
BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

FACULTY OF INFORMATION TECHNOLOGY
FAKULTA INFORMAČNÍCH TECHNOLOGIÍ

DEPARTMENT OF COMPUTER GRAPHICS AND MULTIMEDIA
ÚSTAV POČÍTAČOVÉ GRAFIKY A MULTIMÉDIÍ

ROBUST SPEAKER VERIFICATION WITH DEEP NEU-
RAL NETWORKS
ROBUSTNÍ ROZPOZNÁVÁNÍ MLUVČÍHO POMOCÍ NEURONOVÝCH SÍTÍ

MASTER’S THESIS
DIPLOMOVÁ PRÁCE

AUTHOR Bc. JÁN PROFANT
AUTOR PRÁCE

SUPERVISOR Ing. PAVEL MATĚJKA, Ph.D.
VEDOUCÍ PRÁCE

BRNO 2019

Vysoké učení technické v Brně
Fakulta informačních technologií

 Ústav počítačové grafiky a multimédií (UPGM) Akademický rok 2018/2019
Zadání diplomové práce

Student: Profant Ján, Bc.
Program: Informační technologie Obor: Počítačová grafika a multimédia
Název: Robustní rozpoznávání mluvčího pomocí neuronových sítí
 Robust Speaker Verification with Deep Neural Networks
Kategorie: Zpracování řeči a přirozeného jazyka
Zadání:

1. Prostudujte statistické techniky pro modelování řeči, soustřeďte se na neuronové sítě.
2. Seznamte se s trénovací a testovací sadou pro soutěž NIST SRE 2018.
3. Seznamte se se systémem na verifikaci mluvčího v toolboxu Kaldi.
4. Porovnejte základní systém z Kaldi se základním systémem založeným na i-vektor schématu.
5. Adaptujte systém z Kaldi na podmínky soutěže NIST SRE 2018.
6. Podrobněji analyzujte alespoň dva bloky ze základního systemu. Například: VAD, příznaky, augmentace

dat, topologie DNN, klasifikátor (PLDA), změny v trénovacích datech či vzorkovací frekvenci,
Literatura:

X-vectors: Robust DNN embedings for speaker recognition:
https://www.danielpovey.com/files/2018_icassp_xvectors.pdf
Základní systém v Kaldi: https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

Při obhajobě semestrální části projektu je požadováno:
Body 1 až 4.

Podrobné závazné pokyny pro vypracování práce viz http://www.fit.vutbr.cz/info/szz/
Vedoucí práce: Matějka Pavel, Ing., Ph.D.
Vedoucí ústavu: Černocký Jan, doc. Dr. Ing.
Datum zadání: 1. listopadu 2018
Datum odevzdání: 22. května 2019
Datum schválení: 6. listopadu 2018

Powered by TCPDF (www.tcpdf.org)

Zadání diplomové práce/21835/2018/xprofa00 Strana 1 z 1

Abstract
The objective of this work is to study state-of-the-art deep neural networks based speaker
veriĄcation systems called x-vectors on various conditions, such as wideband and narrow-
band data and to develop the system, which is robust to unseen language, speciĄc noise
or speech codec. This system takes variable length audio recording and maps it into Ąxed
length embedding which is afterward used to represent the speaker. We compared our sys-
tems to BUTŠs submission to Speakers in the Wild Speaker Recognition Challenge (SITW)
from 2016, which used previously popular statistical models - i-vectors. We observed, that
when comparing single best systems, with recently published x-vectors we were able to ob-
tain more than 4.38 times lower Equal Error Rate on SITW core-core condition compared
to SITW submission from BUT. Moreover, we Ąnd that diarization substantially reduces
error rate when there are multiple speakers for SITW core-multi condition but we could
not see the same trend on NIST SRE 2018 VAST data.

Abstrakt
Tématem této práce je analýza nejmodernějších systémů pro rozpoznávání řečníka za použití
neurónových sítí (nazývaných x-vektory) v rozličných podmínkách, jako jsou širokopásmové
a úzkopásmové data, který je robustní vůči neviděnému jazyku, speciĄckému hluku nebo
telefonnimu kodeku. Automatický systém mapuje zvukovou nahrávku variabilní délky do
Ąxně dlouhého vektoru, který je následně využit jako reprezentace řečníka. V této práci
jsme porovnali systémy založené na neurónových sítich s výsledkem VUT týmu v "Speak-
ers in the Wild Speaker Recognition" Challenge (SITW), který využíval donedávna velmi
populární statistický model - i-vektory. Pozorovali jsme, že s nedávno publikovanými x-
vektory dosahujeme 4.38 krát nižší Equal Error Rate pro SITW core-core evaluační sadu
v porovnání s výsledkem z roku 2016 od VUT v SITW soutěži. Kromě toho jsme ukázali,
že diarizace v nahrávkach s více mluvčími významně snižuje chybovost systému pro SITW
core-multi evaluační data, ale podobný trend jsme neviděli pro dataset NIST SRE 2018
VAST.

Keywords
speaker veriĄcation, speaker recognition,neural networks, x-vector, i-vector

Klíčová slova
veriĄkace mluvčího, rozpoznávání mluvčího, neurónové sítě, x-vector, i-vector

Reference
PROFANT, Ján. Robust Speaker Verification with Deep Neural Networks. Brno, 2019.
MasterŠs thesis. Brno University of Technology, Faculty of Information Technology. Super-
visor Ing. Pavel Matějka, Ph.D.

Robust Speaker VeriĄcation with Deep Neural
Networks

Declaration
Hereby I declare that this masterŠs thesis was prepared as an original authorŠs work under
the supervision of Ing. Pavel Matějka PhD. The supplementary information was provided
by Ing. Ondřej Novotný, voice activity detection labels were provided by Ing. Oldřich Pl-
chot PhD and diarization labels and Agglomerative Hierarchical Clustering implementation
were provided by M.Sc. Mireia Diez Sánchez. All the relevant information sources, which
were used during preparation of this thesis, are properly cited and included in the list of
references.

. .
Ján Profant

May 17, 2019

Acknowledgements
I would like to thank my supervisor Ing. Pavel Matějka PhD. for his extensive support. I
would like to also thank MSc. Anna Silnova for her help with HT-PLDA implementation
and also to my colleagues from Phonexia s.r.o., Mgr. Josef Slavíček and Ing. Michal Klčo.
And a very special thanks to Nina, my partner in life.

Contents

1 Introduction 3

2 Theoretical Background 5
2.1 Speaker Recognition . 5
2.2 Voice Activity Detection . 5
2.3 Feature Extraction . 6

2.3.1 Mel Frequency Cepstral Coefficients 6
2.3.2 Bottleneck Features . 7
2.3.3 Other Feature Sets . 7

2.4 i-vector . 7
2.4.1 Gaussian Mixture Model . 8

2.5 Neural Networks . 9
2.5.1 Time-Delay Neural Networks . 13

2.6 x-vector . 14
2.6.1 E-TDNN x-vector . 14

2.7 Backend . 15
2.7.1 Linear Discriminant Analysis . 16
2.7.2 Probabilistic Linear Discriminant Analysis 17
2.7.3 Score Normalization . 19

2.8 Diarization . 20
2.8.1 Variational Bayes . 20
2.8.2 Segmentation Based Approach . 21
2.8.3 K-Means . 21

3 Experimental Setup 22
3.1 NIST SRE . 22
3.2 Data . 23

3.2.1 Training Data . 23
3.2.2 Evaluation Data . 23

3.3 Evaluation Metrics . 24
3.3.1 Equal Error Rate . 24
3.3.2 Cost Model . 25
3.3.3 Detection Error Tradeoff . 25
3.3.4 CLLR . 25
3.3.5 Diarization Error Rate . 25

3.4 Pipeline Setup . 26
3.4.1 Voice Activity Detection . 26
3.4.2 Acoustic i-vector . 26

1

3.4.3 Phonetic bottleneck i-vector . 26
3.4.4 x-vector . 26
3.4.5 Diarization . 27

4 Experiments - CMN2 condition 28
4.1 Baseline Systems . 28
4.2 Backend Experiments . 29

4.2.1 Domain Adaptation . 29
4.3 Processing Speed . 30

5 Experiments - VAST condition 34
5.1 Baseline Systems . 34
5.2 Domain SpeciĄc System . 34
5.3 Diarization in the Loop . 37

5.3.1 Speaker Diarization Implementation 38
5.3.2 Diarization Sufficient for Speaker VeriĄcation 40

6 Conclusion 42
6.1 Experiments Summary . 42
6.2 Future Work . 42

Bibliography 44

A Content of the CD 48

2

Chapter 1

Introduction

Speaker veriĄcation (SV) is the task of authenticating the claimed identity of a speaker,
based on speech signal and enrolled speaker record. Similarly to Ąngerprints, voice is a
common type of biometric data, which every individual can produce and which can be
captured. However, speech is a very complex signal carrying not only the desired content
but also other various information, which might signiĄcantly inĆuence automatic processing.
This environment or channel has a great effect on the quality of such signal, which causes
the degradation in performance of SV systems, which, in an ideal case, should be robust to
these conditions.

Most speaker recognition systems in the recent years were based on i-vectors [13].
The standard i-vector approach consists of a universal background model (UBM), and
a large projection matrix T , that are learned in an unsupervised way to maximize the
data likelihood. The projection maps high-dimensional statistics from the UBM into a low-
dimensional representation, known as an i-vector. These embeddings might be scored using
Euclidean distance, cosine distance but more common is to use backend with Probability
Linear Discriminant Analysis (PLDA) [40].

Deep neural networks (DNNs) have evolved hand-in-hand with the digital era, which
has brought about an explosion of data in all forms - images, video, audio, and text. DNNs
are used nowadays in industrial automation, medical research, autonomous driving and in
the most of electronic devices, such as mobile phones and personal computers.

DNNs most often found in speaker recognition are trained as acoustic models for auto-
matic speech recognition and are then used to enhance phonetic modeling in the i-vector.
Using deep neural networks as an end-to-end system for a topic of speaker veriĄcation
shows as a very active area of research in the last years [50, 47, 49]. In this approach, time-
delay neural network (TDNN) which works on frame level is used, and during training, it is
trained to classify large dataset of speakers. Long-term speaker characteristics are captured
in the network by a temporal pooling layer that aggregates over the input speech. Eventu-
ally, Ąxed-dimensional embeddings from the layer in a network after frame level are used
to represent speaker utterance and these are called x-vectors. DNNs most often found in
speaker recognition are trained as acoustic models for automatic speech recognition and are
then used to enhance phonetic modeling in the i-vector. In recent years, i-vectors started to
be replaced by x-vectors, mainly because of their better generalization and better discrim-
inative properties. In this paper, we analyze the performance of both approaches, and we
focus on using deep neural networks for speaker veriĄcation. Both i-vectors and x-vectors
are theoretically described in Chapter 2.

3

DNN embedding performance appears to be highly scalable with the amount of training
data. Recent speaker recognition evaluations were mainly focused on narrowband telephone
speech, and even automatic systems for wideband conditions were trained using mostly
telephone data. Data for NIST Speaker Recognition Evaluation 2018 (NIST SRE18) 1,
were split into two main parts - Call My Net 2 (CMN2) and Video Annotation for Speech
Technology (VAST). The CMN2 data are composed of PSTN and VOIP data collected
outside North America, spoken in Tunisian Arabic. The VAST data are composed of audio
extracted from YouTube. Similarly to NIST SRE18, our experiments are also split into two
parts, experiments with telephone CMN2 data are described in Chapter 4 and experiments
with wideband VAST data are described in Chapter 5.

Typically, the speaker recognition systems are trained on thousands of speech cuts from
thousands of speakers. Assuming such a large amount of resources for every new domain
of interest might be too expensive or even unrealistic. In Chapter 4 we analyze approaches
for in-domain adaptation of speaker recognition systems, using either unlabeled or labeled
data.

Usage of a large amount of wideband data for training arrived with large VoxCeleb
datasets [35, 10]. We used wideband data to improve performance of speaker recognition
systems on wideband conditions and our effort is summarized in Chapter 5.

The problem of speaker recognition for multi-speaker conversations is even more compli-
cated since it is not clear how many speakers are in the recording and taking whole speech
segment as one single embedding is inaccurate [48]. Speech data collected from many real-
world environments violate single-speaker assumption and therefore beneĄt from speaker
diarization as a preprocessing step. Speaker diarization is the process of grouping segments
of speech according to the speaker and is sometimes referred to as the who spoke when task.
Recently, both speaker recognition and diarization have advanced signiĄcantly due to the
adoption of deep neural networks [14, 48]. Diarization and its inĆuence on performance in
multi-speaker recordings is shown in Section 5.3.2.

In this paper, we introduce numerous modiĄcations to Kaldi [39] recipe [49], which was
publicly released for the research community. We also summarized our effort during NIST
SRE18 where one of our systems was used for Ąnal submission in wideband VAST dataset,
as single best system for this condition.

1https://www.nist.gov/sites/default/files/documents/2018/08/17/sre18_eval_plan_2018-05-

31_v6.pdf

4

https://www.nist.gov/sites/default/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf
https://www.nist.gov/sites/default/files/documents/2018/08/17/sre18_eval_plan_2018-05-31_v6.pdf

Chapter 2

Theoretical Background

2.1 Speaker Recognition

Speaker recognition [25] is the identiĄcation of a person from characteristics of voices.
No two individuals sound identical because their vocal tract shapes, larynx sizes, and other
parts of their voice production organs are different. In addition to these physical differences,
each speaker has a characteristic manner of speaking, including the use of a particular
accent, rhythm, intonation style, pronunciation pattern, or choice of vocabulary.

