
Insert here your thesis’ task.

Master’s thesis

Algorithms for collaborative filtering in
Point-of-Interest Recommendation Systems

Bc. Guzel Samigullina

Department of Software Engineering
Supervisor: Ing. Jaroslav Kuchář, Ph.D.

May 7, 2019

Acknowledgements

I would like to thank my supervisor Ing. Jaroslav Kuchář, Ph.D. for all
recommendations and insights he made while writing the thesis. Also, I would
like to thank all who supported me during the work on this thesis, especially
my family and friends.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 7, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Guzel Samigullina. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Samigullina, Guzel. Algorithms for collaborative filtering in Point-of-Interest
Recommendation Systems. Master’s thesis. Czech Technical University in
Prague, Faculty of Information Technology, 2019.

Abstrakt

S dostupnost́ı obrovského množstv́ı uživatel̊u a geolokačńıch sociálńıch śıt́ı
źıskal v posledńıch letech problém doporučeńı mı́st zájmu značnou pozornost
výzkumu. Zat́ımco předchoźı práce zabývaj́ıćı se doporučeńım mı́st zájmu se
většinou zaměřovaly na zkoumáńı prostorového, časového a sociálńıho vlivu,
použit́ı dodatečných obsahových informaćı nebylo ćıleně studováno. Tyto do-
datečné informace mohou nejen zlepšit kvalitu doporučeńı, ale také překonat
i problém tzv. studeného startu.

V této práci navrhuji algoritmus pro doporučeńı mı́st zájmu založený na
faktorizaci matice s přidanou obsahovou informaćı – atributy a kategorie mı́st
zájmu. Navrhuji dvě varianty algoritmu, které mohou pracovat s explicitńı a
implicitńı zpětnou vazbou. Informace o atributech a kategoríıch jsou źıskány
z existuj́ıćıch datových sad a použity k měřeńı podobnosti mezi dvěma mı́sty.
Experimentálńı výsledky ukazuj́ı, že navrhovaná metoda zlepšuje kvalitu do-
poručeńı, překonává většinu populárńıch algoritmů kolaborativńıho filtrováni
a dokáže efektivně zvládnout problém studeného startu.

Kĺıčová slova Systém doporučováńı mı́st zájmu, faktorizace matice, vážená
maticová faktorizace, geolokačńı sociálńı śı̌t, SGD, ALS

vii

Abstract

With the availability of the vast amount of users and Location-based social
networks, the problem of POI recommendations has been widely studied and
received significant research attention in the last seven years, and many ap-
proaches have been suggested. While previous works of POI recommendation
mostly focused on investigating the spatial, temporal, and social influence,
the use of additional content information has not been directionally studied.
Such additional information can not only improve the performance of the
recommendation system but also help to overcome the so-called “cold start”
problem.

In this paper, we propose the content-aware matrix factorization method
based on incorporating POI attribute and categories information. We pro-
pose two variants of the algorithm that can work with explicit and implicit
feedback. The attribute and categories information of a POI is collected from
existing datasets and used to measure the similarity between two POIs. These
similarity values are subsequently used as a regularization term added to the
objective function of matrix factorization. Experimental results show that the
proposed method improves the quality of recommendation, outperforms most
state-of-the-art collaborative filtering algorithms and can effectively cope with
the so-called “cold start” problem.

Keywords POI Recommendation System, matrix factorization, weighted
matrix factorization, Location-based Social Network, SGD, ALS

viii

Contents

Introduction 1

1 Recommendation Systems 3
1.1 An Introduction to Recommendation Systems 3
1.2 Memory-based collaborative filtering 7
1.3 Model-based collaborative filtering 15
1.4 POI Recommendation on Location-Based Social Networks . . . 22
1.5 Related works . 23

2 Content-aware POI recommendation algorithm 29
2.1 Algorithm description . 30
2.2 Matrix factorization for implicit feedback 33

3 Datasets 39
3.1 Foursquare . 39
3.2 Yelp . 40
3.3 Merging datasets . 41

4 Experiments and evaluation 45
4.1 Implementation details . 45
4.2 Evaluation metrics . 46
4.3 Impact of control parameters to quality of recommendation . . 48
4.4 Comparison with other approaches 56
4.5 Performance on Cold Start Items 58

Conclusion and future works 61

Bibliography 63

A Acronyms 69

ix

B Contents of enclosed CD 71

x

List of Figures

1.1 Differences between classification problem with collaborative filter-
ing, shaded entries need to be predicted. 16

1.2 Example of matrix factorization into rank-2 factors (concepts) . . 20

2.1 Prediction accuracy of weighted and non-weighted matrix factor-
ization approach based on implicit feedback 37

3.1 Statistics of the number of reviews depending on the city 40

4.1 Impact of the number of iterations on convergence of cost function
J on the training dataset. Value of J is computed on each iteration. 49

4.2 Impact of λ on prediction accuracy of SGD algorithm based on
explicit rating . 49

4.3 Impact of λ on prediction accuracy of ALS algorithm based on
implicit rating . 50

4.4 Impact of K on prediction accuracy of SGD algorithm based on
explicit rating . 51

4.5 Impact of K on prediction accuracy of ALS algorithm based on
implicit rating . 52

4.6 Impact of function µ1(cui) = z ∗ cuj on prediction accuracy of ALS
algorithm based on implicit rating 53

4.7 Impact of function µ2(cui) = log(1 + cui ∗ (10ε)) on prediction
accuracy of ALS algorithm based on implicit rating 54

4.8 Impact of β on prediction accuracy of SGD algorithm based on
explicit rating . 55

4.9 Comparison the selected recommendation algorithms with our first
algorithm for explicit feedback . 57

4.10 Comparison the selected recommendation algorithms with our sec-
ond algorithm for implicit feedback 58

xi

4.11 Comparison of nDCG@k (k=5 left bar and k=10 right bar) with
the selected recommendation algorithms and our second algorithm
for implicit feedback . 59

4.12 Comparison the selected recommendation algorithms with our al-
gorithms . 60

xii

Introduction

Location-based social networks (LBSNs) have become very popular and at-
tracted lots of attention from internet users, business and academia with the
increasing popularity of GPS-enabled mobile devices. In LBSNs, users can
build connections with their friends, upload photos, and share their locations
by check in the points of interest (e.g., restaurants, famous landmarks, hous-
ing locations, and parking spaces) [1]. Typical location-based social networks
include Foursquare, Yelp, Facebook Place, GeoLife, etc. The number of users
in those networks is huge, for example, Foursquare had more than 50 mil-
lion monthly active users on October 2018 [2], and Yelp had about 33 million
unique desktop visitors and 69 million mobile visitors by the end of 2018 [3].

In the meantime, making a satisfying decision among a large number of
point of interests (POI) becomes a difficult problem for a user, as well known as
a “choice paralysis”. POI recommendation is a task that aims to address such
issue by helping users filter out uninteresting POIs and reduce their decision-
making time. Also, POI recommender systems have played an essential role
in LBSNs, because they help to increase revenues by providing users with
intelligent location services, such as location-aware advertisements [1].

With the availability of the vast amount of users’ visiting history, the prob-
lem of POI recommendations has been widely studied and received significant
research attention in the last seven years, and many approaches have been
suggested. While previous works of POI recommendation mostly focused on
investigating the spatial, temporal, and social influence, the use of additional
content information has not been directionally studied. Such additional infor-
mation can not only improve the performance of the recommendation system
but also help to overcome the so-called cold start problem.

In this paper, we propose the content-aware matrix factorization method
based on incorporating POI attribute and categories information to overcome
the cold start item problem, and consequently improve the quality of recom-
mendation. We propose two variants of the algorithm that can work with
explicit and implicit feedback. The attribute and categories information of a

1

Introduction

POI will be collected from existing datasets and will be used to measure the
similarity between two POIs. This similarity values will be used to regularize
the matrix factorization by adding item relationship regularization term to
the objective function of matrix factorization [4].

This work is organized as follows. First chapter gives a brief introduction
of recommendation systems (Section 1.1), describes in detail memory-based
(Section 1.2) and model-based (Section 1.3) collaborative filtering methods,
describes unique characteristics of POI recommendation systems in location-
based social networks (Section 1.4) and reviews related research directions for
POIs recommendation in Section 1.5. Chapter 2 describes the details of the
used content-aware POI recommendation algorithm. Chapter 3 defines the
properties of existing datasets and ways of preprocessing and joining datasets.
In Chapter 4 experiments are evaluated and important implementation details
are described. Finally, at the end of paper conclusion and some directions for
future work are presented.

2

Chapter 1
Recommendation Systems

1.1 An Introduction to Recommendation Systems

Recommendation systems are intelligent software tools that helps a user dis-
cover products and content by predicting the user’s rating of each item and
providing with the decision making support information, such as what book
to read next, what movie to watch and what new place to visit. At present,
recommendation systems have become indispensable since it helps to cope
with the information overload problem, which is especially aggravated with
the rapid growth of internet users and active development of smart devices.

Recommendation systems are based on users feedback that specifies their
likes and dislikes of various items. In traditional recommendation systems,
user generally expressed their preferences by explicitly providing ratings for
items (e.g., movie, book, place and so on), typically on a concrete rating
scale (e.g., five-star rating system). This type of feedback is called explicit
rating. Other forms of feedback are not quite as explicit but are even easier to
collect thanks to the global spread of the internet. Example of such implicit
feedback can be the simple actions of a user, such as the number of clicks on
this product, the frequency of check-ins in some location, the number of times
a soundtrack is played and so on.

As soon as user preferences are collected, the recommendation problem is
reduced to the problem of estimating ratings for the items that have not been
seen by a user. According to the approach of rating estimation, recommenda-
tion systems are usually classified into four basic models, that will be briefly
discussed in the following subsections.

1.1.1 Collaborative Filtering Systems

Collaborative filtering systems collect information of the user-item interac-
tions, such as implicit or explicit ratings, onto rating matrix and try to predict

3

1. Recommendation Systems

the utility of items for a particular user based on the items previously rated
by other users [5].

According to [6], algorithms for collaborative recommendations can be
grouped into two general classes: memory-based and model-based:

1. Memory-based algorithms: These systems employ statistical techniques
to find a set of users, known as neighbors, that have similar patterns
of rating behavior with the target user (i.e., they either rate different
items similarly or they tend to buy similar sets of items) [7], or set of
neighbor items, that are similar to user’s already-rated items. These
neighborhoods can be defined in one of two ways:

• User-based collaborative filtering: The basic idea of this method
is to predict the ratings based on the preferences of active user’s
neighbors, which have similar favorites with an active user. In a
book recommendation application, to recommend a book to some
user, the user-based collaborative recommendation system tries to
find other users that have similar tastes (rate the same book sim-
ilarly). Then, only the books that are most liked by the k most
similar users would be recommended. User-based methods were
widely studied, some variations are provided in [8, 9].

• Item-based collaborative filtering: On the other hand, item-based
approaches provide predictions based on the ratings given by the
active user for items similar to target items. For example, in a book
recommendation application, to predict the rating of the target
user A for some book B, the most similar books (denoted as S)
to book B are detected from the set of the already-rated books by
user A. Then, the weighted average of ratings from S is used to
calculate the predicted rating for book B. A detailed study of item-
based collaborative filtering methods is provided in [10], in [11] is
described one of Amazon.com’s user-based collaborative filtering
algorithms.

The main advantages of memory-based techniques that they are easy to
implement, they are context independent and compared to other meth-
ods, such as content-based, it is more accurate. But these systems have
some problems, such as rating sparsity, new item problem and cold-start
for new users. Memory-based methods are discussed in detail in Section
1.2.

2. Model-based algorithms: This approach first makes use of data mining
and machine learning techniques to learn a predictive model from train-
ing data. That model can characterize the rating behaviors of target
users. Then model-based method uses the trained model to make pre-
dictions, rather than directly utilize the entire user-item matrix to com-

4

1.1. An Introduction to Recommendation Systems

pute predictions [4]. Typical examples of model-based filtering methods
include decision trees [12], association rules [13, 14], Bayesian networks
[9], latent semantic models [15] and clustering model [16]. Model-based
methods are discussed in detail in Section 1.3.

Generally, memory-based algorithms tend to easy to implement and pro-
duce reasonable high prediction quality. Also, the results of the recommenda-
tion are often easy to explain. However, memory-based algorithms suffer from
a severe scalability problem. Especially this applies to modern E-commerce
sites because constant growth of users and items slow down their online per-
formance.

Model-based algorithms tend to be faster than memory-based algorithms
because the time required to query the model is usually much smaller than
the time required to query the whole dataset. But its disadvantages are that
many theoretical models are complex and sometimes are not fit well with real
data. Also, it is more difficult and takes a long time to build or update models
for model-based algorithms, making them inflexible.

1.1.2 Content-Based Recommendation Systems

Content-Based Recommendation Systems use the content information avail-
able in the items and combines it with the ratings and buying behavior for
recommending purposes. For example, an active user has rated an item highly,
but we do not have access to the ratings of other users. However, we can assign
this item to a specific category from the item description. In such cases, items
from this category can be recommended to the active user. The content of an
item gives us a lot of options. For example, for a movie, we could consider
not only the plot description but also the director, the genres, the actors and
so on.

According to [6], the whole process of content-based recommendation can
be divided into three basic components:

1. Preprocessing and feature extraction: After we decided which content we
will consider, the next step is to transform all this data into an algebraic
representation of text documents, i.e., to keyword-based vector-space
representation. Generally, we do this with a Bag of Words model, where
each document looks like a bag containing some words without any order
[17]. However, before determining the bags of words, data need to be
cleaned in the several steps, such as stop-word removing, stemming and
lemmatization, and phrase extraction.

2. Content-based learning of user profiles: At this step user feedbacks (ex-
plicit or implicit) are used in combination with the content information
of items to construct the training data. On this training data, a profile
learner is constructed, that represents each user’s preferences.

5

1. Recommendation Systems

3. Filtering and recommendation: The learned model from the previous
step takes all the inputs and generates the list of recommendations for
each user.

The content-based method is trying to solve the problems of the collab-
orative filtering algorithms. The main advantages of content-based method
are:

• Unlike Collaborative Filtering, this method doesn’t suffer from ”new
item problem” because new items have descriptions and categorization.

• The content-based system is user independent because do not use
ratings from other users.

• It is easy to provide explanations because the same content is used to
explain the recommendations.

• Content representations are varied and they open up the options to use
different approaches like: text processing techniques, the use of semantic
information, inferences and so on [17].

1.1.3 Knowledge-Based Recommendation Systems

In knowledge-based recommender systems recommendations are suggested on
the basis of user-specified requirements rather than the historical rating or
buying data of the user. Such recommender systems are particularly useful
in the context of items that are not purchased very often or rating history
not available for the recommendation process(for example financial services
or tourism requests). Knowledge-based methods are unique in that they allow
the users to explicitly specify what they want that give users greater control
over the recommendation process.

1.1.4 Hybrid Recommendation Systems

All above-mentioned algorithms have different strengths and weaknesses, and
each of the methods can be more effective in different cases. For example, col-
laborative filtering systems depend on user ratings, content-based algorithms
rely on textual item descriptions, and knowledge-based methods rely on in-
teractions with the users in the context of knowledge bases.

There are various hybridization strategies that can be applied. According
to [5], these strategies are easiest to explain on the most frequently used
hybrid recommender system – a combination of collaborative and content-
based methods:

• Ensemble design – combining separate recommender methods: In this
case, collaborative and content-based systems are implemented sepa-
rately. There are two different combination strategies – weighted and

6

1.2. Memory-based collaborative filtering

switching model. In weighted hybrids, the outputs (ratings) obtained
from individual recommender systems are combined using a set of weights,
for example using a voting scheme [18] or linear combination of ratings
[19]. Switching mechanisms are often used to handle the cold-start prob-
lem, in which one of the individual recommenders is chosen at any given
moment because it is “better” than others based on some recommenda-
tion quality metric. For example, the Daily Learner system [20] selects
the recommender system that can recommend with a higher level of
confidence.

