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Determining the users’ skills from human computer interaction can be challenging even
if it is the only goal of an application. Users with motor skills and coordination disorders
are usually not very alike in their movements, not even when the motor impairments are
the same. This problem introduces many difficulties in designing a user model for deter-
mining user’s motor skills. To avoid confusion about differences of motor skills among
similar users we propose explicit specification of motor skill categories. Once the cate-
gories are established, it is important to choose the correct approach to adapt the applica-
tion to regarding the user’s restrictions. This can result in opening new interaction possi-
bilities to impaired users who have severe difficulties interacting with the application
otherwise. We present three motor skills categories and three gestures to use for category
recognition. Recognition of motor skills categories and gesture adaptations to users were
put into test in two experiments. The results of the experiments are very favorable and
encourage further work in this domain.






Anotacia

Slovenska Technicka Univerzita v Bratislave
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGI{
Studijny program: Inteligentné softvérové systémy

Autor: Be. Lukas Babula

Diplomové praca: Model pouzivatel’a pre urenie jeho motorickych schopnosti
Veduci diplomovej prace: Ing. Kamil Burda

april 2019

Urcovanie motorickych schopnosti pouzivatel'a na zéklade jeho interakcie s pocitacom
moze byt vyzvou, aj ked’ je to uréovanie jedinym ucelom danej aplikacie. Pohyby pouzi-
vatel'ov, ktori maji poruchu motorickych schopnosti alebo problémy s koordinaciou, su
pomerne rozli¢né, aj ked’ trpia tou istou poruchou. Tento fakt ma za nasledok vel'a kom-
plikécii a spdsobuje d’alSie prekazky pri ndvrhu modelu pouzivatel’a pre uréenie jeho mo-
torickych schopnosti. Aby sme sa vyhli problémom rozmanitosti motorickych schopnosti
medzi vel'mi podobnymi pouzivate'mi, navrhujeme zretel'nt Specifikaciu kategdrii mo-
torickych schopnosti. Ked’ st kategorie presne urcené, je dolezité zvolit’ spravny spdsob
toho, ako sa bude aplikacia prisposobovat’ pouzivatel'om na zaklade ich obmedzeni. Toto
prisposobenie by malo vytvorit’ postihnutym pouzivatelom nové moznosti interakcie,
pretoZe bez toho maju velmi velké tazkosti s aplikdciou vobec interagovat’. Za tymto
ucelom prezentujeme tri rozne kategorie motorickych schopnosti, ktoré boli pouZzité spolu
s naSimi troma vlastnymi obojru¢nymi gestami. Rozpoznavanie kategdrii motorickych
schopnosti a nasledného prispdsobovania sa pouzivatel'ovi boli otestované v dvoch expe-
rimentoch. Vysledky tychto experimentov st ve'mi podnetné a povzbudzuju d’alSiu pracu
v ramci tejto domény.
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1 Introduction

Nowadays, several systems and applications are controlled by user gestures. Usage of
these gestures offers many useful benefits, because user’s gestures are behavioral charac-
teristics. Thus, we can consider them as unique for every user in one or other way. Ex-
tracting possible features from gestures and representation of these features is a very wide
research area itself. This area covers at least biometrics and user modeling research fields,
which are becoming more and more popular with technology evolution.

Users’ gestures can be utilized in many different ways by applications. Currently,
the most common approach is their usage for interaction, albeit usage of users’ gestures
for user authentication or user identification during interaction are arising. Regardless of
the gesture usage, the gesture needs to be recognized by the application. The captured
gesture can be compared with gestures known by the application and then possibly rec-
ognized as one of the supported gestures. The captured gesture can be also assigned to a
particular user or a group of users. This is how the user or the group can be modeled. User
modeling based on gestures is currently less developed than a gesture modeling of the
user.

Many problems related to gesture representation can occur during the usage of
applications based on a gesture interaction. Such an application can and usually does react
slightly differently to each user. These differences are projected into the differences of
controlling the application by different users, despite them controlling the same applica-
tion. Due to the differences, users may experience different levels of difficulty in interac-
tion by different gestures. Therefore, the application can constrain users based on their
physique. A naive example could be requesting continuity of some gesture execution for
a very large horizontal distance, such as swipe with hand for at least 100 cm in one sway.
This could be a problem for people without arms long enough to reach the given distance.
Nonetheless, another problem can also be the difference of motor skills among users.
From the interaction point of view, it could be a very difficult and serious challenge,
because a user with a higher level of motor skills can perform gestures much easier than
a user with worse motor skills.

In order to remedy or at least partly eliminate this problem caused by different
motor skills of users, applications can introduce gesture adaptation whilst the gesture is
being recognized. There are many possible adaptations, such as the change of the whole
gesture, or a simple adaptation of a threshold necessary to accept a gesture with regards
to the chosen evaluation. Some corrections can be executed directly by data sensor (de-
vice observing gestures) while processing the raw data (sensing movements of a user).
This correction is usually sufficient for regular users, because the sensor can handle users’
small differences (Bigdelou et al., 2012). Though many problems are under circum-
stances, where user has rapidly worse motor skills (for instance user has some physical
impairment such as cerebral palsy).



Most of users are, naturally, healthy, so it is not common for applications to bother
with users outside this bracket. We want to discover, whether it is even possible for an
application to recognize different motor skills among its users. To be able to do this, the
application has to be first exposed to several different users with different motor skills
and be explicitly told which user belongs to which category. Therefore, categories of dif-
ferent motor skills must be established first. Not every hand gesture is appropriate for
such recognition, so gestures the application must be designed right after with regards to
motor skills categories. With the categories and the gestures, it also takes a lot of experi-
menting in order to make any conclusion about ability to recognize users and adapt to
them.

Analysis of motor skills, their possible applications in virtual reality, gesture
recognition and adaptation is described in chapter 2 based on related work in similar re-
search fields. The domain of biometric user modeling and classification is described in
chapter 3. Chapter 4 concludes the analysis of related work discussing different sensing
devices which can be used for sensing gestures.

Chapter 5 introduces hypothesis of this work in form of our assumptions based on
the detailed analysis. These assumptions are the basis for our proposed system in chapter
6. This proposal consists of all parts of solution needed to evaluate the hypothesis. The
specification of motor skills categories, gesture types, experiments or adaptations of the
system are all proposed in this chapter. The following chapter 7 detailly describes the
realization of the all parts of the proposed system.

Evaluation of the proposed system is summarized in chapter 8. The chapter dis-
cusses evaluation of each part of the system and also presents results achieved using the
system. Final chapter 9 offers a conclusion of our work and hands over future work with
motor skills determination.



2 Motor SKkills and Virtual Reality

Virtual reality is defined as an immersive and interactive system that provides users with
the illusion of entering a virtual world (Heim, 2000). The user is connected to the virtual
reality system as part of the input/output loop, allowing individuals to provide input to
the virtual environment and experience the result of that input (Lange et al., 2010). A user
can provide the input in many different ways, from regular computer input devices,
through specialized input devices for virtual reality and various gestures up to the eye
movement (Deng et al., 2010).

None of these interactive approaches is new, albeit the Electro-Oculography based
approaches are still not very widely used nowadays. The most important approach for
obtaining motor skills of users is the one based on gestures. Closer to look to gesture more
specifically, as a hand gestures, there is the obvious benefit, such that humans already use
their hands and fingers in different situations to manipulate real world objects (Aslan et
al., 2014).

2.1 Gestures

“An important distinction is that between explicit (or control) gestures — when their pur-
pose is to provide some form of input to the computer, such as a command — and implicit
gestures — when they are exploited to obtain indirect information about the user and his
or her environment, such as activity recognition” (Nugrahaningsih et al., 2015). This 1s
an important distinction in the context of this work since the motor skills levels could be
obtained from these types of gestures, because they may require certain coordination
skills. In addition, both types mostly apply to hand gesture recognition.

2.1.1 Gesture Recognition

Gesture recognition topic is currently very active and widely discussed within research
field. In order to solve the problem of huge differences between users’ motor skills it is
necessary to focus on hand gestures, because movements of hands are providing the best
insight of users’ motor skills.

Two main approaches exist to hand gesture recognition, depending on the kind of
sensor employed for data acquisition: techniques which require the user to move a phys-
ical object (e.g. an accelerometer) and vision-based methods in which hand movements
are detected with one or more cameras. The second case is more complex, but fortunately
there are now sensors, which greatly simplify the tasks of hand recognition and tracking
(Nugrahaningsih et al., 2015).

There are many approaches how to obtain data of users’ hands and how to recog-
nize gestures from the data. Currently the most widely used sensors are Leap Motion and



Kinect. However, their approaches differ as well despite their similarities. Leap Motion
models hands and gestures from hand positions and space orientation while Kinect mod-
els the depth of objects. Both sensors provide satisfying results, but when combined, they
can recognize even static gestures in real time. This combined method can provide a pre-
cise description of users’ hands. This description is needed in order to build an adequate
user model (Marin et al., 2014).

Thus, the biggest challenge is to obtain hand data and recognize users’ gestures as
precisely as possible (Manresa et al., 2005a). Very closely related to this challenge is to
match the recognized gesture to its user and therefore to recognize both the gesture and
the user. In a similar manner, groups of users can be recognized. Different gestures un-
derwent static user verification based on their hand gestures. Results of this experiment
are very promising (Imura and Hosobe, 2016a). Gestures used in this experiment were
not interactive, so the promising results and very high success rate around 90% can be
misleading for authentication based on interactive hand gestures.

Gesture recognition is nowadays executed under various conditions and many ap-
plication domains. One of them is a low-cost solution for clean rooms, where systems
need to recognize users by their gestures (Aslan et al., 2014). Authors discuss many pos-
sibilities and approaches to implement the whole system for clean rooms including inter-
action and user authentication. Another approach was proposed using viewport-independ-
ent hand gesture recognition (Jiang et al., 2014), but the proposed approach to improve
gesture recognition is sensor-dependent. A very nice survey about gesture recognition
was done in order to improve human computer interaction itself (Rautaray and Agrawal,
2015).

2.1.2 Gesture Adaptation

Gesture adaptation to a user using device with an accelerometer is another interesting
concept in this research field. Adapted gestures and their complexity are suitable for every
user. This approach uses user identification and user authentication based on these
adapted gestures (Liu et al., 2009). In the context of motor skills, it is necessary to perform
user identification the other way around, because the user needs to be recognized first for
proper user-based gesture adaptation. This can be achieved by making use of more fea-
tures obtained from the user’s hand, which can altogether provide much more specific
data than accelerometer.

A well-suited gesture for an interactive activity can be totally contrasting among
the users, because users are trying to achieve the same functionality through different
gestures, which are more natural for each user. The users’ goal is the same, but their
gestures are not alike. Thus, it is difficult to map certain system functionality to specific
gestures unless the gestures are very basic and well known. An interactive system built
on the users’ gesture recognition has to adapt itself to every user, because every user is
unique. The most important differences are users’ motility and quickness. This whole
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concept is based on user identification, where the user is recognized by the system and
was registered in advance. The registration builds and stores user models, so the users can
be identified using these models (Zhang et al., 2014).

2.1.3 Gesture Interaction

Usability of human computer interaction via users’ hand gestures and its real-time eval-
uation are mostly dependent on a concrete implementation of such an interactive system.
A comparison of several interaction methods (e.g. navigation or manipulation) and data
obtained by them appear to have promising results in favor of using hand gestures (Cabral
et al., 2005a).

Interactive hand gestures in the identification context achieved fairly good results
despite a small sample used for training and user modeling. During closed-set identifica-
tion a model of a user who is being recognized is already known. Therefore, it is enough
to compare the current user with all the user models stored in the database, because it is
guaranteed that model of current user is stored in the database. Closed-set identification
is much simpler than the identification of a new user who is using the system for the first
time. Of course, it is not possible to identify the user precisely, but one can consider
identifying a user group to which the current user belongs, e.g. group of users with similar
levels of motor skills.

2.2 Motor Impairments and Interaction

A recent study (Caro, 2014) had been researching the improvements of motor skills of
people with coordination disorder, also known as dyspraxia. A game was developed for
children with this disorder. During the game the players had to execute multiple coordi-
nation-based movements. These movements were aimed specially at dyspraxia, so the
exercise was enjoyable, because it helped them to improve in game, but useful, because
at the same time their motor skills were improving.

Gestures used for the application were interactive, so the children were able to
control the entire application only by their gestures. This example shows that people with
dyspraxia do not have to be excluded from interactive applications in which hand gestures
are required. However, the application needs to be adapted for this case and has to both
support these special users and be able to adapt to them. The application itself was rather
simple and aimed for children, hence many problems can theoretically emerge using more
advanced interaction or more complex gestures (Caro, 2014).

Children’s motor skills also underwent research based on gaming applications re-
gardless of coordination movements (Landry et al., 2013). These gaming applications
were also controlled by interactive user gestures, but system obtained all children move-
ments. Movements required to control applications were designed by a specialist in order
to achieve the highest variability and to be the most beneficial for children. A level of
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motor skills was computed from a number of distinct movements and different positions
assuming that if the child did not perform a movement necessary to control the applica-
tion, then the child would not be able to perform the movement in real life.