There are two major applications of speaker recognition technologies and methodologies.
If the speaker claims to be of a certain identity and the voice is used to verify this claim, this
is called verification or authentication. VeriĄcation is often used when accessing internet
banking using telephone, or entering the building, known as a voice as my password. On
the other hand, identification is the task of determining an unknown speakerŠs identity.
IdentiĄcation determines identity from a known set of speakers and is used in virtual home
assistants, such as Alexa 1.

Application dictates different speech modalities:

• Text-dependent - recognition system knows the text, that is spoken by a person,
knowledge of spoken text can improve system performance.

• Text-independent - recognition system does not know the text spoken by person,
more Ćexible system but a more difficult problem.

Automatic speaker veriĄcation pipeline is shown in Figure 2.1. In the Ąrst stage, we
use voice activity detection (VAD) to identify speech frames, non-speech frames (silence,
audio events) are dropped. After that, we extract features from these voiced frames, such as
Mel Frequency Cepstral Coefficients (MFCCs). These features are then used in embedding
extractor, which in our case outputs either i-vector or x-vector. This, of course, expects that
only a single speaker is at enroll or test side. These speaker embeddings are then compared
with the Probabilistic Linear Discriminant Analysis (PLDA) model getting log-likelihood
ratio (LLR) scores.

2.2 Voice Activity Detection

Voice Activity Detection (VAD) is used in telecommunications, for example, in telephony to
detect touch tones and the presence or absence of speech. Detection of speaker activity can

1https://developer.amazon.com/alexa

5

https://developer.amazon.com/alexa

Figure 2.1: Standard processing pipeline of state-of-the-art speaker verification system.

be useful in responding to barge-in, for pointing to the end of an utterance in automated
speech recognition, and for recognizing a word intended to trigger the start of a service,
application, event, or anything else that may be deemed useful.

VAD is typically based on the amount of energy in the signal (a signal having more
than a threshold level of energy is assumed to contain speech, for example) and in some
cases also on the rate of zero crossings, which gives a crude estimate of its spectral content.
If the signal has high-frequency components, then the zero-crossing rate is high and vice
versa.

In the recent years, more advanced approach using neural networks was developed [31].
In this approach, neural network is trained to classify frames as speech or non-speech,
producing per-frame scores.

2.3 Feature Extraction

Speech signal includes many features of which not all are important for speaker discrimi-
nation. An ideal feature would:

• have large between-speaker variability and small within-speaker variability

• be robust against noise and distortion

• occur frequently and naturally in speech

• be easy to measure from a speech signal

• be difficult to impersonate/mimic

• not be affected by the speakerŠs health or long-term variations in voice.

The number of features should also be relatively low. Traditional statistical models such
as the Gaussian Mixture Model (GMM) cannot handle high-dimensional data. The number
of required training samples for reliable density estimation grows exponentially with the
number of features, and the computational savings are also apparent with low-dimensional
features [25].

2.3.1 Mel Frequency Cepstral Coefficients

Mel Frequency Cepstral Coefficients (MFCCs) [25] are a feature widely used in automatic
speech and speaker recognition. MFCCs are a representation of the short-term power
spectrum of a sound, based on a linear cosine transform of a log power spectrum on a
nonlinear mel scale of frequency. Figure 2.2 shows procedure, how to calculate MFCCs.

Here, we can see a more detailed description of how to calculate MFCCs according to
Figure 2.2:

1. Frame the signal into short frames.

6

Figure 2.2: Scheme of calculating MFCCs.

2. For each frame calculate the periodogram estimate of the power spectrum.

3. Apply the mel Ąlterbank to the power spectra, sum the energy in each Ąlter.

4. Take the logarithm of all Ąlterbank energies.

5. Take the DCT of the log Ąlterbank energies.

2.3.2 Bottleneck Features

Bottleneck Neural-Network (BN-NN) [17, 29] refers to such topology of a NN, where one
of the hidden layers has signiĄcantly lower dimensionality than the surrounding layers. A
bottleneck feature vector is generally understood as a by-product of forwarding a primary
input feature vector through the BN-NN and reading off the vector of values at the bottle-
neck layer. We have used a cascade of two such NNs for our experiments. The output of the
Ąrst network is stacked in time, deĄning context-dependent input features for the second
NN, hence the term Stacked Bottleneck Features. The dimensionality of the bottleneck
layer was Ąxed to 80.

Bottleneck features were also widely used in automatic speech recognition [52, 53] and
language identiĄcation [32].

2.3.3 Other Feature Sets

There are also other sets of features that might be used for speaker veriĄcation, such as
perceptual linear prediction (PLP) coefficients. However, it has been observed that in
general channel compensation methods are much more important than the choice of the
base feature set [25].

Speakers differ not only in their voice timbre and accent/pronounciation, but also in
their lexicon - the kind of words the speakers tend to use in their conversations. These fea-
ture are often reffered to as high-level features, where a speakerŠs characteristic vocabulary,
the so-called idiolect, is used to characterize speakers [16].

2.4 i-vector

The i-vector approach has become state of the art in the speaker veriĄcation Ąeld in
2011 [13]. The approach provides an elegant way of reducing large-dimensional input data
to a small-dimensional feature vector while retaining most of the relevant information. The
technique was originally inspired by the Joint Factor Analysis (JFA) framework [24]. The
basic principle is that on annotated data, we train the i-vector extractor and then for each

7

speech segment, we extract the i-vector as a low-dimensional Ąxed-length representation
of the segment. The main idea is that the speaker- and session-dependent supervectors of
concatenated Gaussian Mixture Model (GMM) means, described later, can be modeled as

s = m+Tx, (2.1)

where m is the Universal Background Model (UBM) GMM mean supervector, T is a
matrix of bases spanning the subspace covering the important variability (both speaker-
and session-speciĄc) in the supervector space, and x is a standard-normally distributed
latent variable. For each observation sequence representing a segment, our i-vector φ is the
MAP point estimate of the latent variable x [8].

2.4.1 Gaussian Mixture Model

A Gaussian Mixture Model (GMM) is a generative model that assumes all the data points
are generated from a mixture of a Ąnite number of Gaussian (normal) distributions with
unknown parameters. Gaussian distributions are important in statistics and are often used
in the natural and social sciences to represent real-valued random variables whose distri-
butions are not known. GMM is used in i-vector framework as the Universal Background
Model.

The probability density of the multivariate Gaussian distribution is:

𝒩 (x;µ,Σ) =
1

√︀

(2𝜋)P |Σ|
𝑒−

1

2
(x−µ)TΣ−1(x−µ), (2.2)

where µ is the mean and parameter Σ is variance matrix with its matrix determinant |Σ|.
Frequently used methods to estimate parameters are maximum a posteriori probability
(MAP) and maximum likelihood (ML). MAP estimator chooses class with highest posteriori
probability from N classes:

𝑎𝑟𝑔 𝑚𝑎𝑥ω 𝑃 (𝜔|𝑥) = 𝑎𝑟𝑔 𝑚𝑎𝑥ω 𝑃 (𝑥|𝜔) 𝑃 (𝜔). (2.3)

Maximum likelihood is a method of estimating the parameters of a statistical model
given data, as follows [26]:

Θclass
ML = 𝑎𝑟𝑔 𝑚𝑎𝑥Θ

∏︁

xi∈class

𝑝(𝑥i|Θ), (2.4)

where µ is estimated as

µ =
1

𝑇

∑︁

i
xi, (2.5)

and covariance matrix Σ as

Σ =
1

𝑇

∑︁

i
(xi − µ)(xi − µ)T . (2.6)

GMM is then a probabilistic generative model,

𝑝(x|Θ) =
∑︁

c
𝒩 (x;µc,Σc)𝑃c (2.7)

where Θ = {P c,µc,Σc} is set of parameters and
∑︀

cP c = 1.
A GMM is used in speaker recognition applications as a generic probabilistic model for

multivariate densities capable of representing arbitrary densities, which makes it well suited
for unconstrained text-independent applications [41].

8

2.5 Neural Networks

The term neural network has its origins in attempts to Ąnd mathematical representations
of information processing in biological systems [54]. It has been used very broadly to cover
a wide range of different models and problems.

In the Ąeld of the speech recognition, the deep neural networks (DNN)-hidden Markov
model (HMM) has been shown to signiĄcantly improve speech recognition performance over
the conventional Gaussian mixture model (GMM)-HMM [22]. In language identiĄcation
and speaker veriĄcation, BN-NN were widely used, compressing phonetic information and
improving results for both, language identiĄcation and speaker veriĄcation, as described in
Section 2.3.2. Eventually, using end-to-end systems based on neural networks have risen for
speech recognition [21] and also for language identiĄcation [45] and speaker veriĄcation [49].

The most successful and probably the simplest model of this type in the context of
pattern recognition is the feed-forward neural network.

The linear models for regression and classiĄcation are based on linear combinations of
Ąxed nonlinear basis functions 𝜑j(x) and take the form

𝑦(x,w) = 𝑓

(︃

M
∑︁

j=1

𝑤j𝜑j(x)

)︃

(2.8)

where x is input vector, w is set of weights and 𝑓(·) is a nonlinear activation function in
the case of classiĄcation and is the identity in the case of regression.

Neural networks use basis functions that follow the same form as in Equation 2.8 so
that each basis function is itself a nonlinear function of a linear combination of the inputs,
where the coefficients in the linear combination are adaptive parameters.

This leads to the basic neural network model, which can be described as a series of
functional transformations. First we construct 𝑀 linear combinations of the input variables
𝑥1, 𝑥2, ..., 𝑥D in the form

𝑎j =

D
∑︁

i=1

𝑤
(1)
ji 𝑥i + 𝑤

(1)
j0 (2.9)

where 𝑗 = 1, ...,𝑀 and the superscript (1) indicates that the corresponding parameters

are in the Ąrst layer of the network. We refer to the parameters 𝑤
(1)
ji as weights and the

parameters 𝑤
(1)
j0 as biases. The quantities 𝑎j are known as activations. Each of them is then

transformed using a differentiable, nonlinear activation function ℎ(·) to give 𝑧j = ℎ(𝑎j).
These quantities correspond to the outputs of the basis functions in that, in the context

of neural networks, are called hidden units. The nonlinear functions ℎ(·) were generally
chosen to be sigmoidal functions such as the logistic sigmoid or the hyperbolic tangent, or
more commonly these days, rectiĄed linear units [12]. The choice of activation function is
determined by the nature of the data and the assumed distribution of target variables.

For standard regression problems, the activation function is the identity so that 𝑦k =
𝑎k. Similarly, for multiple binary classiĄcation problems, each output unit activation is
transformed using a logistic sigmoid function so that 𝑦k = 𝜎(𝑎k), where 𝜎(𝑎) = 1

1+exp(−a) .
Finally, for multiclass problems, a softmax activation function is used.

We can combine these various stages to give the overall network function that, for
sigmoidal output unit activation functions, takes the form

𝑦k(x,w) = 𝜎

(︃

M
∑︁

j=1

𝑤
(2)
kj ℎ

(︃

D
∑︁

i=1

𝑤
(1)
ji 𝑥i + 𝑤

(1)
j0

)︃

+ 𝑤
(2)
k0

)︃

, (2.10)

9

where the set of all weight and bias parameters have been grouped together into a vector w.
Thus the neural network model is simply a nonlinear function from a set of input variables
{𝑥i} to a set of output variables {𝑦k} controlled by a vector w of adjustable parameters -
this process can be interpreted as a forward propagation of information through the network.
This function can be represented in the form of a network diagram as shown in Figure 2.3.

Figure 2.3: Network diagram for the single hidden layer neural network. The input, hidden,
and output variables are represented by nodes, and the weight parameters are represented
by links between the nodes, in which the bias parameters are denoted by links coming from
additional input and hidden variables 𝑥0 and 𝑧0. Arrows denote the direction of information
flow through the network during forward propagation.

If the activation functions of all the hidden units in a network are taken to be linear,
then for any such network we can always Ąnd an equivalent network without hidden units.
This follows from the fact that the composition of successive linear transformations is itself
a linear transformation. However, if the number of hidden units is smaller than either the
number of input or output units, then the transformations that the network can generate
are not the most general possible linear transformations from inputs to outputs because
information is lost in the dimensionality reduction at the hidden units.

Neural networks are said to be universal approximators. For example, a two-layer net-
work with linear outputs can uniformly approximate any continuous function on a compact
input domain to arbitrary accuracy provided the network has a sufficiently large number
of hidden units. This result holds for a wide range of hidden unit activation functions but
excluding polynomials. Although such theorems are reassuring, the critical problem is how
to Ąnd suitable parameter values given a set of training data.

So far, we have viewed neural networks as a general class of nonlinear parametric func-
tions from a vector x of input variables to a vector y of output variables. Given a training
set comprising a set of input vectors {xn}, where 𝑛 = 1, ..., 𝑁 together with a corresponding
set of target vectors {tn} we minimize the error function

𝐸(w) =
1

2

N
∑︁

n=1

||y(xn,w)− tn||
2 . (2.11)

10

We can clearly see, that main task is in Ąnding a weight vector w which minimizes the
chosen function 𝐸(w). If we make a small step in weight space from w to w + 𝛿w then
the change in the error function is 𝛿𝐸 ≃ 𝛿wT∇𝐸(w), where the vector ∇𝐸(w) points in
the direction of greatest rate of increase of the error function. Because the error 𝐸(w) is
a smooth continuous function of w, its smallest value will occur at a point in weight space
such that the gradient of the error function vanishes, so that ∇𝐸(w) = 0 as otherwise, we
could make a small step in the direction of −∇𝐸(w) and thereby further reduce the error.
Points at which the gradient vanishes are called stationary points, and may be further
classiĄed into minima, maxima, and saddle points.