• Monolithic design: This method of hybridization is divided to feature
combination and meta level strategies. In feature combination hy-
brids, the idea is to combine the input data from various sources (e.g.,
content and collaborative) into a unified representation before applying
a predictive algorithm [6]. The most popular approach in this category
is to add collaborative feature to content-based models. In a meta-level
hybrid, one recommender system is used as an input to another system.
The typical method described in [18] is referred to as “collaboration
via content,” where a collaborative system is modified to use content
features to determine peer groups.

• Mixed hybrids: This approach is most appropriate in complex item do-
mains, and it is often used in combination with knowledge-based recom-
mender systems.

1.2 Memory-based collaborative filtering

Memory-based collaborative filtering methods also referred to as neighborhood-
based algorithms, were among the first algorithms developed for collaborative
filtering. These systems employ statistical techniques to find similar users or
similar items (i.e., ”neighborhoods”) to make predictions.

This section is organized as follows. Two basic types of memory-based col-
laborative filtering – user-based and item-based collaborative filtering models
are discussed in detail in the following subsections 1.2.1 and 1.2.2. The dif-
ferences between these two methods are discussed in the subsection 1.2.3. A
summary of memory-based methods is given in the subsection 1.2.4.

1.2.1 User-based collaborative filtering

The basic idea of this method is to predict the ratings based on the preferences
of active user’s neighbors, which have similar favorites with an active user. The
most popular application of this method is the user-based Nearest Neighbor
algorithm (k-NN), that can be reduced to two steps:

7

1. Recommendation Systems

1. Find k most similar users (users, that have similar tastes to target user).
An essential part of this step is to choose the appropriate similarity
function, that measure the distance between each pair of users. Multiple
similarity measures are discussed in the section 1.2.1.1.

2. Predict the ratings that active user will give to all unrated items using
the ratings from those k like-minded users found in first step. Variants
of prediction functions are discussed in the section 1.2.1.2.

The user-based model works with m × n user-item ratings matrix, where
m is the number of users and n is the number of items. For the purpose
of subsequent discussion, the user-item ratings matrix will be denoted by R.
Each entry rij of R represents the rating given by user i for item j. The set
of items rated by the user u is denoted as Iu and the set of items rated by
both users u and v is specified by Iu ∩ Iv . In practice, the rating matrix R
is generally very sparse with many unknown entries since a typical user may
have only rated a tiny percentage of items.

1.2.1.1 Similarity functions

To find like-minded users, similarity functions Sim(u, v) are computed be-
tween the rating vectors of users u a v, i.e., between the rows of the rating
matrix R. Various similarity functions are used in practice. Choosing an
appropriate similarity measure is very important for a recommender system
because different similarity measures provide different results in various con-
texts of the information. Below are described some of the popular similarity
measures metrics that are used in collaborative filtering.

Pearson correlation The most commonly used method. This metric is used
to find a linear correlation between the two vectors, that measured from
−1 to +1. Pearson Correlation Coefficient −1 represents a negative
correlation and means that the data objects are not correlated, while +1
indicates that the data objects are perfectly correlated, i.e., the larger
coefficient the more similar users to each other. Zero value shows no
relation sometimes called zero-order correlation.

Pearson correlation coefficient is computed between the rating vectors
of two users u and v. The first step is to compute the mean rating µu
for each user u and target user v over the items that are rated both by
users u and v [6]:

µuv =
∑
k∈Iu∩Iv

ruk
|Iu ∩ Iv|

∀u ∈ {1...m}

8

1.2. Memory-based collaborative filtering

Then, the Pearson correlation coefficient between the rating vectors of
users u a v is defined as follows:

Sim(u, v) = PC(u, v) =
∑
k∈Iu∩Iv

(ruk − µuv) · (rvk − µvu)√∑
k∈Iu∩Iv

(ruk − µuv)2 ·
√∑

k∈Iu∩Iv
(rvk − µvu)2

It is the traditional definition of the Pearson correlation, that mandates
that the average rating of user u should be computed only over the
co-rated items with user v. However, it is quite common (and compu-
tationally simpler) to compute average rating just once for each user
u over all the items rated by user u [6]. That is exactly the way the
Adjusted cosine similarity works (described below).

Cosine Similarity This method is also the most commonly used method to
measure the similarity between users in recommender systems. It mea-
sures cosine of the angle created from the two vectors in the coordinate
system and determines how two vectors are related to each other (i.e.,
the smaller the angle, the more similar the two vectors are). The angle
between the two positive-valued vectors is bound between 0° and 90°,
so the cosine similarity returns a value between 0 and 1. One important
thing to note is the Cosine similarity is a measure of orientation, not
magnitude [21]. Two vectors can be oriented in the same direction (and
thus have cosine similarity of 1) but have different magnitudes.
Cosine similarity between the rating vectors of users u a v is defined as
follows:

Cos(u, v) =
∑
k∈Iu∩Iv

ruk · rvk√∑
k∈Iu∩Iv

r2
uk ·

√∑
k∈Iu∩Iv

r2
vk

The main problem of this method is that it does not consider the scenario
in which different users may provide ratings on different scales, e.g., one
user can rate all items highly, while another user can rate all items
negatively. The following method solves this problem by using mean-
centered ratings instead of raw ratings.

Adjusted cosine similarity The adjusted cosine similarity overcomes the
drawback of the cosine similarity. This approach uses mean-centered
rating of a user u for item k, that is defined by subtracting the mean
rating from the raw rating ruk:

AdjustedCos(u, v) =
∑
k∈Iu∩Iv

(ruk − µu) · (rvk − µv)√∑
k∈Iu∩Iv

(ruk − µu)2 ·
√∑

k∈Iu∩Iv
(rvk − µv)2

,

where mean rating is defined as:

µu =
∑
k∈Iu

ruk
|Iu|

∀u ∈ {1...m} (1.1)

9

1. Recommendation Systems

The difference between the Adjusted cosine similarity and Pearson Cor-
relation is in the calculation of mean rating for user u. First one com-
putes the mean rating of user u for all the items rated by user ”u”, while
the second one considers the mean rating of user ”u” for co-rated items.

Jaccard Coefficient The Jaccard coefficient ignores the rating values and
only checks whether the user expressed a preference or not. This metric
measures the similarity between two users by counting the number of
common rated items and dividing by the total number of unique items
that either of the users are interested in. So two users will be more sim-
ilar when they have more common rated items. The Jaccard coefficient
ranges between 0 and 1. The result will be zero if two users do not have
any similar preference. The equation for Jaccard Coefficient Similarity
between users u and v is:

Jaccard(u, v) = |Iu ∩ Iv|
|Iu ∪ Iv|

,

where Iu is a set of items rated by user u and Iv is a set of items rated
by user v.

There are several constraints while choosing the best algorithm to be used
to measure the similarity. For example, the Pearson coefficient algorithm
requires a minimum number of items to be greater than 2 to measure the
similarity; Jaccard coefficient ignores the rating values and only checks that
whether a user expressed a preference or not, that is why it produces a limited
number of values which makes the task of user distinction difficult [22].

Before proceeding with the prediction of ratings, the so-called peer group
for a target must be defined. The simplest approach is to use the top-k
most similar users to the target user as her peer group. However, such an
approach might include users that are weakly or negatively correlated with the
target user, that can make the prediction inaccurate and erroneous. Therefore,
ratings with weak or negative correlations are often filtered out [6].

1.2.1.2 Prediction functions

Once we compute similarity values between users and define the peer group,
we can predict the rating for any user-item pair by using some of predic-
tion functions. There are many variants of the prediction functions used in
the user-based collaborative filtering. The two commonly used techniques,
weighted sum and regression, are described below.

Weighted sum The most commonly used method, also called the mean-
centered prediction function. Prediction is computed as a weighted av-
erage of the mean-centered rating of an item in the peer group of the

10

1.2. Memory-based collaborative filtering

most similar users. Then the mean rating of the active user (using equa-
tion 1.1) is added to this prediction. The mean-centered rating of a user
u for item j is defined by subtracting her mean rating µu from the raw
rating ruj . The overall neighborhood-based prediction rating of target
user u for item j is as follows [6]:

r̂uj = µu +
∑
v∈Ku(j) Sim(u, v) · (rvj − µv)∑

v∈Ku(j) |Sim(u, v)| , (1.2)

where Ku(j) is the k most similar users to target user u, who have
specified ratings for item j.
Some variation of this function is to use the Z-score zuj instead of mean-
centering rating, that is defined as follows [6]:

zuj = ruj − µu
σu

, where σu =
√∑

j∈Iu
(ruj − µu)2

|Iu| − 1

In this case, the predicted rating r̂uj of target user u for item j is defined
as follows:

r̂uj = µu + σu ·
∑
v∈Ku(j) Sim(u, v) · zvj∑
v∈Ku(j) |Sim(u, v)|

In this context, the weighted average needs to be multiplied with σu for
normalization purposes. It is worth noting that the Z-score has a prob-
lem – the predicted ratings might be outside the range of the allowable
ratings. Nevertheless, even when the predicted values are outside the
range, they can be used to rank the items in order of desirability for a
particular user [6].
These methods are variants of linear regression models, in which the
regression coefficients are heuristically set to similarity values for neigh-
boring users and to 0 for unrelated users.

Regression Another approach that has been recently widely used is the re-
gression model. The aforementioned weighted sum method can also be
included in heuristic variants of linear regression models, in which the
regression coefficients are heuristically set to similarity values for the
peer group of target user. Unfortunately, using similarities as heuristic
weights do not account for interdependencies among items and may be
deceptive in the sense that two rating vectors may be distant but may
have very high similarity (for example hight ratings on the same type of
movie). That may result in a poor prediction.
This problem can be solved by learning the weights with the use of an
optimization formulation of the neighborhood model. The advantage

11

1. Recommendation Systems

of such models is that the weights for combining the ratings can be
better justified because of their optimality from a modeling perspective
[6]. Such regression-based model can be defined from Equation 1.2 by
replacing the normalized similarity coefficient with the unknown param-
eter wuv:

r̂uj = µu +
∑

v∈Ku(j)
wuv · (rvj − µv) (1.3)

In regression-based model, to define the set Ku(j) first the k closest
peers for each user are determined, and then only those ones for which
ratings are observed are retained. It is an important difference between
the weighted sum method.

To calculate unknown parameter wuv, we can use the aggregate squared
difference between the predicted ratings r̂uj and the existing ratings ruj
to create the least-squares objective function that estimates the quality
of prediction. The objective function for the user u can be defined as
the sum of squared errors of prediction and must be minimized:

min
∑
j∈Iu

(ruj − r̂uj)2) = min
∑
j∈Iu

(
ruj −

[
µu +

∑
v∈Ku(j)

wuv · (rvj − µv)
])2

,

where Iu is the set of item rated by user u, Ku(j) is the set of the k
closest peers for user u. According to [6], the second relationship is ob-
tained by substituting the expression in Equation 1.3. This least-squares
optimization problem can be solved using any off-the-shelf optimization
solvers, for example, a gradient descent approach can be used. For better
prediction regression models can be combined with other optimization
models, such as matrix factorization. Such methods are discussed in
Section 1.3.

1.2.2 Item-based collaborative filtering

Instead of a user-based approach, item-based collaborative filtering methods
provide predictions for items similar to target items based on the ratings given
by the active user. In this case similarity functions are computed between the
columns of the ratings matrix R to find similar items.

Because item-based algorithms are very similar to user-based algorithms,
similar variants of the similarity functions can be considered. The only dif-
ference is that similarity functions are computed between two items, instead
of users and calculations are made on the set of users who both rated items i
and j (denoted as Ui ∩ Uj), instead of set of items.

12

1.2. Memory-based collaborative filtering

For example, the Adjusted cosine similarity between the items i and j are
computed as follows:

AdjustedCos(i, j) =
∑
u∈Ui∩Uj

(rui − µi) · (ruj − µj)√∑
u∈Ui∩Uj

(rui − µi)2 ·
√∑

u∈Ui∩Uj
(ruj − µj)2

,

where µi is the average rating of the i-th item.
Once we compute similarity values between items, we can predict the rat-

ings using some of prediction functions. Like in the user-based method, the
item-based method also commonly us weighted sum and regression mod-
els to calculate prediction. Weighted sum for item-based approach calculates
the prediction of an item i for user u by computing the sum of the ratings
that are weighted by the corresponding similarity between the item i and it’s
k similar items:

r̂ui =
∑
j∈Ki(u) Sim(i, j) · ruj∑
j∈Ki(u) |Sim(i, j)| , (1.4)

where Ki(u) is the k most similar items to target item i rated by user u. In
other words, this approach tries to catch how the target user rates similar
items. The weighted sum is divided by the sum of the similarity items to
ensure that the prediction is within a predefined range.

The item-based approach is similar to the user-based approach, except that
regression uses correlations between items rather than user-user correlations
[6]. To model the rating prediction of user u for target item i we can substitute
the normalized similarity coefficient from Equation 1.3 with the unknown
parameter wij :

r̂ui =
∑

j∈Ki(u)
wij · ruj ,

The set Ki(u) is the most similar items to target item i and can be de-
termined using some if the similarity functions, such as Pearson correlation
coefficient or adjusted cosine measure.

As in user-based regression models, to calculate unknown parameter wij
we can use the aggregate squared difference between the predicted rating r̂ui
and existing ruj to create the least-squares objective function which can be
defined as the sum of squared errors of prediction.

1.2.3 Comparing User-Based and Item-Based Methods

Although user-based and item-based methods seem very similar at first glance,
they have some important differences:

• Accuracy: Item-based methods provide predictions for items similar to
target items based on the user’s own ratings. For example, similar items

13

1. Recommendation Systems

to a target horror movie might be a set of other horror movies. In the
user-based methods, the ratings are extrapolated from other users who
may have different but overlapping interests. As a result, item-based
methods often give more relevant recommendations and so have better
accuracy.

On the other hand, different interests may lead to greater diversity in
the recommendation process for user-based methods. Greater diversity
also encourages serendipity, which can reveal unexpected and interesting
items for users. Item-based methods can sometimes recommend obvi-
ous items or items which are not novel from previous user experiences.
Without sufficient novelty, diversity, and serendipity, users might get
bored with very similar recommendations they’ve already looked at [6].

Also it is worth noting that the relative accuracy between these methods
can also depend on the datasets.

• Computational cost: On most of the e-Commerce systems, such as Ama-
zon or eBay, the number of users is generally much larger than the num-
ber of items. In such cases, two users may have a very small number
of co-rated items, but two items are more likely to have a larger num-
ber of users who have mutually rated them. So adding multiple ratings
can’t radically change the similarity values between items and the item-
item similarity matrix can be calculated offline, that in turn reduce the
computational cost of online prediction.

This does not apply to user-based methods, where adding multiple rat-
ings can radically change the similarity values. Also, based on the facts
that new users are more likely to be added than new items, user neigh-
borhoods should be computed more frequently with the addition of new
users. As a result, calculating the similarity between users cannot be
moved offline [23].

• Providing explanations: Item-based methods can provide a concrete rea-
son for the recommendation, that can be explained using the item neigh-
borhoods. On the other hand, these explanations are harder to address
with user-based methods, because the peer group is just a set of anony-
mous users (because of privacy concerns) and it is hard to explain how
recommended items relate to user tastes or to those of friends he knows
and trusts [6].

1.2.4 Summary

The main advantages of memory-based techniques that they are easy to im-
plement, they are context independent and compared to other methods, such
as content-based, it is more accurate. But these systems have some problems:

14

1.3. Model-based collaborative filtering

• Rating sparsity: The percentage of people who rate items is generally
low. One way to overcome this problem is to use information of user
profile when calculating user similarity. That is, users could be consid-
ered similar not only if they rated the same item similarly, but also if
they belong to the same demographic segment [5]. This extension of
traditional collaborative filtering approaches is called “demographic fil-
tering”. For example, [18] uses gender, age, education, and employment
information of users in the restaurant recommendation application.

• Cold-start for new users: New users have no information about them
to be compared with other users. Using a hybrid recommendation ap-
proach, that combines collaborative filtering and content-based methods
can solve this problem.

