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Abstract

Passwords are a popular authentication method in the Ąeld of infor-
mation technology. Passwords were created for humans to be remem-
bered. Sometimes they are not ideal for usage in encryption software.
Therefore, there exist key derivation functions, which transform a
password into more suitable cryptographic key. This thesis deals with
such functions, in particular considering their usage in disk encryp-
tion. The most popular function PBKDF2 is described together with
its vulnerabilities and attacks. Memory-hard functions have started
being used as a mitigation of time-memory trade-off attacks. One of
such functions is Argon2 selected as a winner of Password Hashing
Competition. The thesis describes Argon2 in detail. The practical part
of the thesis deals with simulating of an attack on a disk encrypted
with LUKS2 encryption scheme using Argon2 as PBKDF. It includes
collecting Argon2 parameters benchmarked by Cryptsetup software.
Attack is devised through CPUs and GPUs using high-performance
hardware provided by MetaCentrum VO. The last part of the thesis in-
troduces a price model for an attacker using either physical hardware
or on-demand allocation of computing resources in the cloud. This
model is then applied to real world prices and data obtained during
the attack simulation. The thesis shows that it can take thousands
of machines and hundreds of millions of dollars to crack a LUKS2
password eight characters long in ten years.
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1 Introduction

This diploma thesis deals with password-based key derivation func-
tions and their application in disk encryption software. At the very
beginning of the computer era there were no passwords. They ap-
peared for the Ąrst time in the 1960s and they were introduced by
Fernando Corbató [15]. They are going through evolving process as
they try to keep pace with developing technology and new ways in
which the technology is being used.

Passwords are becoming more and more important. They protect
our secrets, our money, our communication. All these things are valu-
able not only to us but also to other people and some of them would
like to gain access to them for malicious purposes. There are many
ways how to gain access to the secret passphrase including guessing,
social engineering, exploiting application vulnerabilities etc. This the-
sis deals with the method mentioned Ąrst and it tries to look at it from
the attackerŠs perspective. To be more exact, it considers this option
from the perspective of attackerŠs Ąnancial resources. It tries to answer
a question: How much would it cost to guess a password opening an
encrypted disk volume? The thesis shows that to guess a password
for LUKS encrypted volume even if created on low performance hard-
ware costs currently more than a hundred million dollars and involves
thousands of purchased or rented machines.

The second chapter introduces basic terminology and rationale for
usage of PBKDFs in scope of disk encryption. It also summarizes his-
tory and possible attacks against PBKDFs. The third chapter describes
in detail the PBKDF2 function and the Argon2 function. During their
analysis the rationale for using memory-hard functions is shown. The
Argon2 function is described in greater detail because it is funda-
mental for rest of the thesis. At the end of the chapter several other
password hashing functions and their features are brieĆy mentioned.

The fourth chapter analyses the LUKS2disk encryption scheme and
its front-end called Cryptsetup. First the inner workings of LUKS2 are
introducedwith special focus on usage of PBKDFs in various processes.
The rationale for benchmarking of PBKDF parameters is explained.
This benchmarking function is then used to collect real world data to be
used in subsequent analysis. The last part is dedicated to experimental
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1. Introduction

simulation of an attacker trying to break LUKS2 disk encryption by
guessing the passphrase. This process inevitably requires processing
of PBKDFs. Methodology, tools and highlights from resulting data
are shown.

The Ąfth chapter summarizes options of a potential attacker and
introduces the price model suited for estimating Ąnal price of an attack
against LUKS2 encrypted volume. The model is applied to real world
data based on results from the previous chapter. The option of using
CPUs, GPUs and cloud based on-demand allocated resources is taken
into account.

The sixth chapter provides conclusions and several paths for fur-
ther research in this area. The thesis is closed with description of
attached archive with source code, scripts, and results, and glossary
is provided.

2



2 Password hashing and key derivation

functions

2.1 DeĄnitions

This thesis dealswith various cryptographic terms including password
hashing and key derivation. This section brieĆy explains some of them.

A hashing function is a function which receives an input of arbitrary
length and produces an output of speciĄed shorter length, effectively
compressing the input. These functions are used inmany areas such as
effective data retrieval [30]. Cryptographic hashing functions are subset
of hashing functions and they have to meet certain properties, namely
preimage resistance, second preimage resistance and collision resis-
tance. Only cryptographic hash functions are considered in this thesis.

Password hashing is a process in which a password is supplied
to a hash function. This is de facto standard method of storing of
saved passwords in operating systems and applications. In case that
an attacker gets hold of such password hashes, it should be practically
infeasible for an attacker to derive the original password. Therefore,
hashing functions are used also in process of password veriĄcation,
during which the entered password is hashed and compared with the
stored hash.

This thesis is not going to deal with password hashing. However,
many password hashing functions described below meet desired proper-
ties for being used in the key derivation process.

Key derivation functions are based on hash functions. Their basic
purpose is to take an input and produce an output which can be
used as a cryptographic key. The input is usually a password or other
material such as biometric sample converted into binary form. These
materials could be of course used as cryptographic keys on their own,
but they often lack properties of a good cryptographic key such as
sufficient entropy or length.

A cryptographic salt is often used during process of key derivation.
The purpose of salt is to prevent attacks which use precomputed
tables such as Rainbow tables [43]. Salt introduces another factor
which inĆuences a derived key. It means that it is no longer dependent
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2. Password hashing and key derivation functions

only on passphrase. For example suppose that 32 bit long integer is
used as a salt. In that case there are 232 possible keys derived from
the same passphrase. This makes precomputing attacks effectively
infeasible. Salt is usually stored unobfuscated together with hashed
material.

A memory-hard algorithm is an algorithm which performs asymp-
totically almost the same number of operations compared to number
of accessed memory locations. A sequential memory-hard function is
deĄned as a function which can be computed by a sequential memory-
hard algorithm and at the same time even the fastest parallel algorithm
cannot asymptotically reach a signiĄcantly lower cost.

2.2 Why do we need PBKDFs?

Today, asmore andmore private information is stored on various kinds
of media and transferred over the Internet, it is becoming crucial to
protect it from being accessed or changed by unauthorized actors.
Although there are several interesting authentication options such
as biometrics, passwords or passphrases are still the most common
method.

Considering passwords we are facing a problematic situation. Or-
ganizations and services provide guidelines or requirements which
should help a user to choose a strong password [24, 53]. Important
parameters are password length (in characters), password complex-
ity, uniqueness and others. I deĄne complexity as amount and di-
versity of used characters (letters, numbers, symbols, emojis. . . ) and
by uniqueness I mean the fact that the password does not contain
easily guessable or predictable sequences. See mentioned policies for
example.

In some situations passwords do not provide a good cryptographic
material to be used as a cryptographic key. There are surprisingly
many reasons. They are usually not sufficiently long. Because they are
composed of printable characters, they do not meet the requirement
of being uniformly distributed. If they should be remembered, they
will probably contain dictionary words, which lessens their entropy
even more. See section 5.6.4 at [30] for short but interesting analysis.
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2. Password hashing and key derivation functions

PBKDF stands for password-based key derivation function. The
goal of these functions is to derive one or more cryptographic keys
from a password or a passphrase. This key should be pseudorandom
and sufficiently long to make brute-force guessing as time-consuming
as possible. As stated above, they are based on cryptographic hashing
functions.

Lately PBKDFs are taking another speciĄc task. Due to availability
of GPUs, FPGAs and ASICs, there are new possibilities of running
functions in parallel computing environment. See chapter 4 at [39].
This increases effectiveness of brute-force attacks. PBKDFs try to de-
fend against such attacks by using memory-hard algorithms to slow
down potential attackers and to make running the function in parallel
extremely expensive or inefficient. See section 2.4 for more details.

Examples of PBKDFs include Argon2, PBKDF2, Scrypt, Yescrypt
and more. See chapter 3 for comparison of several functions.

2.3 PBKDFs and disk encryption

Disk encryption is a very good use case for usage of PBKDFs. Used
encryption algorithms require cryptographic keys of certain length
[26]. It is also important to consider the fact, that it is usually not
desirable to change the encryption key often because reencryption of
whole disk takes considerable amount of time. Let aside the fact that
if an attacker gains permanent access to such an encrypted disk, the
key cannot be changed at all and there exists an extensive period of
time for cracking of the passphrase.

By looking at [61] we can see that PBKDFs are used in many types
of disk encryption software. Note that this list mentions only PBKDF2
as this has been most used PBKDF until recent times. PBKDF2 is
for example used in LUKS version 1 [20], FileVault software used by
macOS [6], CipherShed disk encryption software [14], Veracrypt disk
encryption software [26] and more.

In 2013 therewas initiated a new open competition called Password
Hashing Competition. Its goal was to Ąnd a new password hashing
function which would resist new attacks devised against those func-
tions [7]. The winner was function named Argon2. It is already used
for example in LUKS version 2 [13].
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2. Password hashing and key derivation functions

2.4 Attacks on PBKDFs

History of password cracking is as old as computer passwords. People
crack passwords for two main reasons. They either want to recover
a forgotten password, or they want to recover password of someone
else, later being able to use it for authentication purposes. There exist
two main techniques for password cracking; brute force attacks and
dictionary attacks. The idea behind the Ąrst method is to guess the
password by trying all passwords of given length composed of all
combinations of given characters. Dictionary attacks exploit the fact
that people often use passwords containing words found in language
dictionaries. It means that if an attacker tries passwords containing
dictionary words or permutations, they might have quite good chance
of success.

At the beginning passwords were stored on computer systems in
plain text, protected only by the fact that users should not be able to
read passwords of other users. But soon it had been discovered that
plain text passwords could be revealed for example by badly designed
software permissions. This was shown in the case of Allan Scherr,
who misused capabilities of a printing program to print out whole
password Ąle, see page 37 at [15]. Since that time, passwords started
to be hashed.

This time marks beginning of the never-ending Ąght between au-
thors of hash functions and people trying to crack passwords hashed
by them. First hash functions were really simple, and they were def-
initely not cryptographically secure, such as hash mechanism used
in Multics. This mechanism squared numerical form of each pass-
word and applied a bit mask with AND operation [58]. This increased
number of guesses but only negligibly compared to modern functions.

The Ąrst cryptographic hash came with Robert Morris and his
Crypt function. Crypt used up to Unix 6th edition mimicked the M209
cipher machine from World War II. It proved to be not very secure
because the algorithm could be recoded in a way which allowed to
test passwords in very short period of time (1.25 milliseconds per
password) [47]. Later version used since Unix 7th edition employed
the DES block cipher. This cipher was at that time very slow if im-
plemented in software. The password entry program also introduced
two new concepts; automated proactive password strength checking
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2. Password hashing and key derivation functions

and cryptographic salt (12 bit random number at that time). Currently
for example the LUKS2 speciĄcation uses 32 bytes long salt.

During the 1980s there were organized some password cracking
contests and hash functions were also improved. Some of them were
made deliberately slow to slowdownpotential attacker. If thismeasure
was not effective enough, more iterations of hashing function could be
used. During the 1990s many password cracking programs appeared
including John the Ripper, Crack, LOphtCrack and others [31]. Most
of those programs tried to improve the cracking speed by optimizing
underlying algorithms and later by using CPU parallelism.