Our goal is to Ąnd a vector w such that 𝐸(w) takes its smallest value. However, the error
function typically has a highly nonlinear dependence on the weights and bias parameters,
and so there will be many points in weight space at which the gradient vanishes or is
numerically very small. Furthermore, there will typically be multiple inequivalent stationary
points and in particular multiple inequivalent minima. A minimum that corresponds to the
smallest value of the error function for any weight vector is said to be a global minimum.
Any other minima corresponding to higher values of the error function are said to be local
minima. For a successful application of neural networks, it may not be necessary to Ąnd
the global minimum (and in general it will not be known whether the global minimum has
been found), but it may be necessary to compare several local minima in order to Ąnd a
sufficiently good solution.

Because there is no hope of Ąnding an analytical solution to the equation ∇𝐸(w) = 0
we resort to iterative numerical procedures. The optimization of continuous nonlinear
functions is a widely studied problem, and there exists an extensive literature on how to
solve it efficiently. Most techniques involve choosing some initial value w0 for the weight
vector and then moving through weight space in a succession of steps of the form

wτ+1 = wτ +∇wτ (2.12)

where 𝜏 labels the iteration step. Different algorithms involve different choices for the weight
vector update ∇wτ . Many algorithms make use of gradient information and therefore
require that, after each update, the value of ∇𝐸(w) is evaluated at the new weight vector
∇wτ+1.

The simplest approach to using gradient information is to choose the weight update to
comprise a small step in the direction of the negative gradient, so that

wτ+1 = wτ − 𝜂∇wτ (2.13)

where the parameter 𝜂 > 0 is known as the learning rate. After each such update, the
gradient is re-evaluated for the new weight vector and the process repeated. Recently,
technique know as stochastic gradient descent, makes an update to the weight vector based
on one data point or randomly generated subset of points at a time. This update is repeated
by cycling through the data either in sequence or by selecting points at random with
replacement [5].

Next goal might be to Ąnd an efficient technique for evaluating the gradient of an
error function 𝐸(w) for a feed-forward neural network. This can be achieved using a local
message passing scheme in which information is sent alternately forwards and backwards
through the network and is known as error backpropagation. Consider Ąrst a simple linear
model in which the outputs 𝑦k are linear combinations of the input variables 𝑥i so that

𝑦k =
∑︁

i

𝑤ki𝑥i (2.14)

11

together with an error function that, for a particular input pattern 𝑛, takes the form

𝐸n =
1

2

∑︁

k

(𝑦nk − 𝑡nk)
2 (2.15)

where 𝑦nk = 𝑦k(xn,w). The gradient of this error function with respect to a weight 𝑤ij is
given by

𝜕𝐸n

𝜕𝑤ji
= (𝑦nj − 𝑡nj)𝑥ni (2.16)

which can be interpreted as a local computation involving the product of an error signal
𝑦nj− 𝑡nj associated with the output end of the link 𝑤ji and the variable 𝑥ni associated with
the input end of the link.

In a general feed-forward network, each unit computes a weighted sum of its inputs of
the form

𝑎j =
∑︁

i

𝑤ji𝑧i (2.17)

where as we could see in 2.9. Consider the evaluation of the derivative of 𝐸n with respect to
a weight 𝑤ji. The outputs of the various units will depend on the particular input pattern 𝑛.
However, in order to keep the notation uncluttered, we shall omit the subscript 𝑛 from the
network variables. First we note that 𝐸n depends on the weight 𝑤ji only via the summed
input 𝑎j to unit 𝑗. We can therefore apply the chain rule for partial derivatives to give

𝜕𝐸n

𝜕𝑤ji
=

𝜕𝐸n

𝜕𝑎j

𝜕𝑎j

𝜕𝑤ji
. (2.18)

We will use a notation

𝛿 ≡
𝜕𝐸n

𝜕𝑎j
(2.19)

where the 𝛿Šs are often referred to as errors. Using 2.17 we can write

𝜕𝑎j

𝜕𝑤ji
= 𝑧i. (2.20)

Substituting 2.19 and 2.20 into 2.18 we obtain

𝜕𝐸n

𝜕𝑤ji
= 𝛿j𝑧i (2.21)

which means, that the required derivative is obtained simply by multiplying the value of 𝛿
for the unit at the output end of the weight by the value of 𝑧 for the unit at the input end
of the weight (where 𝑧 = 1 in the case of a bias), so in order to evaluate the derivatives, we
need only to calculate the value of 𝛿j for each hidden and output unit in the network and
then apply 2.21.

For the output units, we therefore use

𝛿k = 𝑦k − 𝑡k. (2.22)

To evaluate the 𝛿Šs for hidden units, we again make use of the chain rule for partial deriva-
tives,

𝛿j ≡
𝜕𝐸n

𝜕𝑎j
≡
∑︁

k

𝜕𝐸n

𝜕𝑎k

𝜕𝑎k

𝜕𝑎j
, (2.23)

12

where the sum runs over all units 𝑘 to which unit 𝑗 sends connections. The arrangement of
units and weights is illustrated in Figure 2.4. Note that the units labelled 𝑘 could include
other hidden units and/or output units. In writing down 2.23, we are making use of the
fact that variations in 𝑎j give rise to variations in the error function only through variations
in the variables 𝑎k. If we now substitute the deĄnition of 𝛿 given by 2.19 into 2.23, and
make use of 2.17, we obtain the following backpropagation formula

𝛿j = ℎ
′

(𝑎j)
∑︁

k

𝑤kj𝛿k, (2.24)

which tells us that the value of 𝛿 for a particular hidden unit can be obtained by propagating
the 𝛿Šs backwards from units higher up in the network, as illustrated in Figure 2.4. Because
we already know the values of the 𝛿Šs for the output units, it follows that by recursively
applying 2.24 we can evaluate the 𝛿Šs for all of the hidden units in a feed-forward network,
regardless of its topology.

Figure 2.4: Illustration of the calculation of 𝛿j for hidden unit 𝑗 by backpropagation of
the 𝛿’s from those units 𝑘 to which unit 𝑗 sends connections. The blue arrow denotes the
direction of information flow during forward propagation, and the red arrows indicate the
backward propagation of error information.

2.5.1 Time-Delay Neural Networks

Time-Delay Neural Network (TDNN) is a type of architecture of a neural network that has
been used quite successfully in a number of practical applications, especially in speech [37,
46]. A TDNN is similar to a multi-layer neural network in that all connections feed forward.
The difference is that with the TDNN, the inputs to any node can consist of the outputs of
nodes not only during the current time step 𝑡, but during some number 𝑑 of previous/future
time steps (𝑡+ 𝑑, ..., 𝑡+ 2, 𝑡+ 1, 𝑡, 𝑡− 1, 𝑡− 2, ..., 𝑡− 𝑑. Visualization of the TDNN layer is
shown in Figure 2.5.

The activation function for node 𝑖 at time 𝑡 in such a network is given by

𝑦ti = ℎ(

i−1
∑︁

j=1

d
∑︁

k=0

𝑦t−k
j 𝑤ijk) (2.25)

where 𝑦ti is the output of node 𝑖 at time 𝑡, 𝑤ijk is the connection strength to node 𝑖 from
the output of node 𝑗 at time 𝑡− 𝑘, and ℎ is the activation function [11].

Time-Delay layers are equal to one dimensional convolution layers used in many popular
frameworks, such as PyTorch [36] or TensorFlow [1].

13

Figure 2.5: Time-Delay layer in neural network. Blue rectangles are sorted in time and
concatenated in time. This refers to one dimensional convolution used in many frameworks.

2.6 x-vector

Using deep neural networks (DNN) to capture speaker characteristics is currently a very
active research area. The used system is a feed-forward DNN that computes speaker em-
beddings from variable-length acoustic segments [47, 49, 50]. The network consists of layers
that operate on speech frames, a statistics pooling layer that aggregates over the frame-level
representations, additional layers that operate at the segment-level, and Ąnally, a soft-max
output layer, all layers with their respective contexts are shown in Table 2.1 and diagram
of x-vector architecture is shown in Figure 2.6. The nonlinearities are rectiĄed linear units
(ReLUs).

Suppose there are K speakers in N training segments. Then 𝑃 (𝑠𝑝𝑘𝑟k|𝑥
(n)
1:T) is the prob-

ability of speaker 𝑘 given 𝑇 input frames 𝑥
(n)
1 , 𝑥

(n)
2 , ..., 𝑥

(n)
T . The quantity 𝑑nk is 1 if the

speaker label for segment 𝑛 is 𝑘, otherwise it is 0. The network is then trained to classify
training speakers using a multi-class cross entropy objective function

𝐸 = −
N
∑︁

n=1

K
∑︁

k=1

𝑑nk𝑙𝑛(𝑃 (𝑠𝑝𝑘𝑟k|𝑥
(n)
1:T)) (2.26)

Ultimately, the goal of training the network is to produce embeddings that generalize
well to speakers that have not been seen in the training data. Therefore, any layer after
the statistics pooling layer is a sensible place to extract the embedding from.

2.6.1 E-TDNN x-vector

The extended version of the TDNN described in Section 2.6, which is the default architec-
ture in public Kaldi recipes is described here. Table 2.2 summarizes the extended network
(E-TDNN) architecture. The two main differences are a slightly wider temporal context of
the TDNN (due to the addition of layer 7), and interleaving dense layers in between the
convolutional layers (equivalent to the 1x1 convolutions used in computer vision architec-
tures). The network outputs posterior probabilities for the training speakers, and it was
trained by minimizing a categorical cross-entropy. The x-vector is extracted from layer 12
prior to the ReLU non-linearity.

14

Table 2.1: The embedding DNN architecture. x-vectors are extracted at layer segment6, be-
fore the nonlinearity. The statistics pooling layer receives the output of the final frame-level
layer as input, aggregates over the input segment, and computes its mean and standard de-
viation. This segment-level statistics are concatenated together and passed to two additional
hidden layers and finally, the soft-max output layer [49].

Layer Layer context Total context

frame1 [t-2,t+2] 5
frame2 {t-2,t,t+2} 9
frame3 {t-3,t,t+3} 15
frame4 {t} 15
frame5 {t} 15

stats pooling [0, T] T
segment6 {0} T
segment7 {0} T
softmax {0} T

Figure 2.6: Diagram of the DNN. Segment-level embeddings can be extracted from any layer
of the network after the statistics pooling layer.

2.7 Backend

As shown in Section 3.4, the full automatic speaker recognition pipeline can be divided into
two main parts, the Ąrst one is the embedding extraction and the second one is backend.

15

Table 2.2: Extended TDNN x-vector architecture.

Layer Layer Type Layer context Size

1 TDNN-ReLU [t-2,t+2] 512
2 Dense-ReLU t 512
3 TDNN-ReLU {t-2, t, t+2} 512
4 Dense-ReLU t 512
5 TDNN-ReLU {t-3, t, t+3} 512
6 Dense-ReLU t 512
7 TDNN-ReLU {t-4, t, t+4} 512
8 Dense-ReLU t 512
9 Dense-ReLU t 512
10 Dense-ReLU t 1500
11 Pooling (mean + stddev) Full-seq 2x1500
12 Dense(Embedding)-ReLU 512
13 Dense-ReLU 512
14 Dense-SoftMax 512

Backend models use speaker embeddings to provide representative results. In this Section,
we described frequently used backend techniques.

2.7.1 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) is most commonly used as a dimensionality reduc-
tion technique in the pre-processing step for pattern-classiĄcation and machine learning
applications. The goal is to project a dataset onto a lower-dimensional space with good
class-separability in order to avoid overĄtting and also reduce computational costs. In
Figure 2.7 we can see, to which direction we want to transfer our data.

Figure 2.7: LDA: Maximize distance between µc of classes and minimize average variance
of classes.

16

Let us recall that LDA is based on computing the between-class and within-class co-
variance matrices ΣB and ΣW respectively, whose Maximum-Likelihood (ML) is given as

ΣB =
1

𝑁

C
∑︁

c=1

Nc(µc − µ)(µc − µ)T (2.27)

ΣW =
1

𝑁

C
∑︁

c=1

Nc
∑︁

n=1

(φn,c − µ)(φn,c − µ)T , (2.28)

where φn,c, the 𝑛-th data point in class 𝑐, 𝐶 is number of classes, 𝑁c is number of data-
points in class 𝑐, 𝜇c is the mean of the data belonging to class 𝑐:

µc =
1

𝑁c

Nc
∑︁

n=1

φn,c, (2.29)

where φn,c, the 𝑛-th data point in class 𝑐, and 𝜇 is the global mean of the data, computed
as

µ =
1

𝑁

N
∑︁

n=1

φn. (2.30)

LDA emphasizes discrimination of data belonging to different classes, and it does so by
solving the generalized eigenvalue problem:

ΣBvm = 𝜆mΣBvm, (2.31)

with 𝑉 = [v1, ... , vM̂] for �̂� largest eigen-values 𝜆m, and applying 𝑉 as

φLDA = V T𝜑. (2.32)

Class separability for each basis is often expressed by the Fisher ratio and is equal to
the basis corresponding eigen-value [20].