Determining motor skills via applications is not that rare nowadays as it used to
be (Singh and Aggarwal, 2016). The authors were discovering motor skills of vocational
workers whose job required a certain level of motor skills. The work was focused on the
fine motor skills, which are much more difficult to measure. Touch screen was chosen
for measurements, because it is easier to obtain precise information from a touch screen
than from sensors monitoring the space. Users were executing specific movements with
fingers on the screen surface. These movements were designed for obtaining the motor
skills and not for interaction, so it was not possible to control the application with them.
Nevertheless, authors were also discussing coordination and gross motor skills. In this
manner they used gyroscope and accelerometer of the device with the touch screen. The
application was designed to include several shoulder and elbow movements, acting as the
source of gross motor skills information and coordination of both hands. The level of
motor skills was approximated using linear regression and Support Vector Machine. The
success rate of workers was compared with the results of manual tests driven by physio-
therapy specialists.

“The games and virtual environments must allow the user to interact in a way that
is appropriate for their level of impairment, and must be easily changed to increase the
level of challenge as the user improves” (Lange et al., 2010).

The gesture recognizer dynamically analyzes a subset of all body skeleton data
detected by the sensing device (considering only information related to torso and upwards
joints) and progressively checks if such data correspond to a gesture included in the set
of the possible ones (Valoriani, 2013). From the obtained information, it is possible to
post-process the gesture and perform gesture management, which can be considered as
adaptation to the current user. The way the gesture is interpreted and executed is not given
beforehand, so it can be well suited for every user.

2.2.1 Exergames

Interesting connection between physical activity of users and virtual reality is the idea of
exergaming. Exergaming was originally conceived as the use of video games in an exer-
cise activity (Sinclair et al., 2007), but nowadays there are many applications which are
more or less connecting field of exergaming with virtual reality (Altanis et al., 2013; Caro,
2014; Landry et al., 2013; Tanaka et al., 2012; Yoo et al., 2017). This adds a new dimen-
sion to exergaming, which was originally considered to have limited impact to a user (Hsu
et al., 2011; Wollersheim et al., 2010).

Exergames can also be easily connected with rehabilitation, which can result in an im-
portant new usage of virtual reality (Tanaka et al., 2012). The authors are researching the



possibilities of exergames usage within the rehabilitation framework, which turn out as a
fairly feasible.

2.2.2 Rehabilitation in Virtual Reality

Early attempts for rehabilitation within virtual reality relevant to context of our work were
using an interaction glove (i.e. CyberGlove or a Rutgers Master II-ND haptic glove), al-
lowing to process data from users’ hands (Adamovich et al., 2004; Baker et al., 2004).
These approaches are indicating potential feasibility of exercise systems in the virtual
reality in order to rehabilitate the users’ hand disfunction.

On the other hand, there is a number of works and researches trying to rehabilitate
problems caused by cerebral palsy (Chang et al., 2013; Huang, 2011; Mousavi Hondori
and Khademi, 2014; Oliveira et al., 2016). Cerebral palsy has many different impacts on
human body, which vary from person to person, because they are mostly individual. Prob-
lems caused are mostly motor skills problems, and this is where rehabilitation takes its
place. Since the problems differ, the solutions proposed by authors are different and au-
thors also introduce different approaches to achieve such rehabilitation.

Interaction with hand and foot gesture is another approach to rehabilitation using
virtual reality (Lv and Li, 2015). This particular touch-less approach is aiming to the re-
habilitation achieved by stretching hand and legs whilst using the application and manip-
ulating with it.

2.3 Adaptation

Last but not least, there is an application adaptation approach arising among approaches
associated with our field of study. Such an adaptation can be done in multiple ways based
on multiple different areas. One of the adaptations which are consistent to previous fields
is adaptation of an exergame to its user (Yoo et al., 2017). This is how personalized ex-
ergames can be made. It can help users to enjoy the game more, or exercise more accord-
ing to their skills.

Psychomotor activity modeling, proposed in (Santos, 2017; Santos and Eddy,
2017), 1s another part of adaptation approach because of the model needed to execute user
prediction. Prediction can be built up on the predictive performance of such a model (Pe-
lanek, 2017). This can also be considered as an evaluation overview for the application,
because the success rate of user’s prediction is the rate of application successful adapta-
tion. It is simply because the adaptation cannot be done after a gesture had been executed,
but the gesture needs to be predicted and adapted while not executed by the application.






3 User Model and Classification

For classification of user models and determining whether a user model belong to one
class or another, it is crucial to build a proper user model first. Then it is important to
know the purpose of classification, which can be useful in choosing a proper classifier.

3.1 User Modeling

User modeling is process of creating a computer representation of user (Fischer, 2001).
The computer cannot recognize a person the same way as a human, because it is not able
to perceive all the person’s features. With the purpose of helping computer to recognize
the person, we need to simplify the person’s features and select the most varying features
among all users for purpose of recognition by the computer. The most common case of
person recognition by computer is user recognition.

The list of features, or a computer representation of the user, is the user model
(Allen, 1997). The user model should be independent from a concept of the system within
user’s mind, because it could decrease the quality of such a user model. Once the user
knows how they are represented, they are influenced by this information and can act dif-
ferently.

3.2 Biometrics

Biometrics, also known as biometric recognition, is a science of discovering a
persons’ identity from their physiological or behavioral features (Jain et al., 2011). The
main idea of biometrics is that a person’s identity can be uniquely determined by certain
features or their combination, e.g. fingerprint or face. One cannot select a single feature
that can fulfill all possible scenarios, because different features are suitable for different
usages. Selecting proper features is tightly related to the purpose of the application (Jain
et al., 2004).

In the context of determining user’s motor skills, it is desirable to consider behav-
ioral biometrics, because features obtained from a user’s hand are dynamic and exhibit
the user’s unique behavior.

3.2.1 Biometric System

A biometric system is any system which can distinguish different user models. The sys-
tem requires three modules to be able to compare user models (Bolle et al., 2013):

e Dbiometric sensor — a device obtaining raw data from the user;



e feature extractor — a unit processing the raw data from the sensor, obtaining fea-
tures from them as a vector and either inserting the instance of a user model rep-
resented by the vector into the model database or returning the model for compar-
ison;

e model database — storage of all known user models.

With these modules, the system is able to perform user model comparison, be-
cause when it is needed, the system can build the user model of the current user and get
all known user models from model database (Jain et al., 2007). There are many ways to
compare models or to assign identity to the current user depending on purpose of the
biometric system, i.e. identification or verification.

3.3 Verification

A biometric system needs to decide whether the user is truly the one they claim to be.
Thus, during the verification process the user has to explicitly proclaim identity to be
verified. A user model of the proclaimed user is then selected from the model database
and compared with the user model obtained from the current user. If these two models
are similar, the proclaimed identity is confirmed, otherwise the access for the current user
is denied and the user is considered to be an impostor. Verification is usually used in
applications which need protect their content from unauthorized users (Jain et al., 2011;
Wayman, 2015).

3.4 Identification

User identification is the recognition of a user’s identity by a biometric system without
any identity proclaimed by user. The biometric system in this case does not have a spec-
ified user model to compare the obtained model of the current user with. It implies that
system needs to fetch and compare all user models from the database against the current
user model (Jain et al., 2000).

Identification can be divided into two types (Wayman, 2015):

e open-set identification — the current user can be unknown by the biometric
system, so the system can result in an unsuccessful identification if none
of the user models from database are not similar enough;

e closed-set identification — the current user is always known by the bio-
metric system, so the system has to select the most similar user model from
the model database, even though none of the stored models may be similar.
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3.5 C(lassification

During the process of user identification, the current user model has to be compared with
all user models stored in the model database. To assign a user’s identity to the current
user model, the most common method is classification. In the machine learning terminol-
ogy, users’ identities are labels or classes. Each user identity corresponds to one class.
When a biometric system identifies a user model, the corresponding class is assigned to
the user model (Aggarwal, 2014).

Classes in general do not have to necessarily represent user models, they can rep-
resent almost anything that can be divided into multiple distinct categories, i.e. groups of
users according to their category of motor skills. That is why the classification is a very
general and powerful approach. Classification was designed for distinguishing two clas-
ses, but nowadays many classifiers can handle multiple classes as well, usually by gener-
alization of the original method (Aggarwal, 2014).

In order to set the classifiers properly, the main properties and parameters have to
be settled. Choosing kernel, distance measure, depth or any other key characteristic is
crucial and has severe impact on results of classifier. The values are usually determined
using a validation set or using cross-validation (Aly, 2005).

For classification it is necessary to have instance of a user model, which belong
to concrete user, whose identity or attributes we are trying to classify. These instances are
referred as samples in machine learning. They are basically vectors of features, which
were extracted during a user modeling. These samples can be processed by classifiers for
training and testing purposes. The brief summary of the most commonly used classifiers
follows.

3.5.1 Decision Trees

Decision trees are considered to be a powerful method for classification. They can be
divided into two main categories: classification and regression trees. Two most adopted
algorithms for building decision trees currently are ID3 and C4.5. During a decision tree
construction, building algorithm has to develop a split the dataset according to its values
for every feature to create branches leading to the class labels. The split represented by
every node is typically based on the maximum information gain, but it can vary depending
on the building algorithm. The feature giving the desirable gain is chosen to be split by.
When the algorithm proceeds the end of the branch — leaf of the tree — a class of the
unknown sample is unambiguously assigned. In order to assign class to the sample, it has
to follow a path from root of the tree to any leaf of the decision tree making a decision at
each node according to splitting feature of such a sample.
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The algorithms for decision tree building and searching are very well applicable
also to multiple class classification problems, because the class label stored in the leaf
can be one out of any number of classes concerned. (Aly, 2005).

3.5.2 k-Nearest Neighbors

k-Nearest Neighbors (k-NN) is one of the oldest classification algorithms not using para-
metrization. In this algorithm, the key is its distance measure (e.g. Euclidean or Cosine).
It is used when classifying an unknown sample to compute the distance from that partic-
ular sample to each previously obtained training sample. When distance from each sample
is determined, the k closest samples are taken into the consideration. The most represented
class among them is considered to be the most probable class for unknown sample and it
is resulting label of the classification. (Aly, 2005).

3.5.3 Support Vector Machines

“Support Vector Machines are among the most robust and successful classification algo-
rithms ““ (Aly, 2005). We can distinguish different types according to used kernels. The
most widely used kernels are linear and gaussian kernel. The main idea of this classifica-
tion is to divide the space of samples into two maximizing the minimum distance from
one of them to the other. When using linear kernel, the separation is linear (i.e. line for
2D sample or plane for 3D sample), while with gaussian kernel, the algorithm would try
to enclose samples of one class from outside from the other one. Therefore, the classical
SVM approach supports just binary classification. There are also several strategies avail-
able, which can handle multiclass classification as well. First well-known approach is
one-vs.-all approach, where space is separated to multiple subspaces, one for each class.
Second standard approach is one-vs.-one, where the problem is split into multiple classi-
fication problems and the classes are compared to each other classical way — two at the
same time.
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4 Sensors

When it comes to the device that can obtain data from user gestures there are theoretically
many options because of a technology boom, which is getting more and more intense
every year. However according to recent research work in this field, there are three rea-
sonable practical choices:

e interaction gloves (Adamovich et al., 2004; Baker et al., 2004),

e Leap Motion (Chan et al., 2015; Cui and Sourin, 2014; Marin et al., 2014; Potter
et al., 2013) and

e Kinect (Altanis et al., 2013; Bigdelou et al., 2012; Chang et al., 2013; Huang,
2011; Jiang et al., 2014; Marin et al., 2014; Mousavi Hondori and Khademi, 2014;
Zhang et al., 2014).

Approaches using interaction gloves are not very relevant nowadays, because
other named sensors — Leap Motion and Kinect — are able to obtain comparable infor-
mation from users’ hands while being much more convenient, because they do not need
any wires or sensors directly attached to the user. Thus, the user perceives greater freedom
of movement and it is more comfortable for the user to interact using modern sensors.

Kinect and Leap Motion are both three-dimensional sensors able to obtain data
from cameras. Kinect processes and combines information from multiple depth cameras
into a depth map (Wilson and Benko, 2010) and Leap Motion is combining grayscale
images of two infrared cameras and computing hands and all their part positions (How
Does the Leap Motion Controller Work?, 2014). The range of the Kinect sensor is much
greater than the range of Leap Motion, but it is caused by mentioned differences in cam-
eras and input processing. Both of the sensors are affordable, since they are only typically
additional devices for customers wanting to enhance their VR or gaming experience. The
price of both sensors is similar, because the core technology — infrared lit scene and mul-
tiple cameras perception — is either.

4.1 Kinect

Kinect is a 3D motion sensing input device, which is designed and produced by Microsoft
Corporation. First Kinect was introduced in 2010 for gaming console Xbox 360. Kinect
monitors the space in front of the sensor itself. Kinect is able to capture objects within
distance up to four meters in direction where the front of the sensor is pointing (Wilson
and Benko, 2010).

Since its introduction, Kinect drew a lot of attention because of its gaming and
research potential. Despite this popularity, Microsoft decided to discontinue support and
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production of this sensor (Wilson, 2017). Kinect is still available for purchase, but re-
search potential dropped rapidly down, because in near future the availability may change
as well as its popularity.