The concept of KDFs started being studied in late 1990s. The RFC
2898 for PBKDF2 was released in 2000 and it started being used pri-
marily for key derivation in many applications such as WinZip, Open-
document, Truecrypt or Android. However, it was also used for actual
password hashing for example in Mac OS X 10.8. Note that PBKDF1
exists, but it is not recommended because of its limited key length
(20 bytes at best) and it is provided solely for backward compatibility.
PBKDF2 introduced conĄgurable pseudorandom function, number of
iterations and derived key length. These parameters allow Ćexibility
while choosing trade-off between security and user experience.

However, in 2007 there appeared the Ąrst password cracker using
parallel computing capabilities of GPUs [9]. Other password crackers
followed; Whitepixel in 2010, Oclhashcat in 2012, John the ripper in
2012. Until 2012 software could recover primarily MD5 and NTLM
hashes, but Oclhashcat introduced recovery of many other hashes.

As far as PBKDF2 is considered, its resistance to password cracking
using GPUs or even ASICs/FPGAs is currently not ideal as discussed
in section 7 at [39]. PBKDF2 does not offer support for parallelism
while used as suggested. However, at the same time its low memory
requirements and GPU friendly algorithm (see algorithm 1) bring
advantage to the attacker. As shown in [39], it was possible to improve
cracking speed of LUKSpasswords forty times. This required rewriting
the function for GPUs. Moreover, it is shown that proper optimization
of underlying algorithms can greatly increase PBKDF2 performance
even without GPUs. This was shown after analysis of closed source
Oclhashcat in [52].

As shown in [59], there exist other attacks not connected with
GPU. This paper shows that an attacker can save 50 % of PBKDF2 CPU
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2. Password hashing and key derivation functions

operations if the PBKDF2 is not implemented according to suggested
performance improvements described in RFC 2104 [32] andNIST FIPS
PUB 198 [28]. In this case it is possible to precompute Ąrst message
block of underlying keyed hash function (used as PRF) and replace it
with resulting constant in subsequent operations. See lines 11Ű13 in
algorithm 1. Note that HMAC function is not described in this thesis,
see section 4.1 at [59].

In section 4.2 [59] there is shown that an attacker can omit con-
siderable amount of XOR operations while using SHA1 as a pseu-
dorandom function within PBKDF2 because this operation is some-
times performed on two blocks containing only zeroes. Additionally,
more XOR operations can be omitted because of padding characters
which are constant and some XOR operations in this case just zero
out themselves. Finally, in section 4.3, it is shown that it is possible to
precompute the word expansion part of the second message block of
a keyed hash function. The block is password independent and can
be thus precomputed. However, this saves only negligible amount of
time compared to previous attacks described in this paragraph.

In 2009 Colin Percival suggested that to defend against usage of
parallel computing, PBKDFs should fulĄl requirements of memory-
hard functions [44]. As a reaction to previously mentioned problems
of PBKDF2, the Password Hashing Competition was held from 2013
to 2015 to select a new function for password hashing. The winner
is Argon2 described in section 3.2 and it is indeed a memory-hard
function. Of course that does not mean that memory-hard functions
are not prone to attacks.

In a paper from 2016, authors show that there still exists an attack
which can decrease computational complexity of Argon2i version 1.0
function. It was shown that at that time it was needed to conĄgure
at least ten passes of Argon2i version 1.0 to mitigate this attack. At
the time of releasing the paper, the IRTF proposal suggested only
six passes for "paranoid" situations. Fortunately authors of Argon2
reacted to those attacks and improved the function, therefore the attack
is not effective against Argon2i any more except when running with
only single pass. Note that current version of Argon2 is 1.3. Details
and rationale can be found in section 5.2 at [10].
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3 State of the art PBKDFs

3.1 PBKDF2

PBKDF2 is a password-based key derivation function deĄned in RFC
8018 [29]. This RFC thoroughly describes two use cases of PBKDF2;
password-based encryption scheme and password-based message
authentication scheme. Other mentioned use cases include password
checking and derivation of multiple keys from one password. As
shown in 4.1.1, LUKS version 1 uses PBKDF2 for password checking
and derivation of key for encryption or decryption of master key.

The function requires four input parameters; passphrase, crypto-
graphic salt, iteration count and length of a key to be derived. More-
over, the function requires a pseudorandom function (PRF) which is
used in process of key derivation.

The termPassphrase in this contextmeans any datawhich are source
for subsequent key derivation process. Usually it is a password entered
by user. The cryptographic salt is represented by randomly generated
number.

The purpose of iteration count parameter is to defend against brute
force and dictionary attacks performed on PBKDF2. The iteration
count prolongs the time which is needed to derive a single key. Techni-
cally, the iteration count signiĄes number of successive runs of chosen
PRF for every block of the derived key. In general, the iteration count
should be chosen as large as possible, taking into account the fact
that the processing time should be acceptable for the end user [57].
According to the cited document, minimum iteration count should be
1,000 iterations and for critical security systems a count of 10,000000
iterations is appropriate.

The function is described by following algorithm. Verbal descrip-
tion is also provided. Following abbreviations and conventions are
used in the algorithm and description:

P Ű an octet string representing a passphrase

S Ű an octet string representing a cryptographic salt

C Ű a positive integer representing iteration count

9



3. State of the art PBKDFs

dkLen Ű a positive integer representing length of the derived key
counted in octets

DK Ű an octet string representing the derived key

PRF Ű a pseudorandom function

hLen Ű length of output of chosen pseudorandom function counted
in octets

CEIL(x) Ű the ceiling function returning the smallest integer which
is greater or equal to X

F Ű a helper function for better description

|| Ű concatenation of strings

INT(x) Ű a big-endian encoding of integer x

At the beginning the algorithm checks if the desired length of the
key does not exceed 232 − 1. If it does, it exits immediately. Then it
processes the input and creates output key in blocks. Every block has
length of hLen octets, except for the last one which can have shorter
length.

In the pseudocode there is deĄned function F which is applied
to every block. Results of such applications are Ąnally concatenated
and returned as the resulting derived key. This function performs c
iterations of underlying pseudorandom function PRF. The PRF takes a
passphrase as the Ąrst parameter and result of previous iteration as the
second parameter. The only exception is the Ąrst iteration where the
second parameter is concatenation of salt and binary representation of
the block index i. Results of all iterations are xored and returned as a
particular block of the derived key. Finally, all blocks are concatenated
and returned as the derived key.

Notice that the function F can be rewritten to be quickly computed
in parallel computing environments such as GPUs. See section 4.1 at
[39] for more details.
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input :P, S, C, dkLen
output :DK

1 if dkLen > (232 − 1)× hLen then
2 return Derived key too long
3 end
4 L← CEIL(dkLen/hLen)

/* l is the number of hLen-octet blocks in the derived

key */

5 r ← dkLen− (l − 1)× hLen /* r is the number of octets in

the last block */

6 for i← 1 to l do
7 Ti ← F(p, s, c, i)
8 end
9 return t1||t2|| . . . tl[0 . . . (r− 1)]
10 Function F (s, p, c, i)
11 u1 ← PRF(P, S || INT(i))
12 for j← 2 to c do
13 uj ← PRF(P, uj−1)

14 end
15 return u1 ⊕ u2 ⊕ . . .⊕ uc

Algorithm 1: PBKDF2 function algorithm

11



3. State of the art PBKDFs

3.2 Argon2

As mentioned in very brief history of attacks on password hashes in
section 2.4, the Argon2 function is the winner of Password Hashing
Competition.Argon2 is a hash function belonging to the set ofmemory-
hard functions as deĄned in [44]. Current version of the function is
1.3 and the latest IETF draft is [11].

The function quickly Ąlls up given amount of memory and per-
forms a sequence of computations over values stored in this memory.
The Argon2 comes in three versions which differ in the way in which
data in the memory matrix (described further below) is processed.
See subsection 3.2.3 for detailed description.

Argon2 is used as the default PBKDF in LUKS version 2. Note
that according to [22] the default PBKDF can be conĄgured during
compilation.

The function is optimized for X86 architecture using improvements
in handling of cache and memory access in recent Intel and AMD
processors. To be exact, currently the Argon2 can utilize SSE2, SSSE3,
XOP, AVX2 and AVX512F CPU instructions. All the instructions except
for XOP are Intel speciĄc, XOP is speciĄc for AMD processors.

The function can be implemented on specialized hardware, but
the previously mentioned fact makes this implementation possibly
very slow and expensive and even specialized ASICs shouldnŠt acquire
signiĄcant beneĄt even if they employ large areas ofmemory. However,
no implementations of any Argon2 mode for specialized hardware
are known so far.

3.2.1 Operation

The function expects following mandatory input parameters.

P Ű themessage of any length from 0 to 232− 1 bytes. In case of PBKDF
this is the passphrase.

S Ű nonce with length from 8 to 232 − 1 bytes. In case of PBKDF this
is the cryptographic salt.

The function also accepts secondary inputs, which do not need to
be supplied.
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p Ű degree of parallelism as an integer with a value from 1 to 224 − 1.
The value determines the number of parallel computational
chains to be run. Chains are not independent, synchronization
occurs.

τ Ű tag length in bytes in range from 4 to 232 − 1. This determines an
output of the function, in case of PBKDF key length.

m Ű memory size as an integer number in range from 8p to 232 − 1.
The integer determines amount of kilobytes of memory which
should be used for computation of the function.

t Ű number of iterations as an integer in range from 1 to 232 − 1. This
parameter is used to tune the length of the function run by
specifying number of iterations.

v Ű one byte version number, currently hard-coded to 0x13.

K Ű a secret value (key) with length from 0 to 232− 1 bytes. By default,
no key is assumed.

X Ű associated data with length from 0 to 232 − 1 bytes.

y Ű type (mode) of Argon2 to be used. 0 for Argon2d, 1 for Argon2i,
2 for Argon2id.

Argon2 makes use of the permutation function P which is based
on Blake2b hash function [8]. The function actually copies blake2b
design but additionally it uses 64 bit multiplications. This particu-
lar modiĄcation makes the function more complicated to implement
and optimize for ASICs, while the running speed on X86 processors
should be degraded only negligibly. See section 3.6 at [11] for detailed
explanation.

Another internal function of Argon2 is compression function G
which internally uses previously mentioned function P. G accepts two
1,024 bytes long inputs and produces one 1,024 bytes long output. Let
X and Y be the inputs. Firstly, the function XORs them:

R = X⊕Y
R is treated as a 8× 8 matrix of 16 byte registers. The function P

is Ąrst applied to every row of the matrix and then to every column.
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The result is denoted as Z. Finally, the result is computed as Z⊕ R.
For more detailed description see section 3.5 at [11].

Argon2 makes use of two more hash functions. The HX function
where X denotes the output length in bytes and the whole function
is again based on Blake2b. Finally, the variable length hash function
H′X based on HX deĄned in section 3.3 at [11] is also used.