• New item: Like for new users, no user ratings are available for the new
item. The problem can also be addressed using hybrid recommender
systems, that are described in section 1.1.4 in more detail.

• Scalability: The more users there are in the system, the greater will be
the cost of finding the nearest k neighbors.

Some of these problems try to overcome model-based models, that are
discussed in the next chapter.

1.3 Model-based collaborative filtering

In contrast to memory-based collaborative filtering methods, which utilize the
entire user-item matrix to make recommendations for active users, a model-
based approach first uses the advantages of data mining and machine learning
techniques to learn a predictive model from training data. That model can
characterize the rating behavior of target users. Then model-based method
uses the trained model to make predictions, rather than directly utilize the
entire user-item matrix to compute predictions [4].

Typical examples of model-based filtering methods include decision trees,
association rules and latent semantic models. These methods are discussed in
detail in following subsections.

1.3.1 Decision trees

Decision trees are frequently used in data classification. In the data clas-
sification problem, we have a m × n matrix, in which the first k columns
are feature (independent) variables with fully specified entries, and the last
(n − k) columns are the dependent variables, where only a subset of the en-
tries is observed (see Figure 1.1a). These fully defined variables are referred

15

1. Recommendation Systems

to as the training data, the remaining ones are called test data that need to
be examined.

Unlike data classification, where clear separation exists between the train-
ing and test data, any entry in the rating matrix may be missing (the shaded
entries in Figure 1.1b). Thus, it can be seen that the matrix completion
problem is a generalization of the classification problem [6].

Training
data

Test
data

Dependent
variables

Undependent
variables

(a) Classification problem

No separation
between
 training
and test

data

No separation between undependent
and dependent variables

(b) Collaborative filtering

Figure 1.1: Differences between classification problem with collaborative fil-
tering, shaded entries need to be predicted.

Before explaining decision trees to collaborative filtering, it would be bet-
ter and easier to describe the application of decision trees to classification
problem and assuming that all variables are binary. The decision tree is a
hierarchical partitioning of the data space using the split criteria in the in-
dependent variables. For example, in a binary matrix R, most of the records
relating to the different classes will be separated into two branches – feature
variable that takes the value 0 will lie in one branch, others will lie in the
other branch. Thus the binary decision tree will be created.

Algorithms for constructing decision trees work top-down by selecting an
attribute at each step that best splits the set of items at a given level of the
tree. For measuring the ”best” attribute the Gini index is used. The Gini
index of node S is defined as follows:

G(S) = 1−
r∑
i=1

p2
i ,

16

1.3. Model-based collaborative filtering

where r is the number of different classes in a node S and pi is the fraction
of data records belonging to class i. Using the weighted average Gini index of
the child nodes created from a split we can evaluate the quality of the split:

Gini(S ⇒ [S1, S2]) = n1 ·G(S1) + n2 ·G(S2)
n1 + n2

The final result is a binary tree with decision nodes and leaf nodes, where
independent variables are used to map a path from the root to the leaf to
classify a test instance with an unknown value [6]. The root node of the tree
is the topmost decision node which corresponds to the best predictor.

Then the variables are numerical values, the attribute values can be divided
into intervals to perform the splits. In order to comply with numeric dependent
variables, the Gini index often changes to other variants of the split criteria,
such as error rate, entropy, and variance.

The described approach of decision trees is used in the data classification
problem, where exists clear separation between the training and test data.
To apply this method to collaborative filtering, where any entry in the rating
matrix may be missing, the approach must be modified. While the dependent
and independent variables are not differentiated in the collaborative filtering,
which item should be predicted by the decision tree?

The solution is to create a lower-dimensional representation of the data
using the dimensionality reduction methods, such as maximum likelihood es-
timation (MLE). In this approach, the MLE of the covariance between each
pair of items in the rating matrix is estimated as the covariance between only
the specified entries [6]. So only the users that have co-rated items are used
to estimate the covariance, in other cases, the covariance will be 0. Then the
resulting n × n covariance matrix will be reduced to n × d basis matrix Ed
by selecting the top-d eigenvectors. The next step is projecting the ratings of
each user on the eigenvectors by computing the averaged contribution aui of
user u on the ith column of Ed:

aui =
∑
j∈Iu

rujeji

|Iu|
(1.5)

where eji is jth entry of ith column of Ed, Iu is the set of item rated by
user u, ruj is observed rating from R. The resulting m×d matrix A is reduced
and completely specified matrix.

To predict rating for item j, jth column will be excluded from rating
matrix R and from the right-hand side of Equation 1.5. The resulting m × t
representation, in which t� (n− 1) is used to construct the decision tree for
the jth item.

17

1. Recommendation Systems

1.3.2 Rule-based collaborative filtering

Association rule mining is a rule-based method that uses machine learning
models for discovering relationships between variables in large databases. As-
sociation rules are created by searching data for frequent if-then itemsets (pat-
terns) and using the support and confidence criteria to determine the set of
items, that are closely correlated in the database. Support is an indication of
how frequently the itemset appears in the database; confidence indicates the
number of times the if-then pattern turned out to be true, in other words it
measure the ”strength” of a rule.

An association rule is defined as an implication of the form X ⇒ Y , where
X is called antecedent (if), Y is called consequent (then), the ”⇒” is the
direction of the correlation between X and Y .

The process of finding association rules is a two-phase algorithm, and
it requires to specify minimum support and minimum confidence. First, all
frequent itemsets in a database that satisfy minimum support are determined.
Then a minimum confidence constraint is applied to retain only satisfying
rules.

Association rules algorithms can be used as tools for collaborative filtering
to build recommender systems and they are particularly useful for performing
recommendations in the context of unary rating matrices, that are created by
customer activity (e.g., buying items or watching a video) [6]. For example,
the items purchased by a customer are set to 1, while the unobserved items are
set to 0. This type of explicit feedback is a natural mechanism for expressing
user preferences for an object. In this case, setting missing values to 0 is
considered an acceptable practice in sparse unary matrices, because of no
mechanism to specify a dislike. However, it is not common for most types of
rating matrices because rating with zero value will be regarded as a bad rating
and it will lead to bias in the predictions.

In the rule-based collaborative filtering, only rules in which the consequent
contains exactly one item are retained. Consider an active client who needs
to recommend the most relevant products. The first step is to retain rules,
where itemset in the antecedent is a subset of the items preferred by target
customer (also called ”fired” rules by the customer). Then these rules are
sorted in order of decreasing confidence, and the first k items discovered in
the consequents of these sorted rules are recommended as the top-k items to
the target customer [6].

This basic approach can be extended to be able to specify the user’s dis-
likes. When the number of possible ratings is small, each value of the rating-
item combination can be treated as a pseudo-item [6]. For example in the POI
recommender system such pseudo-items can be (Item = Starbucks, Rating =
Like), (Item = KFC, Rating = Dislike). Then the rules are created in terms
of these pseudo-items by using the basic approach as discussed above. Such

18

1.3. Model-based collaborative filtering

rules may look like the following:

(Item = Starbucks,Rating = Like)⇒ (Item = Costa cofee,Rating = Like)
(Item = Starbucks,Rating = Like) & (Item = KFC,Rating = Dislike)⇒

(Item = McDonald′s,Rating = Dislike)

For a target customer, the set of ”fired” rules is determined by identifying
the rules whose antecedents contain a subset of the pseudo-items for that
user. The rules are sorted in order of reducing confidence and then can be
used to predict ratings for items by selecting the top-k pseudo-items in the
consequents of these rules.

1.3.3 Latent factor models

Latent factor models are considered to be one of the popular approaches in
recommender systems. The basic idea of these models is to take advantage of
the fact that a significant part of the rows and columns of data matrices are
highly correlated and as a consequence, the data has great redundancies. Due
to the built-in redundancies, the resulting data matrix can be approximated
by a fully specified low-rank matrix, that can be determined even with a small
subset of the entries in the initial matrix.

These models use principles of well-known dimensionality reduction meth-
ods to fill in the missing values, such as principal component analysis (PCA)
and singular value decomposition (SVD). In the geometric interpretation, di-
mensionality reduction methods typically represent the projection of the data
on p-dimensional hyperplane as an approximation (after removing noisy vari-
ations), where positively correlated items will mostly be arranged along the
same p-dimensional latent vectors that define the hyperplane. Put it shortly,
the basic idea of all these methods is to find latent factors, in which the av-
erage squared distance between the data points and hyperplane is as small as
possible and then reduce the dimensions.

On its pure form, these dimensionality reduction methods would only work
with a fully specified matrix, and they are not particularly helpful for the
estimation of missing values, because the rating matrix R is very sparse (more
than 95 % of the values are missing). The first option that can come to mind
is to fill the missing records with some simple heuristics, such as the average
value of columns (or rows). Once the matrix is dense, we can use traditional
SVD algorithms. The problem of this approach that the results are usually
highly biased. Therefore, another approach based on a minimization problem
will be used, and before describing it, it is necessary to explain the basic
principles of matrix factorization.

In the basic matrix factorization model, the m × n rating matrix R is
approximately factorized into an m× k matrix U and an n× k matrix V , as

19

1. Recommendation Systems

follows [6]:

R ≈ UV T (1.6)

Each column of U and V is referred to as a latent vector, whereas each
row of U and V is called latent factor. The ith row ui = (ui1 . . . uik) of U is
referred to as a user factor and the jth row vj = (vj1 . . . vjk) of V is referred
to as an item factor.

≈

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Pi
zz

a
H

ut

Coffeehouse
concept

Coffeehouse

C
of

fe
eh

ou
se

X

R U VT

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 0 0 0

1 1 1 1 1 1

-1 -1 -1 1 1 1

-1 -1 1 1 1 1

-1 -1 -1 1 1 1

1 1 1 0 0 0

0 0 1 1 1 1

M
cD

on
al

d’
s

B
ur

ge
r K

in
g

Tc
hi

bo

St
ar

bu
ck

s
C

os
ta

 c
of

ee

Pi
zz

a
H

ut

M
cD

on
al

d’
s

B
ur

ge
r K

in
g

Tc
hi

bo

St
ar

bu
ck

s
C

os
ta

 c
of

ee

1 0

1 0

1 0

1 1

-1 1

-1 1

-1 1

Fast food
concept

Fast food

Fa
st

 fo
od

Both

Figure 1.2: Example of matrix factorization into rank-2 factors (concepts)

Let’s consider the 7 × 6 ratings matrix R that illustrated in Figure 1.2.
In this matrix, every column corresponds to different item and every row
corresponds to different user. In our case the items are restaurants that can
be classified into two types – fast food and coffee shops. For simplifying, we
will consider only three types of ratings – like, neutrality and dislike (i.e., 1,
0, -1 in numerical representation). Matrix R can be approximately factorized
into U and V matrices, as shown in Figure 1.2. After analyzing the matrix R,
all users can be divided into two concepts - fast food lovers and coffee shop
lovers (only the fourth user belong to both at once). These relations can be
seen at matrix U , where each row ui show how much a given user corresponds
to a given concept. So in some sense matrix, U can be considered as ”user-
to-concept” matrix. As for matrix V , each row vj represents the affinity of
the jth item towards the concept and can be considered as ”item-to-concept”
matrix.

From Equation 1.6 follows that each rating rij in R can be approximately
expressed as a dot product of the ith user factor and jth item factor [6]:

r̂ij ≈ ui · vj =
k∑
s=1

uis · vjs

20

1.3. Model-based collaborative filtering

Finding the factor matrices U and V can be done by solving the following
optimization problem:

min
u,v

1
2
∑
rij∈R

(rij − ui · vj)2 = 1
2
∑
rij∈R

(
rij −

k∑
s=1

uis · vjs
)2

Generally speaking, we want to find vectors ui and vj that makes the sum
minimal and trying to match the values rij of incomplete matrix R as closely as
possible. Once we know the values of the vectors ui and vj , we can reconstruct
U and V and then fill in any missing values for the users rating in matrix R.
Note, that the aforementioned objective function is computed only over the
observed entries in R.

One of the main problems with this approach that in real settings the
rating matrix R is very sparse. In such cases, the relatively few entries are
observed, and it can cause overfitting. A common approach to solving this
problem is to use regularization. The idea is to discourage very large values of
the coefficients in U and V by adding the regularization term to the objective
function:

min
u,v

1
2
∑
rij∈R

(
rij −

k∑
s=1

uis · vjs
)2

+ λ

2

m∑
i=1

k∑
s=1

u2
is + λ

2

n∑
j=1

k∑
s=1

v2
js

where λ > 0 is the regularization parameter that controls the weight of the
regularization term. This regularization approach reduces the tendency of the
model to overfit by introducing a bias in the model.

The most popular and effective ways to solve these optimization problems
is to use the gradient descent or stochastic gradient descent approach [24], or
alternating least squares methods [25]. The discussion of these algorithms is
beyond the scope of this work, the detailed discussion may be found in [26, 27]

1.3.4 Summary

This section discusses model-based collaborative filtering methods, such as de-
cision trees, rule-based collaborative filtering, and latent factor models. Latent
factor models are state-of-the-art in collaborative filtering, and one advantage
of using this approach is that instead of having a high dimensional and sparse
matrix we will deal with a much smaller matrix in a lower-dimensional space.
The use of decision trees for recommendation models also offers several bene-
fits, such as interpretability and flexibility in handling a variety of input data
types (ratings, contextual, etc.) [12]. Systems based on association rule-based
have found significant applications in web-based recommender systems. The
approach is naturally suited to Web personalization systems, as it is specif-
ically designed for sparse transaction data that is commonly encountered in
web click behavior [6].

21

1. Recommendation Systems

Model-based algorithms tend to be faster than memory-based algorithms
because the time required to query the model is usually much smaller than
the time required to query the whole dataset. But its disadvantages are that
many theoretical models are complex and so not to easy to implement.

1.4 POI Recommendation on Location-Based
Social Networks

Location-based social networks (LBSNs) have become very popular and at-
tracted lots of attention from internet users, business and academia with the
increasing popularity of GPS-enabled mobile devices. In LBSNs, users can
build connections with their friends, upload photos, leave tips and share their
locations by checking in to points of interest (e.g., restaurants, famous land-
marks, housing locations and parking spaces) [1]. Typical location-based social
networks include Foursquare, Yelp, Facebook Place, GeoLife, etc.

POI recommendation helping users filter out uninteresting POIs and re-
duce their decision-making time. In addition, POI recommender systems can
not only help users to find new POIs of their interests but also help to increase
revenues of businesses by providing users with intelligent location services,
such as location-aware advertisements [1].

Compared with traditional recommender systems, POI recommender sys-
tems have the following unique characteristics:

• Data sparsity: Unlike traditional recommender systems, where users
generally expressed their preferences by explicitly providing ratings for
items, a user’s preferences are often reflected by the frequency of check-
in in locations. The frequency data have a wide range compared with
explicit ratings because the number of POIs visited by the individual
user is usually only a tiny part of all POIs. For example, the density
of the Foursquare dataset used in our experimental studies is around
0.05%, while the density of Netflix dataset for movie recommendations
is about 1.2% [28]. This issue leads to negative effects on the recom-
mendation quality of recommender systems based on the collaborative
filtering approaches.

• Geographical influence: In many cases, users tend to visit nearby loca-
tions or POIs within a radius of activity regions, for example near home,
workplace or university. Therefore the probability of visiting new places
decreases as the distance increases. So geographical influence is the es-
sential characteristic that distinguishes POI recommender systems from
traditional recommender systems and profoundly effects users’ visiting
behaviors [1].

22

1.5. Related works

• Temporal influence: Users’ preferences are time-dependent – users visit
different places at a different time in a day. For example, in the early
morning, people will more often go to coffee than to a restaurant. Be-
sides, users’ check-in behavior can vary depending on opening hours
and peak hours of different POIs (bars vs. coffee shop). So temporal
influence can also affect users’ visiting preferences.

• Social influence: Based on the assumption that users’ visiting prefer-
ences might be affected by their social ties, several studies [29, 30] tried
to combine social relationships with ratings and shown that it can im-
prove the quality of the recommendation. However, previous research
[31] has presented that about 96% of users share less than 10% common
visited interests [1]. Hence, social influence has a limited effect on users’
check-in behaviors in terms of POI recommendation.

