing various tolerances, but no signif-
icant improvement was observed. Finally, we also used the Gurobi Tuning Tool, which tries
various parameter combinations on its own, to improve the runtime of the solver. This tool
concluded that no further improvements can be made.

38/44



6 EXPERIMENTAL RESULTS

6.5 Branch-and-Price performance

The results of the test run of the Branch-and-Price algorithm are shown in the Table 4. We
tested both the linear model and the enumeration model to solve the Pricing Problem. For
each method we provide the mean runtime, mean number of expanded nodes and percentage
of instances there were not solved in the limit. The mean runtime and mean number of
expanded nodes are given with their respective standard deviations. The number of expanded
nodes in the Branch-and-Price approach represents the number of nodes in the branching
scheme tree. The number of nodes of the reference Branch-and-Bound is the total number of
expanded nodes during the search.

Comparing the approaches to solve the Pricing Problem, we state that the linear model
performed significantly better than the enumeration one. Although the enumeration model
shows better runtime in several cases, such as M = 4, N = 20 and M = 5, N = 20, we note
that the number of instances not solved in the time limit is significantly higher and therefore
distorted the calculated results.

We see that the performance is generally worse compared to the reference Branch-and-
Bound on instances where M = 2 a M = 3, with the exception of M = 3, N = 20 where the
Branch-and-Price was able to solve more instances in the given time limit. ForM = 4, N = 14
the results are already comparable to the reference algorithm. On the rest of the instances
our algorithm outperforms the reference algorithm by a large margin. This is most likely due
to the fact that the Branch-and-Price avoids symmetrical solutions during the computation
and thus prunes the solution space significantly.

Table 4: Comparison of Branch-and-Price and the reference Branch-and-Bound.

Branch-and-Price
Branch-and-Bound [Ranjbar et al., 2012]

Linear Pricing model Enumeration Pricing model
machines jobs runtime [s] nodes [–] timeouts [%] runtime [s] nodes [–] timeouts [%] runtime [s] nodes [–] timeouts [%]

M = 2

N = 14 273.9 (±164.3) 1.1 (±0.2) 0 683.7 (±398.5) 1.1 (±0.4) 0 0.2 (±0.0) 3.6K (±2.3K) 0
N = 16 753.5 (±502.2) 1.2 (±0.7) 0 1.1K (±602.1) 1.3 (±0.7) 0 0.7 (±0.1) 15.5K (±7.6K) 0
N = 18 1.53K (±551.4) 1.3 (±0.7) 5 1.6K (±1.1K) 2.0 (±4.0) 10 3.0 (±0.3) 31.5K (±32.4K) 0
N = 20 2.32K (±485.2) 1.1 (±0.2) 20 1.6K (±676.8) 1.0 (±0.0) 50 12.3 (±0.9) 159.0K (±133.7 K) 0

M = 3

N = 14 116.7 (±245.7) 6.4 (±14.5) 0 652.9 (±852.6) 11.1 (±18.7) 5 6.0 (±1.1) 237.0K (±4.4K) 0
N = 16 366.6 (±398.9) 11.3 (±16.9) 0 835.9 (±871.0) 9.4 (±20.2) 25 60.3 (±11.0) 2.4M (±439.4K) 0
N = 18 797.2 (±566.2) 10.6 (±21.4) 10 872.7 (±521.0) 7.1 (±8.5) 30 507.6 (±76.8) 19.8M (±3.1)M 0
N = 20 1.7K (±750.7) 12.6 (±20.4) 30 1.4K (±1.1K) 5.4 (±10.8) 40 3.4K (±0) 133.0M (±0) 95

M = 4

N = 14 26.8 (±18.4) 5.2 (±10.5) 0 312.1 (±352.1) 4.2 (±8.3) 5 22.3 (±8.6) 253.2K (±192.6K) 0
N = 16 85.7 (±115.6) 9.4 (±14.3) 0 714.0 (±812.2) 7.8 (±17.7) 50 383.9 (±109.5) 5.7M (±3.2M) 0
N = 18 496.5 (±574.4) 20.0 (±20.1) 0 1.1K (±1.0K) 4.1 (±6.9) 45 – – 100
N = 20 1.2K (±893.9) 47.4 (±68.9) 5 926.0 (±481.1) 4.2 (±7.8) 70 – – 100