The argon2 operation can be described as follows. The emphasized
variables are Argon2 input parameters, primary and secondary pa-
rameters are not distinguished. The numbers in brackets denote the
line numbers in algorithm 2.

1. Initialize the block H0.

2. Allocate the memory according to m and p parameters. The real
size of allocated memory is denoted with m′ in 1,024 byte blocks.
Note that the memory is treated as a matrix B[I][J] with p rows
and q = m′/p columns.

3. Compute B[i][0] for 0 <= i < p.

4. Compute B[i][1[ for 0 <= i < p.

5. Compute B[i][j] for 0 <= i < p and 2 <= j < q. This step is
different for every Argon2 mode.

6. If t> 1 then repeat step 5 with slight change for every iteration.

7. The Ąnal block C is computed.

8. The output tag is computed.

3.2.2 Algorithm

This subsection describes Argon2 through pseudocode. In addition to
input parameters mentioned earlier, following notations will be used:

|| Ű concatenation of two strings

Ćoor(x) Ű function returns the largest integer which is not larger than
x

14
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ceil(x) Ű function returns the smallest integer which is not smaller
than x

LE32(x) Ű converts 32 bit long integer x to byte string in little endian

length(s) Ű returns length of string s in bytes as a 32 bytes long integer

allocate(x) Ű allocates x bytes of memory

3.2.3 Differences in Argon2 versions

Argon2 comes in three versions:

Argon2D Ű data-dependent variant of Argon2. This version uses pre-
viously computed data while performing computations and
memory access. It is recommended to be used for cryptocurren-
cies and other proof-of-work applications as well for hashing
on back-end servers. In general, this version is suited for an en-
vironment where no side-channel timing attacks are expected.
It provides better protection against brute-force attacks using
specialized hardware and trade-off attacks.

Argon2i Ű data-independent version. This version does not rely on
previously computed data while performing calculations in
memory. The version is recommended for key derivation and
password hashing, where side-channel timing attacks are more
probable because an adversary can have physical access to the
machine. Themode is slower because it performsmultiple passes
over memory to defend against trade-off attacks.

Argon2id Ű combination of previous versions. In this mode the func-
tion behaves as Argon2i during computation of the Ąrst half
of the Ąrst iteration over the memory. During remaining opera-
tion the Argon2d mode is used. The mode combines beneĄts of
mitigation of side-channel timing attacks and brute force attacks.

The difference lies in line number xx in the algorithm 2. In particu-
lar indexes l and z are computed differently within different Argon2
versions. The allocated memory is represented as a matrix B[I][J]with
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input :P, S, p, τ, m, t, v, K, X, y
output :TAG

1 H0 ← H64(LE32(p) || LE32(τ) || LE32(M) || LE32(t) || LE32(v) ||
LE32(y) || LE32(length(P)) || P || LE32(length(S)) || S ||
LE32(length(K)) || K || LE32(length(X)) || X)

2 M′ ← 4× p× floor(m/4p)

3 B← allocate(m′)
4 for i← 0 to p− 1 do
5 B[i][0]← H′128(H0 || LE32(0) || LE32(i))

6 end
7 for i← 0 to −1p do
8 B[i][1]← H′128(H0 || LE32(1) || LE32(i))

9 end
10 for i← 0 to p− 1 do
11 for j← 2 to q do
12 B[i][j]← G(B[i][j− 1], B[l][z])

/* indexes l and z are computed differently for

every Argon2 version, see subsection 3.2.3 */

13 end

14 end
15 if t > 1 then
16 for i← 0 to p− 1 do
17 B[i][0]← G(B[i][q− 1], B[l][z])
18 for j← 1 to q do
19 B[i][j]← G(B[i][j− 1], B[l][z])
20 end

21 end

22 end
23 C ← B[0][q− 1]⊕ B[1][q− 1]⊕ . . .⊕ B[p− 1][q− 1]
24 return H′τ(C)

Algorithm 2: Argon2 function algorithm
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p rows and q = m′/p columns. Before computing indexes l and z,
values J1 and J2 have to be calculated. This is the difference among
Argon2 versions. After calculating of these values, further processing
needs to be done but this stays the same for all versions.

Rows of memory are called lanes and there are p lanes according
to the parameter p, which signiĄes degree of parallelism. Moreover,
the memory is divided into 4 vertical slices, where number of slices is
denoted as S. Every intersection of a lane and a slice is called a segment.
Segments belonging to the same slice are computed in parallel and
they must not reference blocks of each other.

Argon2d computes J1 and J2 based on data stored in memory.
Therefore, it is data-dependent.

J1 ← int32(extract(B[i][j− 1], 1))
J2 ← int32(extract(B[i][j− 1], 2))
Where the function int32(s) converts the 32 bit string s into non-

negative integer represented in little endian. The function extract(s, i)
extracts ith set 32 bits long from bit string s while s is indexed from 0.

Argon2i computes indexes by running two rounds of the compres-
sion function G in counter mode in the following way

x ← G(ZERO, LE64(r)||LE64(l)||LE64(s)||LE64(m′)||LE64(t)||

||LE64(y)||LE64(i)||ZERO)

The result x is 64 bits long and therefore it can be viewed as two 32 bit
strings.

x1||x2 ← x
j1 ← int32(x1)
j2 ← int32(x2)
Inputs for the function G are described below. Note that no data

frommemory blocks are used. Therefore, Argon2i is data-independent.

r Ű the pass number

l Ű the lane number

s Ű the slice number

m′ Ű total number of memory blocks

t Ű total number of passes
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y Ű Argon2 mode

i Ű counter starting from 1 in every segment

ZERO Ű string of zeroes, in the Ąrst case 1024 bytes long, in the second
case 968 bytes long

Argon2id behaves as Argon2i if the pass number is 0 and at the
same time the slice number is 0 or 1. In further computations it behaves
like Argon2D.

Further computations common for all Argon2modes are described
in the subsection 3.4.2 at [11].

3.3 Scrypt

Scrypt is a PBKDF introduced by Colin Percival in [44]. At the time
of releasing the paper (2009) problems of PBKDF2 and its parallel
computation were already well-known. Percival came with two new
concepts. He introduced a concept of memory-hard algorithm and a
sequential memory-hard function. Both concepts came as a reaction
to increasing computing power of parallel hardware. He also deĄned
the ROMix and SMix functions which are sequential memory hard
functions and they perform mixing of data blocks in memory.

Scrypt accepts the memory/CPU cost parameter n, the paralleliza-
tion parameter p and the block size parameter r. The idea behind the
Scrypt function can be described as follows:

1. Use PBKDF2 with PRF being SHA256 to process the passphrase
and salt provided as Scrypt input and generate p blocks. Their
size is affected by parameter r.

2. Blocks generated in the previous step are independently mixed
by a mixing function which is actually composed of ROMix
function, SMix function and 8-round version of Salsa20 stream
cipher function. This step makes whole computation expensive.

3. The result is used as salt for another PBKDF2 computationwhich
produces the Ąnal result.

There exist theoretical work describing cache timing side-channel
attack against Scrypt but it has not been put into practice yet [4].
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3.4 Other PBKDFs

The Password Hashing Competition received 24 submissions. The
panel chose 9 Ąnalists and Ąnally Argon2 as the winner. Four Ąnalists
which received special recognition by PHC panel are described in this
section.

The Catena is presented as a password-scrambling framework
[19]. It can be used for many purposes including password derivation
or proof of work. Catena instance is characterized by cryptographic
primitive, a reduced primitive, optional randomization layer and a
memory-hard function. These parts are independent on each other
and therefore the whole platform is somehowmodular. Three tunable
parameters are provided, affecting time and memory requirements
and also resistance against precomputation attacks.

An interesting feature is introduced by server relief protocol which
allows shifting actual computation from a server to a client, while
keeping memory and time requirements. For example authentication
servers could beneĄt from this feature by not being burdened by too
many authentication requests. Another interesting feature is option to
increase security parameters (recomputing hash) without knowledge
of the actual password.

The Lyra2 function was chosen for its usage of cryptographic
sponges [5]. The function accepts parameters for tuning of mem-
ory and time cost. The function supports parallelism on multi-core
CPU platforms but tries to minimize beneĄts of parallelism on GPUs.
Different underlying sponge functions can be used.

The main highlight of the Makwa function is its ability to delegate
its computation to untrustworthy clients [50]. This feature is similar
to the one provided by Catena. A feature which makes this function
unique is support for password escrow. This feature allows recovering
of a password by knowing a speciĄc private key. This can be used for
example as a password recovery, although this method is deĄnitely
not ideal and should be considered carefully.

The Yescrypt function is based on the Scrypt function brieĆy de-
scribed in section 3.3 [46]. It is therefore backward compatible with
Scrypt and can compute Scrypt hashes. It also offers delegation of
computation to external clients and hash upgrades without knowl-
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edge of the password. The running time can be increased separately
from the memory usage and parallelism.
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4 Analysis of LUKS2

This chapter deals with the actual practical research performed as
a part of the thesis. The important goal of this thesis is to create a
price model for potential attacker trying to get unauthorized access
to LUKS2 encrypted partition. Another goal is tightly related. As ex-
plained in section 4.1.2, LUKS2 can determine three parameters for
Argon2 through its own benchmarking function. It is highly proba-
ble that most of Cryptsetup users do not provide their own Argon2
parameters and therefore use the benchmarking function.

Therefore, before the actual model is created, it is necessary to
collect sufficient data about parameters used as a result of this bench-
mark under various real world conditions. The process and results
are described in section 4.2. These parameters are further used while
simulating attacks on LUKS2 encrypted volumes on real machines.
This is described in section 4.3. Results are used to create an actual
price model in chapter 5.

4.1 LUKS

LUKS stands for Linux UniĄed Key Setup. This project started being
developed by Clemens Fruhwirth as a reaction to several incompati-
ble disk encryption schemes which coexisted at the same time at the
beginning of 21st century. At certain point there existed three incom-
patible disk encryption schemes which varied from Linux distribution
to Linux distribution. If a user had created an encrypted disk, they
could not be sure if theywill be able to encrypt the diskwith a different
distribution or even with a new version of the same distribution.

LUKS began as a metadata format for storing information about
cryptographic key setup. However, Fruhwirth discovered that to de-
sign a proper metadata format, he needs to know enough information
about key setup process [21]. Therefore, he created TKS1 and TKS2.
These are templates for the key setupprocess. Togetherwith LUKS they
ensure safe and standardized key management during disk encryp-
tion. After some user feedback, LUKS on-disk speciĄcation version 1.0
was created in 2005 [20]. Currently the latest version is LUKS on-disk
speciĄcation version 2 [13].

21



4. Analysis of LUKS2

The reference implementation of both versions of LUKS is called
Libcryptsetup. The user space interface is called Cryptsetup. In the
following two subsections, default parameters and information con-
cerning command line switches are speciĄc to this implementation.