4.1.1 Data Provided by Kinect

Kinect can provide several different types of data obtained from depth cameras. It is pos-
sible to receive data on a different level of abstraction, from raw video images up to the
human skeletons. Focusing on hand gestures we are interested in hand positions in the 3D
space. Hand positions can be accessed from skeleton information, because the coordinate
system for the skeleton data is a full 3D system with values in meters (Kinect Sensor,
2012).
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Figure 1. Kinect skeleton representation (Kinect Sensor, 2012) .

From Figure 1, it is clear that for motor skills classification can be used more than just
hands, because suitable information can be also derived from the positions of wrists, el-
bows and shoulders.

4.2 Leap Motion
Leap Motion is, like Kinect 3D, a motion sensor input device, but it is developed by

company Leap Motion, Inc. The range of the sensor is much smaller, only up to 80 cen-
timeters with viewing angle 120°. The range is influenced by powering the sensor via
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USB, so three LED infrared lights are able to light only the described interaction area,
which is also depicted in Figure 2 (How Does the Leap Motion Controller Work?, 2014).

Figure 2. Leap Motion Interaction Area (How Does the Leap Motion Controller Work?, 2014).

4.2.1 Data Provided by Leap Motion

Leap Motion is able to transform data from grayscale stereo video image into hand posi-
tions (Image API Now Available for v2 Tracking Beta, 2014). In comparison with Kinect,
Leap Motion provides data at a much finer level of detail, because it is able to provide
positions of fingers, bones and joints. It is also possible to obtain information about wrists.

For every part of each hand, the position, direction and velocity are provided by
Leap Motion. For every bone, Leap Motion also provides its length and width. Addition-
ally, the sensor tracks the palm, providing palm position, palm direction, palm width and
palm normal.
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S Assumptions

According to the domain analysis, people with a certain degree of motor impairment have
difficulties performing interaction with hand gestures, have to overcome disadvantages
while using these systems and sometimes it is totally impossible for them to use such an
application at all. In order to help these people with using hand interactive applications,
an application needs to recognize type of motor impairment of the user and classify user
behavior with respect to supported motor disabilities as well as adapt the interface ac-
cording to the recognized motor impairment. We assume that it is possible and feasible
to:

e C(Classify a person’s motor impairment with Leap Motion sensor with respect to
specified categories of motor impairment from user’s coordination-based gesture
execution. This coordination-based gesture in the context of this work can either
be a rotate gesture, scale gesture or a carry gesture, all of which are executed with
both hands.

e C(lassify a person’s motor impairment with Leap Motion sensor as described
above in real time.

e Adapt hand gesture-controlled applications for users according to their motor im-
pairment.

It is possible to discover specific users’ skills by letting them perform exercises
designed to evaluate these skills (Singh and Aggarwal, 2016). Since the coordination ges-
tures we are focusing on are not designed in this or a similar manner, we assume that it is
possible to classify users’ motor skills on a higher level of abstraction. Thus, the applica-
tion will not obtain exact users’ motor skills, but will be able to recognize specific patterns
for different types of motor disabilities instead.
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6 Proposed Biometric System for Motor Skills Detection

For motor skills detection we need to specify the skills first. Therefore, we propose three
categories of motor skills, which are simply describable but at the same time clearly spec-
ifying the abstract concept of motor skills.

Collecting data from the Leap Motion sensor for every of these categories is very
important for classification of these categories. The data represent users’ hands, their
movements, positions, directions and other information obtainable from Leap Motion
APL Collecting data needs to be performed during the first of users’ experiments, which
will be also aimed to choose the best classifier in order to allow real-time adaptation of
gestures.

Before the classification itself, the raw data need to be processed to extract useful
features. These features will be used for training the classifier, resulting in the creation a
of user model representing the category of motor skills.

Classification can be done in multiple ways depending on the classifier itself and
its hyperparameters as well. We consider a prior selection the best classifier to be very
tedious and error-prone, because each classifier is strongly dependent on data, which can-
not be described good enough before they will be obtained. Therefore, we propose to
experimentally choose the best classifier after comparing their results.

After successful classification and user model creation for every category it is
necessary to add real-time identification and gesture adaptation to build the whole system.
Afterwards, it is necessary to test this system with users during another experiment. After
collecting results of the latter experiment, we compute the classification success rate and
discuss effectiveness and efficiency of adaptations after consultations with experiment
participants and specialists observing the participants.

6.1 Motor Skills Categories

In order to adapt an application for a user with respect to the user’s motor impairment, it
is necessary to specify disabilities to be taken into consideration. We propose to distin-
guish three different categories of users’ motor skills:

e motor skills of healthy users,
e motor skills of users with dyspraxia and
e motor skills of users with cerebral palsy.

These three categories can be also categorized as regular category, discoordina-
tion category and movement-constrained category, respectively, because the categoriza-
tion of the impairments is in a simplified manner based on those principles.
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6.2 Gestures

For determining a category of motor skills from hand movements, we propose to focus
on short and well-defined actions — gestures — of both hands. Obtaining the category could
be very difficult if the gestures were considered for only one hand, because there is no
adequate response from people with dyspraxia regarding their impairment using only one
hand. We propose three different coordinated gestures of both hands.

6.2.1 Rotate Gesture

As the name suggests, the gesture is derived from a real-life hand movement used for
tuning a radio using a button or screwing a lightbulb. Hand fingers must surround the
object of interest and then turn in the desired direction. For coordination purposes we
propose to enhance the gesture to be applicable for both hands at the same time. Once the
fingers of each hand surround different objects, the user then performs rotation of both
hands at the same time in an outward direction — the right hand is being rotated clockwise
and left hand anticlockwise as depicted in Figure 3.

Figure 3. Rotate gesture.

The gesture must be executed at the same time with both hands, what can be guaranteed
by comparing the angle of both hands. If the angles are different, the gesture is not ac-
cepted. For humans it is very difficult to control hand rotations on the scale of one angle
degree. Therefore, a gesture will be accepted if the difference of angles is relatively small
to requested angle to execute. It is feasible to require the gesture to be around half of the
circle long, because it is comfortably reachable with regards to the hand anatomy.
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6.2.2 Scale Gesture

The name of the scale gesture is not based on its real time usage of opening, but on the
touchscreen representation of the zooming feature. The gesture in Figure 4 is to be exe-
cuted with two hands as follows:

e both hands pinch the same object with all fingers,
e hands move in the horizontal direction only and

e hands move a certain distance apart from each other.

Figure 4. Scale gesture.

Some small fluctuations of vertical movements and forward backward movements are
also taken into consideration and will be tolerated in order to make the gesture conven-
iently executable. To involve coordination, the criterium of regularity of movements with
both hands will be similar as in the previous gesture. In this case the distance from either
hand to the center of the object must be the same, with a small amount of tolerated dif-
ference.

6.2.3 Carry Gesture

Our last proposed coordination gesture is the carry gesture shown in Figure 5. It is the
least complex gesture for users to understand, because all of its constraints are real-life
based. The gesture simulates carrying an object from the bottom with open hands. There-
fore, the hands must stay during the execution of the gesture in a similar distance as they
were at the beginning. If the distance is shorter, the hands will pass the center of gravity
and the object will fall. If the distance is longer, the hands will be farther apart as the size
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of the object, resulting in the fall of the object. If the positions of both hands are not
horizontal (palms are not facing upwards), the object will slide and fall.

Figure 5. Carry gesture.

The transport distance using the carry gesture is meant to be rather small to allow execu-
tion of the gesture while sitting. We exclude other body movements than hand movements
from contributing into the carry gesture conditions for our purpose of user modelling.

6.3 Experiments

We propose to perform two experiments:

e Obtaining data from users for choosing the best classifier for our problem and
analyze the success rate of the proposed method and

e cvaluating obtained results and observe the ability of the system to adapt to the
user.

Both experiments are to be performed using the same settings within the same
interactive scene, so users cannot without interaction distinguish whether the system is
already trying to adapt to them or not. We want to avoid affecting users in order to ask
them about their point of view on interaction.

We propose to involve all three selected gestures in a simple game, where users
will be distracted by in-game abstractions of problems and effects of their movements
and will not concentrate on performing gestures themselves — making gestures means
instead of goals. The gamification of experiments also gives users motivation to partici-
pate and perform the same gestures over and over, making their progress visible directly
by their actions.
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6.3.1 Game Logic of Experiments

Involving all the gestures into the interactive game should be very straightforward. Thus,
we propose to use the rotation gesture to actually rotate objects in the scene and the carry
gesture to carry an object. The nickname for the scale gesture comes from our usage of
the gesture in the application, but the gesture is natively used to open sliding doors or
curtains. Though, in virtual reality, the gesture is being used for scaling objects and we
decided to follow this convention. We do not consider it unintuitive for this use case,
because widely spread and well-known zoom gestures on touchscreens employ a very
similar logic.

The goal of the game is to build a two-dimensional pyramid (triangular stack) out
of three-dimensional cubes. The game consists of constructing cubes of the correct size
to be possible to use in building of such a pyramid. Each cube at the beginning is too
small to be used in the final pyramid, so it needs to be properly adjusted. Using the scale
gesture, we scale one dimension of the cube. To scale the whole cube to a larger size, it
is necessary to rotate the cube at least twice using the rotate gesture. When the cube is
properly constructed, the cube is placed on a stockpile, from where the cube can be carried
to the final pyramid.

For evaluation purposes, we need all three gestures to be represented evenly. To
include them approximately evenly into the game, we decided to add one more step, to
create a cube to be scaled using the gesture for rotation. Hence, the count of successful
scale and rotate gestures is exactly the same. The only deficit is with carry gestures, so
we propose to introduce levels in the game, where each successive level involves building
an increasingly larger pyramid. It gives us the reason to clear the pyramid building pro-
gress — adding a base tile. All cubes from the pyramid thus can be moved to the stockpile
pyramid and the user must carry the cubes again into the pyramid being built.

For building the final pyramid with a base consisting of five tiles, the user must
create, rotate and properly scale 15 cubes. The minimum requirements for completing a
proper cube are to use the rotate gesture 3 times and the scale gesture 3 times, amounting
to 45 gestures of each type. From the pyramid base of length 1 up to the base of length 5,
the user needs to always carry all cubes required to create the corresponding pyramid.
Summing the first five triangular numbers gives 35, which we consider an appropriate
number compared to the 45 occurrences of other two gestures.

6.3.2 Selecting Candidates for Experiments

Selecting appropriate candidates for experiments is very important, because the entire
classification and evaluation of the proposed system depend on participants of the exper-
iments. There are two approaches to build a good user model for each category: either to
have a large number of participants or a relatively small sample of participants, which
will be very heterogenous and can satisfactorily cover each category.
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Covering the category with a large number of participants is very time-consuming
and infeasible, because each category imposes some constraints for participants which
have to be fulfilled. In this case it is necessary for participants to distinguish their motor
skills category. It is not acceptable to let participants declare their category, because self-
estimation of participants’ category of motor skills is subjective and varies greatly among
the participants. On the other hand, some participants may have already had their motor
impairment classified by a specialist.

Consequently, we propose the candidate list to be carefully chosen by specialists
to minimize the number of participants while covering the variety of categories.

6.4 User Models and Features

User model in biometric systems is dependent on the users’ actions. The actions in a
biometric system are gestures proposed earlier in this chapter. We do not want to create
a biometric system depending on all of the gestures performed evenly as it is set in our
experiments. Thus, we propose three distinct user models, one for each gesture. Whether
the system has other gestures or not, independent on their sequences we want to have the
user model to be able to be bound to one particular gesture and represent the user only by
that gesture.

Instances in user models are represented by feature vectors. In our case it is feasi-
ble to propose concrete features in the vectors and then generalize the models out of the
obtained data from the first experiment. Consequently, for each gesture it is necessary to
have certain features which could represent all the motor skills categories and differenti-
ate between them according to their values.

We identified several common features for all of the proposed gestures. All fea-
tures marked with asterisk are computed for the left and the right hand separately:

e minimum, maximum and average velocity of palms*

e velocity of palms at beginning and end of the gesture*

e normal of palms at the beginning and end of the gesture*
e direction of hands at the beginning and end of the gesture*

¢ minimum, maximum and average x, y and z coordinate of positions of
palms*

e duration of the gesture

Since values for velocities, normals and directions in real life are three-dimen-
sional, they will be represented as separate features according to their components along
the three axes. All rotations will be represented as four components of quaternion repre-
senting the rotation in three-dimensional space.
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6.4.1 Specific Features for Carry Gesture

The carry gesture has basically determined only the start point and the end point, so the
path of transportation could vary not only user to user, but also according to the difficul-
ties with keeping hands coordinated. Specific features for this gesture include:

e minimum, maximum and average distance between palms
¢ minimum, maximum and average difference of height of palms
e distance travelled by palms*

¢ minimum, maximum and average distance between normals of palms and
vector facing upwards*

6.4.2 Specific Features for Rotate Gesture

The rotate gesture is the only gesture using rotation of hands for its purpose. Thus, we
have to obtain information about rotations of hands. Also positions of hands during the
gesture can reveal specific information about the user. When rotating, the user is holding
an invisible object, therefore the five-finger pinch tightness is very important. Palm can
be rotating around any finger, so tracking how much is outermost finger moving is very
important. For this gesture specific features include:

e rotation of hands at beginning and in the end of the gesture*
e average distance between thumb and ring finger*
e average distance between palm and ring finger*

e distance travelled by pinky*

6.4.3 Specific Features for Scale Gesture

The scale gesture is the least unique in comparison with the other gesture. We want to
enhance the common features only by following additional three groups:

e average distance between thumb and ring finger*
e average distance between palm and ring finger*

e distance travelled by palms*

6.5 Biometric Sensor
After comparing available and suitable sensors in the analysis, we propose to use the Leap

Motion sensing device due to its better future support and also the precision of the smaller
hand movements and gestures. Since we are focused on the hand gestures, Leap Motion
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sensor’s abilities are very satisfying. Future support allows further future work on this or
similar topics of other researchers.

