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Determining the users’ skills from human computer interaction can be challenging even 
if it is the only goal of an application. Users with motor skills and coordination disorders 
are usually not very alike in their movements, not even when the motor impairments are 
the same. This problem introduces many difficulties in designing a user model for deter-
mining user’s motor skills. To avoid confusion about differences of motor skills among 
similar users we propose explicit specification of motor skill categories. Once the cate-
gories are established, it is important to choose the correct approach to adapt the applica-
tion to regarding the user’s restrictions. This can result in opening new interaction possi-
bilities to impaired users who have severe difficulties interacting with the application 
otherwise. We present three motor skills categories and three gestures to use for category 
recognition. Recognition of motor skills categories and gesture adaptations to users were 
put into test in two experiments. The results of the experiments are very favorable and 
encourage further work in this domain. 
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Určovanie motorických schopností používateľa na základe jeho interakcie s počítačom 
môže byť výzvou, aj keď je to určovanie jediným účelom danej aplikácie. Pohyby použí-
vateľov, ktorí majú poruchu motorických schopností alebo problémy s koordináciou, sú 
pomerne rozličné, aj keď trpia tou istou poruchou. Tento fakt má za následok veľa kom-
plikácií a spôsobuje ďalšie prekážky pri návrhu modelu používateľa pre určenie jeho mo-
torických schopností. Aby sme sa vyhli problémom rozmanitosti motorických schopnosti 
medzi veľmi podobnými používateľmi, navrhujeme zreteľnú špecifikáciu kategórií mo-
torických schopností. Keď sú kategórie presne určené, je dôležité zvoliť správny spôsob 
toho, ako sa bude aplikácia prispôsobovať používateľom na základe ich obmedzení. Toto 
prispôsobenie by malo vytvoriť postihnutým používateľom nové možnosti interakcie, 
pretože bez toho majú veľmi veľké ťažkosti s aplikáciou vôbec interagovať. Za týmto 
účelom prezentujeme tri rôzne kategórie motorických schopností, ktoré boli použité spolu 
s našimi troma vlastnými obojručnými gestami. Rozpoznávanie kategórií motorických 
schopností a následného prispôsobovania sa používateľovi boli otestované v dvoch expe-
rimentoch. Výsledky týchto experimentov sú veľmi podnetné a povzbudzujú ďalšiu prácu 
v rámci tejto domény. 
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1   Introduction 

Nowadays, several systems and applications are controlled by user gestures. Usage of 
these gestures offers many useful benefits, because user’s gestures are behavioral charac-
teristics. Thus, we can consider them as unique for every user in one or other way. Ex-
tracting possible features from gestures and representation of these features is a very wide 
research area itself. This area covers at least biometrics and user modeling research fields, 
which are becoming more and more popular with technology evolution. 

Users’ gestures can be utilized in many different ways by applications. Currently, 
the most common approach is their usage for interaction, albeit usage of users’ gestures 
for user authentication or user identification during interaction are arising. Regardless of 
the gesture usage, the gesture needs to be recognized by the application. The captured 
gesture can be compared with gestures known by the application and then possibly rec-
ognized as one of the supported gestures. The captured gesture can be also assigned to a 
particular user or a group of users. This is how the user or the group can be modeled. User 
modeling based on gestures is currently less developed than a gesture modeling of the 
user. 

Many problems related to gesture representation can occur during the usage of 
applications based on a gesture interaction. Such an application can and usually does react 
slightly differently to each user. These differences are projected into the differences of 
controlling the application by different users, despite them controlling the same applica-
tion. Due to the differences, users may experience different levels of difficulty in interac-
tion by different gestures. Therefore, the application can constrain users based on their 
physique. A naïve example could be requesting continuity of some gesture execution for 
a very large horizontal distance, such as swipe with hand for at least 100 cm in one sway. 
This could be a problem for people without arms long enough to reach the given distance. 
Nonetheless, another problem can also be the difference of motor skills among users. 
From the interaction point of view, it could be a very difficult and serious challenge, 
because a user with a higher level of motor skills can perform gestures much easier than 
a user with worse motor skills. 

In order to remedy or at least partly eliminate this problem caused by different 
motor skills of users, applications can introduce gesture adaptation whilst the gesture is 
being recognized. There are many possible adaptations, such as the change of the whole 
gesture, or a simple adaptation of a threshold necessary to accept a gesture with regards 
to the chosen evaluation. Some corrections can be executed directly by data sensor (de-
vice observing gestures) while processing the raw data (sensing movements of a user). 
This correction is usually sufficient for regular users, because the sensor can handle users’ 
small differences (Bigdelou et al., 2012). Though many problems are under circum-
stances, where user has rapidly worse motor skills (for instance user has some physical 
impairment such as cerebral palsy). 
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Most of users are, naturally, healthy, so it is not common for applications to bother 
with users outside this bracket. We want to discover, whether it is even possible for an 
application to recognize different motor skills among its users. To be able to do this, the 
application has to be first exposed to several different users with different motor skills 
and be explicitly told which user belongs to which category. Therefore, categories of dif-
ferent motor skills must be established first. Not every hand gesture is appropriate for 
such recognition, so gestures the application must be designed right after with regards to 
motor skills categories. With the categories and the gestures, it also takes a lot of experi-
menting in order to make any conclusion about ability to recognize users and adapt to 
them. 

Analysis of motor skills, their possible applications in virtual reality, gesture 
recognition and adaptation is described in chapter 2 based on related work in similar re-
search fields. The domain of biometric user modeling and classification is described in 
chapter 3. Chapter 4 concludes the analysis of related work discussing different sensing 
devices which can be used for sensing gestures. 

Chapter 5 introduces hypothesis of this work in form of our assumptions based on 
the detailed analysis. These assumptions are the basis for our proposed system in chapter 
6. This proposal consists of all parts of solution needed to evaluate the hypothesis. The 
specification of motor skills categories, gesture types, experiments or adaptations of the 
system are all proposed in this chapter. The following chapter 7 detailly describes the 
realization of the all parts of the proposed system. 

Evaluation of the proposed system is summarized in chapter 8. The chapter dis-
cusses evaluation of each part of the system and also presents results achieved using the 
system. Final chapter 9 offers a conclusion of our work and hands over future work with 
motor skills determination. 
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2   Motor Skills and Virtual Reality 

Virtual reality is defined as an immersive and interactive system that provides users with 
the illusion of entering a virtual world (Heim, 2000). The user is connected to the virtual 
reality system as part of the input/output loop, allowing individuals to provide input to 
the virtual environment and experience the result of that input (Lange et al., 2010). A user 
can provide the input in many different ways, from regular computer input devices, 
through specialized input devices for virtual reality and various gestures up to the eye 
movement (Deng et al., 2010). 

None of these interactive approaches is new, albeit the Electro-Oculography based 
approaches are still not very widely used nowadays. The most important approach for 
obtaining motor skills of users is the one based on gestures. Closer to look to gesture more 
specifically, as a hand gestures, there is the obvious benefit, such that humans already use 
their hands and fingers in different situations to manipulate real world objects (Aslan et 
al., 2014). 

2.1   Gestures 

“An important distinction is that between explicit (or control) gestures – when their pur-
pose is to provide some form of input to the computer, such as a command – and implicit 
gestures – when they are exploited to obtain indirect information about the user and his 
or her environment, such as activity recognition” (Nugrahaningsih et al., 2015). This is 
an important distinction in the context of this work since the motor skills levels could be 
obtained from these types of gestures, because they may require certain coordination 
skills. In addition, both types mostly apply to hand gesture recognition.  

2.1.1   Gesture Recognition 

Gesture recognition topic is currently very active and widely discussed within research 
field. In order to solve the problem of huge differences between users’ motor skills it is 
necessary to focus on hand gestures, because movements of hands are providing the best 
insight of users’ motor skills.  

Two main approaches exist to hand gesture recognition, depending on the kind of 
sensor employed for data acquisition: techniques which require the user to move a phys-
ical object (e.g. an accelerometer) and vision-based methods in which hand movements 
are detected with one or more cameras. The second case is more complex, but fortunately 
there are now sensors, which greatly simplify the tasks of hand recognition and tracking 
(Nugrahaningsih et al., 2015). 

There are many approaches how to obtain data of users’ hands and how to recog-
nize gestures from the data. Currently the most widely used sensors are Leap Motion and 
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Kinect. However, their approaches differ as well despite their similarities. Leap Motion 
models hands and gestures from hand positions and space orientation while Kinect mod-
els the depth of objects. Both sensors provide satisfying results, but when combined, they 
can recognize even static gestures in real time. This combined method can provide a pre-
cise description of users’ hands. This description is needed in order to build an adequate 
user model (Marin et al., 2014). 

Thus, the biggest challenge is to obtain hand data and recognize users’ gestures as 
precisely as possible (Manresa et al., 2005a). Very closely related to this challenge is to 
match the recognized gesture to its user and therefore to recognize both the gesture and 
the user. In a similar manner, groups of users can be recognized. Different gestures un-
derwent static user verification based on their hand gestures. Results of this experiment 
are very promising (Imura and Hosobe, 2016a). Gestures used in this experiment were 
not interactive, so the promising results and very high success rate around 90% can be 
misleading for authentication based on interactive hand gestures. 

Gesture recognition is nowadays executed under various conditions and many ap-
plication domains. One of them is a low-cost solution for clean rooms, where systems 
need to recognize users by their gestures (Aslan et al., 2014). Authors discuss many pos-
sibilities and approaches to implement the whole system for clean rooms including inter-
action and user authentication. Another approach was proposed using viewport-independ-
ent hand gesture recognition (Jiang et al., 2014), but the proposed approach to improve 
gesture recognition is sensor-dependent. A very nice survey about gesture recognition 
was done in order to improve human computer interaction itself (Rautaray and Agrawal, 
2015).  

2.1.2   Gesture Adaptation 

Gesture adaptation to a user using device with an accelerometer is another interesting 
concept in this research field. Adapted gestures and their complexity are suitable for every 
user. This approach uses user identification and user authentication based on these 
adapted gestures (Liu et al., 2009). In the context of motor skills, it is necessary to perform 
user identification the other way around, because the user needs to be recognized first for 
proper user-based gesture adaptation. This can be achieved by making use of more fea-
tures obtained from the user’s hand, which can altogether provide much more specific 
data than accelerometer. 

A well-suited gesture for an interactive activity can be totally contrasting among 
the users, because users are trying to achieve the same functionality through different 
gestures, which are more natural for each user. The users’ goal is the same, but their 
gestures are not alike. Thus, it is difficult to map certain system functionality to specific 
gestures unless the gestures are very basic and well known. An interactive system built 
on the users’ gesture recognition has to adapt itself to every user, because every user is 
unique. The most important differences are users’ motility and quickness. This whole 
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concept is based on user identification, where the user is recognized by the system and 
was registered in advance. The registration builds and stores user models, so the users can 
be identified using these models (Zhang et al., 2014). 

2.1.3   Gesture Interaction 

Usability of human computer interaction via users’ hand gestures and its real-time eval-
uation are mostly dependent on a concrete implementation of such an interactive system. 
A comparison of several interaction methods (e.g. navigation or manipulation) and data 
obtained by them appear to have promising results in favor of using hand gestures (Cabral 
et al., 2005a).   

Interactive hand gestures in the identification context achieved fairly good results 
despite a small sample used for training and user modeling. During closed-set identifica-
tion a model of a user who is being recognized is already known. Therefore, it is enough 
to compare the current user with all the user models stored in the database, because it is 
guaranteed that model of current user is stored in the database. Closed-set identification 
is much simpler than the identification of a new user who is using the system for the first 
time. Of course, it is not possible to identify the user precisely, but one can consider 
identifying a user group to which the current user belongs, e.g. group of users with similar 
levels of motor skills. 

2.2   Motor Impairments and Interaction 

A recent study (Caro, 2014) had been researching the improvements of motor skills of 
people with coordination disorder, also known as dyspraxia. A game was developed for 
children with this disorder. During the game the players had to execute multiple coordi-
nation-based movements. These movements were aimed specially at dyspraxia, so the 
exercise was enjoyable, because it helped them to improve in game, but useful, because 
at the same time their motor skills were improving.  

Gestures used for the application were interactive, so the children were able to 
control the entire application only by their gestures. This example shows that people with 
dyspraxia do not have to be excluded from interactive applications in which hand gestures 
are required. However, the application needs to be adapted for this case and has to both 
support these special users and be able to adapt to them. The application itself was rather 
simple and aimed for children, hence many problems can theoretically emerge using more 
advanced interaction or more complex gestures (Caro, 2014). 

Children’s motor skills also underwent research based on gaming applications re-
gardless of coordination movements (Landry et al., 2013). These gaming applications 
were also controlled by interactive user gestures, but system obtained all children move-
ments. Movements required to control applications were designed by a specialist in order 
to achieve the highest variability and to be the most beneficial for children. A level of 



6 
 

motor skills was computed from a number of distinct movements and different positions 
assuming that if the child did not perform a movement necessary to control the applica-
tion, then the child would not be able to perform the movement in real life. 