4.1.1 Usage of PBKDFs in LUKS version 1

PBKDF2 function is used as a key derivation function in LUKS version
1. It is used duringmaster key initialization, adding of a new password,
master key recovery, and also during password changing because this
operation is actually composed of previously mentioned operations.
During all operations it internally uses a hash algorithm speciĄed by
user during initialization of the LUKS header. By default, SHA256
algorithm is used.

During initialization, the PBKDF2 function is used to create a check-
sum of a master key. This key is subsequently used for symmetric
encryption of actual data stored on the encrypted disk. The function
receives following parameters:

masterKey Ű a new randomly generated master key of user speciĄed
length

phdr.mk-digest-salt Ű a cryptographic salt 32 bytes long which is
used to prevent attacks against password using precomputed
tables, see subsection 5.6.3 at [30]

phdr.mk-digest-iteration-count Ű number of iterations for PBKDF2,
see section 3.1

LUKSDIGESTSIZE Ű length of he computed digest in bytes, default
is 20

The generated 20 bytes long checksum is stored in the LUKS header
together with the iteration count and salt. Please note that the phdr.mk-
digest-iteration-count parameter is obtained by performing a benchmark
with minimum of 1,000 iterations.

During adding of a new password, PBKDF2 is used to process the
passphrase supplied by user. It receives following parameters:

password Ű a passphrase supplied by user
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ks.salt Ű randomly generated salt used for this particular keyslot with
length of 32 bytes

ks.iteration-count Ű number of PBKDF2 iterations

MasterKeyLength Ű length of the derived key

The resulting key derived from the passphrase is used to encrypt
the master key. This key has to be present in memory either because
initialization has happened recently or it has been successfully recov-
ered through a different key stored in different keyslot. Together with
the encrypted master key, the salt and iteration count are also written
into the keyslot.

Note that the ks.iteration-count parameter can be inĆuenced by
user in several ways [22]. One possibility is to specify number of itera-
tions directlywith the command line option --pbkdf-force-iterations.
Another option is to specify the iteration time through -i or --iter-time

command line options. This option expects a number which signiĄes
number of milliseconds which should be spent unlocking the keyslot.
A benchmark is used to calculate number of iterations which corre-
sponds to this time. If no option is speciĄed then the default iteration
time of 2,000 milliseconds is used.

The function is also used during the master key recovery. This
process is performed while unlocking the encrypted partition. During
key recovery the PBKDF is actually used twice for every keyslot until
the master key is decrypted or there are no more keyslots to try. First
it is used to derive a decryption key from a passphrase supplied by a
user. Then this decryption key is used to decrypt the encrypted master
key stored in the current keyslot. The result is called the candidate
master key because we are still not sure if the passphrase was correct.
This candidate is again hashedwith PBKDF and Ąnally comparedwith
hash of the master key stored in the LUKS header. If hashes match
then the passphrase was entered correctly and the master key can be
used.

In the Ąrst case the function receives following parameters:

pwd Ű user supplied passphrase

ks.salt Ű the salt value read from currently tried keyslot
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ks.iteration-count Ű the iteration count read from currently tried
keyslot

masterKeyLength Ű length of the derived key

In the second case the function receives following parameters:

masterKeyCandidate Ű candidate master key, see above

ph.mk-digest-salt Ű the salt value which was used during the initial-
ization phase and stored in the header

ph.mk-digest-iter Ű number of PBKDF2 iterations used during the
initialization phase and also stored in the header

LUKS_DIGEST_SIZE Ű 20 bytes

The process of changing a password is composed of previously
mentioned operations and hence I am not mentioning it here in greater
details. To sum it up, Ąrstly the master key is recovered, then a new
password is added to a new keyslot and the previous one is revoked.

Both password-based encryption and password checking require
additional cryptographic primitiveswhich process the derived key. For
encryption, reference implementation of LUKS uses AES-XTS-plain64
and for hashing it uses sha256. Usage of PBKDF2 requires underlying
pseudorandom function. In case of LUKS version 1, default PRF is
SHA256. Alternatively, it is possible to choose SHA512, ripemd160 or
whirlpool.

4.1.2 Usage of PBKDFs in LUKS version 2

LUKS version 2 extends LUKS version 1 and uses similar principles.
Therefore, I will focus on differences between version 1 and 2 which
are related to usage of PBKDFs. For detailed list of changes see the
section 1.1 at [13].

The new version supports conĄgurable algorithms for encryption,
hashing and also key derivation. That means that the set of algorithms
can be extended as new are developed and other are obsoleted. Note
that there still exist some requirements for algorithms provided by
cryptographic back-end [13]. The back-end has to support SHA-1
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and SHA-256 hashing functions, PBKDF2, Argon2i and Argon2id key
derivation functions and AES-XTS symmetric encryption.

LUKS2 introduces PBKDF memory hard functions Argon2i and
Argon2id which are described in 3.2. Argon2 functions should offer
increased resistance to brute-force attacks.

The volume key digest is no longer limited by length of 20 bytes,
because it no longer relies on SHA-1 hashing function. The processes
described in subsection 4.1.1 are the same in LUKS version 2. The
same applies for situations in which PBKDFs are used.

As stated in subsection 4.1.1, in case of PBKDF2 user can inĆuence
number of iterations directly or specify approximate time required for
processing of the passphrase. This stays the same for LUKS2. Func-
tions from Argon2 family introduce two additional parameters; mem-
ory cost and parallel cost. Both parameters can be speciĄed through
--pbkdf-memory and --pbkdf-parallel command line parameters re-
spectively. The number of iterations is either benchmarked or it can
be manually speciĄed through --pbkdf-force-iterations.

The benchmarking function takes as an input a desired unlock-
ing time speciĄed in milliseconds. The function tries to Ąnd the best
parameters while not exceeding this unlocking time. Note that the
number of parallel threads will be always at most 4 and it will decrease
if not enough CPUs are online at the time of its usage. In Cryptsetup
version 2.1.0 the default unlocking time is set at 2,000 milliseconds and
the default memory cost is set at 1,048,576 KiB. Both default values
can be changed at compilation time.

4.2 Benchmarking of LUKS2 and Argon2 parameters

In 4.1.2 three parameters for Argon2 were mentioned. They have cru-
cial impact on resistance of the resulting hash against dictionary or
brute-force attacks. Their effects are described in detail in section 3.2.
From the CryptsetupŠs point of view, these parameters impact not only
security but user experience as well. If they are set to too low values,
the security of encryption keys can be endangered. If they are set to
too high values, the unlocking process can last undesirably long time
or excessive amount of computing power and memory can be used.
Cryptsetup does not suppose that all users know exact implications of
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choosing particular parameters. Therefore, it introduces a benchmark-
ing function. Note that advanced users can still choose parameters
manually.

The benchmarking function takes as an input the desired unlocking
time speciĄed in milliseconds. It starts with default parameters and
performs several PBKDF computations. By increasing and decreasing
parameters during computations it tries to Ąnd the most secure (the
highest) parameters while not exceeding the unlocking time. Addi-
tionally, the function performs some estimations to reduce number
of required computations because the benchmarking process should
not last too long. Due to this approach the resulting parameters are
dependent on several conditions, in particular available hardware and
current workload of the system.

Currently there exist some limitations which are hard-coded into
Cryptsetup. The minimal number of iterations for Argon2 is 4, maxi-
mumnumber is limited by limit of unsigned 32 bit integer for the given
platform. The minimum memory parameter is 32 KiB, maximum is 4
GiB. The minimal degree of parallelism for Argon2 is 1, maximum is 4.
All the limits are hard-coded in [16]. Note that the number of parallel
threads will be always at most 4 and it will decrease if not enough
CPUs are online at the time of the benchmark.

In Cryptsetup version 2.1.0 the default unlocking time is set at
2,000 milliseconds. The default Argon2 memory cost is set at 1,048,576
KiB. Both default values can be changed at compilation time.

4.2.1 Benchmarking tool

As a part of my thesis I performed collection of Argon2 parameters es-
timated by the function mentioned above. I created a small tool which
can perform series of benchmarks with given parameters and output
results in human-readable or machine-readable format. Additionally,
the tool measures time spent performing the benchmark. Although
this information is not directly related to the topic of the thesis, it
might be useful in the future. The source code of the tool is part of the
thesis [49].

The tool accepts several parameters. It is possible to specify desired
unlocking time, maximum degree of parallelism, maximum memory
cost and number of benchmarks performed.
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The tool can output results in a text format or in a CSV format
including headers for better machine processing. The tool does not
perform actual benchmarking, it utilizes API of Libcryptsetup library.
Therefore, the library is required for it to work. The tool does not create
any Cryptsetup volumes and does not require root privileges.

4.2.2 Methodology of collecting of real world parameters

I used the previously mentioned tool to collect real data on real physi-
cal hardware. I tried to simulate various environments in which Crypt-
setup can be used to create and unlock encrypted volumes. I decided
to use real hardware and not virtual machines because of possible
inaccuracies during measurement caused by virtualization layer.

The Ąrst hardware conĄguration consisted of Lenovo Thinkpad
P50 laptop with Intel Core i7-6820HQ CPU @ 2.70GHz with 4 cores,
8 threads. The laptop was equipped with 32 GiB of SODIMM DDR4
Synchronous 2,133 MHz (0,5 ns) RAM [33].

The second conĄguration comprised Raspberry Pi 3, model B+.
This devicewas equippedwith quad core BroadcomCM2837B0, Cortex-
A53 (ARMv8) 64-bit SoC @ 1.4GHz processor and 1 GiB LPDDR2
SDRAM memory [51]. Note that parameters of this device are consid-
erably lower but there still might be scenarios in which a user might
wish to perform drive encryption utilizing this device (network at-
tached storage, homemedia server). The devicewas running Raspbian
GNU/Linux 9 (stretch).

I have performed following steps on both devices:

1. install required libraries and headers

2. download and unpack the source code of Cryptsetup version
2.1.0

3. conĄgure and compile Cryptsetup without support for udev
and blkid to minimize required dependencies, see below for
remarks concerning conĄguration options

4. compile the benchmarking tool linking it to the Libcryptsetup
compiled in the previous step
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5. if desired, simulate hardware limitations (amount of available
CPUs, amount of available memory)

6. run series of benchmarks over unlocking times of 1,000, 2,000,
3,000, 4,000, 5,000, 10,000 and 20,000 milliseconds with 1, 2, 3
and 4 parallel threads with every benchmark repeated 100 times

During compilation, I decided to run the conĄgure script with
--disable-udev and --disable-blkid options. They disable support
for udev and device signature detection through blkid. These features
were not needed during benchmarking, and they caused complications
while installing necessary development libraries.

Simulating various hardware conditions by limiting CPU perfor-
mance and available memory appeared to be an interesting challenge.
My goal was to simulate different number of available CPU cores and
different amount of available RAMmemory. I wanted to collect results
from various combinations of those parameters.

At Ąrst, I tried to use Control Groups 2 feature of Linux kernel [25].
Unfortunately, I was not able to get desired results. In particular, I was
not able to guarantee that the benchmarking process will really use
limited set of CPU cores. Then I tried to use the Cpulimit project [34].
Unfortunately I still was not able to guarantee that the benchmarking
function uses only certain number of CPU cores.