Regarding the Leap Motion abilities, we propose to monitor and store most of the
available data the sensor provides, because we do not to want to lose any opportunities
during the feature extraction or data analysis stage. These values will be stored in a file
easy to read for feature extraction and data analysis processes. Values which can be easily
ignored from the sensor without any loss are attributes of bones in fingers. Attributes of
fingers are providing all the necessary information in our case, because they fairly pre-
cisely summarize and represent the whole fingers, thus information about each bone are
not needed.

The frequency of providing data by the sensor depends on the number of hands
the sensor monitors. For two hands, as all the gestures are proposed for, it is approxi-
mately 60 times per second. Such a large amount of information is in favor for our usage
for very precise tracking of hands in space and time.

6.6 Feature Extractor

The feature extractor will read the raw data obtained from sensing device and compute
values of each feature in the vector according to their definition based on the user model.
Since the user model is different for each gesture, the feature extractor must be different
for each gesture.

It is not desired to process data which are obtained during the time when no ges-
ture was performed. Therefore, during the preprocessing of raw data we make sure that
only the relevant data segments are chosen for extraction.

6.6.1 Raw Data Preprocessing

We propose to store also the event progression, so one can easily distinguish whether a
specific gesture is being executed or not. Each gesture needs to have its separate progres-
sion file with gesture events. We propose the same three events for each gesture:

e start of execution,
e acceptance and
e failure of gesture.

Along with events, a timestamp is included for each entry in the gesture progres-
sion file.
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6.7 Model Database

After the feature extraction, the vectors of features have to be persisted. The information
about class, in our case motor skills level category, must be assigned to each vector. Our
proposal is to store these vectors of numbers in comma-separated values form to be easily
readable by both human and computer for their analysis and later for use in classifiers.

Each gesture is associated with a separate file, because every gesture is using a
different user model. It is also desired to distinguish between successful and failed gesture
executions, so we are considering six separate files to be used for storing the vectors of
features (i.e. the instances of user models).

6.8 Identification Method

In the second experiment, participants are identified by our proposed system according
to their motor skills category. This problem can be represented either as open-set identi-
fication, where it is possible to classify the user’s motor skills as not belonging to any
category, or closed-set identification, where the system must decide even if none of
known categories is very similar to the user’s motor skills.

We propose the usage of the closed-set identification, because there is always an
action during the adaptation process that needs to be executed. This allows the system to
perform adaptation even if the current user’s motor skills are in some way different from
all of the specified categories, but still mostly similar to one of them, which we consider
as a preferred way of handling special cases.

It is crucial to identify a user’s motor skills category not only by successfully per-
formed and accepted gestures, but also by failed gestures. If the user is not able to perform
gesture properly for multiple times in row, then adaptation should take its place at the
time. Thus, it is not feasible wait for classification based on successful gestures. We pro-
pose to split these cases and focus heavily on the unsuccessful gestures.

For our proposed closed-set identification, we consider choosing best classifier by
tuning the parameters of following classifiers in coherence with our domain analysis on

classifiers.
e k-NN using
o k from one up to a feasible ceiling according to the number of ob-
tained training samples and
o different distance measures — Euclidean, Manhattan and cosine
similarity.
e SVM using
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o linear kernel and
o gaussian kernel.
e Decision tree using
o C4.5 and
o ID3 constructing algorithm.

The parameters explicitly stated for each classifier are not the only parameters to
be tuned in fact but are the main parameters available regardless of the implementation
or chosen library to perform hyperparameter tuning. We suggest tuning other available
parameters of classifiers, such as algorithm learning rate or tolerance for stopping crite-
rion, depending on the implementation.

After the best classifier is determined for all the gestures and both successful and
unsuccessful gestures, we propose to properly train them and adjust identification for real-
time usage to allow adaptations of the system.

6.9 Adaptation

From experiment observations and data analysis we propose determining the most vio-
lated gesture conditions for each gesture and motor skills category. We also propose com-
paring violated conditions of the active user to the expected conditions belonging to their
group. We do not consider generally loosening the conditions if user is not able to meet
them. Instead, we propose adapting conditions according to the category and allowing
this adaptation only to successfully classified users of the category.

In some cases, the visual representation of conditions could also be helpful, when
the user is able to fulfil all of the gesture conditions, but they are unable to do so naturally.
Users focusing on their gesture during their performance with qualitative feedback could
help them to meet all the conditions without any further adaptation of conditions. How-
ever, another visual feedback would not be appropriate in our proposed system, because
two out of three gestures already have color and movement feedback, which we consider
much more important. Therefore, the system adaptation will have to make do without
visual changes relying solely on category-based condition adaptations.

We propose the adaptations to be unnoticeable by users because we want users to
interact with the system in the exact same manner, whether it is adapting to them or not.
If the user is heathy, the application will not perform the adaptation in any way, even if
the user is making no progress, because the user is easily able to.

If the user does not belong to the category of healthy users but is not constrained
in any way to perform one of the gestures, they may be misclassified based on their move-
ments for that particular gesture. However, it does not mean the user is able to perform
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other gestures without any constraints. We propose classifying the user’s motor skills and
adapting the system for each gesture separately, even if one of the gestures is classified
completely differently than others (e.g. heathy category for carry gesture and cerebral
palsy category for scale and rotate gesture). Even if the user is eligible for adaptation
according to their real category and classification of other gestures, we do not find it
necessary to adapt a gesture that the user can perform without problems.

6.9.1 Adaptation to Users with Dyspraxia

After observations of movements of users with dyspraxia and consultations with a spe-
cialist we propose adapting only a strictness of the coordination of both hands. Users in
this category are fully able to perform all the required movements but cannot uncon-
sciously perform them with both hands at the same time. Adapted gestures will still re-
quire performing all of their originally proposed movements with both hands coopera-
tively, even if not perfectly coordinated.

6.9.2 Adaptation to Users with Cerebral Palsy

All adaptations made to the gestures for users with dyspraxia are applied and we propose
additional adaptations because cerebral palsy imposes stricter constraints on movements.
The gestures still need to stay coordinative and involve both hands cooperating on the
gestures. Cerebral palsy often does not allow users with this condition to cooperate with
both hands evenly. Therefore, we propose adapting gestures such that users must involve
both hands but are able to perform mostly with the healthy hand.
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7 Realization of Proposed System

The experimental three-dimensional scene is implemented in game engine Unity
2018.3.8f1, what is currently the most recent supported engine for our sensor — Leap Mo-
tion. This engine is using assets of Leap Motion 4.0.0, allowing to naturally use and ren-
der hand movements in scene built in Unity. Therefore, all of the functionality is currently
implemented in order to be usable within the scene, which is the core of the entire system.

Unity allows to use three different scripting languages: C#, UnityScript (JavaS-
cript for Unity) and Boo. The entire solution except classification is implemented in C#,
since all the Leap Motion assets are in C#, and it is the only language usable for combin-
ing these technologies. Classification itself is performed outside of this framework using
the scikit-learn library in Python programing language.

7.1 Scene of Experiments

In order to make the scene as clear as possible and easy to understand, we decided to
visually divide areas of the scene for all the gestures. In the Figure 6 it is also possible to
see that the whole interaction area is divided into two stacks of cubes. The interaction

area consists of three parts, one for each gesture.

Figure 6. Placement of game objects in the scene of experiments.

There are two pedestals with platforms for carrying the cubes in the Figure 6. The left
pedestal is where a cube will be spawned after its creation. The right pedestal is the re-
ceiving pedestal, from where the cube will be teleported to the final pyramid on the right-
hand side. The small cube in the middle is the area for scale interactions, where it is
needed to pinch the cube and scale each side to the bigger size. For the rotation gesture
there is area for the two buttons on the box with two narrow legs. These legs were added
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after initial feedback, because it was very difficult to estimate the depth of a floating box
in the air.

7.2 Gestures

The proposed gestures suitable for our use are very specific and cannot be found in the
generic gesture library of Leap Motion classes, so their recognition must be implemented
almost from scratch. However, an abstract class providing access to the hands and their
attributes was available and proved very useful for the gesture wrapping. The abstract
class could not help with evaluating our specific conditions of gestures, though.

7.2.1 Scale Gesture

The implementation of the scale gesture is based on the principle that scaling is starting
directly from the small range around the center of the cube to scale. If the cube is not
scaled yet, the range is exactly of the size of the unscaled cube. This range remains the
same throughout the whole process. Therefore, even the last scaling gesture must be
started from the center of the cube, despite the fact that much larger area is visible on the
sides. The side of the small cube is three centimeters long.

After positioning the five-finger pinches of both hands into the sides of the range,
the gesture is activated. Then the hands must stay in the horizontal tube along the x-axis
of the cube. Hands must move at least 20 centimeters each, while the difference between
these movements cannot be more than 7 centimeters. While this threshold might seem
quite large at first, we had to take extra space into consideration to account for sensor
errors and imperfections. If each hand is dislocated only very slightly (1 cm), then the
threshold is shrunk to only 5 centimeters. If hands are moving fast, the dislocations cannot
be avoided by the hardware and occur regularly.

7.2.2 Rotate Gesture

The rotate gestures of both hands are performed on the radio buttons in the center of the
scene. That means that the distance between the left and the right hand and the left and
the right button, respectively, must be small, indicating that the hand is close to the button.
Each button must be touched by at least four fingertips. The fingertips must either collide
with the surface of the button or be positioned inside the button. Since the button is not a
physical object, it is not possible to properly touch the object, so positioning the fingers
inside only indicates a tighter pinch of the fingers. Also, only four fingers are required for
the same reason. The four fingers must stick to each button during the whole execution
and the closeness of the hands to the correct button must be fulfilled.
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The rotation angle of the gesture is 90 degrees for each hand. The difference can-
not be more than 30 degrees between the rotations of both hands. The right hand is rotat-
ing clockwise and the left hand anticlockwise. A challenge in implementation was to
compute the actual rotation of the hand, because after reaching 360 degrees the rotation
continues from zero. It was solved by shifting the rotations by 120 degrees from zero.
Thus, the hands do not rotate over the zero value anymore.

7.2.3 Carry Gesture

The beginning and the end of the carry gesture are defined exactly the same, only on
different platforms. The platform on the left pedestal is designated for the beginning and
the right for the end. Both hands cannot be farther than 18 centimeters from the center of
the platform in any direction. Furthermore, in the y-axis direction it cannot be more than
three centimeters, so platform and hands are on the same vertical level.

During the whole gesture, both hands must be no more than 40 centimeters apart
and at the same time no less than 20 centimeters apart. These distances represent the size
of the cube, so the cube will appear to fall through if the hands are more than the maxi-
mum distance apart. The hands also must stay at the same vertical level of difference no
more than 5 centimeters, because otherwise the cube could slide and fall. Both hands also
must face upwards the whole time. This is achieved with the normal of each hand and its
distance from a vector facing directly upwards. If the distance is under the experimentally
chosen threshold, the hand is facing upwards enough to accept the gesture. The threshold
was chosen to represent approximately 15 degrees of tolerance between the hand normal
and the vector facing upwards.

7.2.4 Visual Feedback of Gestures

Some of the conditions for gestures are easier to fulfil than others. To provide feedback
to the user, if their gesture is still active or already failed, we decided to implement a color
scheme for cubes. While the scale and rotate gestures are inactive, the cube is red. While
being active, the color turns yellow. After a failure of gesture, the color returns to red and
after the acceptance of the gesture the cube turns green for a short time to give a signal of
gesture success and then defaults to red. These two gestures also have feedback in the
form of partly executing their actions — during the performance of the gestures, the cube
is being partly rotated as the hands are being rotated or scaled as the hands are moving
apart.

The feedback for the carry gesture is simpler. When the gesture is active, the cube
is moving with the hands as if carrying the cube in real life. After a carry gesture failure,
the cube disappears from hands and the cube is respawned on the left pedestal’s platform,
representing the actual fall of the cube.
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7.3 Raw Data Logging

Data obtained from the Leap Motion sensor during each scene update (performed auto-
matically by the Unity engine approximately 60 times per second) are written into the
comma-separated values file in following form and order:
e timestamp,
e hand ID,
e boolean representing whether the hand is right
e palm width,
e palm position (x, y and z),
e palm normal (x, y and z),
e palm velocity (x, y and z),
e hand direction (x, y and 7),
e wrist position (x, y and z),
e hand rotation (w, x, y and z).
Each finger has also its own features logged:
e length,
e width,
e tip position (x, y and z),
e direction (x, y and 7).
For the usability of the dataset in different contexts we decided to include physi-

ological features of the hand — the length and width of each bone in a hand to the end of
each line.