2.7.2 Probabilistic Linear Discriminant Analysis

To facilitate comparison of i-vectors and x-vectors in a veriĄcation trial, the distribution of i-
vectors and x-vectors is modeled using a Probabilistic Linear Discriminant Analysis (PLDA)
model [40, 23]. First, consider only a special form of PLDA, a two-covariance model, in
which speaker and inter-session variability are modeled using across-class and within-class
full covariance matrices Σac and Σwc. The two-covariance model is a generative linear-
Gaussian model, where latent vectors y representing speakers (or more generally classes)
are assumed to be distributed according to prior distribution

𝑝(y) = 𝒩 (y;µ,Σac). (2.33)

For a given speaker represented by a vector ŷ, the distribution of i-/x-vectors is assumed
to be

𝑝(φ|ŷ) = 𝒩 (φ; ŷ,Σwc). (2.34)

Figure 2.8 depicts this situation.
The ML estimates of the model parameters, µ, Σac, and Σwc, can be obtained using an

EM algorithm as in [23].

17

Figure 2.8: Demonstration of PLDA: the bold points represent the speaker identities in the
vector space. Provided that we know the speaker identity, the conditional distribution of the
vectors is given by the within-class covariances, depicted by the ellipses around the speaker
identities [19].

Heavy-Tailed PLDA

Heavy-Tailed (HT-PLDA) model was presented in [23], where the Gaussian priors where
replaced by StudentŠs 𝑡 distribution. The generative HT-PLDA model is shown in graphical
model notation in Figure 2.9 and is deĄned as follows. For every speaker, 𝑖, let all of the
available observations of that speaker (𝑁i of them) be denoted as 𝑅i = {𝑟ij}

Ni

j=1, where the

𝑟ij ∈ R
D are speaker embeddings (i-vectors, x-vectors) of dimension 𝐷. For every speaker,

a hidden speaker identity variable, 𝑧i ∈ R
d is drawn from the standard 𝑑−dimensional nor-

mal distribution. We require 𝑑 ≪ 𝐷. The heavy-tailed behaviour is obtained by drawing
for every observation a hidden precision scaling factor, Λij > 0, from a gamma distribution
𝒢(𝛼, 𝛽) parametrized by 𝛼 = 𝛽 = υ

2 > 0. The parameter 𝜐 is known as the degrees of free-
dom. Finally, given the hidden variables, the observations are drawn from the multivariate
normal:

𝑃 (𝑟ij |𝑧i, 𝜆ij) = 𝒩 (𝑟ij |𝐹𝑧i, (𝜆ij𝑊)−1), (2.35)

where 𝐹 is the 𝐷-by-𝑑 factor loading matrix and where 𝑊 is a 𝐷-by-𝐷 positive deĄnite
precision matrix. The model parameters are 𝜐, 𝐹,𝑊 .

This model does not allow closed-form scoring or training. Either the hidden scaling
factors or the hidden speaker identity variables can be integrated out in closed form, but
not both. This means that we have to Ąnd approximations for both scoring and training.
We make use of a new approximation, the Gaussian likelihood approximation, as recently
published in [7, 44].

As observed in [28], unity length normalization of the i-vectors or x-vectors indicates
that Gaussian PLDA is as effective as HT-PLDA without unity length normalization.

18

Figure 2.9: Heavy-tailed PLDA model and its parameters.

2.7.3 Score Normalization

For speaker veriĄcation systems, score normalization is one of the standard steps in produc-
ing well-normalized speaker veriĄcation scores [9, 30]. Without the normalization, different
distributions of a target and non-target scores can be obtained for two different enrolled
speaker models.

This makes it impossible to set a single detection threshold for the scores obtained from
the different speaker models. Similarly, for the same speaker model, the score distributions
can vary depending on the test utterance condition (recording channel, acoustic conditions
or a language of the utterance) which calls for a condition-dependent threshold. Setting
the threshold is also very important for production usage.

Typically, the normalization step shifts and scales the distributions for the individual
models and conditions to allow for a single detection threshold. The shifts and scales are
usually estimated using a set of utterances so-called normalization cohort.

Z-norm

Zero score normalization [41] employs impostor score distribution for enrollment Ąle. It
uses a cohort 𝜀 = {𝜖i}

N
i=1 speakers which we assume to be different from the speakers in

utterances 𝑒 and 𝑡. The cohort scores are

𝑆e = {𝑠(𝑒, 𝜖i))}
N
i=1 (2.36)

and are formed by scoring enrollment utterance 𝑒 with all Ąles from cohort 𝜀. The normal-
ized score is then:

𝑠(𝑒, 𝑡)z−norm =
𝑠(𝑒, 𝑡)− 𝜇(𝑆e)

𝜎(𝑆e)
, (2.37)

where 𝜇(𝑆e) is mean and 𝜎(𝑆e) is standard deviation of 𝑆e.

T-norm

Test score normalization [4] is similar to Z-norm with the difference that it normalizes the
impostor score distribution for the test utterance. T-norm can be expressed by:

𝑆t = {𝑠(𝑡, 𝜖i)}
N
i=1 (2.38)

𝑠(𝑒, 𝑡)t−norm =
𝑠(𝑒, 𝑡)− 𝜇(𝑆t)

𝜎(𝑆t)
(2.39)

19

where 𝜇(𝑆t) is mean and 𝜎(𝑆t) is standard deviation of 𝑆t.

S-norm

The symmetric normalization (S-norm) computes an average of normalized scores from
Z-norm and T-norm [23]. S-norm is symmetrical, therefore 𝑠(𝑒, 𝑡) = 𝑠(𝑡, 𝑒), while the
previously mentioned score normalization techniques depend on the order of 𝑒 and 𝑡.

𝑠(𝑒, 𝑡)s−norm =
𝑠(𝑒, 𝑡)z−norm + 𝑠(𝑒, 𝑡)t−norm

2
(2.40)

Adaptive score normalization refers to the type of score normalization when there is
only a subset 𝑆sub chosen from scores 𝑆. All scores 𝑆 are ordered, and the 𝑁 highest values
are chosen and propagated into 𝑆sub, where 𝑁 is hyperparameter.

2.8 Diarization

In the real world scenarios, it is usually not guaranteed, that there is an exclusively single
speaker in the whole audio recording. Therefore, the speaker diarization, the process of
partitioning an audio stream with multiple people into homogeneous segments associated
with each individual, is an important part of speaker recognition systems. By solving the
problem of who spoke when, speaker diarization has applications in many important sce-
narios, such as understanding medical conversations, video captioning and more. Example
of diarization output is shown in Figure 2.10.

Figure 2.10: Example output of diarization on single channel audio. Different colors in the
bottom indicate different speakers.

The speaker diarization used in this work is method based on the Bayesian Hidden
Markov Model described in [14], in which states represent speaker speciĄc distributions and
transitions between states represent speaker turns. The transitions probabilities are set to
favor staying in the same speakers to avoid too frequent speaker turns. As in the i-vector
or JFA models, speaker distributions are modeled by GMMs with parameters constrained
by eigenvoice priors to facilitate discrimination between speakers.

2.8.1 Variational Bayes

Most speaker diarization methods address the task in two steps

1. Segment input into speaker segments.

2. Run clustering algorithm on top of these segments, such as K-Means or Agglomerative
Hierarchical Clustering (AHC) [51].

20

Approach to speaker diarization, where the sequence of speech features representing a
conversation is assumed to be generated from a Bayesian Hidden Markov Model (HMM) is
used. HMM states represent speakers, and the transitions between the states correspond
to the speaker turns. The speaker (or HMM state) speciĄc distributions are modeled
by Gaussian Mixture Models (GMMs). In order to robustly learn the speaker speciĄc
distributions, a strong informative prior is imposed on the GMM parameters, which makes
use of eigenvoices just like i-vectors or Joint Factor Analysis (JFA) [24].

2.8.2 Segmentation Based Approach

Segmentation is typically the Ąrst stage of cluster-based speaker diarization algorithms and
is intended to divide the speech into short segments that are assumed to have a single or
dominant speaker.

The common practice is to divide the signal into utterance segments based on VAD
marks. Any long speech blocks are further subdivided to 1-2 seconds. Features or speakerŠs
utterance representation are then extracted from these blocks, usually in the form of i-
vectors or x-vectors. The segments are subsequently clustered according to these extracted
features. Agglomerative Hierarchical Clustering (AHC) is one popular method because the
clustering can be dictated by distance-based stopping criteria instead of assuming some
number of speakers. This distance-based criterion can be used many metrics, for example,
Euclidean distance, cosine distance or even PLDA scoring.

This segmentation based approach is usually used before variational Bayes described in
Section 2.8.1.

2.8.3 K-Means

K-Means is well known and one of the easiest clustering methods [2]. All objects are
classiĄed as belonging to one of 𝑘 groups where 𝑘 is a hyperparameter. Cluster membership
is determined by calculating the centroid for each group and assigning each object to the
closest centroid. This approach minimizes the overall within-cluster dispersion by iterative
reallocation of cluster members.

The pseudo code of K-Means clustering is described here:

1. Choose 𝑘 as the number of clusters.

2. Initialize the codebook vectors of the 𝑘 clusters, for example randomly.

3. For every sample vector compute the distance between the new vector and every
clusterŠs codebook vector and choose the closest one.

4. If the assignment of the vectors and their corresponding clusters is the same as in the
previous step, the algorithm has converged.

5. If not, recompute new centers of the clusters using newly assigned labels and go back
to 3.

However, the k-means algorithm is susceptible to noise in data, and it negatively affects
the result of the clustering.

21

Chapter 3

Experimental Setup

3.1 NIST SRE

The speaker recognition evaluation (SRE) is the series of speaker recognition evaluations
conducted by the US National Institute of Standards and Technology (NIST) since 1996.
SRE are prestige and datasets released during evaluation work as an excellent benchmark
when comparing individual approaches on testing conditions.

The objectives of the evaluation series are

• to explore promising new ideas in speaker recognition

• to support the development of advanced technology incorporating these ideas

• to measure and calibrate the performance of the current state of technology

The evaluations are intended to be of interest to all researchers working on the general
problem of text-independent speaker recognition.

SRE18 1 was focusing on speaker detection over conversational telephone speech (CTS)
collected outside North America. In addition to CTS recorded over a variety of handsets
(PSTN), voice over IP (VOIP) data, which were also collected outside North America, as
well as audio from video (AfV) were included as development and test material in SRE18.

The task for SRE18 is speaker detection: given a segment of speech and the target
speaker enrollment data, automatically determine whether the target speaker is speaking
in the segment. A segment of speech (test segment) along with the enrollment speech
segment(s) from a designated target speaker constitute a trial. The system is required to
process each trial independently and to output a log-likelihood ratio (LLR), using natural
(base 𝑒) logarithm, for that trial. The LLR for a given trial including a test segment 𝑢 is
deĄned as follows:

𝐿𝐿𝑅(𝑢) = 𝑙𝑜𝑔
𝑃 (𝑢|𝐻o)

𝑃 (𝑢|𝐻1)
, (3.1)

where 𝑃 (·) denotes the probability distribution function (pdf), and 𝐻0 and 𝐻1 represent
the null (i.e., 𝑢 is spoken by the enrollment speaker) and alternative (i.e., 𝑢 is not spoken
by the enrollment speaker) hypotheses, respectively.

The LLR provides a self-contained ratio of the probability of the voices being from the
same speaker versus the alternate hypothesis of them being from different speakers. That
is, the LLR is meaningful on its own (i.e., a LLR of 2 means the same-speaker hypothesis

1https://www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

22

https://www.nist.gov/itl/iad/mig/nist-2018-speaker-recognition-evaluation

is 100 times more likely than the alternate hypothesis). To obtain well-calibrated LLRs
from a system, the system training data, including calibration training data, must closely
represent the conditions of the trial being evaluated. In practice, this prerequisite is often
unfulĄlled due to acoustic or other differences between system-development data and the
audio observed during use; a problem known as condition mismatch [9].

3.2 Data

All data we used either for training or testing purposes were data allowed by NIST for
SRE18. In this section, we describe data used for training as well as for evaluation.

3.2.1 Training Data

Training data deĄnes the amount and category of resources which are allowed to build
speaker recognition system with. System training is limited to speciĄc common data sets
(with assigned LDC 2 identiĄcation) which are as follows

• 1996Ű2008 NIST SRE Data (LDC2009E10)

• 2010 NIST SRE and Follow-up Data (LDC2012E09)

• 2012 NIST SRE Test Set (LDC2016E45)

• 2016 NIST SRE Development Set (LDC2018E47)

• 2016 NIST SRE Test Set (LDC2018E30)

• Comprehensive Switchboard with transcripts (LDC2018E48)

• Comprehensive Fisher English with transcripts (LDC2018E49)

• MIXER6 (LDC2013S03)

• 2018 NIST SRE Development (dev) Set (LDC2018E46)

• Speakers In The Wild (SITW) [34]

• VoxCeleb1 [35] and VoxCeleb2 [10]

3.2.2 Evaluation Data

Since we are building robust speaker recognition system, we decided not to include some
of the training corpora into the training set and use them for testing purposes instead,
speciĄcally 2016 NIST SRE Test Set and all testing subsets from SITW, VoxCeleb1, and
VoxCeleb2. In Table 3.1 we can see datasets distribution and the corresponding number
of target and non-target scores. It is important to note that sre16EvalYUE and all SRE18
CMN2 datasets also contains multi-session scores - 3 enroll recordings compared to single
test recording. Also, sitwEvalM-C and SRE18 VAST enroll recordings may contain more
than one speaker and thus needs to run speaker segmentation. Since sre18DevVAST is very
small and the results may be very noisy, we will not evaluate this condition.