At last, I found the solution for limiting number of available CPU
cores. I was able to disable individual cores by modifying the Ąle
/sys/devices/system/cpu/cpuN/online Where the N signiĄes the
number of the core to be turned off. Note that this method allowed
me to change state not only of individual cores, but also of individual
virtual cores created with hyper-threading technology.

This method could not be applied to raspberry, as the needed
Ąle had not existed, probably because of difference of underlying
hardware platform. Therefore, I limited number of available CPUs
by modifying the maxcpus=n kernel parameter. This device did not
offer hyper-threading.

Due to the way in which the Cryptsetup detects available amount
of memory, I decided to perform modiĄcation to Cryptsetup itself
[17]. I decided to modify directly the function crypt_getphysmemory_kb
which returns available physical memory in KiB. I modiĄed it so that
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it reads the value from an environment variable, see the patch in the
thesis git repository [49].

After Ąnishing the benchmark, I used theDatamash tool to perform
basic statistic computations on resulting CSV data [23]. Raw data as
well as Datamash results can be found in the thesis Git repository [49].

4.2.3 Collected benchmarking results

Following tables present chosen results gained through methodology
described in the previous subsection. Following conventions in table
headers are used:

time Ű requested unlocking time in milliseconds

avg(T) Ű average benchmarked Argon2 time cost expressed as a num-
ber of iterations

stdev(T) Ű standard deviation of benchmarked Argon2 time cost
expressed as a number of iterations

avg(M) Ű average benchmarked Argon2 memory cost expressed in
KiB

stdev(M) Ű standard deviation of benchmarkedArgon2memory cost
expressed in KiB

The table 4.1 serves as an introduction and it shows what parame-
ters to expect. The most important is the row concerning unlocking
time of 2,000 milliseconds as these values were used as baseline for
simulating of attacks in the next chapter. Tables 4.2 and 4.3 demon-
strate hardware limitations affecting Argon2 parameters. See the Git
repository for more combinations of CPU and memory limitations
[49].

29



4. Analysis of LUKS2

Table 4.1: Benchmark results for laptop with 8 threads and 32 GiB of
memory
time in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

1,000 4 0 804,032.75 3,886
2,000 6 0 1,048,576 0
3,000 9 0 1,048,576 0
4,000 12 0 1,048,576 0
5,000 15 0 1,048,576 0
10,000 31.01 0.099 1,048,576 0
20,000 64 0 1,048,576 0

Table 4.2: Benchmark results for laptop with 4 cores and 4 GiB of
memory
time in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

1,000 4 0 785,173.44 4,532
2,000 5 0 1,048,576 0
3,000 9 0 1,048,576 0
4,000 12 0 1,048,576 0
5,000 15 0 1,048,576 0
10,000 31 0 1,048,576 0
20,000 61.97 0.298 1,048,576 0

Table 4.3: Benchmark results for laptop with 4 cores and 2 GiB of
memory
time in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

1,000 4 0 781,944 1,715.758
2,000 6 0 1,048,576 0
3,000 9 0 1,048,576 0
4,000 12 0 1,048,576 0
5,000 15 0 1,048,576 0
10,000 31.26 0.438 1,048,576 0
20,000 63.57 1.041 1,048,576 0
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Tables 4.4 and 4.5 compare benchmarking results for unlocking
time of 1,000 and 2,000ms respectively. Cryptsetupwas compiled with
different options explained below:

none Ű no special options were added

SSE Ű the --enable-internal-sse-argon2 conĄguration option was
added. If this option is speciĄed, additional checks for special
CPU features are performed (SSE2, SSE3, AVX2, AVX512). If
they are detected, Argon2 is compiled with support for the most
advanced one.

native Ű the -march=native Ćag was passed to the compiler, optimiz-
ing the source code for the particular platform

external Ű Cryptsetup was compiled against external Argon2 library

Notice that combining optimized versions of Argon2 with compila-
tion for the particular platform produces the best results. It almost dou-
bles the number of iterations compared with the benchmark without
these optimizations and it produces only one less iteration compared
to unlocking time of 4,000 milliseconds benchmarked without opti-
mization. Unfortunately, such combination of conĄguration options is
not very common. A quick review of several Linux distributions (De-
bian, Ubuntu, Fedora) shows that distributions package the Argon2
library separately and link the Cryptsetup against it. Also, due to the

Table 4.4: Comparing results for various Cryptsetup compilation op-
tions with unlocking time of 2,000 ms
Ćags avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

none 6 0 1,048,576 0
SSE 7 0 1,048,576 0
native 6 0 1,048,576 0
native + SSE 11 0 1,048,576 0
external 6 0 1,048,576 0
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Table 4.5: Comparing results for various Cryptsetup compilation op-
tions with unlocking time of 1,000 ms
Ćags in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

none 4 0 804,032.75 3,886.047
SSE 4 0 949,740.83 2,305.669
native 4 0 863,822.25 1,414.500
native + SSE 5 0 1,048,576 0
external 4 0 846,713.44 1,359.307

Table 4.6: Benchmark results for Raspberry Pi with 4 cores and 1 GiB
of memory
time in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

1,000 4 0 43,291.74 3,628
2,000 4 0 95,296.58 8,199
3,000 4 0 150,860.59 10,508
4,000 4 0 203,604.14 6,723
5,000 4 0 255,361.51 10,598
10,000 4 0 474,446.97 2,737
20,000 7.81 0.879 474,722 0

support of the broadest array of devices possible, platform-speciĄc
optimizations are not used.

The table 4.6 shows benchmarking results for the Raspberry Pi.
Notice that the memory cost is signiĄcantly lower. It is important to
note here that the benchmarking algorithm of Cryptsetup will never
use more than half of available amount of physical memory to prevent
out of memory killer from killing the actual benchmarking process.
Note also that the algorithm tries to use maximum available memory
Ąrst and then tries to increase number of iterations.

By comparing tables 4.6 and 4.7 it can be seen that there is not a
signiĄcant difference in displayed values. The values from the table 4.6
were benchmarked after compilation with -march=native Ćag. The
--enable-sse-internal-argon2 option cannot be used on Raspberry
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Table 4.7: Benchmark results for Raspberry Pi with optimizations
time in ms avg(t) in it-

erations
stdev(t) in
iterations

avg(M) in
KiB

stdev(M)
in KiB

1,000 4 0 25,639.15 4,745.422
2,000 4 0 53,143.46 1,493.866
3,000 4 0 82,432.72 2,296.222
4,000 4 0 111,220.07 1,818.082
5,000 4 0 140,627.5 1,984.865
10,000 4 0 292,344.17 1,726.421
20,000 4.17 0.375 474,722 0

Pi, because the ARM architecture does not offer this kind of CPU in-
structions. It also conĄrms the premise that Argon2 should be difficult
to optimize for other platforms than X86.

4.3 Attacking LUKS2

This section describes the rest of the practical research. The next chap-
ter then deĄnes and presents the price model which is based on results
collected in this chapter. The following three subsections describe uti-
lized hardware and software. The last subsection presents the results.

The motivation behind performing of experimental simulations
described in this chapter was to make the price model more precise
and realistic. I found some results of benchmarks of Argon2 on CPU
or GPU [45], they are, however, almost four years old. Since that time
there appeared new technologies in GPU and CPU segment and the
Argon2 went through several upgrades. Another reason was that by
using a real hardware I was able to Ąne-tune parameters such as num-
ber of CPU cores, amount of available memory, available specialized
CPU instructions etc.

4.3.1 Utilized hardware

For the purpose of this thesis I chose to utilize machines offered by
the MetaCentrum VO organization because they are easily accessible
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to registered students, and they offer diverse spectrum of computing
resources. This proved useful especially considering the fact that ac-
cording to the deĄnition of an attacker in section 5.1 it is expected to
utilize as powerful machines as possible. MetaCentrum VO is a virtual
organization supporting all members of Czech National Grid Organi-
zation. It manages and operates distributed computing and storage
resources owned by Cesnet as well as other cooperating academic
organizations in Czech Republic.

The following list describes parameters of the most interesting
machines used during the research. For description of all the machines
offered in Metacentrum see [36].

Doom Ű 2× 8 cores Intel Xeon E5-2,650v2 2.60 GHz, hyper-threading
2 threads per core, supporting SSSE3 instruction, 64 GiB RAM,
Nvidia Tesla K20 with 4,743 MiB of memory

Konos Ű 2× 10 cores Intel Xeon CPU E5-2630 v4 at 2.20 GHz, hyper-
threading 2 threads per core, supporting AVX2 instruction, 128
GB of RAM, Nvidia GeForce GTX 1080 Ti with 11,178 MiB of
GPU memory

Nympha Ű 2× 16 cores Intel Xeon Gold 6130 CPU at 2.10 GHz, hyper-
threading 2 threads per core, supporting AVX512F instruction,
192 GiB of RAM

Manegrot Ű 4× 8-core Intel Xeon E5-4627v2 at 3.30GHz, no hyper-
threading, supporting SSSE3 instruction, 512 GiB of RAM

Uruk Ű 8× 18 cores Intel Xeon Gold 6140 3.70 GHz, hyper-threading
2 threads per core, supporting AVX512F instruction, 2.86 TiB of
RAM

White Ű 2× 12 core Intel XeonGold 6138 2.0 GHz, no hyper-threading,
supporting SSSE3 instruction, 512 GiB of RAM, GPU Tesla P100
with 16,280 MiB of memory

Zubat Ű 2× 8 core Intel Xeon E5-2630v3 2.40GHz, hyper-threading 2
threads per core, supporting SSSE3 instruction, 128 GiB of RAM,
GPU Tesla K20Xm with 5,700 MiB of memory
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While performing computations on CPU I always allocated whole
computing host and requested maximum number of available CPUS. I
always requested at least (T/L)×M GiB of memory where T denotes
number of available CPU threads, L denotes degree of parallelism
for instance of Argon2 being computed and M denotes memory cost.
While simulating attacks on GPU I always reserved one instance of
GPU, 1 CPU and 1 GiB of RAM memory. Reservations of GPUs are
always exclusive. All tests used SSDs as underlying storage.

4.3.2 Naive method

The Ąrst chosen attackmethod is naive but simple. It requires Libcrypt-
setup library to be present because it directly utilizes the API. The
main idea is to try to recover the master key through normal means
but to perform this action in multiple parallel threads.

I created the tool which performs this attack. The tool was based
on proof of concept called Dict_search [12]. I modiĄed it so that it uses
threads instead of processes and it measures every recovery attempt
and provides statistics. I also improved its usability. The tool can be
found in the thesis Git repository [49].

