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Deep convolutional neural networks (CNNs) achieve super-
human results in image analysis but their outputs lack reliable 
information about the uncertainty of their predictions which prevents 
their wide-spread adaptation in medicine.

In this work we:
● Propose and train a CNN for the task of automatic cephalometric 

landmark localization on skull X-rays. This is usually done by a 
dentist manually and is a time-consuming and tedious process.

● Design and implement uncertainty metrics accompanying the 
trained models which are able to provide estimates of how certain 
the network is of its predictions (i.e., how much we should trust the 
predicted landmark positions).

Motivation

CNN learns to predict 19 heatmaps and position of the maximum (in red circle) in each heatmap is treated as the CNN’s landmark prediction.

We proposed three models with corresponding uncertainty measures:

1. Baseline is a CNN based on U-Net [2]. It uses the value of the maximum heatmap activation as a measure of how uncertain the 
CNN is with its prediction (we assume lower values indicate higher uncertainty).
2. Ensemble is an ensemble model of 15 Baseline models based on the work of Lakshminarayanan et al. [3]. 
3. MC-Dropout is a CNN based on U-Net but additionally contains dropout layers which randomly remove some weights from the network 
both during training and evaluation (making the CNN stochastic so that multiple evaluations of the same image do not produce the exact 
same output). Based on the research by Gal et al. [4].

For both Ensemble and MC-Dropout models the prediction mean is used as the final predicted landmark position and the prediction 
variance (of the ensemble members and Monte Carlo samples respectively) as the uncertainty measure. We assume that as variance 
increases so does the models’ uncertainty.

Correlation between skull rotation and the mean uncertainty measures. Uncertainty increases together with rotation for all measures. 
Note that we expect lower heatmap activation values as uncertainty increases and therefore a negative correlation coefficient for this 
measure.

Correlation between elastic distortion magnitude applied to the test set and the corresponding mean uncertainty measures. Uncertainty 
increases together with distortion magnitude for all measures.

Ensemble prediction variance on a rotated cephalogram. Uncertainty increases together with rotation. Ground truth not available.

Ensemble prediction variance on an increasingly distorted cephalogram. Cross marks ground truth landmark positions, star the 
mean predicted position and dots correspond to prediction samples. Uncertainty increases together with distortion strength.

Solution: Landmark Localization

Solution: Uncertainty Measures

● CNN was trained on a dataset [1] of 200 X-ray cephalograms (annotated with 19 landmark positions). 
● Training done via heatmap regression (annotated landmark location is used to create a 2D heatmap with a Gaussian spike at that location).

 Predictions      Predictions with 
uncertainty estimates

Experiment 1: Can Uncertainty Measures Detect Skull Rotation?

Experiment 2: Can Uncertainty Measures Detect Deformed Data?

Conclusion

● Models achieve performance close to state-of-the-art on the studied landmark localization task.
● Uncertainty measures were able to reliably detect data unsuitable for automatic evaluation.
● Research conducted in cooperation with TESCAN 3DIM and is planned to be implemented as a feature in their medical diagnostic software.
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