
doc. Ing. Jan Janoušek, Ph.D.
Head of Department

doc. RNDr. Ing. Marcel Jiřina, Ph.D.
Dean

Prague June 20, 2018

ASSIGNMENT OF MASTER�S THESIS

 Title: Swift for Embedded Systems

 Student: Bc. Alan Dragomirecký

 Supervisor: Ing. Petr Máj

 Study Programme: Informatics

 Study Branch: System Programming

 Department: Department of Theoretical Computer Science

 Validity: Until the end of winter semester 2019/20

Instructions

Familiarize yourself with the Swift language, its implementation and with the LLVM compiler system.
Research the limitations embedded systems create for used programming languages and devise and
implement changes to the Swift language so it can be used in embedded systems. Design Swift-based
interface to the low-level peripherals and determine necessary compiler adjustments for this
communication. As a proof of concept, implement a Swift library and LLVM extensions for embedded
programming on the Cortex-M device family. Finally, compare your solution with other programming
languages and peripheral control frameworks used in embedded systems.

References

Will be provided by the supervisor.

Master’s thesis

Swift for Embedded Systems

Bc. Alan Dragomirecký

Department of Computer Science

Supervisor: Ing. Petr Máj

May 9, 2019

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as school work under
the provisions of Article 60(1) of the Act.

In Prague on May 9, 2019 .

Czech Technical University in Prague
Faculty of Information Technology
© 2019 Alan Dragomirecký. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at the Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without the author’s permission is prohibited (with exceptions defined by
the Copyright Act).

Citation of this thesis

Dragomirecký, Alan. Swift for Embedded Systems. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2019.

Acknowledgements

I would like to thank my supervisor Ing. Petr Máj, for always providing me
with valuable suggestions and feedback during my work on this thesis.

Special thanks go to my family and my friends for providing me with
unfailing support throughout my years of study and through the process of
writing this thesis.

Thank you.

Abstrakt

Po svém zveřejněńı v roce 2014 se Swift stal okamžitě jedńım z jazyk̊u s nej-
rychleji rostoućı popularitou. Jeho hlavńım zaměřeńım je vývoj uživatelských
aplikaćı, brzy si ale našel své mı́sto i v serverových aplikaćıch a nově i v
datových vědách. Do této chv́ıle nebyla nicméně zveřejněná žádná práce
zabývaj́ıćı se použit́ım Swiftu v těch nejmenš́ıch poč́ıtač́ıch se značně omezenými
výpočetńımi prostředky – ve vestavěných systémech. Tato práce si klade za
ćıl situaci změnit a být prvńım krokem na cestě Swiftu k těmto zař́ızeńım.
V práci je popsán proces přidáńı nové bare-metal platformy do kompilátoru
Swiftu a nástroj̊u s ńım spojených. V závěru je představen Swift jako možná
alternativa k již existuj́ıćım řešeńım na poli vývoje pro vestavěné systémy.

Kĺıčová slova Swift, vestavěné systémy, kompilátor, internet věćı

vi

Abstract

Released in 2014, Swift quickly become one of the fastest growing program-
ming languages, and, in addition to its original field of use in application
development, is finding its place on servers and recently also in data science.
However, no work has been published regarding the use of Swift on the small-
est computers with highly-constrained resources – embedded systems. This
thesis aims to be the first step in extending Swift’s possibilities towards this
segment. It describes the process of adding support for a new bare-metal plat-
form to the Swift compiler and its related tools. As a result, Swift is presented
as a viable alternative to existing embedded platforms.

Keywords Swift language, embedded systems, compiler, Internet of Things

vii

Contents

Introduction 1

1 Background 3

1.1 Swift . 3
1.2 Swift Runtime . 8
1.3 Swift Standard Library . 8
1.4 Swift Compiler . 9

2 Realization 11

2.1 Initial Compiler Adjustments 12
2.2 Building Swift Runtime and Standard Library 15
2.3 Running in Emulator . 18
2.4 Testing . 22
2.5 Code Size Reduction . 26
2.6 Swift Package Manager . 38
2.7 Running on Hardware . 40

3 Evaluation 47

3.1 Performance . 48
3.2 Code Size . 53
3.3 Using Swift for Embedded Systems 54

Conclusion 59

Bibliography 61

A Contents of enclosed SD card 65

ix

List of Figures

11 Swift compilation process. 10

21 Visualization of sections assembling the executable’s .text seg-
ment for initial version without code-size optimizations.
(libswiftCore.a (97 %), libstdc++.a (0.02 %), libc.a (0.01 %),
. . .) . 27

22 Code-size comparison for the full Swift standard library when built
with different optimization settings. 27

23 An example of a dependency graph generated by our tool for anal-
ysis of the linking process. It shows the HelloWorld application.
Nodes represent sections and edges dependencies between them.
Size of a node represents the relative size of the section. 33

24 Dependency graph visualization of the HelloWorld application with
split sections. Green sections are the ones discarded by the linker
thanks to the implemented section splitting. 36

25 Comparison of the program’s code size with the optimizations ap-
plied. 38

26 Directory structure of the packages used for the HelloWorld appli-
cation (simplified). 41

31 Measured data from an oscilloscope – the microcontroller respond-
ing to an input signal (interrupt) by toggling another pin’s polarity. 50

32 Results of the Fannkuch Benchmark. 52
33 Program-memory requirements comparison of programs running

the Fannkuch benchmark. 53
34 Code size of different Swift applications. The code size does change

dramatically when additional features of the Swift standard library
are used. 55

xi

libswiftCore.a
libstdc++.a
libc.a

List of Listings

1 Example of constrained protocol conformance in an extension. . 4

2 Demonstration of a violation of the Law of Exclusivity. [1] . . . 5

3 Example of error handling. 7

4 An example of the new spelling for compile-time conditions
supporting the bare-metal environment. 12

5 Content of main.swift file of the “HelloWorld” application. . . 20

6 Part of a linker script handling one section of the runtime’s
metadata. 21

7 A command from Makefile of our minimal application respon-
sible for compiling Swift source code and linking the application. 22

8 A trivial test from the Swift project located at test/

Interpreter/hello_func.swift. 23

9 An example of a test using the StdlibUnittest library. 24

10 Part of a dominator tree of the graph depicted in Figure 23.
Each line represents a single node, the root node is on the third
line. Each line shows: size including its dependencies, section
name (object file name), and (section size, section identifier). . 34

11 The manifest file of the HelloWorld package targeting
STM32F439ZI. 42

12 Universal GPIO interface as defined in the Hardware library in
projects/Hardware/Sources/gpio.swift. 45

13 A demo application using the STM32F4 library to interact with
hardware. 46

14 Swift source code for the bit-banging performance test. 49

15 C source code using the Arduino platform for the bit-banging
test. 49

16 MicroPython version of the source code for the bit-banging test. 49

17 Swift source code testing response time to interrupts. 51

18 C source code using the Arduino platform testing response time
to interrupts. 51

xiii

test/Interpreter/hello_func.swift
test/Interpreter/hello_func.swift

19 MicroPython version of the source code testing response time
to interrupts. 51

xiv

Introduction

An embedded system is a combination of hardware and software designed
to perform one particular task within a larger system[2, 3]. Such a defini-
tion and a wide variety of other available definitions include everything from
8-bit microcontrollers with a few kilobytes of program memory on one side
to powerful computers like our phones or smartwatches with memory sizes
starting in gigabytes on the other. Those high-performance devices usually
run a full Operating System (OS) and do not pose many challenges to the
programs running inside them. However, as we move on the spectrum to the
low-performance devices, a number of challenges start to appear. A traditional
operating system is soon replaced with often a more lightweight Real-Time
Operating System (RTOS), or we eliminate the OS entirely and run our pro-
gram on so-called bare metal. Among the many reasons why this is being
done, the most common one is the limited resources of the device.

This document focuses on low-performance embedded devices. Therefore,
for the remainder of this thesis, “embedded systems” without further qualifi-
cation are considered to be very small devices with a handful of megabytes of
memory and traditionally a single processor core.

In attempting to optimally utilize the resources of an embedded system,
the choice of a programming language is crucial. Languages with a high
level of abstraction often do not provide convenient interaction with low-level
fundamentals such as raw memory access, and the code-size and performance
cost for their level of abstraction is usually too high. This leads to the number
of languages being widely used on embedded systems to be much lower in
comparison to other fields. The ruling languages for this segment are still C
and C++ (where usually only a subset of C++ features is used). Of course, other
languages are being used in some specific fields (such as Assembly, Lua, Ada),
but their share in embedded systems in comparison to C/C++ is minimal.

Recently, many new languages have found their way into embedded sys-
tems. We can see Rust getting significant attention, but even some high-level
interpreted languages are on the rise. With the boom of the Internet of Things,

1

Introduction

communities around languages such as Python or Javascript have built im-
plementations of those languages that can run on devices with as little as a
few hundred kilobytes of program memory. It is hard to imagine those inter-
preters replacing C/C++ in the main segment of embedded systems, but it is
an attractive alternative for makers and hobbyists.

Swift is the language which is the focus of this thesis. After being an-
nounced by Apple in 2014, it quickly became one of the fastest growing lan-
guages. Currently, seven percent[4] of developers name Swift as one of their
most favored technologies. Its dominating field is application development for
iOS and macOS. However, since Swift had been open sourced, the community
made it possible to use it on Linux and Windows, with an official Server Work
Group promoting the use of Swift for server-side development.

As Swift is expanding beyond iOS and macOS and is becoming a more
mature programming language, it is tempting to explore its possibilities in the
field of embedded development. If one allows the broader usage of the term
“embedded systems,” Swift is already heavily used there. An example would
be application development for watchOS. Also, there are projects focusing on
Swift on RaspberryPi and other ARM-based boards running Linux, including
libraries to control their hardware peripherals. However, in our research, to
date we have not found any indications of any published work in terms of
running Swift on bare-metal and devices with highly limited computational
resources. Nonetheless, this is no surprise, as the language is still young and
under rapid development.

This thesis does not intend to propose Swift as being the replacement for
C++ in embedded systems. Instead, it intends to be the first step on the
way to broadening Swift’s possibilities towards the Internet of Things, while
researching the current limitations of the language and its implementation.
There is the possibility of making Swift an alternative in the segment currently
occupied by platforms such as Arduino or Micropython.

2

Chapter 1

Background

In this chapter, Swift is introduced, with a description of some of its key
features with respect to embedded systems. Its compiler and runtime work
are also outlined.

1.1 Swift

Swift is a general-purpose and multi-paradigm programming language. It was
designed as a compiled, full-stack programming language with the intent to
support high-level language constructs, while at the same time giving the
compiler enough information to produce highly optimized machine code. The
language has support for both value and reference types with an expressive
and safe type system. It guarantees memory safety, implements both static
and dynamic dispatch, and a significant amount of attention has been given
to the prevention of common programming errors (Optional type instead of
“nullptr,” raw pointers are not exposed by default, there is no C-style for loop,
etc.).

1.1.1 Protocol-Oriented Programming

From its very origins, Swift was designed to be able to interact with Objective-
C, as that was the primary language used on Apple platforms at the time.
Implementing all Objective-C’s features required for seamless cooperation be-
tween the two makes Swift as capable in Object-Oriented Programming (OOP)
as Objective-C is. Also, Swift offers immutable data types, first-class functions
and other aspects making it viable for Functional Programming. Neverthe-
less, in the very heart of Swift, we would not find any of those programming
paradigms. It would rather be a paradigm that Swift’s authors call Protocol-
Oriented Programming.

Protocol-oriented programming is an evolution of OOP, aiming to solve
some of its problems. Instead of defining a shared object’s functionality in

3

1. Background

1 protocol WordCountable {

2 func numberOfWords() -> Int

3 }

4

5 extension String : WordCountable {

6 func numberOfWords() -> Int {

7 return self.split(separator: " ").count

8 }

9 }

10

11 extension Array : WordCountable where Element : WordCountable {

12 func numberOfWords() -> Int {

13 return self.reduce(0, { $0 + $1.numberOfWords() })

14 }

15 }

16

17 ["an array", "of strings"] is WordCountable // true

18 ["an array", "of strings"].numberOfWords() // 4

19 ["an array", "with an integer", 2] is WordCountable // false

20 ["an array", "with an integer", 2].numberOfWords()

// compiler error→֒

Listing 1: Example of constrained protocol conformance in an extension.

terms of class inheritance, Swift prefers to express this in terms of the proto-
cols they implement. This itself can be found in many other object-oriented
languages (interfaces in C#, traits in Scala), but Swift adds multiple features,
making this approach much more powerful.

One of these is extensions. It comes from Objective-C, where it is called
“categories” – ability, to extend an existing class at runtime with a new
method. Swift enhances this concept with the possibility to extend structs
and enums. Furthermore, Swift allows making the extension of a type con-
ditional (for example, we can add a method to the generic Array type for
all its instances, where the elements of the array implement some specific
functionality – see Listing 1).

Extensions together with protocols are the key for Protocol-Oriented Pro-
gramming. It is not merely that protocol can be described as a composition of
other protocols, or that a default implementation can be provided for some of
its requirements. Existing types can easily be extended with conformance to
new protocols or even better, those types can automatically gain functionality
based on some fundamental protocol they implement.

4

1.1. Swift

1.1.2 Memory Management

Swift’s choice of memory management is Automatic Reference Counting (ARC).
ARC is a concept whereby each instance of a reference type (class) stores the
number of references to it (next to the instance data). A compiler automati-
cally inserts instructions incrementing (retain) and decrementing (release) it.
At runtime, when the reference count reaches zero, the object gets deallocated.

We can compare the concept of ARC in Swift to the usage of smart pointers
in C++. Their proper usage should generate the same behavior and comparable
performance to Swift’s ARC. However, Swift’s ARC is a language-level feature
enabling the compiler to do further optimizations.

The choice of ARC versus the traditional Tracing Garbage Collection (GC)
also has a disadvantage – a programmer must be aware of potential cyclic
dependencies between instances and resolve them manually (by using the weak

reference type). GC systems are usually able to detect cyclic dependencies and
resolve them. On the other hand, they introduce further problems – latency
issues because of GC pauses.

