
__EmptyArrayStorage

UInt8

Int

String

ClosedRange

ContiguousArray

UnsafePointer

UInt64

UInt32

Int64

Int32

UnsafeBufferPointer

Array

ArraySlice

Set._VariantSet

Set.Iterator

Set.Index

Dictionary
Dictionary.Iterator

Dictionary.Index
Substring

Substring.UTF16View

String.UTF16View

UInt16

Int16

Substring.UTF8View

String.UTF8View

Substring.UnicodeScalarView

String.UnicodeScalarView

_ValidUTF8Buffer

Int8

FlattenSequence

SIMD16
Double

SIMD64

Unicode.Scalar.UTF16View

Float

Dictionary.Keys

Dictionary.Values

Dictionary._Variant

_SequenceBox

N=5 N=6 N=7 N=8 N=9
100μ

2

5
0.001

2

5
0.01

2

5
0.1

2

5
1
2

5
10

2

5
100

Swift (Ounchecked) Arduino Swift MicroPython

S
ec

o
n

d
s

Introduction

Procedure

• While code size is still higher than on other platforms 

used for embedded development, it is not a major issue. 

On the other hand, our results show that the use 

of Swift for Embedded Systems can result in 

comparable performance to that of a C-based 

platform, while making use of all the high-level 

features Swift offers (See Figure 2).
• From a developer perspective, the use of our 

solution should feel very familiar and be comparable 

to the development of a Swift application for Linux 

- mostly thanks to the support for the Swift Package 

Manager.

As a result of this work, it is now possible to use Swift on em-

bedded systems. We believe that Swift can represent a viable 

alternative to IoT platforms such as Arduino or MicroPython.

Code-Size Reduction Evaluation

SWIFT FOR EMBEDDED SYSTEMS
Alan Dragomirecký – Petr Máj (Supervisor) – Czech Technical University – Faculty of Information Technology

• Swift, after being released in 2014, quickly became one of 
the fastest-growing languages. Currently, about seven percent of 

developers name Swift as one of their most favored technologies[1]. 

They can use it for application development, server-side 

development and, recently, in Data Science. However, 
to date, there has been no possibility of using Swift 

on the smallest computers with highly constrained 

resources – embedded systems.
• This work aims to change that and 

to be the first step toward opening the 
segment of embedded systems to Swift 

developers. In order to find the limits 
of the current Swift implementation, 

we decided to focus on the most 

constrained microcontrollers 

provided by ARM, the Profile-M 
family. 

• We added a new BareMetal platform to the Swift compil-

er, ported the Swift Runtime, Swift Standard Library, and other 

required libraries.
• To ensure that everything works after the extensive 

changes to the whole toolchain, we ported part of the test suite, 

performing the tests within the QEMU emulator.
• In order to make our solution familiar to Swift developers 

and to leverage existing tools, we also added support to the Swift 

Package Manager.

• One of the biggest challenges when porting 

a high-level language like Swift to embedded systems 

is code size. The memory sizes of commonly available 

M-Profile microcontrollers end at two megabytes. The compiled 
runtime and standard library itself comprised over five megabytes.
• We created a new tool for program’s code-size analysis. It 

examines object files and performs simulation of the linking process. 
As a result, it creates a dependency graph of different parts of the 
application for further analysis.

• With the aid of this tool, new features were implemented to 

the compiler, enabling code-size reduction of the standard library close 

to one megabyte.

Conclusion

Figure 1: Dependency graph visualization of a simple Swift application. 
Green areas are those discarded, due to newly implemented compiler fea-

tures.

Figure 2: Performance comparison of different embedded platforms 
running the Fannkuch benchmark.

[1] StackOverflow – Developer Survey Results 2019. Available 
from https://insights.stackoverflow.com/survey/2019#tech-

nology.

References


