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Abstract
In this work a novel algorithm for testing language equivalence and inclusion on tree au-
tomata is proposed and implemented as a module in the VATA library. First, existing
approaches to equivalence and inclusion testing on both word and tree automata are exam-
ined. These existing approaches are then modiĄed to create bisimulation up-to congruence
algorithm for tree automata and a formal proof of the soundness of the new algorithm is
provided. Efficiency of this new approach is compared with existing language equivalence
and inclusion testing methods for tree automata, showing the performance of our algorithm
on hard cases is often superior.

Abstrakt
Cílem této práce je navržení efektivních algoritmů pro testování jazykové ekvivalence a in-
kluze stromových automatů a dále pak implementace těchto algoritmů jako rozšíření kni-
hovny VATA. Nejprve je provedena rešerše existujících přístupů testování ekvivalence a in-
kluze slovních i stromových automatů. Z nich poté vychází návrh nového přístupu k testo-
vání ekvivalence a inkluze jazyků stromových automatů založený na bisimulaci vzhledem
ke kongruenci, ke kterému je představen formální důkaz korektnosti. Součástí práce je
také srovnání efektivity představeného algoritmu a již existujících přístupů, které ukazuje,
že na obtížných případech je náš algoritmus často lepší než existující přístupy.
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Rozšířený abstrakt
Cílem této práce je navržení efektivních algoritmů pro testování jazykové ekvivalence a in-
kluze stromových automatů. Stromové automaty jsou rozšířením běžně užívaných slovních
automatů, které umožňují zpracovávat stromy, což jsou acyklické strukturované entity.

Alternativou k využívání stromových automatů je serializace stromů do podoby li-
neárních slov a následné zpracování například pomocí zásobníkových automatů. Výhodou
stromových automatů oproti alternativním přístupům, konkrétně oproti zásobníkovým au-
tomatům, je rozhodnutelnost problémů spojených s jazyky příjmanými stromovými au-
tomaty a uzavřenost vůči základním množinovým operacím nad jazyky. Nad jazyky zá-
sobníkových automatů nelze rozhodnout například inkluzi a třída těchto jazyků není uza-
vřená vůči průniku ani komplementu (případně není uzavřená vůči sjednocení a průniku
pro deterministické zásobníkové automaty). Všechny tyto problémy jsou ale rozhodnutelné
pro stromové automaty.

Proto jsou stromové automaty využívány při veriĄkaci, když je potřeba popsat entity
stromového charakteru a současně potom nad touto reprezentací provádět další operace,
jako je sjednocení nebo průnik jazyků a nebo rozhodovat inkluzi. Konkrétně jsou stromové
automaty využívány v abstraktním regulárním model checkingu pro veriĄkaci dynamických
datových (nejen) struktur tvaru stromu na haldě.

Další oblastí s vazbou na stromové automaty je logika WSkS (weak second-order logic

of k successors), zde existuje spojení mezi logickými formulemi a jazyky stromových au-
tomatů. Ke každé formuli ve WSkS existuje stromový automat popisující hodnoty proměn-
ných ve formuli, kde každému konkrétnímu ohodnocení náleží strom a daný automat tento
strom přijme právě tehdy, když je formule splnitelná s ohodnocením, které odpovídá to-
muto stromu. Rozhodování splnitelnosti WSkS formulí se tedy dá redukovat na problém
(ne)prázdnosti jazyka stromového automatu a otázka, zda je formule platná, zase na prob-
lém univerzality jazyka.

Nejprve je provedena rešerše existujících přístupů testování ekvivalence a inkluze slovních
i stromových automatů. Z nich poté vychází návrh nového přístupu k testování ekvivalence
a inkluze jazyků stromových automatů. K tomuto účelu byl vybrán algoritmus bisimula-

tion up-to congruence, jenž už existoval ve variantě pro slovní automaty. Tento algoritmus
byl v práci netriviálně rozšířen pro využití se stromovými automaty. Zakladní myšlenkou
je synchronní procházení determinizovanými verzemi obou automatů a ověřování, jestli
všechny přechody v jednom automatu lze simulovat v tom druhém a naopak. Tento algo-
ritmus ve výsledku vytvoří bisimulaci mezi stavy vstupních automatů, což je relace spojující
z pohledu zpracování stromů ekvivalentní stavy. Pokud je tato relace vytvořena úspěšně,
znamená to, že vstupní automaty příjmají stejný jazyk a pokud není vytvořena úspěšně, byl
nalezen protipříklad Ů strom příjímaný pouze jedním ze vstupních automatů Ů a automaty
příjímají různé jazyky.

Hlavní rozšíření zlepšující efektivitu testování jazykové ekvivalence je využití kongru-
enčního uzávěru vytvářené relace bisimulace. Pokud je nějaký pár stavů, na který narazí al-
goritmus při synchronním procházení automatů, v kongruenčním uzávěru už známých párů,
je možné takovýto pár vyloučit z dalšího prohledávání, protože je pokryt už prohledanými
páry. To je možné udělat z toho důvodu, že pokud by vedl takto zahozený pár na pro-
tipříklad, musí nutně vést na protipříklad alespoň jeden z párů, které ho pokrývají. Takže
zahození párů z kongručního uzávěru nemá vliv na výsledek testování ekvivalence. Tento
algoritmus byl implementován jako rozšíření knihovny VATA.

K tomuto algoritmu je poté představen formální důkaz korektnosti založený na kompat-
ibilních fukcích, pro které je dokázáno, že jejich aplikace na vytvářenou relaci bisimulace



neovlivňuje výsledek testu jazykové ekvivalence. Poté je dokázáno, že kongruenční uzávěr
je kompatibliní funkce, což dokazuje korektnost celého algoritmu.

Součástí práce je také srovnání efektivity představeného algoritmu a již existujících přís-
tupů, konkrétně srovnání s algoritmy založenými na antichainech (ve variantě bottom-up

i top-down), které ukazuje, že na obtížných případech je náš algoritmus často lepší než tyto
přístupy. Srovnání bylo provedeno na celkem 9025 testovacích případech, z nichž bylo 594
platných ekvivalencí (z toho 499 na neidentických automatech a 95 na identických auto-
matech) a 8426 neplatných ekvivalencí. V případě neplatných ekvivalencí byl algoritmus
bisimulation up-to congruence horší, protože má vyšší nároky na předzpracování vstup-
ních automatů a většina neplatných ekvivalencí byla rozhodnuta dřív, než se projevila lepší
schopnost ořezávat prohledávaný prostor algoritmu bisimulation up-to congrunce. Naopak
pro platné ekvivalence, kde je potřeba prohledat celý stavový prostor obou automatů, pro-
tože není nalezen žádný protipříklad, dokázal algoritmus bisimulation up-to congruence

doběhnout v lepším čase pro většinu případů. V několika případech byl algoritmus bisim-

ulation up-to cogruence dokonce rychlejší o řád.
Cíl projektu se tedy podařilo splnit: byl navrhnut nový algoritmus na testování jazykové

ekvivalence, který je alespoň pro část případů efektivnější, než existující přístupy.
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Chapter 1

Introduction

The Ąeld of formal languages in computer science is heavily based on language classes from
Chomsky hierarchy. A common feature of all those languages is the assumption that the
languages contain linear words only. Therefore each symbol in the word except the last one
is followed by exactly one symbol. Limiting words to strictly linear structures introduces
problems whenever a formal language has to describe entities with deeply inherent structure,
for example the syntax of a programming language or mathematical formulae.

The usual solution uses linearization, which encodes structured entity into a linear word
by means of adding parentheses or other symbols with similar functionality. Those symbols
hold no information about the actual content of the entity, but only deĄne its structure,
artiĄcially increasing the size of the encoding. A bigger issue is that linearization may break
some desired properties of the encoded entities, such as their regular structure.

An alternative solution is to allow languages to contain non-linearly structured words
(words where symbols can have multiple following symbols). Such words then have a
tree structure where nodes represent symbols and edges represent structured information,
thereby naturally and directly describing both content and structure of the underlying
entities without introducing structure-encoding symbols.

For example, a language working with a Boolean algebra over the domain {0, 1} can
contain a word (1*(0+1)) (expressed using linearization with parentheses). This word has a
high ratio of symbols encoding structure information (4 parentheses and 5 content symbols).
If we enable symbols to have multiple successors, the same word can be expressed as the
symbol * followed by symbols 1 and +, where 1 has zero successors and + has successors
0 and 1.

Structured entities linearized with parentheses cannot be reliably parsed with Ąnite word
automata because languages consisting of such words generally belong into the context-free
language family, therefore parsing with a pushdown automaton or a similar tool is required.
But in doing so many desirable properties of regular languages are sacriĄced, especially the
loss of closure properties is problematic for many applications working with context-free
languages.

Finite tree automata (FTA) can be then viewed as an extension of commonly used Ąnite
word automata that allows processing of languages with words that do not have a strictly
linear structure. These automata (and languages they describe) are used in the Ąelds of
veriĄcation, theorem proving, database systems, and language manipulation based on XML
schema [5, 11].

The main advantage of using tree automata is their ability to parse structured entities
directly. Moreover, languages accepted by tree automata retain some desirable closure
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properties that are lost if linearization with parentheses and pushdown automata are used.
Thus tree automata can be more suited for many applications where using closure properties
is necessary or advantageous.

For instance, regular model checking for veriĄcation of safety-critical systems with dy-
namic memory uses Ąnite automata for representing heap objects, where language of the
automaton encodes possible states or value of the corresponding heap object. Language
inclusion and equivalence are important for checking whether a set of possible states of a
given object encoded as an automaton language is closed under the transition relation.

Also there exists a connection between tree languages and models of WSkS formulae,
which can be exploited to decide problems stated in terms of WSkS using language opera-
tions on tree automata [5, 12].

As with regular languages over Ąnite words, regular tree languages (languages accepted
by NFTA) can be tested for language equivalence and inclusion. Especially in the Ąeld of
formal veriĄcation, equivalence and inclusion testing play a major role. Because determining
equivalence and inclusion of NFTA is a problem with an exponential-time worst-case lower
bound [15], there is a strong incentive to develop efficient heuristics that can perform the
test fast on real-world use cases.

1.1 Previous Work

This thesis builds on previous work done in [16] where the Ąrst prototype of bisimulation

up-to congruence over tree automata for the VATA library was presented. In this work
the bisimulation up-to congruence prototype is developed into a fully functional algorithm,
several optimizations are implemented, and its efficiency is compared with state-of-the-art
approaches. Also a formal proof of the correctness of this algorithm is presented.

1.2 Project Goal

The goal of this thesis is to modify bisimulation up-to congruence [3], an existing algorithm
for testing language equivalence over nondeterministic Ąnite word automata, and adapt it
for the use with Ąnite tree automata.

Its main idea is based on optimizing the classical language equivalence testing proce-
dure, which is based on Ąrst determinizing both NFAs and then trying to Ąnd a bisimulation
between their initial states. Bisimulation up-to congruence extends this procedure by elim-
inating some of the checked state pairs based on information gained from already processed
pairs and thus reduces the size of the search space, total number of processed pairs, and
time required to perform language equivalence or inclusion check. This approach was shown
to be an improvement over preceding techniques resulting in signiĄcant reduction in run
times with relative reduction growing with automata size.

However bisimulation up-to congruence was only used with (and its soundness proven
for) Ąnite word automata. Substantial changes for both the algorithm and the proof re-
sulting from different word structures used by word and tree automata are necessary to
successfully adapt this approach for Ąnite tree automata. This includes extension of the
notion of transition function, which is used to compute successors, that would enable com-
puting successors with regard to set operations (union and intersection) on nondeterministic
automata states.
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The main components of this thesis, therefore, are: extension of the transition function
that enables to calculate successors after set operations are performed, implementation of
the modiĄed bisimulation up-to congruence algorithm as an extension of the VATA library
[14], formal proof of the algorithm’s soundness, and comparison with existing equivalence
and inclusion testing approaches already implemented in the VATA library (namely algo-
rithms based on antichains).

1.3 Document Structure

In Chapter 2 theory of Ąnite word automata is examined. There, preliminary information
that is necessary to understand Bisimulation up-to congruence for word automata, on which
the work done in this thesis builds is introduced. This includes the deĄnition of Ąnite word
automaton, regular languages, and examines closure properties of regular and context-free
languages.

In Chapter 3 tree automata are introduced. There, formal deĄnitions of a tree, ranked
alphabet, tree automaton, run of a tree automaton on a tree, and a language accepted
by a tree automaton are provided. Then, bottom-up automata, top-down automata and
determinism are explored and closure properties of the class of regular tree languages are
studied. This chapter also includes several examples of tree automata and their languages,
together with examples of successful and unsuccessful runs and categorization of different
types of tree automata. In Chapter 3.7 deĄnitions for transition function on intersections
and unions of macrostates are proposed and their correctness proven. Those notions are
then used in the proof of bisimulation up-to congruence for tree automata.

Chapter 4 describes existing approaches to equivalence and inclusion testing of the lan-
guages of tree automata (minimization, simulations, and antichains). Those approaches
constitute the state-of-the-art for language equivalence and inclusion testing on tree au-
tomata. Chapter 5 studies the bisimulation up-to congruence algorithm for Ąnite word
automata. This algorithm forms the basis on which this thesis builds and is later modiĄed
for use with tree automata.

In Chapter 6, a modiĄed version of the bisimulation up-to congruence algorithm for
tree automata is proposed and possible optimizations are discussed. First, the textbook
algorithm for inclusion and equivalence testing is presented. This algorithm is then opti-
mized by eliminating repeated calculations of successors. Lastly, this optimized textbook
algorithm is combined with congruence closure for tree automata. Formal proof for this
adapted algorithm is proposed in Chapter 7; it is build in a similar fashion to the proof of
bisimulation up-to congruence for word automata presented in [3]. First, the correctness of
the naive algorithm and the algorithm without repeated successors calculation is proven,
then this proof is extended to cover bisimulation up-to congruence by introducing the notion
of compatible functions and proving that congruence closure is in fact compatible.

Chapter 8 describes technical details of the implementation in the VATA library, fo-
cusing on added cache features and their inĆuence on the overall performance. Lastly,
Chapter 9 provides comparison of bisimulation up-to congruence with existing approaches
for equivalence testing on NFTA implemented in the VATA library, namely algorithms
based on antichains. Also metrics regarding the effectiveness of the congruence closure, its
computational requirements and percentage of processed pairs found in the closure (and
thus eliminated from further search) are presented.
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Chapter 2

Word Automata

Finite word automaton is a type of state machine that takes words as inputs and determines
whether the input has certain properties. The range of properties Ąnite word automata can
reliably check is somewhat limited, in fact, they are able to check exactly the same properties
as those that can be expressed using regular expressions. Finite word automata therefore
are one of the tools that can be used to deĄne and recognize regular languages [17].

The class of regular languages is both prominent, forming a foundation of Chomsky
hierarchy, and widely used in computer science. And because Ąnite word automata are
a natural tool for describing those languages, they are routinely used in many Ąelds of
computer science. Finite word automata are for example used for lexicographic analysis,
modeling of state systems, text manipulation and matching, and representing dynamic heap
objects in regular model checking.

To be able to recognize more complex languages than regular ones, it is necessary to use
other tools. One possibility is to use pushdown automata but this sacriĄces desirable closure
properties, intersection and union for deterministic pushdown automata for example [17].
Again, many languages cannot be recognized by using pushdown automata, but consider-
able portion of languages arising from computer science problems can. Other possibility is
to recognize languages by simulating Turing machines, but this approach can be extremely
inefficient [17]. The last possibility, offering similar language recognizing abilities as push-
down automata and retaining closure properties of regular languages, are tree automata.
However, this requires extending the notion of word and the resulting class of languages
cannot be directly compared with regular or context free languages as a consequence.

Finite word automata can be viewed as a foundation tool for language recognition on
which many others are build by extending their abilities.

2.1 Word Automata Preliminaries

Word automata are built on the notions of alphabets, words, and languages. This section
therefore brieĆy introduces these concepts. The notions in this section are taken from [17].

Alphabet Σ is a Ąnite nonempty set of elements called symbols. A word over alphabet
Σ is a Ąnite sequence of symbols from Σ. Words over Σ can be deĄned recursively as

1. 𝜖, is a word (called the empty word) and

2. if 𝑤 is a word over Σ and 𝑎 ∈ Σ then 𝑤𝑎 is a word over Σ.
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These rules can be used do deĄne the set of all words over Σ, denoted Σ*:

Σ* = {𝑤 | 𝑤 can be constructed using Ąnitely many applications of rules 1 and 2}. (2.1)

A language 𝐿 over Σ is any set of words constructed using only symbols from Σ, i. e.,

𝐿 ⊆ Σ*. (2.2)

2.2 Finite Word Automata

A nondeterministic Ąnite word automaton (NFA) is a quintuple

𝒜 = (𝑄, 𝛿,Σ, 𝑠0, 𝐹 ), (2.3)

where

• 𝑄 is a Ąnite non-empty set of states,

• 𝛿 is a transition function 𝛿 : 𝑄× Σ→ 2Q,

• Σ is an alphabet,

• 𝑠0 is the initial state, 𝑠0 ∈ 𝑄 and

• 𝐹 is the set of accepting states, 𝐹 ⊆ 𝑄.

The notation 𝑝
a
−→ 𝑞 is used to denote that 𝑞 ∈ 𝛿(𝑝, 𝑎).

2.2.1 Determinism

Deterministic Ąnite word automata (DFA) are a special class of nondeterministic Ąnite word
automata where the size of the right-hand side of transition rules is restricted. A determin-
istic Ąnite word automaton is a quintuple 𝒜 = (𝑄, 𝛿,Σ, 𝑠0, 𝐹 ) where 𝑄, 𝛿,Σ, 𝑠0, 𝐹 have the
same deĄnition as in nondeterministic tree automata and

∀𝑝 ∈ 𝑄, ∀𝑎 ∈ Σ : |𝛿(𝑝, 𝑎)| ≤ 1. (2.4)

All NFAs can be determinized [17] and all DFAs are by deĄnition also NFAs. Therefore,
they recognize the same class of languages called regular languages. For convenience, deter-
ministic version of word automata are used in deĄnitions of a run and the accepted language

of the NFA, but these deĄnitions can be applied to nondeterministic word automata because
they can be converted to equivalent deterministic automata.

To deĄne a run of an automaton on a word, we use a multi-step version of the transition
function 𝛿 : 𝑄× Σ* → 𝑄. This multi-step transition function is deĄned recursively as

1. 𝛿(𝑞, 𝜖) = 𝑞,

2. 𝛿(𝑞, 𝑤𝑎) = 𝛿(𝛿(𝑞, 𝑤), 𝑎).

The language of an automaton 𝒜 = (𝑄, 𝛿,Σ, 𝑠0, 𝐹 ), denoted 𝐿(𝒜), is the set of all words
over Σ for which there exists a multi-step transition into the accepting state, formally

𝐿(𝒜) = {𝑤 | 𝛿(𝑠0, 𝑤) ∈ 𝐹}. (2.5)
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Table 2.1: Closure properties of regular languages, deterministic context-free languages,
and context-free languages. Source: [13]

Class of languages
Operation Regular Deterministic context-free Context-free
Union Yes No Yes
Intersection Yes No No
Complement Yes Yes No
Concatenation Yes No Yes
Iteration Yes No Yes

2.3 Closure Properties

Regular languages are closed (among others) under operations listed in Table 2.1. Closure
properties are used for example in abstract regular model checking, where word automata
representing dynamic heap objects undergo transformations that model operations per-
formed on those objects, then, it is checked if the resulting object is not in some invalid
state. This can be expressed using operations under which regular languages are closed
and it guarantees that regular language representing dynamic heap object will stay regular
during the whole process.