Determining motor skills via applications is not that rare nowadays as it used to 
be (Singh and Aggarwal, 2016). The authors were discovering motor skills of vocational 
workers whose job required a certain level of motor skills. The work was focused on the 
fine motor skills, which are much more difficult to measure. Touch screen was chosen 
for measurements, because it is easier to obtain precise information from a touch screen 
than from sensors monitoring the space. Users were executing specific movements with 
fingers on the screen surface. These movements were designed for obtaining the motor 
skills and not for interaction, so it was not possible to control the application with them. 
Nevertheless, authors were also discussing coordination and gross motor skills. In this 
manner they used gyroscope and accelerometer of the device with the touch screen. The 
application was designed to include several shoulder and elbow movements, acting as the 
source of gross motor skills information and coordination of both hands. The level of 
motor skills was approximated using linear regression and Support Vector Machine. The 
success rate of workers was compared with the results of manual tests driven by physio-
therapy specialists.  

“The games and virtual environments must allow the user to interact in a way that 
is appropriate for their level of impairment, and must be easily changed to increase the 
level of challenge as the user improves” (Lange et al., 2010). 

The gesture recognizer dynamically analyzes a subset of all body skeleton data 
detected by the sensing device (considering only information related to torso and upwards 
joints) and progressively checks if such data correspond to a gesture included in the set 
of the possible ones (Valoriani, 2013). From the obtained information, it is possible to 
post-process the gesture and perform gesture management, which can be considered as 
adaptation to the current user. The way the gesture is interpreted and executed is not given 
beforehand, so it can be well suited for every user. 

2.2.1   Exergames 

Interesting connection between physical activity of users and virtual reality is the idea of 
exergaming. Exergaming was originally conceived as the use of video games in an exer-
cise activity (Sinclair et al., 2007), but nowadays there are many applications which are 
more or less connecting field of exergaming with virtual reality (Altanis et al., 2013; Caro, 
2014; Landry et al., 2013; Tanaka et al., 2012; Yoo et al., 2017). This adds a new dimen-
sion to exergaming, which was originally considered to have limited impact to a user (Hsu 
et al., 2011; Wollersheim et al., 2010). 

Exergames can also be easily connected with rehabilitation, which can result in an im-
portant new usage of virtual reality (Tanaka et al., 2012). The authors are researching the 
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possibilities of exergames usage within the rehabilitation framework, which turn out as a 
fairly feasible.  

2.2.2   Rehabilitation in Virtual Reality 

Early attempts for rehabilitation within virtual reality relevant to context of our work were 
using an interaction glove (i.e. CyberGlove or a Rutgers Master II-ND haptic glove), al-
lowing to process data from users’ hands (Adamovich et al., 2004; Baker et al., 2004). 
These approaches are indicating potential feasibility of exercise systems in the virtual 
reality in order to rehabilitate the users’ hand disfunction. 

On the other hand, there is a number of works and researches trying to rehabilitate 
problems caused by cerebral palsy (Chang et al., 2013; Huang, 2011; Mousavi Hondori 
and Khademi, 2014; Oliveira et al., 2016). Cerebral palsy has many different impacts on 
human body, which vary from person to person, because they are mostly individual. Prob-
lems caused are mostly motor skills problems, and this is where rehabilitation takes its 
place. Since the problems differ, the solutions proposed by authors are different and au-
thors also introduce different approaches to achieve such rehabilitation. 

Interaction with hand and foot gesture is another approach to rehabilitation using 
virtual reality (Lv and Li, 2015). This particular touch-less approach is aiming to the re-
habilitation achieved by stretching hand and legs whilst using the application and manip-
ulating with it. 

2.3   Adaptation  

Last but not least, there is an application adaptation approach arising among approaches 
associated with our field of study. Such an adaptation can be done in multiple ways based 
on multiple different areas. One of the adaptations which are consistent to previous fields 
is adaptation of an exergame to its user (Yoo et al., 2017). This is how personalized ex-
ergames can be made. It can help users to enjoy the game more, or exercise more accord-
ing to their skills.  

Psychomotor activity modeling, proposed in (Santos, 2017; Santos and Eddy, 
2017), is another part of adaptation approach because of the model needed to execute user 
prediction. Prediction can be built up on the predictive performance of such a model (Pe-
lánek, 2017). This can also be considered as an evaluation overview for the application, 
because the success rate of user’s prediction is the rate of application successful adapta-
tion. It is simply because the adaptation cannot be done after a gesture had been executed, 
but the gesture needs to be predicted and adapted while not executed by the application.  
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3   User Model and Classification 

For classification of user models and determining whether a user model belong to one 
class or another, it is crucial to build a proper user model first. Then it is important to 
know the purpose of classification, which can be useful in choosing a proper classifier.  

3.1   User Modeling 

User modeling is process of creating a computer representation of user (Fischer, 2001). 
The computer cannot recognize a person the same way as a human, because it is not able 
to perceive all the person’s features. With the purpose of helping computer to recognize 
the person, we need to simplify the person’s features and select the most varying features 
among all users for purpose of recognition by the computer. The most common case of 
person recognition by computer is user recognition. 

The list of features, or a computer representation of the user, is the user model 
(Allen, 1997). The user model should be independent from a concept of the system within 
user’s mind, because it could decrease the quality of such a user model. Once the user 
knows how they are represented, they are influenced by this information and can act dif-
ferently. 

3.2   Biometrics 

Biometrics, also known as biometric recognition, is a science of discovering a 
persons’ identity from their physiological or behavioral features (Jain et al., 2011). The 
main idea of biometrics is that a person’s identity can be uniquely determined by certain 
features or their combination, e.g. fingerprint or face. One cannot select a single feature 
that can fulfill all possible scenarios, because different features are suitable for different 
usages. Selecting proper features is tightly related to the purpose of the application (Jain 
et al., 2004).   

In the context of determining user’s motor skills, it is desirable to consider behav-
ioral biometrics, because features obtained from a user’s hand are dynamic and exhibit 
the user’s unique behavior.  

3.2.1   Biometric System 

A biometric system is any system which can distinguish different user models. The sys-
tem requires three modules to be able to compare user models (Bolle et al., 2013): 

• biometric sensor – a device obtaining raw data from the user; 
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• feature extractor – a unit processing the raw data from the sensor, obtaining fea-
tures from them as a vector and either inserting the instance of a user model rep-
resented by the vector into the model database or returning the model for compar-
ison; 

• model database – storage of all known user models. 

With these modules, the system is able to perform user model comparison, be-
cause when it is needed, the system can build the user model of the current user and get 
all known user models from model database (Jain et al., 2007). There are many ways to 
compare models or to assign identity to the current user depending on purpose of the 
biometric system, i.e. identification or verification. 

3.3   Verification 

A biometric system needs to decide whether the user is truly the one they claim to be. 
Thus, during the verification process the user has to explicitly proclaim identity to be 
verified. A user model of the proclaimed user is then selected from the model database 
and compared with the user model obtained from the current user. If these two models 
are similar, the proclaimed identity is confirmed, otherwise the access for the current user 
is denied and the user is considered to be an impostor. Verification is usually used in 
applications which need protect their content from unauthorized users (Jain et al., 2011; 
Wayman, 2015). 

3.4   Identification 

User identification is the recognition of a user’s identity by a biometric system without 
any identity proclaimed by user. The biometric system in this case does not have a spec-
ified user model to compare the obtained model of the current user with. It implies that 
system needs to fetch and compare all user models from the database against the current 
user model (Jain et al., 2000). 

Identification can be divided into two types (Wayman, 2015): 

• open-set identification – the current user can be unknown by the biometric 
system, so the system can result in an unsuccessful identification if none 
of the user models from database are not similar enough; 

• closed-set identification – the current user is always known by the bio-
metric system, so the system has to select the most similar user model from 
the model database, even though none of the stored models may be similar. 
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3.5   Classification 

During the process of user identification, the current user model has to be compared with 
all user models stored in the model database. To assign a user’s identity to the current 
user model, the most common method is classification. In the machine learning terminol-
ogy, users’ identities are labels or classes. Each user identity corresponds to one class. 
When a biometric system identifies a user model, the corresponding class is assigned to 
the user model (Aggarwal, 2014). 

Classes in general do not have to necessarily represent user models, they can rep-
resent almost anything that can be divided into multiple distinct categories, i.e. groups of 
users according to their category of motor skills. That is why the classification is a very 
general and powerful approach. Classification was designed for distinguishing two clas-
ses, but nowadays many classifiers can handle multiple classes as well, usually by gener-
alization of the original method (Aggarwal, 2014). 

In order to set the classifiers properly, the main properties and parameters have to 
be settled. Choosing kernel, distance measure, depth or any other key characteristic is 
crucial and has severe impact on results of classifier. The values are usually determined 
using a validation set or using cross-validation (Aly, 2005). 

For classification it is necessary to have instance of a user model, which belong 
to concrete user, whose identity or attributes we are trying to classify. These instances are 
referred as samples in machine learning. They are basically vectors of features, which 
were extracted during a user modeling. These samples can be processed by classifiers for 
training and testing purposes. The brief summary of the most commonly used classifiers 
follows. 

3.5.1   Decision Trees  

Decision trees are considered to be a powerful method for classification. They can be 
divided into two main categories: classification and regression trees. Two most adopted 
algorithms for building decision trees currently are ID3 and C4.5. During a decision tree 
construction, building algorithm has to develop a split the dataset according to its values 
for every feature to create branches leading to the class labels. The split represented by 
every node is typically based on the maximum information gain, but it can vary depending 
on the building algorithm. The feature giving the desirable gain is chosen to be split by. 
When the algorithm proceeds the end of the branch – leaf of the tree – a class of the 
unknown sample is unambiguously assigned. In order to assign class to the sample, it has 
to follow a path from root of the tree to any leaf of the decision tree making a decision at 
each node according to splitting feature of such a sample. 
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The algorithms for decision tree building and searching are very well applicable 
also to multiple class classification problems, because the class label stored in the leaf 
can be one out of any number of classes concerned. (Aly, 2005). 

3.5.2   k-Nearest Neighbors 

k-Nearest Neighbors (k-NN) is one of the oldest classification algorithms not using para-
metrization. In this algorithm, the key is its distance measure (e.g. Euclidean or Cosine). 
It is used when classifying an unknown sample to compute the distance from that partic-
ular sample to each previously obtained training sample. When distance from each sample 
is determined, the k closest samples are taken into the consideration. The most represented 
class among them is considered to be the most probable class for unknown sample and it 
is resulting label of the classification. (Aly, 2005). 

3.5.3   Support Vector Machines 

“Support Vector Machines are among the most robust and successful classification algo-
rithms “ (Aly, 2005). We can distinguish different types according to used kernels. The 
most widely used kernels are linear and gaussian kernel. The main idea of this classifica-
tion is to divide the space of samples into two maximizing the minimum distance from 
one of them to the other. When using linear kernel, the separation is linear (i.e. line for 
2D sample or plane for 3D sample), while with gaussian kernel, the algorithm would try 
to enclose samples of one class from outside from the other one. Therefore, the classical 
SVM approach supports just binary classification. There are also several strategies avail-
able, which can handle multiclass classification as well. First well-known approach is 
one-vs.-all approach, where space is separated to multiple subspaces, one for each class. 
Second standard approach is one-vs.-one, where the problem is split into multiple classi-
fication problems and the classes are compared to each other classical way – two at the 
same time.  
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4   Sensors 

When it comes to the device that can obtain data from user gestures there are theoretically 
many options because of a technology boom, which is getting more and more intense 
every year. However according to recent research work in this field, there are three rea-
sonable practical choices:  

• interaction gloves (Adamovich et al., 2004; Baker et al., 2004),  

• Leap Motion (Chan et al., 2015; Cui and Sourin, 2014; Marin et al., 2014; Potter 
et al., 2013) and  

• Kinect (Altanis et al., 2013; Bigdelou et al., 2012; Chang et al., 2013; Huang, 
2011; Jiang et al., 2014; Marin et al., 2014; Mousavi Hondori and Khademi, 2014; 
Zhang et al., 2014). 

Approaches using interaction gloves are not very relevant nowadays, because 
other named sensors – Leap Motion and Kinect – are able to obtain comparable infor-
mation from users’ hands while being much more convenient, because they do not need 
any wires or sensors directly attached to the user. Thus, the user perceives greater freedom 
of movement and it is more comfortable for the user to interact using modern sensors. 

Kinect and Leap Motion are both three-dimensional sensors able to obtain data 
from cameras. Kinect processes and combines information from multiple depth cameras 
into a depth map (Wilson and Benko, 2010) and Leap Motion is combining grayscale 
images of two infrared cameras and computing hands and all their part positions (How 

Does the Leap Motion Controller Work?, 2014). The range of the Kinect sensor is much 
greater than the range of Leap Motion, but it is caused by mentioned differences in cam-
eras and input processing. Both of the sensors are affordable, since they are only typically 
additional devices for customers wanting to enhance their VR or gaming experience. The 
price of both sensors is similar, because the core technology – infrared lit scene and mul-
tiple cameras perception – is either.   

4.1   Kinect 

Kinect is a 3D motion sensing input device, which is designed and produced by Microsoft 
Corporation. First Kinect was introduced in 2010 for gaming console Xbox 360. Kinect 
monitors the space in front of the sensor itself. Kinect is able to capture objects within 
distance up to four meters in direction where the front of the sensor is pointing (Wilson 
and Benko, 2010). 

Since its introduction, Kinect drew a lot of attention because of its gaming and 
research potential. Despite this popularity, Microsoft decided to discontinue support and 
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production of this sensor (Wilson, 2017). Kinect is still available for purchase, but re-
search potential dropped rapidly down, because in near future the availability may change 
as well as its popularity. 