1.1.3 Memory Safety

A long-term goal of Swift is to achieve memory safety. By default, Swift
makes sure a variable is not accessed before its first use, after it has been
deallocated, or that array indices are not out of bounds. A more complex
assurance Swift applies is exclusive access to variables (also called the Law of
Exclusivity). Even though this is a typical problem for concurrent or multi-
threaded code, the problem exists in a single-threaded program not involving
any concurrency. [1, 5]

Listing 2 demonstrates such a violation of exclusive access. The function
increment has an inout argument number. As a function can write to inout

argument at any point within its body, the caller has to have write access for
the argument for the duration of the call. In this case, that means acquiring
write access at line 7 until the function returns. However, the body of the
function reads the global value stepSize, therefore requiring read access.

1 var stepSize = 1

2

3 func increment(_ number: inout Int) {

4 number += stepSize

5 }

6

7 increment(&stepSize) // Error: conflicting accesses to stepSize

Listing 2: Demonstration of a violation of the Law of Exclusivity. [1]

5

1. Background

Having an overlapping read and write access to a variable is a violation of the
exclusivity access being described.

Even though the example in Listing 2 rewritten to some other language
(e.g. C++) would be a perfectly valid code, it can often lead to confusing
results. More importantly, when the compiler can not rely on exclusive access
to variables, it leads to very conservative optimizations [6].

To enforce the Law of Exclusivity, Swift currently implements checks in
multiple places. The compiler generates an error at compile-time when such
violation can be found using static analysis. Alternatively, the compiler gen-
erates runtime checks, possibly aborting the program’s execution (thus intro-
ducing some performance cost).

1.1.4 Error Handling

An interesting feature of Swift is its error handling. Before explaining the
semantics and implementation of its throw/catch mechanism, the following
is an outline of the types of errors we generally deal with:

simple domain errors An example can be: "not-a-number" .toInt().

recoverable errors Errors a programmer should be encouraged to handle
such as “network timeout” or “file not found”.

universal errors Errors a programmer usually should not worry about. An
example might be a memory allocation failure or stack overflow.

logic failures A logical error in user’s code (such as an out-of-bounds access
to an array). [7]

Simple domain errors are solved in Swift by returning Optional<T> type,
thus forcing the user to handle them, but without the burden of a heavy
try/catch syntax.

Universal errors are not usually solvable at runtime, as those can happen
anywhere in the code. Attempting to recover from them would introduce a
high risk of leaving the program in an invalid state. The same is true for
logical failures, as those represent some mistake in the user’s code and there is
no safe way to continue execution of the program without fixing the code first.
Therefore, Swift currently handles those errors by stopping the execution of
the program.

Swift implements a mechanism similar to exceptions (from a syntax point
of view) to handle recoverable errors. We show an example of its use in
Listing 3. An error is thrown by using the throw keyword and an error can be
anything conforming to the Error protocol (which has no requirements). An
important part is that all functions by default cannot throw an error. If they
do, they must be marked throws. Also, all function calls that are can throw
an error must be explicitly marked with the try keyword and be enclosed

6

1.1. Swift

1 enum AnimalError : Error {

2 case UnknownAnimal(animal: String)

3 }

4

5 func makeSound(of animal: String) throws {

6 switch animal {

7 case "cat":

8 print("meow")

9 case "dog":

10 print("bark")

11 default:

12 throw AnimalError.UnknownAnimal(animal: animal)

13 }

14 }

15

16 do {

17 try makeSound(of: "snake")

18 } catch AnimalError.UnknownAnimal(let animal) {

19 print("unknown animal: \(animal) ")

20 } catch {

21 print("an error: \(error) ")

22 }

Listing 3: Example of error handling.

within a do {} catch {} block or be inside a throwing function. Those rules
force the user to be aware of possible errors and to be encouraged not to ignore
them.

Implementation

As Swift’s error handling is syntactically comparable to C++’s exceptions, we
can compare the implementations of those two. C++ uses an implementation
based on stack unwinding. The assembly of call sites to functions that may
throw an exception (which is expected by default) is the same as if no ex-
ceptions were in place. The function is not returning any information to the
callee as to whether an exception occurred. Instead, the compiler generates
tables for the C++ runtime with information on how to safely unwind the stack
of every function. When an exception is thrown, the runtime is called with
the given exception. The runtime starts unwinding the current stack unless
it finds an appropriate exception handler. This implementation of exceptions
is called “zero-cost.” This means that, unless the code throws an exception,
its performance is the same as if no exceptions were allowed. On the other
side, throwing an exception is an expensive operation, and the required run-
time with all the necessary information for unwinding the stack represents a

7

1. Background

significant increase in code size for embedded systems.

Swift’s approach is different. As Swift defines its own calling convention,
when calling a function that can throw an error (it is marked throws), the
caller reserves a specific register for the error. When the function returns, the
caller has to check this register and react appropriately. This system does
not penalize code that does not use error handling. When used, it can be
compared to a slightly more optimized version of manual error passing in C
(using a pointer to error variable).

1.2 Swift Runtime

Runtime of a programming language is the part of an executable that is in-
cluded implicitly by a compiler to support the execution of code explicitly
written by a programmer. In the simplest case, such support might mean
setting up the stack and calling the program’s main function. However, most
high-level languages today require greater runtime to support language con-
structs such as error handling or dynamic type casting. Those features are
then implemented in a separate library, usually referred to as the runtime
library and this library is automatically included in every program by the
compiler.

The size of the runtime library is an important factor in the case of em-
bedded systems, as it represents a fixed price in respect to code size. The
language C, heavily used on embedded systems, requires minimal runtime. It
includes just the essentials such as zeroing the section of uninitialized data or
calling the global constructors before transferring control to the main func-
tion. The runtime of C++, in comparison to C, gets significantly bigger. It
has to implement stack unwinding to support exceptions, symbol unmangling
for dynamic type identification or dynamic dispatch for virtual functions.
Nonetheless, as those features are often not needed, it is possible to disable
them, thus reducing the size of the runtime to a minimum.

Swift’s runtime library implements a wide variety of features. To name a
few, it covers memory management, reflection, dynamic type casting, proto-
col conformance registration or generic instantiation. Swift’s runtime library
also requires the compiler to emit metadata for every defined type, protocol
and implemented protocol conformance. The library itself is implemented in
C++ but does not require features like C++ exceptions or C++ runtime type
identification. Therefore, those features can be disabled, slightly reducing the
library’s size.

1.3 Swift Standard Library

The Swift standard library is a swift module (also referred to as SwiftCore),
that is implicitly imported and available in every Swift source code. It imple-

8

1.4. Swift Compiler

ments features that are essential to most programs, such as fundamental data
types (Int, Double, String), common data structures (Array, Dictionary) and
standard protocols e.g. Collection or Equatable.[8]

Even though the library implements the very essentials for every program
like the Int or Optional type, it is fully implemented in Swift with some
bindings to the compiler. It thus makes it easy to change or, in theory, be
replaced by another one.

As Swift’s standard library aims to be as small as possible and provide
just the features which are felt to be “part of the language,” it leaves a lot
to be implemented and shipped with the standard toolchain somewhere else.
Therefore, things like file access or manipulation with dates are implemented
in separate “core libraries” (e.g. Foundation).

1.4 Swift Compiler

The compiler incorporates several other projects to achieve its goal. Mainly, it
uses Clang to import C and Objective-C code as Swift modules and to compile
them. As a backend, to generate machine code, it uses LLVM. This is an
important fact, as LLVM supports architectures used on embedded devices,
thus ensuring that one will not have to deal with machine code generation
when bringing Swift to the embedded world.

1.4.1 Compilation Process

The process of compilation is depicted in Figure 11. Swift sources are firstly
parsed by the Parser transforming them into the Abstract Syntax Tree (AST).
C and Objective-C sources are imported using the ClangImporter component,
also transforming them into AST.

The AST is then run through the semantic analysis module, which is
responsible for inferring types and checking for semantic issues and errors. At
the end of this step, the AST is well-formed, fully-typed and safe for code
generation.

The next step in the compilation process is taking the AST and transform-
ing it into Swift Intermediate Language (SIL). The purpose of this high-level
intermediate representation is to allow further analysis and high-level opti-
mizations. The compiler always runs a set of mandatory passes analyzing
dataflow and correctness of the program. Based on configuration, it then
performs optional optimizations (such as generic specialization or automatic
reference counting optimizations).

When the processing of SIL is finished, the IRGen module transforms it
into LLVM’s IR Intermediate Representation. LLVM then performs further
generic low-level optimization on this representation and then it generates
machine code.

9

1. Background

1.4.2 Building The Toolchain

.swift

Parser

Sema

AST

.h

ClangImporter

AST

SILGen

well-formed AST

SILOptimizer

raw .sil

IRGen

optimized .sil

LLVM

.ir

.o

Figure 11: Swift com-
pilation process.

Building a ready-to-use Swift toolchain is not an easy
task. Many variables must be taken into account
– the platform we want to run the compiler on, or
the targets we want the compiler to support (as the
compiler is often used as a cross-compiler). However,
there are numerous other different aspects, such as
building and configuring all the dependent projects,
compiling the runtime, standard library and Swift’s
core libraries or preparing dependencies required for
testing the toolchain.

Swift’s project uses CMake to handle this prob-
lem. CMake is a cross-platform set of tools designed
to control the compilation process using simple plat-
form and compiler-independent configuration files.
In order to add support for cross-compilation to bare
metal, not only will adjustments have to be made
to the compiler’s code itself, but also substantial
changes have to be made to the process of how the
toolchain is built.

10

Chapter 2

Realization

Before diving into the process of adding support for a new platform, let us
overview what the different components of the compiler already support. As
earlier mentioned, Swift is often used on platforms like watchOS or iOS. In
addition, it is possible to target Android devices or Linux on RaspberryPi. All
those platforms run on chips with ARM architecture – more specifically, the
chips usually implement ARMv7-A or ARMv8-A architectures. The “A” at
the end of the architecture name is short for Application Profile (A-Profile),
and those architectures are the ones used in the most powerful ARM proces-
sors.

As we want to step-down on the chip’s performance scale and find the
limits of Swift on bare metal, it is natural to look at some other – lower
performance – families of chips. In addition to the high-performance A-profile,
ARM currently offers two other architecture profiles. R-Profile optimized for
Real-Time Operating Systems and M-Profile designed for microcontrollers.
Our choice is the ARMv7-M architecture of the M-Profile family. Those chips
are highly optimized for power-efficiency and target the smallest embedded
applications. Even though we could have chosen architecture outside the ARM
world, the M-Profile architectures have good support in LLVM and Clang and
are very popular in the embedded world, making them an excellent starting
place.

The M-Profile are 32-bit RISC ARM processors, but they do not include
the standard ARM instruction set. Instead, they implement an instruction set
called Thumb. This one is simplified to allow the smallest silicon die while re-
ducing code size (mixing 16-bit and 32-bit instructions). The microcontrollers
with the M-Profile core (Cortex-M) usually offer program memory sizes some-
where between tens of kilobytes to a few megabytes. This also works well for
our purpose, as it is safe to expect that the code size of the standard library
and runtime will fall somewhere within this range.

In this chapter, we add support for a new platform called BareMetal into
the Swift Compiler (which will be referred to as bare-metal in this document).

11

2. Realization

1 #if os (macOS)

2 print("hello world from macOS")

3 #elseif os (none)

4 print("hello world from baremetal")

5 #else

6 print("hello world from somewhere else")

7 #endif

Listing 4: An example of the new spelling for compile-time conditions sup-
porting the bare-metal environment.

The architectures supported are going to be ARMv7-M and ARMv7E-M. The
first section provides an overview of the necessary changes to the compiler and
its build process. The following section describes how we handled building the
runtime and standard libraries for the new platform. As soon as the system
can produce some machine code for bare metal, it is time to test it in an
emulator – that is described in Section 2.3.

In Section 2.4, we ensure that the implementation works as expected by
porting and running a part of Swift’s test suite on the new platform. Next,
a code-size issue will be addressed in Section 2.5. Finally, in the last two
sections, we add support to the Swift Package Manager and run our solution
on real hardware (Sections 2.6 and 2.7).

2.1 Initial Compiler Adjustments

Adding support for a new platform to the compiler requires a lot of small
changes across the project. Those changes are usually self-explanatory. How-
ever, identifying the parts to be changed in such a large project is not trivial.
In the following paragraphs, the changes are outlined which are needed to be
made in order to build a Swift compiler that is aware of the new platform.

2.1.1 Compile-time Conditions

The Swift compiler does not have any preprocessor. However, to allow code to
be conditionally included based on the operating system, compiler version, and
other compile-time variables, it implements simple Conditional Compilation
Blocks. One of the supported conditions is the operating system the code is
being compiled for. An example of such a condition can be #if os (Windows).
We added a new possible value for this condition, which is spelled os(none).
An example of it is shown in Listing 4. Another considered spelling was
os(BareMetal). Such a spelling might be clearer to a reader seeing it for the
first time, but we rejected it as being inaccurate (as there is no operating
system named BareMetal).

12

2.1. Initial Compiler Adjustments

Some platforms also support a compile-time condition based on the version
of the operating system (e.g. #available (iOS 9.0, *)). We decided not to
support this, as there will be no need in a short time to have fine-grained API
version management. Also, a lot of other platforms supporting Swift do not
implement this (such as Linux, Windows or Android).

Affected files: 1) src/swift/include/swift/Basic/LangOptions.h and
2) src/swift/lib/Basic/LangOptions.cpp.

2.1.2 Platform And Target Triple

The platform we added is named “BareMetal” (inspired by Clang and other
compilers, where it has the same name). Initially, we support two archi-
tectures – ARMv7-M and ARMv7E-M. When using a cross-compiler like
Clang or Swift Compiler, the general way of configuring it for a specific plat-
form and architecture is the Target Triple. The format of a target triple
is: <arch><subarch>-<vendor>-<sys>-<abi>. For our newly supported tar-
gets, the triples are thumbv7m-unknown-none-eabi and thumbv7em-unknown-

none-eabi. The <vendor>, which is unknown, can be omitted, as it is unim-
portant in our context and unknown is the default. none in the place of <sys>

means running without an operating system (bare metal). eabi at the end
of the triple guides the compiler to use the ARM’s Embedded Application
Binary Interface (EABI).

When using the Swift compiler, we use the -target option to specify the
target triple. The compiler then has to know what platform to use with the
specified triple. Such a mapping had to be implemented in src/swift/lib/

basic/Platform.cpp.

