Interpretability of machine learning models created by clustering algorithms

SLOVAK UNIVERSITY OF TECHNOLOGY IN BRATISLAVA FIIT FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES Author: Jakub Janeček Supervisor: Ing. Jakub Ševcech, PhD.

Motivation

Models separating data into subgroup tend to be hard to interpret. Especially when processing high-dimensional data.

Goals

- Provide interpretation of difference between two data segments based on attribute importance
- Find the trade off between simplicity of explanation and its goodness

Create reduction

- Method for identifying subset of attributes that distinguish two data groups
- Metric for evaluating created attribute reductions

$$RM = \left(1 + \left(\frac{n_1 - n_2}{n_1}\right) * w_1\right) * (1 - (r_1 - r_2) * w_2$$

- n_1 original size of attr. set
- r_1 score of test clf. on orig. data
- r₂ score of test clf. on red. data n_2 – reduced size of attr. set
- w_1, w_2 weights for both factors of metric

Used techniques

• Logistic regression with L1 regularization for finding the most feasible subset of attributes with our defined metric

Data and techniques for experiment

- MNIST dataset as data for clustering
- Topological data analysis (Kepler mapper) as a substitution for clustering algorithm to provide segmentation of data

Compare reduction results

Did we select important attributes?

Test reduction

Results

First part of the results (on the left)

Calculate reduction metric score

- Four metrics used to measure if the selected attributes with L1 regularization are really important
- Compared against other techniques for feature selection
- Used metrics:
 - overlap of attribute sets (order plays **no** role)
- average precision (order plays role)
- two setups of NDCG (order plays role)
- Differences in chosen attributes can be attributed to . different underlying approaches for techniques
- Based on these tests (and others mentioned in our work) we concluded we did select important attributes
- Second part of the results (on the right)
- Data from the conducted user study with 21 participants
- Tried to evaluate, if the results our method provides, are useful for easing up the interpretation of clustering model
- Participants were asked to select good and bad attributes for interpreting the differences between two data groups
- Compared the gathered data against the results of our method
- We concluded that we fulfilled this task to some degree, but more can still be done to improve these results.

Did we select good attributes for humans?

User study web application: https://userstudy-dp-xjanecekj.herokuapp.com/