7.4 Gesture Events Logging

Information about gestures is also logged in the comma-separated values format. Each
gesture has its own log file with only two columns: event timestamp and event ID, where
the event ID is for all the gestures defined as follows.

e 0 for the beginning of the gesture;

e | for the acceptance of the gesture;

e 2 for the failure of the gesture.
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7.5 Feature Extraction

Feature extraction is implemented and used real-time, because motor skills categories are
being recognized for each unsuccessful gesture using classifiers immediately after its fail-
ure point. In every scene update performed by the Unity engine, all raw data are persisted
into the comma-separated values file. We had two options how to gather all necessary
raw data and extract features from them:

e read the file with persisted raw data after the gesture failure according to
the event timestamps (beginning of the gesture and failure of the gesture)
or

e start temporarily storing only the necessary raw data for the ongoing ges-
ture during each scene update into the memory and stop storing the data as
soon as the gesture fails.

Due to inconveniences associated with reading files while being written to, we
decided to use the latter approach. Also, we do not have to store all the raw data, because
it contains data which we are not interested in our work, but they are still being persisted
for potential future usage of the dataset. The downside of this approach is, however, that
the system to keep in the memory necessary raw data during every gesture, even if it is in
the end successful. The system is easily capable to do so, and it is very simple to delete
everything when the gesture is successful.

The extracted features are then persisted into a separate file without any further
modifications or transformations. Scaling or standardization is applied afterwards and
only in the classification stage.

7.6 Classification

For real-time adaptation, our system needs to perform real-time classification of the motor
skills category based on the gestures performed by users. Classification is not performed
within the Unity framework supporting C# programing language, because this program-
ing language does not offer any suitable library for data science. Therefore, we decided
to use the Python programing language providing the scikit-learn library and perform
classification in this external environment.

This Python program accepts feature vectors on standard input and returns the
class label on output. In C# we can easily communicate these necessaries between the
Unity framework and this external Python program if we treat the program as an external
process. Each gesture has own classification program, and therefore has own external
classification process. After each failed gesture is this external process triggered with
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feature vector, and the program runs preprocessing and classification on the feature vec-
tor. The result is then received by Unity framework and passed to the corresponding ges-
ture script to enable adaptations in the scene.

The Python program usable in this manner must be standalone and runnable with-
out any dependencies. Since the training of a classifier takes a very long time and we have
three external processes with one classifier each running on startup, we trained classifiers
beforehand and persisted their trained representations. On every startup these classifiers
are loaded, so the Unity engine does not have to wait a significant amount of time and
postpone the startup of interactive modules. The external processes are running all the
time from the startup of the application until its shutdown and passively waiting for fea-
ture vectors to be classified.

7.6.1 Preprocessing

After the first experiment focused on obtaining data from users, we completed our train-
ing dataset. Our preprocessing is very simple, because all our features are numeric. Alt-
hough, there are negative values in our training dataset. The values come from the sensor;
therefore, we expected the values in future be out of the range of values collected in the
training dataset. These reasons led us into conclusion that the Z-Score would be a very
appropriate preprocessing step for our data.

Our feature vectors are not very large, but they are not very small either. Feature
vectors for scale gesture, carry gesture and rotate gesture consist of 79, 87 and 95 features,
respectively. A performance of training process with the entire feature vector is pretty
good, but we tried to reduce dimensionality due to the fact that some of the features in the
feature vector may be linearly dependent. For this purpose, we tried to use Principal Com-
ponents Analysis, but the less data we used, the significantly worse were the results
achieved. Therefore, we kept all features in each feature vector.

7.7 Adaptation

The adaptation is applied for each gesture separately. In the implementation for the sec-
ond experiment the adaptation was carried out after each failed gesture. Every adaptation
was based only on the one last failed gesture, therefore any previous adaptations of the
same gesture for the same user were not taken into any consideration. Later after evalu-
ating the second experiment we, however, found out, that it would be more appropriate
to take the most recent gestures into consideration and apply the adaptation on multiple
failed gestures rather than a single gesture.

After each gesture failure, the vector of features undergoes preprocessing and clas-
sification. When the class is assigned, the system passes the class only to the script han-
dling that type of gestures. This script stores the class and uses it within every gesture
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recognition until another class is passed to the script. The script for each gesture is han-
dling the class in own way with regards to the original gesture specifications and success
conditions. However, there is one basic concept, that all the gesture scripts follow — all
adaptations for users with dyspraxia are used also for users with cerebral palsy. These
adaptations can either be used as-is or further improved in order to better fit users with
cerebral palsy. Also, no adaptations apply to healthy users. These adaptations were de-
signed to fit users’ needs in controlling the application. Users are therefore not presented
these adaptations and are not aware of them. Their interaction with application from their
point of view should stay exactly the same.

7.7.1 Adaptation of Rotate Gesture

There are two adaptations for users with dyspraxia. The first adaptation is enlarging the
buttons where the gesture is performed. Visibly there is no change, but the colliders of
both buttons are of 120 % size compared to the original. The second adaptation consists
of removing the threshold of maximum difference between the angles of rotations of both
hands. Both hands must stay on the buttons during the whole gesture and both hands must
rotate at least 90 degrees.

The adaptation for users with cerebral palsy is also in enlarging the buttons, but
the main adaptation is that only one hand is required to perform 90 degrees rotation. The
other hand must be on the button the whole time but can rotate in opposite direction or
not rotate at all.

7.7.2 Adaptation of Scale Gesture

The adaptation for users with dyspraxia consists of removing the threshold of maximum
difference between movements of both hands. Both hands still must move at least 20
centimeters away from the center of scaling cube. Also, they both must stay in the hori-
zontal tube along the x-axis of the cube. The adaptation for users with cerebral palsy is
very similar to the previous adaptation, but instead of both hands moving at least 20 cen-
timeters, it is enough if one hand travels the required distance, while the other stays in the
horizontal tube.

7.7.3 Adaptation of Carry Gesture

There are overall four adaptations of this gesture. Three of them apply to both
categories and the last adaptation only to users with cerebral palsy. For users with cerebral
palsy it is very difficult to keep the impaired hand upwards together with moving it with
the other. Therefore, we decided to require only one hand to be facing upwards for this
gesture.

The other three adaptations modify thresholds for both categories. Thresholds of
maximum distance between hands during the gesture and distance between normal vector
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of palm and vector facing upwards were both modified to 150 % of their original values.
The threshold of minimum distance between hands was modified to be 75 % of its original
value.
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8 Evaluation of the System

The proposed system was continuously undergoing evaluation of some parts and want
through further evaluation alongside with the second experiment and calculating its re-
sults. For the evaluation different approaches are involved according to their suitability.

8.1 Motor Skills Categories

We attended a meeting with a professional physical therapist from the Research Institute
of Child Psychology and Psychopathology in Bratislava in order to evaluate our proposals
and ideas and to gain inspiration and feedback for improvements. Regarding the recogni-
tion of motor skills categories, our initial proposal was met with understanding from the
specialist and was regarded as very feasible to use in our context.

8.2 Gestures

We distinguish two approaches to the evaluation of gestures, because the first gestures
need to be properly constructed and then they must undergo testing in order to match their
realization of the proposed method. Even a perfectly tuned and performed gesture is use-
less if the gesture does not fulfil its purpose, thus the emphasis is placed on the first ap-
proach.

8.2.1 Proposed Gestures

We originally proposed two gestures — throw gesture and catch gesture. We were in-
formed by specialist during the consultation meeting that even when our proposed ges-
tures are still quite appropriate for our usage, there are many more feasible concepts.

We were discussing multiple aspects of hand movements, one of which is the
pinch position. Very suitable our purposes were usages of two-finger pinch or five-finger
pinch. Another proposed gesture is crossing the center of body with a hand executing the
gesture. We decided not to involve this gesture in the end, because we could not find
appropriate usage of this gesture. Also, the range of the sensor is slightly restricting the
area where the gesture could be performed.

The mentioned possible gestures also included pushing an object with both hands,
pressing a balloon from the left and right side in order to pop it, catching handles and
balls. Our final gestures were also provided to us with very useful description of possible
problems and the way users from different motor skills categories practice the movements
in order to master them. That was one of the reasons why we finally decided to choose
the carry gesture, rotation gesture and scale gesture.
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8.2.2 Realized Gestures

The gesture realization was due to many conditions of each gesture very tedious. After
finishing the gameplay logic of the experiment and designing the gestures, we presented
the application to other researchers and ask them for their thoughts on the gesture han-
dling. Most of the researchers were in fact not able to execute gestures, which were de-
signed to be very fluent and not difficult to perform. Therefore, we collected the gesture
problems from their experiences and from our observations.

The altered and straightforward gesture implementation was exposed to the same
procedure. After improving the gesture detection, we identified new problems in sensor
range and our scene setting. At the end the scene, the gesture conditions and experiment
were much better tuned and ready for proper experimenting and data obtaining than at the
beginning.

8.3 User Models

Training and evaluating the user models with cross-validation did not confirm their cor-
rectness due to lack of the data. After the first experiment we were doubting the proposed
user models, but during and after the second experiment it became clear that the user
models are usable in the context of recognition of motor skills category. The user model
for the carry gesture yields underwhelming performance compared to other gestures, but
it might be also due to the type of the gesture or its requirements of the space, because
the sensor might not be very precise when it is operating on the border of its range. How-
ever, the user models for the rotate and scale gestures appear to perform much better,
what was observable during the second experiment and can also be observed from the
results in section 8.7.

8.4 Experiments

During the evaluation of gesture realization feasibility, experiment scenario and game-
play was also discussed and reviewed. Suggestions of fellow researchers were taken into
the consideration, resulting in some changes in our experiment scene. Camera perspec-
tivity was one of the problems, which was resolved by changing the type of the camera
from perspective to orthogonal. Another problem was in placement of objects in the
scene, bases of pyramids were repositioned along with the occlusive appearance of the
control units.

After changes were made, some of the fellow researchers were additionally ques-
tioned if the problems they identified were resolved by changes. Their consent to execute
the experiment as it was proposed with applied changes we considered as feasible evalu-
ation of the experiment setup.
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8.4.1 Participants of Experiments

All participants of both experiments with dyspraxia or cerebral palsy were carefully se-
lected or approved by the specialist in physical therapy. Healthy participants were se-
lected either by the specialist or by their tutor with no motor skills impairments. The
participants of both experiments are patients of Research Institute for Child Psychology
and Pathopsychology in Bratislava. We can rely on the proper selection of the users, be-
cause we cannot think of better classification of users than one done by doctor.

8.5 C(lassification

Classification results depend solely on the classifier. We can help the classifier
with appropriate preprocessing or other data manipulation based on the domain or data
knowledge. In our work we evaluate selection of the most appropriate classifies and also
effects of manipulation with class labels in order to simplify classification problem with
reduction of class labels.

8.5.1 Classifiers Comparison

For the comparison of classifiers, we decided to include the proposed algorithms along
with some easily usable default algorithms from our chosen scikit-learn library. We also
added ensemble algorithm XGBoost to improve properties of decision tree. This is the list
of classifiers we evaluated on our training dataset: Linear Discriminant Analysis (LDA),
k-nearest neighbors (k-NN), decision tree (DT), Gaussian Naive Bayes (NB), Support
Vector Machines (SVM), and XGBoost (XGB).

Our training dataset for each gesture consists of 15 users: 4 users with dyspraxia,
4 users with cerebral palsy and 7 heathy users. We have two approaches to evaluate the
performance of our classifiers based on selecting data onto the test dataset:

1. selecting a subset of feature vectors from each user and
2. selecting all feature vectors from one user (or multiple users).

The dataset was slightly altered before classifier comparison because not every
category was represented equally. One of the users with cerebral palsy performed an ex-
cessive number of failed gestures of each type. For each gesture the threshold was speci-
fied and if user exceeded the number of failed gestures, the rest of the gestures were not
taken into consideration. The threshold was chosen for each gesture and each category
very carefully, so very little data were omitted. The thresholds are listed in Table 1.

After this alteration of dataset, we equally represent each category of motor skills.
There are 314 feature vectors for carry gesture, 1987 feature vectors for rotate gesture and
508 feature vectors for scale gesture by each motor skills category. The overall number
of feature vectors is therefore large enough to represent the gestures adequately.
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Table 1. Thresholds for number of user gestures.

Category Carry Gesture T. | Rotate Gesture T. | Scale Gesture T.
Cerebral Palsy 101 1112 172
Dyspraxia 314 1987 508
Healthy 58 358 138

The participants of our first experiment were carefully selected to cover the spec-
trum of all categories. If one of them is left out from training process completely, there is
a very high risk that the spectrum will not be covered accurately by the classifier and
during the evaluation the user could be heavily misclassified. However, if we take feature
vectors from each user, so each user is represented in training dataset and evaluating da-
taset, there is a risk that the classifier will also take the user identity along with the motor
skills category into consideration.