1.4.1 Notations

In the rest of this work will be used the following notations. Typical POI
recommender system consists of a set of M users U = {u1, u2, ..., uM}, and
a set of N locations (i.e., POIs) L = {ll, l2, ..., lN}. Each user is associated
with a set of POIs Lu visited by the user. Users and locations have unique
identifiers, also each location has GPS coordinates – longitude and latitude.
Information of users’ check-in is converted to user-location check-in frequency
matrix C. Each entry cul of C represents the number of check-ins made by
user u for location l. In practical, frequency matrix C is very sparse because
the number of POIs visited by the individual user is usually only a tiny part
of all POIs. In cases when check-in information is not available, users’ ratings
are used and converted to a user-location rating matrix R, with M rows and
N columns. Each entry rul of R represents the rating given by user u for
location l. Generally, ratings are integers and fall into the closed interval, e.g.,
from 0 to 5, where a higher rating corresponds to a more positive attitude to a
POI. Like matrix C, rating matrix R is usually very sparse. Also, information
about social relationships of users is transformed into matrix S, where suv = 1
means the existence of the social relationship between user u and v, and zero
value is vice versa. In this work, || · || will denote the (squared) Frobenius
norm of the matrix.

Next section in details will review existing researches and algorithms for
POIs recommendation.

1.5 Related works

With the availability of the vast amount of users’ visiting history, the prob-
lem of POI recommendations has been widely studied and received significant

23

1. Recommendation Systems

research attention in the last seven years, and many approaches have been sug-
gested. These studies vary in types of additional context information (social,
geographical or temporal), problem settings, recommendation models and so
on.

According to the type of additional context information combined with
check-in data, POI recommendation algorithms were classified into four cat-
egories: geographical influence, social influence, and temporal influence en-
hanced POI recommendation approaches.

Geographical enhanced POI recommendation approaches assume that users
tend to visit nearby locations or POIs within a radius of activity regions, for
example near home, workplace or university. Temporary influence implies that
users’ preferences are time-dependent and it can affect users’ visiting prefer-
ences. Social influence enhanced approaches are based on the assumption that
users’ visiting preferences might be affected by their social ties.

The rest of this section will review the existing research works classified to
each category.

1.5.1 Geographical influence

Geographical influence is the essential characteristic that distinguishes POI
recommender systems from traditional recommender system. Based on the
assumption that users tend to visit nearby locations within a radius of activity
regions, a lot of studies tried to leverage geographical influence in users’ check-
in activities and they shown that it profoundly effects users’ visiting behaviors.

In the work [32], Ye at al. studied the implication of distance on user check-
in behavior by estimating the probability density function over the distance
between all pairs of POIs where the user has checked in. They employed
a power-law distribution to model users check-in behaviors and proposed a
collaborative POI recommendation algorithm based on the naive Bayesian
method.

On the other hand, Yuan et al. [33] made a different assumption – the
willingness that a user moves from one POI to another one is a function of
their distance. The willingness of the user to visit POI at a distance of d km
is defined as follows (a and k are parameters of the power-law function):

w(d) = a× dk

Consider a user is currently at POI li and POI lj is a candidate to check
in at distance dis(li, lj) from li. The probability that the user will check in lj
is computed using the following equation:

p(lj |li) = wi(dis(li, lj))∑
lk∈L,lk 6=li wi(dis(li, lj))

Note that as the distance increases, the conditional probability decreases,
which reflects that the user will visit a distant POI in the lower probability.

24

1.5. Related works

Their experiments were shown that the proposed POI recommendation works
much better than [32] in terms of precision and recall.

Liu et al. [34] proposed a geographical probabilistic factor analysis frame-
work for POI recommendation by combining geographical influence with Bayesian
non-negative matrix factorization (BNMF) [1]. They used a Gaussian dis-
tribution to represent a POI over a sampled region, reflecting the first law
of geography, that says: ”Everything is related to everything else, but near
things are more related than distant things” (Tobler 1970). Their experimen-
tal results show that the proposed method outperforms approaches based on
regularized [35] and probabilistic [36] matrix factorization.

Recently, Lian et al. [37] proposed a POI recommendation approach based
on weighted matrix factorization, named GeoMF. GeoMF divides the whole
geographical space into R grids, each representing a geographical region. Then
method expands users’ latent feature vectors with activity area vectors of users
(matrix X) and also expands POIs’ latent feature vectors with influence area
vectors of POIs (matrix Y). In detail, the entry yjr of Y that defined as:

yjr = 1
σ
K(dis(r, j)

σ
),

represents influence of POI j on region r, where dis(r, j) is the distance be-
tween POI j and region r, σ is the standard deviation and K(·) denotes
standard normal distribution. Each entry xir of X represents the probability
of the user i appearing in the region r. The objective function of GeoMF is
defined as follows:

min
U,V,X≥0

||W � (R− UV T −XY T)||2 + α(||U ||2 + β||V ||2) + λ||X||1

W denotes the weighted matrix where each entry wui represents the confi-
dence of user u for POI i. Matrices U and V are users’ latent vectors and POIs’
latent vectors, respectively. Geographical preference of user i on POI j is es-
timated by xi · yj , and the final recommendation score can be approximately
expressed as r̂ij ≈ ui · vj + xi · yj .

Their experiments show that the matrix factorization model based on 0/1
rating matrix give better results than the same model based on the frequency
matrix. Also, their proposed weighted matrix factorization is superior to other
types of matrix factorization models discussed in this work, such as [34, 35, 36].

RankGeoFM [38] is a ranking-based matrix factorization model that stud-
ies the preferences of users and includes the geographical influence of neigh-
boring POIs. To represent user preferences as traditional matrix factorization
methods do, check-in matrix C is factorized onto two matrices U (1) and V . In
addition, RankGeoFM introduces one extra latent factor matrix U (2) to model
the interaction between users and POIs for incorporating the geographical in-
fluence. Given user i and POI j, the recommendation score is computed as
follows:

25

1. Recommendation Systems

r̂ij = u
(1)
i vᵀj + u

(2)
i ·

∑
k∈N (j)

wjkv
ᵀ
k

On this equation, the first term models the user preference score, while the
second term models the geographical influence score that a user likes a POI
because of its neighbors [38]. The W denotes N×N matrix of the geographical
influence, where wij is the probability of visiting POI li, given that POI lj has
been visited. Each entry wij is set to (0.5 + dis(li, lj))−1 if lj ∈ N (li), and 0
otherwise. N (li) is the k-nearest neighbors of each POI li. Their experimental
result shows that RankGeoFM performs a better result than GeoMF [37] and
achieve approximate 14 % improvement.

1.5.2 Temporal influence

Traditional recommendation systems use temporal influence as a factor that
turns the weights of ratings. In contrast, POI recommendation systems typi-
cally use it to make POI recommendation for a specific temporal state.

The work by Yuan et al. [33] proposes a time-aware POI recommenda-
tion algorithm that extends the user-based collaborative filtering method by
exploiting other user’s temporal preferences. The basic idea is to split time
into hourly-based slots and model the user temporal preference to POIs in a
certain time slot.

In this work the temporal behavior similarity between two users is com-
puted with cosine similarity using binary check-in matrix, i.e., if the user has
checked in POI at time t the value will be 1, otherwise 0. Then the recom-
mendation score that the user check in a new POI at time t will be computed
using weighted sum method. In their experiments on Foursquare and Gowalla
datasets was shown that the approach always outperforms the user-based POI
recommendation approach, which ignores the time information.

Other work [35] proposes the time-enhanced matrix factorization model
that represents each user by different latent vectors for different time slots,
and the final recommendation score is computed from all the latent vectors.
To represent user preferences at a different time, check-in matrix C is fac-
torized for each time slot t separately onto two matrices Ut and V , where
t ∈ {0, 1, . . . , 23} is an hour of the day. Ut reprezent a time-dependent
user check-in preferences under temporal state t, and V represent a time-
independent characteristics of POIs. Finding these matrices can be done by
solving the following optimization problem:

min
Ut≥0,Vt≥0

T∑
t=1
||Yt � (Ct − UtV T)||2 + α

T∑
t=1
||Ut||2 + β||V ||2

Furthermore, they modeled the temporal consecutiveness property by added
a temporal regularization term into the objective function of matrix factoriza-

26

1.5. Related works

tion:
T∑
t=1

N∑
i=1

ψi(t, t− 1)||u(t)
i − u

(t−1)
i ||22,

there ψi(t, t−1) is the temporal coefficient that measures the similarity of user
preferences between temporal state t and t − 1 , i.e. between Cti and Ct−1

i ,
u

(t)
i is the ith row of matrix U t.

1.5.3 Social influence

Based on the assumption that users’ visiting preferences might be affected
by their social ties, several studies tried to combine social relationships with
check-in information and shown that it can improve the quality of the recom-
mendation.

In the work [31], Ye et al. develop a friend-based collaborative filter-
ing (FCF) approach for POI recommendation system based on collaborative
check-ins made by social friends. First, the FCF finds k most similar friends
among all friends, so it takes into account only the preferences of friends,
instead of every user. To predict the rating, the FCF uses a weighted sum
method. Their experiments were shown, that FCF brings minor improvement
over user-based POI recommendation.

In their later work [32], Ye et al. deduced the social influence weight
between friends based on social connections and similarity of their check-in
behavior:

wi,k = η
|Fk ∩ Fi|
|Fk ∪ Fi|

+ (1− η) |Lk ∩ Li|
|Lk ∪ Li|

,

where η denotes a tuning parameter and Fk is the friends of user uk.
The work [36] includes the social information into the probalistic matrix

factorization (PMF) to improve the model performance. The objective func-
tion is defined as follows:

min
U,V

N∑
i=1

M∑
j=1

Iij(g(cij)−g(ui·vj))2+λ1||U ||2+λ2||V ||2+β
N∑
i=1

∑
f∈Fi

sim(i, f)||ui−uf ||2

where g(x) = 1/(1 + e−x) is the logistic function, sim(i, f) is the similarity
between user ui and his friend uf , Iij is the indicator function which equals
to 1 if user i checks in the location j and 0 otherwise.

An interesting approach was suggested in [39] by Wanga et al. They pro-
pose a link-based model that constructs a graph to represent user preference
(check-in behaviors) and social influence (friendship relations) by different
types of edges. Based on the constructed graph, the Bookmark-Coloring Al-
gorithm algorithm is executed to calculate the similarity between users and
then the user-based collaborative filtering is executed.

27

1. Recommendation Systems

The experimental results of the above-mentioned approaches show that
social influence has less weight than geographical influence and check-in ac-
tivities because most friends have small overlapping on their check-in POIs.

28

Chapter 2
Content-aware POI

recommendation algorithm

While previous major works of POI recommendation on LBSNs mostly focuses
on investigating the spatial, social and temporal patterns of check-in behavior
of users, the use of additional content information available in LBSNs has not
been systematically studied. The various types of content information can
be associated with different aspects of a user’s check-in behavior, giving a
unique opportunity for POI recommendation. In addition, the use of content
information can deal with cold start item issue in recommendation systems,
which is especially relevant in POI recommendation.

In this work, we study the impact of content information available in LB-
SNs on POI recommendation. As a baseline approach, we use matrix factor-
ization methods, due to their good scalability and predictive accuracy. Also,
the matrix factorization technique offers a flexible structure to incorporate
additional sources of information to improve recommendation quality [4]. In
our case, we will use content information, such as POI categories and attribute
information and construct content-aware POI recommendation algorithm.

The following section is organized as follows. First, we introduce the ba-
sis of the content-aware POI recommendation algorithm. The model will be
explained using traditional explicit feedback – rating matrix. Because of dif-
ferent LSBNs provide datasets with a different type of feedback (for example
Foursquare provide user check-in history, i.e., implicit feedback; Yelp provide
user ratings, i.e., explicit feedback), in section 2.2 we clarify differences be-
tween implicit and explicit feedback and explain the need for using different
approaches to model user preferences. Finally, we present the content-aware
POI recommendation algorithm for implicit feedback.

29

2. Content-aware POI recommendation algorithm

2.1 Algorithm description

As a baseline approach, we use the state-of-the-art matrix factorization method
(described in the section 1.3.3), that offers a flexible structure to incorporate
additional sources of information to improve recommendation quality. Also,
by comparison with other popular collaborative filtering approaches, matrix
factorization shows the best scalability and predictive accuracy.

Recall that the regularized objective function which works with incomplete
matrices, is computed only over the observed entries in rating matrix R as
follows:

Minimize J = min
U,V

1
2 ||R− UV

T ||2 + λ

2 ||U ||
2 + λ

2 ||V ||
2 (2.1)

Here, m×k matrix U and n×k matrix V are the unknown matrices, which
need to be learned to minimize the objective function. The most popular and
effective ways to solve this biconvex optimization problem is to use the gradient
descent or stochastic gradient descent approach (SGD) [24] that applied to
seek a local minimum solution of the objective function. To learn the user
latent feature matrix U one needs to compute the partial derivative of J with
respect to the decision variable ui with fixed V :

∂J

∂ui
= (Rij − ui · vj)(−vj) + λui (2.2)

And similarly for matrix V we fix U and compute the partial derivative of
J with respect to the decision variable vj :

∂J

∂vj
= (Rij − ui · vj)(−ui) + λvj (2.3)

Subsequently, the updates can be computed as follows:

ui ← ui + α((Rij − ui · vj)(vj)− λui)

vj ← vj + α((Rij − ui · vj)(ui)− λvj)

where α > 0 is the step size, which often is set to small constant value or can
be chosen using standard numerical methods in nonlinear programming.

The SGD algorithm continues iterating on the training set multiple times
until it reaches convergence or exceeds the upper limit of the number of it-
erations. Note that it is necessary to update all entries in both matrices si-
multaneously with the use of auxiliary variables to store intermediate results
during an update.

The next step is to utilize content information to regularize the matrix
factorization. In the work [4], Yu, Wang, and Gao propose to add the following
item relationship regularization term based on item attribute information to
constrain the baseline matrix factorization framework:

30

2.1. Algorithm description

β

2

N∑
i=1

N∑
j=1

Sij ||vi − vj ||2

where β is regularization parameter to control the impact from the item
attribute information, S is similarity matrix where S(i, j) represents the sim-
ilarity between items i and j based on their item attribute information.

The key idea of this regularization term is to make two item latent fea-
ture vectors more “close” if they share common characteristics based on their
item attribute information. A small value of S(i, j) means that the distance
of two item latent feature vectors must be great, while a small value of dis-
tance indicates that S(i, j) must be large [4]. Using this approach, we can
better characterize the item latent feature vectors in the process of matrix
factorization, thereby produce more accurate recommendations compared to
traditional approaches.

By adding the item relationship regularization term into Equation 2.1, the
objective function J changes to:

J∗ = min
U,V

1
2 ||R− UV

T ||2 + λ

2 ||U ||
2 + λ

2 ||V ||
2 + β

2

N∑
i=1

N∑
j=1

Sij ||vi − vj ||2

The gradient with respect to ui (Equation 2.2) and corresponding update
rule remain the same, while the gradient with respect to vj in Equation 2.3
changes to:

∂J∗

∂vj
= (Rij − ui · vj)(−ui) + λvj + β(vj

N∑
k=1

Sjk −
N∑
k=1

Sjkvk)

Accordingly updating rule for vj changes to:

vj ← vj + α((Rij − ui · vj)(ui)− λvj − β(vj
N∑
k=1

Sjk −
N∑
k=1

Sjkvk))

To construct similarity matrix S we must compute the similarity between
POIs using some of the content information available in LSBNs. In our dataset
each venue is represented by a collection of attributes (i.e., WiFi - true/false,
price range, parking - true/false, noise level and so on) and categories (i.e.,
bakery, restaurant, coffee shop), so we will use attributes A and categories
C to compute similarity between each pair of POIs. To compute similarity
matrix S we construct the following similarity measure:

Sim(i, j) =
∑D
k=1 δ(ai,k, aj,k)

D
+ |Ci ∩ Cj |
|Ci ∪ Cj |

where D is the number of attributes and δ(ai,k, aj,k) returns 1 if attributes
ai,k = aj,k and 0 otherwise.