To illustrate why pushdown automata may not be the best choice for applications work-
ing with more complex languages (abstract regular model checking of programs containing
tree structured heap objects for example), closure properties of deterministic and nonde-
terministic context-free languages are included.
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Chapter 3

Tree Automata

Finite tree automata are tools for describing languages containing trees. They are similar
to Ąnite word automata in both their components and operations but they require an
extended alphabet (called a ranked alphabet) to allow symbols to have more than one
successor. Ranked alphabet is deĄned in Section 3.1.

Finite tree automata can be further divided based on determinism (Section 3.5) and
direction in which trees are parsed.

Parsing can either start with the root symbol and progress in the top-down direction
gradually expanding from the root symbol and assigning states to nodes as they are pro-
cessed until all leaf nodes are reached, or start with leaf nodes progressing in the bottom-up
direction, eventually reaching the root node.

In contrast to Ąnite word automata, where the direction of parsing does not affect their
ability to parse words (forward automata can be converted to backward automata by sim-
ply switching direction of all transitions, making initial state accepting, and creating a new
starting state that can make a transition into previously accepting states), Ąnite tree au-
tomata can only be reliably converted from one direction into another in a nondeterministic
form, because bottom-up deterministic Ąnite tree automata are strictly stronger than their
top-down counterparts [5].

This difference stems from the tree structure, where when traversing in the bottom-up
direction, states of all child nodes need to be used to determine the state of the parent
node, whereas in the top-down direction a single state of the parent node must determine
states of all children nodes.

3.1 Ranked Alphabet

A ranked alphabet Σ is a Ąnite set of symbols, together with a total ranking function
𝑟𝑎𝑛𝑘 : Σ → N. The ranking function determines the arity of each symbol (number of
successors).

For example, the following ranked alphabet can be used to construct syntax trees from
the language of basic arithmetical expressions using symbols +,−,×,÷, and numbers:

Σarith = {+,−,×,÷, 𝑛} 𝑟𝑎𝑛𝑘 = {+ ↦→ 2,− ↦→ 2, 𝑛 ↦→ 0,
× ↦→ 2,÷ ↦→ 2},

(3.1)

where all arithmetical operators are binary (having a rank of 2) and n, representing a
number, is nullary (having a rank of 0). Symbols with the rank 0 are called leaf symbols
or leaves because they terminate branches of trees.
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3.2 Tree

A tree 𝑡 over a ranked alphabet Σarity is a function 𝑡 : 𝑃𝑜𝑠(𝑡)→ Σarity where

• 𝑃𝑜𝑠(𝑡) ⊆ N
*,

• 𝑃𝑜𝑠(𝑡) is nonempty and preĄx closed, i. e.,
∀𝑢, 𝑣 ∈ N

* : 𝑢𝑣 ∈ 𝑃𝑜𝑠(𝑡) =⇒ 𝑢 ∈ 𝑃𝑜𝑠(𝑡), and

• ∀𝑝 ∈ 𝑃𝑜𝑠(𝑡) : 𝑎 = 𝑡(𝑝) =⇒ {𝑗 ∈ N | 𝑝𝑗 ∈ 𝑃𝑜𝑠(𝑡)} = {1, . . . , 𝑟𝑎𝑛𝑘(𝑎)}.

For example a formal deĄnition of the tree 𝑡1, depicted in Figure 3.1a, is

𝑡1 = {𝜖 ↦→ +, 1 ↦→ 𝑛, 2 ↦→ ×, 21 ↦→ 𝑛, 22 ↦→ 𝑛}. (3.2)

3.3 Bottom-up Tree Automata

A bottom-up nondeterministic finite tree automaton (NFTA) is a quadruple

𝒜 = (𝑄,∆,Σ, 𝐹 ), (3.3)

where

• 𝑄 is a Ąnite non-empty set of states,

• ∆ is a Ąnite partial transition function ∆ : 𝑄* × Σarity → 2Q such that if
∆((𝑝1, . . . , 𝑝n), 𝑎) = 𝑃 then 𝑟𝑎𝑛𝑘(𝑎) = 𝑛,

• Σ is a ranked alphabet and

• 𝐹 is the set of accepting states, 𝐹 ⊆ 𝑄.

The notation (𝑝1, . . . , 𝑝n)
a
−→ 𝑞 is used to denote that 𝑞 ∈ ∆((𝑝1, . . . , 𝑝n), 𝑎).

3.3.1 Run

Let 𝑡 be a tree and 𝒜 = (𝑄,∆,Σ, 𝐹 ) be a NFTA. A run of 𝒜 over a tree 𝑡 is a mapping
𝑟t : 𝑃𝑜𝑠(𝑡)→ 𝑄 consistent with ∆, i. e.,

∀𝑝 ∈ 𝑃𝑜𝑠(𝑡), ∃(𝑞1, . . . , 𝑞n)
a
−→ 𝑞 :

(︀

𝑛 = 𝑟𝑎𝑛𝑘(𝑡(𝑝)) ∧ 𝑞 = 𝑟t(𝑝) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : 𝑞i = 𝑟t(𝑝𝑖)
)︀

.
(3.4)

The run 𝑟t is called accepting if 𝑟t(𝜖) ∈ 𝐹 . An example of a successful run 𝑟t1 on 𝑡1 is
depicted in Figure 3.1b and its formal deĄnition is

𝑟t1 = {𝜖 ↦→ 𝑞, 1 ↦→ 𝑝, 2 ↦→ 𝑞, 21 ↦→ 𝑝, 22 ↦→ 𝑝}. (3.5)

3.3.2 Language

Language accepted by a NFTA 𝒜 = (𝑄,∆,Σarity, 𝐹 ), denoted 𝐿(𝒜), is the set of all trees
for which there exist an accepting run 𝑟t compatible with ∆, formally

𝐿(𝒜) = {𝑡 | ∃𝑟t : 𝑟t is a run of 𝒜 on 𝑡 ∧ 𝑟t(𝜖) ∈ 𝐹}. (3.6)
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+

×n

n n

(a) A tree 𝑡1 representing the arithmetical
expression (𝑛+ (𝑛× 𝑛)).

+

×n

n n

1: p

2: p 3: p

4: q

5: q

(b) Bottom-up run 𝑟t1 of automaton 𝒜1 from
Section 3.3 over the tree 𝑡1 from Figure 3.1a;
the tree is accepted.

Figure 3.1: A tree structured entity and an example of a run.

3.3.3 Examples

Let 𝒜1 = (𝑄,∆,Σarity, 𝐹 ) be an automaton accepting the language of nontrivial arith-
metical expressions (no expressions consisting of single number) composed using addition,
subtraction, multiplication, and division deĄned as follows:

• 𝑄 = {𝑝, 𝑞},

• ∆ : (𝑝, 𝑝)
op
−→ 𝑞 (𝑞, 𝑝)

op
−→ 𝑞 ()

n
−→ 𝑝

(𝑝, 𝑞)
op
−→ 𝑞 (𝑞, 𝑞)

op
−→ 𝑞 for 𝑜𝑝 ∈ {+,−,×,÷}

• Σarith is the example alphabet from Section 3.1, and

• 𝐹 = {𝑞}.

An example of a tree accepted by 𝒜1 is in Figure 3.1a. The run 𝑟t1 is constructed in
Ąve steps (Figure 3.1b). In the Ąrst three steps, the state 𝑝 is assigned to leaves using the
transition ()

n
−→ 𝑝. In step 4 the state 𝑞 is assigned to the node with × using the transition

(𝑝, 𝑝)
×
−→ 𝑞. In the last step the state 𝑞 is assigned to the node with + using the transi-

tion (𝑝, 𝑞)
+
−→ 𝑞. The root node is labelled with the state 𝑞 and the labelling process is

terminated. Because 𝑞 is an accepting state, the tree 𝑡1 belongs to the language of 𝒜1.
For examples of rejected trees, let 𝒜2 = (𝑄,∆,Σarity, 𝐹 ) be an automaton accepting

only expressions without subtraction and with multiplication as the root operation deĄned
as follows:

• 𝑄 = {𝑝, 𝑞, 𝑟},

• ∆ : ()
n
−→ 𝑝

(𝑝, 𝑝)
op
−→ 𝑝 (𝑝, 𝑝)

−
−→ 𝑟 (𝑝, 𝑝)

×
−→ 𝑞

(𝑝, 𝑞)
op
−→ 𝑝 (𝑝, 𝑞)

−
−→ 𝑟 (𝑝, 𝑞)

×
−→ 𝑞

(𝑞, 𝑝)
op
−→ 𝑝 (𝑞, 𝑝)

−
−→ 𝑟 (𝑞, 𝑝)

×
−→ 𝑞

(𝑞, 𝑞)
op
−→ 𝑝 (𝑞, 𝑞)

−
−→ 𝑟 (𝑞, 𝑞)

×
−→ 𝑞

for 𝑜𝑝 ∈ {+,÷}
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×n

n n

1: p

2: p 3: p

4: q

5: p

(a) Bottom-up run of 𝒜2 from Section 3.3
over 𝑡1; the root node is reached with a non-
accepting state and the tree is rejected.

+

−n

n n

1: p

2: p 3: p

4: r

(b) Bottom-up run of 𝒜2 from Section 3.3

over 𝑡2; no transition with (𝑝, 𝑟)
−

−→ on the
left-hand side exists, the tree is rejected.

Figure 3.2: Examples of rejected trees.

• Σarith is the example alphabet from Section 3.1,

• 𝐹 = {𝑞}.

Note that accepting the state 𝑞 can only be reached immediately after processing a node
with the multiplication symbol ×, processing the subtraction symbol − assigns to the node
the state 𝑟, for which there is no follow-up transition, and using any other transition assigns
the non-accepting state 𝑝.

The example in Figure 3.2a labels the root node with state 𝑝 in step 5. Because state 𝑝
assigned to the root node is not an accepting state, the tree is rejected. Another example
in Figure 3.2b shows a partially labelled tree after matching four transitions. In step 5 a
transition with (𝑝, 𝑟)

+
−→ on the left-hand side is required to label the root node, however,

no such transition exists in the automaton 𝒜2 so the tree is rejected.

3.4 Top-down Tree Automata

A top-down nondeterministic Ąnite tree automaton is a quadruple

𝒜 = (𝑄,∆,Σ, 𝐼), (3.7)

where

• 𝑄 is a Ąnite non-empty set of states,

• ∆ is a transition function ∆ : 𝑄 × Σarity → 2Q
*

such that if (𝑝1, . . . , 𝑝n) ∈ ∆(𝑝, 𝑎)
then 𝑟𝑎𝑛𝑘(𝑎) = 𝑛,

• Σ is a ranked alphabet and

• 𝐼 is the set of initial (root) states, 𝐼 ⊆ 𝑄.

The notation 𝑝
a
−→ (𝑝1, . . . , 𝑝n) is used to denote that (𝑝1, . . . , 𝑝n) ∈ ∆(𝑝, 𝑎). Note that the

right-hand side of a transition can be an empty sequence i. e. (), denoted as null in this
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+n

n n

1: p 
2: null 1: q

    q

3: p 
4: null

3: p 
5: null

(a) Successful top-down run of 𝒜3 over 𝑡1; all
leaf nodes labelled null.

+

n+

n n

1: q

    q

1: p

(b) Failed top-down run of 𝒜3 over 𝑡3; no

transition with 𝑝
+
−→ on the left-hand side.

Figure 3.3: Examples of top-down runs.

document. Transitions with null on the right-hand side represent termination of processing
at leaf node level and correspond to leaf transitions in bottom-up NFTA. Top-down run
construction is terminated when all leaf nodes are processed and are labelled null (tree is
accepted) or when there is no applicable transition (tree is rejected).

3.4.1 Examples

Let 𝒜3 = (𝑄,∆,Σarith, 𝐼) be an automaton accepting language of arithmetical addition
expressions with right-to-left associativity where any other order of evaluation is rejected,
deĄned as follows:

• 𝑄 = {𝑝, 𝑞},

• ∆ : 𝑝
n
−→ null , 𝑞

+
−→ (𝑝, 𝑞), 𝑞

+
−→ (𝑝, 𝑝),

• Σarith is the example alphabet from Section 3.1, and

• 𝐼 = {𝑝}.

The example run in Figure 3.3a reached and labelled all leaf nodes null (i. e. the tree
𝑡1 is accepted) and the example run in Figure 3.3b reached a node + with the state 𝑝 but

no transition with 𝑝
+
−→ on the left-hand side exists (the tree 𝑡3 is rejected).

3.5 Determinism

As in the case of Ąnite word automata, tree automata also exist in deterministic and non-
deterministic variants. Both bottom-up tree automata and top-down tree automata in
nondeterministic variants can recognize the same class of languages, called the class of
the regular tree languages [5].

This class of languages is the same as the one recognized by deterministic bottom-up
tree automata (every nondeterministic tree automaton can be converted to a determinis-
tic bottom-up tree automaton accepting the same language [5]). Deterministic top-down
automata recognize a strict subclass of that class.
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A deterministic tree automaton differs from a nondeterministic one only in the deĄni-
tion of transition rules. A bottom-up deterministic tree automaton (DFTA) is a quadruple
(𝑄,∆,Σ, 𝐹 ) where 𝑄,Σ, and 𝐹 are the same as in the nondeterministic bottom-up automa-
ton and the signature of the transition function ∆ is as follows:

∆ : 𝑄* × Σ→ 𝑄. (3.8)

On the other hand a top-down deterministic tree automaton is a quadruple (𝑄,∆,Σ, 𝐼)
where 𝑄,Σ, and 𝐼 are the same as in the nondeterministic top-down automaton and the
signature of the transition function ∆ is as follows:

∆ : 𝑄× Σ→ 𝑄*. (3.9)

In other words deterministic tree automata are a special class of nondeterministic tree
automata, where

∀𝑝1, . . . , 𝑝n ∈ 𝑄, ∀𝑎 ∈ Σ : |∆((𝑝1, . . . , 𝑝n), 𝑎)| ≤ 1 for bottom-up automata or (3.10)

∀𝑝 ∈ 𝑄, ∀𝑎 ∈ Σ : |∆(𝑝, 𝑎)| ≤ 1 for top-down automata. (3.11)

Determinization is done by subset construction. Every set of transitions with the same
left-hand side and symbol is merged into a single transition. The new transition retains the
same left-hand side and symbol but on right-hand side it has a macrostate (a set of states
of the original automaton) consisting of states that are on the right-hand side of individual
transitions. Algorithm for subset construction on a bottom-up automaton is described in
Section 4.2.2.

Many advanced methods for inclusion and equivalence testing use determinization on

the fly, where the input automaton is nondeterministic and the subset construction is done
during the algoritm run by constructing macrostates for nodes that are being examined,
thus keeping the whole process deterministic even while working with a nondeterministic
automaton.

Bisimulation up-to congruence (the technique that is being adapted to use with tree
automata in this thesis) has nondeterministic automata as the input and relies on deter-
minization on the fly to construct macrostate pairs of Algorithm 7.

3.6 Closure Properties

Closure properties of regular tree languages are similar to closure properties of regular word
languages (Table 3.1). Therefore they are well suited for applications where repeatedly
performing certain operations on tree structures is required (abstract regular tree model
checking for example). Note that the notions of concatenation and iteration lose their
meaning for tree languages and therefore are excluded from the table.

Table 3.1: Closure properties of regular word and tree languages. Source: [13, 5]

Operation Regular word languages Regular tree language
Union Yes Yes
Intersection Yes Yes
Complement Yes Yes
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3.7 Transitions on Macrostates

This section deĄnes new notions of transition functions on macrostates and their behaviour
with regard to set operations performed on macrostates for bottom-up NTFAs. Notably
how the result of a transition function ∆ changes after application of a set operation on
the parameters of ∆.

For the sake of simplicity the following deĄnitions only consider symbols with arity 2.
Constructs and operations used in those deĄnitions are, however, not limited in any way
by this choice only and can be extended to any other arity.

For all deĄnitions in this section let 𝒜 = (𝑄,∆,Σ, 𝐹 ) be a nondeterministic Ąnite tree
automaton and assume that 𝑟𝑎𝑛𝑘(𝑎) = 2 for some 𝑎 ∈ Σ.

Definition 1 (Symbol SpeciĄc Successor). Symbol specific successor is a function that

produces successor for a given pair of states reachable by using only the selected symbol a

∆a(𝑝1, 𝑝2) = 𝑃 ⇔ ∆((𝑝1, 𝑝2), 𝑎) = 𝑃. (3.12)

Definition 2 (Macrostate Successor). Macrostate successor is an extension of regular tran-

sition function that allows macrostates to be present at the left-hand side of the rules. For-

mally ∆a : (2Q)2 → 2Q is defined as

∆a(𝑃1, 𝑃2) =
⋃︁

p1∈P1,p2∈P2

∆a(𝑝1, 𝑝2). (3.13)

Definition 3 (Arbitrary State Successor). Arbitrary state, denoted _, is used to indicate

that any state from 𝑄 is permited at the given position. It is in fact defined using macrostate

successor of 𝑄. The notation _ is used to remove explicit reference to 𝑄 in favour of

arbitrary state independent from automaton definition. Arbitrary state successor is then

defined as

∆a(𝑃,_) = ∆a(𝑃,𝑄) (3.14)

∆a(_, 𝑃 ) = ∆a(𝑄,𝑃 ) (3.15)

∆a(_,_) = ∆a(𝑄,𝑄). (3.16)

These deĄnitions can be now used to describe behaviour of the transition function when
set operations are applied. This is important mainly in Chapter 7 where set operations on
macrostates are used in the proof of bisimulation up-to congruence correctness.

Lemma 1 (Macrostate Intersection).

∆a(𝑃1 ∩ 𝑃 ′
1, 𝑃2 ∩ 𝑃 ′

2) = ∆a(𝑃1, 𝑃2) ∩∆a(𝑃
′
1, 𝑃

′
2) (3.17)

Proof.

∆a(𝑃1 ∩ 𝑃 ′
1, 𝑃2 ∩ 𝑃 ′

2) =

{𝑝 | (𝑝1, 𝑝2)
a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃1 ∩ 𝑃 ′

1 ∧ 𝑝2 ∈ 𝑃2 ∩ 𝑃 ′
2} =

{𝑝 | (𝑝1, 𝑝2)
a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃1 ∧ 𝑝1 ∈ 𝑃 ′

1 ∧ 𝑝2 ∈ 𝑃2 ∧ 𝑝2 ∈ 𝑃 ′
2} =

{𝑝 | (𝑝1, 𝑝2)
a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃1 ∧ 𝑝2 ∈ 𝑃2 ∧ 𝑝1 ∈ 𝑃 ′

1 ∧ 𝑝2 ∈ 𝑃 ′
2} =

{𝑝 | ((𝑝1, 𝑝2)
a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃1 ∧ 𝑝2 ∈ 𝑃2) ∧ ((𝑝1, 𝑝2)

a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃 ′

1 ∧ 𝑝2 ∈ 𝑃 ′
2)} =

{𝑝 | (𝑝1, 𝑝2)
a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃1 ∧ 𝑝2 ∈ 𝑃2} ∩ {𝑝 | (𝑝1, 𝑝2)

a
−→ 𝑝 ∧ 𝑝1 ∈ 𝑃 ′

1 ∧ 𝑝2 ∈ 𝑃 ′
2} =

∆a(𝑃1, 𝑃2) ∩∆a(𝑃
′
1, 𝑃

′
2).
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Macrostate intersection can be used to separate operations on the speciĄc child node
from operations performed on other child nodes. First, successors are calculated for every
single child node using arbitrary state successor notation for surrounding child nodes and
those successors are then combined using macrostate intersection.