The tool expects following inputs where letters denoting parame-
ters correspond to the command line options:

t Ű type of encrypted volume, so far LUKS1, Truecrypt and LUKS2
are recognized and other types supported by Cryptsetup can
be easily added by adding appropriate handler into the source
code

i Ű base name of input device Ąles

p Ű input password Ąle with one password per line

T Ű number of parallel threads

The tool performs basic validation of input parameters and launches
deĄned number of threads. Every thread receives a handler to the
speciĄed Ąle containing the encrypted partition. Every thread opens
the Ąle with passwords and starts attempting to unlock the keyslot
with passwords read from the input Ąle. The Ąle is internally divided
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into segments and every thread reads a different segment. The tool
runs until the passphrase is found or all the passphrases in the input
Ąle had been tried.

Memory footprint of thismethod can be expressed as M×T, where
M denotes the memory cost parameter used during creation of the
encrypted partition and T denotes number of cracking threads spec-
iĄed while launching the tool. The number of utilized CPU threads
can be expressed as P× T, where P denotes the degree of parallelism
of Argon2 used during initialization of the encrypted drive and T is
number of parallel cracking threads.

Because an attacker would try to speed up the cracking process as
soon as possible, I compiled Cryptsetup with support for optimized
Argon2 using the --enable-sse-internal-argon2 and I applied a
simple patch which disabled clearing of internal Argon2 memory
after every Argon2 computation. The patch can be found in the Git
repository of the thesis [49].

4.3.3 Method based on Argon2-gpu-bench tool

This method utilizes a tool called Argon2-gpu-bench written by On-
drej Mosnáček [38]. The tool was originally created to benchmark
speed and energy consumption of Argon2 computing hashes. The
background scenario was offline brute-force attack against Argon2
hash, which overlaps with goals of my thesis. That is the reason why I
selected this tool.

Note that this is not a password guessing tool in its current imple-
mentation. It only computes provided Argon2 hashes. Originally the
tool generated random strings 64 bytes long. I modiĄed the tool so
that strings are loaded from provided Ąle containing one password
per line. My modiĄcations can be found at [48].

The scenario expects that an attacker would use this tool to precom-
pute Argon2 hashes and later, possibly in parallel, would use hashes
as decryption keys to recover themaster key. The right password could
be veriĄed by decrypting several sectors of a volume with recovered
master key and searching for well-known signatures. Note that AES
used during decryption of sectors can be deĄnitely parallelized and
there exist special CPU instructions to improve its speed. Although
the time required to try all the candidate hashes as decryption keys
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is not negligible, it is deĄnitely smaller and less memory-intensive
compared to Argon2 computations.

The tool can compute Argon2 using three different modes. It can
utilize standard CPU implementation and automatically choose the
most optimized one according to supported CPU instructions. Clear-
ing of internal memory is disabled for performance reasons. It also
contains Argon2 implementation for OpenCL platform and three dif-
ferent GPU kernels (implementations) to be used with CUDA plat-
form. EveryGPUkernel handles theGPUmemory differently, possibly
producing different results under different parameters.

TheMaster kernel uses only shared memory of GPU. TheWarpshuf-
fle kernel uses only GPU registers. TheWarpshuffleshared kernel uses
combination of both. Additionally, while running in GPU or OpenCL
mode, it is possible to select two modes of operation. The Oneshot
computes individual Argon2 computation as one GPU / OpenCL
task, whereas By-segment mode divides computation of Argon2 slices
among individual GPU / OpenCL tasks.

Argon2-gpu-bench can also precompute values for Argon2i and
Argon2id, speeding up the process. This feature is available only for
CUDA and OpenCL modes.

Following list describes chosen input parameters for the applica-
tion. Letters match command line options.

L Ű Argon2 degree of parallelism

M Ű Argon2 memory cost parameter

T Ű number of Argon2 iterations

s Ű number of computations

b Ű number of hashes computed in every computation (batches)

Please notice the s and b parameters, they are important while
interpreting results collected through this tool. The tool performs s
consecutive discrete computations. Every such computation is mea-
sured separately and the tool outputs its length including time of
writing and reading of data for OpenCL and CUDA modes. In every
such phase b hopefully parallel hash computations is performed. I
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say hopefully because it is not always possible or desirable. Length
of every such small computation is measured and averaged at the
end of the whole benchmark. So at the end the tool performs s× b
computations.

The tool tries to run as many parallel threads as possible. The
number of such threads is determined as b× L. The amount of needed
memory is determined as b×M. However, there are upper limits for
both values considering effectiveness of calculations.While computing
on CPU through standard Argon2 CPU implementation or OpenCL
platform, the number of available CPU threads should be effectively
the limit. While performing computations on GPU through OpenCL
or CUDA, the tool cannot run if amount of memory required is higher
than amount of memory available at the GPU.

4.3.4 Results

Here I describe and compare results collected by two methods de-
scribed in previous subsections. These numbers serve as direct basis
for the price model described in the next chapter. The following list
shows column headings used in tables with their description and
appropriate units:

threads Ű number of threads passed as parameter to cracker

batch size Ű number of concurrentArgon2 computations passed through
-b parameter to the Argon2-gpu-bench tool

avg(time per hash) Ű average time spent calculating one hash in mil-
liseconds

stdev(time per hash) Ű standard deviation of time spent computing
one hash in milliseconds

avg(time per batch) Ű average time spent computing one batch of
hashes in milliseconds

stdev(time per batch) Ű standard deviation of time spent computing
one batch of hashes in milliseconds
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Tables 4.8, 4.9 and 4.10 show us a baseline of results. Nympha
and Konos were the most powerful machines for computing Argon2 I
managed to Ąnd in MetaCentrum. We can see that cracking hashes
with highmemory parameter (1,049,576 KiB) is highly ineffective with
the naive approach. The best result was achieved while running two
concurrent unlocking operations, therefore occupying 8 threads. This
conĄguration enabled computation of 1 hash per 1.107 seconds.

However, using powerful enough CPU supporting AVX512F in-
structions it is possible to get more interesting results. The table 4.9 is
very interesting in particular. As we can see, we can get to the speed of
1 hash per 215 milliseconds, that is 4.651 hashes per second. From the
theoretical point of view, the most effective computation should occur
while running 16 concurrent Argon2 computations using 16× 4 = 64

threads, as Nympha machine offers 64 CPU threads. As we can ob-
serve, at this degree of parallelism one hash can be computed in 296.3
milliseconds. However, increasing degree of parallelism up to 512
decreases the time up to 215 milliseconds. This is probably caused by
desynchronization of threads during the computing process because
it is not possible to have 512 threads running at the same time if every
thread requires 1 GiB of memory and the machine has only 180 GiB
of memory. Apparently threads get managed by operating system
scheduler so that performance is not degraded.

Considering GPU it is possible to get even slightly better times. The
GPU provided by Konos machine can run at most 10 parallel Argon2
computations calculating one hash in circa 307 milliseconds, that is
3.25 hashes per second. The table 4.11 shows us that thanks to precom-
puting values for Argon2i it is possible to reach 294.5 milliseconds per
hash. All values in table 4.11 were computed with b = 10.
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Table 4.8: Cracker running on Nympha against drive benchmarked on
laptop with unlocking time of 2,000 ms
threads avg(time per hash)

in ms
stdev(time per hash)
in ms

1 1,584.767 50.545
2 1,634.917 82.044
4 1,906.227 106.585
8 2,502.031 178.339
16 4,302.858 385.439
32 8,482.634 816.596
64 17,180.945 1,810.248
128 34,929.874 3,893.617

Table 4.9: Argon2-gpu-bench running on Nympha in CPU mode
against parameters benchmarked on laptop with unlocking time of
2,000 ms
batch size avg(time

per hash)
in ms

stdev(time
per hash)
in ms

avg(time
per batch)
in ms

stdev(time
per batch)
in ms

1 1,641.408 29.667 1,641.408 29.667
2 893.785 21.578 1,787.570 43.156
4 525.360 10.351 2,101.441 41.407
8 351.323 10.219 2,810.587 81.753
16 296.345 4.376 4,741.530 70.018
32 252.618 2.967 8,083.808 94.964
64 235.185 2.112 15,051.856 135.227
128 224.986 2.046 28,798.256 261.982
256 219.888 1.691 56,291.514 433.037
512 217.429 1.660 111,323.760 850.345
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Table 4.10: Argon2-gpu-bench running on Konos in CUDA mode
against parameters benchmarked on laptop with unlocking time of
2,000 ms
batch size avg(time

per hash)
in ms

stdev(time
per hash)
in ms

avg(time
per batch)
in ms

stdev(time
per batch)
in ms

1 2,996.175 0.057 2,996.175 0.057
2 1,499.818 0.025 2,999.637 0.051
3 1,000.870 0.049 3,002.610 0.149
4 752.094 0.015 3,008.378 0.060
5 602.253 0.007 3,011.267 0.037
6 502.370 0.106 3,014.223 0.640
7 430.885 0.007 3,016.202 0.053
8 382.385 0.079 3,059.081 0.638
9 340.405 0.060 3,063.645 0.545
10 306.682 0.042 3,066.823 0.425
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Table 4.11: Argon2-gpu-bench running on Konos in CUDA mode
comparing various options against parameters benchmarked on laptop
with unlocking time of 2,000 ms
option avg(time

per hash)
in ms

stdev(time
per hash)
in ms

avg(time
per batch)
in ms

stdev(time
per batch)
in ms

master 306.682 0.042 3,066.823 0.425
master +
precom-
putes

294.535 0.045 2,945.355 0.456

master +
oneshot

305.809 0.009 3,058.096 0.989

master +
oneshot +
precom-
putes

334.033 0.008 3,340.339 0.085

warp-
shuffle

306.163 0.838 3,061.633 8.387

warpshuffle
+ precom-
putes

294.932 0.054 2,949.324 0.547

warp-
shuffle-
shared

306.103 0.834 3,061.032 8.340

warp-
shuffle-
shared +
precom-
putes

297.277 0.003 2,972.774 0.037
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Comparing table 4.9 with tables 4.12 and 4.13 shows that there
probably exist several factors inĆuencing performance of Argon2 hash-
ing on different CPUs. Note that Manegrot does not support AVX512F
instruction nor AVX2 instruction. Therefore, the performance is de-
graded even taking into account higher frequency of its CPU. Uruk is
getting close to results of Nympha, but even while having more CPUs
with higher frequency, it is still lacking circa 20 milliseconds.

