8 SWIFT FOR EMBEDDED SYSTEMS A&

Alan Dragomirecky — Petr Maj (Supervisor) — Czech Technical University — Faculty of Information Technology

° Swift, after being released in 2014, quickly became one of
the fastest-growing languages. Currently, about seven percent of
developers name Swift as one of their most favored technologies™. _
They can use it for application development, server-side //'
development and, recently, in Data Science. However, :
to date, there has been no possibility of using Swift
on the smallest computers with highly constrained
resources — embedded systems.

° This work aims to change that and 4
to be the first step toward opening the &

segment of embedded systems to Swift
developers. In order to find the limits
of the current Swift implementation,
we decided to focus on the most
constrained microcontrollers /-"
provided by ARM, the Profile-M
family.

° We added a new BareMetal platform to the Swift compil-
er, ported the Swift Runtime, Swift Standard Library, and other
required libraries.

° To ensure that everything works after the extensive
changes to the whole toolchain, we ported part of the test suite,
performing the tests within the QEMU emulator.

° In order to make our solution familiar to Swift developers
and to leverage existing tools, we also added support to the Swift
Package Manager.

° While code size is still higher than on other platforms
used for embedded development, it is not a major issue.
On the other hand, our results show that the use
of Swift for Embedded Systems can result in
3 comparable performance to that of a C-based

platform, while making use of all the high-level
features Swift offers (See Figure 2).

° One of the biggest challenges when porting
a high-level language like Swift to embedded systems
is code size. The memory sizes of commonly available
M-Profile microcontrollers end at two megabytes. The compiled
runtime and standard library itself comprised over five megabytes.

4
e From a developer perspective, the use of our
solution should feel very familiar and be comparable
to the development of a Swift application for Linux
- mostly thanks to the support for the Swift Package

° We created a new tool for program’s code-size analysis. It
examines object files and performs simulation of the linking process.
As a result, it creates a dependency graph of different parts of the
application for further analysis.

. With the aid of this tool, new features were implemented to Manager.
the compiler, enabling code-size reduction of the standard library close
to one megabyte.

100
5

B Swift (-Ounchecked) ™ Arduino M Swift B MicroPython

2
10
5
2
- 1
. “n 5
L k] )
S ol
K ‘ 8 5
e n 2
o 001
b 5 String i )
B String.UnicodeScalarView - 0.001
r Strinig, UTFI6Viow - s
ant . _ _ EmptyArrayStorage 2
) s SetSer Variant % § 100
String. iew
\ . e n s - - s -
X : Array S“'"“;{Em; Substring
N

. - Seque . : .

Dictiopary.Indox “Substring. UnicodeScalarView
ArraySlice Set.ndex Substring. UTF16View
Substring UTF8View

‘ Unsgrofg&ggfaferPoin’cer

Figure 2: Performance comparison of different embedded platforms
running the Fannkuch benchmark.

Int
ValidUTF8Buffer Int32
UnsafePoiriter "

Ulnt&ymes2
Int8

il t64

Ulnt16:

Ulnt64

As a result of this work, it is now possible to use Swift on em-
bedded systems. We believe that Swift can represent a viable

Figure 1: Dependency graph visualization of a simple Swift application. alternative to loT platforms such as Arduino or MicroPython.

Green areas are those discarded, due to newly implemented compiler fea-
tures.

[1] StackOverflow — Developer Survey Results 2019. Available
from https://insights.stackoverflow.com/survey/2019+4ttech-
nology.