4.1.1   Data Provided by Kinect 

Kinect can provide several different types of data obtained from depth cameras. It is pos-
sible to receive data on a different level of abstraction, from raw video images up to the 
human skeletons. Focusing on hand gestures we are interested in hand positions in the 3D 
space. Hand positions can be accessed from skeleton information, because the coordinate 
system for the skeleton data is a full 3D system with values in meters (Kinect Sensor, 
2012). 

From Figure 1 , it is clear that for motor skills classification can be used more than just 
hands, because suitable information can be also derived from the positions of wrists, el-
bows and shoulders. 

4.2   Leap Motion 

Leap Motion is, like Kinect 3D, a motion sensor input device, but it is developed by 
company Leap Motion, Inc. The range of the sensor is much smaller, only up to 80 cen-
timeters with viewing angle 120°. The range is influenced by powering the sensor via 

Figure 1. Kinect skeleton representation (Kinect Sensor, 2012) . 
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USB, so three LED infrared lights are able to light only the described interaction area, 
which is also depicted in Figure 2 (How Does the Leap Motion Controller Work?, 2014). 

 

4.2.1   Data Provided by Leap Motion 

Leap Motion is able to transform data from grayscale stereo video image into hand posi-
tions (Image API Now Available for v2 Tracking Beta, 2014). In comparison with Kinect, 
Leap Motion provides data at a much finer level of detail, because it is able to provide 
positions of fingers, bones and joints. It is also possible to obtain information about wrists.  

For every part of each hand, the position, direction and velocity are provided by 
Leap Motion. For every bone, Leap Motion also provides its length and width. Addition-
ally, the sensor tracks the palm, providing palm position, palm direction, palm width and 
palm normal. 

Figure 2. Leap Motion Interaction Area (How Does the Leap Motion Controller Work?, 2014). 
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5   Assumptions 

According to the domain analysis, people with a certain degree of motor impairment have 
difficulties performing interaction with hand gestures, have to overcome disadvantages 
while using these systems and sometimes it is totally impossible for them to use such an 
application at all. In order to help these people with using hand interactive applications, 
an application needs to recognize type of motor impairment of the user and classify user 
behavior with respect to supported motor disabilities as well as adapt the interface ac-
cording to the recognized motor impairment. We assume that it is possible and feasible 
to: 

• Classify a person’s motor impairment with Leap Motion sensor with respect to 
specified categories of motor impairment from user’s coordination-based gesture 
execution. This coordination-based gesture in the context of this work can either 
be a rotate gesture, scale gesture or a carry gesture, all of which are executed with 
both hands. 

• Classify a person’s motor impairment with Leap Motion sensor as described 
above in real time. 

• Adapt hand gesture-controlled applications for users according to their motor im-
pairment. 

It is possible to discover specific users’ skills by letting them perform exercises 
designed to evaluate these skills (Singh and Aggarwal, 2016). Since the coordination ges-
tures we are focusing on are not designed in this or a similar manner, we assume that it is 
possible to classify users’ motor skills on a higher level of abstraction. Thus, the applica-
tion will not obtain exact users’ motor skills, but will be able to recognize specific patterns 
for different types of motor disabilities instead.  
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6   Proposed Biometric System for Motor Skills Detection 

For motor skills detection we need to specify the skills first. Therefore, we propose three 
categories of motor skills, which are simply describable but at the same time clearly spec-
ifying the abstract concept of motor skills. 

Collecting data from the Leap Motion sensor for every of these categories is very 
important for classification of these categories. The data represent users’ hands, their 
movements, positions, directions and other information obtainable from Leap Motion 
API. Collecting data needs to be performed during the first of users’ experiments, which 
will be also aimed to choose the best classifier in order to allow real-time adaptation of 
gestures. 

Before the classification itself, the raw data need to be processed to extract useful 
features. These features will be used for training the classifier, resulting in the creation a 
of user model representing the category of motor skills.  

Classification can be done in multiple ways depending on the classifier itself and 
its hyperparameters as well. We consider a prior selection the best classifier to be very 
tedious and error-prone, because each classifier is strongly dependent on data, which can-
not be described good enough before they will be obtained. Therefore, we propose to 
experimentally choose the best classifier after comparing their results. 

After successful classification and user model creation for every category it is 
necessary to add real-time identification and gesture adaptation to build the whole system. 
Afterwards, it is necessary to test this system with users during another experiment. After 
collecting results of the latter experiment, we compute the classification success rate and 
discuss effectiveness and efficiency of adaptations after consultations with experiment 
participants and specialists observing the participants. 

6.1   Motor Skills Categories 

In order to adapt an application for a user with respect to the user’s motor impairment, it 
is necessary to specify disabilities to be taken into consideration. We propose to distin-
guish three different categories of users’ motor skills: 

• motor skills of healthy users, 

• motor skills of users with dyspraxia and 

• motor skills of users with cerebral palsy. 

These three categories can be also categorized as regular category, discoordina-

tion category and movement-constrained category, respectively, because the categoriza-
tion of the impairments is in a simplified manner based on those principles. 
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6.2   Gestures 

For determining a category of motor skills from hand movements, we propose to focus 
on short and well-defined actions – gestures – of both hands. Obtaining the category could 
be very difficult if the gestures were considered for only one hand, because there is no 
adequate response from people with dyspraxia regarding their impairment using only one 
hand. We propose three different coordinated gestures of both hands. 

6.2.1   Rotate Gesture 

As the name suggests, the gesture is derived from a real-life hand movement used for 
tuning a radio using a button or screwing a lightbulb. Hand fingers must surround the 
object of interest and then turn in the desired direction. For coordination purposes we 
propose to enhance the gesture to be applicable for both hands at the same time. Once the 
fingers of each hand surround different objects, the user then performs rotation of both 
hands at the same time in an outward direction – the right hand is being rotated clockwise 
and left hand anticlockwise as depicted in Figure 3. 

The gesture must be executed at the same time with both hands, what can be guaranteed 
by comparing the angle of both hands. If the angles are different, the gesture is not ac-
cepted. For humans it is very difficult to control hand rotations on the scale of one angle 
degree. Therefore, a gesture will be accepted if the difference of angles is relatively small 
to requested angle to execute. It is feasible to require the gesture to be around half of the 
circle long, because it is comfortably reachable with regards to the hand anatomy.  

Figure 3. Rotate gesture. 
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6.2.2   Scale Gesture 

The name of the scale gesture is not based on its real time usage of opening, but on the 
touchscreen representation of the zooming feature. The gesture in Figure 4 is to be exe-
cuted with two hands as follows: 

• both hands pinch the same object with all fingers, 

• hands move in the horizontal direction only and 

• hands move a certain distance apart from each other. 

Some small fluctuations of vertical movements and forward backward movements are 
also taken into consideration and will be tolerated in order to make the gesture conven-
iently executable. To involve coordination, the criterium of regularity of movements with 
both hands will be similar as in the previous gesture. In this case the distance from either 
hand to the center of the object must be the same, with a small amount of tolerated dif-
ference. 

6.2.3   Carry Gesture 

Our last proposed coordination gesture is the carry gesture shown in Figure 5. It is the 
least complex gesture for users to understand, because all of its constraints are real-life 
based. The gesture simulates carrying an object from the bottom with open hands. There-
fore, the hands must stay during the execution of the gesture in a similar distance as they 
were at the beginning. If the distance is shorter, the hands will pass the center of gravity 
and the object will fall. If the distance is longer, the hands will be farther apart as the size 

Figure 4. Scale gesture. 
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of the object, resulting in the fall of the object. If the positions of both hands are not 
horizontal (palms are not facing upwards), the object will slide and fall.  

The transport distance using the carry gesture is meant to be rather small to allow execu-
tion of the gesture while sitting. We exclude other body movements than hand movements 
from contributing into the carry gesture conditions for our purpose of user modelling. 

6.3   Experiments 

We propose to perform two experiments: 

• Obtaining data from users for choosing the best classifier for our problem and 
analyze the success rate of the proposed method and 

• evaluating obtained results and observe the ability of the system to adapt to the 
user. 

Both experiments are to be performed using the same settings within the same 
interactive scene, so users cannot without interaction distinguish whether the system is 
already trying to adapt to them or not. We want to avoid affecting users in order to ask 
them about their point of view on interaction. 

We propose to involve all three selected gestures in a simple game, where users 
will be distracted by in-game abstractions of problems and effects of their movements 
and will not concentrate on performing gestures themselves – making gestures means 
instead of goals. The gamification of experiments also gives users motivation to partici-
pate and perform the same gestures over and over, making their progress visible directly 
by their actions. 

Figure 5. Carry gesture. 
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6.3.1   Game Logic of Experiments 

Involving all the gestures into the interactive game should be very straightforward. Thus, 
we propose to use the rotation gesture to actually rotate objects in the scene and the carry 
gesture to carry an object. The nickname for the scale gesture comes from our usage of 
the gesture in the application, but the gesture is natively used to open sliding doors or 
curtains. Though, in virtual reality, the gesture is being used for scaling objects and we 
decided to follow this convention. We do not consider it unintuitive for this use case, 
because widely spread and well-known zoom gestures on touchscreens employ a very 
similar logic. 

The goal of the game is to build a two-dimensional pyramid (triangular stack) out 
of three-dimensional cubes. The game consists of constructing cubes of the correct size 
to be possible to use in building of such a pyramid. Each cube at the beginning is too 
small to be used in the final pyramid, so it needs to be properly adjusted. Using the scale 
gesture, we scale one dimension of the cube. To scale the whole cube to a larger size, it 
is necessary to rotate the cube at least twice using the rotate gesture. When the cube is 
properly constructed, the cube is placed on a stockpile, from where the cube can be carried 
to the final pyramid. 

For evaluation purposes, we need all three gestures to be represented evenly. To 
include them approximately evenly into the game, we decided to add one more step, to 
create a cube to be scaled using the gesture for rotation. Hence, the count of successful 
scale and rotate gestures is exactly the same. The only deficit is with carry gestures, so 
we propose to introduce levels in the game, where each successive level involves building 
an increasingly larger pyramid. It gives us the reason to clear the pyramid building pro-
gress – adding a base tile. All cubes from the pyramid thus can be moved to the stockpile 
pyramid and the user must carry the cubes again into the pyramid being built. 

For building the final pyramid with a base consisting of five tiles, the user must 
create, rotate and properly scale 15 cubes. The minimum requirements for completing a 
proper cube are to use the rotate gesture 3 times and the scale gesture 3 times, amounting 
to 45 gestures of each type. From the pyramid base of length 1 up to the base of length 5, 
the user needs to always carry all cubes required to create the corresponding pyramid. 
Summing the first five triangular numbers gives 35, which we consider an appropriate 
number compared to the 45 occurrences of other two gestures. 

6.3.2   Selecting Candidates for Experiments 

Selecting appropriate candidates for experiments is very important, because the entire 
classification and evaluation of the proposed system depend on participants of the exper-
iments. There are two approaches to build a good user model for each category: either to 
have a large number of participants or a relatively small sample of participants, which 
will be very heterogenous and can satisfactorily cover each category. 
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Covering the category with a large number of participants is very time-consuming 
and infeasible, because each category imposes some constraints for participants which 
have to be fulfilled. In this case it is necessary for participants to distinguish their motor 
skills category. It is not acceptable to let participants declare their category, because self-
estimation of participants’ category of motor skills is subjective and varies greatly among 
the participants. On the other hand, some participants may have already had their motor 
impairment classified by a specialist. 

Consequently, we propose the candidate list to be carefully chosen by specialists 
to minimize the number of participants while covering the variety of categories. 

6.4   User Models and Features 

User model in biometric systems is dependent on the users’ actions. The actions in a 
biometric system are gestures proposed earlier in this chapter. We do not want to create 
a biometric system depending on all of the gestures performed evenly as it is set in our 
experiments. Thus, we propose three distinct user models, one for each gesture. Whether 
the system has other gestures or not, independent on their sequences we want to have the 
user model to be able to be bound to one particular gesture and represent the user only by 
that gesture. 

Instances in user models are represented by feature vectors. In our case it is feasi-
ble to propose concrete features in the vectors and then generalize the models out of the 
obtained data from the first experiment. Consequently, for each gesture it is necessary to 
have certain features which could represent all the motor skills categories and differenti-
ate between them according to their values. 