We decided to perform the comparison based on both approaches of selecting the
test dataset. In the first approach we used 5-fold cross-validation, in the latter there are 15
splits corresponding to 15 users, so classifier training and evaluation will be performed
15 times, once for each split. We performed comparison based on two different scoring
systems: accuracy and the macro-average of F; score. Hyperparameter optimization was,
however, based only on the accuracy. The best achieved results are summarized for each
gesture separately in Table 2, Table 3 and Table 4. We did not have to hesitate about
selecting the best classifier, because in each comparison there is one classifier clearly
standing out, and for all gestures it is the Support Vector Machines algorithm.

From the tables we can see that our concerns were on point, so we cannot make any
conclusions based on any of these numbers. Although, the combination of both ap-
proaches is quite sufficient to determine the best classifier, it is hard to tell how successful
it will in reality be.

During the hyperparameter optimization with scikit-learn library we encountered
multiple surprising moments — after large amount of time classifiers tended to perform
the best with most of the default parameters. Our final classifier has exactly the same
parameters for each gesture (only non-default parameters are listed): C = 16, probability
= True, tol = 0.5.

The C parameter is Penalty parameter C of the error term. The parameter fol
stands for Tolerance for stopping criterion. The probability parameter handles whether
to enable probability estimates. A very important parameter, which is the default but
worth of mention, is the kernel. It defaults to value rbf, which represents Gaussian Radial
Basis Function (Pedregosa et al.,).
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Table 2. Comparison of classifiers with 3 categories for rotate gesture.

Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2
LDA 0.7654 0.3374 0.7662 0.1501
k-NN 0.9302 0.3511 0.9302 0.1653
DT 0.7552 0.3033 0.7544 0.1517
NB 0.6160 0.3447 0.6087 0.1596
SVM 0.9405 0.3688 0.9404 0.1674
XGB 0.9219 0.3340 0.9219 0.1459
Table 3. Comparison of classifiers with 3 categories for scale gesture.
Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2
LDA 0.7797 0.3502 0.7799 0.1837
k-NN 0.9226 0.3920 0.9229 0.1882
DT 0.7462 0.3426 0.7535 0.1613
NB 0.6695 0.3300 0.6571 0.1680
SVM 0.9220 0.3947 0.9220 0.2032
XGB 0.8957 0.3236 0.8955 0.1548
Table 4. Comparison of classifiers with 3 categories for carry gesture.
Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2
LDA 0.7892 0.2796 0.7882 0.1332
k-NN 0.8718 0.3135 0.8714 0.1498
DT 0.7500 0.3453 0.7532 0.1635
NB 0.6758 0.4054 0.6762 0.1785
SVM 0.9036 0.3518 0.9042 0.1731
XGB 0.8919 0.3419 0.8918 0.1564
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Component 2

8.5.2 Classification with Redefined Categories

While observing the results of the second approach (selecting all feature vectors of a user
into evaluation dataset) we noticed that there are interesting patterns in confusion matri-
ces. There was a much larger confusion between healthy users and users with dyspraxia,
than between healthy users and users with cerebral palsy. This can be observed also on
two-dimensional representation of our dataset for rotate gesture shown in Figure 7.

t-SNE 2D Representation of Feature Vectors of Rotate Gesture
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Figure 7. t-SNE two-dimensional representation of feature vectors of the rotate gesture.

The three categories can be ordered by a severity of impairment, so we decided to
create only two categories and test the second approach again. We propose three ap-
proaches to create only two categories:

a) omit category of users with dyspraxia,

44

Usar with Cersbral Palsy
Liger wolh Cerebral Falsy
®  User wilh Cerebral Palsy
Lsar with Cerebral Palsy

&0




b) merge category of users with dyspraxia with category of users with cere-
bral palsy and

¢) merge category of users with dyspraxia with category of healthy users.

Table 5 shows the comparison of all of described approaches for two scoring sys-
tems, accuracy and macro-average of F; score using the second approach for the test da-
taset selection. In most of the cases there is no particular improvement. Both scoring sys-
tems show improved results, but we have to take into the consideration that we now have
only 2 categories. However, the third approach shows very promising results for the scale
gesture and for the rotate gesture as well. It is overall the most successful approach. The
computation of these results was carried out after the second experiment, because we
were not originally focused on this use case. Nevertheless, the results are very intriguing,
and we strongly encourage any further research in this particular case.

Table 5. Comparison of SVM performance.

Gesture | Acc.2a F12a Acc. 2b F12b Acc. 2¢ F12¢

rotate 0.6829 0.3949 0.5662 0.3463 0.6874 0.3911
scale 0.6522 0.4277 0.5303 0.3288 0.7526 0.4987
carry 0.5558 0.3320 0.6126 0.3624 0.5694 0.3939

8.6 Adaptation

The constrains of gestures were discussed with the specialist and according to them the
adaptations were designed. However, the evaluation of these adaptations proved difficult,
because it is highly subjective. Therefore, not only we asked participants about their opin-
ions, but we also carefully observed their actions together with the specialist. Consulting
the participants’ opinions on adaptations and our observation, we made a conclusion that
the adaptations met the needs of impaired participants.

We were especially concerned about mistakenly adjusting the gestures to the
healthy users which could ruin the purpose of the game for them. These concerns were
mostly proven wrong after evaluating the effort and duration necessary to complete the
game. While the effort and duration, based on our observations, significantly dropped for
users with cerebral palsy, it could not be significantly observed with users with dyspraxia.
Healthy users were from this point of view affected minimally or not at all, because we
did not notice differences between the first and the second experiment.

The significant decrease in time and effort for users with cerebral palsy was very
appropriate, because without any adaptations these users were barely able to finish the
game. With adaptations they were still performing noticeably slightly slower overall, but
the difference was negligible.
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8.7 Results

Our system is applying adaptations based on only one failed gesture using the
classification. These class labels after each failed gesture were persisted into the separate
file for each user and each gesture. We decided to compute accuracy for each gesture and
each user. We have 10 participants of the second experiment, and we decided to make
user-based average of the accuracy for each category. Therefore, if one of the users has a
lot of failed gestures and it is being recognized very successfully, it will make the same
impact as a user having a very small number of failed gestures and was recognized poorly.

Adaptations in the application were applied after one failed gesture. However, we
found out that taking more than one gesture of the same type leads to much improved
results with regards to accuracy. For each array of class labels, we decided not to take
only one, but wait until k failed gestures indicated the same category. If this threshold is
2, then the system will wait until there is a second occurrence of any of the already clas-
sified categories. After reaching the threshold, the class label is then carried out and the
counter resets. If the threshold is set to 1, the same result is obtained as in the original use
case. In Figure 8, Figure 9 and Figure 10 is shown how the accuracy of recognition of
each category changes with regards to this threshold. It is clear, that threshold 1 is defi-
nitely not the most accurate, therefore our system could be easily improved after integrat-
ing this continuous idea of adaptation. The data used for figures are in tables. N stands
for the number of gestures required for decision, accuracy is abbreviated as acc. and F;
represents macro-average of Fi score. The motor skills categories are abbreviated with
their initial letters — CP for cerebral palsy, D for dyspraxia and H for healthy users’ motor
skills category.

The class arrays of carry gesture in Figure 10 for users with dyspraxia fluctuated
widely and were inaccurate, so there is not enough data to cover a threshold of more than
3. That is also the reason why we do not consider threshold for any gesture greater than
9. Values are either stable at that point or not available.

We consider the rotate gesture results to be better than the result of scale gesture,
because the rotate gesture has a much better accuracy with healthy users. If the accuracy
with healthy users is very high, then it is not an issue if the accuracy for other categories
are lower, because every now and then the impaired user is able to make progress and the
user is still feeling involved. However, if the impaired user recognition is perfect, but the
healthy users’ recognition is poor, then most of the users are most of the time mistreated.
One has to keep in mind that the majority of users are healthy. If we keep treating such
users almost perfectly correctly, then every, even small, adaptation to non-healthy user is
extra value of the system.
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Accuracy of Category Recognition of Rotate Gesture
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Figure 8. Accuracy of category recognition of rotate gesture.
Table 6. Scoring of category recognition of rotate gesture.
N Acc.CP | F1CP Acc.D FiD Acc. H Fi1 H
1 0.6152 0.2529 0.2929 0.1497 0.7261 0.2784
2 0.6596 0.2632 0.2564 0.1645 0.8173 0.3598
3 0.7333 0.2815 0.2593 0.1611 0.8366 0.3955
4 0.8194 0.4496 0.1889 0.1429 0.8788 0.5393
5 0.7619 0.4308 0.1667 0.1111 0.8976 0.6707
6 0.8545 0.4603 0.1111 0.0833 0.9216 0.7770
7 0.9444 0.7353 0.0000 0.0000 0.9867 0.8966
8 0.9375 0.7333 0.1667 0.1111 0.9846 0.8960
9 0.9286 0.7308 0.1667 0.1111 0.9818 0.8952
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Accuracy of Category Recognition of Scale Gesture
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Figure 9. Accuracy of category recognition of scale gesture.
Table 7. Scoring of category recognition of scale gesture.
N Ace.CP | F1 CP Acc. D FiD Acc. H Fi1 H
1 0.8586 0.3080 0.5921 0.2900 0.5582 0.2361
2 0.9495 0.4870 0.6336 0.4669 0.6140 0.3317
3 1.0000 1.0000 0.6877 0.5278 0.6526 0.3680
4 1.0000 1.0000 0.6325 0.5083 0.7197 0.4902
5 1.0000 1.0000 0.7667 0.7436 0.7671 0.6030
6 1.0000 1.0000 0.7500 0.7333 0.7786 0.6084
7 1.0000 1.0000 0.7619 0.7407 0.7758 0.6071
8 1.0000 1.0000 0.7778 0.7500 0.8067 0.6157
9 1.0000 1.0000 0.7333 0.7222 0.8139 0.6188
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Accuracy of Category Recognition of Carry Gesture
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Figure 10. Accuracy of category recognition of carry gesture.
Table 8. Scoring of category recognition of carry gesture.
N Acc.CP | F1CP Acc. D FiD Acc. H Fi1 H
1 0.2887 0.1493 0.5344 0.2937 0.7166 0.2780
2 0.1944 0.1320 0.6111 0.4848 0.8863 0.5390
3 0.2833 0.1667 0.6222 0.4881 0.9014 0.6412
4 0.0625 0.0556 - - 0.9533 0.7875
5 0.0714 0.0625 - - 0.9818 0.8952
6 0.1000 0.0833 - - 1.0000 1.0000
7 0.1250 0.1000 - - 1.0000 1.0000
8 0.1250 0.1000 - - 1.0000 1.0000
9 0.0000 0.0000 - - 1.0000 1.0000
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8.7.1 Results of Combined Gestures

After computing the results for each gesture with multiple feature vectors we de-
cided also to evaluate the accuracy of motor skills category recognition using combination
of gestures. For each user we combined class labels from all gestures (the first three values
of new array were the first labels from three original arrays in order). Since the carry
gesture itself did not exhibit a satisfactory performance, we decided to omit it from com-
bination and combine only rotation and scale gesture arrays. As we expected, the latter
combination outperformed the first in every single motor skills category. Figure 11 de-
picts the accuracy of the combination consisting of rotate and scale gesture class arrays.
Values of the scoring methods are in Table 9.

Accuracy of Category Recognition of Rotate and Scale
Gesture Combination
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Figure 11. Accuracy of category recognition of rotate and scale gesture combination.

Table 9. Scoring of category recognition of rotate and scale gesture combination.

Acc.CP | F1CP Acc. D FiD Acc. H F1 H

0.7380 0.2829 0.4670 0.2087 0.6339 0.2568
0.8516 0.3800 0.5176 0.2988 0.7532 0.3158
0.9324 0.4824 0.5167 0.2939 0.7740 0.3485
0.9667 0.7414 0.6104 0.3313 0.8254 0.5207
0.9583 0.7391 0.4635 0.2650 0.8474 0.6277
1.0000 1.0000 0.4444 0.2626 0.8396 0.6535
1.0000 1.0000 0.6000 0.3577 0.8267 0.6485
1.0000 1.0000 0.4722 0.3095 0.8004 0.6380
1.0000 1.0000 0.6389 0.3873 0.8367 0.6524
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9 Conclusion

In our work we analyzed common approaches and methods in our researched field and
similar fields. This analysis was used as basis for our hypotheses and assumptions and
created our expectations in their confirmation. In order to do so we proposed the system.
Our proposals were based on the research field analysis together with consultations with
the specialist in physical therapy. Our collaboration with the specialist was very fruitful
throughout multiple part of our work including proposals, execution of experiments, ad-
justments and results representation.

The realization of our proposals was very tightly connected to their evaluations
step by step. These multiple feasible approaches overall evaluated our whole solution.
Based on the evaluation we consider our hypotheses confirmed, supported by the data we
were able to obtain and process and by the specialist evaluation as well. The results show
that for motor skills category determination were suitable two out of three proposed ges-
tures, and both gestures performed very well in the adaptation context. The results of scale
gesture recognition of motor skills categories for 3 gestures in row were better than our
expectations: 100 % for the healthy users’ motor skills category 68.77 % for the category
of motor skills of users with dyspraxia and 65.26 % for the users with dyspraxia motor
skills category.