Since SRE18 data are split into two main domains, we decided to split our test datasets
to match testing condition as much as possible:

2https://www.ldc.upenn.edu/

23

https://www.ldc.upenn.edu/

Table 3.1: Overview of test conditions - number of files, number of speakers and number of
trials.

Condition Files Speakers Target Trials Non-Target Trials

sitwEvalC-C 1202 180 3658 718130
sitwEvalM-C 2275 180 10045 2000638
voxc1 4715 40 32276 32276
sre16EvalYUE 5449 100 19298 946098
sre18DevCMN2 1741 35 7830 100265
sre18DevVAST 37 10 27 243
sre18EvalCMN2 13451 188 60675 2002332
sre18EvalVAST 416 101 315 31500

1. Call My Net 2 (CMN2)

(a) 2016 NIST SRE Test Set (LDC2018E30) Cantonese evaluation condition (sre16EvalYUE)

(b) 2018 NIST SRE Development (dev) Set (LDC2018E46) CMN2 evaluation con-
dition (sre18DevCMN2)

(c) 2018 NIST SRE Evaluation (eval) Set CMN2 evaluation condition (sre18EvalCMN2)

2. Video Annotation for Speech Technology (VAST)

(a) SITW core-core evaluation condition [34] (sitwEvalC-C)

(b) SITW multi-core evaluation condition [34] (sitwEvalM-C)

(c) VoxCeleb1 evaluation condition [35] (voxc1)

(d) 2018 NIST SRE Development (dev) Set (LDC2018E46) VAST evaluation condi-
tion (sre18DevVAST)

(e) 2018 NIST SRE Evaluation (eval) Set VAST evaluation condition (sre18EvalVAST)

3.3 Evaluation Metrics

Speaker recognition performance may be represented in many metrics that describe the
systemŠs behavior. Here, we present some well-known metrics that will be used later. We
also described Diarization Error Rate (DER) which is used in the evaluation of diarization
systems.

3.3.1 Equal Error Rate

The equal error rate can be evaluated based on False Acceptance rate (FAR) and False
Rejection Rate (FRR). FAR speciĄes the fraction of access attempts by an unenrolled
individual that are nevertheless deemed a match. FRR speciĄes the fraction of access
attempts by a legitimately enrolled individual that is nevertheless rejected. Therefore for
better accuracy, FAR and FRR must be low. The point at which FAR and FRR intersect is
called Equal Error Rate (ERR). EER of any system gives system performance independent
of the threshold. Therefore, lower the ERR, better the system performance [3].

24

3.3.2 Cost Model

A basic cost model is used to measure the speaker detection performance and is deĄned as
a weighted sum of FAR and FRR probabilities for some decision threshold 𝜃 as follows

𝐶Det(𝜃) = 𝐶Miss×𝑃Target×𝑃Miss(𝜃)×+𝐶FalseAlarm×(1−𝑃Target)×𝑃FalseAlarm(𝜃), (3.2)

where the parameters of the cost function are 𝐶Miss (cost of a missed detection - usually
equal to one), 𝐶FalseAlarm (cost of a spurious detection - usually equal to one) and 𝑃Target

(a priori probability of the speciĄed target speaker) [42].
To improve the interpretability of the cost function 𝐶Det it is normalized by 𝐶Default

which is deĄned as the best cost that could be obtained without processing the input data
(i.e., by either always accepting or always rejecting the segment speaker as matching the
target speaker, whichever gives the lower cost), as follows

𝐶Norm(𝜃) =
𝐶Det(𝜃)

𝐶Default

, (3.3)

where 𝐶Default is deĄned as

𝐶Default = 𝑚𝑖𝑛

{︃

𝐶Miss × 𝑃Target

𝐶FalseAlarm × (1− 𝑃Target).
(3.4)

3.3.3 Detection Error Tradeoff

Current standard in speech veriĄcation applications to use when evaluating performance of
the system for all FAR or FRR points is the Detection Error Tradeoff (DET) Curve. In the
DET curve, error rates are plotted on both axes, giving uniform treatment to both types
of error, and use a scale for both axes which spreads out the plot and better distinguishes
different well performing systems and usually produces plots that are close to linear. For
more information, see [27].

3.3.4 CLLR

In the case of speaker recognition, information theoretic measure may be computed that
considers how well all scores represent the likelihood ratio and that penalizes for errors in
score calibration. This performance measure is deĄned as

𝐶llr =
1

2× 𝑙𝑜𝑔(2)
× (

∑︀

𝑙𝑜𝑔(1 + 1
s
)

𝑁TT

+

∑︀

𝑙𝑜𝑔(1 + 𝑠)

𝑁NT

), (3.5)

where the Ąrst summation is over all target trials 𝑁TT , the second is over all non-target
trials 𝑁NT , and 𝑠 represents a trialŠs likelihood ratio [6].

3.3.5 Diarization Error Rate

To measure the performance of a diarization system, we use the diarization error rate (DER)
as our metric, which is deĄned by the evaluations campaigns organized by NIST. It com-
pares the differences between the ground-truth reference segmentation and the generated
diarization output. The Ąnal result is the sum of three types of errors and can be written
like this:

𝐷𝐸𝑅 = 𝐸Miss + 𝐸FA + 𝐸Spkr (3.6)

25

where 𝐸Miss is the percentage of missed speech error (speaker not attributed when speech
exists), 𝐸FA is the percentage of false alarm error (speaker attributed in non-speech seg-
ment), 𝐸Spkr is the percentage of speaker missclassiĄcation error (wrong speaker labelling
according to reference segmentation). Lower DER indicates better diarization performance.
Additionally, a non-scoring collar of 250 msec [55] is generally adopted in both sides of the
ground-truth segment boundaries to eliminate the effects of inevitably inaccurate labeling.

3.4 Pipeline Setup

In this section, we describe the setup of the experiments for all individual components in
the pipeline described in Section 2.1.

3.4.1 Voice Activity Detection

We used VAD that was used in previous SRE or Language Recognition Evaluations (LRE).
VAD we used consists of two parts

• a neural network which produces per-frame scores and

• a postprocessing stage which builds the segments based on the scores.

The neural network was trained on the Fisher English. The input features for the NN
consist of 15 log-Mel Ąlterbank outputs and 3 Kaldi-pitch features [18]. The output of the
network is then classiĄed as speech or non-speech [31].

VAD labels were provided by Ing. Oldřich Plchot PhD.

3.4.2 Acoustic i-vector

Traditional i-vector system is similar to i-vector system in [29]. This system uses voice
activity detection described in Section 3.4.1. The features are 20-dimensional MFCCs with
a frame-length of 25ms that are mean normalized over a sliding window of up to 3 seconds.
Delta and acceleration are appended to create 60 dimension feature vectors. The UBM
is a 2048 component full-covariance GMM. This system uses a 400-dimensional i-vector
extractor, LDA to 150 dimensions and gaussian PLDA for scoring.

3.4.3 Phonetic bottleneck i-vector

This i-vector system incorporates phonetic bottleneck features (BNF) described in Sec-
tion 2.3.2 from an ASR DNN acoustic model and is similar to [29]. The BNFs are concate-
nated with the same 20 dimensional MFCCs described in Section 3.4.2 plus deltas to create
100 dimensional features. This system uses voice activity detection described in 2.2, 600
dimensional i-vector extractor, LDA to 250 dimensions and gaussian PLDA for scoring.

3.4.4 x-vector

We used original features conĄguration of x-vector recipe [49] obtained from 3 - 23-dimensional
Ąlterbanks with a frame-length of 25ms, mean-normalized over a sliding window of up to 3
seconds. We slightly modiĄed our voice activity detector from Section 3.4.1 and extended
all speech frames by 15 frames to the left and also to the right, effectively extending the

3https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

26

https://david-ryan-snyder.github.io/2017/10/04/model_sre16_v2.html

amount of speech that is passed into neural network, as shown in [33]. Also, we analyzed
and applied some of the possible mentioned improvements for x-vector based architecture
based on [33], such as larger number of augmentation (128 000 in original recipe vs. 256
000 in our recipe) and we also used larger number of epochs (3 in original recipe compared
to 6 in our recipe) and this system will be used as our baseline x-vector system. We used
the same data for x-vector training as in original recipe from [49]. If not speciĄed other-
wise, we used 512-dimensional x-vector projected into 128-dimensional space using LDA.
For scoring, we used gaussian PLDA backend.

3.4.5 Diarization

We used 19 MFCC+Energy coefficients (without any normalization) as features for diariza-
tion. We only ran the diarization on segments that contain speech according to our VAD.
We used 1024-component, diagonal covariance GMM-UBM, and 400-dimensional i-vectors.
The UBM and the total variability matrix were trained on the VoxCeleb1 and VoxCeleb2
datasets. A hierarchical agglomerative clustering (AHC) algorithm based on PLDA scores
between i-vectors estimated on 200 ms segments was performed to initialize the assignment
of frames to speakers for the VB algorithm [14].

Diarization labels were provided by M.Sc. Mireia Diez Sánchez.

27

Table 4.1: Baseline results on telephone conditions for i-vectors and x-vectors.

System sre16EvalYUE sre18DevCMN2 sre18EvalCMN2
EER[%] EER[%] EER[%]

i-vector 13.05 17.43 19.17
BN i-vector 11.51 16.62 17.75
x-vector 5.91 10.41 11.36
E-TDNN 5.35 9.27 9.72

Chapter 4

Experiments - CMN2 condition

In this chapter we analyze the performance of our systems on telephone conditions, mainly
Cantonese subset of NIST SRE 2016 evaluation set and recent NIST SRE 2018 Call My
Network2 (CMN2) data.

4.1 Baseline Systems

First, we ran our baseline systems for i-vectors and x-vectors as described in Section 3.4.
Results for telephone conditions are shown in Table 4.1. We can see, that BN i-vector
systems outperform acoustic i-vector system in all our datasets. All i-vector system are
however greatly outperformed by our x-vector baseline - EER for similar systems were
reduced almost to half for all of our test datasets compared to the acoustic i-vector system.

We also analyzed x-vector E-TDNN architecture (labeled as E-TDNN), which refers
to the extended x-vector architecture described in Section 2.6.1. Based on results we can
see signiĄcant improvement when using E-TDNN architecture over original x-vectors on
all datasets. DET curve comparing both i-vector systems, baseline x-vector system and
E-TDNN architecture on sre18EvalCMN2 is shown in Figure 4.1. From DET curve we
can see that both i-vector systems are very competitive especially for lower values of false
acceptance ratio (around 1%), x-vector systems outperform i-vectors for all points of DET
curve, and best results are achieved using E-TDNN architecture.

Based on this results and based on very recent publications, such as [47, 49, 33], we
will focus on experimenting with x-vector based architectures since it outperforms i-vectors
in accuracy and also in computational costs of forward-pass, which is a crucial factor for
production usage and also allows simple usage of graphical computing units in many popular
machine learning frameworks.

28

0.001 0.01 0.1 0.5 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0 95.0 99.0

FAR [%]

0.001

0.01

0.1

0.5
1.0
2.0
5.0

10.0

20.0

40.0

60.0

80.0

90.0
95.0

99.0

FR
R

[%
]

i-vector
BN i-vector
x-vector
E-TDNN

Figure 4.1: Detection error tradeoff curve for baseline i-vector and x-vector based systems
on sre18EvalCMN2 condition.

4.2 Backend Experiments

As shown in Section 3.4, we can split our automatic system into two main components -
embedding (i-vector or x-vector) extraction and backend. Here, we analyze different back-
ends (PLDA models) and its impact on the performance and robustness of our systems. In
our earlier experiments, we used PLDA backend described in Section 3.4.4, 512-dimensional
x-vector projected into 128-dimensional space using LDA and scored using gaussian PLDA
backend. We analyzed heavy-tailed PLDA described in Section 2.7.2, results are shown in
Table 4.2. We can conclude, that Heavy Tailed PLDA backend yields very similar results
to Gaussian PLDA with LDA dimensionality reduction on the sre16EvalYUE dataset, but
shows outstanding results in terms of both equal error rate and DCFmin

0.01 on sre18EvalCMN2,
where EER was reduced by 0.75% absolute. In our experiments in general, we could see
better results with HT-PLDA backend and HT-PLDA is also very robust across domains,
when values of CLLR across different evaluation conditions were lower compared to Gaus-
sian PLDA. In our experiments, we use degrees of freedom equals to 2 and output dimen-
sionality equals to 128, which are very close to values from [44].

4.2.1 Domain Adaptation

So far, we were not anyhow adapting our speaker recognition systems to evaluation con-
ditions. In both NIST SRE16 and NIST SRE18 the part of development datasets also

29

Table 4.2: Results using different PLDA backends - Gaussian PLDA (G-PLDA) backend
with LDA dimensionality reduction and Heavy-Tailed PLDA (HT-PLDA) using E-TDNN
system.

System Backend sre16EvalYUE sre18DevCMN2 sre18EvalCMN2
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01 EER[%] DCFmin

0.01

E-TDNN G-PLDA + LDA 5.35 0.484 9.27 0.589 9.72 0.650
E-TDNN HT-PLDA 5.17 0.478 8.77 0.578 8.97 0.628

consisted of unlabeled data, in case of NIST SRE18 these unlabeled data had assigned
phone numbers; therefore this data might also be used for supervised adaptation in the
same manner. We have taken advantage of this fact and used this data to adapt our system
to target data. We ran experiments with three techniques for domain adaptation:

1. Mean normalization of speaker embedding from domain data. This technique should
center speaker embeddings, so they have zero mean, which is expected by PLDA
model.