We identified several common features for all of the proposed gestures. All fea-
tures marked with asterisk are computed for the left and the right hand separately: 

• minimum, maximum and average velocity of palms* 

• velocity of palms at beginning and end of the gesture* 

• normal of palms at the beginning and end of the gesture* 

• direction of hands at the beginning and end of the gesture* 

• minimum, maximum and average x, y and z coordinate of positions of 
palms* 

• duration of the gesture 

Since values for velocities, normals and directions in real life are three-dimen-
sional, they will be represented as separate features according to their components along 
the three axes. All rotations will be represented as four components of quaternion repre-
senting the rotation in three-dimensional space. 
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6.4.1   Specific Features for Carry Gesture 

The carry gesture has basically determined only the start point and the end point, so the 
path of transportation could vary not only user to user, but also according to the difficul-
ties with keeping hands coordinated. Specific features for this gesture include: 

• minimum, maximum and average distance between palms 

• minimum, maximum and average difference of height of palms 

• distance travelled by palms* 

• minimum, maximum and average distance between normals of palms and 
vector facing upwards* 

6.4.2   Specific Features for Rotate Gesture 

The rotate gesture is the only gesture using rotation of hands for its purpose. Thus, we 
have to obtain information about rotations of hands. Also positions of hands during the 
gesture can reveal specific information about the user. When rotating, the user is holding 
an invisible object, therefore the five-finger pinch tightness is very important. Palm can 
be rotating around any finger, so tracking how much is outermost finger moving is very 
important. For this gesture specific features include: 

• rotation of hands at beginning and in the end of the gesture* 

• average distance between thumb and ring finger* 

• average distance between palm and ring finger* 

• distance travelled by pinky* 

6.4.3   Specific Features for Scale Gesture 

The scale gesture is the least unique in comparison with the other gesture. We want to 
enhance the common features only by following additional three groups: 

• average distance between thumb and ring finger* 

• average distance between palm and ring finger* 

• distance travelled by palms* 

6.5   Biometric Sensor 

After comparing available and suitable sensors in the analysis, we propose to use the Leap 
Motion sensing device due to its better future support and also the precision of the smaller 
hand movements and gestures. Since we are focused on the hand gestures, Leap Motion 
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sensor’s abilities are very satisfying. Future support allows further future work on this or 
similar topics of other researchers. 

Regarding the Leap Motion abilities, we propose to monitor and store most of the 
available data the sensor provides, because we do not to want to lose any opportunities 
during the feature extraction or data analysis stage. These values will be stored in a file 
easy to read for feature extraction and data analysis processes. Values which can be easily 
ignored from the sensor without any loss are attributes of bones in fingers. Attributes of 
fingers are providing all the necessary information in our case, because they fairly pre-
cisely summarize and represent the whole fingers, thus information about each bone are 
not needed. 

The frequency of providing data by the sensor depends on the number of hands 
the sensor monitors. For two hands, as all the gestures are proposed for, it is approxi-
mately 60 times per second. Such a large amount of information is in favor for our usage 
for very precise tracking of hands in space and time. 

6.6   Feature Extractor 

The feature extractor will read the raw data obtained from sensing device and compute 
values of each feature in the vector according to their definition based on the user model. 
Since the user model is different for each gesture, the feature extractor must be different 
for each gesture. 

It is not desired to process data which are obtained during the time when no ges-
ture was performed. Therefore, during the preprocessing of raw data we make sure that 
only the relevant data segments are chosen for extraction.  

6.6.1   Raw Data Preprocessing 

We propose to store also the event progression, so one can easily distinguish whether a 
specific gesture is being executed or not. Each gesture needs to have its separate progres-
sion file with gesture events. We propose the same three events for each gesture: 

• start of execution, 

• acceptance and 

• failure of gesture. 

Along with events, a timestamp is included for each entry in the gesture progres-
sion file. 
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6.7   Model Database 

After the feature extraction, the vectors of features have to be persisted. The information 
about class, in our case motor skills level category, must be assigned to each vector. Our 
proposal is to store these vectors of numbers in comma-separated values form to be easily 
readable by both human and computer for their analysis and later for use in classifiers. 

Each gesture is associated with a separate file, because every gesture is using a 
different user model. It is also desired to distinguish between successful and failed gesture 
executions, so we are considering six separate files to be used for storing the vectors of 
features (i.e. the instances of user models). 

6.8   Identification Method 

In the second experiment, participants are identified by our proposed system according 
to their motor skills category. This problem can be represented either as open-set identi-

fication, where it is possible to classify the user’s motor skills as not belonging to any 
category, or closed-set identification, where the system must decide even if none of 
known categories is very similar to the user’s motor skills. 

We propose the usage of the closed-set identification, because there is always an 
action during the adaptation process that needs to be executed. This allows the system to 
perform adaptation even if the current user’s motor skills are in some way different from 
all of the specified categories, but still mostly similar to one of them, which we consider 
as a preferred way of handling special cases. 

It is crucial to identify a user’s motor skills category not only by successfully per-
formed and accepted gestures, but also by failed gestures. If the user is not able to perform 
gesture properly for multiple times in row, then adaptation should take its place at the 
time. Thus, it is not feasible wait for classification based on successful gestures. We pro-
pose to split these cases and focus heavily on the unsuccessful gestures. 

For our proposed closed-set identification, we consider choosing best classifier by 
tuning the parameters of following classifiers in coherence with our domain analysis on 
classifiers. 

• k-NN using 

o k from one up to a feasible ceiling according to the number of ob-
tained training samples and 

o different distance measures – Euclidean, Manhattan and cosine 
similarity. 

• SVM using  
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o linear kernel and 

o gaussian kernel. 

• Decision tree using 

o C4.5 and 

o ID3 constructing algorithm. 

The parameters explicitly stated for each classifier are not the only parameters to 
be tuned in fact but are the main parameters available regardless of the implementation 
or chosen library to perform hyperparameter tuning. We suggest tuning other available 
parameters of classifiers, such as algorithm learning rate or tolerance for stopping crite-
rion, depending on the implementation. 

After the best classifier is determined for all the gestures and both successful and 
unsuccessful gestures, we propose to properly train them and adjust identification for real-
time usage to allow adaptations of the system. 

6.9   Adaptation 

From experiment observations and data analysis we propose determining the most vio-
lated gesture conditions for each gesture and motor skills category. We also propose com-
paring violated conditions of the active user to the expected conditions belonging to their 
group. We do not consider generally loosening the conditions if user is not able to meet 
them. Instead, we propose adapting conditions according to the category and allowing 
this adaptation only to successfully classified users of the category. 

In some cases, the visual representation of conditions could also be helpful, when 
the user is able to fulfil all of the gesture conditions, but they are unable to do so naturally. 
Users focusing on their gesture during their performance with qualitative feedback could 
help them to meet all the conditions without any further adaptation of conditions. How-
ever, another visual feedback would not be appropriate in our proposed system, because 
two out of three gestures already have color and movement feedback, which we consider 
much more important. Therefore, the system adaptation will have to make do without 
visual changes relying solely on category-based condition adaptations. 

We propose the adaptations to be unnoticeable by users because we want users to 
interact with the system in the exact same manner, whether it is adapting to them or not. 
If the user is heathy, the application will not perform the adaptation in any way, even if 
the user is making no progress, because the user is easily able to. 

If the user does not belong to the category of healthy users but is not constrained 
in any way to perform one of the gestures, they may be misclassified based on their move-
ments for that particular gesture. However, it does not mean the user is able to perform 
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other gestures without any constraints. We propose classifying the user’s motor skills and 
adapting the system for each gesture separately, even if one of the gestures is classified 
completely differently than others (e.g. heathy category for carry gesture and cerebral 
palsy category for scale and rotate gesture). Even if the user is eligible for adaptation 
according to their real category and classification of other gestures, we do not find it 
necessary to adapt a gesture that the user can perform without problems. 

6.9.1   Adaptation to Users with Dyspraxia 

After observations of movements of users with dyspraxia and consultations with a spe-
cialist we propose adapting only a strictness of the coordination of both hands. Users in 
this category are fully able to perform all the required movements but cannot uncon-
sciously perform them with both hands at the same time. Adapted gestures will still re-
quire performing all of their originally proposed movements with both hands coopera-
tively, even if not perfectly coordinated. 

6.9.2   Adaptation to Users with Cerebral Palsy 

All adaptations made to the gestures for users with dyspraxia are applied and we propose 
additional adaptations because cerebral palsy imposes stricter constraints on movements. 
The gestures still need to stay coordinative and involve both hands cooperating on the 
gestures. Cerebral palsy often does not allow users with this condition to cooperate with 
both hands evenly. Therefore, we propose adapting gestures such that users must involve 
both hands but are able to perform mostly with the healthy hand. 
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7   Realization of Proposed System 

The experimental three-dimensional scene is implemented in game engine Unity 
2018.3.8f1, what is currently the most recent supported engine for our sensor – Leap Mo-
tion. This engine is using assets of Leap Motion 4.0.0, allowing to naturally use and ren-
der hand movements in scene built in Unity. Therefore, all of the functionality is currently 
implemented in order to be usable within the scene, which is the core of the entire system. 

Unity allows to use three different scripting languages: C#, UnityScript (JavaS-
cript for Unity) and Boo. The entire solution except classification is implemented in C#, 
since all the Leap Motion assets are in C#, and it is the only language usable for combin-
ing these technologies. Classification itself is performed outside of this framework using 
the scikit-learn library in Python programing language. 

7.1   Scene of Experiments 

In order to make the scene as clear as possible and easy to understand, we decided to 
visually divide areas of the scene for all the gestures. In the Figure 6 it is also possible to 
see that the whole interaction area is divided into two stacks of cubes. The interaction 
area consists of three parts, one for each gesture.  

 

Figure 6. Placement of game objects in the scene of experiments. 

There are two pedestals with platforms for carrying the cubes in the Figure 6. The left 
pedestal is where a cube will be spawned after its creation. The right pedestal is the re-
ceiving pedestal, from where the cube will be teleported to the final pyramid on the right-
hand side. The small cube in the middle is the area for scale interactions, where it is 
needed to pinch the cube and scale each side to the bigger size. For the rotation gesture 
there is area for the two buttons on the box with two narrow legs. These legs were added 
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after initial feedback, because it was very difficult to estimate the depth of a floating box 
in the air. 

7.2   Gestures 

The proposed gestures suitable for our use are very specific and cannot be found in the 
generic gesture library of Leap Motion classes, so their recognition must be implemented 
almost from scratch. However, an abstract class providing access to the hands and their 
attributes was available and proved very useful for the gesture wrapping. The abstract 
class could not help with evaluating our specific conditions of gestures, though. 

7.2.1   Scale Gesture 

The implementation of the scale gesture is based on the principle that scaling is starting 
directly from the small range around the center of the cube to scale. If the cube is not 
scaled yet, the range is exactly of the size of the unscaled cube. This range remains the 
same throughout the whole process. Therefore, even the last scaling gesture must be 
started from the center of the cube, despite the fact that much larger area is visible on the 
sides. The side of the small cube is three centimeters long. 

After positioning the five-finger pinches of both hands into the sides of the range, 
the gesture is activated. Then the hands must stay in the horizontal tube along the x-axis 
of the cube. Hands must move at least 20 centimeters each, while the difference between 
these movements cannot be more than 7 centimeters. While this threshold might seem 
quite large at first, we had to take extra space into consideration to account for sensor 
errors and imperfections. If each hand is dislocated only very slightly (1 cm), then the 
threshold is shrunk to only 5 centimeters. If hands are moving fast, the dislocations cannot 
be avoided by the hardware and occur regularly. 

7.2.2   Rotate Gesture 

The rotate gestures of both hands are performed on the radio buttons in the center of the 
scene. That means that the distance between the left and the right hand and the left and 
the right button, respectively, must be small, indicating that the hand is close to the button. 
Each button must be touched by at least four fingertips. The fingertips must either collide 
with the surface of the button or be positioned inside the button. Since the button is not a 
physical object, it is not possible to properly touch the object, so positioning the fingers 
inside only indicates a tighter pinch of the fingers. Also, only four fingers are required for 
the same reason. The four fingers must stick to each button during the whole execution 
and the closeness of the hands to the correct button must be fulfilled. 
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The rotation angle of the gesture is 90 degrees for each hand. The difference can-
not be more than 30 degrees between the rotations of both hands. The right hand is rotat-
ing clockwise and the left hand anticlockwise. A challenge in implementation was to 
compute the actual rotation of the hand, because after reaching 360 degrees the rotation 
continues from zero. It was solved by shifting the rotations by 120 degrees from zero. 
Thus, the hands do not rotate over the zero value anymore. 

7.2.3   Carry Gesture 

The beginning and the end of the carry gesture are defined exactly the same, only on 
different platforms. The platform on the left pedestal is designated for the beginning and 
the right for the end. Both hands cannot be farther than 18 centimeters from the center of 
the platform in any direction. Furthermore, in the y-axis direction it cannot be more than 
three centimeters, so platform and hands are on the same vertical level. 

During the whole gesture, both hands must be no more than 40 centimeters apart 
and at the same time no less than 20 centimeters apart. These distances represent the size 
of the cube, so the cube will appear to fall through if the hands are more than the maxi-
mum distance apart. The hands also must stay at the same vertical level of difference no 
more than 5 centimeters, because otherwise the cube could slide and fall. Both hands also 
must face upwards the whole time. This is achieved with the normal of each hand and its 
distance from a vector facing directly upwards. If the distance is under the experimentally 
chosen threshold, the hand is facing upwards enough to accept the gesture. The threshold 
was chosen to represent approximately 15 degrees of tolerance between the hand normal 
and the vector facing upwards. 

7.2.4   Visual Feedback of Gestures 

Some of the conditions for gestures are easier to fulfil than others. To provide feedback 
to the user, if their gesture is still active or already failed, we decided to implement a color 
scheme for cubes. While the scale and rotate gestures are inactive, the cube is red. While 
being active, the color turns yellow. After a failure of gesture, the color returns to red and 
after the acceptance of the gesture the cube turns green for a short time to give a signal of 
gesture success and then defaults to red. These two gestures also have feedback in the 
form of partly executing their actions – during the performance of the gestures, the cube 
is being partly rotated as the hands are being rotated or scaled as the hands are moving 
apart. 