Experiments we used for data collection and system evaluation were not involving
very large number of participants, because of the nature of experiments. Requirements
for users to be involved in experiments were very strict for the cerebral palsy motor skills
category and for the dyspraxia motor skills category, because users had to have the diag-
nosis confirmed by a doctor. We encourage further experimenting with larger groups of
participants.

Our solution was built to decide whether it is possible for system to recognize
motor skill category of a user and adapt to the user based on this category. Now, when
these hypotheses are confirmed we see a large potential in developing this idea further
and create similar systems with a different goal — to create gestures and techniques able
to adapt to user more conveniently.

51






Resumé

V sucasnosti sa do popredia dostavaju aplikacie ovladané gestami pouzivatel'ov. Kym pre
mnohych takéto gesta predstavuji rozne vyhody, su pouzivatelia, ktori maji problém ta-
kéto gestd vykonavat. Dovody moze byt napriklad fyzické obmedzenie pouzivatel’a ne-
jakym postihnutim a teda jeho neschopnost’ tieto gestd bezchybne vykonavat. Ked'ze
vSak gesta mozno zaradit’ medzi behavioralne charakteristiky, tak sa ndm otvara moznost’
takéto skupiny rozpoznavat a nasledne im metddy interakcie prisposobovat’.

Biometrické charakteristiky su Casto vyuzivané na identifikaciu alebo autentifika-
ciu konkrétneho pouzivatel’a, no my sa v prici venujeme inému pristupu — rozpozndvanie
kategorii motorickych schopnosti. Nasim cielom je zistit', ¢i aplikécia je schopna takéto
kategorie adekvatne rozpoznavat' a na zéklade toho sa potom pouzivatelom adekvatne
prispdsobit’. Na to vSak treba najprv stanovit’ kategorie, ktoré sa snazime rozpoznavat
a definovat’ gestd, pocas ktorych budeme rozpoznévanie vykonavat. Nase predpoklady
treba, samozrejme, experimentalne overit’ a na zaklade toho urcit’, ¢i st takéto prispdso-
benia na zdklade rozpozndvania motorickych schopnosti mozné.

Motorické schopnosti a virtualna realita

Virtudlna realita je pohlcujucim interakénym systémom, ktory v pouzivatel'ovi vytvara
ildziu vstupu do virtudlneho sveta (Heim, 2000). Pouzivatel je teda priamo zapojeny do
systému, s ktorym moéZe interagovat’ rdznymi sposobmi cez Specializované vstupné za-
riadenia a prezivat’ vysledky svojich vstupov vo virtudlnom svete (Deng et al., 2010;
Lange et al., 2010). Hoci tieto pristupy nie si nové, pre ziskavanie idajov o motorickych
schopnostiach je najdolezitejsi ten, kde pouzivatel interaguje gestami ruk, pretoZe takto
interaguje s objektami aj v redlnom svete (Aslan et al., 2014).

Gesta

Jednym zo zaujimavych aspektov gest s rukami pre naSu pracu je schopnost’ systému
rozpoznat’ vykonanie gesta pouzivatelom. Na to mozno vyuzit’ dva pristupy: pouZivatel’
drzi v ruke zariadenie, pomocou ktorého vykondva gestd alebo ruky pouZivatel'a su sni-
mané kamerou a pomocou vizualnych vstupov pocita¢ vyhodnoti, ¢i pouzivatel’ vykonal
gesto (Nugrahaningsih et al., 2015). Je viacero spdsobov, ako mozno ziskat’ a vyhodnotit’
data z pohybu ruk pouZzivatel'a a hoci sa r6znia aj zariadenia, napriklad Leap Motion a Ki-
nect, cielom je stale ¢o najlepSia uspesnost’ rozpoznania vykonania gest (Manresa et al.,
2005b; Marin et al., 2014). Okrem rozpoznania gesta samotného su aj aplikacie, kedy sa
rozpoznava aj pouzivatel’, ktory gesto vykonava prave na zdklade vykondvaného gesta
(Aslan et al., 2014; Imura and Hosobe, 2016b; Jiang et al., 2014).

Dal$im zaujimavym aspektom je interakcia pomocou gest. MoZno sa pomocou
gest v aplikacii navigovat’ alebo v rdmci nej nie¢im manipulovat’ (Cabral et al., 2005b).

53



Na zaklade takychto interakénych gest je zlozitejSia presnd identifikacia pouzivatel’a, no
identifikacia kategdrie motorickych schopnosti je trocha vSeobecnejSia a preto by takéto
vyuzitie mohlo byt’ dostatocne presné pre nase vyuZitie.

Motorické obmedzenia a interakcia

Motorické schopnosti pouzivatel'ov sa vyskytuju uz aj dnes v interakénych aplikaciach.
Ci u je to hra pre deti s dyspraxiou (Caro, 2014), aplikacia zamerana na uréenie pohyb-
livosti (Landry et al., 2013) alebo aplikacia pre zistovanie, €i je miera motorickych schop-
nosti pouzivatel'ov dostato¢na pre urcity druh prace (Singh and Aggarwal, 2016).

Existuju vsak aj pristupy, kde sa pomocou interakénych systémov dosiahla reha-
bilitacia pouzivatel'ov po detskej mozgovej obrne, pretoze aplikacie primali pouzivatelov
vykonavat’ ich zdraviu prospesné gesta za zasterkou hry (Chang et al., 2013; Huang,
2011; Mousavi Hondori and Khademi, 2014; Oliveira et al., 2016).

Pouzivatel’'sky model a klasifikacia

Pre klasifikaciu vzoriek jednotlivych pouzivatel'ov a urCovanie, ktorej triede patria je pr-
voradé vytvorit’ spravny pouzivatel'sky model. Dalej je viak potrebné aj vediet’ ticel kla-
sifikdcie, o mdze ul'ahCit’ vyber vhodného klasifikatora. Model pouzivatel'a v nasom pri-
pade predstavuju Crty, ktoré su pocitacovou reprezentaciou pouzivatela (Allen, 1997).
Urcovanim identity na zaklade tychto ¢ft sa zaobera biometria (Jain et al., 2004). V naSom
pripade sa nezaoberdme konkrétnou identitou, ale kategériou motorickych schopnosti —
ta je rovnaka pre viacerych pouzivatel'ov, zatial’ ¢o identita je jedinecna.

Pocas procesu rozoznédvania, pouZzivatel'sky model extrahovany poc¢as chodu ap-
likdcie v danom momente musi byt porovnany so vSetkymi ostatnymi modelmi v data-
baze. Pre takéto porovndvanie je najrozSirenejSou metddou klasifikacia (Aggarwal,
2014). Vel'mi rozsirené st v sucasnosti klasifikatory k-NN (z angl. k-Nearest Neighbors),
SVM (z angl. Support Vector Machines) a rozhodovaci strom (Aly, 2005).

Senzory
Na zdklade vyskumu a vedeckej prace v tejto oblasti mame tri rozumne praktické moz-
nosti:
o interakcné rukavice (Adamovich et al., 2004; Baker et al., 2004),

e Leap Motion (Chan et al., 2015; Cui and Sourin, 2014; Marin et al., 2014; Potter
etal., 2013) a
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e Kinect (Altanis et al., 2013; Bigdelou et al., 2012; Chang et al., 2013; Huang,
2011; Jiang et al., 2014; Marin et al., 2014; Mousavi Hondori and Khademi, 2014;
Zhang et al., 2014).

Pristupy vyuzivajuce interakéné rukavice dnes uz nie su vel'mi zastiipené, pretoze
ostatné dva senzory dokazu ziskat’ porovnatel'né vysledky bez potreby priameho obme-
dzovania pouZzivatel'a senzorom a kdblami priamo pripojenymi k jeho telu. Leap Motion
aj Kinect su si vel'mi podobné, obe zariadenia st trojdimenziondlne senzory zachytdva-
juce udaje infratervenymi kamerami. Oba boli aj pomerne popularne, az kym sa Micro-
soft nerozhodol zastavit’ produkciu a aj podporu senzora Kinect (Wilson, 2017).

Predpoklady rozpoznavania motorickych schopnosti a prisposbenia

Na zdklade doménovej analyzy predpokladame, ze je mozné a vhodné:

o Klasifikovat’ motorické obmedzenie pomocou senzora Leap Motion v rdmci Spe-
cifikovanych kategorii motorickych obmedzeni na zaklade koordinacného gesta
vykonaného pouzivatelom. Takéto koordinacné gesto v kontexte nasSej prace
moze byt gesto rotacie, gesto Skalovania alebo gesto prenosu, pricom kazdé z nich
je vykonané pomocou oboch ruk.

o Klasifikovat’ motorické obmedzenie pomocou senzora Leap Motion (ako popi-
sané vyssie) v redlnom Case za chodu aplikacie.

e Prisposobit’ aplikaciu kontrolovand gestami rik pouzivatel'ovi na zaklade jeho
motorického obmedzenia.

Navrh biometrického systému pre detekciu motorickych schopnosti

Pre detekciu motorickych schopnosti pouZzivatel’a potrebujeme najprv Specifikovat’ kate-
gorie tychto schopnosti. Je potrebné urcit’ aj gesta, na zaklade ktorych chceme tieto kate-
gorie klasifikovat’. Pred klasifikdciou samotnou, musime data tychto gest ziskat’ zo sen-
zora Leap Motion a extrahovat’ z nich ¢rty. Tieto ¢rty mdzeme klasifikovat’ pomocou roz-
nych algoritmoyv, z ktorych treba vybrat’ ten najuspesnejsi. Na zaver treba vediet’ tato kla-
sifikaciu pouzit’ za chodu aplikacie v redlnom Case a zahrnut’ prispdsobenia pre jednotlivé
kategorie motorickych schopnosti.

Kategorie motorickych schopnosti

Pre ucely rozpoznédvania navrhujeme nasledovné tri kategérie motorickych schopnosti:
e motorické schopnosti zdravych pouzivatelov,

e motorické schopnosti pouzivatel'ov trpiacich dyspraxiou a
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e motorické schopnosti pouzivatel'ov po detskej mozgovej obrne.

Gesta

Bertic do tvahy povahu kategérii motorickych schopnosti, navrhujeme tri r6zne koordi-
nacné gesta vykondvané obojrucne: gesto rotacie, gesto skalovania a gesto prenosu.

Gesto rotacie je Specifikované ako sucasna rotacia oboch ruk — l'avej ruky v pro-
tismere hodinovych ruci€iek a pravej ruky v smere hodinovych ruci¢iek, ako znazornuje
aj obr. 2. Aby sa zarucilo, ze rotacia oboch ruk bude naozaj sucasna, uhol, o ktory sa obe
ruky otocili musi byt’ takmer rovnaky — treba brat’ do tivahy istu toleranciu.

2N

Obr. 2. Gesto rotdcie.

Obr. 1. Gesto skalovania.
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Gesto Skalovania je Specifikované ako sucasné vzd’al'ovanie sa rik od seba v horizontél-
nej rovine. Obe ruky pocas tohto gesta musia uchopit’ objekt vSetkymi prstami, pricom
tento uchop aj smer pohybu rik si zndzornené na obr. 1. Rovnako ako pri predoslom
geste, obe ruky sa musia od stredu vzd’alovat’ sucasne a navrhujeme istd toleranciu pre
rozdiel tychto vzdialenosti.

Poslednym gestom je gesto prenosu zndzornend na obr. 3. Gesto simuluje prené-
Sanie objektu v redlnom svete, napriklad tacky s poharmi. Ruky teda musia byt cely Cas
oto¢ené smerom nahor a v rovnakej vyske, inak by sa objekt skizol. Ruky musia byt as-
pon v ur€itej vzdialenosti od seba, inak by sa objekt preklopil keby boli ruky prili$ blizko.
Ak by boli, naopak, prid’aleko od seba, tak by objekt prepadol pomedzi ne, takze obe ruky
musia zostat’ v nejakej maximadlnej vzdialenosti od seba. Objekt treba zdvihnut’ z jedného
miesta, preniest’ a polozit’ na druhé, ako znézornuje aj obrazok.

Obr. 3. Gesto prenosu.

Experimenty

Navrhujeme vykonat’ dva experimenty, kde prvy bude sluzit’ na zber dat, na zaklade kto-
rych vyberieme najlepsi klasifikator a druhy overi nasu metoédu adaptacie a vyber klasi-
fikatora. Pre experimenty navrhujeme jednoduchu hru, ktord zahrnie vSetky tri gesta. Cie-
I'om hry bude postavit’ pyramidu z kociek. Kazda kocku vsak treba na zaciatky vyrobit’
(pomocou gesta roticie) a kazda jej dimenziu zvacsit’ (pomocou gesta Skalovania). Po
zvacSeni kazdej dimenzie treba kocku otocit’ (gestom rotacie), aby mohla byt’ zviacSena
aj d’al$ia dimenzia, az kym nie je celd kocka zviacSena v kazdej dimenzii. Takto zvicSena
kocka sa sama presunie na I'avy podstavec, odkial’ ju treba vziat’ a preniest’ (gestom pre-
nosu) na pravy piedestal, odkial’ sa uz sama presunie na spravne miesto v pyramide. Na-
vrhujeme postavit’ pyramidu pozostavajicu z 15 kociek, aby boli gestd vykonané dosta-
tocny pocet krat.
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Metoda rozpoznavania

Navrhujeme pouzitie miniméalne klasifikatorov k-NN, SVM a rozhodovaci strom, pri¢om
d’alSie mozno vyskusat’ v zavislosti od kniznice, v ktorej bude klasifikdcia implemento-
vand. V ramci vyberu najlepsich parametrov navrhujeme vykonanie optimalizécie hyper-
parametrov pre navrhnuté klasifikatory.