M = 5

N = 14 11.7 (±4.4) 1.5 (±2.0) 0 86.7 (±55.6) 1.1 (±0.5) 10 18.3 (±6.8) 518.0K (±192.2K) 0
N = 16 36.8 (±27.2) 10.1 (±13.6) 0 249.1 (±237.2) 4.0 (±6.7) 25 553.3 (±118.8) 15.6M (±3.4M) 0
N = 18 151.3 (±164.9) 26.0 (±33.0) 5 360.0 (±272.7) 2.9 (±5.7) 55 – – 100
N = 20 1.2K (±1.4)K 44.0 (±58.9) 10 646.2 (±384.2) 4.2 (±7.8) 70 – – 100

M = 6

N = 14 10.9 (±4.6) 1.7 (±2.3) 0 183.5 (±533.3) 2.7 (±6.0) 0 9.6 (±5.2) 100.1K (±101.6K) 0
N = 16 19.3 (±9.2) 3.3 (±4.9) 0 76.6 (±43.4) 1.4 (±1.3) 10 378.7 (±224.7) 4.7M (±4.8M) 0
N = 18 49.8 (±30.4) 9.6 (±13.8) 0 367.4 (±418.5) 7.4 (±9.8) 25 2.2K (±587.0) 19.2M (±26.8M) 90
N = 20 217.1 (±295.5) 54.0 (±88.0) 15 203.8 (±206.0) 1.0 (±0.0) 50 – – 100

6.6 Two-machines model performance

Table 5 shows the mean running time and its standard deviation of the Two-machines
model compared to the Branch-and-Price and the reference Branch-and-Bound algorithms
for instances with 2 machines. We give results for the Two-machines model run restricted
to a single CPU core and to four CPU cores. Clearly, the Two-machines model outperforms

39/44



6 EXPERIMENTAL RESULTS

the Branch-and-Price and is comparable to the Branch-and-Bound on the instances with
smaller number of jobs, but shows significantly better scaling properties as the number of
jobs increases. We also note that both the Branch-and-Price and the reference Branch-and-
Bound algorithms were unable to solve the instances with N ≥ 40 within given time limit.

Table 5: Comparison of Two-machines model, Branch-and-Price and the reference Branch-
and-Bound.

Two-machines model (1 core) Two-machines model (4 cores) Branch-and-Price Branch-and-Bound [Ranjbar et al., 2012]
machines jobs runtime [s] runtime [s] runtime [s] runtime [s]

M = 2

N = 14 1.1 (±0.8) 0.3 (±0.2) 273.9 (±164.3) 0.2 (±0.0)
N = 16 1.0 (±0.9) 0.3 (±0.3) 753.5 (±502.2) 0.7 (±0.1)
N = 18 1.3 (±1.2) 0.4 (±0.3) 1.53K (±551.4) 3.0 (±0.3)
N = 20 1.5 (±1.1) 0.4 (±0.3) 2.32K (±485.2) 12.3 (±0.9)
N = 40 2.5 (±1.9) 0.7 (±0.6) – –
N = 80 5.4 (±4.2) 1.5 (±1.2) – –
N = 200 14.6 (±8.9) 3.9 (±2.4) – –
N = 500 65.1 (±37.3) 16.9 (±9.7) – –

Further, Figure 8 shows the mean running time of the Two-machines model run on in-
stances with 14, 16, 18, 20, 40, 80, 200 and 500 jobs, with varying number of allocated CPU
cores, namely 1, 4, 8 and 16 cores. Even for the largest instances (N = 500) we were able
find the solution in about a minute for a single core run and in less than 20 seconds for the
increased number of allocated cores. The model shows excellent parallel scaling ability.

40 80 200 500

10

20

30

40

50

60

Figure 8: Mean running times of Two-machines model

6.6.1 ξ evaluation

Figure 9 shows the histogram of calculated ξ values from the optimal solution of the
instances. It holds in all the cases that ξ ≥ 0.8 and therefore we claim that the performed
approximation of Equation (5.22) is justified.