The feedback for the carry gesture is simpler. When the gesture is active, the cube 
is moving with the hands as if carrying the cube in real life. After a carry gesture failure, 
the cube disappears from hands and the cube is respawned on the left pedestal’s platform, 
representing the actual fall of the cube. 
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7.3   Raw Data Logging 

Data obtained from the Leap Motion sensor during each scene update (performed auto-
matically by the Unity engine approximately 60 times per second) are written into the 
comma-separated values file in following form and order: 

• timestamp, 

• hand ID, 

• boolean representing whether the hand is right 

• palm width, 

• palm position (x, y and z), 

• palm normal (x, y and z), 

• palm velocity (x, y and z), 

• hand direction (x, y and z), 

• wrist position (x, y and z), 

• hand rotation (w, x, y and z). 

Each finger has also its own features logged: 

• length, 

• width, 

• tip position (x, y and z), 

• direction (x, y and z). 

For the usability of the dataset in different contexts we decided to include physi-
ological features of the hand – the length and width of each bone in a hand to the end of 
each line. 

7.4   Gesture Events Logging 

Information about gestures is also logged in the comma-separated values format. Each 
gesture has its own log file with only two columns: event timestamp and event ID, where 
the event ID is for all the gestures defined as follows. 

• 0 for the beginning of the gesture; 

• 1 for the acceptance of the gesture; 

• 2 for the failure of the gesture. 
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7.5   Feature Extraction 

Feature extraction is implemented and used real-time, because motor skills categories are 
being recognized for each unsuccessful gesture using classifiers immediately after its fail-
ure point. In every scene update performed by the Unity engine, all raw data are persisted 
into the comma-separated values file. We had two options how to gather all necessary 
raw data and extract features from them:  

• read the file with persisted raw data after the gesture failure according to 
the event timestamps (beginning of the gesture and failure of the gesture) 
or 

• start temporarily storing only the necessary raw data for the ongoing ges-
ture during each scene update into the memory and stop storing the data as 
soon as the gesture fails. 

Due to inconveniences associated with reading files while being written to, we 
decided to use the latter approach. Also, we do not have to store all the raw data, because 
it contains data which we are not interested in our work, but they are still being persisted 
for potential future usage of the dataset. The downside of this approach is, however, that 
the system to keep in the memory necessary raw data during every gesture, even if it is in 
the end successful. The system is easily capable to do so, and it is very simple to delete 
everything when the gesture is successful. 

The extracted features are then persisted into a separate file without any further 
modifications or transformations. Scaling or standardization is applied afterwards and 
only in the classification stage. 

7.6   Classification 

For real-time adaptation, our system needs to perform real-time classification of the motor 
skills category based on the gestures performed by users. Classification is not performed 
within the Unity framework supporting C# programing language, because this program-
ing language does not offer any suitable library for data science. Therefore, we decided 
to use the Python programing language providing the scikit-learn library and perform 
classification in this external environment. 

This Python program accepts feature vectors on standard input and returns the 
class label on output. In C# we can easily communicate these necessaries between the 
Unity framework and this external Python program if we treat the program as an external 
process. Each gesture has own classification program, and therefore has own external 
classification process. After each failed gesture is this external process triggered with 
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feature vector, and the program runs preprocessing and classification on the feature vec-
tor. The result is then received by Unity framework and passed to the corresponding ges-
ture script to enable adaptations in the scene.  

The Python program usable in this manner must be standalone and runnable with-
out any dependencies. Since the training of a classifier takes a very long time and we have 
three external processes with one classifier each running on startup, we trained classifiers 
beforehand and persisted their trained representations. On every startup these classifiers 
are loaded, so the Unity engine does not have to wait a significant amount of time and 
postpone the startup of interactive modules. The external processes are running all the 
time from the startup of the application until its shutdown and passively waiting for fea-
ture vectors to be classified. 

7.6.1   Preprocessing 

After the first experiment focused on obtaining data from users, we completed our train-
ing dataset. Our preprocessing is very simple, because all our features are numeric. Alt-
hough, there are negative values in our training dataset. The values come from the sensor; 
therefore, we expected the values in future be out of the range of values collected in the 
training dataset. These reasons led us into conclusion that the Z-Score would be a very 
appropriate preprocessing step for our data. 

Our feature vectors are not very large, but they are not very small either. Feature 
vectors for scale gesture, carry gesture and rotate gesture consist of 79, 87 and 95 features, 
respectively. A performance of training process with the entire feature vector is pretty 
good, but we tried to reduce dimensionality due to the fact that some of the features in the 
feature vector may be linearly dependent. For this purpose, we tried to use Principal Com-
ponents Analysis, but the less data we used, the significantly worse were the results 
achieved. Therefore, we kept all features in each feature vector. 

7.7   Adaptation 

The adaptation is applied for each gesture separately. In the implementation for the sec-
ond experiment the adaptation was carried out after each failed gesture. Every adaptation 
was based only on the one last failed gesture, therefore any previous adaptations of the 
same gesture for the same user were not taken into any consideration. Later after evalu-
ating the second experiment we, however, found out, that it would be more appropriate 
to take the most recent gestures into consideration and apply the adaptation on multiple 
failed gestures rather than a single gesture. 

After each gesture failure, the vector of features undergoes preprocessing and clas-
sification. When the class is assigned, the system passes the class only to the script han-
dling that type of gestures. This script stores the class and uses it within every gesture 
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recognition until another class is passed to the script. The script for each gesture is han-
dling the class in own way with regards to the original gesture specifications and success 
conditions. However, there is one basic concept, that all the gesture scripts follow – all 
adaptations for users with dyspraxia are used also for users with cerebral palsy. These 
adaptations can either be used as-is or further improved in order to better fit users with 
cerebral palsy. Also, no adaptations apply to healthy users. These adaptations were de-
signed to fit users’ needs in controlling the application. Users are therefore not presented 
these adaptations and are not aware of them. Their interaction with application from their 
point of view should stay exactly the same. 

7.7.1   Adaptation of Rotate Gesture 

There are two adaptations for users with dyspraxia. The first adaptation is enlarging the 
buttons where the gesture is performed. Visibly there is no change, but the colliders of 
both buttons are of 120 % size compared to the original. The second adaptation consists 
of removing the threshold of maximum difference between the angles of rotations of both 
hands. Both hands must stay on the buttons during the whole gesture and both hands must 
rotate at least 90 degrees. 

The adaptation for users with cerebral palsy is also in enlarging the buttons, but 
the main adaptation is that only one hand is required to perform 90 degrees rotation. The 
other hand must be on the button the whole time but can rotate in opposite direction or 
not rotate at all. 

7.7.2   Adaptation of Scale Gesture 

The adaptation for users with dyspraxia consists of removing the threshold of maximum 
difference between movements of both hands. Both hands still must move at least 20 
centimeters away from the center of scaling cube. Also, they both must stay in the hori-
zontal tube along the x-axis of the cube. The adaptation for users with cerebral palsy is 
very similar to the previous adaptation, but instead of both hands moving at least 20 cen-
timeters, it is enough if one hand travels the required distance, while the other stays in the 
horizontal tube. 

7.7.3   Adaptation of Carry Gesture 

There are overall four adaptations of this gesture. Three of them apply to both 
categories and the last adaptation only to users with cerebral palsy. For users with cerebral 
palsy it is very difficult to keep the impaired hand upwards together with moving it with 
the other. Therefore, we decided to require only one hand to be facing upwards for this 
gesture. 

The other three adaptations modify thresholds for both categories. Thresholds of 
maximum distance between hands during the gesture and distance between normal vector 
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of palm and vector facing upwards were both modified to 150 % of their original values. 
The threshold of minimum distance between hands was modified to be 75 % of its original 
value. 
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8   Evaluation of the System 

The proposed system was continuously undergoing evaluation of some parts and want 
through further evaluation alongside with the second experiment and calculating its re-
sults. For the evaluation different approaches are involved according to their suitability. 

8.1   Motor Skills Categories 

We attended a meeting with a professional physical therapist from the Research Institute 
of Child Psychology and Psychopathology in Bratislava in order to evaluate our proposals 
and ideas and to gain inspiration and feedback for improvements. Regarding the recogni-
tion of motor skills categories, our initial proposal was met with understanding from the 
specialist and was regarded as very feasible to use in our context. 

8.2   Gestures 

We distinguish two approaches to the evaluation of gestures, because the first gestures 
need to be properly constructed and then they must undergo testing in order to match their 
realization of the proposed method. Even a perfectly tuned and performed gesture is use-
less if the gesture does not fulfil its purpose, thus the emphasis is placed on the first ap-
proach. 

8.2.1   Proposed Gestures 

We originally proposed two gestures – throw gesture and catch gesture. We were in-
formed by specialist during the consultation meeting that even when our proposed ges-
tures are still quite appropriate for our usage, there are many more feasible concepts. 

We were discussing multiple aspects of hand movements, one of which is the 
pinch position. Very suitable our purposes were usages of two-finger pinch or five-finger 
pinch. Another proposed gesture is crossing the center of body with a hand executing the 
gesture. We decided not to involve this gesture in the end, because we could not find 
appropriate usage of this gesture. Also, the range of the sensor is slightly restricting the 
area where the gesture could be performed. 

The mentioned possible gestures also included pushing an object with both hands, 
pressing a balloon from the left and right side in order to pop it, catching handles and 
balls. Our final gestures were also provided to us with very useful description of possible 
problems and the way users from different motor skills categories practice the movements 
in order to master them. That was one of the reasons why we finally decided to choose 
the carry gesture, rotation gesture and scale gesture. 
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8.2.2   Realized Gestures 

The gesture realization was due to many conditions of each gesture very tedious. After 
finishing the gameplay logic of the experiment and designing the gestures, we presented 
the application to other researchers and ask them for their thoughts on the gesture han-
dling. Most of the researchers were in fact not able to execute gestures, which were de-
signed to be very fluent and not difficult to perform. Therefore, we collected the gesture 
problems from their experiences and from our observations.  

The altered and straightforward gesture implementation was exposed to the same 
procedure. After improving the gesture detection, we identified new problems in sensor 
range and our scene setting. At the end the scene, the gesture conditions and experiment 
were much better tuned and ready for proper experimenting and data obtaining than at the 
beginning. 

8.3   User Models 

Training and evaluating the user models with cross-validation did not confirm their cor-
rectness due to lack of the data. After the first experiment we were doubting the proposed 
user models, but during and after the second experiment it became clear that the user 
models are usable in the context of recognition of motor skills category. The user model 
for the carry gesture yields underwhelming performance compared to other gestures, but 
it might be also due to the type of the gesture or its requirements of the space, because 
the sensor might not be very precise when it is operating on the border of its range. How-
ever, the user models for the rotate and scale gestures appear to perform much better, 
what was observable during the second experiment and can also be observed from the 
results in section 8.7. 

8.4   Experiments 

During the evaluation of gesture realization feasibility, experiment scenario and game-
play was also discussed and reviewed. Suggestions of fellow researchers were taken into 
the consideration, resulting in some changes in our experiment scene. Camera perspec-
tivity was one of the problems, which was resolved by changing the type of the camera 
from perspective to orthogonal. Another problem was in placement of objects in the 
scene, bases of pyramids were repositioned along with the occlusive appearance of the 
control units. 

After changes were made, some of the fellow researchers were additionally ques-
tioned if the problems they identified were resolved by changes. Their consent to execute 
the experiment as it was proposed with applied changes we considered as feasible evalu-
ation of the experiment setup. 
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8.4.1   Participants of Experiments 

All participants of both experiments with dyspraxia or cerebral palsy were carefully se-
lected or approved by the specialist in physical therapy. Healthy participants were se-
lected either by the specialist or by their tutor with no motor skills impairments. The 
participants of both experiments are patients of Research Institute for Child Psychology 
and Pathopsychology in Bratislava. We can rely on the proper selection of the users, be-
cause we cannot think of better classification of users than one done by doctor. 

8.5   Classification 

Classification results depend solely on the classifier. We can help the classifier 
with appropriate preprocessing or other data manipulation based on the domain or data 
knowledge. In our work we evaluate selection of the most appropriate classifies and also 
effects of manipulation with class labels in order to simplify classification problem with 
reduction of class labels. 

8.5.1   Classifiers Comparison 

For the comparison of classifiers, we decided to include the proposed algorithms along 
with some easily usable default algorithms from our chosen scikit-learn library. We also 
added ensemble algorithm XGBoost to improve properties of decision tree. This is the list 
of classifiers we evaluated on our training dataset: Linear Discriminant Analysis (LDA), 
k-nearest neighbors (k-NN), decision tree (DT), Gaussian Naïve Bayes (NB), Support 
Vector Machines (SVM), and XGBoost (XGB). 

Our training dataset for each gesture consists of 15 users: 4 users with dyspraxia, 
4 users with cerebral palsy and 7 heathy users. We have two approaches to evaluate the 
performance of our classifiers based on selecting data onto the test dataset: 

1. selecting a subset of feature vectors from each user and 

2. selecting all feature vectors from one user (or multiple users). 

The dataset was slightly altered before classifier comparison because not every 
category was represented equally. One of the users with cerebral palsy performed an ex-
cessive number of failed gestures of each type. For each gesture the threshold was speci-
fied and if user exceeded the number of failed gestures, the rest of the gestures were not 
taken into consideration. The threshold was chosen for each gesture and each category 
very carefully, so very little data were omitted. The thresholds are listed in Table 1. 