2.1.3 Compiler Driver and Toolchain

When we run the swift command line utility to build a program out of
some source code, the compiler’s driver is run. The driver is responsible for
performing all the necessary steps in order to produce the final product. Such
steps can be invoking Clang or Swift’s frontend to produce object files out
of any source code and then invoking a linker to link the object files. Those
actions are platform-dependent. The driver has to know things such as where
to look for header files, what linker to use, where standard C++ libraries are
stored to link against or where to find the Swift runtime library for the given
platform and architecture. The package with all those dependencies for a
given platform is called a Toolchain, and the compiler decides what Toolchain
to use based on the Target Triple.

Toolchains for bare-metal systems are usually more complicated in their
structure, as they include support for a range of hardware devices with varying
parameters. Instead of hard-wiring support for some specific toolchain into
the driver, we switch the driver to a very generic behavior when targeting bare

13

2. Realization

metal and leave all the options to be specified via the command line. This
decision makes building a Swift program by hand harder1 but does not tie the
compiler to some specific bare-metal toolchain.

Affected files: 1) lib/Driver/Driver.cpp, 2) lib/Driver/

UnixToolchains.cpp and 3) lib/basic/Platform.cpp.

2.1.4 Changes In How The Compiler Is Built

The entry point for building the Swift toolchain is a Python script located at
utils/build-script. This script abstracts the build process, so users do not
have to interact with CMake directly. The script validates the user’s configu-
ration for the build, translates it to CMake flags and invokes CMake. CMake
loads the CMakeLists.txt in the root of Swift’s repository, which in turn loads
all the *.cmake files in cmake/modules. Then, based on configuration, it loads
CMakeLists.txt of the project subdirectories.

Our changes add a few new command line options to the build-script

configuring the build for bare metal. Furthermore, it adds support for the
new platform and architectures, configures LLVM to target those architectures
and handles compilation of the Swift standard library and runtime. How the
libraries are built for bare metal is covered in the next section (2.2).

For completeness, the following is an overview of the changes:

utils/swift_build_support/swift_build_support/targets.py

Registered the new BareMetal platform and its architectures.

utils/build_swift/driver_arguments.py

Added new --baremetal, --skip-build-baremetal,
--skip-test-baremetal and --baremetal-toolchain options.

utils/build-script and utils/build-script-impl

Registered command-line options listed above. Added configuration of
the new platform.

cmake/modules/SwiftBareMetalSupport.cmake

Contains utility functions for the new platform. Mostly functions return-
ing command line options for cross-compilation of the standard libraries
and runtime.

cmake/modules/AddSwift.cmake

Added support for building Swift libraries targeting the new platform.

cmake/modules/SwiftConfigureSDK.cmake

Added macro setting up global variables for the BareMetal platform.

1This is not an issue with support of Swift Package Manager – see Section 2.6.

14

2.2. Building Swift Runtime and Standard Library

cmake/modules/SwiftSetIfArchBitness.cmake

Added support for the new architectures.

CMakeLists.txt

Added configuration of the BareMetal platform, if requested in CMake
flags from the build-script.

2.2 Building Swift Runtime and Standard Library

In the previous section, the necessary adjustments to the Swift project were
described to produce a Swift compiler aware of the new bare-metal platform.
However, when building the whole toolchain, an important part is building
the Swift runtime and standard library for the targeted platform. We have
mentioned the parts of the projects that had to be changed in order to con-
figure such build, but we have not covered what those changes were. In this
section, we explain how we ported the runtime and standard library to bare
metal and how they are built.

The standard library is entirely written in Swift and has two dependencies.
The first is a library called StdlibStubs, which is implemented in C++ and con-
tains an implementation of some platform-dependent features (like random()

or getting the environment variables). The second dependency, as of every
Swift source code, is the Swift runtime. The runtime library is also written
in C++ and is dependent on the C++ Standard Library. The C++ Standard
Library, in turn, incorporates C Standard Library. The languages C++ and C
also require their runtime libraries. Thus, we have a nice list of dependencies
to resolve for bare metal.

2.2.1 C/C++ Standard Libraries

As the project already uses Clang and LLVM, it would make sense to cross-
compile its implementation of the C++ standard library – libc++. Unfortu-
nately, the tools around LLVM do not have their own implementation of the C
standard library. Therefore, we would also have to find and cross-compile some
external implementation suitable for bare metal of the C standard library.

The second option we considered is to use a ready-to-use GNU ARM Em-
bedded Toolchain. It includes all the key elements to build a C/C++ source
code when targeting bare-metal, such as the GNU C/C++ Compiler, C++

standard library (libstdc++) or C standard library (newlib). We decided to
go with this option, as it covers all our needs in one additional dependency
and is already highly optimized for embedded systems.

15

2. Realization

2.2.2 Standard Libraries’ Search Paths

When compiling a C/C++ source code, the compiler has to be able to locate the
headers of the C++ standard libraries, or the linker has to know where to find
all the compiled standard libraries. Those search paths can get complicated,
when using the GNU ARM Embedded Toolchain, as they change based on
the targeted device. The GNU Compiler – arm-none-eabi-gcc – knows the
toolchain and sets up the search paths automatically. Unfortunately, the
choice of using arm-none-eabi-gcc instead of Clang would most probably
introduce more problems than it would solve, so there is no option but to
manually configure Clang to the same configuration that arm-none-eabi-gcc

uses implicitly.

As the layout of the GNU ARM Embedded Toolchain can change with ev-
ery version, hardcoding its search paths in the Swift project would be imprac-
tical. Instead, we obtain them by running arm-none-eabi-gcc itself. To get
the header search paths, we collect the command-line arguments we want to
run clang with that affect the search paths (like -target or -march). Then we
invoke arm-none-eabi-gcc on an empty file, with the arguments mentioned
above, running only its preprocessor (-E) and switching the preprocessor to
verbose output (-Wp,-v). This results in the preprocessor printing the header
search paths it would use. We parse them and configure CMake to use them
with Clang when compiling the Swift runtime and other Swift’s underlying
C/C++ libraries. Configuring library search paths (for the linker) is even eas-
ier, as arm-none-eabi-gcc has an option -print-search-dirs which prints
them for us in a similar way.

2.2.3 Porting The Runtime And StdlibStubs

Having the compiler adequately configured, it is time to look at the source
code of the runtime and StdlibStubs library. The source code has to be multi-
platform, so it often uses the C preprocessor to include parts of code based
on the targeted platform. We have introduced a new _BAREMETAL macro that
is defined when compiling for bare metal. Some of the changes we made are:

• Disabled backtrace reporting in fatal-error logs, as we will not have the
required machinery to support this on bare metal.

• Disabled dynamic lookup of symbols when dynamically linking a library,
as executables for bare-metal are always going to be statically linked.

• Swift on most platforms expects a valid pointer to be higher than 4096
and uses lower values to store some extra information. On bare metal,
we had to disable this behavior by setting the “least valid pointer” to
1, as programs are often being linked to addresses close to zero and
this would introduce a potential problem. We can expect this change

16

2.2. Building Swift Runtime and Standard Library

to have negative consequences on Swift’s performance and it is worth
future investigation.

• For platform-dependant functions in StdlibStubs that are not expected
to be used on bare-metal systems (e.g. getting the environment vari-
ables) we just replaced their body with a call to Swift’s fatalError. For
those which a user might want to be able to override (e.g. writing to
stdout), we provide a weak symbol that the user can implement and it
will automatically replace the default implementation at link-time.

• Unicode support in SwiftCore partially uses functions in StdlibStubs,
and those functions are then implemented using libraries from an open-
source project ICU. For the initial port of Swift to bare-metal, we de-
cided to drop Unicode support, so those functions currently also call
fatalError.

2.2.4 Missing Libraries

When trying to compile the runtime and StdlibStubs with the changes men-
tioned above, we still get many compiler errors. One problem is that the
code uses some functions from the C++ Thread Support Library and pthread,
such as std::call_once or pthread_getspecific. Those features are not im-
plemented in the standard library provided by the GNU ARM Embedded
Toolchain, as there is no support for threads when running without an oper-
ating system. One option would be to go through all the call sites and remove
the use of those functions. However, this would make the code less read-
able and introduce a lot of small changes in the codebase, making it harder to
merge our work to the upstream potentially. Instead, we decided to implement
a simple single-threaded version of the library and have it as a dependency to
the runtime and StdlibStubs.

A similar problem to the previous one araises when we try to link an
executable. We find that there are many missing symbols, mostly from the
atomic library (libatomic). This library is also not available in the GNU
ARM Embedded Toolchain. We took the same approach as mentioned above
and implemented a simple single-threaded version of those symbols.

It is worth mentioning that, even though there is no support for threads
on bare metal, we still often have to deal with concurrency-related problems.
The source of concurrency on bare metal are interrupts. This makes space
for improvements, and future implementations of those libraries can make the
execution safer by concerning interrupts.

The source code for the features mentioned above is located in a sepa-
rate folder src/swift/stdlib/public/stubs-baremetal. It all compiles to
a standalone library called StdlibStubsBaremetal, which can then be linked
to bare-metal executables.

17

2. Realization

2.2.5 Objects’ Incompatibility

Finally, we can build a simple Swift toolchain and try to produce the first
executable for bare metal. However, if we do so, the linker will emit several
warnings. The problem is that all our objects compiled by the Swift Compiler
or Clang do not use short enums, but the standard libraries from the GNU
ARM Embedded Toolchain do so. When short enums are enabled (flag -

fshort-enums), it allows the compiler to use the smallest possible data type
for an enumeration that can hold all the enumerator values. Using short
enums can usually improve memory usage at the expense of performance.
The problem is that linking two objects with different settings for short enums
might produce an invalid binary.[9]

The first option is to change the way our libraries are built. Changing it
for Clang and the C/C++ source code is not a problem. However, Swift does
not support such an option and produces object files having short enums flag
disabled. There is a chance that this would break cooperability between Swift
and C code, so we decided to go with the other option and compile a GNU
ARM Embedded Toolchain ourselves with short enums disabled.

To make the custom build of GNU ARM Embedded Toolchain easily re-
producible, we created a bash script located at src/swift/utils/baremetal/

build-gcc-arm-none-eabi. It does the following:

1. Downloads the source code of GNU ARM Embedded Toolchain from
developer.arm.com.

2. Unpacks it under src/arm-none-eabi-gcc alongside other projects.

3. Applies our patches located at src/swift/utils/baremetal/patches-

gcc-arm-none-eabi on the toolchain’s build scripts disabling the use
of -fno-short-enums.

4. Builds the toolchain using its build scripts.

With this version of the GNU ARM Embedded Toolchain, we are finally
able to compile some program for bare metal without any warnings, and it is
time to try to run it in an emulator.

2.3 Running in Emulator

In previous sections, we have built a full Swift Toolchain with support for the
new bare-metal platform. It is time to compile and run the first program. De-
bugging hardware is usually not the easiest thing to do; therefore we decided
to run the program within an emulator first. The one we chose is QEMU,
which is an open-source machine emulator, supporting a wide range of archi-
tectures and allowing everything from emulation of small embedded devices
to virtualization of a desktop computer[10].

18

developer.arm.com

2.3. Running in Emulator

QEMU supports a lot of different ARM machines, but when it comes to the
architectures we are interested in, we can only choose between two very similar
devices from Stellaris. We selected a machine with code name lm3s811evb,
which is a Stellaris LM3S811 with Cortex-M3. When trying to compile the
simplest program for bare metal with the newly built toolchain, it has a size of
almost ten megabytes. The device we have just selected has 64Kb of program
memory. As now is not the time to implement optimizations shrinking the
program by a few orders of magnitude in size, we decided to change the size
of the program memory in a source code of QEMU and compile it ourselves.
This allows us to test programs of arbitrary size without the limits of some
specific device.

To make the build of our version of QEMU easily reproducible without the
need to have its full source code in our project, we applied the same approach
described in the previous section with the custom build of arm-none-eabi-

gcc. A script is available at src/swift/utils/baremetal/build-qemu which
downloads, patches and builds QEMU in src/qemu directory.

The following paragraphs describe how a minimal “Hello World” applica-
tion can be built and then run inside this version of QEMU.

2.3.1 Assembling Minimal Application

Let us first outline what a typical application start looks like on the M-Profile
architectures. When the microcontroller is powered up, it sets up the Stack
Pointer register with the initial value loaded from address 0x04. Then, it starts
execution at the address stored at 0x00. This is where a startup code begins.
It 1) copies all the data of statically initialized variables to RAM, 2) clears
the parts of RAM reserved for uninitialized variables, 3) calls SystemInit()

function, which usually sets up essentials of the chip and 4) calls the entry
function of the program called _start(). The _start function is usually the
entry point of C Runtime, which only calls all static initializers and then gives
control to the main() function.

The program we are going to run is simple – it will just send some text to
the serial port and then go to an infinite loop. The files of the project are:

main.swift

The Swift source code of the program. The code is listed in Listing
5. Instead of using the print function from the standard library, for
simplicity, we define our own. This function iterates through all the
characters of the string and writes them to a specific register of the
serial port peripheral.

startup.c

This file contains a standard startup procedure mentioned in the previous
paragraph.

19

2. Realization

1 func print(_ string: String) {

2 let uart = UnsafeMutablePointer<UInt32>(bitPattern: 0x4000C000)!

3

4 for character in string {

5 uart.pointee = UInt32(character.asciiValue!)

6 }

7 }

8

9 print("Hello World from Swift on BareMetal!")

10

11 while(true) { }

Listing 5: Content of main.swift file of the “HelloWorld” application.

crt.c

Contains a minimal _start function. When linking a bare-metal appli-
cation using arm-none-eabi-gcc, the toolchain includes its implemen-
tation implicitly. We do not use arm-none-eabi-gcc for linking, so it
is easier to define our own.

linker.ld

Linker script for the application. It instructs the linker what the mem-
ory layout of the device is and where to place which sections of the
application.

The linker script is based on a standard one for Cortex-M3, but has to
handle one extra feature. Swift Compiler emits extra metadata used by the
runtime for reflection, dynamic dispatch and other features of the language.
Those metadata are emitted to specific sections, such as swift5_type_metadata

or swift5_reflstr. Hence, we have to extend the linker script to make sure
those sections will be properly located in the final product. Also, the linker
script has to define __start and __stop symbols for those sections so that the
runtime can locate them. Such an adjustment of the linker script for a single
section is shown in Listing 6.