Prisposobovanie

Prispdsobovanie sa aplikdcie navrhujeme oba pre kategérie motorickych schopnosti po-
uzivatelov po detskej mozgovej obrne a pouzivatel'ov s dyspraxiou. Kvoli fyzickym ob-
medzeniam, ktoré pouzivatelia po detskej mozgovej obrne maju navrhujeme odstranenia
kritéria pre sti¢asné vykondvanie gest oboma rukami. Obe ruky sa musia podielat’ na
kazdom geste, ale staci, ked’ jedna z nich vykona svoju ¢ast’ gesta, zatial’ ¢o druhd, v mno-
hych pripadoch postihnutd, ruka bude ddlezitd najma pre zacatie gesta, kde zaujme svoju
poziciu, ale nemusi vykonat’ dostato¢ny pohyb na splnenie podmienok gesta.

Prispdsobovanie sa pouzivatel'om s dyspraxiou je menej radikdlne, pretoze ich
ruky st samostatne schopné vykonat’ svoj podiel na geste, maju vSak problémy s ich ko-
ordindciou. Preto navrhujeme také prispdsobenie, ktoré v kone¢nom dosledku bude stale
vyzadovat’ vykonanie gesta oboma rukami, no bez vi¢Sieho dorazu na ich sucasné a ko-
ordinované pohyby.

Realizacia navrhnutého systému

Scéna experimentov na obr. 4 je implementovana v prostredi Unity 2018.3.8f1 v spolu-
préci s ovladacom zariadenie Leap Motion verzie 4.0.0. Hernd logika je implementovana
v jazyku C#, zatial’ €o klasifikécia je vykonavana mimo Unity prostredia v jazyku Python
za pouZitia kniznice scikit-learn.

Ked’ze gesta v ndvrhu naSe vlastné a vel'mi Specifické, museli byt implemento-
vané od zédkladu. Po€as vykondvania gest, kocka meni farby na zéklade toho, ako sa po-
uzivatel'ovi dari. Pokial’ gesto prebieha, je ZIta. Ak sa gesto nepodari, tak zostane ¢ervena
a ak je gesto uspeSne vykonane, na kratku chvil'u sa zmeni na zelent, a potom opét’ na
Cervenu.

Klasifikacia

Klasifikacia je implementovand ako samostatna aplikécia pre kazdé gesto. Pri spusteni
systému sa pre kazdé gesto spusti jeden zvlast’ proces s klasifikatorom, ktory ocakava
vyextrahované Crty na Standardnom vstupe a navrati rozpoznanud kategériu motorickych
schopnosti na vystupe. Vstup aj vystup z tychto samostatnych aplikacii zabezpecuje sa-
motny extraktor ¢tt pre kazdé gesto pomocou samostatného procesu v jazyku C#.
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Obr. 4. Rozlozenie hernych objektov v ramci scény experimentov.

Vyhodnotenie systému

Kategoérie motorickych schopnosti a aj gestd, ktoré¢ umoznili ich rozpoznavania boli sta-
novené po konzulticidch s fyzioterapeutkou z Vyskumného ustavu detskej psycholdgie
a patopsycholdgie v Bratislave. Prvého experimentu sa zacastnilo 15 pouZivatel'ov a dru-
hého experimentu 10 pouzivatel'ov, ktori boli v oboch pripadoch vybrani zo strany vy-
skumného centra, aby dostatocne pokryli poziadavky vyplyvajice z povahy nasej prace.

Najlepsi klasifikator pre nas systém nam vysiel klasifikator SVM, ktory sme za-
komponovali aj do druhého experimentu a nim stanovené kategorie sme pouzili na vy-
hodnotenie Gispesnosti nasho systému. Vyhodnocovali sme pomocou dvoch rdéznych met-
rik — presnosti a makro-priemerovaného skére Fi. Okrem Uspesnosti na zdklade jedného
vyhodnoteného gesta sme vSak vyhodnotili aj ispesnost’, keby sme na urcenie kategorie
pouzili viacero po sebe iducich gest. Treba podotknut’, ze zaznamendvame a klasifiku-
jeme neuspesne prevedené gestd, pretoze nasim cielom je prispdsobovanie aplikdcie,
ktoré nie je také ziaduce, pokial je pouzivatel’ schopny gesto vykonat’ uspesne.

Z obr. 5 a obr. 6 mozno pozorovat’, Ze takto dosiahnuté vysledky su presnejsie ako
ur¢ovanie kategdrie len na zéklade jedného gesta. Podrobné vysledky pre gesto rotacie sa
nachddzajui v tbl. 1 a pre gesto Skalovania v tbl. 2. Vysledky gesta prenosu st horsie, ¢o
je sposobené aj nedostatkom chybovych gest tohto typu pocas druhého experimentu.
DMO predstavuje kategériu pouzivatel'ov po detskej mozgovej obrne, D predstavuje ka-
tegdriu pouzivatel'ov s dyspraxiou a Z kategdriu zdravych pouzivatel'ov. N predstavuje
pocet gest potrebnych na urcenie kategorie.

Prispdsobovanie sa pouzivatel'ovi na zéklade kategorie jeho motorickych schop-
nosti nebolo mozné exaktne odmerat, pretoze je to vel'mi subjektivne a zalezi to od kon-
krétneho pouzivatela. Na zaklade pozorovani pouzivatel'ov pocas oboch experimentov,
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ich porovndvanim a konzultaciou s fyzioterapeutkou sme vsak dosli k zaveru, Ze pouzi-
vatelom po detskej mozgovej obrne sa bol systém vyznamnym spdsobom schopny pri-
spdsobit’. Pri pouzivatel'och s dyspraxiou sme taktiez spozorovali isté ndznaky, no neboli
také vyrazné. Pri zdravych pouzivatel'och sa systém spraval zvac¢sa presne tak, ako v pr-
vom experimente a nezaznamenali sme takmer ziadne naznaky, ze by sa systém snazil
ul’ahCovat’ interakciu zdravym pouzivatelom.

Zaver

V tejto préaci sme vytvorili systém, ktory bol schopny pocas chodu rozoznavat’ motorické
schopnosti pouzivatel'a a adekvétne sa u na ich zéklade prisposobovat. Na zdklade vy-
sledkov konstatujeme, Ze sa potvrdili vSetky tri predpoklady, ktoré sme si vytycili ako
ciele tejto prace. Vysledky dokonca prekonali naSe o¢akavania, najméa v pripade vyhod-
nocovania viacero za sebou iddcich gest, a preto vrelo povzbudzujeme k d’alSiemu vy-
skumu v tejto oblasti a posuvanim povodnej myslienky d’alej — skasanim novych gest ¢i

aplikécii nasich zaverov v redlnom systéme a nie len v experimente.

Tbl. 1. Metriky pre rozpozndvanie kategorii gesta rotdcie.

N Pr. DMO | FiDMO |Pr.D Fi1 D Pr. Z F1Z

1 0.6152 0.2529 0.2929 0.1497 0.7261 0.2784
2 0.6596 0.2632 0.2564 0.1645 0.8173 0.3598
3 0.7333 0.2815 0.2593 0.1611 0.8366 0.3955
4 0.8194 0.4496 0.1889 0.1429 0.8788 0.5393
5 0.7619 0.4308 0.1667 0.1111 0.8976 0.6707
6 0.8545 0.4603 0.1111 0.0833 0.9216 0.7770
7 0.9444 0.7353 0.0000 0.0000 0.9867 0.8966
8 0.9375 0.7333 0.1667 0.1111 0.9846 0.8960
9 0.9286 0.7308 0.1667 0.1111 0.9818 0.8952

Tbl. 2. Metriky pre rozpozndvanie kategorii gesta Skdlovania.

N Pr. DMO | FiDMO |Pr.D FiD Pr. Z F17Z

1 0.8586 0.3080 0.5921 0.2900 0.5582 0.2361
2 0.9495 0.4870 0.6336 0.4669 0.6140 0.3317
3 1.0000 1.0000 0.6877 0.5278 0.6526 0.3680
4 1.0000 1.0000 0.6325 0.5083 0.7197 0.4902
5 1.0000 1.0000 0.7667 0.7436 0.7671 0.6030
6 1.0000 1.0000 0.7500 0.7333 0.7786 0.6084
7 1.0000 1.0000 0.7619 0.7407 0.7758 0.6071
8 1.0000 1.0000 0.7778 0.7500 0.8067 0.6157
9 1.0000 1.0000 0.7333 0.7222 0.8139 0.6188
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Obr. 5. Presnost rozpozndvania kategorii gesta rotdcie.
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Obr. 6. Presnost rozpoznavania kategorii gesta Skalovania.
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Appendix A Technical Documentation

The core of the technical documentation in our case is the way of realization of our sys-

tem, which is described in the main work in detail. However, we would like to also in-

clude a class diagram depicted in Figure 12 to complement the text description of the

realization for better understanding. In diagram there are not included external processes

— classifiers. Each Extractor possess one connection to corresponding classifier.
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Figure 12. Class diagram of system for experiments.

A.1 Requirements
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The system for motor skills determination and adaptation, where both experiments were

executed, is designed in Unity engine, therefore does not require anything else but Leap

Motion Sensor to be able to run. There are required versions to run our system.

e Unity 2018.3.8f1

e Leap Motion Controller 4.0.0



The data science part, where all results were computed, is included in this work
as Jupyter Notebook, and has following main requirements.

e Python 3.6 or newer
e numpy 1.16.1

e pandas 0.24.2

e py-xgboost 0.80

e scikit-learn 0.20.1

e scipy 1.2.1
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Appendix B Project Work Plan

B.1 Spring Semester Plan (DP1)

Research motor skills usage within virtual reality, gesture possibilities for
virtual reality, adaptation of systems to users, user modeling, biometrics
and available sensors.

o A lot of researching and reading took place at the beginning of the
semester, however, after while it was postponed and delayed and
finished at the end of the spring semester.

Refine assumptions after each research.
o Done continuously during reading related work.
Summarize research findings and final assumptions.

o Summarization was done at the very end of the semester, several
weeks after the original due date. The delay was caused by exces-
sive amount of work required by both universities at the same time.

Create solution idea based on assumptions and related work summariza-
tion.

o Solution was being created continuously during the whole semes-
ter.

B.2 Winter Semester Plan (DP2)

Design training experiment.

o Designing training experiment was delayed because of evaluation
of our proposed gestures and motor skills categories by specialist.

Choose candidates for training experiment.
o Candidates were chosen by specialist according to the plan.
Implement data miner.

o Data miner implementation had to be postponed due to lack of ex-
periment design and was finished with delay.

Execute experiment obtaining training data.

o Experiment execution postponed to DP3, because of communica-
tion problems with our specialist.
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o Experiment was executed during the break between semesters even
before DP3 officially stared.

Train multiple classifiers.
o Postponed to DP3 due to lack of data.

o Classifiers were trained and evaluated continuously with several
different ideas after first experiment almost until the second exper-
iment execution.

Select the best classifier.
o Postponed to DP3 due to lack of data.

o The best classifier was selected much later than expected, but still
sufficiently ahead of execution of testing experiment.

B.3 Summer Semester Plan (DP3)

B-2

Design testing experiment.

o Testing experiment was designed along with training experiment
during the DP2.

Implement real time identification.

o Real time identification was ready already in DP2, missing classi-
fier to be just plugged in to carry out the result.

o Real time identification was plugged in with some dependency
troubles, which did not delay execution of testing experiment.

Enhance selected application by user adaptations.

o Adaptations were implemented according to plan, before execution
of testing experiment.

Execute testing experiment.

o Testing experiment was executed according to our plan in coordi-
nation with our specialist.

Collect results.
o Results were computed at the end of the semester.
Evaluate solution.

o Solution has been continuously evaluated during DP2 as well.



o Overall solution evaluation was carried out at the end of the semes-
ter as planned.
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Appendix C Description of Digital Part of Thesis
Evidence number of thesis in information system: FIIT-182905-73652

Content of digital part of thesis (ZIP archive):

Content Description

DP_prilohy digital_ LukasBabula.zip

| Lukas_Babula-Master’s_Thesis.pdf digital version of thesis

| preprocess-train.ipynb data processing and evaluation notebook
I

I

+---classifiers trained classifiers

move_svm_20190320-043305-569627
move_xgb_20190319-234025-402902
rot_svm_20190320-043312-957246

scale_svm_20190320-043313-469252

I

]

1

|

|

! rot_xgb_20190319-234033-593410

|

! scale_xgb_20190319-234035-579548
1
|

+---data-dp data from the first experiment
+---data-dp-eval data from the second experiment
+---experimentl scene and assets of the first experiment
+---experiment2 scene and assets of the second experiment

Digital part of thesis consists of 2.13 GB of data. Therefore, it is stored in G Suite for
Education.

Name of the turned in archive: DP_prilohy_digital_LukasBabula.zip
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