31

2. Content-aware POI recommendation algorithm

To summarize, the pseudo-code for the SGD content-aware matrix factor-
ization approach for POI recommendation system is described in the following
Algorithm 1.

Algorithm 1: Content-aware matrix factorization algorithm for POI
Recommendation System based on explicit feedback

Input :
R : the user-POI rating matrix.
S : POI similarity matrix computed using Equation 2.1.
k : the dimension of latent feature vector.
w : the number of iterations.
λ : the regularization parameter for user regularization term.
β : the regularization parameter for item relationship
regularization term.
α : the step size (learning rate).

Output:
U : the user latent feature matrix.
V : the POI latent feature matrix.

Randomly initialize matrices U and V ;
R∗ = {(i, j) : rij is observed };
Initialize c = 0;
while not(convergence) or c < w do

for each (i, j) ∈ R∗ in shuffled order do
eij ⇐ rij −

∑k
s=1 uisvjs;

u+
i = ui + αeijvj − λui;
v+
j = vj + αeijui − λvj − β(vj

∑N
k=1 Sjk −

∑N
k=1 Sjkvk);

ui = u+
i ;

vj = v+
j ;

end
c++ ;

end
return U and V

The above algorithm continues iterating on the training set multiple times
until it reaches convergence or exceeds the upper limit of the number of itera-
tions. The convergence condition can be computed using the following check
(J∗[i] − J∗[i+1]) < ε, where ε is the precision value.

After computing the matrices U and V , we can predict for target user i
the rating for POI j as r̂ij = ui · vj , where r̂ij symbolizes the predicted rating.

32

2.2. Matrix factorization for implicit feedback

2.2 Matrix factorization for implicit feedback

The previously discussed matrix factorization approach is designed for rating
predictions in a typical scenario of recommendation system. However, explicit
feedback is not always available. Recommendation systems can derive user
preferences from more abundant implicit feedback, which indirectly reflect an
opinion by observing user behavior, e.g, purchase or browsing history, search
patterns, or even mouse movements. In POI recommendation systems implicit
feedback usually expressed in the form of check-ins, a higher visit frequency
corresponds to larger confidence of preference for the location. These type of
feedback is more natural for LSBN systems.

It is essential to identify the unique characteristics of implicit feedback
that prevent the direct use of algorithms developed with explicit feedback.
The main characteristics are:

1. No negative feedback. Observing the implicit behavior of users, we can
infer which items they probably like, but it is difficult to infer what
they didn’t like reliably. In terms of POI, check-in datasets just include
the locations where users have been and therefore they likely prefer.
In other words, it just provides positive examples. This fundamental
asymmetry is absent in explicit feedback when users tell us what they
like and what they don’t. It has several implications. For example,
explicit recommenders tend to focus only on the user-item pairs that we
know their ratings. Thus, the remaining data are treated as “missing
data” and excluded from the analysis. This is impossible with implicit
feedback, as focusing only on the gathered feedback will leave us with
the positive feedback, greatly distorting the full user profile [40]. Hence,
it is also crucial to address the missing data, where the most negative
feedback is expected to be found.

2. The numeric value of explicit feedback indicates a preference, while the
numeric value of implicit feedback indicates confidence [40]. Systems
based on explicit feedback allow the user to express their level of pref-
erence, e.g., a star rating between 1 and 5. On the other hand, numeric
values of implicit feedback describe the frequency of actions, such as
how often a user is visiting a certain restaurant. The numerical value
of feedback is useful because it tells us about the confidence we have in
a particular observation, i.e., the visiting patterns of higher frequency
indicate the preferences of higher confidence. A one-time event can be
caused by various reasons that have nothing to do with the user’s pref-
erences, while a recurring event is more likely to reflect user opinion.

3. Implicit feedback is inherently noisy [40]. As long as we passively track
user behavior, we can only guess at their preferences and true motives.
For example, we may consider visiting behavior for an user, but this

33

2. Content-aware POI recommendation algorithm

does not necessarily indicate a positive view of the venue, i.e., a user
that did not visit a certain POI might have done so because she dislikes
the venue or just because she did not know about it or was not available
to visit it.

Due to the unique characteristics of implicit feedback, it is necessary to
design other algorithms for explicit feedback. One of the solutions is to ran-
domly select some negative examples for each user and assign them less weight
than the positive ones because the confidence in their negative attitude is less
than the positive attitude of the positive examples. In the work [40], Yifan
Hu et al. propose to consider all non-visited locations as negative examples
when the weights to all negative examples are assigned the same value, i.e., 1.
Thus, the weight matrix W can be defined as follows:

wui =
{
µ(cui) + 1, if cui > 0
1, otherwise

(2.4)

where µ(cui) > 0 is a monotonically increasing function. Based on this
weighted matrix W , the objective function for the implicit feedback is repre-
sented as follows:

min
U,V

1
2 ||W � (C∗−UV T)||2 + λ

2 ||U ||
2 + λ

2 ||V ||
2 + β

2

N∑
i=1

N∑
j=1

Sij ||vi− vj ||2 (2.5)

where � is the Hadamard product operator, i.e., elementwise multiplica-
tion of matrices, C∗ is 0/1 matrix, where each entry c∗ui ∈ {0, 1} indicates
whether a user u has visited a POI i.

This optimization problem can also be solved using the stochastic gradient
descent approach. However, due to the weight setting, the approximation
error is summed over all entries in the user-POI matrix, and nonzero entries
are weighted more heavily. Therefore, the cost function will contain M ×
N terms, where M is the number of users and N is the number of POIs.
For typical datasets, M × N can easily reach several billion. In such cases,
stochastic gradient descent algorithm becomes too expensive. Fortunately,
the approximate error can be efficiently reduced via Alternative Least Squares
algorithm (ALS) and its time complexity for each iteration is in proportion to
the total number of visited locations, i.e., the number of non-zero entries in
the frequency matrix [37].

The basic idea of the alternative least square approach to use the following
iterative approach, starting with an initial set of matrices U and V :

1. Keeping V fixed, we recompute and update all user factors, i.e., solve
for each of the m rows of U by minimizing the objective function in
the Equation 2.5. By differentiating the objective function we obtain a

34

2.2. Matrix factorization for implicit feedback

regularized linear least squares solution for the individual user factor ui
[40]:

ui = (V TW iV + γI)−1V TW ic∗i

where W i is an N ×N diagonal matrix, subject to W i
jj = wij and c∗i is

a binary rating vector of the user i (ith row of the matrix C∗).

2. Keeping U fixed, solve V by minimizing the objective function similarly.
By differentiating the objective function given in equation 2.5 we obtain
a regularized linear least squares solution for the individual item factor
vj :

vj = (UTW jU + (γ + β(
N∑
k=1

Sjk − 1))I)−1(UTW jc∗j + β(
N∑

k=1&k 6=j
Sjkv

ᵀ
k))

where W j is an M×M diagonal matrix, subject to W j
ii = wij and c∗j is a

binary rating vector of the POI j (jth column of the matrix C∗). A total
of n such least-squares problems need to be executed, and each least-
squares problem has k variables (k is the dimension of latent feature
vector).

3. Repeat Steps 2 and 3 until a stopping criterion is satisfied. Usually,
algorithm continues iterating on the training set multiple times until it
exceeds the upper limit of the number of iterations or it reaches conver-
gence, i.e if the difference between the observed root mean squared error
on the training dataset is less than some precision value ε. When the
iteration stops, the obtained U and M are used to make final predictions
on the test dataset.

A computational bottleneck on these update expressions is computing
V TW iV and UTW jU , whose naive calculation will require time O(k2n) (for
each of the m user) and O(k2m) for each of the n POI respectively (k is the
factor of matrices U and V). In the work [40], Yifan Hu et al. propose a trick
to speed up its calculation. In particular, by using the fact that

V TW iV = V T (W i − I)V + V TV

UTW jU = UT (W j − I)U + UTU

the second part V TV independent of user i and UTU is independent of POI
j, so that it can be precomputed. As for first part, it only requires O(nik2),
where ni is the number of visited locations of user i.

Applying the similar trick to calculate the remaining part V TW ic∗i in up-
date expression for ui, it gets cost O(nik). Consequently, recomputation of
ui is performed in time O(k2ni + k3), where O(k3) is the cost of the matrix
inversion. The same technique will be applied for individual item factor vj .

35

2. Content-aware POI recommendation algorithm

To summarize, the pseudo-code for the ALS content-aware matrix factor-
ization approach for implicit feedback is described in the following algorithm.

Algorithm 2: Content-aware matrix factorization algorithm for POI
Recommendation System based on implicit feedback

Input :
C : the user-POI check-in frequency matrix.
S : POI similarity matrix computed using Equation 2.1.
k : the dimension of latent feature vector.
w : the number of iterations.
λ : the regularization parameter for user regularization term.
β : the regularization parameter for item relationship
regularization term.

Output:
U : the user latent feature matrix.
V : the POI latent feature matrix.

Randomly initialize matrices U and V ;
Initialize weigh matrix W , where wij = µ(cij) + 1;
Initialize matrix C∗ as 0/1 matrix;
Initialize c = 0;
for each i ∈M do

foreach j ∈ N do W i
jj = wij ;

end
for each j ∈ N do

foreach i ∈M do W j
ii = wij ;

end
while not(convergence) or c < w do

Updating U...;
V V = V T · V ;
for each i ∈M do

ui = (V T (W i − I)V + V V + γI)−1V TW ic∗i
end
Updating V...;
UU = UT · U ;
for each j ∈ N do

vj = (UT (W j − I)U + UU + γI + β(∑N
k=1 Sjk −

Sjj)I)−1(UTW jc∗j + β(∑N
k=1&k 6=j Sjkvk))

end
c++ ;

end
return U and V

After computing the matrices U and V , we recommend to target user i

36

2.2. Matrix factorization for implicit feedback

the top K POIs with the largest value of ĉij = ui · vj , where ĉij symbolizes
the predicted preference of user i for item j. Notice, that recomputation of
the user-factors ui can be done in a parallel fashion since there is no depen-
dence between users. The recalculation of the user-factors is followed by a
recomputation of all item-factors vj and also possible in a parallel way. After
the experiments, a maximum number of iterations were set to 10 (see the dis-
cussion in Section 4.3). The choice of function µ(cij) is discussed in Section
4.3.3.

2.2.1 Weighted vs. non-weighted matrix factorization

The main idea of using a weighted method for implicit feedback arose due to
the very lower values of precision and recall, that give non-weighted matrix
factorization approach. In Figure 2.1 you can see, that prediction accuracy of
the non-weighted approach on check-in dataset is very low – the best precision
values are around 0.036 and the best recall values are around 0.038 (the base-
line regularized matrix factorization defined in Equation 2.1 without adding
item attribute information was evaluated).

By adding the weighted matrix proposed by [40] and defined in Equation
2.4 to the objective function, the prediction accuracy is doubled, as you can
see in Figure 2.1, the best precision values are around 0.088 and the best recall
values are around 0.078.

0 10 20 30 40 50 60 70
Parameter K

0.03

0.04

0.05

0.06

0.07

0.08

Pr
ec

isi
on Weighted MF

Non-weighted MF

(a) Impact on precision

0 10 20 30 40 50 60 70
Parameter K

0.03

0.04

0.05

0.06

0.07

Re
ca

ll Weighted MF
Non-weighted MF

(b) Impact on recall

Figure 2.1: Prediction accuracy of weighted and non-weighted matrix
factorization approach based on implicit feedback

Therefore, the weighted matrix factorization approach for data sets with
explicit feedback provides more accurate results that leaves no doubt as to the
correctness of the choice of this approach.

37

Chapter 3
Datasets

Before going into the experiments and evaluation of the algorithm, it is nec-
essary to discuss the existing LBSN datasets. At present, the most popular
location-based social networks are Foursquare, Yelp, TripAdvisor, Facebook
Place, Mapstr and so on. Unfortunately, not all of them publish their datasets,
perhaps due to the privacy concern. Below we discuss the public datasets used
in our experiments and the ways of completing missing information required
by our algorithm.

3.1 Foursquare

Foursquare1 one of the most popular location-based social networks that has
more than 50 million monthly active users as of October 2018 [2] and keeps
growing every month. In this work we use public real-world dataset 2 contains
check-ins in New York City collected for about ten months (from 12 April 2012
to 16 February 2013). It contains 227,428 check-ins for 38,333 businesses in
New York City. Each check-in is associated with its timestamp, GPS coor-
dinates, and categories of venue. Unfortunately, some venues do not collect
a sufficient number of check-ins, and some customers lack adequate check-ins
to infer their preferences. Therefore we filter out POIs and customers whose
check-ins are less than 10 and exclude useless POIs with category ”Home (pri-
vate)”, ”Office”, ”Bus Station”, ”Road” and so on. After preprocessing the
sparsity of user-POI check-in matrix is 99.231% (before it was 99.872%.).

Foursquare specializes in user check-ins and, thus, social and temporal
aspects. But the fousquare dataset has a drawback – it does not contain
attribute information about POIs that is required by our algorithm. To avoid
such problem, we added missing information to Foursquare dataset using the
Yelp API. The process of conflating is described in Section 3.3.

1https://foursquare.com
2Available at https://sites.google.com/site/yangdingqi/home/foursquare-dataset

39

https://foursquare.com
 https://sites.google.com/site/yangdingqi/home/foursquare-dataset

3. Datasets

3.2 Yelp

Yelp 3 is a local-search service that focuses on detailed user reviews and a wide
range of semi-structured place attributes such as the prices, noise level, wifi
availability, etc. The Yelp dataset4 was publicly released for academic research
purposes. It contains interactions between customers and businesses in 10
metropolitan areas, 6.7M reviews for 192,609 businesses. Unlike Foursquare,
the Yelp dataset doesn’t contain check-ins of users, only the anonymous set
of check-ins is available for each venue. Therefore instead of check-in matrix,
the rating matrix will be constructed.

0

500000

1000000

1500000

2000000

Las Vegas Phoenix Toronto Scottsdale Charlotte Pittsburgh Henderson Montreal

141 599
194 797201 613

273 834
351 139

474 841

659 850

1 826 702 Reviews count

Figure 3.1: Statistics of the number of reviews depending on the city

After summarizing the rating records, we grouped all the rating records
(see Figure 3.1) by city and calculated sparsity of each rating matrix. For
our experiments, we limited ourselves to businesses and reviews from 4 cities
which have the most reviews and simultaneously the densest user-POI rating
matrix. After, we filtered out the POIs and customers which have less than 7
ratings. The following table shows the statistics of these cities.

Las Vegas Phoenix Toronto Scottsdale
Users 579327 237700 103273 145224
POIs 28910 18633 18237 8822

Sparsity, % 99,981 99,967 99,974 99,972
After

cleaning
99,529 99,397 99.737 99.493

3https://www.yelp.com
4Yelp dataset challenge Round 13 (access date: March 2019), https://www.yelp.com/

dataset/challenge

40

https://www.yelp.com
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge

3.3. Merging datasets

3.3 Merging datasets

The problem of lack of some information in datasets is very common in
recommender-based researches. Each of abovementioned services specializes
in certain kinds of place-related information, and both have certain strengths
and weaknesses. Therefore, to fully exploit all the variety of information,
conflation is required.

From a research perspective, the combination of data sources is desirable
for multiple reasons. First, it increases data quality by enriching the data with
heterogeneous multi-thematic information. Also, the typos in place names or
inaccuracies in GPS coordinates may be corrected. Second, we can exploit
additional attributes from multiple data sources to arrive at a more holistic
understanding of places. For instance, one can combine user reviews from
different communities to study sentiment, compare the place hierarchies and
match them using ontology alignment techniques, mine check-in behavior and
so on [41].