40/44



6 EXPERIMENTAL RESULTS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

Figure 9: Histogram of ξ values calculated from the optimal solution to instances.

41/44



7 CONCLUSION

7 Conclusion

This thesis focuses on a stochastic scheduling problem, where the processing time of each
job is not exactly known and is given by normal distribution. This problem is formulated as a
β-robust scheduling problem where the objective is to maximize the probability the schedule
is completed before a given common due date.

One of the most significant contributions of this work is the Branch-and-Price decompo-
sition of the problem. In most cases, the performance is significantly better then the Branch-
and-Bound algorithm proposed by [Ranjbar et al., 2012]. It is also easier to implement and
does not produce symmetrical solutions, which prunes the search state space greatly. On most
of the instances with 3 machines, the Branch-and-Price method lacks in performance. How-
ever, we note that on the largest 3 machine instances (M = 3, N = 20) we outperform the
reference Branch-and-Bound and a better performance can be expected on larger instances as
well. On instances with more than 3 machines, the proposed Branch-and-Bound shows signif-
icantly better scaling properties and outperforms the reference algorithm by a large margin.

A notable difference is observed on instances with exactly 2 machines. An examination
had shown, that on these instances the Pricing Problem requires more time to be solved and
more patterns are generated as well. Therefore, we devised a Two-machines model that solves
this special case. We show, that this model is able to solve instances with up to 500 jobs in
several seconds as compared to the reference Branch-and-Bound which cannot solve instances
with 40 jobs and more in the given time limit. This approach dominates the reference algo-
rithm and Branch-and-Price algorithm in every case.

Finally, we also provide a linear model of the problem. We note that its performance as a
standalone solver is not satisfactory. However, we reuse it to solve the Pricing Problem and
get a better results as compared to the Variance Enumeration model.

We note that the main limitation of the problem is its restriction to normal distribution
of the processing times. However, the proposed approach can be extended to any distribution
that belong to the family of closed under convolution distributions.

We conclude with the remark, that part of the results, regarding the Branch-and-Price
decomposition, were submitted and accepted for the International Joint Conferences on Ar-
tificial Intelligence 2019 (IJCAI-2019).

42/44



REFERENCES

References

Igal Adiri, John Bruno, Esther Frostig, and AHG Rinnooy Kan. Single machine flow-time
scheduling with a single breakdown. Acta Informatica, 26(7):679–696, 1989.

S Alimoradi, M Hematian, and Ghasem Moslehi. Robust scheduling of parallel machines
considering total flow time. Computers & Industrial Engineering, 93:152–161, 2016.

Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh, and
Pamela H Vance. Branch-and-price: Column generation for solving huge integer programs.
Operations research, 46(3):316–329, 1998.

Zhiqi Chang, Jian-Ya Ding, and Shiji Song. Distributionally robust scheduling on parallel ma-
chines under moment uncertainty. European Journal of Operational Research, 272(3):832–
846, 2019.

Abraham Charnes and William W Cooper. Programming with linear fractional functionals.
Naval Research logistics quarterly, 9(3-4):181–186, 1962.

TCE Cheng and CCS Sin. A state-of-the-art review of parallel-machine scheduling research.
European Journal of Operational Research, 47(3):271–292, 1990.

Richard L Daniels and Janice E Carrillo. β-robust scheduling for single-machine systems with
uncertain processing times. IIE transactions, 29(11):977–985, 1997.

Richard L Daniels and Panagiotis Kouvelis. Robust scheduling to hedge against processing
time uncertainty in single-stage production. Management Science, 41(2):363–376, 1995.

Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column generation, volume 5.
Springer Science & Business Media, 2006.

Didier Dubois, Helene Fargier, and Philippe Fortemps. Fuzzy scheduling: Modelling flexi-
ble constraints vs. coping with incomplete knowledge. European Journal of Operational

Research, 147(2):231–252, 2003.

Hesham El-Rewini and Ted G. Lewis. Scheduling parallel program tasks onto arbitrary target
machines. Journal of parallel and Distributed Computing, 9(2):138–153, 1990.