Lemma 2 (Node-wise Successor).

∆a(𝑃1, 𝑃2) = ∆a(𝑃1,_) ∩∆a(_, 𝑃2) (3.18)

Proof.

∆a(𝑃1, 𝑃2) = /* because 𝑃1, 𝑃2 ⊆ 𝑄 */

∆a(𝑃1 ∩𝑄,𝑄 ∩ 𝑃2) = /* Lemma 1 */

∆a(𝑃1, 𝑄) ∩∆a(𝑄,𝑃2) = /* DeĄnition 3 */

∆a(𝑃1,_) ∩∆a(_, 𝑃2).

Lemma 3 (Node-wise Union).

∆a(𝑃1 ∪ 𝑃2,_) = ∆a(𝑃1,_) ∪∆a(𝑃2,_) (3.19)

Proof.

∆a(𝑃1 ∪ 𝑃2,_) =

{𝑝′ | (𝑝, 𝑞)
a
−→ 𝑝′ ∧ 𝑝 ∈ 𝑃1 ∪ 𝑃2 ∧ 𝑞 ∈ 𝑄} =

{𝑝′ | ((𝑝, 𝑞)
a
−→ 𝑝′ ∧ 𝑞 ∈ 𝑄) ∧ (𝑝 ∈ 𝑃1 ∨ 𝑝 ∈ 𝑃2)} =

{𝑝′ | ((𝑝, 𝑞)
a
−→ 𝑝′ ∧ 𝑞 ∈ 𝑄 ∧ 𝑝 ∈ 𝑃1) ∨ ((𝑝, 𝑞)

a
−→ 𝑝′ ∧ 𝑞 ∈ 𝑄 ∧ 𝑝 ∈ 𝑃2)} =

{𝑝′ | (𝑝, 𝑞)
a
−→ 𝑝′ ∧ 𝑞 ∈ 𝑄 ∧ 𝑝 ∈ 𝑃1} ∪ {𝑝

′ | (𝑝, 𝑞)
a
−→ 𝑝′ ∧ 𝑞 ∈ 𝑄 ∧ 𝑝 ∈ 𝑃2} =

∆a(𝑃1,_) ∪∆a(𝑃2,_).

Lemma 4 (Macrostate union).

∆a(𝑃1 ∪ 𝑃 ′
1, 𝑃2 ∪ 𝑃 ′

2) =
⋃︁

(R,S)∈{P1,P2}×{P ′

1
,P ′

2
}

∆a(𝑅,𝑆) (3.20)

Proof.

∆a(𝑃1 ∪ 𝑃 ′
1, 𝑃2 ∪ 𝑃 ′

2) = /* Lemma 2 */

∆a(𝑃1 ∪ 𝑃 ′
1,_) ∩∆a(_, 𝑃2 ∪ 𝑃 ′

2) = /* Lemma 3 */

(∆a(𝑃1,_) ∪∆a(𝑃
′
1,_)) ∩ (∆a(_, 𝑃2) ∪∆a(_, 𝑃 ′

2)) =

((∆a(𝑃1,_) ∩∆a(_, 𝑃2)) ∪ ((∆a(𝑃1,_) ∩∆a(_, 𝑃 ′
2))∪

((∆a(𝑃
′
1,_) ∩∆a(_, 𝑃2)) ∪ ((∆a(𝑃

′
1,_) ∩∆a(_, 𝑃 ′

2)) = /* Lemma 2 */

∆a(𝑃1, 𝑃2) ∪∆a(𝑃1, 𝑃
′
2) ∪∆a(𝑃

′
1, 𝑃2) ∪∆a(𝑃

′
1, 𝑃

′
2) =

⋃︁

(R,S)∈{P1,P2}×{P ′

1
,P ′

2
}

∆a(𝑅,𝑆).
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Chapter 4

Current Status of Equivalence and

Inclusion Testing on Tree Automata

Testing inclusion and equivalence on tree automata can be done using several different tech-
niques. First, there is the approach based on removal of unreachable states, determinization,
and minimization described in Section 4.2. Because every minimal tree automaton is unique
(up to isomorphism), equivalence can be determined by directly comparing minimized ver-
sions of input automata for isomorphism [4, 5].

Using determinization can be complicated by the state space explosion because de-
terminized automaton can be exponentially larger than the original automaton [5]. Thus
performing determinization before equivalence checking is resource-intensive, decreasing the
overall performance of this approach. Moreover, even if equivalence can be disproven by
Ąnding a counterexample using only portion of the input automaton, the determinization
and minimization will build the whole minimized automaton Ąrst and check equivalence
later, leading to poor performance on nonequivalent automata pairs.

An alternative is to use on the fly determinization. This approach does not generate
the whole determinized automaton right away. Instead, only a partial determinization for
macrostates that were encountered is computed [2]. In the worst case, where all macrostates
were encountered, the whole automaton is determinized.

Because two automata accept the same language if there is a bisimulation relating them,
determinization on-the-fly and bisimulation is used to decide language equivalence. This
algorithm starts with pairs of macrostates of leaf nodes and there is an assumption that a
bisimulation relating them exists. Iteratively, successor pairs are generated for known pairs.
Those successors constitute proof obligations that need to be satisĄed to prove the initial
assumption. This process is repeated until a failed obligation is found (counterexample) or
no unprocessed proof obligation is left (the initial assumption holds). This allows for early
termination of the whole process if a counterexample is found [2, 6, 9].

These techniques can further be aided by tools that prune the searched macrostate
pair space. The antichain approach (Section 4.3), deĄned in [9], uses the identity relation,
which implies language equivalence, to prune the search space [2, 9]. Simulation-based
approaches (Section 4.3.1) are generalized versions of antichains that allow the use of any
relation that implies language inclusion, but they are not complete (simulation implies
language inclusion but not vice versa) [2]. And, Ąnally, the antichain approach can be
combined with simulation to obtain a combined method (Section 4.4) [2].
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input : 𝒜 = (𝑄A,∆A,Σ, 𝐹A) a nondeterministic tree automaton
output: ℬ = (𝑄B,∆B,Σ, 𝐹B) a NTFA without bottom-up unreachable states such

that 𝐿(𝒜) = 𝐿(ℬ)

1 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒← ∅
2 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← ∅
3 do

4 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠← 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

5 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒← {𝑞 ∈ 𝑄A | 𝑎 ∈ Σ ∧ 𝑞1, . . . , 𝑞n ∈ 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ∧ (𝑞1, . . . , 𝑞n)
a
−→ 𝑞 ∈ ∆A}

6 while 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 ̸= 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒
7 𝑄B ← 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒
8 𝐹B ← 𝐹A ∩ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒

9 ∆B ← {(𝑞1, . . . , 𝑞n)
a
−→ 𝑞 | (𝑞1, . . . , 𝑞n)

a
−→ 𝑞 ∈ ∆A ∧ 𝑞, 𝑞1, . . . , 𝑞n ∈ 𝑟𝑒𝑎𝑐ℎ𝑎𝑏𝑙𝑒}

Algorithm 1: Removal of bottom-up unreachable states from a nondeterministic tree
automaton. Source: [5]

4.1 Inclusion and Equivalence

Even though asking whether two languages are the same (equivalence) or one is a subset of
the other (inclusion) may seem as two distinct questions, there is a mathematical connection
between these two problems.

Because 𝐴 ⊆ 𝐵∧𝐵 ⊆ 𝐴⇔ 𝐴 = 𝐵 and 𝐴∪𝐵 = 𝐵 ⇔ 𝐴 ⊆ 𝐵, being able to test inclusion
can also be used to determine equivalence and vice versa (provided language union can be
computed [5]).

Therefore, algorithms described in this document may be speciĄcally designed to solve
only one of these problems, but can also be utilized to solve the other by exploiting this
connection.

4.2 Direct Comparison

For every regular tree language, there exists a unique minimal (in the number of states
and up to isomorphism) automaton that recognizes the given language [5]. Because of this,
a viable way to test language equivalence is to convert the input automata into minimal
automata accepting the same languages. These minimal automata can then be directly
compared with each other. If there is a one-to-one correspondence between states and
transitions in both automata (there exists an isomorphism relating the two) then they
accept the same language. The process of minimization consists of the following steps:
removal of unreachable states, determinization, and, Ąnally, the minimization itself.

4.2.1 Removal of Bottom-up Unreachable States

In the Ąrst step, unreachable states and corresponding transitions are removed from the
input nondeterministic tree automaton. This process is described in Algorithm 1.

Starting with an empty set of reachable states, new states are added to the set iteratively
if there is a transition rule with the left-hand side consisting of states already in the set.
Note that leaf rules have no state on their left-hand side and states they produce are added
into the set reachable in the Ąrst iteration forming the basis for the following iterations

18



input : ℬ = (𝑄B,∆B,Σ, 𝐹B) an automaton without bottom-up unreachable states
output: 𝒞 = (𝑄C ,∆C ,Σ, 𝐹C) a deterministic automaton without bottom-up

unreachable states such that 𝐿(ℬ) = 𝐿(𝒞)

1 𝑄C ← ∅
2 ∆C ← ∅
3 ∆′

C ← ∅
4 do

5 ∆′
C ← ∆C

6 ∆C ← ∆C ∪ {(𝑃1, . . . , 𝑃n)
a
−→ 𝑃 | 𝑎 ∈ Σ ∧ 𝑃1, . . . , 𝑃n ∈ 𝑄C ∧ 𝑃 = {𝑞 | ∃𝑞1 ∈

𝑃1, . . . 𝑞n ∈ 𝑃n, (𝑞1, . . . 𝑞n)
a
−→ 𝑞 ∈ ∆B}}

7 𝑄C ← {𝑃 | ∃𝑃1, . . . , 𝑃n ∈ 𝑄C , (𝑃1, . . . , 𝑃n)
a
−→ 𝑃 ∈ ∆C}

8 while ∆C ̸= ∆′
C

9 𝐹C ← {𝑃 | 𝑃 ∈ 𝑄C ∧ 𝑃 ∩ 𝐹B ̸= ∅}

Algorithm 2: Determinization of a tree automaton. Source: [5]

input : 𝒞 = (𝑄C ,∆C ,Σ, 𝐹C) a deterministic automaton without bottom-up
unreachable states

output: 𝒟 = (𝑄D,∆D,Σ, 𝐹D) a minimal tree automaton such that 𝐿(𝒞) = 𝐿(𝒟)

1 𝐸 ← {𝐹C , 𝑄C ∖ 𝐹C}
2 𝐸′ ← ∅
3 while 𝐸 ̸= 𝐸′ do

4 𝐸′ ← 𝐸

5 𝑞𝐸𝑞′ ⇔ 𝑝𝐸′𝑝′ ∧ ∀𝑎 ∈ Σ, (𝑞1, . . . , 𝑞i−1, 𝑞, 𝑞i+1, . . . , 𝑞n)
a
−→ 𝑝 ∈ ∆C ∧

(𝑞1, . . . , 𝑞i−1, 𝑞
′, 𝑞i+1, . . . , 𝑞n)

a
−→ 𝑝′ ∈ ∆C

6 end

7 𝑄D ← {[𝑞] | [𝑞] is an equivalence class in 𝐸}

8 ∆D ← {([𝑞1], . . . , [𝑞n])
a
−→ [𝑞] | (𝑞1, . . . , 𝑞n)

a
−→ 𝑞 ∈ ∆C}

9 𝐹D ← {[𝑞] | 𝑞 ∈ 𝐹C}

Algorithm 3: Minimization of deterministic tree automaton. Source: [5]

to grow from. This process is repeated until no new state can be added into the set.
An automaton without bottom-up unreachable states is constructed using only the states
from the reachable.

4.2.2 Determinization

The next step is to determinize the automaton (Algorithm 2). Determinization is the step
in which the exponential state explosion can happen and therefore contributes the most of
all steps to the overall poor performance of this approach.

The determinization is done using the subset construction, where a set of states that are
reachable with rules with same left-hand side form a single macrostate (new macrostates are
in the powerset of initial states). Algorithm 2 constructs only macrostates that are bottom-
up reachable, keeping the state explosion limited, however, in the worst case scenario the
whole powerset will be constructed.
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4.2.3 Minimization

The last step is minimization (Algorithm 3), which produces a unique automaton represent-
ing the accepted language. This automaton can be compared with other minimal automata
to determine language equivalence.

Algorithm 3 constructs an equivalence relating indistinguishable states. First, accepting
and non-accepting states form the initial equivalence classes, this relation is then iteratively
reĄned by splitting states in existing classes into subclasses based on differences in groups
that are reachable by them. The Ąnal automaton is constructed using the reĄned equiva-
lence classes as states and modifying transition rules correspondingly [4, 5].

4.3 Antichains

A language inclusion problem can be transformed into emptiness problem on a product
automaton because 𝐿(𝒜) = 𝐿(ℬ)⇔ 𝐿(𝒜)∩𝐿(ℬ) = ∅. Let 𝒜 and ℬ be NTFAs, every state
in the product automaton is a pair (𝑝,𝑄) such that 𝑝 is a state in 𝒜 and 𝑄 is a macrostate
in ℬ. This transformation is used in antichain-based algorithms in [2].

Antichains as a means of testing language inclusion were introduced for Ąnite word
automata Ąrst [2, 6, 9]. This approach exploits the mathematical concept of an antichain,
which is a set of objects that are pairwise incomparable, and applies it to subsets of the set
of automaton states 𝑄. An antichain 𝐶 is formed by a set of states where each set is not a
subset of any other set in the antichain (𝐶 ⊆ 2Q : ∀𝑃,𝑅 ∈ 𝐶,𝑃 ̸⊂ 𝑅 ∧𝑅 ̸⊂ 𝑃 ) [6].

Antichain structure is then used to store encountered product states. All newly encoun-
tered product states, that can not be added to the antichain without breaking it can be
safely discarded from further search. Antichain algorithm from [2] does not need to con-
tinue search if it encounters a product state (𝑝, 𝑃 ) that is larger than some product state
(𝑞,𝑄) it already visited, i. e. if 𝑝 = 𝑞∧𝑃 ⊆ 𝑄) . This is sound because antichain algorithm
searches for counterexamples in the product automaton and if a product state (𝑝, 𝑃 ) takes
the automaton to accepting state then so does the (𝑞,𝑄).

This can be used during language inclusion checking with on the fly determinization to
decide on relation between languages of currently processed pair allowing to prematurely
terminate an algorithm run if a counterexample is found [2, 6, 9].

4.3.1 Simulations

Another approach to testing language inclusion is to utilize a simulation relation (one of the
relations that imply language inclusion). A simulation relation is calculated independently
before the language inclusion checking. It was shown in [2] that there exist simulations
(e. g. the maximal downward simulation) that can be computed in a reasonable time.

A simulation can be then used during the on the fly determinization to check if the
language of one state is included in the language of an other state while processing one
macrostate pair, thereby removing the necessity to check the successor pairs [2].

It is important to note that a simulation only implies language inclusion. Therefore,
testing language equivalence using simulation is an incomplete method because there can
be pairs of states whose languages are included one in another, but are not related by a
simulation. Simulation is, however, often used together with other complete methods, for
example antichains.
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4.4 Top-down Antichain with Simulation

A similar technique to antichains relying on combining antichains and simulation for lan-
guage inclusion testing was proposed for top-down tree automata in [9]. It uses the maximal
downward simulation ⪯⊆ 𝑄×𝑄 deĄned as

𝑝 ⪯ 𝑞 ⇔ ∀(𝑝1, . . . , 𝑝n)
a
−→ 𝑝, ∃(𝑞1, . . . , 𝑞n)

a
−→ 𝑞 ∧ ∀𝑖, 𝑝i ⪯ 𝑞i (4.1)

to prune unnecessary parts of the search space. There exists an extension of maximal
downward simulation for macrostates ⪯∀∃ ⊆ 2Q × 2Q deĄned as

𝑃 ⪯∀∃ 𝑄⇔ ∀𝑝 ∈ 𝑃 : ∃𝑞 ∈ 𝑄 : 𝑝 ⪯ 𝑞 (4.2)

which is used in function expand.
The unction expand checks whether the language of a single state is included in the

language of a set of states (𝐿(𝑞) ⊆ 𝐿(𝑅)) by checking that 𝑞 is accepting only if there is
some 𝑟 ∈ 𝑅 that is also accepting and recursively calling function expand for all possible
successors of this product state. When checking whether 𝐿(𝒜) ⊆ 𝐿(ℬ) in Algorithm 4,
expand is initially called for every pair (𝑞,𝑅) where 𝑞 ∈ 𝐹A∧𝑅 = 𝐹B. The function expand

evaluates all transitions that can be taken from state 𝑞 and for every leaf transition checks
whether there is a leaf transition over the same symbol for at least one state from 𝑅 or it
recursively calls itself for queries (𝑞′, 𝑅′) on which the result of (𝑞,𝑅) depends. The function
returns true if all leaf transitions can be imitated by 𝑅 and all recursive calls returned true,
otherwise it returns false [9].

To avoid endless recursion, the algorithm keeps track of processed pairs in workset.
Every pair for which expand is called is added to workset. If at any point expand is called
for a pair that is already in workset, such a call immediately returns true because the
result is then dependent only on the result of the other branches of the search [9].

