Probabilistic models for analysis of performed task STU FIT based on eye movement

Author: Andrej Vítek (andrej2024@gmail.com) Supervisor: Dr. Jozef Tvarožek

Motivation

Problem:

- Eye movements and gaze patterns contain a lot of information about the observer, performed task and visual stimuli
- Models which are using gaze, are often based only on the evaluation of **aggregated** metrics of gaze, thereby losing temporal information

Solution:

- Create additional features by using probabilistic models, which could abstract temporal information from eye-tracking data
- Use created features to improve results of standard models

Datasets

Properties:

- Eye-tracking
- Tasks given in same order

Dataset	Participants	Programs
1	. 55	4(6)
2	135	15(45)
3	139	15(45)
4	114	15(45)
5	111	15(45)

Task:

- Code comprehension
- Write correct output after execution

```
1 // Uvažujte funkciu gn(). Čo vypíše nasledujúci program?
 3 int gn( int aa, int bb )
 4 {
      int cc = aa + bb;
      bb = cc / aa;
       return bb + cc;
10
12
13 int main()
14 {
       printf("%d", gn( 3, 2 ));
15
16
17
       return 0;
18 }
19
```

Contributions

Creation and evaluation of new method:

 Shown improvement by additional 5-7 % over baseline

Analysis of features:

- Domain of **code reading**
- Feature importance per type of code complexity

Analysis of features

Programs in datasets divided into groups based on their type of **complexity**:

- Arithmetic based
- Logic based
- Loops based
- Argument based

Analysed features importance for each type of complexity (features = input features)

Example (Arithmetic complexity):

Slovak University of Technology

Uses Hidden Markov models:

- Data based approach
- Sequence based learning

Models trained using combination of **input features**:

- Fixation coordinates
- Saccade length
- Saccade angle (relative/absolute)
- Fixation duration

Features created by using likelihood measure (Sequence generation probability)

Model task:

 Prediction of answer correctness by using eye-tracking data

Evaluated with multiple classifiers:

- Gradient boosted trees
- Support vector machine
- Logistic regression

Results compared with baseline model which only uses aggregated features

Results

- Greatest improvement is achieved by Gradient boosted trees classifier:
- Improvement by additional 5-7 % over baseline model