2.3.2 Compiling The Application

In order to compile the application, we have created a simple Makefile. The
startup.c and crt.c files are standard C source codes, thus can be easily
compiled using Clang and we will not go through their rules in the Makefile.
On the other side, the compilation of main.swift and subsequent linking is
more complex and worth mentioning. The invocation of the Swift compiler is
depicted in Listing 7. The following must be done:

20

2.3. Running in Emulator

1 .text :

2 {

3 . = ALIGN(4);

4 __start_swift5_typeref = .;

5 KEEP(*(swift5_typeref*))

6 __stop_swift5_typeref = .;

7 } > FLASH

Listing 6: Part of a linker script handling one section of the runtime’s meta-
data.

a) set the linker to be used to the one from the GNU ARM Embedded
Toolchain,

b) instruct the driver to link the standard library statically (-static-

stdlib),

c) set the target triple,

d) make sure the compiler processes any C header files with the _BAREMETAL

macro defined2,

e) link the C part of our application,

f) link Swift and C++ standard library,

g) set the search paths for any libraries we are linking to3,

h) and pass options to the linker specifying the linker script.

2.3.3 Running The Application

Finally, running the application is as simple as starting the QEMU emulator
with our just-built executable:

> qemu-system-arm -machine lm3s811evb -kernel build/main -nographic

Hello World from Swift on BareMetal!

2This is currently necessary. However, it would make sense to have the driver define this
macro for us automatically when targeting BareMetal.

3We have manually listed the necessary paths here for simplicity. The preferred method
would be to resolve them automatically, as described in Section 2.2.2 on page 16.

21

2. Realization

1 $(SWIFTC) \

2 -use-ld=$(ARM_TOOLCHAIN)/arm-none-eabi/bin/ld \

3 -static-stdlib \

4 -target thumbv7m-unknown-none-eabi \

5 -Xcc -D_BAREMETAL \

6 -l:startup.o -l:crt.o \

7 -lswiftCore -lswiftStdlibStubsBaremetal -lstdc++ \

8 -lc -lg -lm -lgcc -lnosys \

9 -L $(ARM_TOOLCHAIN)/lib/gcc/arm-none-eabi/*/thumb/v7-m/nofp \

10 -L $(ARM_TOOLCHAIN)/arm-none-eabi/lib/thumb/v7-m/nofp \

11 -L $(SRC_ROOT)/build/$(BUILD_VARIANT)/swift-$(HOST_VARIANT)/...

12 -L ./build \

13 -Xlinker -T -Xlinker ./linker.ld \

14 main.swift -o ./build/main

Listing 7: A command from Makefile of our minimal application responsible
for compiling Swift source code and linking the application.

2.4 Testing

Up until this point, we have made it possible to compile a Swift program for
bare metal and checked our solution by running a minimal application within
an emulator. We have already mentioned some issues that make it harder
to run any application on real hardware. Most importantly, code size – the
compiled version of the minimal application required several megabytes of
program memory, which is more than we can afford on the M-Profile devices.
Before attempting the process of reducing the code size, it would be helpful
to be able to thoroughly test the solution we already have, so we can quickly
identify bugs that could potentially be introduced.

The Swift project applies multiple approaches to testing. The primary test
suites are based on a tool called lit, and they consist of thousands of test suits.
In the long term, it is necessary to ensure that all of them pass, even when
targeting bare metal. However, for our purposes, we focus on a selection of
tests testing the standard library and execution of the language itself. [11]

2.4.1 Implementing The Semihosting Interface

To run the tests, we will use QEMU as described in the previous section. What
such a test can look like is shown in Listing 8. On the first line, we instruct lit
to compile the file, run it and then pipe the standard output of the program to
a FileCheck utility, which compares the piped output to the CHECK: directives
in the file. This ensures that the program prints the expected text “Nice
shoes”.

In order to pass such tests when running inside QEMU, the program has

22

2.4. Testing

1 // RUN: %target-run-simple-swift | %FileCheck %s

2 // REQUIRES: executable_test

3

4 // CHECK: Nice shoes

5 func hello() {

6 print("Nice shoes")

7 }

8

9 hello()

Listing 8: A trivial test from the Swift project located at test/Interpreter/

hello_func.swift.

to be able to interact with the system. For example, the print() statement
must be bridged adequately to the standard output of QEMU. Another exam-
ple would be that a call to the fatalError function must make QEMU exit
with a non-zero status code so that a failure within a test can be detected.
Fortunately, QEMU implements the Semihosting interface defined by ARM.
This interface enables a bare-metal program to communicate with the environ-
ment it is running in, such as QEMU, by 1) placing arguments to predefined
registers, 2) executing the BKPT instruction, 3) which stops the execution and
resolves the request of the running program and 4) the program reads back
the result from registers.

To make the Swift standard library use the Semihosting interface, we have
to provide an implementation of some symbols from the C standard library,
such as _write or _exit. When targeting bare metal, those symbols are defined
in the nosys library provided by the GNU ARM Embedded Toolchain. We
have created a replacement implementation to nosys featuring:

1. Basic file access, including stdin, stdout and stderr (_open(), _read(),
_write(), _close(), _lseek() and _isatty())

2. Swift’s CommandLine.arguments in respect to the arguments passed to
QEMU on the command line.

3. Properly exiting QEMU with zero status code on success and non-zero
on failure (_exit).

By linking the test programs against this library, we can make the emu-
lation inside QEMU behave similarly to running the program natively on the
host computer, making it possible for lit to inspect the program’s execution.

23

test/Interpreter/hello_func.swift
test/Interpreter/hello_func.swift

2. Realization

1 // RUN: %target-run-simple-swift

2 // REQUIRES: executable_test

3 // REQUIRES: OS=none-eabi

4

5 import StdlibUnittest

6

7 var suite = TestSuite("Important aspects of life")

8

9 suite.test("We can run Swift on bare-metal") {

10 #if os (none)

11 let runningOnBareMetal = true

12 #else

13 let runningOnBareMetal = false

14 #endif

15 expectTrue(runningOnBareMetal)

16 }

17

18 suite.test("The answer is divisable by three") {

19 expectTrue(42 % 3 == 0)

20 }

21

22 runAllTests()

Listing 9: An example of a test using the StdlibUnittest library.

2.4.2 Porting Required Libraries

By implementing the Semihosting interface, the requirements of a significant
portion of the tests have been met. However, some tests do not use the
FileCheck utility to inspect the output of the tests, but use a unit testing
library instead. An example of such a test is depicted in Listing 9. The library
it uses is called StdlibUnittest which is compiled as part of the toolchain
when configured for testing.

StdlibUnittest provides all the necessities in order to define – in code
– a test suite, add some tests to it and run it. By default, those tests are
run concurrently by executing each of them in a subprocess. The library
is implemented in Swift and is dependent on SwiftPrivateLibcExtras and
SwiftPrivatePthreadExtras to support subprocesses and threads respec-
tively. As there is no kind of support for threads or processes on bare metal,
there is no option of porting those two libraries in a meaningful way. Instead,
we dropped the dependency on those libraries when compiling for bare metal,
and changed the default behavior of the library to run the tests sequentially
and in-process.

The Swift code of StdlibUnitttest also imports another library – Glibc on
non-Apple platforms or Darwin on Apple platforms. Glibc is the C standard

24

2.4. Testing

library imported through Clang Importer. On bare metal, we compile the
code against another implementation of the C standard library – Newlib –
which is mostly compatible with Glibc. Instead of introducing a new spelling
for the C standard library and requiring the existing Swift code to import
one or the other based on the platform, we decided to make Newlib available
under the Glibc name, to make the existing code compatible.

2.4.3 Running The Tests

The previously presented examples of tests (Listings 8 and 9) compile and run
the Swift code based on the first line of the test, which contains:

// RUN: %target-run-simple-swift

The directive RUN: instructs lit to execute a given shell command. In our case,
the shell command is %target-run-simple-swift, which is substituted for
a bash invocation which compiles and runs the current file. Those kinds of
substitutions are defined for each platform in a test/lit.cfg file.

The mentioned substitution %target-run-simple-swift is defined in
terms of other, more narrow-focused, substitutions, such as %target-run

which has to expand to a command running given executable on the tar-
get or %target-build-swift-dylib which must build a dynamic library out
of source code. Those substitutions can get quite complex (let us remember
the compilation of a minimal program in Listing 7 on page 22). Part of the
complexity comes from the fact that all the search paths of the GNU ARM
Embedded Toolchain must be configured. As we have solved this already when
configuring the build of Swift standard library in CMake, and because lit is
also configured by CMake, we reused the method by which some compilation
options are calculated. When configuring lit, we resolve the required compi-
lation options in CMake and pass them to the test/lit.cfg file, where they
are used to define the substitutions for bare metal.

With all the changes we have presented, we are finally able to run the
tests we are interested in. We still had to go through some of them and make
changes in order to support the new platform. Among others, the following
had to be done: a) disable some tests ensuring program crashes, as our version
of StdlibUnittest runs tests in-process and a crash would prevent other tests
from running, b) disable tests testing features not available on bare metal,
e.g. backtracing or c) disable tests requiring Foundation or other libraries
not available on bare metal. With that, we can successfully run all the tests
in test/Interpreter and truly validate our solution works on the language
level and its features.

25

2. Realization

2.5 Code Size Reduction

The goal of this thesis is to make it possible to use Swift on bare metal,
specifically on devices with minimal resources such as those using the M-
Profile architectures. We have already successfully done that in an emulator
with artificially big program memory, and we have proven that our solution
works by running a subset of tests on it. Therefore, the missing piece of the
puzzle is reducing the code size sufficiently to run a program on a real device.
If we look at the boards being regularly used in the segment, the highest
program memory size that is commonly available is two megabytes4. In the
following paragraphs, we aim at reducing the code size sufficiently to fit the
two megabytes and still have some extra space for a reasonable program.

We begin with a program having only one statement print("Hello World").
The way it is compiled is similar to the minimal example we ran in QEMU
(Section 2.3.2 on page 20). The only difference is that we link our Semihosting
library implemented in the previous section, in order to have the Swift.print

function print the string to the standard output of QEMU. The program-
memory size requirements of the program can be inspected by running

> arm-none-eabi-size -B build/main

text data bss dec hex filename

5586752 168732 121588 5877072 59ad50 build/main

It is seen that it currently requires 5.7 megabytes of program memory. The
Swift toolchain we used for the compilation was built in a Debug mode, which
turns off some basic optimizations, making the Swift standard library bigger
than necessary. We intentionally start with such settings to make the following
list of things we considered concerning code-size complete.

To confirm the fact that, as expected, most of the code size comes from the
Swift standard library and runtime, we used the -Map flag of the arm-none-eabi

linker. This command-line flag makes the linker emit a map file documenting
the link process and lists useful information such as what object files were
included in the final product. The map file is quite verbose, so we used a
LinkerMapViz5 tool to visualize the content of the executable. The visualiza-
tion is shown in Figure 21 and confirms that the majority of the executable
is composed of the Swift standard library. Therefore, unless otherwise stated,
the rest of this section will focus on the build process of the Swift standard
library.

2.5.1 Optimization Passes

The compiler has built-in optimization passes that can be controlled via the
command line. By default, none are enabled (which is also true for the Swift

4https://os.mbed.com/platforms/
5https://github.com/PromyLOPh/linkermapviz

26

https://os.mbed.com/platforms/
https://github.com/PromyLOPh/linkermapviz

2.5. Code Size Reduction

Figure 21: Visualization of sections assembling the executable’s .text segment
for initial version without code-size optimizations.
(libswiftCore.a (97 %), libstdc++.a (0.02 %), libc.a (0.01 %), . . .)

6.04 MB

3.49 MB 3.39 MB

Onone O Osize
0

1M

2M

3M

4M

5M

6M

Si
ze

Figure 22: Code-size comparison for the full Swift standard library when built
with different optimization settings.

27

libswiftCore.a
libstdc++.a
libc.a

2. Realization

standard library in our case). In Release builds of the Swift toolchain, the
standard library is usually built with the -O flag, enabling the default set of
optimization passes. This set of passes is designed to maximize the speed
of execution with the possible trade-off of increased code size. The compiler
provides an alternative set of optimization passes, that can be enabled with
the -Osize flag, optimizing the executable for code size. The -Osize flag is
expected to reduce code size somewhere between 5 % to 30 % while keeping the
performance hit usually below five percent[12]. Based on our measurements,
the use of -Osize does not affect the code-size as expected, decreasing it by
only three percents (about 100 kilobytes). However, even such a reduction
is notable; hence we made the -Osize flag the default when compiling the
standard library for bare metal.

Linking the HelloWorld application against a standard library built with
the -Osize flag reduced the program-memory requirements by 35 % down to
3.7 megabytes.

2.5.2 Disabling C++ Features

Even though the binary is mainly composed of a compiled Swift code, it incor-
porates some C++ code, which makes the compiler emit data used by the C++

runtime for stack unwinding and type identification. As mentioned in Section
1.2 on page 8, the runtime does not use those features and they can be safely
disabled. That is possible by passing the -fno-rtti and -fno-exceptions

flags to Clang.
By passing those flags to Clang, the compilation of the runtime is affected.

However, those C++ runtime metadata can come from other places, such as
the C++ standard library we are linking the program against. The reason they
are included in the final executable is that the linker script explicitly tells the
linker to do so. The C++ metadata for stack unwinding are stored in sections
with names starting with .ARM.extab and .ARM.exidx. Thus by removing
the code placing them in the FLASH section (program memory) and adding

__exidx_start = .;

__exidx_end = .;

/DISCARD/ : {

(.ARM.exidx)

(.ARM.extab)

}

the linker can be instructed to discard all those sections from the final exe-
cutable.

By disabling the C++ features and excluding the C++ metadata from the
executable, we were able to reduce the code size by 253 kilobytes down to 3.3
megabytes.

28

2.5. Code Size Reduction

2.5.3 Using The Nano Version Of Newlib

The GNU ARM Embedded Toolchain comes with the Newlib C standard
library. It also comes with a drop-in replacement of the standard Newlib
implementation with another one, called nano, which is highly optimized for
code size. It replaces complex algorithms focusing on the performance of the
library with simpler ones reducing its size. Also, it removes features that are
rarely used on bare-metal systems, such as advanced string formatting.