The language inclusion holds if for every pair for which expand was initially called true

is returned, and does not hold otherwise.

input : 𝒩 = (𝑄N ,∆N ,ΣN , 𝐹N ),ℳ = (𝑄M ,∆M ,ΣM , 𝐹M ),⪯⊆ 𝑄N ×𝑄M ,
output: true iff 𝐿(𝑁) ⊆ 𝐿(𝑀), otherwise false

data : 𝑁𝑁 = ∅

1 foreach 𝑓 ∈ 𝐹N do

2 if ¬expand(𝑞, 𝐹M , ∅) then

3 return false

4 end

5 end

6 return true

Algorithm 4: Downward inclusion checking for tree automata using antichains and
maximal downward simulation as the preorder ⪯. Source: [9]
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1 Function expand(𝑝s, 𝑃b, 𝑤𝑜𝑟𝑘𝑠𝑒𝑡) is

2 /* 𝒩 = (𝑄N ,∆N ,ΣN , 𝐹N ),ℳ = (𝑄M ,∆M ,ΣM , 𝐹M ),⪯⊆ 𝑄N ×𝑄M */
3 if ∃(𝑝′s, 𝑃

′
b) ∈ 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 : 𝑝s ⪯ 𝑝′s ∧ 𝑃 ′

b ⪯
∀∃ 𝑃b then

4 return true

5 end

6 if ∃(𝑝′s, 𝑃
′
b) ∈ 𝑁𝑁 : 𝑝′s ⪯ 𝑝s ∧ 𝑃b ⪯

∀∃ 𝑃 ′
b then

7 return false

8 end

9 if ∃𝑝 ∈ 𝑃b : 𝑝s ⪯ 𝑝 then

10 return true

11 end

12 𝑤𝑜𝑟𝑘𝑠𝑒𝑡← 𝑤𝑜𝑟𝑘𝑠𝑒𝑡 ∪ {(𝑝s.𝑃b)}
13 𝑛← 𝑟𝑎𝑛𝑘(𝑎)
14 foreach 𝑎 ∈ Σ do

15 if 𝑛 = 0 then

16 if ∆N (𝑝s, 𝑎) ̸= ∅ ∧∆M (𝑃b, 𝑎) = ∅ then

17 return false

18 end

19 else

20 𝑊 ← ∆M (𝑃b, 𝑎)
21 foreach (𝑟1, . . . , 𝑟n) ∈ ∆N (𝑝s, 𝑎) do

22 foreach 𝑓 ∈ {𝑊 → {1, . . . , 𝑛}} do

23 𝑓𝑜𝑢𝑛𝑑← false

24 foreach 1 ≤ 𝑖 ≤ 𝑛 do

25 𝑆 ← {𝑞i | (𝑞1, . . . , 𝑞n) ∈𝑊 ∧ 𝑓((𝑞1, . . . , 𝑞n)) = 𝑖}
26 if expand(𝑟i, 𝑆, 𝑤𝑜𝑟𝑘𝑠𝑒𝑡) then

27 𝑓𝑜𝑢𝑛𝑑← true

28 break

29 end

30 if ̸ ∃(𝑟′, 𝐻) ∈ 𝑁𝑁 : 𝑟′ ⪯ 𝑟i ∧ 𝑆 ⪯∀∃ 𝐻 then

31 𝑁𝑁 ← (𝑁𝑁 ∖ {(𝑟′, 𝐻) | 𝑟i ⪯ 𝑟′ ∧𝐻 ⪯∀∃ 𝑆}) ∪ {(𝑟i, 𝑆)}
32 end

33 end

34 if ¬𝑓𝑜𝑢𝑛𝑑 then

35 return false

36 end

37 end

38 end

39 end

40 end

41 return true

42 end
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Chapter 5

Bisimulation up-to Congruence for

Finite Word Automata

Bisimulation up-to congruence for nondeterministic Ąnite word automata was introduced by
Bonchi and Pous [3]. This algorithm is an optimization of the textbook language equivalence
checking algorithm (Algorithm 5) that relates states of deterministic word automata with
a bisimulation relation and belongs to the category of algorithms based on coinductive

proofs. A characteristic for this class of algorithms is on the fly determinization, where input
automata can be nondeterministic and the determinization is done during the algorithm run
only for macrostates that are encountered during the computation. It is based on Hopcroft
and Karp’s algorithm [10], which over its run builds a minimal bisimulation relating both
automata that contains their initial states [3, 10]. Let 𝒩 = (𝑄N , 𝛿N ,Σ, 𝑠N , 𝐹N ) and ℳ =
(𝑄M , 𝛿M ,Σ, 𝑠M , 𝐹M ) be two deterministic Ąnite word automata.

Definition 4 (Bisimulation for word automata). Bisimulation for word automata is a

relation 𝑅 ⊆ 𝑄N ×𝑄M on states, such that if (𝑥, 𝑦) ∈ 𝑅 then

1. 𝑥 ∈ 𝐹N ⇔ 𝑦 ∈ 𝐹M and

2. ∀𝑎 ∈ Σ : (𝛿N (𝑥, 𝑎), 𝛿M (𝑦, 𝑎)) ∈ 𝑅 [3].

Proposition 1 (Bisimulation, Language equivalence for FAs, Proposition 1 of [3]). Two FAs

are language equivalent iff there exist a bisimulation relating their initial states.

Bisimulation up-to congruence improves efficiency of this technique by building only
a portion of the bisimulation built by Algorithm 5, which can be extended into a full
bisimulation by computing its congruence closure. In the worst-case scenario, the relation
built will be the minimal bisimulation containing initial states, degrading this algorithm
to Hopcroft and Karp algorithm. However, in the majority of cases, a relation built by
bisimulation up-to congruence will be a subset of the minimal bisimulation containing
initial states [3].

Definition 5 (Bisimulation up-to for word automata). Given a function 𝑓 : 2QN×QM →
2QN×QM a relation 𝑅 ⊆ 𝑄N × 𝑄M on macrostates is a bisimulation up-to function f if

whenever (𝑥, 𝑦) ∈ 𝑅 then

1. 𝑥 ∈ 𝐹N ⇔ 𝑦 ∈ 𝐹M and

2. ∀𝑎 ∈ Σ : (𝛿N (𝑥, 𝑎), 𝛿M (𝑦, 𝑎)) ∈ 𝑓(𝑅) [3].
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input : DFAs 𝒩 = (𝑄N , 𝛿N ,Σ, 𝑠N , 𝐹N ), ℳ = (𝑄M , 𝛿M ,Σ, 𝑠M , 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← (𝑠N , 𝑠M )
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑥, 𝑦) ∈ todo
5 done← done ∪ {actual}
6 if (𝑥 ∈ 𝐹N < 𝑦 ∈ 𝐹M ) then

7 return false

8 end

9 todo← {(𝛿N (𝑥, 𝑎), 𝛿M (𝑦, 𝑎)) | 𝑎 ∈ Σ} ∖ done
10 end

11 return true

Algorithm 5: Hopcroft and Karp’s algorithm for testing language equivalence of
deterministic Ąnite word automata using bisimulation. Source: [3]

5.1 Technique Basics

The ability to build only a partial bisimulation is based on the observation of the connec-
tion between union of languages and union of macrostates on nondeterministic Ąnite word
automata.

Let 𝐿(𝑋) be a language recognized by a macrostate (a set of states) 𝑋. Then for any
macrostates 𝑋 and 𝑌 it holds that

𝐿(𝑋) ∪ 𝐿(𝑌 ) = 𝐿(𝑋 ∪ 𝑌 ). (5.1)

This allows for deriving conclusions about language equivalence of composite macrostates
in the deterministic word automata without explicitly checking them. For example, given
a bisimulation 𝑅 relating macrostate {𝑎, 𝑏} with {𝑥} and macrostate {𝑐} with {𝑦}, it can
be immediately concluded that the maximal bisimulation would relate {𝑎, 𝑏, 𝑐} with {𝑥, 𝑦}.

Therefore, if a macrostate pair that is a composite of already checked pairs is encoun-
tered during a run, this pair can be safely discarded without checking because its language
equivalence can be determined based solely on the contents of a partial bisimulation 𝑅.
Note that by computing the closure with regard to this property, it is possible to construct
a bisimulation that is equal to or a superset of the minimal bisimulation containing initial
states (exploiting union can introduce macrostates pairs that are language equivalent but
may not have been encountered during the on the fly determinization, for example unreach-
able macrostates). Exploiting this property leads to bisimulation up-to context and is one
of the building blocks of bisimulation up-to congruence.

Another exploitable property is equivalence. Because not all bisimulations are equiva-
lence relations [3] they can relate macrostates 𝑋 with 𝑌 and 𝑋 with 𝑍 but not necessarily
𝑌 with 𝑍. But because 𝐿(𝑋) = 𝐿(𝑌 ) and 𝐿(𝑋) = 𝐿(𝑍), then 𝐿(𝑌 ) = 𝐿(𝑍) must be also
true. As with context, equivalence can be used to build a partial bisimulation that can be
expanded into a bisimulation by computing the appropriate closure. Using this technique
is called bisimulation up-to equivalence.

Bisimulation up-to congruence is created by combining bisimulation up-to context with
bisimulation up-to equivalence [3].
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input : NFAs 𝒩 = (𝑄N , 𝛿N ,Σ, 𝑠N , 𝐹N ), ℳ = (𝑄M , 𝛿M ,Σ, 𝑠M , 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← ({𝑠N}, {𝑠M})
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑋,𝑌 ) ∈ todo
5 done← done ∪ {actual}
6 if (𝑋 ∩ 𝐹N = ∅< 𝑌 ∩ 𝐹M = ∅) then

7 return false

8 end

9 todo← {(𝛿N (𝑋, 𝑎), 𝛿M (𝑌, 𝑎)) | 𝑎 ∈ Σ} ∖ c(done)

10 end

11 return true

Algorithm 6: Hopcroft and Karp’s algorithm for testing language equivalence of non-
deterministic Ąnite word automata using bisimulation up-to congruence. ModiĄcation
of Bonchi and Pous from [3].

5.2 Bisimulation up-to Congruence Algorithm

The implementation of bisimulation up-to congruence algorithm for Ąnite word automata
(Algorithm 6) is similar to standard bisimulation. The only difference is the exclusion
of processing of macrostate pairs for which language equivalence can be deduced from
congruence closure (line 9).

The algorithm keeps the set of visited macrostate pairs in done and the set of pairs
to be checked in todo. At the beginning, the pair representing starting states of the input
automata is inserted into todo. Then the algorithm loops by processing a single pair from
todo in each iteration. The processing consists of checking if macrostates in the pair are
Ąnite state equivalent (line 6) and generating successor pairs (line 9).

Definition 6 (Congruence closure). Congruence closure is a symmetric, transitive, and

reflexive closure of the original relation combined with the union function. Let 𝑅 ⊆ 2Q×2Q,

the congruence closure of 𝑅, denoted 𝑐(𝑅) can be defined inductively using following rules:

𝑋 𝑅 𝑌

𝑋 𝑐(𝑅) 𝑌
,
𝑋 𝑐(𝑅) 𝑋

,
𝑋 𝑐(𝑅) 𝑌

𝑌 𝑐(𝑅) 𝑋
,

𝑋 𝑐(𝑅) 𝑌 𝑌 𝑐(𝑅) 𝑍

𝑋 𝑐(𝑅) 𝑍
and

𝑋1 𝑐(𝑅) 𝑌1 𝑋2 𝑐(𝑅) 𝑌2
𝑋1 ∪𝑋2 𝑐(𝑅) 𝑌1 ∪ 𝑌2

.

(5.2)

Proposition 2. The relation built in done during the run of Algorithm 6 is a bisimulation

up-to congruence if line 11 is reached, otherwise a counterexample was found and actual

holds a pair of macrostates that is reachable over the same word in determinized versions

of both automata and only one of the macrostates is accepting [3].
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Chapter 6

Bisimulation up-to Congruence for

Tree Automata

First, we propose an algorithm that utilizes simple bisimulation with no up-to relation for
language equivalence testing on nondeterministic bottom-up tree automata (Algorithm 7).
This algorithm can be viewed as an implementation of the textbook approach to equivalence
checking on deterministic Ąnite tree automata, where it is checked whether corresponding
pairs of states in both automata can imitate all possible transitions of each other and assert
that either both or none of the states are accepting. The only modiĄcation is that the
algorithm operates on nondeterministic automata and performs determinization on the fly.

This algorithm is then improved with iterative successor macrostates generation (Al-
gorithm 8), which is an improvement on the implementation level that prevents repeated
calculations of successors for states that were already processed, and up-to congruence rela-
tion (Algorithm 9), which is an algorithmic improvement that greatly reduces the size of the
search space that is necessary to explore by inferring information from already processed
pairs and discarding branches of the search space that cannot yield counterexamples.

6.1 Naive Algorithm

The naive algorithm for language equivalence testing on nondeterministic tree automata
(Algorithm 7) is an adaptation of the naive algorithm for testing language equivalence on
word automata described in Bonchi and Pous (Chapter 5). Algorithms performs deter-
minization on the fly. This is achieved by performing computations with sets of states,
called macrostates, instead of individual states. Macrostates on nondeterministic automata
represent states of their determinized counterparts, which are computed on demand only
for macrostates that are actually visited.

The naive algorithm asserts that all pairs of macrostates that are reachable over the
same leaves are bisimulating each other [1], in other words, every sequence of transitions
from the same set of leaves in one automaton can be imitated in the other automaton. This
is ensured by iteratively adding successors of known pairs that constitute proof obligations
for initial pairs. For every macrostate pair, it is checked whether the macrostates are either
both accepting or non-accepting. If at any point a mixed pair is found, one of the proof
obligations have failed and automata are not related by a bisimulation, therefore their
languages are not equal. If all pairs were processed without Ąnding a mixed pair, proof
obligations are satisĄed and languages of the input automata are equal.

26



input : NFTAs 𝒩 = (𝑄N ,∆N ,Σ, 𝐹N ), ℳ = (𝑄M ,∆M ,Σ, 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← ∆(∅)
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑋,𝑌 ) ∈ todo
5 done← done ∪ {actual}
6 if (𝑋 ∩ 𝐹N = ∅< 𝑌 ∩ 𝐹M = ∅) then

7 return false

8 end

9 todo← ∆(done) ∖ done
10 end

11 return true

Algorithm 7: The naive algorithm for testing language equivalence on tree automata.

1 Function ∆(𝑑𝑜𝑛𝑒) is

2 /* NFTAs 𝒩 = (𝑄N ,∆N ,ΣN , 𝐹N ), ℳ = (𝑄M ,∆M ,ΣM , 𝐹M ) */
3 /* Returns the set of macrostates reachable from done. */
4 return {(∆N (𝑃1, . . . , 𝑃n, 𝑎),∆M (𝑄1, . . . 𝑄n, 𝑎)) | ∀𝑎 ∈ Σ : 𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤

𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ done}

5 end

Definition 7 (Bisimulation). Bisimulation on tree automata is a relation 𝑅 ⊆ 𝑄N ×𝑄M

on macrostates, such that if ∀(𝑥, 𝑦) ∈ 𝑅 : ∀𝑎 ∈ Σ : ∀1 ≤ 𝑖 ≤ 𝑟𝑎𝑛𝑘(𝑎)− 1 : (𝑥i, 𝑦i) ∈ 𝑅 then

1. 𝑥 ∈ 𝐹N ⇔ 𝑦 ∈ 𝐹M and

2. (∆N ((𝑥1, . . . , 𝑥, . . . , 𝑥n), 𝑎),∆M ((𝑦1, . . . , 𝑦, . . . , 𝑦n), 𝑎)) ∈ 𝑅, 𝑛 = 𝑟𝑎𝑛𝑘(𝑎)− 1.

Proposition 3 (Bisimulation, Language equivalence). Two DFTAs are language equivalent

iff there exist a bisimulation relating sates of their leaf transitions.

Definition 8 (Bisimulation step). Given a relation 𝑅 on macrostates, bisimulation step

∆(𝑅) = {(∆N (𝑋1, . . . , 𝑋n, 𝑎),∆M (𝑌1, . . . , 𝑌n, 𝑎)) | ∀𝑎 ∈ Σ : 𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧

∀1 ≤ 𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ 𝑅}.
(6.1)

6.1.1 Calculating Successor Macrostates on Tree Automata

In contrast to word automata, calculating a set of successor macrostates for tree automata Ů
a set of macrostates that are reachable from already processed macrostates using transitions
of the given tree automaton Ů has to take into account the context of transitions, that
represents other parts of the tree the transition is traversing.

There, by context, we mean other macrostates occuring in potentially usable transitions,
because in order to satisfy all conditions of the bisimulation, it must be ensured that other
branches of trees can be traversed by both automata, therefore macrostates Ąguring as
a context must be pairwise bisimulating each other. To be able to use a transition in
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input : NFTAs 𝒩 = (𝑄N ,∆N ,Σ, 𝐹N ), ℳ = (𝑄M ,∆M ,Σ, 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← ∆(∅)
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑋,𝑌 ) ∈ todo
5 done← done ∪ {actual}
6 if (𝑋 ∩ 𝐹N = ∅< 𝑌 ∩ 𝐹M = ∅) then

7 return false

8 end

9 todo← (todo ∪∆′(actual, done)) ∖done

10 end

11 return true

Algorithm 8: The naive algorithm with iterative successors generation.

1 Function ∆′((𝑋,𝑌 ), 𝑑𝑜𝑛𝑒) is

2 /* NFTAs 𝒩 = (𝑄N ,∆N ,ΣN , 𝐹N ), ℳ = (𝑄M ,∆M ,ΣM , 𝐹M ) */
3 /* Returns the set of macrostates reachable from done using (𝑋,𝑌 ). */
4 return {(∆N (𝑃1, . . . , 𝑋, . . . 𝑃n, 𝑎),∆M (𝑄1, . . . , 𝑌, . . . 𝑄n, 𝑎)) | ∀𝑎 ∈ Σ :

𝑛 = 𝑟𝑎𝑛𝑘(𝑎)− 1 ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ done}

5 end

successor list generation, the whole context of the rule must be known. This means that
every macrostate in the context must itself be reachable from leaf states (or intermediate
macrostates that are themselves reachable from leaf states).

Note that the context in function ∆ is represented by the set done, which (as deĄned in
Algorithm 7) at Ąrst holds only leaf states and is incrementally expanded with macrostates
that are reachable from the previous iteration of done.

6.2 The Naive Algorithm with Iterative Successors

Computing the whole set of possible successors in each iteration of Algorithm 7 is redundant
because possible successors from previous iteration are already stored in the sets todo and
done. Therefore, it is desirable to compute only newly reachable successors that are created
by adding currently processed pair actual to done.

Algorithm 8 implements iterative successors generation, where in each iteration only
successors of the currently processed pair are computed. This modiĄcations signiĄcantly
reduces the difficulty of computing ∆(𝑑𝑜𝑛𝑒) because only a portion of the set todo has to
be computed in every iteration.

6.2.1 Iterative Calculation of Successor Macrostates

Function ∆′ is a modiĄcation of function ∆ that generates only successors that are made
reachable by the addition of actual to done. This is achieved by mandating that at least
one position on the left-hand side of a transition is Ąlled with a macrostate from actual.
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input : NFTAs 𝒩 = (𝑄N ,∆N ,Σ, 𝐹N ), ℳ = (𝑄M ,∆M ,Σ, 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← ∆(∅)
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑋,𝑌 ) ∈ todo
5 done← done ∪ {actual}
6 if (𝑋 ∩ 𝐹N = ∅< 𝑌 ∩ 𝐹M = ∅) then

7 return false

8 end

9 todo← (∆(done)) ∖ c(done) )

10 end

11 return true

Algorithm 9: The bisimulation up-to congruence on nondeterministic tree automata.

6.3 The Bisimulation up-to Congruence Algorithm

In order to improve the performance of equivalence checking algorithm even further, it is
desirable to reduce the search space as much as possible. This is achieved in Algorithm 9
by using bisimulation up-to congruence, an approach that only adds a new macrostate pair
into todo if it is not in the congruence closure of done, denoted as c(done). Thus, all new
pairs that cannot contribute to Ąnding a counterexample are removed from further search.

In the Algorithm 9, the congruence closure of a relation 𝑅 is deĄned in terms of the func-
tions introduced in Chapter 7.2.1 as a reĆexive, symmetric and transitive closure coupled
with the union function, formally

𝑐(𝑅) = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢ω)ω. (6.2)

Because (𝑖𝑑∪𝑟∪𝑠∪𝑡∪𝑢ω)ω = (𝑖𝑑∪𝑟∪𝑠∪𝑡∪𝑢)ω, the same inductive rules as in DeĄnition 6
can be used. This slightly different deĄnition from the one found in [3] is used because the
function 𝑢 for tree automata is lacking certain properties required by the technique used
in the formal proof and iterating the function 𝑢 ensures those properties. Difference of the
proof for word and tree automata is further discussed in Section 7.2.3.

6.3.1 Bisimulation up-to

An algorithm based on a bisimulation that does not explore the whole search space but
introduces a mechanism (in the form of some function 𝑓) that will prune parts of the search
space can be considered a bisimulation up-to 𝑓 . Bisimulation up-to can be deĄned using
the notion of a progression [3].