2. Unsupervised and supervised adaptation of Heavy Tailed PLDA. Adaptation of PLDA
enables the model to better match distribution in in-domain data.

3. Score normalization, we used adaptive s-norm as shown in Section 2.7.3 using the top
200 scores for computing statistics.

Naturally, all three mentioned techniques could be used at the same time, since they
operate on different units. Our results are summarized in Table 4.3. Based on results, we
can conclude that our adaptation techniques always improved results for sre16EvalYUE
condition and for this condition, best results were achieved when using mean normaliza-
tion, s-norm and unsupervised PLDA adaptation - EER 3.53% and DCFmin

0.01 0.329, making
32% relative improvement for EER and 31% relative improvement for DCFmin

0.01over the sys-
tem without adaptation. For sre18EvalCMN2 condition, we noticed, that unsupervised
adaptation of HT-PLDA had a negative impact on results in all cases, on the other hand,
best results were obtained using mean normalization, s-norm and supervised adaptation of
HT-PLDA - EER 7.06% and DCFmin

0.01 0.539, making 21% relative improvement for EER
and 14% improvement for DCFmin

0.01over the system without adaptation. DET curves for
systems without adaptation and best systems with adaptation are shown in Figure 4.2 for
sre16EvalYUE and in Figure 4.3 for sre18EvalCMN2, respectively.

4.3 Processing Speed

Processing speed is a critical factor in production systems, which directly allows end users
to process more data while keeping the same computational costs. Also, smaller memory
consumption and a smaller number of Ćoating operations allows direct use in the Internet
of Things (IoT) devices or mobile phones. This factor also inĆuences training time, which
in the state-of-the-art deep learning models usually extends days, weeks and sometimes
even months. In this section, we include this factor besides the performance of our system
and analyze multiple approaches to speeding up the computation. We will use faster than

30

Table 4.3: Results using domain adaptation to evaluation conditions. The first column
of table contains three letters corresponding to the system setup, first is usage of mean
normalization (Y - used, N - not used), second part is s-norm (Y - used, N - not used)
and last third is HT-PLDA adaptation (N - not used, U - unsupervised adaptation, S -
supervised adaptation). Therefore, the first system (N/N/N - without any adaptation) is
exactly the same as our HT-PLDA baseline. Since for NIST SRE16 there were no labels,
we have not used the supervised adaptation of HT-PLDA.

Adaptation sre16EvalYUE sre18DevCMN2 sre18EvalCMN2
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01 EER[%] DCFmin

0.01

N/N/N 5.17 0.478 8.77 0.578 8.97 0.628
Y/N/N 4.50 0.455 8.11 0.568 7.85 0.574
N/Y/N 4.28 0.345 7.45 0.469 7.50 0.517
Y/Y/N 4.00 0.336 7.16 0.480 7.28 0.524
N/N/U 4.29 0.433 9.34 0.682 10.05 0.691
N/N/S 7.89 0.578 8.96 0.636
Y/N/U 3.71 0.367 8.12 0.676 8.86 0.642
Y/N/S 6.93 0.569 7.58 0.548
Y/Y/U 3.53 0.329 7.54 0.550 7.61 0.550
Y/Y/S 6.60 0.507 7.06 0.539

real-time (FTRT) metric described as follows:

𝐹𝑇𝑅𝑇 =
𝑡𝑖𝑚𝑒speech

𝑡𝑖𝑚𝑒processing
(4.1)

where 𝑡𝑖𝑚𝑒speech refers to amount of speech declared using our VAD and 𝑡𝑖𝑚𝑒processing
refers to amount of processing time. Especially deep models may beneĄt from usage of
graphical processing units (GPUs), therefore we will report this metric using CPU and also
GPU.

In all our experiments we used the same VAD and same input features. We will report
only processing time and RAM consumption of forward pass using a single CPU core. For
CPU we used python implementation in NumPy 1 with MKL backend 2 using AMD EPYC
7301 16-Core Processor. For GPU we used Theano 3 in python with GeForce GTX 1080
GPU. Our measurements were repeated for 5 times, and we used the mean of these values
for reporting. We used 2798912 input frames from 425 different audio recordings.

There are multiple strategies on how to improve processing speed, such as:

1. Shrinking network size - the smaller architecture of NN, when we used 256 neurons
in time-delay layers and dense layers and 750 neurons before pooling while keeping
the same dimensionality of x-vector (denoted as E-TDNN small).

2. Skipping frames - we can skip each odd frame of the input so we will effectively use
only half of the frames (denoted as 𝑓𝑠1). Since we are using TDNN, we can also do
this at any time-delay layer (denoted as 𝑓𝑠2i where 𝑖 refers to the index of the layer
where we are performing frame skipping.

1http://www.numpy.org/
2https://software.intel.com/en-us/mkl
3http://deeplearning.net/software/theano/

31

http://www.numpy.org/
https://software.intel.com/en-us/mkl
http://deeplearning.net/software/theano/

0.01 0.1 0.5 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0

FAR [%]

0.001

0.01

0.1

0.5
1.0
2.0

5.0

10.0

20.0

40.0

60.0

80.0

90.0

95.0

99.0
FR

R
[%

]
E-TDNN
E-TDNN Adapted

Figure 4.2: Detection error tradeoff curve for E-TDNN system without adaptation and
adapted system (Y/Y/U) on sre16EvalYUE condition.

Based on results in Table 4.4, we can see, that both, shrinking network size and also
skipping frames boosted computational speed signiĄcantly for both CPU and GPU, while
achieving very good results compared to default full system. Especially E-TDNN 𝑓𝑠20
system achieved almost same results as system, which is more than 2 times slower on CPU
and 2.4 times slower on GPU. GPU processing time is 317 times faster than single CPU.

However, it is important to note, that embedding extraction is not the only part of
the system pipeline described in Section 3.4. Based on our experiments, extraction of the
MFCC features is very fast and takes only around 1% of the total time of the pipeline.
VAD we used is based on neural networks and therefore can be easily accelerated on GPU
and usually took around 3% of the total time of the pipeline. Based on this fact, we can
expect, that the whole pipeline of E-TDNN 𝑓𝑠20 system could achieve around 4500 FTRT
on GPU.

32

0.001 0.01 0.1 0.5 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0 95.0 99.0

FAR [%]

0.001

0.01

0.1

0.5
1.0
2.0

5.0
10.0

20.0

40.0

60.0

80.0

90.0
95.0

99.0

FR
R

[%
]

E-TDNN
E-TDNN Adapted

Figure 4.3: Detection error tradeoff curve for E-TDNN system without adaptation and
adapted system (Y/Y/S) on sre18EvalCMN2 condition.

Table 4.4:

System sre16EvalYUE sre18DevCMN2 sre18EvalCMN2 RAM FTRT
EER[%] EER[%] EER[%] GB CPU GPU

E-TDNN 5.35 9.27 9.72 0.4 7.44 1985.04
E-TDNN small 5.59 10.03 10.35 0.3 11.45 2120.39
E-TDNN 𝑓𝑠1 5.83 10.43 10.55 0.4 14.71 4664.85
E-TDNN 𝑓𝑠20 5.35 10.03 10.05 0.4 14.96 4744

33

Table 5.1: Baseline results on VAST-similar datasets for systems trained on 8 kHz mainly
telephone data.

System sitwEvalC-C voxc1
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01

i-vector 13.37 0.791 16.40 0.928
BN i-vector 10.69 0.657 13.27 0.856
x-vector 7.16 0.559 9.00 0.676
E-TDNN 5.90 0.519 7.74 0.599

Chapter 5

Experiments - VAST condition

In this chapter, we analyze the performance of our systems on wideband conditions. First,
we examine one to one trials on wideband evaluation sets. In the next part, we focus on
multi-speaker recordings and diarization.

5.1 Baseline Systems

Baseline results for i-vector and x-vector system for VAST (wideband) conditions are shown
in Table 5.1. Similarly to CMN2 baseline in Table 4.1, wideband datasets shows the same
trend in terms of EER, bottleneck i-vectors slightly outperforms acoustic i-vectors, and
x-vectors greatly outperform i-vector based architectures. E-TDNN again performs the
best.

5.2 Domain SpeciĄc System

Here, we tried to adapt our system to target data during system training and therefore
use only wideband data for system training. Since development corpus for SRE18 VAST
condition is very small and not statistically reliable, it was not used for evaluation nor
adaptation. For training we used VoxCeleb1 [35] and VoxCeleb2 [10] training sets, we
trained extractor (x-vector NN) and also PLDA model on the same set.

We used the following modiĄcations compared to original recipe [49] for all our experi-
ments based on [33]:

• 9 epochs instead of 3 in the original recipe

34

• total 512 000 augmentations instead of 128 000 in the original recipe

• concatenate all utterances from a single session with one second of silence between
every utterance.

Results for domain-speciĄc systems are shown in Table 5.2. When we compare these
results to results in Table 5.1, we can see that using domain-speciĄc data is crucial for
systemŠs performance and even with our best E-TDNN system trained on telephone data
with EER 5.90% on sitwEvalC-C we are not competitive with baseline x-vector system
trained on wideband data with EER 4.89%.

In our experiments, we slightly changed the topology of TDNN to accept a larger con-
text; these modiĄcations are shown in Table 5.3 and are marked with suffix LC (large
context). We can conclude, that extending the context of TDNN improved results in terms
of EER and also for another operating point. Also, we can see a very signiĄcant gain in
using 16k sample rate over 8k sample rate - for competitive systems x-vector LC with 8k
sample rate and 16k sample rate respectively; we can see almost 30% relative improvement
in terms of EER.

We also trained our ETDNN without concatenating VoxCeleb audios, and these results
are marked with suffix cuts and number before refers to number of augmentation that was
used - it is important to note, that we used only 512 000 augmentations for NN in one
case, which is less than half of the clean audios, therefore the system has not seen most
of the data compared to previous cases, however results are competitive to baseline x-
vector architecture but training requirements for computational resources are much lower.
According to our experiments, original non-concatenated audios were not helpful for system
training and therefore, we have not analyzed this scenario more.

In our experiments we also modiĄed the process of arks creation (container with input
features which are directly used for training). In default setup, training arks are created
from 2-3 seconds long utterances randomly sampled from full utterance. We used following
modiĄcations to original Kaldi recipe:

sid/nnet3/xvector/get_egs.sh --cmd "$train_cmd_run_xv" \

--nj 16 \

--stage 0 \

--frames-per-iter 100000000 \

--frames-per-iter-diagnostic 100000 \

--min-frames-per-chunk 200 \

--max-frames-per-chunk 300 \

--num-diagnostic-archives 3 \

--num-repeats 15 \

"$data" $egs_dir

These results are shown in Table 5.2 as system E-TDNN arks and actually yields best
results for both testing conditions.

Also, we experimented with modiĄcations of E-TDNN topology. Extending context in
original x-vectors showed as crucial, and we extended context of original E-TDNN adding
single TDNN-ReLU and Dense-ReLU layer with context {𝑡− 5, 𝑡, 𝑡+ 5} after layer 8 from
Table 2.2. This result is labeled as E-TDNN arks LC (large context). In our experiments we
also stacked more time-delay layers on top of each other, creating vast network described
in Table 5.4, extending context to 47 frames. This architecture is labeled as E-TDNN
arks VLC (very large context). Based on results, we can conclude that extending context

35

Table 5.2: Results for domain specific systems on VAST-similar datasets without using
diarization.

System Sample Rate sitwEvalC-C voxc1
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01

x-vector 8k 4.89 0.448 6.61 0.634
x-vector LC 8k 3.85 0.392 5.22 0.56
x-vector LC 16k 2.74 0.268 2.99 0.33

E-TDNN 16k 2.60 0.242 2.77 0.286
E-TDNN 500k cuts 16k 4.35 0.389 3.23 0.375
E-TDNN 5m cuts 16k 3.31 0.312 2.60 0.303

E-TDNN arks 16k 2.46 0.231 2.35 0.272
E-TDNN arks LC 16k 2.38 0.209 2.40 0.254
E-TDNN arks VLC 16k 2.49 0.237 2.26 0.251

E-TDNN arks LC HT-PLDA 16k 2.02 0.199 2.27 0.251

Table 5.3: Configuration of TDNN for x-vector extraction using larger context. Bold values
are our modifications of the original [49] architecture. X-vectors are extracted at layer
segment6 before the nonlinearity.

Layer Layer context Total context

frame1 [t-2,t+2] 5
frame2 {t-4, t-2,t,t+2,t+4} 13
frame3 {t-6,t-3,t,t+3,t+6} 19
frame4 {t} 19
frame5 {t} 19

stats pooling [0, T] T
segment6 {0} T
segment7 {0} T
softmax {0} T

is beneĄcial also for E-TDNN architecture, yielding 2.38% EER and 0.209 DCFmin
0.01 for

E-TDNN arks LC system for sitwEvalC-C. E-TDNN arks VLC does not outperform other
systems and considering the number of parameters in the network, which is 2.5 times bigger
than in E-TDNN and therefore takes much longer time to train, we will not experiment
with this architecture further.