The process of conflating POIs from data sources can be generally divided
into two steps:

1. Establish identity relationships between information entities in different
data sources, i.e., whether both entities correspond to the same place
in the physical world. To do this, attribute values that are common to
both datasets are typically compared using a certain similarity measure.
For example, for comparing an attribute with a string value (e.g., name,
city), the Levenshtein distance can be used. Other attributes, such
as geographic locations, can be compared using appropriate measures.
In practice, these measures rarely return exact matches and must be
combined using the methods described in the next step.

2. In the second step involves conflating the places using the weighted
combination of selected attributes according to appropriate similarity
measures. It is also worth considering that POI locations from LBSN
are often recorded by GPS positioning via smartphones and they can
be inaccurate to tens of meters. Therefore, the more attribute will be
involved in comparison, the more correct the matching will be.

Because of Foursquare dataset does not contain content information about
POIs, that is required by our algorithm, we propose to conflate the POIs based
on multiple attributes from the Foursquare dataset using the Yelp API 5. It
should be noted, that instead of the Yelp API it would be possible to use
available Yelp dataset, but the problem is that both datasets cover different
geographical region to varying degrees and do not contain a sufficient number
of overlapping attributes.

5https://www.yelp.com/fusion

41

https://www.yelp.com/fusion

3. Datasets

As a rule, the process of combining two data sources must be performed
on overlapping attributes. The Foursquare dataset and Yelp API have several
overlapping attributes that we used as input to match POI:

Geographic Location In POI matching, it may seem that the geographic
distance between two locations is a strong indicator of the match accu-
racy. However, the location coordinates are subject to the same con-
tribution errors that are present in any of the other attributes. Given
the uncertainty of mobile positioning systems and the systematic errors
inherent to GPS positioning, it is not uncommon to detect significant
discrepancies in the geographic coordinates of the same location derived
from two applications [41]. For example, the average distance between
two POIs in our matched set is 72.9 meters with a maximum difference
of 689.1 meters. To improve the accuracy of coordinates, we use the
Foursquare API6 to correct it. Fortunately, the Foursquare dataset con-
tains venue ids that correspond to venues IDs in Foursquare API. After
that, the average distance between two POIs in our matched set became
39.9 meters with a maximum difference of 307.5 meters.

Venue Name To compare two names between Foursquare and Yelp venue
we use the Levenshtein distance as similarity measure. The Levenshtein
distance between two strings is the minimum number of edit operations
(additions, deletions or substitutions) required to transform one word
into the other. The fewer changes required, the smaller the editing
distance and the more similar the names of the two POIs. This similarity
measure between two names of venues will be denoted as Levname(a, b).
Originally, Foursquare dataset did not contain the name of venue, so
we use the Foursquare API to extend the existing dataset (merging was
performed by venue ID).

Venue Category To improve the matching quality, the categories similarity
between venues should be also taken into account. Each venue in the
Foursquare contain short category description, for example ”Restaurant”
or ”Food & Drink Shop”. The categories in Yelp similar, but still are
different. For example, in Yelp it will be ”Coffeeshops” instead of ”Coffee
Shop” in Foursquare. To compare categories, we split all categories
names onto words (e.g., ”coffee” and ”shop” or ”food”, ”drink” and
”shop”) and check if category in Yelp contains these subwords. For
example, we check if ”coffee” and ”shop” are contained in ”Coffeeshops”.
The word ”Coffee” is contained and this word is removed from string and
remained ”shops” is compared with ”shop”. The categories similarity
between venues a and b will be denoted as Cat(a, b).

6https://developer.foursquare.com/places-api

42

https://developer.foursquare.com/places-api

3.3. Merging datasets

The process of merging each venue in the Foursquare dataset with the Yelp
API can be described as follows:

1. Request to Yelp API : The Yelp API provide the endpoint for searching
venues, that returns up businesses based on the provided search crite-
ria. For example for venue with GPS coordinates (lat, lan) we call the
following endpoint:

GET https://api.yelp.com/v3/businesses/search
?latitude=lat
&longitude=lan
&radius=300
&limit=20

It must return the 20 closest venues to the given coordinates in the
suggested search radius (in meters).

2. Calculation of similarity: For all returned items we compute distance,
similarity of name and categories using the following weighted model:

Sim(a, b) = λ1 ·Dist(a, b) + λ2 · Levname(a, b) + λ3 · Cat(a, b)

where a is the target venue in the Foursquare dataset, b is the returned
venue from Yelp API, λ1, λ2, λ3 are regularization parameters to control
the impact of each similarity measure.

3. Finding the best match: If venue with the highest similarity value sat-
isfies a pre-specified matching threshold, a match is found. If no, the
venue is marked as unmatched.

To evaluate the validity of the proposed model, we randomly select 200
POIs in the Foursquare dataset. Selected venues consisted of a name, geo-
graphic coordinates and at least one category tag. Using the Yelp API, we
request for the same number of POI and save all returned responses. Then we
manually compare returned responses from Yelp to each target POI. For 200
POI only 170 positive matches were found, which is understandable because
not all venues from Foursquare are presented in Yelp and vice versa. Then we
use our proposed model and match the same POIs. The proposed model cor-
rectly matched 96% of the 170 POIs, that produce great match accuracy and
confirm the validity of the proposed model. The main reason for not finding a
match was that the distance between matched POI often differed significantly
across providers.

43

Chapter 4
Experiments and evaluation

In this section, we design and conduct several experiments on real datasets to
compare the recommendation quality of the proposed content-aware matrix
factorization method with some state-of-the-art recommendation techniques.
Specifically, the design of the experiments aims to address the following ques-
tions:

1. How does the control parameters (β, k and so on) impact the quality
of recommendation? The goal is to understand the roles/weights of the
parameters in obtaining optimal recommendations. See Section 4.3 for
details.

2. How is the effectiveness of the proposed algorithm compared with other
state-of-the-art collaborative filtering techniques? In Section 4.4, we
intend to explore the feasibility and necessity of integrating content in-
formation into matrix factorization approaches to further enhance the
recommendation quality.

3. How well does our approach deal with cold start item, i.e., with POIs
that don’t have a lot of ratings or check-in records? In Section 4.5, we
explore the impact of leveraging additional content information on the
cold start problem.

In the following, we’ll look at all of these questions, but first we’ll dis-
cuss interesting implementation details and evaluation metrics, used in our
experiments.

4.1 Implementation details

In our experiments, we use two real-world datasets described in Chapter 3.
The first dataset is the Yelp data containing ratings for POIs from Las Vegas,
Phoenix, Toronto, and Scottsdale cities. These datasets will be used by our

45

4. Experiments and evaluation

first proposed content-aware SGD algorithm for explicit feedback. The other
dataset is the extended Foursquare data containing check-in data made in
New York City. This dataset will be used by the second content-aware ALS
algorithm for implicit feedback.

For each user, we randomly select 30 % of her visiting locations as testing
data (also referred to as ground truth) to evaluate the performance of different
algorithms. The remaining portions from each user constitute a training set
for learning the parameters of the proposed model. Based on the training
sets, we construct a user-POI rating matrix R with 111,565 nonzero entries
and check-in frequency matrix C with 20,804 nonzero entries for Yelp and
Foursquare respectively, which will be used in the POI recommendation. The
sparsity of R is 99.46 % and 99.315 % of matrix C.

Almost all of the code is written in pure Python, except content-aware
weighted matrix factorization for implicit feedback, that requires a very space-
consuming full-matrix inverse operation. We use Matlab7 to implement as the
inverse operation there is better optimized. To store sparse matrices R and C
we use SciPy8 2-D sparse matrix package, that allows us to perform complex
matrix computations. For different matrix manipulation, we use NumPy9 li-
brary, that provides an abundance of useful features for operations on n-arrays
and matrices in Python. Also, we use Matlab Parallel Computing Toolbox and
Python Multiprocessing module10 for parallelization of computations.

All our experiments are conducted using PC with an Intel Core i5 2GHz
Processor, 16GB memory and macOS operating system.

4.2 Evaluation metrics

To measure the recommendation quality of the two proposed methods for
explicit and implicit feedback, we choose two different approaches. For the
first algorithm for explicit feedback, where a user specifies preference using
ratings, we use two popular metrics: Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) to measure the prediction accuracy. These
metrics are based on the difference between the rating that you predicted for
an item and the rating that a user gave that item. Formally,

MAE =
∑T
i=1 |ri − r̂i|

T

RMSE =

√∑T
i=1 |ri − r̂i|2

T

7https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
8https://docs.scipy.org
9https://www.numpy.org

10https://docs.python.org/3.7/library/multiprocessing.html

46

https://www.mathworks.com/products/matlab.html?s_tid=hp_products_matlab
https://docs.scipy.org
https://www.numpy.org
https://docs.python.org/3.7/library/multiprocessing.html

4.2. Evaluation metrics

where ri and r̂i are the real rating and the corresponding prediction, respec-
tively, and T denotes the total number of predictions generated for all active
users. The accuracy is evaluated over entries in the test dataset. For the above
equations, the lower the MAE or RMSE value, the better the recommenda-
tion algorithm. The differences between these metrics are that the RMSE is
in units of ratings, rather than in units of squared ratings like the MSE. Also
in contrast with MSE, the RMSE tends to disproportionately penalize large
errors because of the squared term within the summation [6].

Evaluation of implicit-feedback recommendation method, however, requires
other appropriate measures. It is important to realize that we don’t have
any preference data and reliable feedback from the user regarding which lo-
cations are unloved, as not visiting a POI can stem from multiple different
reasons. Instead, we only have an implicit metric (visiting frequency) that
we use to obtain an estimate of that preference. We can still generate a set
of predicted values, but those values are only meaningful to rank items to be
recommended and the values themselves don’t really matter. Thus, using the
above-mentioned error measure metrics for explicit feedback is a bit pointless.

In implicit-feedback recommendation methods, the learned model is as-
sessed by its capacity of finding the ground truth locations for each user among
the top k ranked locations. So it makes sense to look into rank-based metrics.
These include, for example, MAP@k, Precision@k, Recall@k, DCG@k, and
the percentile-ranking metric. In our experiments, we will use three widely
used rank-based metrics in the top k POI recommendation – Recall@k, Pre-
cision@k, and nDCG@k.

The metric Recall@k indicates what percentage of the user’s visiting lo-
cations can emerge in the top k recommended POIs while the second metric
Precision@k indicates what percentage of locations among the top k recom-
mended POIs has been visited by the user. Formally,

Recall@k = 1
M

M∑
u=1

|Su(k) ∩ Vu|
Vu

Precision@k = 1
M

M∑
u=1

|Su(k) ∩ Vu|
k

.

where Su(k) is the top k recommended POIs, Vu represents all visited locations
of user and M is count of users.

The nDCG@k metric (normalized Discounted Cummulative Gain) is de-
fined for each user as:

nDCG@k = DCG@k
IDCG@k =

∑k
i=1

2reli−1
log2(i+1)∑r

i=1
2reli−1
log2(i+1)

where reli refers to the graded relevance of the result ranked at the position
i and r represents the count of relevant POIs (ordered by their relevance)

47

4. Experiments and evaluation

in the test set up to position k. In other words, IDCG is the DCG value
when the recommended POIs are ideally ranked [42]. We divide the raw DCG
by this ideal DCG to get normalized NDCG value between 0 and 1. In our
experiment, K is set to be 10.

For the above measures, the higher the value, the better the recommenda-
tion algorithm. All these metrics are computed individually for each user and
then the average metric value of all users is reported.

4.3 Impact of control parameters to quality of
recommendation

In the experiments, we set the learning rate α in SGD algorithm to a small
value 0.005 to ensure the generalization accuracy. The parameter ε for check-
ing the convergence condition we set to 0.0001 for all the datasets. Finally,
we use the number of iteration w1 = 200 for SGD algorithm and w2 = 10 for
second ALS algorithm to control the loop conditions of matrix factorization
procedures. Figure 4.1a show the first algorithm, where after 200 rounds the
value of the objective function J that we minimalize is still decreasing, but
only by a small value (the curve is almost flattened) for each iteration after-
ward. So for the first algorithm, we will set the number of iteration w1 to
200.

The second algorithm for implicit feedback, where we use ALS approach
and trying to minimalize the objective function J∗, requires much less number
of iteration to reach the convergence, but each iteration is very time-consuming
(due to full-matrix inverse operation). You will see at Figure 4.1b, that after
10 iterations the algorithm reaches the convergence of the cost function J∗
and each further value is no longer changing or the change is quite small. So
for the second algorithm, we will set the number of iteration w2 to 10.

In the following, we will explore the impact of control parameters of our
algorithms to quality of recommendation and tune them based on the training
set to find the optimal values. Subsequently, we will use the best values of
parameters during comparison with other approaches in Section 4.4.

4.3.1 Impact of control parameter λ

In our proposed method, the parameter λ is used as a regularization term,
λ
2 (||U ||2 + ||V ||2) , that added to the objective function to avoid overfitting.
To select the most appropriate regularization parameter λ we use the holdout
method, where values of λ from 0.001 to 1 are tested over the training set and
the value of λ that provides the highest accuracy is then used on the testing
set. Another parameter K was set to 50 and the parameter β was set to 0.1.

Figure 4.2 reports the impacts of parameter λ on MAE and RMSE in the
first SGD algorithm for explicit feedback. You can see, that the values of λ

48

4.3. Impact of control parameters to quality of recommendation

0 50 100 150 200 250
Number of iterations, w

0

1000

2000

3000

4000

5000

6000

Va
lu

e
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n

(a) SGD algorithm based on
explicit rating

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of iterations, w

0

2000

4000

6000

8000

10000

12000

Va
lu

e
of

 th
e

ob
je

ct
iv

e
fu

nc
tio

n
(b) ALS algorithm based on

implicit feedback

Figure 4.1: Impact of the number of iterations on convergence of cost function
J on the training dataset. Value of J is computed on each iteration.

have a significant impact on the recommendation quality. The curves of MAE
and RSME show similar change trends: as the λ increases, the values of MAE
and RMSE firstly drop down, but after the parameter λ reaches a certain
threshold, the metric values begin to increase as the λ increases, which means
that the performance degrades when λ is too large. Algorithm achieves the
best performance MAE=0.797 and MRSE =1.104 when λ is around 0.135.

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

0.7

0.8

0.9

1.0

1.1

1.2

1.3

M
AE

(a) Impact λ on MAE

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

0.8

1.0

1.2

1.4

1.6

1.8

M
RS

E

(b) Impact λ on MRSE

Figure 4.2: Impact of λ on prediction accuracy of SGD algorithm based
on explicit rating

Figure 4.3 reports the impacts of λ on Recall@k, Precision@k and nDCG@k

49

4. Experiments and evaluation

metrics (with k set to 5 and 10) in the second ALS algorithm for implicit feed-
back. You can see, that unlike the first algorithm, the recommendation per-
formance of the second algorithm is not very sensitive to the regularization
coefficient λ and does not strongly influence recommendation quality. This
can be explained by the fact that all negative examples (unvisited locations)
are taken into account.

0.0 0.2 0.4 0.6 0.8
Parameter

0.06

0.08

0.10

0.12

0.14

nD
CQ

Impact on nDCQ@k with k = 5, 10
nDCQ@5
nDCQ@10

0.0 0.2 0.4 0.6 0.8
Parameter

0.06

0.07

0.08

0.09

0.10

0.11

0.12

0.13

0.14

Pr
ec

isi
on

Impact on Precision@k with k = 5, 10
Precision@5
Precision@10

0.0 0.2 0.4 0.6 0.8
Parameter

0.06

0.08

0.10

0.12

0.14

0.16

Re
ca

ll

Impact on Recall@k with k = 5, 10
Recall@5
Recall@10

Figure 4.3: Impact of λ on prediction accuracy of ALS algorithm based
on implicit rating

However, if highlight the best values, the second ALS algorithm based
on implicit feedback achieves the best performance Recall@5=0.099, Preci-
sion@5=0.11 and nDCG@5=0.114 when λ is around 0.95 and Recall@10=0.126,
Precision@10=0.096 and nDCG@10 when λ is around 0.103.