Definition 9 (Bisimulation up-to). Given a function 𝑓 : 22
QN×2QM → 22

QN×2QM , a relati-

on 𝑅 on macrostates is a bisimulation up-to function 𝑓 if whenever ∀(𝑋,𝑌 ) ∈ 𝑅 : ∀𝑎 ∈ Σ :
∀1 ≤ 𝑖 ≤ 𝑟𝑎𝑛𝑘(𝑎)− 1 : (𝑋i, 𝑌i) ∈ 𝑅 then

1. 𝑋 ∩ 𝐹N = ∅ ⇔ 𝑌 ∩ 𝐹M = ∅ and

2. (∆N ((𝑋1, . . . , 𝑋, . . . ,𝑋n), 𝑎),∆M ((𝑌1, . . . , 𝑌, . . . , 𝑌n), 𝑎)) ∈ 𝑓(𝑅), 𝑛 = 𝑟𝑎𝑛𝑘(𝑎)− 1.
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input : NFTAs 𝒩 = (𝑄N ,∆N ,Σ, 𝐹N ), ℳ = (𝑄M ,∆M ,Σ, 𝐹M )
output: true iff 𝐿(𝒩 ) = 𝐿(ℳ), otherwise false

1 todo← ∆(∅)
2 done← ∅
3 while todo ̸= ∅ do

4 actual← (𝑋,𝑌 ) ∈ todo
5 done← done ∪ {actual}

6 if (𝑋 ∩ 𝐹N ̸= ∅ ∧ 𝑌 ∩ 𝐹M = ∅) then

7 return false

8 end

9 todo← (∆(done)) ∖ ci(done) )

10 end

11 return true

Algorithm 10: The bisimulation up-to congruence algorithm for inclusion checking
on nondeterministic tree automata.

6.4 Bisimulation up-to Congruence for Inclusion Testing

In order to test language inclusion directly without reliance on the 𝐴 ⊆ 𝐵 ⇔ 𝐴 ∪ 𝐵 = 𝐵
equivalence, we propose a modiĄcation of bisimulation up-to congruence optimized for direct
inclusion checking (Algorithm 10). First, there is no need too compute the union automaton,
saving time during preprocessing, second, optimizations directly in Algorithm 9 can be made
in the congruence closure calculation. This optimization is based on the observation that
an empty state set always produces the empty language and that the empty language is a
subset of any other language.

Correctness of the modiĄcation of bisimulation up-to congruence for inclusion testing is
not proven in this thesis. But experiments on 400 inclusion tests were performed and the
results were matching the results obtained with the algorithm based on antichains.

Definition 10 (Congruence closure for inclusion checking). Congruence closure for inclu-

sion checking is a symmetric, transitive, and reflexive closure of the original relation that

includes ∅ in relation with all other elements. Let 𝑅 ⊆ 2Q × 2Q, the congruence closure

of 𝑅, denoted 𝑐i(𝑅), can be defined inductively using the following rules:

𝑋 𝑅 𝑌

𝑋 𝑐i(𝑅) 𝑌
,
𝑋 𝑐i(𝑅) 𝑋

,
∅ 𝑐i(𝑅) 𝑋

,
𝑋 𝑐i(𝑅) 𝑌

𝑌 𝑐i(𝑅) 𝑋
,

𝑋 𝑐i(𝑅) 𝑌 𝑌 𝑐i(𝑅) 𝑍

𝑋 𝑐i(𝑅) 𝑍
and

𝑋1 𝑐i(𝑅) 𝑌1 𝑋2 𝑐i(𝑅) 𝑌2
𝑋1 ∪𝑋2 𝑐i(𝑅) 𝑌1 ∪ 𝑌2

.

(6.3)
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Chapter 7

Proof of Correctness

In this chapter, a proof of the bisimulation up-to congruence algorithm for NFTAs is grad-
ually built from the proof of the naive algorithm (Section 7.1), its equivalence with iterative
successors calculation algorithm (Section 7.3), and by deĄning compatible functions that
satisfy the deĄnition of bisimulation up-to that can be used to construct a congruence
relation.

First, we show that the naive algorithm is sound and returns true only if the languages
of the input automata are the same. Then, we introduce a notion of compatible functions
and show that any bisimulation up-to compatible function is contained in a bisimulation

constructed by the naive algorithm. This is sufficient to prove that bisimulation up-to

compatible function checks language equivalence. Finally, we prove that congruence closure
is a compatible function by constructing it from elementary compatible functions.

7.1 Soundness of the Naive Algorithm

The naive algorithm’s soundness is ensured by proving that the relation built in done over
the run of Algorithm 7 is a bisimulation. There is an invariant ∆(𝑑𝑜𝑛𝑒) ⊆ 𝑑𝑜𝑛𝑒 ∪ 𝑡𝑜𝑑𝑜
corresponding to line 3 of Algorithm 7. This invariant holds by deĄnition of todo (line 9),
in this case the invariant is even stronger, as ∆(𝑑𝑜𝑛𝑒) = 𝑑𝑜𝑛𝑒 ∪ 𝑡𝑜𝑑𝑜 also holds in line 3:

todo = ∆(done) ∖ done /line 9

todo ∪ done = ∆(done) ∖ done ∪ done / ∪ done

todo ∪ done = ∆(done).

Lemma 5 (Bisimulation, Language equivalence). Algorithm 7 with input automata 𝒩 ,ℳ
returns true iff 𝐿(𝒩 ) = 𝐿(ℳ).

Proof. If Algorithm 7 reaches line 11 and returns true then the set todo is empty and
𝑑𝑜𝑛𝑒 = ∆(𝑑𝑜𝑛𝑒), making the relation built over the run of Algorithm 7 a bisimulation and
𝐿(𝒩 ) = 𝐿(ℳ) (Proposition 3).

If Algorithm 7 reaches line 7 and returns false, then there exist a set of trees {𝑡1, . . . , 𝑡n}
over Σ and a symbol 𝑎 such that there exists a run of 𝒩 (and ℳ) on each of 𝑡1, . . . , 𝑡n
that assigns macrostates 𝑋1, . . . , 𝑋n (macrostates 𝑌1, . . . , 𝑌n for runs of ℳ) to the root
nodes of given trees, (𝑋1, 𝑌1), . . . , (𝑋n, 𝑌n) ∈ done, and ∆N ((𝑋1, . . . , 𝑋n), 𝑎) ∩ 𝐹N = ∅ <
∆M ((𝑌1, . . . , 𝑌n), 𝑎) ∩ 𝐹M = ∅. We have found a counterexample tree composed of sub-
trees 𝑡1, . . . , 𝑡n with root 𝑎 that one automaton accepts and the other does not, therefore
𝐿(𝒩 ) ̸= 𝐿(ℳ).
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The same conclusion can be reached by using the notion of progression. Progression is
better suited for proving up-to techniques and is mentioned here to establish a connection
between bisimulation and progression on naive algorithm example.

Definition 11 (Progression). Given two relations 𝑅,𝑅′ ⊆ 2QN × 2QM on macrostates,

𝑅 progresses to 𝑅′, denoted 𝑅 ֌ 𝑅′, if, whenever ∀(𝑋,𝑌 ) ∈ 𝑅 : ∀𝑎 ∈ Σ : 𝑛 = 𝑟𝑎𝑛𝑘(𝑎)−1∧
∀1 ≤ 𝑖 ≤ 𝑛 : (𝑋i, 𝑌i) ∈ 𝑅 then

1. 𝑋 ∩ 𝐹N = ∅ ⇔ 𝑌 ∩ 𝐹M = ∅ and

2. (∆N (𝑋1, . . . , 𝑋, . . . ,𝑋n, 𝑎),∆M (𝑌1, . . . , 𝑌, . . . , 𝑌n, 𝑎)) ∈ 𝑅′.

Note that bisimulation is a relation for which 𝑅 ֌ 𝑅.

There is an invariant 𝑑𝑜𝑛𝑒 ֌ 𝑑𝑜𝑛𝑒 ∪ 𝑡𝑜𝑑𝑜 corresponding to line 3 of Algorithm 7.
This invariant holds because at Ąrst, done is empty and at each step single element from
todo is checked for Ąnality equivalence and moved to done, thus satisfying condition 1 of
DeĄnition 11 and all successor macrostate pairs reachable with the context given by done

are added to todo, thus satisfying condition 2 of DeĄnition 11.

Proof of Lemma 5 using progression. If Algorithm 7 reaches line 11 and returns true, then
the set todo is empty and 𝑑𝑜𝑛𝑒 ֌ 𝑑𝑜𝑛𝑒, making the relation built over the run of Algo-
rithm 7 a bisimulation. The rest of the proof is identical to the proof using bisimulation in
Lemma 5.

7.2 Soundness of Bisimulation up-to Congruence

Soundness of bisimulation up-to congruence algorithm for NFTAs is proven by deĄning
compatible functions that can be exploited by up-to techniques to reduce the search space
and establishing containment relation between the bisimulation built by the naive algorithm
and the relation built by bisimulation up-to compatible function algorithm.

7.2.1 Compatible Functions

To prove the correctness of Algorithm 9, we deĄne a set of compatible functions, i. e.
functions that preserve progression.

Definition 12 (Compatible function). A function 𝑓 : 22
QN×2QM → 22

QN×2QM is compatible

if it is monotone and preserves progression for all 𝑅,𝑅′:

𝑅 ֌ 𝑅′ =⇒ 𝑓(𝑅) ֌ 𝑓(𝑅′)[3].

Lemma 6 (Containment). Let 𝑓 be a compatible function, any bisimulation up-to 𝑓 is

contained in a bisimulation.

Proof. Let 𝑅 be a bisimulation up-to 𝑓 (deĄned in the terms of a progression 𝑅 ֌ 𝑓(𝑅)).
Using the compatibility of 𝑓 and induction on 𝑛 we get: ∀𝑛, 𝑓n(𝑅) ֌ 𝑓n+1(𝑅). Therefore,
we have:

⋃︁

n

𝑓n(𝑅) ֌
⋃︁

n

𝑓n(𝑅)

and
⋃︀

n

𝑓n(𝑅) is a bisimulation. This bisimulation contains 𝑅 by taking 𝑛 = 0.
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Lemma 7. The following functions are compatible.

𝑖𝑑 : the identity function,

𝑓 ∘ 𝑔 : function composition,
⋃︀

𝐹 : pointwise union of a set of compatible functions 𝐹 ,

𝑓ω : iteration of a compatible function,

𝑟 : the constant reflexive function 𝑟(𝑅) = {(𝑋,𝑋) | 𝑋 ∈ 2QN ∨𝑋 ∈ 2QM },
𝑠 : the converse function 𝑠(𝑅) = {(𝑋,𝑌 ) | (𝑌,𝑋) ∈ 𝑅},
𝑡 : the squaring function 𝑡(𝑅) = {(𝑋,𝑌 ) | ∃𝑍, (𝑋,𝑍) ∈ 𝑅 ∧ (𝑍, 𝑌 ) ∈ 𝑅}, and

𝑢ω : the iterative union function 𝑢(𝑅)={(𝑋1∪𝑋2,𝑌1∪𝑌2) | (𝑋1,𝑌1), (𝑋2,𝑌2)∈𝑅}
ω.

Proof. Identity, function composition. The identity function preserves progression because
𝑖𝑑(𝑅) = 𝑅, therefore if 𝑅 ֌ 𝑅′ then 𝑖𝑑(𝑅) ֌ 𝑖𝑑(𝑅). Similar reasoning can be used with
composition. If 𝑓 and 𝑔 are compatible and 𝑅 ֌ 𝑅 then 𝑓(𝑅) ֌ 𝑓(𝑅′) (because 𝑓 is
compatible) and 𝑔(𝑓(𝑅)) ֌ 𝑔(𝑓(𝑅′)) (because 𝑔 is compatible) [3].

Iteration. Compatibility of the iteration function can be proven by induction: 𝑓0 = 𝑖𝑑 is
compatible, we assume that 𝑓n is compatible. By deĄnition of composition 𝑓n+1 = 𝑓 ∘ 𝑓n,
then by induction 𝑓m is compatible ∀𝑚 ≥ 0. By deĄnition 𝑓ω =

⋃︀

m

𝑓m [3].

Pointwise union. Pointwise union of the set of functions 𝐹 is compatible because if ∀𝑓 ∈ 𝐹 ,
𝑓 is compatible, and 𝑅 ֌ 𝑅′, then 𝑓(𝑅) ֌ 𝑓(𝑅′), therefore

⋃︀

f∈F

𝑓(𝑅) ֌
⋃︀

f∈F

𝑓(𝑅′) [3].

Reflexive function. The reĆexive relation Ref = {(𝑋,𝑋) | 𝑋 ∈ 2Q ∪ 2Q} is always a
bisimulation (i. e. Ref ֌ Ref holds). Because 𝑟(𝑅) = Ref = 𝑟(𝑅′) then 𝑟(𝑅) = Ref ֌

Ref = 𝑟(𝑅′) making 𝑟 compatible [3].

Converse function. Because the deĄnition of a progression is completely symmetric (with
regard to respective automata) then if 𝑅 ֌ 𝑅′ then also 𝑠(𝑅) ֌ 𝑠(𝑅′) [3].

Squaring function. To prove compatibility of the squaring function, let us assume 𝑅 ֌ 𝑅′.
By DeĄnition 11 it holds that ∀(𝑋,𝑌 ) ∈ 𝑅 : 𝑋 ∩𝐹 = ∅ ⇔ 𝑌 ∩𝐹 = ∅ and ∀𝑎 ∈ Σ : ∀1 ≤ 𝑖 ≤
𝑟𝑎𝑛𝑘(𝑎) : (𝑋i, 𝑌i) ∈ 𝑅 : (∆(𝑋1, . . . , 𝑋i, 𝑎),∆(𝑌1, . . . , 𝑌i, 𝑎)) ∈ 𝑅′. The squaring function
𝑡(𝑅) = {(𝑋,𝑌 ) | ∃𝑍, (𝑋,𝑍) ∈ 𝑅 ∧ (𝑍, 𝑌 ) ∈ 𝑅} is compatible because if 𝑋 ∩ 𝐹 = ∅ ⇔
𝑍 ∩ 𝐹 = ∅ and 𝑍 ∩ 𝐹 = ∅ ⇔ 𝑌 ∩ 𝐹 = ∅ than also 𝑋 ∩ 𝐹 = ∅ ⇔ 𝑌 ∩ 𝐹 = ∅, satisfying
condition 1 of DeĄnition 11.

And because ∀𝑎 ∈ Σ : ∀1 ≤ 𝑖 ≤ 𝑟𝑎𝑛𝑘(𝑎) : (𝑋i, 𝑍i) ∈ 𝑅∧(𝑍i, 𝑌i) ∈ 𝑅 : (∆(𝑋1, . . . , 𝑋i, 𝑎),
∆(𝑍1, . . . , 𝑍i, 𝑎)) ∈ 𝑅′∧(∆(𝑍1, . . . , 𝑍i, 𝑎),∆(𝑌1, . . . , 𝑌i, 𝑎))∈𝑅

′, then also (∆(𝑋1, . . . , 𝑋i, 𝑎),
∆(𝑌1, . . . , 𝑌i, 𝑎)) ∈ 𝑡(𝑅′), thus satisfying condition 2 of DeĄnition 11.

Iterative union function. For the iterative union function compatibility proof, let us assume
𝑅 ֌ 𝑅′ and choose (𝑋1, 𝑌1), (𝑋2, 𝑌2) ∈ 𝑅; now there are two possible options. Either
𝑋1 ∩ 𝐹 = ∅ ⇔ 𝑋2 ∩ 𝐹 = ∅, then by DeĄnition 11 also 𝑌1 ∩ 𝐹 = ∅ ⇔ 𝑌2 ∩ 𝐹 = ∅,
meaning 𝑋1, 𝑋2, 𝑌1, and 𝑌2 are either all accepting or all non-accepting, then condition 1 of
DeĄnition 11 is satisĄed. This also means that (𝑋1, 𝑌2), (𝑋2, 𝑌1) ∈ 𝑅, therefore {𝑋1, 𝑋2}×
{𝑌1, 𝑌2} ⊆ 𝑅 and condition 2 of DeĄnition 11 is satisĄed by using Lemma 4.

The other option is that 𝑋1 ∩ 𝐹 ̸= ∅ ⇔ 𝑋2 ∩ 𝐹 = ∅. Condition 1 of DeĄnition 11
is still satisĄed because now (𝑋1 ∪ 𝑋2) ∩ 𝐹 ̸= ∅ and (𝑌1 ∪ 𝑌2) ∩ 𝐹 ̸= ∅ and condition 2
of DeĄnition 11 is satisĄed because now (𝑋1, 𝑌2), (𝑋2, 𝑌1) /∈ 𝑅, therefore ∆(𝑢ω(𝑅)) ⊆
𝑢ω(∆(𝑅)), and every successor reachable from 𝑢ω(𝑅) can be found in 𝑢ω(∆(𝑅)). Note
that condition 2 in progression deĄnition does not necessitate ∆(𝑢ω(𝑅)) = 𝑢ω(∆(𝑅)) and
∆(𝑢ω(𝑅)) ⊆ 𝑢ω(∆(𝑅)) is sufficient.
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7.2.2 Correctness of Bisimulation up-to Congruence

To prove that bisimulation up-to congruence can be used to determine language equivalence
we use an invariant 𝑑𝑜𝑛𝑒 ֌ 𝑐(𝑑𝑜𝑛𝑒∪𝑡𝑜𝑑𝑜) corresponding to line 3 of Algorithm 9. To prove
this, it is sufficient to show that 𝑐 is a compatible function. Then, to prove the equality with
language equivalence checking, it is sufficient to show that bisimulation up-to equivalence
is contained in a bisimulation.

Lemma 8 (Congruence closure compatibility). The congruence closure of a relation, de-

fined as 𝑐 = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢ω)ω is a compatible function.

Proof. The congruence closure 𝑐 = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢ω)ω is a compatible function, because
it is constructed strictly by using elementary compatible functions from Lemma 7.

Lemma 9 (Bisimulation up-to congruence containment). Bisimulation up-to congruence

is contained in a bisimulation.

Proof. Bisimulation up-to congruence is contained in a bisimulation because it is a com-
patible function (Lemma 8) and because every bisimulation up-to compatible function is
contained in a bisimulation (Lemma 6).

Lemma 10 (Bisimulation up-to congruence, Language equivalence). Algorithm 9 with in-

put automata 𝒩 ,ℳ returns true iff 𝐿(𝒩 ) = 𝐿(ℳ).

Proof. By using Lemma 9 we can conclude that the relation built by the bisimulation up-to
congruence is contained in a bisimulation. Then, by using Proposition 3, equality with
language equivalence checking is proven.

7.2.3 Differences in Proofs for Word and Tree Automata

The standard deĄnition of congruence closure from [3] is 𝑐 = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢)ω, but
this deĄnition cannot be directly used for tree automata because the function 𝑢 is not
compatible by itself. To illustrate this, we apply Lemma 4 to successors generated by two
pairs (𝑋1, 𝑌1) and (𝑋2, 𝑌2) from the bisimulation 𝑅 for some 𝑎 where 𝑟𝑎𝑛𝑘(𝑎) = 2. One
can see that ∆a(𝑋1 ∪𝑋2, 𝑌1 ∪ 𝑌2) = ∆a(𝑋1, 𝑌1)∪∆a(𝑋1, 𝑌2)∪∆a(𝑋2, 𝑌1)∪∆a(𝑋2, 𝑌2) ̸=
∆a(𝑋1, 𝑌1)∪∆a(𝑋2, 𝑌2). Therefore ∆a(𝑋1∪𝑋2, 𝑌1∪𝑌2) cannot be reliably found in 𝑢(∆(𝑅))
because it is composed by applying union up to three times (possibly less if some of the
sub-results are empty or overlapping, but this cannot be guaranteed) and the deĄnition
of 𝑢 permits only one use.