Using the Newlib-nano library with the minimal HelloWorld application
decreased its size by another 82 kilobytes.

2.5.4 Disabling Assertions

What other platforms already do for Release builds in order to decrease code
size and execution time of the standard library is to disable assertions and
runtime function counters. The latter is a feature of the Swift runtime used
primarily in tests, therefore can be safely disabled. The former, assertions,
are function calls like assert(arg > 0, "arg must be a positive integer")

or precondition(...). By disabling the Swift conditional compilation flag
INTERNAL_CHECKS_ENABLED, the assert calls are fully removed; precondition

calls only abort execution if their condition evaluates to false and non-negligible
part of the standard library is simplified.

In the case of the bare-metal platform, disabling the features mentioned
above resulted in a significant decrease in code size. The HelloWorld applica-
tion now requires 2.8 megabytes, a decrease of more than 600 kilobytes when
compared to the previous code size.

2.5.5 Reflection Metadata

Swift has built-in support for reflection, making it possible to get a structured
view of an object at runtime and inspect its stored properties. Because of
Swift’s strong focus on compile-time validation, this feature is typically used
for debugging or logging purposes only. Reflection requires the compiler to
emit reflection metadata for every type, therefore disabling it can decrease the
program’s code size. That is possible by passing the -disable-reflection ⌋

-metadata flag to the Swift Frontend. Also, disabling the reflection metadata
for the Swift standard library does not affect their generation for user-compiled
code, so it is still possible to use reflection with user-defined types.

Building the standard library with reflection metadata disabled reduced
the size of the HelloWorld application by 51 kilobytes.

2.5.6 Elimination Of Unused Sections

The optimizations thus far described focus on reducing the code size uniformly
across the produced executable. However, considering our program only prints

29

2. Realization

“Hello World” to the console and exits, it is clear that the problem is primarily
the fact that the executable contains plenty of unreachable code.

The elimination of dead code can be handled on multiple layers. Compilers
usually analyze the single compilation unit being worked on, and if it is pos-
sible to determine that some code is inaccessible both from outside and inside
the unit, it is eliminated before an object file is produced. The Swift compiler
supports compiling a whole module as a single compilation unit; therefore it
can eliminate dead code within an individual module. However, a minimal
Swift program involves two modules – the standard library and the program’s
module itself. As the compiler compiles each module separately, it can not
eliminate any code from the standard library itself, because the program that
it will be linked to can use none of the libraries functions or all of them. Thus
the only place to eliminate the unused code from the standard library is at link
time when the program’s module is being statically linked with the standard
library.

The linker has a more low-level view of the code than the compiler and,
in a way, a much simpler one. Code and data are organized in sections and
dependencies between those sections are mostly represented by relocations
(e.g. function calls). In the case of the HelloWorld application, the linker at
the beginning includes the section containing the main function. This section
includes relocations referencing a symbol for the Swift.print function, so the
linker has to include the section from the standard library defining this symbol.
Recursively, the linker loads increasingly more object files and their sections,
to resolve dependencies of the already included ones.

By default, the linker includes all sections of loaded object files (until the
linker script explicitly discards them). It includes even those sections that are
not referenced from some required section. To make the linker discard those,
it must be invoked with the --gc-sections flag. This flag makes the linker
include only the sections that are (transitively) dependent on an explicitly
included section. However, using this flag in our case reduced the code by
21 kilobytes only (so the application still requires 2.7 megabytes of program
memory).

The reason for --gc-sections having such a small effect can be seen by
inspecting the Swift standard library:

> arm-none-eabi-readelf libswiftCore.a -S | head

File: libswiftCore.a(Swift.o)

There are 49 section headers, starting at offset 0x127a5dc:

Section Headers:

[Nr] Name Type Addr Off Size

[0] NULL 00000000 000000 000000

[1] .strtab STRTAB 00000000 1116264 164377

[2] .text PROGBITS 00000000 000034 1e48ae

30

2.5. Code Size Reduction

[3] .rel.text REL 00000000 b7e7c4 067e58

The library contains a single .text section with all the code, which is al-
most two megabytes in size. Therefore, by depending on a single function
located in the .text section, the linker has to add the whole section to the
final executable. When using the --gc-section with C/C++ code, the com-
piler is usually invoked with two other flags – -ffunction-sections and
-fdata-sections. Those flags make the compiler emit functions and data to
separate sections (e.g. one function per section), increasing the granularity of
the object file and allowing the linker to remove more unused code. However,
the Swift compiler does not support those flags.

Splitting Function And Data Sections For Swift Code

The fact that the Swift compiler does not have a parallel to the -ffunction-

-sections/-fdata-sections flags is not surprising, as Swift is still a young
language and has not yet been used on platforms with such significant memory
constraints. We decided to implement those flags to reduce the code size
further. The compiler’s backend, LLVM, has direct support for those features,
so we needed to add command-line options enabling them only. The options
added are spelled -function-sections and -data-sections, and must be
passed to the Swift frontend. Hence, when invoking the Swift driver (swiftc),
the usage is:

swiftc -Xfrontend -function-sections -Xfrontend -data-sections

When we compiled the Swift standard library with the new command line
options and linked the program with --gc-sections, the code size decreased
by almost a megabyte – ending up at 1.6 megabytes.

2.5.7 A Tool For Object File Analysis

Even though 1.6 megabytes is still a lot for a “HelloWorld” application, it
finally fits the memory constraints of commonly available M-Profile devices.
Nevertheless, we decided to continue in our attempts to reduce the code size.

At this point, the biggest difficulty was understanding the content of the
object files and tracing why a specific section was included in the final ex-
ecutable. It is possible to inspect the object files themselves by using tools
such as arm-none-eabi-nm or arm-none-eabi-readelf, but their output is
very verbose for such a big object file like the Swift standard library, making
it very hard to get an overall picture. Another option is to use the -Map flag
and make the linker output a linker-map file documenting the linking process.
However, the linker-map does not say why a particular section was included,
only giving the name of the object file from which the section was referenced.
In our case, that is not helpful, as the Swift standard library is compiled into

31

2. Realization

a single object file and we want to be able to trace the dependency chains
within that file.

We searched for tools able to analyze ELF object files or the linking process
and found a number of them – for example LinkerMapViz (we presented its
output in Figure 21 on page 27) or bloaty6. provided information on what sec-
tions were included in the executable, without answering the question of why
they were included, nor giving a more in-depth insight into the dependencies
between the sections.

To gain such knowledge, we decided to create a new tool. The goal was to
get a graph of a linked executable, where each vertex would represent a section
and an edge a dependency between two sections. We implemented this tool
in Python using the jupyter notebook to allow easy further processing of the
graph. The steps the tool performs in order to create the graph are as follows:

1. It parses the command-line invocation of the linker to know what object
files (and archives) were involved in the linking process.

2. It unpacks all archives (.a files) for easier further processing.

3. Then it analyzes all the object files using the arm-none-eabi-* command-
line tools, creating in-memory indexes of all the symbols, sections, COM-
DAT groups, and relocations.

4. The next step is to manually set the root section(s) of the dependency
graph we want to create.

5. Then the algorithm starts, adding dependent sections to the graph, doc-
umenting the process, effectively simulating the linking process of a real
linker.

6. Finally, we are left with a graph for further processing and visualization.
An example of such a graph illustrating the HelloWorld application in
the current state is shown in Figure 23.

The jupyter notebook with the tool is located at dominator-symbol/

ObjectDependencies.ipynb.

2.5.8 Analyzing The Object Files

By inspection of the dependency graph depicted in Figure 23 we can immedi-
ately observe that, even though we have turned on the section splitting with
the newly implemented -function-sections/-data-sections flags, the ex-
ecutable is still composed of one large and unbreakable cluster of sections.

Finding out what is holding such a cluster together is one of the primary
reasons we developed the tool for object file analysis. As the dependency

6https://github.com/google/bloaty

32

https://github.com/google/bloaty

2.5. Code Size Reduction

Figure 23: An example of a dependency graph generated by our tool for anal-
ysis of the linking process. It shows the HelloWorld application. Nodes repre-
sent sections and edges dependencies between them. Size of a node represents
the relative size of the section.

graph and all the metadata are available within a jupyter notebook, it is easy
to examine them further – in this case, by transforming them to a Dominator
Tree. The dominator tree helps us identify the symbols, that might be small
themselves, but introduce a massive chain of dependencies. To explain this
more formally, let us start with the definition of dominators:

Definition. “Dominators are defined in a directed graph with respect to a
source vertex S. Formally, a node u is said to dominate a node w w.r.t source
vertex S if all the paths from S to w in the graph must pass through node
u.”[13]

In other words, a section dominates another section, if the latter section
is a dependency of the former and discarding the former section subsequently
discards the latter section also. The dominator tree than builds on the dom-
inator property of two nodes in the original graph – a node is an ancestor of
another node if the former dominates it.

Listing 10 shows part of the dominator tree in textual form for the graph
depicted in Figure 23. By quick examination of the tree, we can easily identify
a few code-size related issues. However, the major one is visible on the fourth

33

2. Realization

1 > print_dependency_tree(dg, dg.gp.root, depth=3,

2 above_size=10_000, demangle=None)

3 1601414 linker-script(root) (0B,#0)

4 1174790 .rodata(libswiftCore.a) (57860B,#2)

5 15028 .data.rel.ro.$ss6SIMD16VyxGs28CustomDebugStringConverti...

6 14532 .data.rel.ro.$ss6SIMD64VyxGs28CustomDebugStringConverti...

7 14454 .data.$sSdSBsWp(libswiftCore.a) (72B,#13638)

8 12894 .data.$ss5Int64VSzsWp(libswiftCore.a) (148B,#14916)

9 12860 .text.$sSBsE8_convert4fromx5value_Sb5exacttqd___tSBRd__...

10 11724 .data.rel.ro.$ss5SIMD8VyxGs28CustomDebugStringConvertib...

11 11612 .data.rel.ro.$ss7UnicodeO6ScalarVs28CustomDebugStringCo...

12 11416 .data.$ss6UInt64VSzsWp(libswiftCore.a) (148B,#14777)

13 ... (skipped 10 lines)

14 102583 .text._ZN5swift15nameForMetadataB5cxx11EPKNS_14TargetMeta...

15 56184 .text._ZN5swift8Demangle12nodeToStringB5cxx11EPNS0_4Nod...

16 43908 .text._ZN5swift33_swift_buildDemanglingForMetadataEPKNS...

17 42725 swift5_typeref(libswiftCore.a) (19051B,#2614)

18 21167 .rodata.str1.16(libswiftCore.a) (21167B,#2772)

19 11505 .text.fprintf(libc.a) (40B,#2362)

20 11465 .text._vfprintf_r(libc.a) (7020B,#2363)

21 10328 .text.swift_dynamicCast(libswiftCore.a) (108B,#5588)

22 10152 .text._ZL21swift_dynamicCastImplPN5swift11OpaqueValueES...

Listing 10: Part of a dominator tree of the graph depicted in Figure 23. Each
line represents a single node, the root node is on the third line. Each line
shows: size including its dependencies, section name (object file name), and
(section size, section identifier).

line: the section .rodata from libswiftCore.a dominates the sections that
have 1.174 megabytes in total. In other words – just by including the single
.rodata section, which itself has only around 60 kilobytes, we bring more
than a megabyte of data into the executable.

We can use the original dependency graph and simple Depth-First Search
to trace the inclusion of this section. One of the possible paths from the root
section to .rodata is:

1 Starting in section 'linker-script'

2 -> symbolic dependency KEEP(swift5_type_metadata) resolved with

swift5_type_metadata(libswiftCore.a)→֒

3 -> relocation of '$sSo10HeapObjectVMn' found in

.rodata(libswiftCore.a)→֒

The output is interpreted as follows – the linker script includes
the swift5_type_metadata section with the type metadata required by the
runtime. That section includes a relocation of symbol $sSo10HeapObjectVMn,

34

2.5. Code Size Reduction

which is resolved in the .rodata section. By demangling the symbol
$sSo10HeapObjectVMn, we find that it is a nominal type descriptor. That is
expected – the section swift5_type_metadata should include pointers to struc-
tures describing all the types defined. However, this creates a few problems
for us.

As there is only one section swift5_type_metadata in libswiftCore.a, it
must contain pointers to all the types defined in the Swift standard library.
The type metadata structures then contain pointers to the type’s methods
and all its other dependencies. Therefore, by including the metadata, we can
expect to bring all the bits of the type’s implementation into the executable.
This graph of dependencies is effectively making a single cluster out of the
standard library. In order to break this cluster, we have to split the .rodata

section into smaller sections, so that every type metadata structure is stored
separately. Also, we have to break the swift5_type_metadata section and
change the linking process, so that only the types that are referenced in the
program are included.

By further analysis of the dependency graph, we can identify that the other
two sections with runtime metadata – swift5_protocols and
swift5_protocol_conformances – have a similar problem to the one described
above.

2.5.9 Splitting Metadata Sections

In order to loosen the dependency graph of the standard library, we changed
how the compiler places all the metadata into sections.

• All the runtime metadata structures, such as protocol descriptors, nom-
inal type descriptors or protocol conformance descriptors the compiler
now puts into separate sections. The name of the section is usually
.rodata.<suffix> where <suffix> is a mangled name of the entity stored.

• The sections named swift5_* that are used for runtime registration of all
the types and protocols are now also split. The pattern is as described
above – for example, a record of protocol conformance is put into a
separate section named swift5_protocol_conformances.<suffix> where
<suffix> is the mangled name of the protocol conformance descriptor.

As we do not want to change the standard behavior of the compiler, splitting
the metadata sections is disabled by default. It can be enabled with a new
-metadata-sections frontend flag, that can be used similarly to the already
introduced -function-sections and -data-sections.

To make use of the Swift standard library compiled with the -metadata ⌋

-sections flag, it is necessary to change the linker script of the HelloWorld
application. Currently, the script includes the metadata sections as follows:

35

2. Realization

__EmptyArrayStorage

UInt8

Int

String

ClosedRange

ContiguousArray

UnsafePointer

UInt64

UInt32

Int64

Int32

UnsafeBufferPointer

Array

ArraySlice

Set._VariantSet

Set.Iterator

Set.Index

Dictionary
Dictionary.Iterator

Dictionary.Index
Substring

Substring.UTF16View

String.UTF16View

UInt16

Int16

Substring.UTF8View

String.UTF8View

Substring.UnicodeScalarView

String.UnicodeScalarView

_ValidUTF8Buffer

Int8

FlattenSequence

SIMD16
Double

SIMD64

Unicode.Scalar.UTF16View

Float

Dictionary.Keys

Dictionary.Values

Dictionary._Variant

_SequenceBox

Figure 24: Dependency graph visualization of the HelloWorld application with
split sections. Green sections are the ones discarded by the linker thanks to
the implemented section splitting.