After this alteration of dataset, we equally represent each category of motor skills. 
There are 314 feature vectors for carry gesture, 1987 feature vectors for rotate gesture and 
508 feature vectors for scale gesture by each motor skills category. The overall number 
of feature vectors is therefore large enough to represent the gestures adequately. 
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Table 1. Thresholds for number of user gestures. 

Category Carry Gesture T. Rotate Gesture T. Scale Gesture T. 

Cerebral Palsy 101 1112 172 

Dyspraxia 314 1987 508 

Healthy 58 358 138 

 

The participants of our first experiment were carefully selected to cover the spec-
trum of all categories. If one of them is left out from training process completely, there is 
a very high risk that the spectrum will not be covered accurately by the classifier and 
during the evaluation the user could be heavily misclassified. However, if we take feature 
vectors from each user, so each user is represented in training dataset and evaluating da-
taset, there is a risk that the classifier will also take the user identity along with the motor 
skills category into consideration. 

We decided to perform the comparison based on both approaches of selecting the 
test dataset. In the first approach we used 5-fold cross-validation, in the latter there are 15 
splits corresponding to 15 users, so classifier training and evaluation will be performed 
15 times, once for each split. We performed comparison based on two different scoring 
systems: accuracy and the macro-average of F1 score. Hyperparameter optimization was, 
however, based only on the accuracy. The best achieved results are summarized for each 
gesture separately in Table 2, Table 3 and Table 4. We did not have to hesitate about 
selecting the best classifier, because in each comparison there is one classifier clearly 
standing out, and for all gestures it is the Support Vector Machines algorithm. 

From the tables we can see that our concerns were on point, so we cannot make any 
conclusions based on any of these numbers. Although, the combination of both ap-
proaches is quite sufficient to determine the best classifier, it is hard to tell how successful 
it will in reality be. 

During the hyperparameter optimization with scikit-learn library we encountered 
multiple surprising moments – after large amount of time classifiers tended to perform 
the best with most of the default parameters. Our final classifier has exactly the same 
parameters for each gesture (only non-default parameters are listed): C = 16, probability 

= True, tol = 0.5. 

The C parameter is Penalty parameter C of the error term. The parameter tol 
stands for Tolerance for stopping criterion. The probability parameter handles whether 

to enable probability estimates. A very important parameter, which is the default but 
worth of mention, is the kernel. It defaults to value rbf, which represents Gaussian Radial 

Basis Function (Pedregosa et al.,). 
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Table 2. Comparison of classifiers with 3 categories for rotate gesture. 

Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2 

LDA 0.7654 0.3374 0.7662 0.1501 

k-NN 0.9302 0.3511 0.9302 0.1653 

DT 0.7552 0.3033 0.7544 0.1517 

NB 0.6160 0.3447 0.6087 0.1596 

SVM 0.9405 0.3688 0.9404 0.1674 

XGB 0.9219 0.3340 0.9219 0.1459 

 

Table 3. Comparison of classifiers with 3 categories for scale gesture. 

Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2 

LDA 0.7797 0.3502 0.7799 0.1837 

k-NN 0.9226 0.3920 0.9229 0.1882 

DT 0.7462 0.3426 0.7535 0.1613 

NB 0.6695 0.3300 0.6571 0.1680 

SVM 0.9220 0.3947 0.9220 0.2032 

XGB 0.8957 0.3236 0.8955 0.1548 

 

Table 4. Comparison of classifiers with 3 categories for carry gesture. 

Classifier Accuracy 1 Accuracy 2 F1 macro 1 F1 macro 2 

LDA 0.7892 0.2796 0.7882 0.1332 

k-NN 0.8718 0.3135 0.8714 0.1498 

DT 0.7500 0.3453 0.7532 0.1635 

NB 0.6758 0.4054 0.6762 0.1785 

SVM 0.9036 0.3518 0.9042 0.1731 

XGB 0.8919 0.3419 0.8918 0.1564 
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8.5.2   Classification with Redefined Categories 

While observing the results of the second approach (selecting all feature vectors of a user 
into evaluation dataset) we noticed that there are interesting patterns in confusion matri-
ces. There was a much larger confusion between healthy users and users with dyspraxia, 
than between healthy users and users with cerebral palsy. This can be observed also on 
two-dimensional representation of our dataset for rotate gesture shown in Figure 7. 

The three categories can be ordered by a severity of impairment, so we decided to 
create only two categories and test the second approach again. We propose three ap-
proaches to create only two categories: 

a) omit category of users with dyspraxia, 

Figure 7. t-SNE two-dimensional representation of feature vectors of the rotate gesture. 
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b) merge category of users with dyspraxia with category of users with cere-
bral palsy and 

c) merge category of users with dyspraxia with category of healthy users. 

Table 5 shows the comparison of all of described approaches for two scoring sys-
tems, accuracy and macro-average of F1 score using the second approach for the test da-
taset selection. In most of the cases there is no particular improvement. Both scoring sys-
tems show improved results, but we have to take into the consideration that we now have 
only 2 categories. However, the third approach shows very promising results for the scale 
gesture and for the rotate gesture as well. It is overall the most successful approach. The 
computation of these results was carried out after the second experiment, because we 
were not originally focused on this use case. Nevertheless, the results are very intriguing, 
and we strongly encourage any further research in this particular case. 

Table 5. Comparison of SVM performance. 

Gesture Acc. 2a F1 2a Acc. 2b F1 2b Acc. 2c F1 2c 

rotate 0.6829 0.3949 0.5662 0.3463 0.6874 0.3911 

scale 0.6522 0.4277 0.5303 0.3288 0.7526 0.4987 

carry 0.5558 0.3320 0.6126 0.3624 0.5694 0.3939 

 

8.6   Adaptation 

The constrains of gestures were discussed with the specialist and according to them the 
adaptations were designed. However, the evaluation of these adaptations proved difficult, 
because it is highly subjective. Therefore, not only we asked participants about their opin-
ions, but we also carefully observed their actions together with the specialist. Consulting 
the participants’ opinions on adaptations and our observation, we made a conclusion that 
the adaptations met the needs of impaired participants.  

We were especially concerned about mistakenly adjusting the gestures to the 
healthy users which could ruin the purpose of the game for them. These concerns were 
mostly proven wrong after evaluating the effort and duration necessary to complete the 
game. While the effort and duration, based on our observations, significantly dropped for 
users with cerebral palsy, it could not be significantly observed with users with dyspraxia. 
Healthy users were from this point of view affected minimally or not at all, because we 
did not notice differences between the first and the second experiment. 

The significant decrease in time and effort for users with cerebral palsy was very 
appropriate, because without any adaptations these users were barely able to finish the 
game. With adaptations they were still performing noticeably slightly slower overall, but 
the difference was negligible.  
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8.7   Results 

Our system is applying adaptations based on only one failed gesture using the 
classification. These class labels after each failed gesture were persisted into the separate 
file for each user and each gesture. We decided to compute accuracy for each gesture and 
each user. We have 10 participants of the second experiment, and we decided to make 
user-based average of the accuracy for each category. Therefore, if one of the users has a 
lot of failed gestures and it is being recognized very successfully, it will make the same 
impact as a user having a very small number of failed gestures and was recognized poorly.  

Adaptations in the application were applied after one failed gesture. However, we 
found out that taking more than one gesture of the same type leads to much improved 
results with regards to accuracy. For each array of class labels, we decided not to take 
only one, but wait until k failed gestures indicated the same category. If this threshold is 
2, then the system will wait until there is a second occurrence of any of the already clas-
sified categories. After reaching the threshold, the class label is then carried out and the 
counter resets. If the threshold is set to 1, the same result is obtained as in the original use 
case. In Figure 8, Figure 9 and Figure 10 is shown how the accuracy of recognition of 
each category changes with regards to this threshold. It is clear, that threshold 1 is defi-
nitely not the most accurate, therefore our system could be easily improved after integrat-
ing this continuous idea of adaptation. The data used for figures are in tables. N stands 
for the number of gestures required for decision, accuracy is abbreviated as acc. and F1 
represents macro-average of F1 score. The motor skills categories are abbreviated with 
their initial letters – CP for cerebral palsy, D for dyspraxia and H for healthy users’ motor 
skills category. 

The class arrays of carry gesture in Figure 10 for users with dyspraxia fluctuated 
widely and were inaccurate, so there is not enough data to cover a threshold of more than 
3. That is also the reason why we do not consider threshold for any gesture greater than 
9. Values are either stable at that point or not available. 

We consider the rotate gesture results to be better than the result of scale gesture, 
because the rotate gesture has a much better accuracy with healthy users. If the accuracy 
with healthy users is very high, then it is not an issue if the accuracy for other categories 
are lower, because every now and then the impaired user is able to make progress and the 
user is still feeling involved. However, if the impaired user recognition is perfect, but the 
healthy users’ recognition is poor, then most of the users are most of the time mistreated. 
One has to keep in mind that the majority of users are healthy. If we keep treating such 
users almost perfectly correctly, then every, even small, adaptation to non-healthy user is 
extra value of the system.  
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Table 6. Scoring of category recognition of rotate gesture. 

N Acc. CP F1 CP Acc. D F1 D Acc. H F1 H 

1 0.6152 0.2529 0.2929 0.1497 0.7261 0.2784 

2 0.6596 0.2632 0.2564 0.1645 0.8173 0.3598 

3 0.7333 0.2815 0.2593 0.1611 0.8366 0.3955 

4 0.8194 0.4496 0.1889 0.1429 0.8788 0.5393 

5 0.7619 0.4308 0.1667 0.1111 0.8976 0.6707 

6 0.8545 0.4603 0.1111 0.0833 0.9216 0.7770 

7 0.9444 0.7353 0.0000 0.0000 0.9867 0.8966 

8 0.9375 0.7333 0.1667 0.1111 0.9846 0.8960 

9 0.9286 0.7308 0.1667 0.1111 0.9818 0.8952 

 

  

Figure 8. Accuracy of category recognition of rotate gesture. 
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Table 7. Scoring of category recognition of scale gesture. 

N Acc. CP F1 CP Acc. D F1 D Acc. H F1 H 

1 0.8586 0.3080 0.5921 0.2900 0.5582 0.2361 

2 0.9495 0.4870 0.6336 0.4669 0.6140 0.3317 

3 1.0000 1.0000 0.6877 0.5278 0.6526 0.3680 

4 1.0000 1.0000 0.6325 0.5083 0.7197 0.4902 

5 1.0000 1.0000 0.7667 0.7436 0.7671 0.6030 

6 1.0000 1.0000 0.7500 0.7333 0.7786 0.6084 

7 1.0000 1.0000 0.7619 0.7407 0.7758 0.6071 

8 1.0000 1.0000 0.7778 0.7500 0.8067 0.6157 

9 1.0000 1.0000 0.7333 0.7222 0.8139 0.6188 

 

  

Figure 9. Accuracy of category recognition of scale gesture. 
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Table 8. Scoring of category recognition of carry gesture. 

N Acc. CP F1 CP Acc. D F1 D Acc. H F1 H 

1 0.2887 0.1493 0.5344 0.2937 0.7166 0.2780 

2 0.1944 0.1320 0.6111 0.4848 0.8863 0.5390 

3 0.2833 0.1667 0.6222 0.4881 0.9014 0.6412 

4 0.0625 0.0556 - - 0.9533 0.7875 

5 0.0714 0.0625 - - 0.9818 0.8952 

6 0.1000 0.0833 - - 1.0000 1.0000 

7 0.1250 0.1000 - - 1.0000 1.0000 

8 0.1250 0.1000 - - 1.0000 1.0000 

9 0.0000 0.0000 - - 1.0000 1.0000 

 

  

Figure 10. Accuracy of category recognition of carry gesture. 
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8.7.1   Results of Combined Gestures 

After computing the results for each gesture with multiple feature vectors we de-
cided also to evaluate the accuracy of motor skills category recognition using combination 
of gestures. For each user we combined class labels from all gestures (the first three values 
of new array were the first labels from three original arrays in order). Since the carry 
gesture itself did not exhibit a satisfactory performance, we decided to omit it from com-
bination and combine only rotation and scale gesture arrays. As we expected, the latter 
combination outperformed the first in every single motor skills category. Figure 11 de-
picts the accuracy of the combination consisting of rotate and scale gesture class arrays. 
Values of the scoring methods are in Table 9. 

Table 9. Scoring of category recognition of rotate and scale gesture combination. 

N Acc. CP F1 CP Acc. D F1 D Acc. H F1 H 

1 0.7380 0.2829 0.4670 0.2087 0.6339 0.2568 

2 0.8516 0.3800 0.5176 0.2988 0.7532 0.3158 

3 0.9324 0.4824 0.5167 0.2939 0.7740 0.3485 

4 0.9667 0.7414 0.6104 0.3313 0.8254 0.5207 

5 0.9583 0.7391 0.4635 0.2650 0.8474 0.6277 

6 1.0000 1.0000 0.4444 0.2626 0.8396 0.6535 

7 1.0000 1.0000 0.6000 0.3577 0.8267 0.6485 

8 1.0000 1.0000 0.4722 0.3095 0.8004 0.6380 

9 1.0000 1.0000 0.6389 0.3873 0.8367 0.6524 

Figure 11. Accuracy of category recognition of rotate and scale gesture combination. 
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9   Conclusion 

In our work we analyzed common approaches and methods in our researched field and 
similar fields. This analysis was used as basis for our hypotheses and assumptions and 
created our expectations in their confirmation. In order to do so we proposed the system. 
Our proposals were based on the research field analysis together with consultations with 
the specialist in physical therapy. Our collaboration with the specialist was very fruitful 
throughout multiple part of our work including proposals, execution of experiments, ad-
justments and results representation. 