Therefore, a similar deĄnition of congruence closure for tree automata 𝑐 = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪
𝑡∪𝑢ω)ω remedies this by allowing the function 𝑢 to be iterated by itself. By simple equality
(𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢ω)ω = (𝑖𝑑 ∪ 𝑟 ∪ 𝑠 ∪ 𝑡 ∪ 𝑢)ω, it can be seen that the congruence closure as
a whole is not affected by this change and all approaches to calculating congruence closure
membership from [3] can still be used. This change is made solely for the purpose of prov-
ing bisimulation up-to congruence correctness using progression and compatible functions,
where compatibility of each individual function is required. If we were to use the deĄnition
𝑐 = (𝑖𝑑∪ 𝑟 ∪ 𝑠∪ 𝑡∪ 𝑢)ω the resulting closure will be the same but the function 𝑐 as a whole
will no longer be compatible and therefore could not be used to prove the correctness of
Algorithm 9.
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7.3 Naive and Iterative Successors Calculation Equivalence

Lastly, we need to prove that iterative successors calculation in Algorithm 8 is sound. This
modiĄcation changes the way successors of currently processed macrostate are calculated
and greatly improves efficiency of the whole algorithm. Note that this modiĄcation is
independent from congruence closure calculation and therefore can be proven for naive
algorithm only.

To prove the equivalence of the algorithm using naive successors calculation (Algo-
rithm 7) and the algorithm using iterative successors calculation (Algorithm 8) we show
that the sets todo and done hold exactly the same pairs at each iteration step in both
algorithms. First we prove that this is true for done and use this in our proof that the same
holds for todo. The proof of equivalence of the sets todo is further split into two parts to
keep the induction steps simple.

Let us assign superscript naive to entities from Algorithm 7 and iter to entities from
Algorithm 8. Subscript denotes the iteration of the algorithm. We use induction on the
number of iterations of Algorithm 7 and Algorithm 8.

Lemma 11 (Equivalence of sets done).

donenaive = doneiter (7.1)

Proof.

base case: donenaive0 = doneiter0 /by deĄnition

hypothesis: donenaiven = doneitern

step: donenaiven+1 = donenaiven ∪ {actual} = doneitern+1 /same 𝑎𝑐𝑡𝑢𝑎𝑙 is selected

To prove equality of the sets todo (with omitted superscripts for done as we have already
proven they are equal), we use induction to show that at each iteration both 𝑡𝑜𝑑𝑜naive and
𝑡𝑜𝑑𝑜iter will hold exactly the same macrostate pairs. This proof is split into two parts to
keep it more readable. We assume that ∆(donen)∪∆′(actualn+1, donen+1) = ∆(donen+1).
The usage of this assumption is marked in proof of Lemma 12 and is proven separately
(Lemma 13).

Lemma 12 (Equivalence of sets todo).

todonaive = todoiter (7.2)

Proof.

base case: todonaive0 = todoiter0 /by deĄnition

hypothesis: todonaiven = todoitern

step: todoitern+1 = (todoitern ∪∆′(actualn+1, donen+1)) ∖ donen+1

todoitern+1 = (todonaiven ∪∆′(actualn+1, donen+1)) ∖ donen+1

todoitern+1 = ( ∆(donen) ∪∆′(actualn+1, donen+1) ) ∖ donen+1

todoitern+1 = ( ∆(donen+1) ) ∖ donen+1

todoitern+1 = todoitern+1.
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Now we prove that ∆(donen) ∪ ∆′(actualn+1, donen+1) = ∆(donen+1) . For this part
of the proof we need to work with the deĄnitions of the input tree automata. Lets assume
that 𝒩 = (𝑄N ,∆N ,Σ, 𝐹N ) and ℳ = (𝑄M ,∆M ,Σ, 𝐹M ) are the input tree automata. The
proof that ∆(donen)∪∆′(actualn+1, donen+1) = ∆(donen+1) is again done using induction
on iteration step.

Lemma 13 (Auxiliary).

∆(donen) ∪∆′(actualn+1, donen+1) = ∆(donen+1) (7.3)

Proof.

base case: ∆(done0) ∪∆′(actual1, done1) = ∆(done1)

/* holds, there is only one macrostate */

hypothesis: ∆(donen) ∪∆′(actualn+1, donen+1) = ∆(donen+1)

step: ∆(donen+1) ∪∆′(actualn+2, donen+2) =

∆(donen+1) ∪∆′(actualn+2, donen+1 ∪ {actualn+2}) =

{(∆N (𝑃1,. . . ,𝑃n, 𝑎),∆M (𝑄1,. . .𝑄n, 𝑎)) | 𝑎∈Σ ∧ 𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 :

(𝑃i, 𝑄i)∈donen+1} ∪ {(∆N (𝑃1,. . . ,𝑃j ,. . .𝑃n, 𝑎),∆M (𝑄1,. . . ,𝑄j ,. . .𝑄n, 𝑎)) |

𝑎 ∈ Σ ∧ 𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ donen+1 ∪ {actualn+2}∧

actualn+2 = (𝑃j , 𝑄j)} =

{(∆N (𝑃1, . . . , 𝑃j , . . . 𝑃n, 𝑎),∆M (𝑄1, . . . , 𝑄j , . . . 𝑄n, 𝑎)) | 𝑎 ∈ Σ ∧

𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ donen+1 ∨ ((𝑃i, 𝑄i) ∈ donen+1∪

{actualn+2} ∧ actualn+2 = (𝑃j , 𝑄j))} =

{(∆N (𝑃1, . . . , 𝑃j , . . . 𝑃n, 𝑎),∆M (𝑄1, . . . , 𝑄j , . . . 𝑄n, 𝑎)) | 𝑎 ∈ Σ ∧

𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : ((𝑃i, 𝑄i) ∈ donen+1 ∨ (𝑃i, 𝑄i) ∈ donen+1∪

{actualn+2}) ∧ ((𝑃i, 𝑄i) ∈ donen+1 ∨ actualn+2 = (𝑃j , 𝑄j))} =

∆(donen+2) ∩ {(∆N (𝑃1, . . . , 𝑃j , . . . 𝑃n, 𝑎),∆M (𝑄1, . . . , 𝑄j , . . . 𝑄n, 𝑎)) |

𝑎 ∈ Σ ∧ 𝑛 = 𝑟𝑎𝑛𝑘(𝑎) ∧ ∀1 ≤ 𝑖 ≤ 𝑛 : (𝑃i, 𝑄i) ∈ donen+1∨

actualn+2 = (𝑃j , 𝑄j)}

= ∆(donen+2)

This is sufficient to prove that iterative successors generation is sound. Moreover, we
have shown that contents on todo and done are not dependent on chosen successors gen-
eration method. Therefore, iterative successors generation can be freely combined with
bisimulation up-to congruence without any impacting on the result of the equivalence check.
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Chapter 8

Implementation

The bisimulation up-to congruence algorithm for testing language equivalence of NFTAs
introduced in Chapter 6 is implemented as an extension of libVATA [14] C++ library. It is
designed to work with the explicit representation of tree automata in the Timbuk [8] format.
The algorithm is incorporated into explicit tree automata equivalence and inclusion checking
and is accessible using the standard libVATA command line interface. Its behaviour and
output are conforming to the standard libVATA format1.

Bisimulation up-to congruence implementation is in class BisimulationBase, which
contains general purpose methods shared by inclusion and equivalence checking. Classes
BisimulationEquivalence and BisimulationInclusion then implement speciĄc methods
that are used for equivalence and inclusion checking respectively.

To fully integrate this extension with libVATA, minor changes had to be made to the
existing libaVATA code that allow the new algorithm to be called using the existing in-
terface. These changes are limited to extending argument option alg and adding option
congr, parsing of those arguments and a block that executes the new algorithm if libVATA
is run with those arguments.

Interface

Bisimulation up-to congruence is accessible using the main libVATA interface. It is called by
specifying that either inclusion or equivalence check should be performed and then selecting
options dir=up (bottom-up tree processing), alg=bisimulation (check using bisimulation)
and congr=yes (use congruence closure).

For inclusion checking, automata are passed in the order smaller, bigger and the algo-
rithm calculates if 𝐿(𝑠𝑚𝑎𝑙𝑙𝑒𝑟) ⊆ 𝐿(𝑏𝑖𝑔𝑔𝑒𝑟). For equivalence checking the order does not
matter. Example executions on Ąles aut_file1 and aut_file2 for equivalence and inclusion
check respectively:

$ vata equiv -o "dir=up,alg=bisimulation,congr=yes" ’aut_file1’ ’aut_file2’

$ vata incl -o "dir=up,alg=congr" ’aut_file1’ ’aut_file2’

Note the extra argument for equivalence testing congr=yes, this is an argument that enables
and disables using of the congruence closure. Setting congr=no degrades the algorithm to
the plain bisimulation and was used during experimenting with the implementation. This
option is not available for inclusion testing and is disabled in the released code.

1More information about libVATA C++ library, its interface, and input and output formats can be found
at https://github.com/ondrik/libvata/blob/master/README.md
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Input

Equivalence and inclusion check using bisimulation up-to congruence is performed with two
tree automata as an input. The algorithm uses the default libVATA parser and the default
data structures for storing the loaded automata. It only supports automata in explicit
Timbuk format and does not support equivalence and inclusion checking on automata in
the semi-symbolic representation.

Custom Data Structures

The bisimulation up-to congruence implementation uses standard libVATA data structures
with a single exception. At the beginning of every equivalence check, arbitrary state suc-

cessors are pre-calculated for every symbol-position-state triplet and stored in an array
successors. Because alphabet size, arity, and number of states are Ąxed, this information
can be stored in a Ąxed size array. Successor calculation for macrostate is then done by ex-
ploiting set operations proposed in Section 3.7. Let 𝒜 = (𝑄,∆,Σ, 𝐹 ) be a tree automaton,
𝑎 ∈ Σ, 𝑞 ∈ 𝑄, and assume 𝑟𝑎𝑛𝑘(𝑎) = 2, then

successors[a][0][q] = ∆a({𝑞},_) and (8.1)

successors[a][1][q] = ∆a(_, {𝑞}). (8.2)

By using Lemma 1 and 3, we can calculate successor macrostate for some macrostates
𝑋 = {𝑥1, . . . , 𝑥n} and 𝑌 = {𝑦1, . . . 𝑦m} over a symbol 𝑎, 𝑟𝑎𝑛𝑘(𝑎) = 2 as

∆a(𝑋,_) =
⋃︁

1≤i≤n

∆a(𝑥i,_), (8.3)

∆a(_, 𝑌 ) =
⋃︁

1≤i≤m

∆a(_, 𝑦i), and (8.4)

∆a(𝑋,𝑌 ) = ∆a(𝑋,_) ∩∆a(_, 𝑌 ). (8.5)

Note that ∆a(𝑋,𝑌 ) can be calculated by using set operations on the elements of the
successors array. Moreover, if either ∆a(𝑋,_) or ∆a(_, 𝑌 ) is empty, then ∆a(𝑋,𝑌 ) is
also empty and the successor can be determined without the need to compute all node-wise

successors.

Cache

To further improve performance of this implementation, a cache for storing arbitrary state

successors for macrostates is added. This cache stores successors for already encountered
macrostate pair and position combinations and prevents repeated computation of the same
successors. It is implemented as an array of maps set_successors. The array is indexed
with a symbol and a position and contains a map from macrostates to their successors.
Let 𝒜 = (𝑄,∆,Σ, 𝐹 ) be a tree automaton, 𝑎 ∈ Σ, 𝑋 ⊆ 𝑄, and assume 𝑟𝑎𝑛𝑘(𝑎) = 2, then

set_successors[a][0].find(X) = ∆a(𝑋,_) and

set_successors[a][1].find(X) = ∆a(_, 𝑋).

Node-wise successors can be calculated with the information retrieved from the array
set_successors by using Lemma 2.

38



BisimulationEquivalence 
::check

BisimulationBase 
::getLeafCouples

BisimulationBase 
::pruneRankedAlphabet

return

return

BisimulationBase 
::areLeavesEquivalent

return

BisimulationEquivalence 
::isCoupleFinalStateEquivalent

return
loop

loop

BisimulationEquivalence 
::isCongruenceClosureMember

return

BisimulationBase 
::isExpandableBy

return
loop

BisimulationBase 
::getPost

return

BisimulationBase 
::getPostAtFixedPos

return
loop

loop

Figure 8.1: Graph depicting methods implemented in BisimulationEquivalence and
BisimulationBase classes with caller-callee relationships.

8.1 Structure and Methods

The implementation roughly follows structuring from Algorithm 9 and is illustrated in Fig-
ure 8.1. the method check corresponds with the whole Algorithm 9. First, getLeafCouples

is called, this method initializes the set todo. Because this is the only place where leaf rules
are used, pruneRankedAlphabet is called afterward to remove symbols with the rank 0
from the alphabet.

Leaf pairs are then checked for Ąnal state equivalence. In Algorithm 9, this is done when
pairs are removed from todo, but during implementation this was moved to the inserting
phase for performance improvement. Leaf pairs are checked separately before the main loop
is entered.

The main loop consists of selecting a single pair actual, it is checked if actual is a member
of the congruence closure of 𝑡𝑜𝑑𝑜∪𝑑𝑜𝑛𝑒 (isCongruenceClosureMember). Finally, successors
are calculated for actual by looping over the pruned alphabet and calling getPost for each
symbol. This method is also responsible for checking Ąnal state equivalence and inserting
successors into todo.
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Chapter 9

Experiments

Bisimulation up-to congruence for NFTAs was compared with the bottom-up algorithm
for inclusion checking based on antichains implemented in the VATA library [14]. In our
evaluation, neither algorithm was combined with the simulation approach. The inclusion
checking algorithm based on antichains was used to test equivalence by checking inclusion
in both directions. To take care of the possibility that inclusion would hold in one direction
and not in the other (artiĄcially inĆating the time two inclusion checks need to Ąnd a
counterexample), the lower measured time for both directions was taken as the result.

Experiments were conducted on a set of NFTA obtained from Abstract Regular Tree
Model Checking (ARTMC). There were 95 automata1 in total ranging in size up to au-
tomata with approximately 100 symbols in the alphabet, 1000 states, and over 20000 tran-
sitions. Every automaton was tested for equivalence with every other automaton (including
itself), totaling 9025 comparisons of which 594 were valid equivalences (499 on not identical
automata) and 8426 were invalid equivalences.

Percentile times for both algorithms can be seen in Table 9.1 for all comparisons and in
Table 9.2 for valid equivalences only. For problems that could be decided relatively quickly
(most of the invalid equivalences fall into this category), the algorithm based on antichains
performed better than bisimulation up-to congruence, but with increasing difficulty this
reversed and bisimulation up-to congruence outperformed antichains on the majority of the
difficult examples.

Table 9.1: Required time [s] (all results, timeout 300 s)

Algorithm 50% 90% 95% 99% 100%
Antichains 0.100 0.327 0.670 23.406 -
Bisimulation 0.112 0.336 0.533 10.333 202.674

Table 9.2: Required time [s] (valid equivalences only, timeout 300 s)

Algorithm 50% 90% 95% 99% 100%
Antichains 3.87 69.28 131.23 297.24 -
Bisimulation 2.73 15.13 22.39 178.25 202.67

1The set of 95 automata used in experiments can be found in the folder reference_automata/ of enclosed
medium (see Appendix A).
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Figure 9.1: Scatter plot of the times needed by the bisimulation up-to congruence and the
algorithm based on antichains to check equivalence.

Figure 9.2: Comparison of the time needed to decide language equivalence for the algorithm
based on antichains and bisimulation up-to congruence. Relative difficulty is the average
time needed by both algorithms to decide the given problem.

Scatter plots of the times both algorithms took to check equivalence are in Figure 9.1 (all
cases and valid equivalences only). It can be seen that for simpler test cases bisimulation

up-to congruence performs worse because majority of the test cases in the bottom left
quarter are above the diagonal. For average test cases results are inconclusive, there are
test cases both above and bellow the diagonal around the center and neither algorithm
performs clearly better. Lastly, for difficult cases, bisimulation up-to congruence starts to
outperform the antichain-based algorithm (test cases bellow the diagonal in the upper right
quarter).
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Table 9.3: Percentage of macrostate pairs discarded from further search by bisimulation

up-to congruence and antichain-based algorithm. All test cases (left), valid equivalences
only (middle), and invalid equivalences only (right).

Equvalence check result
Algorithm All Equal Not equal
Antichains 13.62% 12.94% 20.11%
Bisimulation 33.79% 39.07% 5.24%

Another comparison of time required to check equivalence, this time based on relative
difficulty of individual test cases, is in Figure 9.2 (all cases and valid equivalences only).
Again, it can be seen that for simpler test cases the antichain-based algorithm performs
better, but bisimulation up-to congruence eventually outperforms it for more difficult cases.

The bisimulation up-to congruence algorithm has a larger overhead but its results follow
a trend with gentler slope than the trend of results from the antichain-based algorithm.
This leads to poor performance of bisimulation up-to congruence for simpler cases and
increasingly better results with growing difficulty of the test cases, where the efficiency of
the pruning abilities out-weights a larger overhead.

9.1 Congruence Closure Efficiency

An attempt to measure implementation-independent efficiency of both algorithms was
made. There were two possible properties that could be considered for this role: the total
number of processed pairs and the percentage of pairs discarded from further search.

Because antichain-based algorithms operates on product states (state-macrostate pairs)
and bisimulation up-to congruence operates on macrostate-macrostate pairs, the total num-
ber of processed pairs is not directly comparable. This makes measuring the number of
processed pairs unsuitable for comparing the efficiency of these algorithms.

The percentage of discarded pairs roughly represents an algorithm’s ability to prune the
search space and is measured relative to the total number of processed pairs. This metric
therefore takes into account different sizes of the search space for both algorithms and is
more suited to comparing efficiency of these algorithms.

The percentage of discarded pairs for both algorithms is in Table 9.3. In this regard,
bisimulation up-to congruence clearly outperforms the antichain-based algorithm for valid
equivalences and is outperformed for invalid equivalences. Because tests of valid equivalence
generally produce larger search spaces, this difference of performance can be interpreted as
a congruence closure being progressively more powerful with a growing number of pairs for
which the closure is calculated.

For all test cases, bisimulation up-to congruence is able to discard approximately 34%
of all pairs because they are found in the congruence closure. This includes only pairs
that are not trivial, meaning they are not a duplicate of an already encountered pair.
This value rises to 39% for valid equivalence only, again conforming the hypothesis that
efficiency of the congruence closure grows with the size of the search space. For valid
equivalences, the antichain-based algorithm is able to discard only 13% of encountered
pairs. This corresponds with the better performance of bisimulation up-to congruence for
valid equivalence test cases.
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Figure 9.3: Scatter plot of the times needed by the bisimulation up-to congruence and the
algorithm based on antichains (top-down) to check equivalence.

Figure 9.4: Comparison of the time needed to decide language equivalence for the algorithm
based on antichains (top-down) and bisimulation up-to congruence. Relative difficulty is
the average time needed by both algorithms to decide the given problem.