The table 4.14 summarizes results of running Argon2-gpu-bench
on several different GPUmodels. We can see that results can vary from
294 milliseconds per hash to 4.5 seconds per hash. All runs were com-
puted using maximum amount of GPU memory and precomputing
of values for Argon2i was enabled.
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Table 4.12: Argon2-gpu-bench running on Manegrot against parame-
ters benchmarked on laptop with unlocking time of 2,000 ms
batch size avg(time

per hash)
in ms

stdev(time
per hash)
in ms

avg(time
per batch)
in ms

stdev(time
per batch)
in ms

1 3,385.726 119.515 3,385.726 119.515
2 1,622.290 46.643 3,244.581 93.287
4 818.661 20.524 3,290.041 82.098
8 657.445 14.087 5,259.567 112.699
16 629.229 11.710 10,067.678 187.361
32 606.408 9.880 19,405.078 316.163
64 594.680 6.248 38,059.535 399.911
128 585.261 6.576 74,913.420 841.826
256 580.427 6.157 148,589.520 1,576.225

Table 4.13: Argon2-gpu-bench running on Uruk against parameters
benchmarked on laptop with unlocking time of 2,000 ms
batch size avg(time

per hash)
in ms

stdev(time
per hash)
in ms

avg(time
per batch)
in ms

stdev(time
per batch)
in ms

1 1,420.081 158.506 1,420.081 158.506
2 522.104 83.144 1,044.208 166.289
4 323.664 49.838 1,294.656 199.352
8 370.464 9.467 2,963.713 75.738
16 288.062 36.603 4,609.003 585.661
32 262.378 20.554 8,396.125 657.729
64 248.382 32.444 15,896.489 2,076.469
128 262.579 56.605 33,610.180 7,245.519
256 243.868 20.708 62,430.24 5,301.325
512 266.685 31.304 136,542.840 16,027.799
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Table 4.14: Comparing Argon2-gpu-bench on various GPUs against
parameters benchmarked on laptop with unlocking time of 2,000 ms
device batch

size
avg
(time per
hash) in
ms

stdev
(time per
hash) in
ms

avg
(time per
batch) in
ms

stdev
(time per
batch) in
ms

Doom
(CUDA)

4 4,463.151 0.566 17,852.602 2.265

Konos
(CUDA)

10 294.535 0.045 2,945.355 0.456

Konos
(OpenCL)

10 330.875 0.0004 3,308.754 0.0004

White
(CUDA)

15 332.779 0.388 4,991.698 5.823

Zubat
(CUDA)

5 1,922.469 0.601 9,612.346 0.300

Table 4.15: Cracker running on Nympha cracking drive with parame-
ters benchmarked on Raspberry Pi with unlocking time of 2,000 ms
threads avg(time per hash)

in ms
stdev(time per hash)
in ms

1 191.108 28.144
2 181.387 19.477
4 175.174 17.050
8 217.215 25.309
16 348.036 44.765
32 757.198 134.525
64 1,574.535 227.503
128 3,352.727 609.037
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Table 4.16: Comparing cracking methods for parameters benchmarked
on Raspberry Pi with unlocking time of 2,000 ms
device batch

size
avg(time
per hash)
in ms

stdev
(time per
hash) in
ms

avg(time
per
batch) in
ms

stdev
(time per
batch) in
ms

Nympha
(CPU)

512 12.559 0.191 6,430.389 98.118

Konos
(GPU)

118 3.132 0.708 369.580 0.835

White
(GPU)

172 2.433 0.0004 418.639 0.812

Zubat
(GPU)

18 15.791 0.348 947.505 2.093
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This chapter focuses on creating a price model for potential attacker
trying to gain unauthorized access to a disk volume encrypted with
LUKS2 with Argon2 used as PBKDF. First an attacker and available
hardware and software options are brieĆy described. Then the actual
price model is introduced and applied to real world examples. The
price model is based on real parameters collected during benchmark-
ing in section 4.2 and mainly on computing Argon2 hashes based on
these parameters using powerful hardware conĄgurations described
in section 4.3.

5.1 Attacker deĄnition

For the purpose of this thesis an attacker is deĄned as an entity which
gained unauthorized access to a LUKS2 volume header with Argon2
used as PBKDF. The header can be part of actual encrypted volume or
it can be a detached header stored for example for backup purposes.
The volume is not damaged. The attacker has moderate knowledge of
information security and computers in general but does not want to
invest the time in searching for vulnerabilities inArgon2 or Cryptsetup.
The attacker decides to use brute-force or dictionary attack.

The attacker currently does not have any hardware with sufficient
computing power and amount of RAM to be used for cracking the
passphrase. However, suppose that the attacker has sufficient Ąnancial
resources to purchase needed hardware or rent cloud computing
resources. There is no upper limit set for Ąnancial resources.

5.1.1 Hardware

While considering cracking a password or a hash, there are several
types of hardware to consider. An attacker can use powerful CPUs
which can be cheaper solution compared to other possibilities, but
they are also usually slower because of their generic nature. The fact
which is crucial while considering Argon2 is that they can have access
to relatively large volume of RAMwithout degrading their computing
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performance. It is also less time-consuming to eventually optimize the
hash algorithm for CPU than for other types of hardware.

The next option often used in this process is to use GPUs. Their
architecture is suitable for computing many parallel identical tasks
as is the case for hash cracking. GPUs showed to be effective against
PBKDF2 [39]. However, the price of a GPU might be higher than the
price of a CPU. To use full computing power of GPU it is important
that the data being processed is copied into GPU memory which is
limited. This fact could reduce their effectiveness in this particular
case considering possible high memory demands of Argon2.

Last two options are FPGAs andASICs. They represent two groups
of hardware which can be optimized for highly speciĄc tasks. FPGAs
are in general less powerful but they can be easily reprogrammed after
production. ASICs can incorporate parts which can be later repro-
grammed but deĄnitely not to the same extent as FPGAs. ASICs are
also more expensive than FPGAs when produced in small volumes.
Moreover, to the best of the authorŠs knowledge, there does not exist
any publicly available implementation of Argon2 for FPGAs or ASICs
and it would take for an attacker nonnegligible amount of time to
create one.

5.1.2 Software

There does not exist any publicly available software offering feature
to crack passphrases of LUKS2 headers. There exists a simple proof
of concept program distributed with Cryptsetup called Dict_search
[12]. It mounts dictionary attack against speciĄed device supporting
Truecrypt and LUKS1. After slight modiĄcations it can be used also
against LUKS2 volumes. It uses API of Libcryptsetup. Therefore, it
obviously introduces slight overhead by creating and deleting struc-
tures pertaining to Cryptsetup. ModiĄcation of this tool is used in this
thesis in subsection 4.3.2.

Then there is a possibility of extracting the master key from the
captured LUKS2 header and trying to Ąnd the right password by com-
paring it to it after being hashed. This removes some slight overload
mentioned above. Support for cracking of Argon2 hashes appeared in
well-known open source password auditing software John the ripper
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in July 2016. This allows to use some infrastructure offered by the
framework but the hash function is not optimized in any way.

Ondrej Mosnáček created an experimental program for bench-
marking speed of Argon2 while running on CPUs and GPUs [38].
The project can use both CUDA and OpenCL technologies to run on
multiple GPUs or CPUs. The program currently does not perform
password cracking, passwords are generated randomly and they are
not compared to any hash. But slight modiĄcations to the project could
turn it into a password cracker. I modiĄed this tool so that it reads
passwords from a provided Ąle, see [48].

5.2 Price model

Based on previous assumptions of an attackerŠs options I tried to create
a price model which will estimate costs connected with Ąnding the
right passphrase to unlock the LUKS2 encrypted volume. These costs
include purchase of devices and electricity costs. Following variables
were deĄned to formalize the model:

D Ű power draw of one machine expressed in kilowatts

E Ű price of electricity expressed in dollars per kilowatt hour

F Ű expected Ąnal price of whole attack expressed in dollars

H Ű initial price of one machine (CPU, RAM, accessories) expressed
in dollars

L Ű expected length of an attack expressed in days

N Ű number of machines expressed as an integer

P Ű number of passwords contained in the chosen password space
expressed as an integer

R Ű price to rent one machine for one hour expressed in dollars

S Ű speed of one machine expressed as number of seconds spent
computing one hash
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5. The price of an attack

The model expects that an attacker uses array of homogeneous ma-
chines and that the speed of Argon2 hash cracking was at least approx-
imately benchmarked. The model does not assume any hints about
the password. The model expects that passwords are distributed uni-
formly through the password space and therefore an attacker should
on average search through one half of P to recover the password. The
model can simulate two different cases. In the Ąrst case an attacker
plans to purchase actual physical hardware and in the second case
an attacker rents machines from an online cloud provider (Amazon,
Microsoft Azure, Alibaba Cloud etc.)

The Ąnal price is determined by set of following equations:

N =
S

60×60×24
× P

2

L
(5.1)

F = (N × H) + (N × D× E× 24× L) (5.2)

F = N × R× 24× L (5.3)

The equation 5.1 determines how many machines are needed to
exhaust complete password space P in L days. The result denoted as
N can then be used in equations 5.2 or 5.3.

The equation 5.2 is used in the case of purchasing and using phys-
ical hardware. In that case an attacker should estimate power draw of
single machine by collecting information from data sheets or rather
by performing real world tests. There exist online versions of power
consumption calculators. If an attacker decides to allocate comput-
ing resources in online clouds, then the equation 5.3 should be used.
Online cloud providers usually provide online price lists for their
services.

5.3 Real world cost estimation

In this section I apply the model deĄned in section 5.2 to real world
data. Please note that results acquired through this price model are
only estimates based on data sources described below and experiments
performed throughout this thesis described in chapter 4.
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5. The price of an attack

Following subsections show that to crack a passphrase eight char-
acters long used for LUKS2 volume created on modern laptop, hun-
dreds of thousands or even millions of machines are needed and the
expected price is in range of billions of dollars. Even if parameters
are benchmarked on relatively low performance hardware such as
Raspberry Pi, there are still needed thousands of machines and the
price stays in millions of dollars. When compared to similar research
performed earlier with PBKDF2, it is visible that the price of an attack
increased with Argon2 [60].

5.3.1 Sources of real world data

Information about price and TDP of CPUs were collected from [27],
whereas information about GPUs were collected from [42, 41, 54, 40].
Information about prices of RAMmemory were collected from [35].
Estimated electricity price is based on [55] and [18]. Prices of cloud
services are based on available offers from Amazon [2, 3], Microsoft
Azure [37] and Alibaba Cloud [1].

Note that power draw of machines is based on TDP of CPU or GPU
as listed in particular technical speciĄcations. Power draw of RAM and
other peripheral components is not taken into account as it is relatively
small and at the same time it is hard to set certain average value. I
understand that TDP is not exact representation of actual power draw
but as experimental machines were not under my physical control, I
decided to use this value.

I deĄne the P as space of passphrases eight characters long con-
taining upper case letters, lower case letters and numbers.

P = (26 + 26 + 10)8 = 2.183401056× 1014

I set the E constant to 0.21. This was the price of electricity per
kilowatt hour in USA expressed in dollars as shown in [55]. The
average price in EU was even slightly higher after conversion from
euro to dollars reaching 0.23.

5.3.2 Case 1 - modern laptop

For the Ąrst case, suppose that an attacker decides to buy machines
comparable to the machine Nympha which can compute one hash
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5. The price of an attack

Table 5.1: number of Nympha-like machines to exhaust password
space depending on expected length of attack
L in years number of machines
1 751,202
2 375,601
5 150,241
10 75,121

Table 5.2: Final prices for Ąrst model case using physical hardware
L in years number of machines F in dollars
1 751,202 7,736,479,157.6
2 375,601 5,941,106,377.6
5 150,241 4,863,902,134.0
10 75,121 4,504,856,128.0

in circa 217 ms. Also suppose that an attacker gets hold of a drive
encrypted with LUKS2 with parameters of 6 iterations, 1,048,576 KiB
of memory required and degree of parallelism 4.