50

4.3. Impact of control parameters to quality of recommendation

4.3.2 Impact of control parameter K

The parameter K � min(m,n) denotes the dimension of latent feature vec-
tors U and V , that is, the number of hidden features in the model. It is
another important parameter in our proposed method. To assess the impact
of parameter K on the recommendation quality we set K to values from 5 to
200 with a step of 5. Parameter λ was set to 0.135 and the parameter β was
set to 0.1.

The experimental results for the first algorithm are plotted in Figure 4.4.
You can see that as K increases, the values of MAE decrease to reach K a
certain threshold and then begin to increase. The values of MRSE behave a
little differently – at first, it decreases a little to reach K the value 35 and
then starts to increase quite quickly. To sum up, the first algorithm achieves
the best performance MAE=0.783 when K is around 100 and MRSE=1.083
when K is around 35.

0 25 50 75 100 125 150 175 200
Parameter K

0.78

0.80

0.82

0.84

0.86

0.88

M
AE

(a) Impact of K on MAE

0 25 50 75 100 125 150 175 200
Parameter K

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

M
RS

E

(b) Impact of K on MRSE

Figure 4.4: Impact of K on prediction accuracy of SGD algorithm based
on explicit rating

The experimental results for the second algorithm are plotted in Figure
4.5. You can see that as K increases, the values of Recall, Precision and
nDCG metrics increase to reach K a certain threshold and then begin to de-
crease. So, increasing K does not improve the performance of the second
algorithm after K exceeds a certain threshold. To sum up, the second al-
gorithm achieves the best performance Precision@5=0.106, Recal@5=0.096
and nDCG@5=0.108 when K is around 30 and Precision@10=0.093, Re-
cal@10=0.121 and nDCG@10=0.099 when K is around 70.

Based on the intuition that larger values of K may represent more prefer-
ences by latent feature vectors, the quality of the recommendation should be
increase as K increase. However, Figures 4.4 and 4.5 show that continually

51

4. Experiments and evaluation

0 25 50 75 100 125 150 175 200
Parameter K

0.085

0.090

0.095

0.100

0.105

0.110

nD
CQ

Impact K on nDCQ@k with k = 5, 10
nDCQ@5
nDCQ@10

0 25 50 75 100 125 150 175 200
Parameter K

0.080

0.085

0.090

0.095

0.100

0.105

Pr
ec

isi
on

Impact K on Precision@k with k = 5, 10
Precision@5
Precision@10

0 25 50 75 100 125 150 175 200
Parameter K

0.08

0.09

0.10

0.11

0.12

Re
ca

ll
Impact K on Recall@k with k = 5, 10

Recall@5
Recall@10

Figure 4.5: Impact of K on prediction accuracy of ALS algorithm
based on implicit rating

increasing the dimension of the latent feature vector does not improve per-
formance after K exceeds a certain threshold. A possible reason is that the
latent feature vectors with certain dimension K are enough to characterize
the preferences of the users and items and increasing the K will introduce a
lot of noise into the objective function, which will lead to a deterioration in
the quality of the recommendations. This may explain that the effect of noise
on MRSE values (see Figure 4.4b) is quadratic because it uses a square term
in the summation.

4.3.3 Impact of function µ in weighting matrix

Recall, that in the second algorithm for implicit feedback we are using the
weighted matrix factorization approach, where the weighted matrix W is
adding to the objective function, that defined as follows:

52

4.3. Impact of control parameters to quality of recommendation

wui =
{
µ(cui) + 1, if cui > 0
1, otherwise

where µ(cui) > 0 is a monotonically increasing function.
Using this weighted matrix, all non-visited locations are considered as

negative examples and the weights to all negative examples are assigned the
same value, i.e., 1. As for positive examples, to all visited POIs a greater
weight (with respect to cui) is assigned and the rate of weight increase is
controlled by the function µ(cui).

So, the function µ(cui) plays an important role in the weighted matrix
factorization approach. To select the appropriate function and evaluate its
impact on the recommendation quality, we conduct the experiments by con-
sidering the following variations of the increasing function µ:

µ1(cui) = z ∗ cuj

µ2(cui) = log(1 + cui ∗ (10ε))
In this experiment, the parameter λ was set to 0.1, the parameter K was

set to 30 and the parameter β was set to 0.1. The experimental results for
the first function µ1 are plotted in Figure 4.6. In this function, the rate of
increase is controlled by the constant z. As you can see, setting z = 10 was
found to produce good results, namely Precision@5=0.09, Recall@5=0.079
and Precision@10=0.076, Recall@10=0.101.

0 20 40 60 80 100
Parameter z

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

Pr
ec

isi
on

Impact of z on Precision@k with k = 5, 10
Precision@5
Precision@10

0 20 40 60 80 100
Parameter z

0.05

0.06

0.07

0.08

0.09

0.10

Re
ca

ll

Impact of z on Recall@k with k = 5, 10
Recall@5
Recall@10

Figure 4.6: Impact of function µ1(cui) = z ∗ cuj on prediction accuracy
of ALS algorithm based on implicit rating

The experimental results for the second function µ2 are plotted in Figure
4.7. In this function, the rate of increase is controlled by the constant 10ε and

53

4. Experiments and evaluation

logarithmic function. As you can see, setting ε = 2 produce the best perfor-
mance, namely Precision@5=0.093, Recall@5=0.079 and Precision@10=0.077,
Recall@10=0.105.

0 2 4 6 8 10 12 14
Parameter

0.055

0.060

0.065

0.070

0.075

0.080

0.085

0.090

0.095

Pr
ec

isi
on

Impact of on Precision@k with k = 5, 10
Precision@5
Precision@10

0 2 4 6 8 10 12 14
Parameter

0.06

0.07

0.08

0.09

0.10

Re
ca

ll

Impact of on Recall@k with k = 5, 10

Recall@5
Recall@10

Figure 4.7: Impact of function µ2(cui) = log(1 + cui ∗ (10ε)) on
prediction accuracy of ALS algorithm based on implicit rating

The best performance results of both functions µ1 and µ2 are similar, but
the function µ2 produces higher values, so in the following we will use the
function µ2(cui) = log(1 + cui ∗ (10ε)) with setting ε = 2.

4.3.4 Impact of control parameter β

In the proposed method, the parameter β plays an important role and con-
trols the influence of POI attribute information in the factorization process –
a larger value of β indicates that we put more weights into the attribute infor-
mation. To assess the impact of parameter β on the recommendation quality
we conduct the experiments by changing the values of β to values from 0 to 1
with a step of 0.05. Parameter λ was set to 0.135 and the parameter K was
set to 35 and 30 for the first and second algorithm respectively.

Note, that when parameter β is set to 0, our method degrades to the
baseline regularized matrix factorization approach, and setting the parameter
β to 1 makes the latent feature vectors close to the direct neighbors.

The experimental results for the first algorithm for explicit feedback are
plotted in Figure 4.8, that reports the impacts on MAE and RMSE. You can
see, that the curves of MAE and RSME show similar change trends – as β
increases, the values of MAE decrease (the recommendation quality improves)
to reach β a certain threshold and then begin to increase. So we can conclude,
that the values of β have a noticeable impact on the recommendation quality
of the first algorithm, but the performance degrades when β is too large. To

54

4.3. Impact of control parameters to quality of recommendation

sum up, the first algorithm achieves the best performance MAE=0.795 and
MRSE=1.11 when β is around 0.25.

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

0.78

0.80

0.82

0.84

0.86

0.88

0.90

0.92

M
AE

(a) Impact of β on MAE

0.0 0.2 0.4 0.6 0.8 1.0
Parameter

1.10

1.12

1.14

1.16

1.18

1.20

1.22

1.24

1.26

M
RS

E

(b) Impact of β on MRSE

Figure 4.8: Impact of β on prediction accuracy of SGD algorithm based
on explicit rating

The experimental results for the second algorithm for implicit feedback
are not shown because all curves show similar change trends as for the first
algorithm - as β increases, the metric values decrease (the recommenda-
tion quality improves) to reach β a certain threshold and then begin to in-
crease. We evaluated impacts on Precision, Recall, and nDCG. The second
algorithm achieves the best performance Precision@5=0.097, Recal@5=0.091
and nDCG@5=0.101 when β is around 0.15 and Precision@10=0.091, Re-
cal@10=0.11 and nDCG@10=0.099 when K is around 0.1.

Note, that the first algorithm shows the best performance when β = 0.25
and the second algorithm when β is around 0.1. It can be explained by the fact,
that the second algorithm uses the extended Foursquare data, that contain
less attribute and categories information because it was combined with Yelp
dataset and not always all content information was found during matching.

From the experimental results, it can be concluded that very large values or
very small values of β hurt the recommendation quality. When the parameter
β is too large, POI attribute information will dominate the learning process
and make the latent feature vectors close to the direct neighbors [4]. A small
value of β causes our method to degrade to the baseline regularized matrix
factorization approach. In the following, β will be set to 0.25 and 0.1 for the
first and second algorithms respectively.

55

4. Experiments and evaluation

4.4 Comparison with other approaches

To evaluate the performance of the proposed method, we choose the following
state-of-the-art collaborative filtering approaches for comparison:

RSVD Regularized SVD approach denoted as RSVD is the matrix factoriza-
tion approach which is widely used because of its good scalability and
high recommendation quality. This method only utilizes a user-item
rating matrix R to generate a prediction. The objective function of this
approach is defined in Equation 2.1 and this method is used as the base-
line approach in our first algorithm for explicit feedback (by setting the
parameter β to 0, we obtain the RSVD algorithm).

WMF Weighted matrix factorization approach denoted as WMF is proposed
by Yifan Hu et al. [40]. In this algorithm, users and POIs are mapped
into a joint latent space by approximating a user-POI 0/1 rating ma-
trix (each 0/1 entry indicates whether a user has visited the POI) in a
weighted manner [37]. This method is suitable for processing implicit
feedback and our second algorithm based on check-in data exploit this
approach as a basis (by setting the parameter β to 0 in Equation 2.5,
we obtain the WMF algorithm).

SVD++ The SVD++ algorithm is an extension of SVD and was proposed
by Yehuda Koren [43]. This approach is an integrated model that com-
bines the neighborhood and the latent factor models. It uses an implicit
feedback matrix, that can be derived from the rating matrix or other
forms of implicit feedback.

UCF k-NN User-based Nearest Neighbor algorithm denoted as UCF k-NN
is a basic collaborative filtering approach. This method utilizes only a
user-item rating (or check-in matrix) for computing user-user similarity
to generate recommendations subsequently. This method is described in
detail in Section 1.2.1.

GeoMF GeoMF [37] is the state-of-the-art method for POI recommendation.
This method is described in detail in Section 1.5.1.

The SVD++ and k-NN algorithms were implemented using Surprise [44]
library, that has a set of built-in algorithms, the GeoMF approach was imple-
mented using source code available at [45].

To make a fair comparison, we set the common parameters to be iden-
tical parameter values in the all methods. For all involved recommendation
algorithms, we set λ = 0.1 and the learning rate α is set to 0.005. The con-
trol parameter β is set to 0.1. Finally, we use ε = 0.0001 and the number
of iteration w1 = 200 and w1 = 10 to control the loop conditions of matrix
factorization procedures.

56

4.4. Comparison with other approaches

The results of comparison the above selected recommendation algorithms
with our first algorithm for explicit feedback are plotted in Figure 4.9. We
don’t evaluate the WMF algorithm, because it assumes using the implicit
feedback instead of explicit, so the comparison with our algorithm would not
provide any useful information for us (the first algorithm uses the dataset with
explicit feedback, i.e., ratings).

UCF RSVD SVD++ GeoMF Our
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

M
AE

(a) Comparison of MAE

UCF RSVD SVD++ GeoMF Our

0.9

1.0

1.1

1.2

1.3

1.4

M
RS

E

(b) Comparison of MRSE

Figure 4.9: Comparison the selected recommendation algorithms with
our first algorithm for explicit feedback

In Figure 4.9a you can see, that in terms of MAE, the first algorithm
outperforms UCF, RSVD, SVD++, but GeoMF gives the better MAE values
on 7.5% than our algorithm. In terms of MRSE, Figure 4.9b shows the similar
results. GeoMF algorithm is one of the state-of-the-art methods for POI
recommendation, that integrates geographical influence by modeling users’
activity regions and the influence propagation on geographical space [42].

The results of comparison the above selected recommendation algorithms
with our second algorithm for implicit feedback are plotted in Figure 4.10.

We don’t evaluate the RSVD algorithm, because it assumes using the
explicit feedback instead of explicit. In addition, in Section 2.2.1 we explain,
why the using this approach doesn’t make sense in terms if implicit feedback.
So the comparison RSVD with our second algorithm would not provide any
useful information for us.

In Figure 4.10a you can see, that in terms of Precision@5, our second
algorithm outperforms UCF, WMF, SVD++, but GeoMF outperforms the
second algorithm of implicit feedback by 5%. As for Precision@10, the second
algorithm outperforms UCF, WMF but GeoMF and SVD++ are superior to
our second algorithm of implicit feedback by about 12%. In terms of Recall,
Figure 4.10b shows similar results. In terms of Recall@5, our second algorithm

57

4. Experiments and evaluation

UCF WMF SVD++ GeoMF Our

0.065

0.070

0.075

0.080

0.085

0.090

0.095

0.100

Pr
ec

isi
on

(a) Comparison of Precision@k,
k=5 (left bar) and 10 (right bar)

UCF WMF SVD++ GeoMF Our

0.05

0.06

0.07

0.08

0.09

0.10

Re
ca

ll

(b) Comparison of Recall@k,
k=5 (left bar) and 10 (right bar)

Figure 4.10: Comparison the selected recommendation algorithms with
our second algorithm for implicit feedback

outperforms UCF, WMF, SVD++, but GeoMF outperforms the second algo-
rithm by 9.8% . As for Recall@10, the second algorithm outperforms UCF,
WMF but GeoMF and SVD++ are superior to the second algorithm of im-
plicit feedback by 11% and 2.2% respectively.

Figure 4.11 shows the comparison results of nDCG. You can see, that in
term of nDCG@5, only GeoMF outperforms the second algorithm of implicit
feedback by around 7%. As for nDCG@10, WMF and our second algorithm
are superior to the others.

This observation confirms the assumption that the use of POI content
information can improve the quality of recommendations. However, almost
always GeoMF algorithm is superior to our proposed methods. The GeoMF
algorithm integrates geographical influence by modeling users’ activity regions
and the influence propagation on geographical space [42]. Therefore, it makes
sense to consider using the geographical influence in our approach to improve
the recommendation quality.

4.5 Performance on Cold Start Items

One advantage of the collaborative filtering approach is that it does not require
additional information about users or items. Thus, it is able to recommend
an item without understanding the element itself [46]. However, this benefit
is also the root cause of the so-called cold start problem, which refers to
the general difficulty in performing collaborative filtering for users and items

58

4.5. Performance on Cold Start Items

UCF WMF SVD++ GeoMF Our

0.055

0.060

0.065

0.070

0.075

0.080

0.085

nD
CG

Figure 4.11: Comparison of nDCG@k (k=5 left bar and k=10 right bar)
with the selected recommendation algorithms and our second algorithm

for implicit feedback

that are relatively new. New users who haven’t rated many items have no
information about them to be compared with other users. Like for new users,
no user ratings are available for the new item. If we consider POIs which
are rated by users less than 20 times or visited less than 30 times as cold
start items, 38.97%, and 40.2% are cold start items in first Yelp dataset and
extended Foursquare dataset, respectively. It is quite a large percentage.

Because we use additional content information for construct similarity ma-
trix between POIs, it can help to deal with the cold start item issue in recom-
mender systems. So, in this section, we will evaluate the effectiveness of our
approach to coping with the cold start item problem.

We group POIs according to the number of observed ratings and check-
ins on POIs in the training set, and then compare the values of metrics of
different POIs groups with other selected recommendation algorithms. We
consider the following groups categories for ratings: 1-10, 11-30, 31-60, 61-
100, 101-160, >160 and the following categories for check-ins: 1-20, 21-60,
61-150, 151-300, 300-500 and >500.