For invalid equivalences, only 5% of the pairs are discarded for bisimulation up-to con-

gruence and 20% for the antichain-based algorithm. This suggests that the antichain-based
approach should outperform bisimulation up-to congruence for these test cases and is in
accordance with earlier Ąndings from time measurements from this section.
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9.2 Comparison with Top-down Approach

Another comparison was made with top-down-antichain-based approach. Scatter plots of
the times bisimulation up-to congruence and top-down antichains took to check equiva-
lence are in Figure 9.3 (all cases and valid equivalences only). The top-down algorithm
preforms signiĄcantly worse compared to its bottom-up counterpart and bisimulation up-to

congruence has shorter execution times for majority of the test cases.
Similarly, in Figure 9.4, execution times based on test case difficulty are shown. It can

be seen that the trend bisimulation up-to congruence follows is much less steep than that
of the top-down antichains approach and larger overhead of bisimulation up-to congruence

is compensated by efficiency difference almost immediately.
Note that because of the poor performance of the top-down-antichain-based algorithm,

this comparison was done only on a subset of the test cases used with bottom-up an-
tichains approach because performing equivalence check using top-down on all 9025 test
cases required more than 48 hours of execution time and, because of that, was terminated
prematurely.
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Chapter 10

Conclusion

In this thesis, bisimulation up-to congruence, a novel algorithm for testing language equiv-
alence and inclusion on tree automata was presented. This algoritm operates on nonde-
terministic tree automata and performs on the fly determinization to try to offset state
explosion connected to determinization. Moreover, it tries to build only a fraction of
a bisimulation relation that would usually be required to check language equivalence by
exploiting properties of the congruence closure to prune the search space.

In comparison with the algorithm based on antichains, bisimulation up-to congruence

has a larger overhead, thus performing worse on simpler examples and invalid equivalences
where counterexample can be found relatively quickly, but it outperforms the algorithm
based on antichains if the problems become complex enough and effectiveness of the search
space pruning outweighs larger overhead. The difference between efficiency of bisimulation

up-to congruence and the algorithm based on antichains seems to grow with increasing
difficulty of test cases.

Therefore, the Ąrst main goal of this thesis, i. e., to develop an algorithm for language
inclusion and equivalence testing on tree automata and outperform existing approaches on
a portion of real-world examples, was accomplished.

This thesis also presented extensions to transition functions used in tree automata for
macrostates. Transition functions on macrostates were then used to deĄne behaviour of
transitions with regard to set operations performed on macrostates, an important achieve-
ment that generalized and formalized the relation between operations on macrostates and
results of transition functions. To the best of the author’s knowledge, those relations were
not formalized before as cited literature merely acknowledges that certain properties of
transition functions in word automata cannot be applied to tree automata (for example re-
lation between union on macrostates and outcome of the transition), but does not elaborate
on what proper generalizations of those properties are.

Lastly, a formal proof of correctness of bisimulation up-to congruence was presented.
It was built by adapting an existing notion of compatible functions to tree automata with
modiĄcations to those compatible functions that could not be directly adapted. Notably,
the union function had to be redeĄned by using knowledge gained from study of relation
between union on macrostates and outcome of the transition function.

First, it was proven that the naive algorithm is sound and can be used to check language
equivalence by asserting that a bisimulation relation is build over a successful run of the
algorithm and cannot be build otherwise. Second, it was proven that successors can be
calculated iteratively for newly discovered macrostates by asserting that the sets todo and
done contain exactly the same elements in each step of calculation regardless of whether

45



the complete or iterative successors calculation is used. And Ąnally, it was shown that
bisimulation up-to congruence is equivalent to naive algorithm by asserting that congruence
closure is a compatible function and by showing that any bisimulation up-to compatible
function is contained in a bisimulation calculated by naive algorithm.

10.1 Future Work

Because the direction of processing trees has a lot of impact on tree automata, even restrict-
ing the set of recognizable languages for deterministic top-down automata, it will be inter-
esting to study the effects of parsing direction on the performance of language equivalence
and inclusion checking algorithms. Therefore, modifying bisimulation up-to congruence for
top-down automata and comparing its effectiveness with the bottom-up approach (for both
bisimulation up-to congruence and the antichain-based algorithm) can yield some insight
into this issue.

Another possibility is to augment bisimulation up-to congruence with a simulation re-
lation. Language equivalence and inclusion checking based on simulation relation can be
extremely efficient, but this technique is not complete. Combining bisimulation up-to con-

gruence with a simulation relation could possibly exploit effectiveness of a simulation for
cases where it is sufficient and use bisimulation up-to congruence for cases where simulation
fails.

The results of the comparison done in this thesis are not corresponding to those in [7].
Therefore, further tests to determine efficiency of bisimulation up-to congruence and an-
tichains approach on larger and more diverse automata sets should be made. To rule out
possible distortion of results stemming from different optimization level of bisimulation up-

to congruence and antichains implementations, a new measure to directly compare search
space sizes and not run times should be developed.

Lastly, experimental modiĄcation of bisimulation up-to congruence for direct inclusion
checking was presented in this thesis, but no attempt for a formal proof was made. There-
fore deeper study of bisimulation up-to congruence for direct inclusion checking should be
made, including thorough testing on larger and more diverse tree automata set and formal
proof of correctness of this algorithm (or further modiĄcation of this algorithm should this
modiĄcation be proven unsound).
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Appendix A

Enclosed Medium

• libvata-congruence/ Ů root directory of libVATA library with bisimulation up-to

congruence algorithm implemented

• reference_automata/ Ů the set of automata used in experiments in Section 9

• src_code/ Ů directory with Ąles implementing the core of equivalence and inclu-
sion algorithms described in this thesis (the same Ąles can be found in libvata-
congruence/src/), not standalone, can only be compiled with libVATA

• src_thesis/ Ů directory with the source code of this thesis

• thesis.pdf Ů digital version of this document

• README.md Ů instructions for compiling and running libVATA with bisimulation up-to

congruence algorithm implemented

• reference_results/equiv_test.log Ů reference results from performance testing
of equivalence check (Appendix B)

• reference_results/incl_test.log Ů reference results from performance testing
of inclusion check
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Appendix B

Reference results

The reference results from performance testing of equivalence check using bisimulation up-

to congruence (times in column congr-up) and double inclusion using antichains (times in
columns dincl and dincld, for both directions of comparing double inclusion). Absolute
times may vary depending on machine used for testing but relative values should be the
same (e. g. if bisimulation up-to congruence took half the time as antichains for speciĄc
test in reference results it should take half the time on any machine).

This test was performed using standard libVATA script on standard set of tree automata
and can be replicated by executing

$ ./tests/equiv_test.sh ./tests/aut_timbuk_smaller/

in libVATA root directory (see README.md on enclosed medium).

======== Checking equivalence of automata =======

Automata directory: ./tests/aut_timbuk_smaller/

Timeout: 300 s

reading files ...

-----------------------------------------------

aut1; aut2; dincl; dincld; congr-up; ’==’; match;

A0053; A0053; 0.0228; 0.0228; 0.0319; 1; ok;

A0053; A0054; 0.0069; 0.0065; 0.0081; 0; ok;

A0053; A0055; 0.0204; 0.0060; 0.0115; 0; ok;

A0053; A0056; 0.0066; 0.0074; 0.0081; 0; ok;

A0053; A0057; 0.0068; 0.0068; 0.0083; 0; ok;

A0053; A0058; 0.0073; 0.0071; 0.0085; 0; ok;

A0053; A0059; 0.0071; 0.0068; 0.0086; 0; ok;

A0053; A0060; 0.0181; 0.0068; 0.0083; 0; ok;

A0053; A0062; 0.0146; 0.0071; 0.0088; 0; ok;

A0053; A0063; 0.0104; 0.0109; 0.0124; 0; ok;

A0053; A0064; 0.0104; 0.0107; 0.0124; 0; ok;

A0053; A0065; 0.0103; 0.0111; 0.0125; 0; ok;

A0053; A0070; 0.0109; 0.0118; 0.0131; 0; ok;

A0053; A0080; 0.0120; 0.0123; 0.0144; 0; ok;

A0053; A0082; 0.0127; 0.0128; 0.0147; 0; ok;

A0053; A0083; 0.0127; 0.0129; 0.0149; 0; ok;

A0053; A0086; 0.0207; 0.0213; 0.0234; 0; ok;
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A0053; A0087; 0.0157; 0.0259; 0.0187; 0; ok;

A0053; A0088; 0.0162; 0.0188; 0.0208; 0; ok;

A0053; A0089; 0.0156; 0.0169; 0.0187; 0; ok;

A0054; A0053; 0.0069; 0.0102; 0.0119; 0; ok;

A0054; A0054; 0.0387; 0.0387; 0.0422; 1; ok;

A0054; A0055; 0.0076; 0.0070; 0.0085; 0; ok;

A0054; A0056; 0.0075; 0.0131; 0.0137; 0; ok;

A0054; A0057; 0.0103; 0.0090; 0.0116; 0; ok;

A0054; A0058; 0.0082; 0.0095; 0.0097; 0; ok;

A0054; A0059; 0.0083; 0.0084; 0.0098; 0; ok;

A0054; A0060; 0.0106; 0.0076; 0.0115; 0; ok;

A0054; A0062; 0.0087; 0.0080; 0.0100; 0; ok;

A0054; A0063; 0.0114; 0.0156; 0.0136; 0; ok;

A0054; A0064; 0.0137; 0.0218; 0.0132; 0; ok;

A0054; A0065; 0.0112; 0.0196; 0.0132; 0; ok;

A0054; A0070; 0.0118; 0.0547; 0.0138; 0; ok;

A0054; A0080; 0.0141; 0.0131; 0.0161; 0; ok;

A0054; A0082; 0.0134; 0.0136; 0.0159; 0; ok;

A0054; A0083; 0.0136; 0.0137; 0.0158; 0; ok;

A0054; A0086; 0.0219; 0.0227; 0.0249; 0; ok;

A0054; A0087; 0.0165; 0.0335; 0.0194; 0; ok;

A0054; A0088; 0.0168; 0.0210; 0.0195; 0; ok;

A0054; A0089; 0.0170; 0.0180; 0.0196; 0; ok;

A0055; A0053; 0.0062; 0.0161; 0.0073; 0; ok;

A0055; A0054; 0.0074; 0.0073; 0.0084; 0; ok;

A0055; A0055; 0.0297; 0.0295; 0.0391; 1; ok;

A0055; A0056; 0.0069; 0.0081; 0.0085; 0; ok;

A0055; A0057; 0.0071; 0.0084; 0.0088; 0; ok;

A0055; A0058; 0.0074; 0.0127; 0.0126; 0; ok;

A0055; A0059; 0.0074; 0.0078; 0.0089; 0; ok;

A0055; A0060; 0.0204; 0.0080; 0.0090; 0; ok;

A0055; A0062; 0.0175; 0.0084; 0.0095; 0; ok;

A0055; A0063; 0.0106; 0.0116; 0.0127; 0; ok;

A0055; A0064; 0.0107; 0.0116; 0.0127; 0; ok;

A0055; A0065; 0.0107; 0.0133; 0.0132; 0; ok;

A0055; A0070; 0.0112; 0.0434; 0.0134; 0; ok;

A0055; A0080; 0.0125; 0.0136; 0.0146; 0; ok;

A0055; A0082; 0.0130; 0.0142; 0.0149; 0; ok;

A0055; A0083; 0.0131; 0.0139; 0.0152; 0; ok;

A0055; A0086; 0.0212; 0.0217; 0.0233; 0; ok;

A0055; A0087; 0.0160; 0.0280; 0.0190; 0; ok;

A0055; A0088; 0.0162; 0.0193; 0.0192; 0; ok;

A0055; A0089; 0.0197; 0.0172; 0.0231; 0; ok;

A0056; A0053; 0.0077; 0.0069; 0.0083; 0; ok;

A0056; A0054; 0.0089; 0.0074; 0.0090; 0; ok;

A0056; A0055; 0.0086; 0.0069; 0.0083; 0; ok;

A0056; A0056; 0.0398; 0.0402; 0.0536; 1; ok;

A0056; A0057; 0.0262; 0.0075; 0.0091; 0; ok;
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A0056; A0058; 0.0307; 0.0101; 0.0092; 0; ok;

A0056; A0059; 0.0294; 0.0078; 0.0096; 0; ok;

A0056; A0060; 0.0143; 0.0076; 0.0145; 0; ok;

A0056; A0062; 0.0099; 0.0121; 0.0144; 0; ok;

A0056; A0063; 0.0111; 0.0114; 0.0131; 0; ok;

A0056; A0064; 0.0119; 0.0118; 0.0131; 0; ok;

A0056; A0065; 0.0120; 0.0114; 0.0164; 0; ok;

A0056; A0070; 0.0118; 0.0121; 0.0140; 0; ok;

A0056; A0080; 0.0130; 0.0130; 0.0151; 0; ok;

A0056; A0082; 0.0135; 0.0136; 0.0158; 0; ok;

A0056; A0083; 0.0135; 0.0136; 0.0158; 0; ok;

A0056; A0086; 0.0217; 0.0228; 0.0247; 0; ok;

A0056; A0087; 0.0174; 0.0370; 0.0206; 0; ok;

A0056; A0088; 0.0179; 0.0228; 0.0256; 0; ok;

A0056; A0089; 0.0177; 0.0187; 0.0204; 0; ok;

A0057; A0053; 0.0071; 0.0073; 0.0105; 0; ok;

A0057; A0054; 0.0092; 0.0078; 0.0092; 0; ok;

A0057; A0055; 0.0089; 0.0073; 0.0087; 0; ok;

A0057; A0056; 0.0082; 0.0287; 0.0094; 0; ok;

A0057; A0057; 0.0448; 0.0504; 0.0777; 1; ok;

A0057; A0058; 0.0345; 0.0100; 0.0124; 0; ok;

A0057; A0059; 0.0328; 0.0091; 0.0096; 0; ok;

A0057; A0060; 0.0117; 0.0097; 0.0094; 0; ok;

A0057; A0062; 0.0097; 0.0080; 0.0100; 0; ok;

A0057; A0063; 0.0114; 0.0122; 0.0132; 0; ok;

A0057; A0064; 0.0115; 0.0122; 0.0134; 0; ok;

A0057; A0065; 0.0113; 0.0124; 0.0132; 0; ok;

A0057; A0070; 0.0121; 0.0559; 0.0139; 0; ok;

A0057; A0080; 0.0131; 0.0131; 0.0151; 0; ok;

A0057; A0082; 0.0137; 0.0137; 0.0158; 0; ok;

A0057; A0083; 0.0137; 0.0139; 0.0160; 0; ok;

A0057; A0086; 0.0218; 0.0223; 0.0241; 0; ok;

A0057; A0087; 0.0167; 0.0362; 0.0194; 0; ok;

A0057; A0088; 0.0169; 0.0209; 0.0195; 0; ok;

A0057; A0089; 0.0169; 0.0179; 0.0195; 0; ok;

A0058; A0053; 0.0073; 0.0069; 0.0085; 0; ok;

A0058; A0054; 0.0100; 0.0080; 0.0096; 0; ok;

A0058; A0055; 0.0140; 0.0071; 0.0122; 0; ok;

A0058; A0056; 0.0079; 0.0349; 0.0144; 0; ok;

A0058; A0057; 0.0103; 0.0357; 0.0134; 0; ok;

A0058; A0058; 0.0546; 0.0528; 0.0736; 1; ok;

A0058; A0059; 0.0339; 0.0093; 0.0100; 0; ok;

A0058; A0060; 0.0099; 0.0080; 0.0097; 0; ok;

A0058; A0062; 0.0102; 0.0082; 0.0100; 0; ok;

A0058; A0063; 0.0124; 0.0128; 0.0136; 0; ok;

A0058; A0064; 0.0116; 0.0127; 0.0137; 0; ok;

A0058; A0065; 0.0116; 0.0125; 0.0133; 0; ok;

A0058; A0070; 0.0122; 0.0667; 0.0144; 0; ok;
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A0058; A0080; 0.0200; 0.0201; 0.0154; 0; ok;

A0058; A0082; 0.0139; 0.0176; 0.0160; 0; ok;

A0058; A0083; 0.0138; 0.0145; 0.0161; 0; ok;

A0058; A0086; 0.0240; 0.0252; 0.0260; 0; ok;

A0058; A0087; 0.0170; 0.0374; 0.0195; 0; ok;

A0058; A0088; 0.0206; 0.0226; 0.0223; 0; ok;

A0058; A0089; 0.0173; 0.0185; 0.0205; 0; ok;

A0059; A0053; 0.0075; 0.0074; 0.0114; 0; ok;

A0059; A0054; 0.0088; 0.0082; 0.0098; 0; ok;

A0059; A0055; 0.0116; 0.0073; 0.0127; 0; ok;

A0059; A0056; 0.0124; 0.0290; 0.0142; 0; ok;

A0059; A0057; 0.0087; 0.0321; 0.0096; 0; ok;

A0059; A0058; 0.0097; 0.0337; 0.0100; 0; ok;

A0059; A0059; 0.0529; 0.0531; 0.0941; 1; ok;

A0059; A0060; 0.0089; 0.0080; 0.0099; 0; ok;

A0059; A0062; 0.0092; 0.0085; 0.0105; 0; ok;

A0059; A0063; 0.0160; 0.0128; 0.0180; 0; ok;

A0059; A0064; 0.0118; 0.0132; 0.0136; 0; ok;

A0059; A0065; 0.0114; 0.0128; 0.0137; 0; ok;

A0059; A0070; 0.0124; 0.0710; 0.0142; 0; ok;

A0059; A0080; 0.0135; 0.0135; 0.0160; 0; ok;

A0059; A0082; 0.0193; 0.0194; 0.0195; 0; ok;

A0059; A0083; 0.0145; 0.0153; 0.0175; 0; ok;

A0059; A0086; 0.0229; 0.0228; 0.0247; 0; ok;

A0059; A0087; 0.0170; 0.0390; 0.0204; 0; ok;

A0059; A0088; 0.0176; 0.0219; 0.0206; 0; ok;

A0059; A0089; 0.0171; 0.0183; 0.0201; 0; ok;

A0060; A0053; 0.0111; 0.0179; 0.0126; 0; ok;

A0060; A0054; 0.0092; 0.0095; 0.0093; 0; ok;

A0060; A0055; 0.0083; 0.0240; 0.0124; 0; ok;

A0060; A0056; 0.0078; 0.0087; 0.0092; 0; ok;

A0060; A0057; 0.0079; 0.0141; 0.0144; 0; ok;

A0060; A0058; 0.0082; 0.0096; 0.0099; 0; ok;

A0060; A0059; 0.0082; 0.0087; 0.0099; 0; ok;

A0060; A0060; 0.0385; 0.0370; 0.1005; 1; ok;

A0060; A0062; 0.0370; 0.0151; 0.0255; 0; ok;

A0060; A0063; 0.0118; 0.0130; 0.0142; 0; ok;

A0060; A0064; 0.0124; 0.0133; 0.0140; 0; ok;

A0060; A0065; 0.0116; 0.0134; 0.0141; 0; ok;

A0060; A0070; 0.0126; 0.0622; 0.0149; 0; ok;

A0060; A0080; 0.0140; 0.0142; 0.0162; 0; ok;

A0060; A0082; 0.0142; 0.0150; 0.0159; 0; ok;

A0060; A0083; 0.0141; 0.0148; 0.0160; 0; ok;

A0060; A0086; 0.0222; 0.0224; 0.0250; 0; ok;

A0060; A0087; 0.0170; 0.0311; 0.0199; 0; ok;