1 __start_swift5_type_metadata = .;

2 KEEP(*(swift5_type_metadata))

3 __stop_swift5_type_metadata = .;

Firstly, we have to reflect that the type metadata can be stored in sections
with a suffix. Secondly, the KEEP(...) directive forces the linker to include all
sections with the pattern in the parentheses. As previously described, we want
to keep metadata of the types that are referenced by our code only. Therefore,
the second line has to be changed to *(swift5_type_metadata*).

With the above changes, the code-size of the HelloWorld application drops
significantly. However, the linker now discards too many sections, and most
applications will not work correctly. The first problem is that nothing is ref-
erencing the swift5_* sections and they all get discarded. When a program
instantiates some type, then the code references the type’s descriptor (lo-
cated in .rodata.<suffix> section). Therefore, the linker does not discard the
descriptor. However, the swift5_type_metadata.<suffix> section contains a
pointer to the descriptor only, so there is no reason for the linker to keep it in
place. The situation is similar with protocols – when a specific protocol is used
in code, the code then references its protocol descriptor. However, nothing

36

2.5. Code Size Reduction

references the section swift5_protocols.<suffix> with the protocol record.
To solve this, we made the compiler put the pairs of a swift5_*.<suffix> sec-
tion and a section with the corresponding descriptor into a COMDAT group.
When some sections are in the same COMDAT group, and one of the sections
is included by the linker, the linker also has to include all the other sections
from the group. Therefore, if the linker includes some descriptor, it now also
includes the proper record in a swift5_* section.

The last problem is that the linker discards all the protocol conformance
records and their descriptors, because code potentially using protocol confor-
mance does not necessarily create a reference to its descriptor. As the linker
has limited ways of dealing with this, two possible solutions were attempted.
Protocol conformance defines conformance of a type to some protocol. There-
fore, we tried putting the protocol conformances into the same COMDAT
group as the type’s metadata are in, for which the protocol conformance is
defined (meaning when a type is included, all its conformances are included
too). In addition, we tried putting the protocol conformances into the same
COMDAT group as the protocol is in. We decided to choose the former solu-
tion as it produced smaller executables.

The result of using the standard library compiled with the
-metadata-sections flag is a reduction of the HelloWorld application’s code
size by four hundred kilobytes.

2.5.10 Summary

With the changes introduced in this section, we have reduced the code size
of a minimal application to close to one megabyte. The primary obstacle in
reducing it further is a tight coupling of different components of the standard
library. This coupling is caused by the runtime metadata, where often in-
clusion of a single entity causes a chain reaction of the inclusion of another
type’s metadata, its witness tables, protocol conformances and so on. This
behavior is well demonstrated in Figure 24, where it is seen that only linking
a program printing some text to the standard output brings a significant part
of the standard library to the final executable.

There are several ways of approaching such a problem. Link-time optimiza-
tions can be implemented, that would perform dead-code analysis similarly to
what the compiler does on the compilation-unit level. Also, it would be pos-
sible to reduce the code size of bare-metal programs substantially by minor
changes in the standard library (such as by removing parts that are big and
unnecessary in respect to bare metal or by breaking problematic dependency
chains). Alternatively, a light-weight version of the standard library can be
implemented targeting bare metal. However, we decided against such changes
in this initial phase, as we believe this should potentially be discussed with
the Swift community.

37

2. Realization

At this point, the size of the application is no longer a problem, and we
can proceed towards the goal of running Swift on devices with the M-Profile
architectures.

No optimizations

Osize optimizations

disabled C++ runtime features

using Newlib nano

disabled Swift assertions

disabled Swift reflection metadata

C function/data sec. splitting

Swift function/data sec. splitting

Swift metadata sec. splitting

0

1M

2M

3M

4M

5M

6M

C
od

e
Si

ze

Figure 25: Comparison of the program’s code size with the optimizations
applied.

2.6 Swift Package Manager

At this point, the Swift toolchain is fully capable of producing an executable
which can be run on bare metal. However, managing the build process of such
an application would not be easy. Once more, let us remember the compilation
of a minimal application from Section 2.3.2. It required many command line
options to be specified, most of them related to the GNU ARM Embedded
Toolchain or the targeted device. Also, the listing in Section 2.3 only showed
the compilation of a single Swift file, not concerning how the C/C++ part of the
application is built. The compilation of a real bare-metal application is going
to be much more complex – the necessity to cooperate between C and Swift
code is to be expected, producing multiple Swift modules and linking them
together. Configuring the build process using Makefiles or some alternative
build tool would be error-prone, and would require comprehensive knowledge
of the compilers involved.

38

2.6. Swift Package Manager

Fortunately, those problems are already solved in the Swift ecosystem with
the Swift Package Manager – a tool addressing challenges such as compiling
and linking Swift packages, managing dependencies, versioning or distribution
of source code. The possibility of using the Swift Package Manager with
the new bare-metal platform would undoubtedly improve the experience of
building programs for this platform. This is the issue to be examined in the
following section.

2.6.0.1 Adding Support For BareMetal

The Swift Package Manager is a separate project from the Swift compiler, and
it is fully implemented in Swift. It is mostly target-platform agnostic; it just
needs to be able to parse the new target triple (thumb*-unknown-none-eabi)
and be aware of the new bare-metal platform so it can be used in package
configurations. Adding support for those two things required straightforward
changes in src/swiftpm/Sources/Build/Triple.swift and src/swiftpm/

Sources/PackageDescription4/SupportedPlatforms.swift.

2.6.0.2 Cross-Compilation

By default, when building a package with the Swift Package Manager, the
package is built for the host platform. However, we need the package to be
cross-compiled for an embedded device instead. We can instruct the package
manager to do so by using the --destination <file> command-line option.
The file specified must be a JSON file containing a toolchain configuration
that should be used to build the package. That includes information such as
a path to the Swift compiler, extra C and C++ flags, the target triple or linker
options. Therefore, we only need to create such a file for the target device
and pass it to the Swift Package Manager to configure the cross-compilation.

Because the destination file can get quite big and the primary part of it
contains search paths of the GNU ARM Embedded Toolchain, we created a
simple Python script that automatically generates it for every supported ar-
chitecture. The script is located in projects/_Destinations and by running
python generate.py it generates files thumbv7m.json and thumbv7em.json.
Cross-compiling a Swift package is then as easy as running

1 > swift build --destination thumbv7m.json

39

2. Realization

2.7 Running on Hardware

In this section, we are finally going to run an application on real hardware.
The board we have selected for our experiments is NUCLEO-F439ZI7. It has
good support on other platforms such as Mbed, Arduino or Micropython,
thus allowing us later comparison with Swift for Embedded Systems. Also,
the board is relatively well equipped and will not pose any limitations to
further evaluation. The basic features of the board are:

• The onboard Micro-Controller Unit (MCU) is STMF439ZI8. It has an
Arm Cortex-M4 Core using the ARMv7E-M architecture, and it has a
built-in single-precision FPU.

• The MCU operates at frequencies up to 180 Mhz and has two megabytes
of a FLASH memory and 256 kilobytes of SRAM.

• It has an extensive range of peripherals, such as up to 168 I/O ports, mul-
tiple I2C interfaces, UARTs, SPIs, CAN, Ethernet Controller or LCD-
TFT Controller.

• Also, the board has onboard debugger and programmer (STLink).

2.7.1 Assembling The Application

The HelloWorld application is again going to be the first to be run. To make
it as simple as possible, it will not use serial port peripheral (UART) to print
the text, but it will use the Semihosting interface (as we used when running
inside QEMU). However, this time, we will use the Swift Package Manager
to build the application. A Swift package is a directory with source files and
a Package.swift manifest file in its root. The manifest file can define two
types of products to be built – a library or an executable. Those products are
then defined in terms of targets (Swift modules), which can be either defined
within the same package or be a library from another package. The structure
of the packages involved in the HelloWorld application is:

package Crt0

This package provides a library named crt0 implementing the C runtime
entry function.

package STM32F4

This package contains the necessities related to the STM32F4 family of
microcontrollers. Currently, it provides a STM32F439ZIStartup library
with the startup code required for the STM32F439ZI microcontroller.

7https://www.st.com/en/evaluation-tools/nucleo-f439zi.html
8https://www.st.com/en/microcontrollers-microprocessors/stm32f439zi.html

40

https://www.st.com/en/evaluation-tools/nucleo-f439zi.html
https://www.st.com/en/microcontrollers-microprocessors/stm32f439zi.html

2.7. Running on Hardware

package Semihosting

A drop-in replacement for the nosys library defined in the GNU ARM
Embedded Toolchain. It implements a system-related function with re-
spect to the Semihosting interface.

package HelloWorld

This is the main package of the application. It defines a single product of
type executable incorporating four targets: a) the library STM32F439ZIStartup

with the startup code for the device, b) the Crt0 library with the C run-
time entry function, c) the Semihosting library from the package above
and d) the module with the program itself.

/projects

Semihosting

Package.swift

Sources

semihosting

include

semihosting.c

Crt0

Package.swift

Sources

crt0

include

crt0.c

STM32F4

Package.swift

Sources

STM32F439ZIStartup

include

startup.c

system.c

Linker

stm32f439.ld

HelloWorld

Package.swift

Sources

HelloWorld

main.swift

Figure 26: Directory structure of
the packages used for the Hel-
loWorld application (simplified).

The source files of the program
mostly remained the same as in Sec-
tion 2.3 when building the application for
QEMU, with the exception of the startup
code, because the STM32F439ZI MCU
requires a different vector table (as it has
a Cortex-M4 core, instead of Cortex-M3
which was emulated by QEMU).

The directory structure for all the
packages is depicted in Listing 26. The
linker script had to be changed to re-
flect the memory layout of the MCU.
As the goal of the STM32F4 package is
to provide everything related to running
Swift on the STM32F4 family of devices,
we located the linker script within this
package (under Linker/stm32f439.ld).
However, there is a drawback to locat-
ing it under the STM32F4 package. The
only way to specify the linker script for
the linker is from the manifest file of the
executable that is being built (in this
case HelloWorld/Package.swift), and
it can not be specified from a manifest
file of a library it uses. Therefore, there is
a small workaround needed in the mani-
fest file of the HelloWorld application to
reach the linker script (line 5 in Listing
11).

Because the Swift Package Manager
automatically detects that a defined tar-
get contains C code and handles it appro-
priately, there is no significant difference

41

2. Realization

1 // swift-tools-version:5.0

2 import PackageDescription

3 import Foundation

4

5 let linkerScript = FileManager.default.currentDirectoryPath

6 + "/../STM32F4/Linker/stm32f439.ld"

7

8 let package = Package(

9 name: "HelloWorld",

10 products: [

11 .executable(name: "HelloWorld", targets: ["HelloWorld"]),

12], dependencies: [

13 .package(path: "../Semihosting"),

14 .package(path: "../STM32F4"),

15], targets: [

16 .target(

17 name: "HelloWorld",

18 dependencies: ["STM32F439ZIStartup", "Semihosting"],

19 linkerSettings: [

20 .unsafeFlags([

21 "-Xlinker", "--gc-sections",

22 "-Xlinker", "-T",

23 "-Xlinker", linkerScript,

24])

25]

26)

27]

28)

Listing 11: The manifest file of the HelloWorld package targeting
STM32F439ZI.

between manifest files of the libraries containing C code and the root Hel-
loWorld package containing Swift code only. Therefore, we present the main
manifest file of the HelloWorld package only (see Listing 11).

2.7.2 Building And Running The Application

To build the application, we need to enter the projects/HelloWorld directory
and invoke the package manager:

> swift build --destination ../_Destinations/thumbv7em.json

[1/7] Compiling CSTM32F439ZIStartup system.c

[2/7] Compiling Semihosting semihosting.c

[3/7] Compiling Crt0 crt0.c

[4/7] Compiling CSTM32F439ZIStartup startup.c

42

2.7. Running on Hardware

[5/7] Archiving

./.build/thumbv7em-unknown-none-eabi/debug/libSemihosting.a→֒

[6/7] Compiling Swift Module 'HelloWorld' (1 sources)

[7/7] Linking ./.build/thumbv7em-unknown-none-eabi/debug/HelloWorld

The linked executable is now located in the build directory. However, it is in
an ELF format. Before flashing it to the memory of the device, we have to
convert it to a format the flashing utility can handle:

> arm-none-eabi-objcopy -O ihex

.build/thumbv7em-unknown-none-eabi/debug/HelloWorld{,.hex}→֒

Then we can flash it to the device and start the debugger:

> st-flash --format ihex write

.build/thumbv7em-unknown-none-eabi/debug/HelloWorld.hex→֒

...

> arm-none-eabi-gdb -ex 'target remote-extended :4242' -ex 'continue'

...

In another terminal, we have to start a GDB server that the debugger will
connect to, and we can immediately see the application output:

> st-util --semihosting 2>/dev/null

st-util 1.5.1

Hello, world

It works! We have successfully run a Swift program on an embedded device
with no operating system involved.

2.7.3 Hardware Abstraction Layer

The application ran in the previous section was simple, and its Swift code did
not interact with the hardware in any way. Having an embedded application
with no interaction with hardware peripherals is pointless; therefore, in this
section, we demonstrate how a basic Hardware Abstraction Layer can be built.

The goal of a Hardware Abstraction Layer (HAL) is to provide an applica-
tion programming interface (API) for interaction with the hardware peripher-
als of a device. Realization of such abstraction is possible on multiple levels:
a) it can abstract communication with a peripheral on a specific device (for
example by providing access to its registers); hence the client of such API still
has to be aware of the particular device, b) it can abstract the interaction with
peripherals for a whole family of devices, where the configuration might still
be device-specific, but general interaction with the peripherals is shared across
the device family or c) it can provide a general abstraction of the peripherals
and its typical features across all devices.