Further, letŠs set H = 2× 1, 900 + 14× 70 = 4, 780 as total price of
2 16-core CPUs and 14 16 GiB memory modules. TDP of the particular
CPU is 125 watts, running 24 hours per day the power draw is 3
kilowatts.

F = (N × 4, 780) + (N × 3× 0.21× 24× L)

Inserting respective N and L values according to the table 5.1 pro-
duces following results.

The table 5.2 shows that prices are in range of billions of dollars.
Just to put this into some context, if an attacker would like to crack the
passphrase in one year, according to this model the amount is equal
to circa 3.4 percent of Czech Republic GDP [56]. Notice that although
the number of machines was cut by one half for L set to 10 years, the
total price dropped only by circa 7.3 percent.
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5. The price of an attack

Table 5.3: Final prices for Ąrst model case usingMicrosoft Azure Cloud
L in years number of machines F in dollars
1 751,202 11,842,320,924.19
2 375,601 11,842,320,924.19
5 150,241 7,344,558,328.38
10 75,121 7,344,607,213.559999

Considering cloud options there are multiple choices. For exam-
ple Microsoft Azure cloud offers F72s v2 instances offering 72 virtual
CPUs based on Intel Xeon Platinum 8168 which can reach sustained
turbo frequencies for all cores up to 3.4 GHz and supports AVX512F
instruction set. The instance provides only 144 GiB of RAM but it is
sufficient as a rough estimate. Following table shows expected Ąnal
prices counting in discounts for long term usage. Values were calcu-
lated by placing appropriate price values showed at [37] into equation
5.3. In particular, at the time of writing (spring 2019) the price were
set at $1.7996 per hour if the instance is reserved for one year and
$1.1161 if it is reserved for three years. The price without reservation
discounts was $3.06 per hour and was not taken into consideration at
all.

The table 5.3 shows that renting an online instance for the same
computation is deĄnitely not the cheaper option. Even with expected
time of ten years the price is still above seven billion of dollars per
hash.

5.3.3 Case 2 - Raspberry Pi

As the second example suppose that an attacker gains access to a
drive encrypted with parameters benchmarked on Raspberry Pi. In
particular parameters were 4 iterations, 95,296.58 KiB of memory and
degree of parallelism 4. Suppose that an attacker decides to use Nvidia
GeForce GTX 1080 Ti with 11,178 MiB of GPU memory equal with
provided one by Konos machine. In the table 4.16 it is shown that it
takes 3.132034 milliseconds to compute one Argon2 hash.
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5. The price of an attack

Table 5.4: Number of Konos-like machines to exhaust password space
depending on expected length of attack
L in years number of machines
1 10,843
2 5,422
5 2,169
10 1,085

Table 5.5: Final prices for the second model case using physical hard-
ware
L in years number of machines F in dollars
1 10,843 130,523,696.8
2 5,422 125,113,734.39
5 2,169 121,871,772.0
10 1,085 120,842,959.99

Suppose H = 1, 000, Nvidia unfortunately does not provide sug-
gested customer price, therefore the price was estimated according to
[54]. The TDP of the card is 250 watts, therefore D is set to 6 kilowatts.

The table 5.5 conĄrms that drastically decrease in parameters low-
ers also the expected attack price. Note that the memory parameter
was decreased almost ten times. The price is still above hundred mil-
lion of dollars. Notice also that the price to buy initial hardware affects
the Ąnal price less with longer expected time of attack.

Although this GPU did not achieve the best hash computing time,
it provided relatively low price compared to Nvidia Tesla P100 (esti-
mated 1,000 dollars versus estimated 4,500 dollars). But it is possible
to rent Tesla P100 in the cloud. As an example letŠs take the instance
NCV2 providing up to 4 GPUs per instance provided by Microsoft
Azure. The table 5.6 shows the results and demonstrates that in certain
extreme situations it might be cheaper to rent online resources. Note
that at the time of writing (spring 2019) the renting price was set to
$1.3187 per hour for one year reserved instance and $0.9189 for three
years reserved instance.
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Table 5.6: Final prices for the secondmodel case usingMicrosoft Azure
Cloud
L in years number of machines F in dollars
1 10,843 125,256,297.52
2 5,422 125,267,849.33
5 2,169 87,297,521.58
10 1,085 87,337,769.4
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6 Conclusions

The thesis introduced password-based key derivation functions and
their usage in disk volume encryption focusing on LUKS2 encryp-
tion scheme. Resistance of LUKS2 to brute-force or dictionary-based
password cracking was researched and experimentally veriĄed.

Firstly a custom tool was used to collect real world Argon2 pa-
rameters as benchmarked by Cryptsetup. Two very different but real
hardware conĄgurations were used; a modern high-end laptop and
a single-board computer. Factors inĆuencing such benchmarks were
brieĆy described. These data were then used as a basis for experimen-
tal simulation of brute-force attack on LUKS2 passphrase.

There were introduced two methods. The Ąrst method used API
provided by Cryptsetup. The second method used slightly modiĄed
tool originally created for benchmarking Argon2 performance. The
Ąrst method proved to be less effective and it was not considered in
further research. Both methods were applied on a hardware provided
by MetaCentrum VO organization. This hardware provided tens of
CPU cores and hundreds of gibibytes of RAM per single machine
because it was assumed that determined attacker would buy or rent
such machines. Both CPUs and GPUs were used if applicable. Results
were collected and showed.

Based on information about Argon2 and collected data the price
model was created. This model was then applied to real world data
described in previous chapters. Note that some data had to be only
estimated (power draw of machines, hardware prices etc). The model
showed that resistance of Argon2 to brute-force guessing had greatly
improved compared to PBKDF2.

To point out one example, cracking in ten years an eight characters
long passphrase used to unlock encrypted volume in circa two seconds
on Raspberry PI could take up to 1,085Nvidia Tesla P100 GPUs costing
circa 120 million dollars. Trying to crack a volume created on modern
laptop would require up to 75,121 powerful machines running for ten
years costing over four billion dollars.

Based on collected results the default Argon2 parameters used
by Cryptsetup and LUKS2 provide sufficient security considering
intended use of this software.
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6. Conclusions

6.1 Further research suggestions

There are many ways in which topic of PBKDFs and their resilience
to guessing attacks could be explored more. In this section I try to
suggest several areas for further research.

The main method for simulating of an attack against Argon2 was
based on benchmarking tool. Only computation of Argon2 is involved,
no actual decryption of volumes is performed. It would be interesting
to create a fully working cracking tool and test its performance, even-
tually making the price model more precise. This process could be
connected with measuring of real power draw of physical machines
while performing the attack. These values would make the model
even more precise.

Another part which could be researched more are cloud-based
computing services. The prices and estimates described in the Ąfth
chapter of the thesis were made only based on theoretical information
and no actual computation was made using these resources. The real
efficiency might differ and in that case it might positively or negatively
inĆuence the resulting price and suitability for the attack.

The Argon2-gpu-bench tool could be probably more improved
with support for modern GPUs and their features. As shown in table
4.14, the performance on older Nvidia Geforce GPUwas better than on
more recent P100 GPU which should theoretically be more powerful.
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A Description of the attached archive

The thesis archive contains source codes of used tools, automation
scripts, and raw resulting data. This chapter brieĆy describes the
archive directory structure.

Source codes are located in the src directory. There are following
Ąles:

argon2-gpu-master.zip Ű snapshot of theArgon2gpu repository taken
on May 14 [48].

benchmark.c Ű source code of the benchmarking tool used in sec-
tion 4.2.

cracker.c Ű the naive cracking tool used in subsection 4.3.2

The scripts folder contains helper scripts used during benchmark-
ing and also the naive cracking method.

analyse_benchmark.sh and analyse_cracker.sh Ű scripts used to cal-
culate simple statistics from results provided by benchmarking
tool and naive cracker using Datamash tool

benchmark.sh - a script used to run the benchmarking tool

compile.sh Ű a script used to compile the benchmarking or the crack-
ing tool with -b or -c parameter respectively

core.c.patch Ű a Ąle used while compiling the cracker to prevent clear-
ing of internal memory to speed up the whole process

metacentrum_cpu.sh, metacentrum_cracker.sh, metacentrum_gpu.sh
Ű scripts used for running Argon2-GPU and cracker in MetaCen-
trum

utils.c.patch Ű a patch Ąle which makes possible to simulate mem-
ory limit for Cryptsetup through environment variables, see
subsection 4.2.2

The results folder contains raw resulting data from benchmarking
of Argon2 parameters aswell as from crackingArgon2 hashes. All data
are in CSV format. See respective readme.md Ąles for exact information.
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B Glossary

The following lists provides explanations for abbreviations used through-
out the thesis.

aes-xts-plain64 Ű Advanced Encryption Standard with Ciphertext
Stealing (XTS) encryption mode. This mode was created speciĄ-
cally to protect data while stored and it should offer better pro-
tection against unauthorized manipulation of encrypted data.

ASIC (Application-SpeciĄc Integrated Circuit) Ű a circuit customized
for particular use, for example fast computation of particular
algorithm

AVX2 Ű an Intel-speciĄc SSE, working with 256 bit operands, improv-
ing the AVX extension

AVX512F Ű an Intel-speciĄc SSE working with 512 bit operands, re-
placing AVX2.

CUDA Ű a parallel computing platform created by Nvidia

FPGA (Field-Programmable Gate Array) Ű a custom integrated cir-
cuit designed to be conĄgured by a customer after being manu-
factured

HMAC (Hash-Based Message Authentication Code) Ű amessage au-
thentication code involving cryptographic hash function and a
cryptographic key used to verity message integrity as well as
authentication

Hyper-threading Ű Intel-speciĄc proprietary simultaneousmultithread-
ing implementation improving parallelization on X86 processors

IRTF (Internet Research Task Force) Ű an organization creating and
maintaining long-term research groups working on topics re-
lated to the Internet, its protocols and applications

OpenCL (Open Computing Language) Ű framework forwriting pro-
grams executed across heterogeneous systems comprising many
computational units
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B. Glossary

PRF (Pseudorandom Function) Ű an efficient function simulating
random oracle

SHA (Secure Hash Algorithm) Ű family of cryptographic hashing
functions created by NIST

SIMD (Single Instruction, Multiple Data) Ű a concept inwhichmul-
tiple processing elements perform same computation on multi-
ple pieces of data

Sponge functions Ű also called cryptographic sponges is a family of
algorithmswhich take bit stream of arbitrary length and produce
bit stream of desired length, they are often used as cryptographic
primitives

SSE (Streaming SIMD Extensions) Ű SIMD instruction set extend-
ing the X86 architecture created by Intel

SSSE3 (Supplemental Streaming SIMD Extensions 3) Ű extension
of SSE following after SSE3 and preceding SSE4

TDP (Thermal Design Power) Ű the maximum amount of heat gen-
erated by a computer component that the cooling system is
designed to dissipate under any workload

XOP (Extended Operations) Ű AMD-speciĄc SSE instruction set
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