A0060; A0088; 0.0170; 0.0206; 0.0202; 0; ok;

A0060; A0089; 0.0168; 0.0182; 0.0199; 0; ok;

A0062; A0053; 0.0077; 0.0159; 0.0087; 0; ok;
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A0062; A0054; 0.0082; 0.0085; 0.0099; 0; ok;

A0062; A0055; 0.0088; 0.0173; 0.0098; 0; ok;

A0062; A0056; 0.0080; 0.0094; 0.0099; 0; ok;

A0062; A0057; 0.0103; 0.0099; 0.0104; 0; ok;

A0062; A0058; 0.0084; 0.0101; 0.0103; 0; ok;

A0062; A0059; 0.0087; 0.0091; 0.0124; 0; ok;

A0062; A0060; 0.0146; 0.0274; 0.0160; 0; ok;

A0062; A0062; 0.0387; 0.0377; 0.0542; 1; ok;

A0062; A0063; 0.0117; 0.0152; 0.0139; 0; ok;

A0062; A0064; 0.0118; 0.0190; 0.0144; 0; ok;

A0062; A0065; 0.0116; 0.0194; 0.0140; 0; ok;

A0062; A0070; 0.0124; 0.0495; 0.0150; 0; ok;

A0062; A0080; 0.0135; 0.0138; 0.0161; 0; ok;

A0062; A0082; 0.0140; 0.0144; 0.0163; 0; ok;

A0062; A0083; 0.0143; 0.0146; 0.0170; 0; ok;

A0062; A0086; 0.0220; 0.0227; 0.0250; 0; ok;

A0062; A0087; 0.0173; 0.0313; 0.0199; 0; ok;

A0062; A0088; 0.0175; 0.0205; 0.0203; 0; ok;

A0062; A0089; 0.0170; 0.0184; 0.0202; 0; ok;

A0063; A0053; 0.0114; 0.0107; 0.0124; 0; ok;

A0063; A0054; 0.0154; 0.0111; 0.0132; 0; ok;

A0063; A0055; 0.0119; 0.0106; 0.0126; 0; ok;

A0063; A0056; 0.0116; 0.0110; 0.0132; 0; ok;

A0063; A0057; 0.0125; 0.0113; 0.0132; 0; ok;

A0063; A0058; 0.0128; 0.0115; 0.0135; 0; ok;

A0063; A0059; 0.0130; 0.0115; 0.0135; 0; ok;

A0063; A0060; 0.0129; 0.0113; 0.0135; 0; ok;

A0063; A0062; 0.0153; 0.0117; 0.0139; 0; ok;

A0063; A0063; 0.3324; 0.3265; 0.3280; 1; ok;

A0063; A0064; 0.3676; 0.3699; 0.4377; 1; ok;

A0063; A0065; 0.3453; 0.3486; 0.4246; 1; ok;

A0063; A0070; 0.0170; 0.0163; 0.0196; 0; ok;

A0063; A0080; 0.1983; 0.0167; 0.0198; 0; ok;

A0063; A0082; 0.1682; 0.0172; 0.0203; 0; ok;

A0063; A0083; 0.1611; 0.0175; 0.0210; 0; ok;

A0063; A0086; 0.0268; 0.0262; 0.0294; 0; ok;

A0063; A0087; 0.0206; 0.0802; 0.0232; 0; ok;

A0063; A0088; 0.0214; 0.0259; 0.0233; 0; ok;

A0063; A0089; 0.0211; 0.0261; 0.0239; 0; ok;

A0064; A0053; 0.0113; 0.0108; 0.0126; 0; ok;

A0064; A0054; 0.0200; 0.0117; 0.0137; 0; ok;

A0064; A0055; 0.0123; 0.0113; 0.0137; 0; ok;

A0064; A0056; 0.0116; 0.0110; 0.0132; 0; ok;

A0064; A0057; 0.0160; 0.0113; 0.0170; 0; ok;

A0064; A0058; 0.0129; 0.0115; 0.0137; 0; ok;

A0064; A0059; 0.0160; 0.0115; 0.0161; 0; ok;

A0064; A0060; 0.0130; 0.0114; 0.0135; 0; ok;

A0064; A0062; 0.0201; 0.0124; 0.0138; 0; ok;
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A0064; A0063; 0.3602; 0.3583; 0.3914; 1; ok;

A0064; A0064; 0.3378; 0.3546; 0.3497; 1; ok;

A0064; A0065; 0.3632; 0.3706; 0.5549; 1; ok;

A0064; A0070; 0.0176; 0.0169; 0.0197; 0; ok;

A0064; A0080; 0.2441; 0.0191; 0.0228; 0; ok;

A0064; A0082; 0.2061; 0.0188; 0.0220; 0; ok;

A0064; A0083; 0.2089; 0.0182; 0.0216; 0; ok;

A0064; A0086; 0.0293; 0.0289; 0.0326; 0; ok;

A0064; A0087; 0.0212; 0.0825; 0.0237; 0; ok;

A0064; A0088; 0.0213; 0.0266; 0.0236; 0; ok;

A0064; A0089; 0.0207; 0.0217; 0.0232; 0; ok;

A0065; A0053; 0.0109; 0.0102; 0.0122; 0; ok;

A0065; A0054; 0.0215; 0.0113; 0.0150; 0; ok;

A0065; A0055; 0.0121; 0.0105; 0.0125; 0; ok;

A0065; A0056; 0.0117; 0.0111; 0.0132; 0; ok;

A0065; A0057; 0.0136; 0.0116; 0.0143; 0; ok;

A0065; A0058; 0.0145; 0.0117; 0.0147; 0; ok;

A0065; A0059; 0.0136; 0.0170; 0.0193; 0; ok;

A0065; A0060; 0.0132; 0.0120; 0.0145; 0; ok;

A0065; A0062; 0.0215; 0.0122; 0.0149; 0; ok;

A0065; A0063; 0.3436; 0.3529; 0.3919; 1; ok;

A0065; A0064; 0.3627; 0.3611; 0.5094; 1; ok;

A0065; A0065; 0.3061; 0.3067; 0.3003; 1; ok;

A0065; A0070; 0.0168; 0.0165; 0.0195; 0; ok;

A0065; A0080; 0.1985; 0.0169; 0.0197; 0; ok;

A0065; A0082; 0.1872; 0.0173; 0.0201; 0; ok;

A0065; A0083; 0.1960; 0.0175; 0.0204; 0; ok;

A0065; A0086; 0.0269; 0.0257; 0.0299; 0; ok;

A0065; A0087; 0.0205; 0.0758; 0.0230; 0; ok;

A0065; A0088; 0.0208; 0.0266; 0.0233; 0; ok;

A0065; A0089; 0.0205; 0.0217; 0.0229; 0; ok;

A0070; A0053; 0.0116; 0.0109; 0.0130; 0; ok;

A0070; A0054; 0.0549; 0.0117; 0.0139; 0; ok;

A0070; A0055; 0.0454; 0.0112; 0.0135; 0; ok;

A0070; A0056; 0.0123; 0.0116; 0.0139; 0; ok;

A0070; A0057; 0.0593; 0.0119; 0.0149; 0; ok;

A0070; A0058; 0.0696; 0.0127; 0.0154; 0; ok;

A0070; A0059; 0.0737; 0.0121; 0.0144; 0; ok;

A0070; A0060; 0.0694; 0.0134; 0.0156; 0; ok;

A0070; A0062; 0.0502; 0.0123; 0.0147; 0; ok;

A0070; A0063; 0.0164; 0.0168; 0.0194; 0; ok;

A0070; A0064; 0.0165; 0.0171; 0.0196; 0; ok;

A0070; A0065; 0.0163; 0.0168; 0.0197; 0; ok;

A0070; A0070; 0.2748; 0.2749; 0.0926; 1; ok;

A0070; A0080; 0.0183; 0.0175; 0.0208; 0; ok;

A0070; A0082; 0.0190; 0.0179; 0.0211; 0; ok;

A0070; A0083; 0.0187; 0.0183; 0.0212; 0; ok;

A0070; A0086; 0.1434; 0.0264; 0.0295; 0; ok;
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A0070; A0087; 0.0212; 0.0843; 0.0243; 0; ok;

A0070; A0088; 0.0216; 0.0276; 0.0247; 0; ok;

A0070; A0089; 0.0213; 0.0223; 0.0244; 0; ok;

A0080; A0053; 0.0125; 0.0119; 0.0141; 0; ok;

A0080; A0054; 0.0136; 0.0127; 0.0151; 0; ok;

A0080; A0055; 0.0140; 0.0121; 0.0145; 0; ok;

A0080; A0056; 0.0133; 0.0125; 0.0152; 0; ok;

A0080; A0057; 0.0134; 0.0128; 0.0153; 0; ok;

A0080; A0058; 0.0137; 0.0130; 0.0155; 0; ok;

A0080; A0059; 0.0137; 0.0131; 0.0155; 0; ok;

A0080; A0060; 0.0145; 0.0130; 0.0151; 0; ok;

A0080; A0062; 0.0142; 0.0132; 0.0158; 0; ok;

A0080; A0063; 0.0169; 0.1976; 0.0197; 0; ok;

A0080; A0064; 0.0169; 0.2149; 0.0199; 0; ok;

A0080; A0065; 0.0168; 0.2049; 0.0197; 0; ok;

A0080; A0070; 0.0175; 0.0180; 0.0204; 0; ok;

A0080; A0080; 0.2512; 0.2513; 0.4183; 1; ok;

A0080; A0082; 0.1337; 0.0203; 0.0239; 0; ok;

A0080; A0083; 0.1352; 0.0201; 0.0238; 0; ok;

A0080; A0086; 0.0288; 0.0274; 0.0304; 0; ok;

A0080; A0087; 0.0223; 0.0769; 0.0257; 0; ok;

A0080; A0088; 0.0225; 0.0271; 0.0259; 0; ok;

A0080; A0089; 0.0225; 0.0232; 0.0259; 0; ok;

A0082; A0053; 0.0133; 0.0127; 0.0146; 0; ok;

A0082; A0054; 0.0139; 0.0133; 0.0156; 0; ok;

A0082; A0055; 0.0145; 0.0127; 0.0148; 0; ok;

A0082; A0056; 0.0139; 0.0132; 0.0156; 0; ok;

A0082; A0057; 0.0140; 0.0134; 0.0197; 0; ok;

A0082; A0058; 0.0142; 0.0136; 0.0158; 0; ok;

A0082; A0059; 0.0143; 0.0137; 0.0161; 0; ok;

A0082; A0060; 0.0152; 0.0136; 0.0157; 0; ok;

A0082; A0062; 0.0149; 0.0138; 0.0161; 0; ok;

A0082; A0063; 0.0175; 0.1574; 0.0203; 0; ok;

A0082; A0064; 0.0175; 0.1941; 0.0203; 0; ok;

A0082; A0065; 0.0173; 0.1928; 0.0203; 0; ok;

A0082; A0070; 0.0182; 0.0185; 0.0209; 0; ok;

A0082; A0080; 0.0206; 0.1371; 0.0236; 0; ok;

A0082; A0082; 0.3289; 0.3383; 0.4709; 1; ok;

A0082; A0083; 0.3324; 0.3311; 0.4913; 1; ok;

A0082; A0086; 0.0295; 0.0282; 0.0311; 0; ok;

A0082; A0087; 0.0227; 0.4435; 0.0263; 0; ok;

A0082; A0088; 0.0230; 0.4018; 0.0269; 0; ok;

A0082; A0089; 0.0226; 0.3908; 0.0264; 0; ok;

A0083; A0053; 0.0131; 0.0124; 0.0150; 0; ok;

A0083; A0054; 0.0141; 0.0133; 0.0155; 0; ok;

A0083; A0055; 0.0142; 0.0129; 0.0150; 0; ok;

A0083; A0056; 0.0140; 0.0131; 0.0157; 0; ok;

A0083; A0057; 0.0144; 0.0135; 0.0157; 0; ok;
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A0083; A0058; 0.0143; 0.0138; 0.0161; 0; ok;

A0083; A0059; 0.0143; 0.0137; 0.0161; 0; ok;

A0083; A0060; 0.0152; 0.0134; 0.0159; 0; ok;

A0083; A0062; 0.0149; 0.0137; 0.0164; 0; ok;

A0083; A0063; 0.0175; 0.1604; 0.0204; 0; ok;

A0083; A0064; 0.0176; 0.1943; 0.0205; 0; ok;

A0083; A0065; 0.0175; 0.1940; 0.0206; 0; ok;

A0083; A0070; 0.0183; 0.0184; 0.0212; 0; ok;

A0083; A0080; 0.0204; 0.1373; 0.0238; 0; ok;

A0083; A0082; 0.3247; 0.3291; 0.4896; 1; ok;

A0083; A0083; 0.3222; 0.3203; 0.4868; 1; ok;

A0083; A0086; 0.0292; 0.0281; 0.0315; 0; ok;

A0083; A0087; 0.0229; 0.4617; 0.0266; 0; ok;

A0083; A0088; 0.0231; 0.3946; 0.0266; 0; ok;

A0083; A0089; 0.0229; 0.3968; 0.0263; 0; ok;

A0086; A0053; 0.0217; 0.0205; 0.0235; 0; ok;

A0086; A0054; 0.0227; 0.0214; 0.0240; 0; ok;

A0086; A0055; 0.0223; 0.0208; 0.0233; 0; ok;

A0086; A0056; 0.0224; 0.0211; 0.0242; 0; ok;

A0086; A0057; 0.0226; 0.0215; 0.0241; 0; ok;

A0086; A0058; 0.0229; 0.0216; 0.0247; 0; ok;

A0086; A0059; 0.0229; 0.0215; 0.0246; 0; ok;

A0086; A0060; 0.0229; 0.0214; 0.0242; 0; ok;

A0086; A0062; 0.0232; 0.0220; 0.0246; 0; ok;

A0086; A0063; 0.0265; 0.0269; 0.0318; 0; ok;

A0086; A0064; 0.0259; 0.0264; 0.0292; 0; ok;

A0086; A0065; 0.0261; 0.0268; 0.0290; 0; ok;

A0086; A0070; 0.0267; 0.1409; 0.0295; 0; ok;

A0086; A0080; 0.0280; 0.0278; 0.0306; 0; ok;

A0086; A0082; 0.0286; 0.0290; 0.0318; 0; ok;

A0086; A0083; 0.0287; 0.0291; 0.0317; 0; ok;

A0086; A0086; 0.5891; 0.5861; 0.8778; 1; ok;

A0086; A0087; 0.0314; 0.1074; 0.0349; 0; ok;

A0086; A0088; 0.0321; 0.0361; 0.0358; 0; ok;

A0086; A0089; 0.0315; 0.3926; 0.0350; 0; ok;

A0087; A0053; 0.0266; 0.0155; 0.0183; 0; ok;

A0087; A0054; 0.0338; 0.0164; 0.0191; 0; ok;

A0087; A0055; 0.0306; 0.0158; 0.0189; 0; ok;

A0087; A0056; 0.0355; 0.0162; 0.0190; 0; ok;

A0087; A0057; 0.0366; 0.0165; 0.0193; 0; ok;

A0087; A0058; 0.0364; 0.0166; 0.0194; 0; ok;

A0087; A0059; 0.0390; 0.0166; 0.0195; 0; ok;

A0087; A0060; 0.0309; 0.0166; 0.0194; 0; ok;

A0087; A0062; 0.0318; 0.0171; 0.0199; 0; ok;

A0087; A0063; 0.0807; 0.0204; 0.0229; 0; ok;

A0087; A0064; 0.0789; 0.0205; 0.0231; 0; ok;

A0087; A0065; 0.0762; 0.0205; 0.0228; 0; ok;

A0087; A0070; 0.0811; 0.0210; 0.0242; 0; ok;
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A0087; A0080; 0.0808; 0.0222; 0.0257; 0; ok;

A0087; A0082; 0.4332; 0.0229; 0.0264; 0; ok;

A0087; A0083; 0.4485; 0.0250; 0.0267; 0; ok;

A0087; A0086; 0.0992; 0.0311; 0.0346; 0; ok;

A0087; A0087; 1.1866; 1.1893; 0.4841; 1; ok;

A0087; A0088; 1.0377; 1.0436; 0.4811; 1; ok;

A0087; A0089; 0.1508; 0.5903; 0.0305; 0; ok;

A0088; A0053; 0.0191; 0.0158; 0.0186; 0; ok;

A0088; A0054; 0.0210; 0.0166; 0.0195; 0; ok;

A0088; A0055; 0.0195; 0.0163; 0.0190; 0; ok;

A0088; A0056; 0.0207; 0.0166; 0.0193; 0; ok;

A0088; A0057; 0.0210; 0.0170; 0.0200; 0; ok;

A0088; A0058; 0.0216; 0.0169; 0.0199; 0; ok;

A0088; A0059; 0.0216; 0.0170; 0.0222; 0; ok;

A0088; A0060; 0.0209; 0.0168; 0.0199; 0; ok;

A0088; A0062; 0.0208; 0.0171; 0.0203; 0; ok;

A0088; A0063; 0.0261; 0.0207; 0.0234; 0; ok;

A0088; A0064; 0.0262; 0.0209; 0.0234; 0; ok;

A0088; A0065; 0.0263; 0.0208; 0.0231; 0; ok;

A0088; A0070; 0.0275; 0.0213; 0.0246; 0; ok;

A0088; A0080; 0.0285; 0.0222; 0.0262; 0; ok;

A0088; A0082; 0.3869; 0.0229; 0.0265; 0; ok;

A0088; A0083; 0.3798; 0.0231; 0.0266; 0; ok;

A0088; A0086; 0.0377; 0.0315; 0.0353; 0; ok;

A0088; A0087; 1.0177; 1.0250; 0.4818; 1; ok;

A0088; A0088; 0.8987; 0.8955; 0.5169; 1; ok;

A0088; A0089; 0.0332; 0.4683; 0.0311; 0; ok;

A0089; A0053; 0.0173; 0.0155; 0.0184; 0; ok;

A0089; A0054; 0.0185; 0.0164; 0.0193; 0; ok;

A0089; A0055; 0.0176; 0.0157; 0.0187; 0; ok;

A0089; A0056; 0.0181; 0.0161; 0.0191; 0; ok;

A0089; A0057; 0.0181; 0.0165; 0.0192; 0; ok;

A0089; A0058; 0.0184; 0.0167; 0.0196; 0; ok;

A0089; A0059; 0.0185; 0.0165; 0.0195; 0; ok;

A0089; A0060; 0.0184; 0.0168; 0.0195; 0; ok;

A0089; A0062; 0.0188; 0.0168; 0.0200; 0; ok;

A0089; A0063; 0.0218; 0.0204; 0.0231; 0; ok;

A0089; A0064; 0.0219; 0.0203; 0.0230; 0; ok;

A0089; A0065; 0.0218; 0.0258; 0.0228; 0; ok;

A0089; A0070; 0.0224; 0.0209; 0.0245; 0; ok;

A0089; A0080; 0.0236; 0.0222; 0.0262; 0; ok;

A0089; A0082; 0.3906; 0.0225; 0.0262; 0; ok;

A0089; A0083; 0.3958; 0.0226; 0.0265; 0; ok;

A0089; A0086; 0.4022; 0.0312; 0.0348; 0; ok;

A0089; A0087; 0.5784; 0.1565; 0.0304; 0; ok;

A0089; A0088; 0.4613; 0.0320; 0.0308; 0; ok;

A0089; A0089; 0.9123; 0.9117; 0.4907; 1; ok;
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