Embedded devices are usually provided with a HAL library written in C,
common for a family of devices. Such a library is then configured and compiled

43

2. Realization

for a specific device using C macros. In the case of the STM32F439ZI device
we use in this thesis, STMicroelectronics provides it with the STM32F4 HAL
library. This library provides high-level access to peripherals like I2C, SPI,
GPIO or clock configuration.

An abstraction of HAL shared for a family of devices is often a good
compromise between having good access to the specifics of a device and being
able to share code between similar devices when developing an embedded
application. On the other side, when writing a general piece of software – for
example, a driver for an external peripheral communicating using I2C – it is
not desirable to have such a driver tied to a specific device family as it might
only require a generic I2C interface. For those reasons, we have decided to
model the HAL in Swift For Embedded Systems as follows:

• The Hardware9 package/library provides a high-level abstraction of hard-
ware peripherals and their API. It is expected to be used by code shared
across applications. It does not provide API for configuration of those
peripherals, as that is expected to be handled in each application using
a lower-level API specific for the device family used.

• A device or device-family-specific HAL library, where types representing
common hardware peripherals are expected to implement the general
interface defined by the Hardware library.

The pattern for using such a hardware access layer is 1) the application
imports the library specific for the device/device family, 2) it instantiates and
configures necessary peripherals in a device-specific manner and 3) it either
uses the created instances directly or indirectly using the protocols defined
in the Hardware library (for example when using from a general third-party
library requiring “some I2C” only).

2.7.3.1 The Hardware Library

The Hardware library is defined within a Hardware package (via Swift Package
Manager). It defines common protocols to be implemented by types provid-
ing access to hardware peripherals. To keep things simple, we start with its
minimal implementation defining an interface for GPIO depicted in Listing
12.

2.7.3.2 The STM32F4 Library

In Section 2.7.1, we have already presented the STM32F4 package containing
the Startup library with code required for proper device startup. The next

9We also considered the name “HAL”, as that is commonly used for such a library.
However, we believe “Hardware” is less cryptic for people new to embedded development
and having the “Abstraction Layer” in the name is just stating the obvious.

44

2.7. Running on Hardware

1 public enum PinState {

2 case low

3 case high

4 }

5

6 public protocol DigitalIn {

7 func get() -> PinState

8 }

9

10 public protocol DigitalOut {

11 func set(_ value: PinState)

12 }

13

14 public protocol ToggleableDigitalOut : DigitalOut {

15 func toggle()

16 }

17

18 public protocol StatefulDigitalOut : DigitalOut {

19 func get() -> PinState

20 }

Listing 12: Universal GPIO interface as defined in the Hardware library in
projects/Hardware/Sources/gpio.swift.

thing is to extend this package with a new STM32F4 library providing the
hardware abstraction layer. As mentioned above, STMicroelectronics provides
a C HAL library. Therefore, we decided to implement the Swift version of the
library as a wrapper around the C version. Thus, the manifest file of the
STM32F4 package now declares two more libraries:

CSTM32F4 library

This is the C version of the HAL library as provided by STMicroelectron-
ics. The Swift Package Manager automatically compiles the C source
code and builds a module importable from Swift.

STM32F4 library

This is the HAL library to be used by user code. It provides high-level
access to the hardware peripherals implemented using the CSTM32F4

library.

2.7.3.3 Using the HAL library

With the libraries described above, we can create a simple application inter-
acting with some hardware peripheral. We have made an application called
Blinky which blinks with a blue LED built-in on the NUCLEO board we

45

2. Realization

1 import STM32F4

2

3 print("Welcome to the Blinky Demo")

4

5 do {

6 // Initialize the Hardware

7 let device = try STM32F4()

8 // Configure the pin

9 let blue = device.gpio.pin(peripheral: .B, number: 7,

10 mode: .output)

11 blue.set(.high)

12

13 // Toggle the led periodically

14 while (true) {

15 device.delay(ms: 500)

16 blue.toggle()

17 }

18 } catch {

19 print("failure: \(error) ")

20 }

Listing 13: A demo application using the STM32F4 library to interact with
hardware.

are using. The source code is listed in Figure 13. The application does the
following:

1. Initializes an instance of STM32F4 class representing the device. The
initialization is decorated with a try because the underlying implemen-
tation of the initializer calls a HAL_Init() function of the underlying
C HAL library. If that function returns an error, it is translated to a
STM32F4Error type which is later handled on line 19.

2. On line 9, the pin to which the LED is connected is configured as an
output and on the next line, set to high polarity.

3. The program then goes to an infinite loop, where it always waits for five
hundred milliseconds and then toggles the LED pin’s polarity.

The source code for this application can be found under the projects/

Blinky directory. It can be built and uploaded to the device, using the same
commands as presented in the previous section.

46

Chapter 3

Evaluation

In the previous chapter, the process of bringing Swift to the world of low-
performance embedded devices was described. In the following paragraphs,
we ensure that the presented solution has the properties a user might expect
from a language like Swift (such as high performance), while identifying some
of the possible challenges of this solution.

The board used for this evaluation is again the NUCLEO-F439ZI from
the previous chapter. As we believe the use of Swift for embedded systems in
the near future is in the segment of hobbyist and makers building systems for
the Internet of Things, the focus is on comparing our solution to two popular
platforms from this segment. The first one is Arduino (C/C++), representing
the mainstream in this segment offering high performance. The second one
is MicroPython – lean and efficient implementation of Python 3 targeting
embedded devices. Even though the comparison with MicroPython might
seem inappropriate (one being a compiled language, the second interpreted),
they are both high-level languages representing an alternative to the languages
from the C family currently dominating this segment.

47

3. Evaluation

3.1 Performance

3.1.1 Bit Banging

The first test is simple. It switches the polarity of a pin as fast as possible,
giving us a notion of the overhead required to do such an operation. This
might seem an artificially simple test; however, based on the overhead we
get an idea whether it is viable to, for example, implement a software-driven
version of I2C and achieve reasonable throughput.

During every test, the board was configured to run at maximum speed
(180Mhz), and both the Arduino and the Swift versions were built with per-
formance optimizations turned on (-O2 flag and -O flag respectively). For the
Arduino version shown in Listing 18, it might seem redundant to create the
while loop on line 4, when there is already the loop function which is period-
ically called (therefore, the digitalWrite lines can be placed there). However,
that would create a discontinuous signal because of the overhead from calls
to the loop function10. Similarly, the body of the test function in the Mi-
croPython case could be a top-level code in the file. However, that decreases
the performance significantly[14].

The measured frequencies of the generated signals are shown in the fol-
lowing table.

Swift 3.9 MHz
Arduino 2.9 MHz

MicroPython 0.089 MHz

It is interesting to compare the results of the Arduino and Swift versions.
Even though both the Arduino API and Swift API use the STM32F4 C HAL li-
brary provided by STMicroelectronics, the Swift version is faster. The C com-
piler did not inline the digitalWrite function (it is not defined as inline).
This digitalWrite function must translate the given arguments to differ-
ent ones required by the STM32F4 HAL library and then call the underlying
function from that library. On the other side, the Swift compiler was able
to inline the .set() method call and precalculate all the required parame-
ters at compile-time, therefore effectively replacing the call with a call to the
underlying C HAL library only.

10For pedantic readers – even the while loop creates an uneven signal, as there must be
an extra instruction to jump back to the start of its body (and possibly evaluation of the
condition). This is also a reason why all the programs include two pairs of “set high”/“set
low” statements – to get a longer period of continuous signal.

48

3.1. Performance

1 import STM32F4

2

3 let device = try! STM32F4()

4 let pin = device.gpio.pin(peripheral: .B, number: 4, mode: .output)

5

6 while (true) {

7 pin.set(.high)

8 pin.set(.low)

9 pin.set(.high)

10 pin.set(.low)

11 }

Listing 14: Swift source code for the bit-banging performance test.

1 void setup() {

2 pinMode(PB4, OUTPUT);

3

4 while (1) {

5 digitalWrite(PB4, 1);

6 digitalWrite(PB4, 0);

7 digitalWrite(PB4, 1);

8 digitalWrite(PB4, 0);

9 }

10 }

11

12 void loop() { }

Listing 15: C source code using the Arduino platform for the bit-banging test.

1 from machine import Pin

2

3 def test():

4 pin = Pin('B4', Pin.OUT)

5 while True:

6 pin.value(1)

7 pin.value(0)

8 pin.value(1)

9 pin.value(0)

10

11 test()

Listing 16: MicroPython version of the source code for the bit-banging test.

49

3. Evaluation

3.1.2 Response To Interrupts

The next test is to estimate the time it takes for the platform to respond to
an interrupt. We have connected one pin of the board to a signal generator (of
a square wave) and configured that pin to invoke a user-defined function when
the pin’s polarity changes. The function then toggles the output of another
pin. Using an oscilloscope, we then measured the delay between those two
signals. The results are shown in the following table.

Swift 1.8 µs
Arduino 0.7 µs

MicroPython 20.8 µs

Interpreted MicroPython is unsurprisingly still behind the two compiled
languages. This time, C/Arduino was faster than Swift. We compared the
assembly of the two programs, hoping to find a single reason for the latter
being slightly slower. However, it is more a combination of several aspects of
Swift – the additional time is mostly spent on memory management and extra
safety checks.

In addition, it is important to mention that the Swift code was compiled
with the -enforce-exclusivity=none flag. This flag disables runtime checks
of exclusive access to variables as described in Section 1.1.3 on page 5. With
the checks enabled, it takes the Swift program an extra microsecond to respond
to the interrupt.

−5μ 0 5μ 10μ 15μ 20μ 25μ

0

0.5

1

1.5

2

2.5

3

3.5 Input Signal
Arduino
Swift
MicroPython

Seconds

Vo
lts

Figure 31: Measured data from an oscilloscope – the microcontroller respond-
ing to an input signal (interrupt) by toggling another pin’s polarity.

50

3.1. Performance

1 import STM32F4

2

3 let device = try! STM32F4()

4 let output = device.gpio.pin(peripheral: .B, number: 7, mode: .output)

5 let input = device.gpio.pin(peripheral: .B, number: 4)

6

7 input.configure(.interrupt(edge: [.rising, .falling], pull: .down,

handler: {→֒

8 output.toggle()

9 }))

10

11 while (true) {}

Listing 17: Swift source code testing response time to interrupts.

1 void setup() {

2 pinMode(PB7, OUTPUT);

3 pinMode(PB4, INPUT_PULLDOWN);

4 attachInterrupt(PB4, onInterrupt, CHANGE);

5 }

6

7 void onInterrupt() {

8 digitalToggle(PB7);

9 }

10

11 void loop() { }

Listing 18: C source code using the Arduino platform testing response time
to interrupts.

1 from machine import Pin

2

3 def on_interrupt(_):

4 output_pin.value(not output_pin.value())

5

6 output_pin = Pin('B7', Pin.OUT)

7 input_pin = Pin('B4', Pin.IN, Pin.PULL_DOWN)

8 input_pin.irq(on_interrupt)

Listing 19: MicroPython version of the source code testing response time to
interrupts.

51

3. Evaluation

N=5 N=6 N=7 N=8 N=9
100μ

2
5

0.001
2
5

0.01
2
5

0.1
2
5
1
2
5

10
2
5

100

Swift (Ounchecked) Arduino Swift MicroPython

Se
co
nd
s

Figure 32: Results of the Fannkuch Benchmark.

3.1.3 Fannkuch Benchmark

With the last test evaluating execution speed, we decided to run a general
algorithm not strictly related to embedded systems. The main requirement for
running such a test is having three separate implementations of the algorithm,
that are reasonably written concerning the language they are for, while still
being similar enough to allow meaningful comparison.

Fortunately, there is a project called “The Computer Language Bench-
marks Game,”11 which defines a set of algorithms. People can submit their
implementations of those algorithms in various languages to compete against
others. As the project defines strict rules for the implementations with respect
to how much they can differ, and a specific algorithm must be followed (not
merely a solution implemented for a problem), it perfectly aligns with the
goal of this section. The selection of the algorithm for this test was mostly
based on the restrictions of the embedded system we want to run it on and
the available implementations in the project (often, all the implementations
required support for threads or arbitrary-precision arithmetics). The test se-
lected is Fannkuch Benchmark, defining an algorithm to solve a combinatoric
problem[15]. We then picked the best implementations for the languages we
are interested in12 and measured the execution time for different sizes of the
problem (different N). The results are shown in Figure 32.

The results show that the Swift version performed slightly worse than (but

11https://benchmarksgame-team.pages.debian.net/benchmarksgame
12Arduino: fannkuchredux-gcc-1, Python: fannkuchredux-python3-6,

Swift: fannkuchredux-swift-1

52

https://benchmarksgame-team.pages.debian.net/benchmarksgame
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-gcc-1.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-python3-6.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/program/fannkuchredux-swift-1.html

3.2. Code Size

34.19 kB

322.39 kB

1.18 MB

Arduino MicroPython Swift
0

0.2M

0.4M

0.6M

0.8M

1M

1.2M

Figure 33: Program-memory requirements comparison of programs running
the Fannkuch benchmark.

was still comparable to) the C version, while the MicroPython was consistently
almost two orders of magnitude slower. The reason for Swift being slightly
slower is the runtime checks it makes to achieve memory safety (e.g. out-
of-bounds checks for array access or checks of overflows for basic arithmetic
operations). It is possible to turn off all those checks, resulting in even lower
execution times than those of the C version (see “Swift (-Ounchecked)” in
Figure 32). However, turning this feature off contradicts one of the main goals
of Swift (to be a safe language), and we present it here as a demonstration of
the price for the runtime safety checks only.

The measured execution times for the C and Swift versions were stable;
however, in the case of MicroPython, the times varied by up to a few dozens
of milliseconds in the case of higher N because of the unpredictable nature of
GC pauses.

3.2 Code Size

The code sizes of the programs generated by the platforms being compared in
this chapter vary greatly. Comparison of program-memory requirements for
the Fannkuch Benchmarks is shown in Figure 33.

The code size is lowest in the Arduino case. While it is only about 35
kilobytes, most of it is still not generated by our code. It would not be
a problem to lower this even further (this result was obtained with default
settings mostly, the only difference being using the -O2 optimizations and
linking against Newlib nano with support for string formatting). The user code
with Fankuch benchmark required 344 bytes of program memory (without

53

3. Evaluation

dependencies in the C standard library).