The realization of our proposals was very tightly connected to their evaluations 
step by step. These multiple feasible approaches overall evaluated our whole solution. 
Based on the evaluation we consider our hypotheses confirmed, supported by the data we 
were able to obtain and process and by the specialist evaluation as well. The results show 
that for motor skills category determination were suitable two out of three proposed ges-
tures, and both gestures performed very well in the adaptation context. The results of scale 
gesture recognition of motor skills categories for 3 gestures in row were better than our 
expectations: 100 % for the healthy users’ motor skills category 68.77 % for the category 
of motor skills of users with dyspraxia and 65.26 % for the users with dyspraxia motor 
skills category. 

Experiments we used for data collection and system evaluation were not involving 
very large number of participants, because of the nature of experiments. Requirements 
for users to be involved in experiments were very strict for the cerebral palsy motor skills 
category and for the dyspraxia motor skills category, because users had to have the diag-
nosis confirmed by a doctor. We encourage further experimenting with larger groups of 
participants. 

Our solution was built to decide whether it is possible for system to recognize 
motor skill category of a user and adapt to the user based on this category. Now, when 
these hypotheses are confirmed we see a large potential in developing this idea further 
and create similar systems with a different goal – to create gestures and techniques able 
to adapt to user more conveniently. 
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Resumé 

V súčasnosti sa do popredia dostávajú aplikácie ovládané gestami používateľov. Kým pre 
mnohých takéto gestá predstavujú rôzne výhody, sú používatelia, ktorí majú problém ta-
kéto gestá vykonávať. Dôvody môže byť napríklad fyzické obmedzenie používateľa ne-
jakým postihnutím a teda jeho neschopnosť tieto gestá bezchybne vykonávať. Keďže 
však gestá možno zaradiť medzi behaviorálne charakteristiky, tak sa nám otvára možnosť 
takéto skupiny rozpoznávať a následne im metódy interakcie prispôsobovať.  

Biometrické charakteristiky sú často využívané na identifikáciu alebo autentifiká-
ciu konkrétneho používateľa, no my sa v práci venujeme inému prístupu – rozpoznávanie 
kategórií motorických schopností. Našim cieľom je zistiť, či aplikácia je schopná takéto 
kategórie adekvátne rozpoznávať a na základe toho sa potom používateľom adekvátne 
prispôsobiť. Na to však treba najprv stanoviť kategórie, ktoré sa snažíme rozpoznávať 
a definovať gestá, počas ktorých budeme rozpoznávanie vykonávať. Naše predpoklady 
treba, samozrejme, experimentálne overiť a na základe toho určiť, či sú takéto prispôso-
benia na základe rozpoznávania motorických schopností možné. 

Motorické schopnosti a virtuálna realita 

Virtuálna realita je pohlcujúcim interakčným systémom, ktorý v používateľovi vytvára 
ilúziu vstupu do virtuálneho sveta (Heim, 2000). Používateľ je teda priamo zapojený do 
systému, s ktorým môže interagovať rôznymi spôsobmi cez špecializované vstupné za-
riadenia a prežívať výsledky svojich vstupov vo virtuálnom svete (Deng et al., 2010; 
Lange et al., 2010). Hoci tieto prístupy nie sú nové, pre získavanie údajov o motorických 
schopnostiach je najdôležitejší ten, kde používateľ interaguje gestami rúk, pretože takto 
interaguje s objektami aj v reálnom svete (Aslan et al., 2014). 

Gestá 

Jedným zo zaujímavých aspektov gest s rukami pre našu prácu je schopnosť systému 
rozpoznať vykonanie gesta používateľom. Na to možno využiť dva prístupy: používateľ 
drží v ruke zariadenie, pomocou ktorého vykonáva gestá alebo ruky používateľa sú sní-
mané kamerou a pomocou vizuálnych vstupov počítač vyhodnotí, či používateľ vykonal 
gesto (Nugrahaningsih et al., 2015). Je viacero spôsobov, ako možno získať a vyhodnotiť 
dáta z pohybu rúk používateľa a hoci sa rôznia aj zariadenia, napríklad Leap Motion a Ki-
nect, cieľom je stále čo najlepšia úspešnosť rozpoznania vykonania gest (Manresa et al., 
2005b; Marin et al., 2014). Okrem rozpoznania gesta samotného sú aj aplikácie, kedy sa 
rozpoznáva aj používateľ, ktorý gesto vykonáva práve na základe vykonávaného gesta 
(Aslan et al., 2014; Imura and Hosobe, 2016b; Jiang et al., 2014). 

Ďalším zaujímavým aspektom je interakcia pomocou gest. Možno sa pomocou 
gest v aplikácii navigovať alebo v rámci nej niečím manipulovať (Cabral et al., 2005b). 
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Na základe takýchto interakčných gest je zložitejšia presná identifikácia používateľa, no 
identifikácia kategórie motorických schopností je trocha všeobecnejšia a preto by takéto 
využitie mohlo byť dostatočne presné pre naše využitie. 

Motorické obmedzenia a interakcia 

Motorické schopnosti používateľov sa vyskytujú už aj dnes v interakčných aplikáciách. 
Či už je to hra pre deti s dyspraxiou (Caro, 2014), aplikácia zameraná na určenie pohyb-
livosti (Landry et al., 2013) alebo aplikácia pre zisťovanie, či je miera motorických schop-
ností používateľov dostatočná pre určitý druh práce (Singh and Aggarwal, 2016). 

Existujú však aj prístupy, kde sa pomocou interakčných systémov dosiahla reha-
bilitácia používateľov po detskej mozgovej obrne, pretože aplikácie primali používateľov 
vykonávať ich zdraviu prospešné gestá za zásterkou hry (Chang et al., 2013; Huang, 
2011; Mousavi Hondori and Khademi, 2014; Oliveira et al., 2016). 

Používateľský model a klasifikácia 

Pre klasifikáciu vzoriek jednotlivých používateľov a určovanie, ktorej triede patria je pr-
voradé vytvoriť správny používateľský model. Ďalej je však potrebné aj vedieť účel kla-
sifikácie, čo môže uľahčiť výber vhodného klasifikátora. Model používateľa v našom prí-
pade predstavujú črty, ktoré sú počítačovou reprezentáciou používateľa (Allen, 1997). 
Určovaním identity na základe týchto čŕt sa zaoberá biometria (Jain et al., 2004). V našom 
prípade sa nezaoberáme konkrétnou identitou, ale kategóriou motorických schopností – 
tá je rovnaká pre viacerých používateľov, zatiaľ čo identita je jedinečná. 

Počas procesu rozoznávania, používateľský model extrahovaný počas chodu ap-
likácie v danom momente musí byť porovnaný so všetkými ostatnými modelmi v data-
báze. Pre takéto porovnávanie je najrozšírenejšou metódou klasifikácia (Aggarwal, 
2014). Veľmi rozšírené sú v súčasnosti klasifikátory k-NN (z angl. k-Nearest Neighbors), 
SVM (z angl. Support Vector Machines) a rozhodovací strom (Aly, 2005). 

Senzory 

Na základe výskumu a vedeckej práce v tejto oblasti máme tri rozumne praktické mož-
nosti:  

• interakčné rukavice (Adamovich et al., 2004; Baker et al., 2004),  

• Leap Motion (Chan et al., 2015; Cui and Sourin, 2014; Marin et al., 2014; Potter 
et al., 2013) a 
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• Kinect (Altanis et al., 2013; Bigdelou et al., 2012; Chang et al., 2013; Huang, 
2011; Jiang et al., 2014; Marin et al., 2014; Mousavi Hondori and Khademi, 2014; 
Zhang et al., 2014). 

Prístupy využívajúce interakčné rukavice dnes už nie sú veľmi zastúpené, pretože 
ostatné dva senzory dokážu získať porovnateľné výsledky bez potreby priameho obme-
dzovania používateľa senzorom a káblami priamo pripojenými k jeho telu. Leap Motion 
aj Kinect sú si veľmi podobné, obe zariadenia sú trojdimenzionálne senzory zachytáva-
júce údaje infračervenými kamerami. Oba boli aj pomerne populárne, až kým sa Micro-
soft nerozhodol zastaviť produkciu a aj podporu senzora Kinect (Wilson, 2017). 

Predpoklady rozpoznávania motorických schopností a prispôsbenia 

Na základe doménovej analýzy predpokladáme, že je možné a vhodné: 

• Klasifikovať motorické obmedzenie pomocou senzora Leap Motion v rámci špe-
cifikovaných kategórií motorických obmedzení na základe koordinačného gesta 
vykonaného používateľom. Takéto koordinačné gesto v kontexte našej práce 
môže byť gesto rotácie, gesto škálovania alebo gesto prenosu, pričom každé z nich 
je vykonané pomocou oboch rúk. 

• Klasifikovať motorické obmedzenie pomocou senzora Leap Motion (ako popí-
sané vyššie) v reálnom čase za chodu aplikácie. 

• Prispôsobiť aplikáciu kontrolovanú gestami rúk používateľovi na základe jeho 
motorického obmedzenia. 

Návrh biometrického systému pre detekciu motorických schopností 

Pre detekciu motorických schopností používateľa potrebujeme najprv špecifikovať kate-
górie týchto schopností. Je potrebné určiť aj gestá, na základe ktorých chceme tieto kate-
górie klasifikovať. Pred klasifikáciou samotnou, musíme dáta týchto gest získať zo sen-
zora Leap Motion a extrahovať z nich črty. Tieto črty môžeme klasifikovať pomocou rôz-
nych algoritmov, z ktorých treba vybrať ten najúspešnejší. Na záver treba vedieť túto kla-
sifikáciu použiť za chodu aplikácie v reálnom čase a zahrnúť prispôsobenia pre jednotlivé 
kategórie motorických schopností. 

Kategórie motorických schopností 

Pre účely rozpoznávania navrhujeme nasledovné tri kategórie motorických schopností: 

• motorické schopnosti zdravých používateľov, 

• motorické schopnosti používateľov trpiacich dyspraxiou a 
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• motorické schopnosti používateľov po detskej mozgovej obrne. 

Gestá 

Berúc do úvahy povahu kategórií motorických schopností, navrhujeme tri rôzne koordi-
načné gestá vykonávané obojručne: gesto rotácie, gesto škálovania a gesto prenosu. 

Gesto rotácie je špecifikované ako súčasná rotácia oboch rúk – ľavej ruky v pro-
tismere hodinových ručičiek a pravej ruky v smere hodinových ručičiek, ako znázorňuje 
aj obr. 2. Aby sa zaručilo, že rotácia oboch rúk bude naozaj súčasná, uhol, o ktorý sa obe 
ruky otočili musí byť takmer rovnaký – treba brať do úvahy istú toleranciu. 

Obr. 2. Gesto rotácie. 

Obr. 1. Gesto škálovania. 
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Gesto škálovania je špecifikované ako súčasné vzďaľovanie sa rúk od seba v horizontál-
nej rovine. Obe ruky počas tohto gesta musia uchopiť objekt všetkými prstami, pričom 
tento úchop aj smer pohybu rúk sú znázornené na obr. 1. Rovnako ako pri predošlom 
geste, obe ruky sa musia od stredu vzďaľovať súčasne a navrhujeme istú toleranciu pre 
rozdiel týchto vzdialeností. 

Posledným gestom je gesto prenosu znázornená na obr. 3. Gesto simuluje prená-
šanie objektu v reálnom svete, napríklad tácky s pohármi. Ruky teda musia byť celý čas 
otočené smerom nahor a v rovnakej výške, inak by sa objekt skĺzol. Ruky musia byť as-
poň v určitej vzdialenosti od seba, inak by sa objekt preklopil keby boli ruky príliš blízko. 
Ak by boli, naopak, priďaleko od seba, tak by objekt prepadol pomedzi ne, takže obe ruky 
musia zostať v nejakej maximálnej vzdialenosti od seba. Objekt treba zdvihnúť z jedného 
miesta, preniesť a položiť na druhé, ako znázorňuje aj obrázok. 

Experimenty 

Navrhujeme vykonať dva experimenty, kde prvý bude slúžiť na zber dát, na základe kto-
rých vyberieme najlepší klasifikátor a druhý overí našu metódu adaptácie a výber klasi-
fikátora. Pre experimenty navrhujeme jednoduchú hru, ktorá zahrnie všetky tri gestá. Cie-
ľom hry bude postaviť pyramídu z kociek. Každú kocku však treba na začiatky vyrobiť 
(pomocou gesta rotácie) a každú jej dimenziu zväčšiť (pomocou gesta škálovania). Po 
zväčšení každej dimenzie treba kocku otočiť (gestom rotácie), aby mohla byť zväčšená 
aj ďalšia dimenzia, až kým nie je celá kocka zväčšená v každej dimenzii. Takto zväčšená 
kocka sa sama presunie na ľavý podstavec, odkiaľ ju treba vziať a preniesť (gestom pre-
nosu) na pravý piedestál, odkiaľ sa už sama presunie na správne miesto v pyramíde. Na-
vrhujeme postaviť pyramídu pozostávajúcu z 15 kociek, aby boli gestá vykonané dosta-
točný počet krát. 