The results of the comparison of selected recommendation approaches with
our first algorithm for explicit feedback are plotted in Figure 4.12. You can
see, that the first algorithm is able to generate better recommendations than
other algorithms when the POIs have few observed ratings (11-30). As more
observed ratings are given (>30), the improvement of our proposed approach
gradually reduces.

The results of the comparison of selected algorithms with our second al-
gorithm for implicit feedback are plotted in Figure 4.12b. The figure shows

59

4. Experiments and evaluation

similar change trends as for the first algorithm - the algorithm is able to gen-
erate better recommendations than other algorithms when the POIs have few
check-ins count(1-20). As more check-ins are given (>21), the improvement
of our proposed approach gradually reduces.

1-10 11-30 31-60 61-100 101-160 >160

0.6

0.7

0.8

0.9

1.0

M
AE

UCF
RSVD
SVD++
GeoMF
Our

(a) Comparison of MAE with the
first algorithm

1-20 21-60 61-150 151-300 300-500 >500.
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

nD
CQ

UCF
WMF
SVD++
GeoMF
Our 2

(b) Comparison of nDCG@5 with
the second algorithm

Figure 4.12: Comparison the selected recommendation algorithms with
our algorithms

These observations indicate that our proposed algorithms can cope with
cold start item problem and the improvement is directly related to the use of
additional content information, such as POI attribute and categories informa-
tion.

60

Conclusion and future works

With the availability of the vast amount of users and Location-based social
networks, the problem of POI recommendations has been widely studied and
received significant research attention in the last seven years, and many ap-
proaches have been suggested. While previous works of POI recommendation
mostly focused on investigating the spatial, temporal, and social influence, the
use of additional content information has not been directionally studied.

In this paper, we proposed the content-aware matrix factorization method
based on incorporating POI attribute and categories information to overcome
the cold start item problem, and consequently improve the quality of recom-
mendation. We proposed two variants of the algorithm that can work with
explicit and implicit feedback. The attribute and categories information of
a POI was collected from existing datasets and will be used to measure the
similarity between two POIs. These similarity values were used to regularize
the matrix factorization by adding item relationship regularization term to
the objective function of matrix factorization [4].

Experimental results show that the proposed method improves the quality
of recommendation and can effectively cope with the so-called problem. The
proposed method outperforms most state-of-the-art collaborative filtering al-
gorithms, such as RSVD, WMF, SVD++, and UCF k-NN. Of all the algo-
rithms tested, only GeoMF algorithm has surpassed our approach. Therefore,
it makes sense to consider using the geographical influence on users’ check-in
or rating behaviors based on the assumption that users tend to visit nearby
locations within a radius of activity regions. Furthermore, it would be interest-
ing to investigate the recommendation effect of content information compared
to other information, such as temporal or social information (e.g., take into
account the user social networking relations).

Also, in our work, we use the simple similarity measure between attributes.
Because some of the attributes are in categorical structure, it would be fine
to consider some similarity measure, that reflects the relationship between
categorical data. For example, in the work [47], the Coupled Object Similarity

61

Conclusion and future works

measure is used to measure the similarity between items based on the item-
attribute information. Besides, this measure was successfully implemented in
[4] to measure the similarity between movie attributes. And finally, it would
be interesting to investigate other types of content information available in
LBSNs, for example, sentiment indications of textual reviews.

62

Bibliography

[1] Yu, Y.; Chen, X. A Survey of Point-of-Interest Recommendation in
Location-Based Social Networks. Association for the Advancement of Ar-
tificial Intelligence, 2015, [cit. 2019-02-23].

[2] Weber, H.; Novet, J. Foursquare by the numbers: 60M registered users,
50M MAUs, and 75M tips to date. [online], 2018, [cit. 2019-02-23].
Available from: https://venturebeat.com/2015/08/18/foursquare-
by-the-numbers-60m-registered-users-50m-maus-and-75m-tips-
to-date/

[3] 10 Things You Should Know About Yelp. [online], 2018, [cit. 2019-02-23].
Available from: https://www.yelp.com/about

[4] Yu, Y.; Wang, C.; et al. Attributes Coupling based Item Enhanced Matrix
Factorization Technique for Recommender Systems. IEEE Transactions
on knowledge and data engineering, 2014.

[5] Adomavicius, G.; Tuzhilin, A. Toward the Next Generation of Recom-
mender Systems: A Survey of the State-of-the-Art and Possible Exten-
sions. IEEE Transactions on knowledge and data engineering, 2005, [cit.
2019-02-24].

[6] Aggarwal, C. Recommender Systems: The Textbook. Springer Interna-
tional Publishing, IBM T.J. Watson Research Center Yorktown Heights,
NY, USA, 2016, ISBN 9783319296579.

[7] Sarwar, B. M. Memory-based Collaborative Filtering Algorithms. The
Tenth International World Wide Web Conference, 2001, [cit. 2019-02-
24]. Available from: http://wwwconference.org/proceedings/www10/
papers/519/node7.html

63

https://venturebeat.com/2015/08/18/foursquare-by-the-numbers-60m-registered-users-50m-maus-and-75m-tips-to-date/
https://venturebeat.com/2015/08/18/foursquare-by-the-numbers-60m-registered-users-50m-maus-and-75m-tips-to-date/
https://venturebeat.com/2015/08/18/foursquare-by-the-numbers-60m-registered-users-50m-maus-and-75m-tips-to-date/
https://www.yelp.com/about
http://wwwconference.org/proceedings/www10/papers/519/node7.html
http://wwwconference.org/proceedings/www10/papers/519/node7.html

Bibliography

[8] Resnick, P.; Iacovou, N.; et al. GroupLens: an open architecture for
collaborative filtering of netnews. In Proceedings of the ACM Conference
on Computer Supported Cooperative Work, 1994, pp. 175–186.

[9] Breese, J.; Heckerman, D.; et al. Empirical analysis of predictive algo-
rithms for collaborative filtering. In Proceedings of the Fourteenth confer-
ence on Uncertainty in artificial intelligence, 1998, pp. 43–52.

[10] Sarwar, B.; Karypis, G.; et al. Item-based collaborative filtering recom-
mendation algorithms. In Proceedings of the 10th international conference
on World Wide Web, 2001, pp. 285–295.

[11] Linden, G.; Smith, B.; et al. Amazon. com recommendations: Item-to-
item collaborative filtering. In Internet Computing, IEEE, 2003, pp. 76–
80.

[12] Gershman, A.; Meisels, A. A Decision Tree Based Recommender System.
Department of Computer Science, Ben-Gurion University of the Negev,
2010.

[13] Sarwar, B.; Karypis, G.; et al. Analysis of recommendation algorithms
for e-commerce. In Proceedings of the 2nd ACM conference on Electronic
commerce, 2000, pp. 158–167.

[14] Lin, W.; Alvarez, S.; et al. Efficient adaptive-support association rule
mining for recommender systems. In Data mining and knowledge discov-
ery, 2002, pp. 83–105.

[15] Hofmann, T. Latent semantic models for collaborative filtering. In ACM
Transactions on Information Systems (TOIS), 2004, pp. 89–115.

[16] Xue, G.; Lin, C.; et al. Scalable collaborative filtering using cluster-based
smoothing. In Proceedings of the 28th annual international ACM SIGIR
conference on Research and development in information retrieval, 2005,
pp. 114–121.

[17] Pinela, C. Content-Based Recommender Systems [online]. Novem-
ber 2017, [cit. 2019-02-27]. Available from: https://medium.com/
@cfpinela/content-based-recommender-systems-a68c2aee2235

[18] Pazzani, M. A Framework for Collaborative, Content-Based and De-
mographic Filtering. Department of Information and Computer Science,
1999, [cit. 2019-02-28]. Available from: http://www.nargund.com/gsu/
mgs8040/resource/dss/aireview.pdf

[19] Claypool, M.; Gokhale, A.; et al. Combining content-based and collab-
orative filters in an online newspaper. Proc. ACM SIGIR ’99 Workshop
Recommender Systems: Algorithms and Evaluation, 1999.

64

https://medium.com/@cfpinela/content-based-recommender-systems-a68c2aee2235
https://medium.com/@cfpinela/content-based-recommender-systems-a68c2aee2235
http://www.nargund.com/gsu/mgs8040/resource/dss/aireview.pdf
http://www.nargund.com/gsu/mgs8040/resource/dss/aireview.pdf

Bibliography

[20] Billsus, D.; Pazzani, M. User modeling for adaptive news access. In User
Modeling and User-Adapted Interaction, 2000, pp. 147–180.

[21] Nandi, M. Recommender Systems through Collaborative Filtering.
Domino Data Science Blog, July 2017, [cit. 2019-03-09]. Avail-
able from: https://blog.dominodatalab.com/recommender-systems-
collaborative-filtering/

[22] Agarwal, A.; Chauhan, M. Similarity Measures used in Rec-
ommender Systems: A Study. International Journal of Engi-
neering Technology Science and Research, June 2017, [cit. 2019-
03-09]. Available from: https://pdfs.semanticscholar.org/943a/
e455fafc3d36ae4ce68f1a60ae4f85623e2a.pdf

[23] Bin, W. Comparison of User-Based and Item-Based Collabo-
rative Filtering. May 2018, [cit. 2019-03-22]. Available from:
https://medium.com/@wwwbbb8510/comparison-of-user-based-
and-item-based-collaborative-filtering-f58a1c8a3f1d

[24] Gemulla, R.; Nijkamp, E.; et al. Large-scale matrix factorization with
distributed stochastic gradient descent. In ACM KDD Conference, 2011,
pp. 69–77.

[25] Jain, P.; Netrapalli, P.; et al. Low-rank matrix completion using alter-
nating minimization. In ACM Symposium on Theory of Computing, 2013,
pp. 665–674.

[26] Takacs, G.; Pilaszy, I.; et al. Matrix factorization and neighbor based
algorithms for the Netflix prize problem. ACM Conference on Recom-
mender Systems, 2008: pp. 267–274.

[27] Jaschke, R.; Marinho, L.; et al. Tag recommendations in folksonomies.
Knowledge Discovery in Databases (PKDD), 2007: pp. 506–514.

[28] R.Belland; Y.Koren. Lessons from the Netflix prize challenge. In ACM
SIGKDD Explorations Newsletter, 2007, pp. 75–79.

[29] Ma, H.; Yang, H.; et al. Sorec: social recommendation using probabilis-
tic matrix factorization. In Proceedings of the 17th ACM conference on
Information and knowledge management, 2008, pp. 931–940.

[30] Jamali, M.; Ester, M. A matrix factorization technique with trust propa-
gation for recommendation in social networks. In Proceedings of the fourth
ACM conference on Recommender systems, 2010, pp. 135–142.

[31] Ye, M.; Yin, P.; et al. Location recommendation for location-based social
networks. In Proceedings of the 18th SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, 2010, pp. 458–461.

65

https://blog.dominodatalab.com/recommender-systems-collaborative-filtering/
https://blog.dominodatalab.com/recommender-systems-collaborative-filtering/
https://pdfs.semanticscholar.org/943a/e455fafc3d36ae4ce68f1a60ae4f85623e2a.pdf
https://pdfs.semanticscholar.org/943a/e455fafc3d36ae4ce68f1a60ae4f85623e2a.pdf
https://medium.com/@wwwbbb8510/comparison-of-user-based-and-item-based-collaborative-filtering-f58a1c8a3f1d
https://medium.com/@wwwbbb8510/comparison-of-user-based-and-item-based-collaborative-filtering-f58a1c8a3f1d

Bibliography

[32] Ye, M.; Yin, P.; et al. Exploiting geographical influence for collabora-
tive point-of-interest recommendation. In Proceedings of the 34th inter-
national ACM SIGIR conference on Research and development in Infor-
mation Retrieval, 2011, pp. 325–334.

[33] Yuan, Q.; Cong, G.; et al. Time-aware point-of-interest recommenda-
tion. In Proceedings of the 36th international ACM SIGIR conference on
Research and development in information retrieval, 2013, pp. 363–372.

[34] Liu, B.; Fu, Y.; et al. Learning geographical preferences for point-of-
interest recommendation. In Proceedings of the 19th ACM SIGKDD in-
ternational conference on Knowledge discovery and data mining, 2013,
pp. 1043–1051.

[35] Gao, H.; Tang, J.; et al. Exploring temporal effects for location recom-
mendation on location-based social networks. In Proceedings of the 7th
ACM conference on Recommender systems, ACM, 2013, pp. 93–100.

[36] Cheng, C.; Yang, H.; et al. Fused matrix factorization with geographical
and social influence in location-based social networks. In AAAI Confer-
ence on Artificial Intelligence, volume 12, 2012, pp. 17–23.

[37] Lian, D.; Zhao, C.; et al. Geomf: Joint geographical modeling and matrix
factorization for point-of-interest recommendation. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and
data mining, 2014, pp. 831–840.

[38] Li, X.; Cong, G.; et al. Rank-geofm: A ranking based geographical fac-
torization method for point of interest recommendation. In SIGIR, 2015,
pp. 433–442.

[39] Wanga, H.; Terrovitis, M.; et al. Location recommendation in location-
based social networks using user check-in data. In SIGSPATIAL, 2013,
pp. 374–383.

[40] Hu, Y.; Koren, Y.; et al. Collaborative Filtering for Implicit Feedback
Datasets. In 2008 Eighth IEEE International Conference on Data Mining,
2008, pp. 263–272.

[41] McKenzie, G.; Janowicz, K.; et al. Weighted Multi-Attribute Matching
of User-Generated Points of Interest. In Proceedings of the 21st ACM
SIGSPATIAL International Conference on Advances in Geographic In-
formation Systems, 2013, pp. 440–443.

[42] Liu, Y.; ang Gao Cong, T.-A. N. P.; et al. An Experimental Evaluation
of Point-of-interest Recommendation in Location-based Social Networkss.
In Proceedings of the VLDB Endowment, volume 10, 2017, pp. 1010–1021,
[cit. 2019-03-01].

66

Bibliography

[43] Koren, Y. Factorization Meets the Neighborhood: a Multifaceted Col-
laborative Filtering Model. In Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining, 2008,
pp. 426–434.

[44] Hug, N. Surprise, a Python library for recommender systems. http://
surpriselib.com, 2017.

[45] Liu, Y.; Pham, T.-A. N.; et al. An Experimental Evaluation of Point-
of-interest Recommendation in Location-based Social Networks (full ver-
sion). http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/, 2017.

[46] Su, X.; Khoshgoftaar, T. A survey of collaborative filtering techniques.
Advances in Artificial Intelligence, 2009.

[47] Wang, C.; Cao, L.; et al. Coupled nominal similarityy in unsupervised
learning. In CIKM, 2011, pp. 973–978.

67

http://surpriselib.com
http://surpriselib.com
http://spatialkeyword.sce.ntu.edu.sg/eval-vldb17/

Appendix A
Acronyms

POI Point-of-Interest

LBSN Location-based social networks

GPS Global position system

SVD Singular value decomposition

PCA Principal component analysis

MLE Maximum likelihood estimation

SGD Stochastic gradient descent

MAE Mean Absolute Error

RMSE Root Mean Squared Error

ALS Alternative Least Squares

69

Appendix B
Contents of enclosed CD

readme.txt the file with CD contents description
src.......................................the directory of source codes

wbdcm implementation sources
thesis..............the directory of LATEX source codes of the thesis

text..the thesis text directory
thesis.pdf...........................the thesis text in PDF format
thesis.ps..............................the thesis text in PS format

71

	Introduction
	Recommendation Systems
	An Introduction to Recommendation Systems
	Memory-based collaborative filtering
	Model-based collaborative filtering
	POI Recommendation on Location-Based Social Networks
	Related works

	Content-aware POI recommendation algorithm
	Algorithm description
	Matrix factorization for implicit feedback

	Datasets
	Foursquare
	Yelp
	Merging datasets

	Experiments and evaluation
	Implementation details
	Evaluation metrics
	Impact of control parameters to quality of recommendation
	Comparison with other approaches
	Performance on Cold Start Items

	Conclusion and future works
	Bibliography
	Acronyms
	Contents of enclosed CD

