
1. Create initial state pairs
2. Step over the same symbol in both 

automata, reached states form a 
new pair

3. Discard new pair if it is in closure
4. Repeat until no new pairs can be 

created or counterexample was 
found

Tree automata are used in verification of 
programs with tree shaped dynamic data 
structures, for example red-black trees or 
threaded trees.
Language inclusion and equivalence 
check is an important step in verification 
process.

● Extension of standard
finite (word) automata

● Operates on trees
(branching words)
instead of words

Goal is to develop algorithm
that efficiently checks
language inclusion and
equivalence on 
tree automata.

Bisimulation up-to congruence was 
compared with state-of-the-art antichain 
algorithm. Algorithms were tested on a 
set of 9025 automata pairs.
It was shown that bisimulation performs 
similarly on easy cases and often 
outperforms antichain algorithm on 
harder cases, in extreme cases by one 
order of magnitude.

Efficient Algorithms for Tree Automata
Author: Ondřej Valeš
Supervisor: Ing. Ondřej Lengál Ph.D.

Picture 3. Runtime comparison of bisimulation 
and antichain algorithms.

Tree Automata Bisimulation up-to congruence Experimental results

Applications

Picture 1. Example tree

● Extension of Hopcroft and Karp 
algorithm for use with tree automata

● Simultaneous executions of single 
steps in both automata

● Determinization on the fly
● Premature termination if 

counterexample is found
● Parts of the search space that are 

covered (i. e. cannot contain unique 
counterexample) ale discarded.

Picture 2. Illustration of bisimulation up-to 
congruence operation.

Algorithm operation