Obr. 3. Gesto prenosu. 
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Metóda rozpoznávania 

Navrhujeme použitie minimálne klasifikátorov k-NN, SVM a rozhodovací strom, pričom 
ďalšie možno vyskúšať v závislosti od knižnice, v ktorej bude klasifikácia implemento-
vaná. V rámci výberu najlepších parametrov navrhujeme vykonanie optimalizácie hyper-
parametrov pre navrhnuté klasifikátory. 

Prispôsobovanie 

Prispôsobovanie sa aplikácie navrhujeme oba pre kategórie motorických schopností po-
užívateľov po detskej mozgovej obrne a používateľov s dyspraxiou. Kvôli fyzickým ob-
medzeniam, ktoré používatelia po detskej mozgovej obrne majú navrhujeme odstránenia 
kritéria pre súčasné vykonávanie gest oboma rukami. Obe ruky sa musia podieľať na 
každom geste, ale stačí, keď jedna z nich vykoná svoju časť gesta, zatiaľ čo druhá, v mno-
hých prípadoch postihnutá, ruka bude dôležitá najmä pre začatie gesta, kde zaujme svoju 
pozíciu, ale nemusí vykonať dostatočný pohyb na splnenie podmienok gesta. 

Prispôsobovanie sa používateľom s dyspraxiou je menej radikálne, pretože ich 
ruky sú samostatne schopné vykonať svoj podiel na geste, majú však problémy s ich ko-
ordináciou. Preto navrhujeme také prispôsobenie, ktoré v konečnom dôsledku bude stále 
vyžadovať vykonanie gesta oboma rukami, no bez väčšieho dôrazu na ich súčasné a ko-
ordinované pohyby. 

Realizácia navrhnutého systému 

Scéna experimentov na obr. 4 je implementovaná v prostredí Unity 2018.3.8f1 v spolu-
práci s ovládačom zariadenie Leap Motion verzie 4.0.0. Herná logika je implementovaná 
v jazyku C#, zatiaľ čo klasifikácia je vykonávaná mimo Unity prostredia v jazyku Python 
za použitia knižnice scikit-learn. 

Keďže gestá v návrhu naše vlastné a veľmi špecifické, museli byť implemento-
vané od základu. Počas vykonávania gest, kocka mení farby na základe toho, ako sa po-
užívateľovi darí. Pokiaľ gesto prebieha, je žltá. Ak sa gesto nepodarí, tak zostane červená 
a ak je gesto úspešne vykonané, na krátku chvíľu sa zmení na zelenú, a potom opäť na 
červenú. 

Klasifikácia 

Klasifikácia je implementovaná ako samostatná aplikácia pre každé gesto. Pri spustení 
systému sa pre každé gesto spustí jeden zvlášť proces s klasifikátorom, ktorý očakáva 
vyextrahované črty na štandardnom vstupe a navráti rozpoznanú kategóriu motorických 
schopností na výstupe. Vstup aj výstup z týchto samostatných aplikácií zabezpečuje sa-
motný extraktor čŕt pre každé gesto pomocou samostatného procesu v jazyku C#. 
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Vyhodnotenie systému 

Kategórie motorických schopností a aj gestá, ktoré umožnili ich rozpoznávania boli sta-
novené po konzultáciách s fyzioterapeutkou z Výskumného ústavu detskej psychológie 
a patopsychológie v Bratislave. Prvého experimentu sa zúčastnilo 15 používateľov a dru-
hého experimentu 10 používateľov, ktorí boli v oboch prípadoch vybraní zo strany vý-
skumného centra, aby dostatočne pokryli požiadavky vyplývajúce z povahy našej práce. 

Najlepší klasifikátor pre náš systém nám vyšiel klasifikátor SVM, ktorý sme za-
komponovali aj do druhého experimentu a ním stanovené kategórie sme použili na vy-
hodnotenie úspešnosti nášho systému. Vyhodnocovali sme pomocou dvoch rôznych met-
rík – presnosti a makro-priemerovaného skóre F1. Okrem úspešnosti na základe jedného 
vyhodnoteného gesta sme však vyhodnotili aj úspešnosť, keby sme na určenie kategórie 
použili viacero po sebe idúcich gest. Treba podotknúť, že zaznamenávame a klasifiku-
jeme neúspešne prevedené gestá, pretože našim cieľom je prispôsobovanie aplikácie, 
ktoré nie je také žiadúce, pokiaľ je používateľ schopný gesto vykonať úspešne. 

Z obr. 5 a obr. 6 možno pozorovať, že takto dosiahnuté výsledky sú presnejšie ako 
určovanie kategórie len na základe jedného gesta. Podrobné výsledky pre gesto rotácie sa 
nachádzajú v tbl. 1 a pre gesto škálovania v tbl. 2. Výsledky gesta prenosu sú horšie, čo 
je spôsobené aj nedostatkom chybových gest tohto typu počas druhého experimentu. 
DMO predstavuje kategóriu používateľov po detskej mozgovej obrne, D predstavuje ka-
tegóriu používateľov s dyspraxiou a Z kategóriu zdravých používateľov. N predstavuje 
počet gest potrebných na určenie kategórie. 

Prispôsobovanie sa používateľovi na základe kategórie jeho motorických schop-
ností nebolo možné exaktne odmerať, pretože je to veľmi subjektívne a záleží to od kon-
krétneho používateľa. Na základe pozorovaní používateľov počas oboch experimentov, 

Obr. 4. Rozloženie herných objektov v rámci scény experimentov. 
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ich porovnávaním a konzultáciou s fyzioterapeutkou sme však došli k záveru, že použí-
vateľom po detskej mozgovej obrne sa bol systém významným spôsobom schopný pri-
spôsobiť. Pri používateľoch s dyspraxiou sme taktiež spozorovali isté náznaky, no neboli 
také výrazné. Pri zdravých používateľoch sa systém správal zväčša presne tak, ako v pr-
vom experimente a nezaznamenali sme takmer žiadne náznaky, že by sa systém snažil 
uľahčovať interakciu zdravým používateľom. 

Záver 

V tejto práci sme vytvorili systém, ktorý bol schopný počas chodu rozoznávať motorické 
schopnosti používateľa a adekvátne sa u na ich základe prispôsobovať. Na základe vý-
sledkov konštatujeme, že sa potvrdili všetky tri predpoklady, ktoré sme si vytýčili ako 
ciele tejto práce. Výsledky dokonca prekonali naše očakávania, najmä v prípade vyhod-
nocovania viacero za sebou idúcich gest, a preto vrelo povzbudzujeme k ďalšiemu vý-
skumu v tejto oblasti a posúvaním pôvodnej myšlienky ďalej – skúšaním nových gest či 
aplikácií našich záverov v reálnom systéme a nie len v experimente. 

Tbl. 1. Metriky pre rozpoznávanie kategórií gesta rotácie. 

N Pr. DMO F1 DMO Pr. D F1 D Pr. Z F1 Z 

1 0.6152 0.2529 0.2929 0.1497 0.7261 0.2784 

2 0.6596 0.2632 0.2564 0.1645 0.8173 0.3598 

3 0.7333 0.2815 0.2593 0.1611 0.8366 0.3955 

4 0.8194 0.4496 0.1889 0.1429 0.8788 0.5393 

5 0.7619 0.4308 0.1667 0.1111 0.8976 0.6707 

6 0.8545 0.4603 0.1111 0.0833 0.9216 0.7770 

7 0.9444 0.7353 0.0000 0.0000 0.9867 0.8966 

8 0.9375 0.7333 0.1667 0.1111 0.9846 0.8960 

9 0.9286 0.7308 0.1667 0.1111 0.9818 0.8952 

 

Tbl. 2. Metriky pre rozpoznávanie kategórií gesta škálovania. 

N Pr. DMO F1 DMO Pr. D F1 D Pr. Z F1 Z 

1 0.8586 0.3080 0.5921 0.2900 0.5582 0.2361 

2 0.9495 0.4870 0.6336 0.4669 0.6140 0.3317 

3 1.0000 1.0000 0.6877 0.5278 0.6526 0.3680 

4 1.0000 1.0000 0.6325 0.5083 0.7197 0.4902 

5 1.0000 1.0000 0.7667 0.7436 0.7671 0.6030 

6 1.0000 1.0000 0.7500 0.7333 0.7786 0.6084 

7 1.0000 1.0000 0.7619 0.7407 0.7758 0.6071 

8 1.0000 1.0000 0.7778 0.7500 0.8067 0.6157 

9 1.0000 1.0000 0.7333 0.7222 0.8139 0.6188 
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Obr. 5. Presnosť rozpoznávania kategórií gesta rotácie. 

Obr. 6. Presnosť rozpoznávania kategórií gesta škálovania. 
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Appendix A   Technical Documentation 

The core of the technical documentation in our case is the way of realization of our sys-
tem, which is described in the main work in detail. However, we would like to also in-
clude a class diagram depicted in Figure 12 to complement the text description of the 
realization for better understanding. In diagram there are not included external processes 
– classifiers. Each Extractor possess one connection to corresponding classifier. 

A.1   Requirements 

The system for motor skills determination and adaptation, where both experiments were 
executed, is designed in Unity engine, therefore does not require anything else but Leap 
Motion Sensor to be able to run. There are required versions to run our system. 

• Unity 2018.3.8f1  

• Leap Motion Controller 4.0.0 

Figure 12. Class diagram of system for experiments. 
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The data science part, where all results were computed, is included in this work 
as Jupyter Notebook, and has following main requirements. 

• Python 3.6 or newer 

• numpy 1.16.1 

• pandas 0.24.2 

• py-xgboost 0.80 

• scikit-learn 0.20.1 

• scipy 1.2.1 
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Appendix B   Project Work Plan 

B.1   Spring Semester Plan (DP1) 

• Research motor skills usage within virtual reality, gesture possibilities for 
virtual reality, adaptation of systems to users, user modeling, biometrics 
and available sensors. 

o A lot of researching and reading took place at the beginning of the 
semester, however, after while it was postponed and delayed and 
finished at the end of the spring semester. 

• Refine assumptions after each research. 

o Done continuously during reading related work. 

• Summarize research findings and final assumptions. 

o Summarization was done at the very end of the semester, several 
weeks after the original due date. The delay was caused by exces-
sive amount of work required by both universities at the same time. 

• Create solution idea based on assumptions and related work summariza-
tion. 

o Solution was being created continuously during the whole semes-
ter. 

B.2   Winter Semester Plan (DP2) 

• Design training experiment. 

o Designing training experiment was delayed because of evaluation 
of our proposed gestures and motor skills categories by specialist. 

• Choose candidates for training experiment. 

o Candidates were chosen by specialist according to the plan. 

• Implement data miner. 

o Data miner implementation had to be postponed due to lack of ex-
periment design and was finished with delay. 

• Execute experiment obtaining training data. 

o Experiment execution postponed to DP3, because of communica-
tion problems with our specialist. 
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o Experiment was executed during the break between semesters even 
before DP3 officially stared. 

• Train multiple classifiers. 

o Postponed to DP3 due to lack of data. 

o Classifiers were trained and evaluated continuously with several 
different ideas after first experiment almost until the second exper-
iment execution. 

• Select the best classifier. 

o Postponed to DP3 due to lack of data. 

o The best classifier was selected much later than expected, but still 
sufficiently ahead of execution of testing experiment. 

B.3   Summer Semester Plan (DP3) 

• Design testing experiment. 

o Testing experiment was designed along with training experiment 
during the DP2. 

• Implement real time identification. 

o Real time identification was ready already in DP2, missing classi-
fier to be just plugged in to carry out the result. 

o Real time identification was plugged in with some dependency 
troubles, which did not delay execution of testing experiment. 

• Enhance selected application by user adaptations. 

o Adaptations were implemented according to plan, before execution 
of testing experiment. 

• Execute testing experiment. 

o Testing experiment was executed according to our plan in coordi-
nation with our specialist. 

• Collect results. 

o Results were computed at the end of the semester. 

• Evaluate solution. 

o Solution has been continuously evaluated during DP2 as well. 
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o Overall solution evaluation was carried out at the end of the semes-
ter as planned. 
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Appendix C   Description of Digital Part of Thesis 

Evidence number of thesis in information system: FIIT-182905-73652 

 

Content of digital part of thesis (ZIP archive): 

Content Description 

DP_prilohy_digital_LukasBabula.zip  

¦   Lukas_Babula-Master’s_Thesis.pdf digital version of thesis 

¦   preprocess-train.ipynb data processing and evaluation notebook 

¦     

+---classifiers trained classifiers 

¦       move_svm_20190320-043305-569627  

¦       move_xgb_20190319-234025-402902  

¦       rot_svm_20190320-043312-957246  

¦       rot_xgb_20190319-234033-593410  

¦       scale_svm_20190320-043313-469252  

¦       scale_xgb_20190319-234035-579548  

¦         

+---data-dp data from the first experiment 

+---data-dp-eval data from the second experiment 

+---experiment1 scene and assets of the first experiment 

+---experiment2 scene and assets of the second experiment 

 

Digital part of thesis consists of 2.13 GB of data. Therefore, it is stored in G Suite for 
Education. 

Name of the turned in archive: DP_prilohy_digital_LukasBabula.zip 