As shown in previous experiments, HT-PLDA is shown as an excellent choice for the
backend, and also for wideband systems we included it into our experiments. E-TDNN
arks LC HT-PLDA refers to our so far best system with HT-PLDA backend and yields best
results for sitwEvalC-C, 2.02% EER and 0.199 DCFmin

0.01.
DET curve for corresponding systems on sitwEvalC-C condition is in Figure 5.1. We

can see a signiĄcant gain in using HT-PLDA backend over G-PLDA.

36

Table 5.4: Extended TDNN x-vector architecture with very large context of 47 frames.

Layer Layer Type Layer context Size

1 TDNN-ReLU [t-5,t+5] 512
2 Dense-ReLU t 512
3 TDNN-ReLU [t-4, t+4] 512
4 Dense-ReLU t 512
5 TDNN-ReLU [t-3, t+3] 512
6 Dense-ReLU t 512
7 TDNN-ReLU [t-2, t+2] 512
8 Dense-ReLU t 512
9 TDNN-ReLU {t-2, t, t+2} 512
10 Dense-ReLU t 512
11 TDNN-ReLU {t-3, t, t+3} 512
12 Dense-ReLU t 512
13 TDNN-ReLU {t-4, t, t+4} 512
14 Dense-ReLU t 512
15 Dense-ReLU t 512
16 Dense-ReLU t 1500
17 Pooling (mean + stddev) Full-seq 2x1500
18 Dense(Embedding)-ReLU 512
19 Dense-ReLU 512
20 Dense-SoftMax 512

5.3 Diarization in the Loop

In this section we analyze the performance of our system on testing conditions which nec-
essarily does not contain single speaker at enroll or test side; therefore it should be sensible
to run automatic diarization systems before performing speaker veriĄcation.

Suppose 𝑅(,) is the PLDA log-likelihood ratio score, u is the x-vector for the enrolled
speaker and v1,v2, ...,vN are the x-vector for each of the N speakers in the test recording.
To perform speaker recognition, log-likelihood is computed as follows:

𝑅(𝑒𝑛𝑟𝑜𝑙𝑙, 𝑡𝑒𝑠𝑡) = 𝑚𝑎𝑥{𝑅(u,v1), ..., 𝑅(u,vN)} (5.1)

We analyze the performance of our best systems with and without diarization; results
are shown in Table 5.5, for all our experiments we used the diarization system described in
Section 3.4.5.

DET curve for sre18EvalVAST condition is shown in Figure 5.2. DET curves show us
that there is a minimal difference between the x-vector LC system and E-TDNN, evaluation
dataset is still very small and results may be noisy. We can conclude, that diarization
helps for all our systems on sitwEvalM-C condition by 20% in terms of EER and also
by 20% for DCFmin

0.01. On sre18EvalVAST condition, however, there is almost no gain
in performance when using diarization. Also, there is no gain in performance when using
enrollment annotations provided by NIST compared to taking whole audio on the enrollment
side.

37

0.1 0.5 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0

FAR [%]

0.001

0.01

0.1

0.5

1.0

2.0

5.0

10.0

20.0

40.0
FR

R
[%

]
E-TDNN
E-TDNN arks LC
E-TDNN arks LC HT-PLDA

Figure 5.1: Detection error tradeoff curve for systems trained on VoxCeleb1 and VoxCeleb2
data for sitwEvalC-C condition.

Table 5.5: Results for domain specific systems on VAST-similar datasets. Diarization
column indicates whether diarization was used as pre-processing step. Enroll only means,
that we used only enrollment segments annotated by NIST.

System Diarization sitwEvalM-C sre18EvalVAST
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01

x-vector LC no 5.20 0.363 13.33 0.746
E-TDNN no 5.09 0.338 13.33 0.758
E-TDNN enroll only 13.33 0.765
x-vector LC yes 4.14 0.292 13.59 0.713
E-TDNN yes 4.02 0.269 12.35 0.738
E-TDNN 5m cuts yes 4.86 0.355 14.33 0.821

5.3.1 Speaker Diarization Implementation

In our work, we also implemented an automatic diarization system in python; it can be found
together with one of our best x-vector models (E-TDNN) at 1. The work on diarization is
based on work done at 2017 Jelinek Summer Workshop on Speech and Language Technology

1https://github.com/Jamiroquai88/VBDiarization

38

https://github.com/Jamiroquai88/VBDiarization

0.5 1.0 2.0 5.0 10.0 20.0 40.0 60.0 80.0 90.0 95.0

FAR [%]

0.01

0.1

0.5
1.0

2.0

5.0

10.0

20.0

40.0

60.0

80.0
FR

R
[%

]
x-vector LC
E-TDNN
E-TDNN 5m cuts

Figure 5.2: Detection error tradeoff curve for systems trained on VoxCeleb1 and VoxCeleb2
data for sre18EvalVAST condition using diarization marks for test and oracle annotations
for enrollment.

(JSALT) at CMU 2. The primary motivation to implement own speaker diarization system
is to have the possibility to experiment with diarization sufficient for speaker veriĄcation
described later.

In our implementation, we run clustering on top of x-vectors, which represent concise
segments from one second up to two seconds in audio recording. At Ąrst, we analyzed the
main topic of diarization - who spoke when. We used AMI corpus 3 for this purpose, using
summed individual head-mounted microphones into a single channel. We used oracle voice
activity detection generated from oracle rttm Ąles which were also used for evaluation. In
our approach, we clustered x-vectors using a k-means algorithm or in case of normalized
x-vectors, using spherical k-means. In the second stage, we use PLDA scores in k-means
clustering for Ąne-tuning of clustering. We used gaussian PLDA backend with LDA and l2
normalization. Since k-means expects the known value of k (number of clusters), we used
the oracle number of speakers. We also analyzed the case, when the number of speakers
is unknown and in this case, we used x-means algorithm [38] for estimating the number of
clusters.

Results for these diarization scenarios are shown in Table 5.6. Based on the results, we
can see that clustering using PLDA k-means reduced DER by 27% relative compared to

2https://www.lti.cs.cmu.edu/2017-jelinek-workshop
3http://groups.inf.ed.ac.uk/ami/corpus/

39

https://www.lti.cs.cmu.edu/2017-jelinek-workshop
http://groups.inf.ed.ac.uk/ami/corpus/

Table 5.6: Diarization Error Rate (DER) results for evaluation and development part of
AMI dataset containing summed individual head-mounted microphones in the single chan-
nel. We used a collar size of 250 ms.

System Clustering DER [%]

E-TDNN k-means 9.16%
E-TDNN k-means + PLDA k-means 6.67%
E-TDNN x-means + k-means + PLDA k-means 15.54%
E-TDNN ahc 14.09%

spherical k-means only. We can conclude, that x-means algorithm is not the best choice
for estimating the number of clusters and in our experiments usually estimated a smaller
number of clusters than there were speakers. We also experimented with clustering using
AHC, labeled as ahc in Table 5.6. In the case of AHC we trained a linear Gaussian model
with two components with shared variance for calibration of scores. The threshold of
the linear Gaussian model was used in AHC, and the number of speakers was estimated
together with per-embedding labels. We can see, that AHC slightly outperforms x-means
with PLDA k-means model by 1.45% DER.

The goal of these experiments was to show, that speaker diarization is working quite
well in terms of DER and the best system with PLDA k-means is investigated further in
multi-speakers scenario focused on speaker recognition.

5.3.2 Diarization Sufficient for Speaker VeriĄcation

It is important to note, that diarization task of deĄning who spoke when is not necessarily
the same task to the one in speaker veriĄcation when we want to know the answer to
the question is this enrollment speaker in that test recording, which may include multiple
speakers? This could be the case, if diarization itself yielded outstanding results on any
testing conditions, which is not the case, as shown in recent DIHARD challenge 4 where
using ground truth VAD the best systems got 23.73% DER [43] and without these ground
truth labels achieving much worse performance, only 35.53% DER [15]. For some of the
domains, it was even better to say that there is a single speaker in the whole recording,
even when it was not a case.

Therefore, as shown in recent publication [48], where authors show excellent results on
multi-speaker conversations, we analyzed speaker diarization speciĄc for speaker recogni-
tion.

AHC-based diarization typically requires a well-chosen cluster stopping threshold to
achieve good performance. This threshold is sensitive to the domain of the data, and
a poorly chosen threshold will result in bad performance. In K-Means algorithm it is a
similar case with a number of clusters, which is frequently unknown. This is a particularly
concerning possibility when a reliable development set is not available, as in case of NIST
SRE 2018 VAST data. To improve robustness, the authors of [48] propose a simple change
in the clustering algorithm. Instead of relying on a tuned AHC threshold, they estimate the
maximum number of speakers in recording and run clustering iteratively with the different
number of clusters exactly 𝐾 times, with 𝑘 ∈ {1, 2, ...,𝐾}. The Ąnal number of cluster is

4https://coml.lscp.ens.fr/dihard/2018/results.php

40

https://coml.lscp.ens.fr/dihard/2018/results.php

Table 5.7:

System Diarization sitwEvalM-C sre18EvalVAST
EER[%] DCFmin

0.01 EER[%] DCFmin
0.01

E-TDNN ahc+vb 4.02 0.269 12.35 0.738
E-TDNN iterative k-means 2.87 0.262 12.03 0.789

then deĄned as 𝑁 = K(K+1
2 , where 𝐾 is a maximal number of speakers in the recording.

The output of clustering is then 𝑁 cluster centers.
We tried to replicate this setup with 𝐾 = 5 as shown in the original paper, but with

the K-Means algorithm instead of AHC. Our results are shown in Table 5.7, we compared
our previous results from multi-speaker conversations (ahc+vb) with our new approach
(iterative k-means). Based on results, we can conclude that for sitwEvalM-C there is a
signiĄcant gain in terms of EER, reduced from 4.02% to 2.87%. Our approach was less
successful for the sre18EvalVAST condition, where we can see a small improvement in
EER, but system obtains worse results for DCFmin

0.01. When we compare these results to
results of E-TDNN system on sitwEvalC-C condition with EER 2.60% and DCFmin

0.01 0.242,
a scenario with a single speaker at the test side is still more successful. However, the
difference is substantially smaller. For sre18EvalVAST condition, it is however not clear,
why this approach does not improve performance.

41

Chapter 6

Conclusion

6.1 Experiments Summary

In this experimental work, we analyzed the state-of-the-art speaker veriĄcation pipeline
using x-vector based speaker embeddings which superseded i-vectors in recent years. De-
veloping a robust system which would work across various conditions, such as unseen lan-
guage, distinctive acoustic conditions or problem of multi-speaker recordings remains very
difficult.

We compared systems based on i-vectors to x-vectors on narrowband and wideband
conditions. We could see, that data augmentation is an easily implemented and effective
strategy for improving x-vectors performance. We showed, that using in-domain wideband
data for training, in this case, VoxCeleb1 and VoxCeleb2, we were able to outperform
systems trained on 8 kHz telephone data. VoxCeleb1 and VoxCeleb2 datasets are also
extensive, containing over 1 million utterances from thousands of speakers and allow us to
use state-of-the-art deep learning methods.

Score normalization and system adaptation, such as mean normalization using in-
domain data and supervised and unsupervised adaptation of PLDA backend showed as
crucial in tuning the system for speciĄc evaluation conditions and led to improved results
on sre16EvalYUE by 32% and on sre18EvalCMN2 by 21% relative in terms of EER.

We also experimented with improving our scoring backend, and we used Heavy Tailed
PLDA for scoring, yielding 2.02% EER on the sitwEvalC-C dataset, using an out-of-the-box
system, without any adaptation to SITW dataset. Comparing our results on voxc1 test
dataset to ResNet architecture from [10], in terms of equal error rate using E-TDNN with
HT-PLDA backend we obtained 2.27% EER compared to their 3.95%.

Also, our best wideband system produced during NIST SRE 2018 evaluations was used
as one of the submission systems and was very competitive considering all submissions of
other teams. Using diarization in speaker veriĄcation, however, still looks like a problematic
area with very high error rates and should also be included as an active area of speech
technology research. Interestingly, results for sre18EvalVAST condition remains very noisy
and improvements showed for the sitwEvalC-C condition does not generalize.

6.2 Future Work

Our future work will be focused on experimenting more with E-TDNN architecture, such as
extending the context of time-delay layers and stacking more of these layers into a network.

42

Also, we would like to experiment more with types of DNN architectures which show very
results in face recognition, such as residual networks from [56]. Even though Kaldi toolkit is
very easy to use and yields very good results, we would like to experiment more with popular
python toolkits, such as TensorFlow or PyTorch and try to replicate results obtained in
Kaldi.

Also, we want to focus more on diarization, either for scenario who spoke when, when
our results could be improved using variational Bayes as an additional step and the same
assumption might be applied for diarization scenario focused on speaker veriĄcation. We
would like to release our diarization code and models for the research community to use.

43

Bibliography

[1] Abadi, M.; Agarwal, A.; Barham, P.; et al.: TensorFlow: Large-Scale Machine
Learning on Heterogeneous Systems. 2015. software available from tensorĆow.org.
Retrieved from: http://tensorflow.org/

[2] Abbas, O. A.: Comparisons Between Data Clustering Algorithms. International Arab
Journal of Information Technology (IAJIT). vol. 5, no. 3. 2008.

[3] Agrawal, P.; Kapoor, R.; Agrawal, S.: A hybrid partial Ąngerprint matching
algorithm for estimation of Equal Error Rate. In Advanced Communication Control
and Computing Technologies (ICACCCT), 2014 International Conference on. IEEE.
2014. pp. 1295Ű1299.