Andreas T Ernst, Houyuan Jiang, Mohan Krishnamoorthy, and David Sier. Staff schedul-
ing and rostering: A review of applications, methods and models. European journal of

operational research, 153(1):3–27, 2004.

R.L. Graham, E.L. Lawler, J.K. Lenstra, and A.H.G.Rinnooy Kan. Optimization and ap-
proximation in deterministic sequencing and scheduling: a survey. In P.L. Hammer, E.L.
Johnson, and B.H. Korte, editors, Discrete Optimization II, volume 5 of Annals of Discrete

Mathematics, pages 287 – 326. Elsevier, 1979.

Panos Kouvelis, Richard L Daniels, and George Vairaktarakis. Robust scheduling of a two-
machine flow shop with uncertain processing times. Iie Transactions, 32(5):421–432, 2000.

Chung-Cheng Lu, Shih-Wei Lin, and Kuo-Ching Ying. Robust scheduling on a single machine
to minimize total flow time. Computers & Operations Research, 39(7):1682–1691, 2012.

43/44



REFERENCES

Bart L Maccarthy and Jiyin Liu. Addressing the gap in scheduling research: a review of
optimization and heuristic methods in production scheduling. The International Journal

of Production Research, 31(1):59–79, 1993.

István Módos, Přemysl Š̊ucha, and Zdeněk Hanzálek. Algorithms for robust production
scheduling with energy consumption limits. Computers & Industrial Engineering, 112:391–
408, 2017.

Michael Pinedo. Stochastic scheduling with release dates and due dates. Operations Research,
31(3):559–572, 1983.

Michael Pinedo. Scheduling. Springer, 2012.

Salih Ramazan and Roussos Dimitrakopoulos. Production scheduling with uncertain supply:
a new solution to the open pit mining problem. Optimization and Engineering, 14(2):361–
380, 2013.

Mohammad Ranjbar, Morteza Davari, and Roel Leus. Two branch-and-bound algorithms
for the robust parallel machine scheduling problem. Computers & Operations Research,
39(7):1652 – 1660, 2012.

Ihsan Sabuncuoglu and M Bayız. Analysis of reactive scheduling problems in a job shop
environment. European Journal of operational research, 126(3):567–586, 2000.

Stephen F Smith. Reactive scheduling systems. In Intelligent scheduling systems, pages
155–192. Springer, 1995.

Pieter S Stepaniak, Christiaan Heij, Guido HH Mannaerts, Marcel de Quelerij, and Guus
de Vries. Modeling procedure and surgical times for current procedural terminology-
anesthesia-surgeon combinations and evaluation in terms of case-duration prediction and
operating room efficiency: a multicenter study. Anesthesia & Analgesia, 109(4):1232–1245,
2009.

Paul PM Stoop and Vincent CSWiers. The complexity of scheduling in practice. International
Journal of Operations & Production Management, 16(10):37–53, 1996.

Richard Štec, Antońın Novák, Přemysl Š̊ucha, and Zdeněk Hanzálek. Scheduling jobs with
stochastic processing time on parallel identical machines. In Proceedings of IJCAI 2019.
International Joint Conferences on Artificial Intelligence, to appear 2019.

Juite Wang. A fuzzy robust scheduling approach for product development projects. European
Journal of Operational Research, 152(1):180–194, 2004.

44/44


	Introduction
	Related work
	Contribution
	Thesis outline

	Problem statement
	Non-linear model
	Problem properties
	vmax calculation
	Large Job Allocated First heuristic


	Mixed-Integer Linear Program model
	Model transformation
	Linear approximation
	Complete model
	Model tuning
	Fraction approximation interval tuning
	Objective function approximation interval tuning
	bold0mu mumu MMMMMM constant tuning


	Branch-and-Price model
	Master Problem
	Dual problem

	Pricing Problem
	Mixed-Integer Linear Program for the Pricing Problem
	Variance Enumeration model

	Branching scheme
	Recovery model


	Two-machines problem
	Reformulation
	Relaxation
	Complete algorithm

	Experimental results
	Experimental setup
	Heuristic performance
	Non-linear solver performance
	Mixed-Integer Linear Program performance
	Branch-and-Price performance
	Two-machines model performance
	 evaluation


	Conclusion