Micropython required more than three hundred kilobytes as it has to in-
clude the interpreter and full standard library13. This represents a fixed cost,
and a user code can be provided in two ways: 1) uploaded to the device as
standard Python source code, requiring further compilation to bytecode, thus
using more resources at runtime, or 2) as precompiled byte code. MicroPython
is then able to execute this bytecode directly from FLASH memory, therefore
using a minimum of resources of the device. The precompiled file with the
Fannkuch Benchmark required 597 bytes only.

The same application written in Swift for Embedded Systems required
more than one megabyte of program memory. The main reason is that the
executable contains much unreachable code, as described in the Realization
chapter (Section 2.5). The question here is whether this represents a fixed
cost, or whether the application will grow substantially when a user code ref-
erences more symbols from the standard library. Figure 34 shows code sizes
for different applications we have written. It indicates that, even when an
application uses different parts of the standard library, the code size grows
proportionally to the used features. More importantly – there are no signif-
icant sudden increases in code size as a result of the use of some additional
features. The BigSymbols application in Figure 34 uses large data types from
the Swift standard library that are not included in the other applications (such
as Dictionary or Double). Nevertheless, the application has grown by a few
dozens of kilobytes only.

The code size of the compiled Fannkuch Benchmark written in Swift is
1416 kilobytes; therefore, two or four times bigger than the same code written
for MicroPython or Arduino respectively.

3.3 Using Swift for Embedded Systems

The speed of execution and memory requirements are without a doubt impor-
tant aspects of an embedded platform. However, other characteristics – often
more subjective – significantly influence the final experience. In the following
paragraphs, some of our findings are listed from using Swift on embedded
systems.

3.3.0.1 Handling Interrupts

When an interrupt occurs, the microcontroller usually immediately stops the
execution of the current code and starts executing adequate Interrupt Service
Routine (ISR). When the ISR finishes, the control is given back, and execu-
tion continues from the point when the ISR occurred. This introduces the

13Meaning the standard library of MicroPython, which is a subset of the usual Python
standard library.

54

3.3. Using Swift for Embedded Systems

Blinky
Button

HelloWorld

Interrupt
InterruptResponse

BitBanging

Fannkuch

BigSymbols

0

0.2M

0.4M

0.6M

0.8M

1M

1.2M main.swift
Startup Objects
C HAL
Swift HAL
C Standard Library
Swift Standard Library

C
od

e
Si

ze

Figure 34: Code size of different Swift applications. The code size does change
dramatically when additional features of the Swift standard library are used.

same problem as in a multithreaded environment. It is therefore required to
appropriately handle access to shared resources between ISRs and the main
routine.

In C, this means, for example, not using the malloc function (or other
non-reentrant function) within an ISR. Swift, as a language, does not specify
when an allocation of memory can take place. Currently, the worst must be
expected – meaning any line of code can potentially be unsafe and access some
shared resource. However, in practice, it is not hard to tell whether a simple
code after optimizations involves a call to the Swift runtime. Therefore, with
extra care, it is possible to use Swift within ISR.

An example of an ISR defined within the STM32F4 Swift library is

1 @_silgen_name("EXTI2_IRQHandler")

2 func EXTI2_IRQHandler() {

3 HAL_GPIO_EXTI_IRQHandler(1 << 2)

4 }

This ISR only delegates processing of the interrupt to the lower-level C HAL
library. However, worth mentioning is the @_silgen_name attribute next to
the function definition. It forces the compiler to give the symbol with this
function the name specified in parentheses. This is required, as the startup
code registers a symbol with this specific name to be the ISR, and the default

55

3. Evaluation

symbol name for the function would be Swift-specific, including information
such as the module name or full signature of the function.

The @_silgen_name attribute is currently not a documented feature of Swift
and will probably be replaced in the future with another spelling.

3.3.1 Volatile

In C, volatile is a type qualifier making the compiler aware that a variable
with the type can change at any point in time. Let us consider the following
C code:

1 volatile char* reg = (char*)0x0800000;

2 *reg = 'a';

3 *reg = 'b';

Without the volatile qualifier, the compiler can deduce that the code writes
two times to the same memory location and can remove the first write. How-
ever, the write to the memory can have special semantics – for example, the
memory can be mapped to a serial port peripheral and writing to it can send
the character via the port. The volatile qualifier prevents such optimizations
from happening.

Currently, Swift does not have any parallel to the volatile qualifier.
Therefore, when accessing raw memory in order to control some hardware
peripheral, a user has to be aware of the possible consequences of optimiza-
tions.

3.3.2 Package Manager

Full support for the Swift Package Manager is crucial in terms of usability, as
it allows Swift for embedded systems to leverage all the tooling that comes
with Swift. This is something other embedded platforms often struggle with.
For example, there is no unified way to distribute C/C++ libraries, and each
platform usually builds its own. Another problem is often having a good-
quality IDE working with the embedded platform – Arduino comes with a very
simplistic IDE (not having such features as auto-complete), and MicroPython
does not work out-of-the-box with existing Python IDEs (the problem here
being, for example, a separate package manager). Some of the consequences
of support of the Swift Package Manager are:

• Seamless cooperability between Swift and C code. The Swift Package
Manager automatically detects if a module contains C code and handles
it without any further configuration required. This is extra important
for an embedded system, as most of the code available is written in C.

56

3.3. Using Swift for Embedded Systems

• Easy-to-use management even of a very complex application involving
many dependencies.

• Ability to use existing third-party libraries.

• The possibility of using existing tools for Swift – for example a Language
Server Protocol Server14 that is now being officially developed, extending
existing IDEs with full support for projects using the Swift Package
Manager (with features such as auto-complete, diagnostics or jump-to-
definition).

14https://github.com/apple/sourcekit-lsp

57

https://github.com/apple/sourcekit-lsp

Conclusion

Swift is a language which is receiving significant attention. While still being
very young, it is quickly broadening its possible fields of usage. Starting
in application development, soon the community brought it to server-side
development and recently, Swift took a step towards data science when a
Python interoperability and integration with TensorFlow were introduced.
This thesis aims to take the first step on another Swift journey, making it
possible to use it in the field of embedded systems.

In the Implementation chapter, the entire process was documented of ad-
justing the Swift toolchain in order to be able to target bare-metal systems.
To ensure that the generated machine code works as expected, we also made
it possible to run a subset of Swift’s test suite within an emulator. Next, as to
date, Swift has not been used in applications with high memory constraints,
a code-size issue had to be addressed. We extended the compiler with a set of
features allowing Swift programs to fit commonly available microcontrollers
with the focus on the ARM M-Profile architectures. In order to leverage all
the tooling available, we also extended the Swift Package Manager to support
the newly added bare-metal platform and created several packages required
when targeting bare metal. Finally, the whole solution was evaluated using
an STM32F4 board.

Our results show that the use of Swift for Embedded Systems can result in
comparable performance to that of a C-based platform, while making use of
all the high-level features Swift offers. The current difficulty is the code size
of such programs, limiting the use to microcontrollers with higher program-
memory sizes only. On the other side, Swift for Embedded Systems benefits
significantly from the support of the Swift Package Manager, making it very
easy to develop an embedded application, using Swift together with C. As C
is dominating the segment and most of the available code is written in it, we
believe the high interoperability with C is essential for the further success of
Swift in this segment.

As a result of the work described in this thesis, it is possible to use Swift

59

Conclusion

on embedded systems. We therefore consider the goal of this thesis to be
achieved. We are planning to open-source all the code shortly15 and start a
discussion with the Swift community about merging the changes to the Swift
upstream repository.

Future Work

This thesis opens up space for a number of follow-up works, such as:

• Increasing the number of supported boards and peripherals. Currently,
we added basic support for the NUCLEO-F439ZI board. We plan to
improve this support, possibly providing access to most of its peripherals.
However, supporting other boards is as simple as creating a new package
with a linker script and startup code.

• Implementing further optimizations reducing the code size. Code size
of the standard library is currently the main obstacle to using Swift
on smaller embedded devices. This can be addressed by implementing
link-time optimizations removing unreachable code.

• Making it more accessible for beginners. Swift aims to be a great first
language[16]. There is an opportunity to create a simple Arduino-like
experience with Swift for Embedded Systems, making it possible to run
Swift on an embedded device with one click. Thanks to the already
existing tools, this might be simple to implement in comparison to other
platforms.

• Adding support for other architectures. A very popular chip frequently
used in the Internet of Things is ESP-32 made by Espressif. LLVM
currently does not support code generation for its architecture; however,
this can change soon, as Espressif is now officially working on adding
such a support to LLVM.

15https://github.com/swift-embedded

60

https://github.com/swift-embedded

Bibliography

[1] Inc, A. Memory Safety. Available from: https://docs.swift.org/

swift-book/LanguageGuide/MemorySafety.html

[2] Health, S. Embedded Systems Design – Second Edition. 2003. Avail-
able from: https://books.google.cz/books?id=BjNZXwH7HlkC&lpg=

PA2&hl=cs&pg=PA2

[3] Embedded Systems Glossary. Available from: https://barrgroup.com/

Embedded-Systems/Glossary-E

[4] StackOverflow – Developer Survey Results 2019. Available from: https:

//insights.stackoverflow.com/survey/2019#technology

[5] John, M. Ownership Manifesto. Feb 2017. Available from: https://

github.com/apple/swift/blob/master/docs/OwnershipManifesto.md

[6] John, M. Enforce Exclusive Access to Memory. Available from:
https://github.com/apple/swift-evolution/blob/master/

proposals/0176-enforce-exclusive-access-to-memory.md

[7] John, M. Error Handling Rationale and Proposal. Available
from: https://github.com/apple/swift/blob/master/docs/

ErrorHandlingRationale.rst

[8] Inc., A. Swift Compiler And Standard Library. Available from: https:

//swift.org/compiler-stdlib

[9] Limited, A. Compiler Reference Guide Short Enums. Available from:
http://www.keil.com/support/man/docs/armclang_ref/armclang_

ref_chr1411640303038.htm

[10] QEMU the FAST! processor emulator. Available from: https://

www.qemu.org

61

https://docs.swift.org/swift-book/LanguageGuide/MemorySafety.html
https://docs.swift.org/swift-book/LanguageGuide/MemorySafety.html
https://books.google.cz/books?id=BjNZXwH7HlkC&lpg=PA2&hl=cs&pg=PA2
https://books.google.cz/books?id=BjNZXwH7HlkC&lpg=PA2&hl=cs&pg=PA2
https://barrgroup.com/Embedded-Systems/Glossary-E
https://barrgroup.com/Embedded-Systems/Glossary-E
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology
https://github.com/apple/swift/blob/master/docs/OwnershipManifesto.md
https://github.com/apple/swift/blob/master/docs/OwnershipManifesto.md
https://github.com/apple/swift-evolution/blob/master/proposals/0176-enforce-exclusive-access-to-memory.md
https://github.com/apple/swift-evolution/blob/master/proposals/0176-enforce-exclusive-access-to-memory.md
https://github.com/apple/swift/blob/master/docs/ErrorHandlingRationale.rst
https://github.com/apple/swift/blob/master/docs/ErrorHandlingRationale.rst
https://swift.org/compiler-stdlib
https://swift.org/compiler-stdlib
http://www.keil.com/support/man/docs/armclang_ref/armclang_ref_chr1411640303038.htm
http://www.keil.com/support/man/docs/armclang_ref/armclang_ref_chr1411640303038.htm
https://www.qemu.org
https://www.qemu.org

Bibliography

[11] Testing Swift. Available from: https://github.com/apple/swift/

blob/ad59d90/docs/Testing.md

[12] Code Size Optimization Mode in Swift 4.1. Available from: https://

swift.org/blog/osize/

[13] Khattar, T. Dominator Tree of a Directed Graph. Available from: https:

//tanujkhattar.files.wordpress.com/2016/01/dominator.pdf

[14] Micropython – Performance. Available from: https://github.com/

micropython/micropython/wiki/Performance

[15] Fannkuch-Redux – Description. Available from: https:

//benchmarksgame-team.pages.debian.net/benchmarksgame/

description/fannkuchredux.html

[16] Introducing Swift 5 – Great First Language. Available from: https://

developer.apple.com/swift/

62

https://github.com/apple/swift/blob/ad59d90/docs/Testing.md
https://github.com/apple/swift/blob/ad59d90/docs/Testing.md
https://swift.org/blog/osize/
https://swift.org/blog/osize/
https://tanujkhattar.files.wordpress.com/2016/01/dominator.pdf
https://tanujkhattar.files.wordpress.com/2016/01/dominator.pdf
https://github.com/micropython/micropython/wiki/Performance
https://github.com/micropython/micropython/wiki/Performance
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fannkuchredux.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fannkuchredux.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/description/fannkuchredux.html
https://developer.apple.com/swift/
https://developer.apple.com/swift/

Acronyms

API Application Programming Interface. 13, 43

ARC Automatic Reference Counting. 5

AST Abstract Syntax Tree. 9

EABI Embedded Application Binary Interface. 13

FPU Floating-Point Unit. 40

GC Garbage Collection. 5

HAL Hardware Abstraction Layer. 43–45

IDE Integrated Development Environment. 56, 57

IR Intermediate Representation. 9

ISR Interrupt Service Routine. 54, 55

MCU Micro-Controller Unit. 40, 41

OOP Object-Oriented Programming. 3

OS Operating System. 1

RISC Reduced Instruction Set Computer. 11

RTOS Real-Time Operating System. 1

SIL Swift Intermediate Language. 9

UART Universal Asynchronous Receiver-Transmitter. 40

63

Appendix A

Contents of enclosed SD card

Dockerfile....................a Dockerfile building the Swift toolchain
src.......................................the directory of source codes
dominator-symbol....the directory with the tools for object-file analysis
projects the directory with Swift packages for bare-metal
thesis.................the directory of LATEX source codes of the thesis

DP Dragomirecky Alan 2019.pdf......the thesis text in PDF format

65

	Introduction
	Background
	Swift
	Swift Runtime
	Swift Standard Library
	Swift Compiler

	Realization
	Initial Compiler Adjustments
	Building Swift Runtime and Standard Library
	Running in Emulator
	Testing
	Code Size Reduction
	Swift Package Manager
	Running on Hardware

	Evaluation
	Performance
	Code Size
	Using Swift for Embedded Systems

	Conclusion
	Bibliography
	Contents of enclosed SD card