[4] Auckenthaler, R.; Carey, M.; Lloyd-Thomas, H.: Score normalization for
text-independent speaker veriĄcation systems. Digital Signal Processing. vol. 10, no.
1-3. 2000: pp. 42Ű54.

[5] Bishop, C. M.: Pattern recognition and machine learning. springer. 2006.

[6] Brümmer, N.; Du Preez, J.: Application-independent evaluation of speaker detection.
Computer Speech & Language. vol. 20, no. 2-3. 2006: pp. 230Ű275.

[7] Brümmer, N.; Silnova, A.; Burget, L.; et al.: Gaussian meta-embeddings for efficient
scoring of a heavy-tailed PLDA model. arXiv preprint arXiv:1802.09777. 2018.

[8] Burget, L.; Plchot, O.; Cumani, S.; et al.: Discriminatively trained probabilistic
linear discriminant analysis for speaker veriĄcation. In Acoustics, Speech and Signal
Processing (ICASSP), 2011 IEEE International Conference on. IEEE. 2011. pp.
4832Ű4835.

[9] Castan, D.; McLaren, M.; Ferrer, L.; et al.: Improving Robustness of Speaker
Recognition to New Conditions Using Unlabeled Data. In INTERSPEECH. 2017. pp.
3737Ű3741.

[10] Chung, J. S.; Nagrani, A.; Zisserman, A.: VoxCeleb2: Deep Speaker Recognition.
arXiv preprint arXiv:1806.05622. 2018.

[11] Clouse, D. S.; Giles, C. L.; Horne, B. G.; et al.: Time-delay neural networks:
Representation and induction of Ąnite-state machines. IEEE Transactions on Neural
Networks. vol. 8, no. 5. 1997: pp. 1065Ű1070.

[12] Dahl, G. E.; Sainath, T. N.; Hinton, G. E.: Improving deep neural networks for
LVCSR using rectiĄed linear units and dropout. In 2013 IEEE international
conference on acoustics, speech and signal processing. IEEE. 2013. pp. 8609Ű8613.

44

http://tensorflow.org/

[13] Dehak, N.; Kenny, P. J.; Dehak, R.; et al.: Front-end factor analysis for speaker
veriĄcation. IEEE Transactions on Audio, Speech, and Language Processing. vol. 19,
no. 4. 2011: pp. 788Ű798.

[14] Diez, M.; Burget, L.; Matějka, P.: Speaker Diarization based on Bayesian HMM with
Eigenvoice Priors. In Odyssey 2018, The Speaker and Language Recognition
Workshop. 2018.

[15] Diez, M.; Landini, F.; Burget, L.; et al.: BUT System for DIHARD Speech
Diarization Challenge 2018. In Proc. Interspeech. 2018. pp. 2798Ű2802.

[16] Doddington, G.: Speaker recognition based on idiolectal differences between speakers.
In Seventh European Conference on Speech Communication and Technology. 2001.

[17] Fér, R.; Matějka, P.; Grézl, F.; et al.: Multilingual bottleneck features for language
recognition. In Sixteenth Annual Conference of the International Speech
Communication Association. 2015.

[18] Ghahremani, P.; BabaAli, B.; Povey, D.; et al.: A pitch extraction algorithm tuned
for automatic speech recognition. In Acoustics, Speech and Signal Processing
(ICASSP), 2014 IEEE International Conference on. IEEE. 2014. pp. 2494Ű2498.

[19] Glembek, O.: Optimalization of Gaussian Mixture Subspace Models and Related
Scoring Algorithms in Speaker Verification. PhD dissertation. Brno University of
Technology, Faculty of Information Technology, Brno. 2012.

[20] Glembek, O.; Ma, J.; Matějka, P.; et al.: Domain adaptation via within-class
covariance correction in i-vector based speaker recognition systems. In Acoustics,
Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on.
IEEE. 2014. pp. 4032Ű4036.

[21] Hannun, A.; Case, C.; Casper, J.; et al.: Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567. 2014.

[22] Hinton, G.; Deng, L.; Yu, D.; et al.: Deep neural networks for acoustic modeling in
speech recognition. IEEE Signal processing magazine. vol. 29. 2012.

[23] Kenny, P.: Bayesian speaker veriĄcation with heavy-tailed priors. In Odyssey. 2010.
page 14.

[24] Kenny, P.; Boulianne, G.; Ouellet, P.; et al.: Joint factor analysis versus
eigenchannels in speaker recognition. IEEE Transactions on Audio, Speech, and
Language Processing. vol. 15, no. 4. 2007: pp. 1435Ű1447.

[25] Kinnunen, T.; Li, H.: An overview of text-independent speaker recognition: From
features to supervectors. Speech communication. vol. 52, no. 1. 2010: pp. 12Ű40.

[26] Lukáš Burget, IKR Slides: Gaussian distribution.
https://www.fit.vutbr.cz/study/courses/IKR/

public/prednasky/02_bayesovska_teorie/bayesovska_teorie.pdf.

[27] Martin, A.; Doddington, G.; Kamm, T.; et al.: The DET curve in assessment of
detection task performance. Technical report. National Inst of Standards and
Technology Gaithersburg MD. 1997.

45

[28] Matějka, P.; Glembek, O.; Castaldo, F.; et al.: Full-covariance UBM and heavy-tailed
PLDA in i-vector speaker veriĄcation. In 2011 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2011. pp. 4828Ű4831.

[29] Matějka, P.; Glembek, O.; Novotný, O.; et al.: Analysis of DNN approaches to
speaker identiĄcation. In Acoustics, Speech and Signal Processing (ICASSP), 2016
IEEE International Conference on. IEEE. 2016. pp. 5100Ű5104.

[30] Matějka, P.; Novotný, O.; Plchot, O.; et al.: Analysis of Score Normalization in
Multilingual Speaker Recognition. In INTERSPEECH. 2017. pp. 1567Ű1571.

[31] Matějka, P.; Plchot, O.; Novotný, O.; et al.: BUT-PT System Description for NIST
LRE 2017.

[32] Matějka, P.; Zhang, L.; Ng, T.; et al.: Neural network bottleneck features for
language identiĄcation. Proc. IEEE Odyssey. 2014: pp. 299Ű304.

[33] McLaren, M.; Castan, D.; Nandwana, M. K.; et al.: How to train your speaker
embeddings extractor. In Odyssey: The Speaker and Language Recognition Workshop,
Les Sables d’Olonne. 2018.

[34] McLaren, M.; Ferrer, L.; Castan, D.; et al.: The 2016 Speakers in the Wild Speaker
Recognition Evaluation. In INTERSPEECH. 2016. pp. 823Ű827.

[35] Nagrani, A.; Chung, J. S.; Zisserman, A.: Voxceleb: a large-scale speaker
identiĄcation dataset. arXiv preprint arXiv:1706.08612. 2017.

[36] Paszke, A.; Gross, S.; Chintala, S.; et al.: Automatic differentiation in PyTorch. 2017.

[37] Peddinti, V.; Povey, D.; Khudanpur, S.: A time delay neural network architecture for
efficient modeling of long temporal contexts. In Sixteenth Annual Conference of the
International Speech Communication Association. 2015.

[38] Pelleg, D.; Moore, A. W.; et al.: X-means: extending k-means with efficient
estimation of the number of clusters. In Icml, vol. 1. 2000. pp. 727Ű734.

[39] Povey, D.; Ghoshal, A.; Boulianne, G.; et al.: The Kaldi Speech Recognition Toolkit.
In IEEE 2011 Workshop on Automatic Speech Recognition and Understanding. IEEE
Signal Processing Society. December 2011. iEEE Catalog No.: CFP11SRW-USB.

[40] Prince, S. J.; Elder, J. H.: Probabilistic linear discriminant analysis for inferences
about identity. In 2007 IEEE 11th International Conference on Computer Vision.
IEEE. 2007. pp. 1Ű8.

[41] Reynolds, D. A.; Quatieri, T. F.; Dunn, R. B.: Speaker veriĄcation using adapted
Gaussian mixture models. Digital signal processing. vol. 10, no. 1-3. 2000: pp. 19Ű41.

[42] Sadjadi, S. O.; Kheyrkhah, T.; Tong, A.; et al.: The 2016 NIST Speaker Recognition
Evaluation. In Interspeech. 2017. pp. 1353Ű1357.

[43] Sell, G.; Snyder, D.; McCree, A.; et al.: Diarization is hard: Some experiences and
lessons learned for the JHU team in the inaugural DIHARD challenge. In Proc.
Interspeech. 2018. pp. 2808Ű2812.

46

[44] Silnova, A.; Brümmer, N.; Garcia-Romero, D.; et al.: Fast variational Bayes for
heavy-tailed PLDA applied to i-vectors and x-vectors. arXiv preprint
arXiv:1803.09153. 2018.

[45] Snyder, D.; Garcia-Romero, D.; McCree, A.; et al.: Spoken language recognition
using x-vectors. In Proc. Odyssey 2018 The Speaker and Language Recognition
Workshop. 2018. pp. 105Ű111.

[46] Snyder, D.; Garcia-Romero, D.; Povey, D.: Time delay deep neural network-based
universal background models for speaker recognition. In 2015 IEEE Workshop on
Automatic Speech Recognition and Understanding (ASRU). IEEE. 2015. pp. 92Ű97.

[47] Snyder, D.; Garcia-Romero, D.; Povey, D.; et al.: Deep neural network embeddings
for text-independent speaker veriĄcation. In Proc. Interspeech. 2017. pp. 999Ű1003.

[48] Snyder, D.; Garcia-Romero, D.; Sell, G.; et al.: SPEAKER RECOGNITION FOR
MULTI-SPEAKER CONVERSATIONS USING X-VECTORS.

[49] Snyder, D.; Garcia-Romero, D.; Sell, G.; et al.: X-vectors: Robust DNN embeddings
for speaker recognition. Submitted to ICASSP. 2018.

[50] Snyder, D.; Ghahremani, P.; Povey, D.; et al.: Deep neural network-based speaker
embeddings for end-to-end speaker veriĄcation. In Spoken Language Technology
Workshop (SLT), 2016 IEEE. IEEE. 2016. pp. 165Ű170.

[51] Tranter, S. E.; Reynolds, D. A.: An overview of automatic speaker diarization
systems. IEEE Transactions on audio, speech, and language processing. vol. 14, no. 5.
2006: pp. 1557Ű1565.

[52] Veselý, K.; KaraĄát, M.; Grézl, F.: Convolutive bottleneck network features for
LVCSR. In 2011 IEEE Workshop on Automatic Speech Recognition & Understanding.
IEEE. 2011. pp. 42Ű47.

[53] Veselý, K.; KaraĄát, M.; Grézl, F.; et al.: The language-independent bottleneck
features. In 2012 IEEE Spoken Language Technology Workshop (SLT). IEEE. 2012.
pp. 336Ű341.

[54] Widrow, B.; Lehr, M. A.: 30 years of adaptive neural networks: perceptron, madaline,
and backpropagation. Proceedings of the IEEE. vol. 78, no. 9. 1990: pp. 1415Ű1442.

[55] Wooters, C.; Huijbregts, M.: The ICSI RT07s speaker diarization system. Multimodal
Technologies for Perception of Humans. 2008: pp. 509Ű519.

[56] Xie, W.; Nagrani, A.; Chung, J. S.; et al.: Utterance-level Aggregation For Speaker
Recognition In The Wild. arXiv preprint arXiv:1902.10107. 2019.

47

Appendix A

Content of the CD

• DP.pdf - this document in pdf format

• VBDiarization/ - diarization code from
https://github.com/Jamiroquai88/VBDiarization

– configs/ - directory with conĄguration Ąles

– examples/ - directory with examples, see mainly diarization.py

– models/ - directory containing pre-trained models

– vbdiar/ - code of the library

– LICENCE - Ąle with MIT licence

– README.md - main README with steps how to install this package

– requirements.txt - python requirements Ąle

– setup.py - setup script

• pysid/ - python library for speaker veriĄcation

• evaluator/ - conĄguration Ąles and scripts for evaluation of datasets

48

https://github.com/Jamiroquai88/VBDiarization

	Introduction
	Theoretical Background
	Speaker Recognition
	Voice Activity Detection
	Feature Extraction
	Mel Frequency Cepstral Coefficients
	Bottleneck Features
	Other Feature Sets

	i-vector
	Gaussian Mixture Model

	Neural Networks
	Time-Delay Neural Networks

	x-vector
	E-TDNN x-vector

	Backend
	Linear Discriminant Analysis
	Probabilistic Linear Discriminant Analysis
	Score Normalization

	Diarization
	Variational Bayes
	Segmentation Based Approach
	K-Means

	Experimental Setup
	NIST SRE
	Data
	Training Data
	Evaluation Data

	Evaluation Metrics
	Equal Error Rate
	Cost Model
	Detection Error Tradeoff
	CLLR
	Diarization Error Rate

	Pipeline Setup
	Voice Activity Detection
	Acoustic i-vector
	Phonetic bottleneck i-vector
	x-vector
	Diarization

	Experiments - CMN2 condition
	Baseline Systems
	Backend Experiments
	Domain Adaptation

	Processing Speed

	Experiments - VAST condition
	Baseline Systems
	Domain Specific System
	Diarization in the Loop
	Speaker Diarization Implementation
	Diarization Sufficient for Speaker Verification

	Conclusion
	Experiments Summary
	Future Work

	Bibliography
	Content of the CD

