Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FII'T-182905-72287

Bc. Branislav Pecher

Interpretability of Neural Network Models
Used in Data Analysis

Master’s Thesis

Supervisor: Ing. Jakub Sevcech, PhD.

April 2019

Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

FII'T-182905-72287

Bc. Branislav Pecher

Interpretability of Neural Network Models
Used in Data Analysis

Master’s Thesis

Study program: Intelligent Software Systems
Field of Study: 9.2.5 Software engineering, 9.2.8 Artificial Intelligence
Place: Institute of Informatics, Information Systems and Software Engineering

Supervisor: Ing. Jakub Sevcech, PhD.

April 2019

DECLARATION

I hereby declare that this thesis was composed by me with the help of literature listed in this

work and the consultations with my supervisor.

Bratislava, April 2019 s

Bc. Branislav Pecher

il

ACKNOWLEDGMENTS
I would like to thank Ing. Jakub Sevcech, PhD. for his guidance and help in developing this

master’s thesis. I would also like to thank my family and friends for their patience and support
during the development of this work.

SLOVENSKA TECHNICKA UNIVERZITA V BRATISLAVE
FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGII

L B O
e ® @0

oo 00 S
F

d
o | =

Zadanie diplomovej prace

Meno Studenta: Bc. Branislav Pecher

Studijny program: Inteligentné softvérové systémy

Studijny odbor: Softvérové inZinierstvo — hlavny $tudijny odbor
Umela inteligencia — vedl'ajsi $tudijny odbor

Ndzov price: Interpretovatel’nost’ modelov neurénovych sieti vyuzivanych
na analyzu udajov

Samostatnou vyskumnou a vyvojovou ¢innostou v ramei predmetov Diplomovy projekt 1, II, III
vypracujte diplomovil pracu na tému, vyjadrent vysSie uvedenym nazvom tak, aby ste dosiahli
tieto ciele:

Vieobecny ciel:
Vypracovanim diplomovej price preukazte, ako ste si osvojili metddy a postupy riedenia
relativne rozsiahlych projektov, schopnost’ samostatne a tvorivo rieit' zlozité ulohy aj
vyskumného charakteru v stlade so siéasnymi metddami a postupmi Studovaného odboru
vyuzivanymi v prisluSnej oblasti a schopnost’ samostatne, tvorivo a kriticky pristupovat’ k
analyze moznych rieSeni a k tvorbe modelov.

Specificky ciel:
Vytvorte rieSenie zodpovedajice navrhu textu zadania, ktory je prilohou tohto zadania.
Névrh bliZSie opisuje tému vyjadrenii ndzvom. Tento opis je zavdzny, ma vSak rdmcovy
charakter, aby vznikol dostato¢ny priestor pre Vasu tvorivost.

Riad’te sa pokynmi Vasho vediceho.

Pokial’ v priebehu rieSenia, opierajiic sa o hlb3ie poznanie stasného stavu v prisludnej oblasti,

alebo o priebezné vysledky Vasho rieSenia, alebo o iné zavazné skutonosti, dospejete spoloéne

s Vadim veducim k presvedCeniu, Zze nieCo v texte zadania a/alebo v ndzve by sa malo zmenit,

navrhnite zmenu. Zmena je spravidla mozna len pri dosiahnuti kontrolného bodu.

Miesto vypracovania: Ustav informatiky, informaénych systémov a softvérového inZinierstva,
FIIT STU v Bratislave

Vediici prace: Ing. Jakub Sevcech, PhD.

Terminy odovzdania:
Podl'a harmonogramu Stadia platného pre semester, v ktorom mate prislu$ny predmet
(Diplomovy projekt I, II, III) absolvovat’ podl'a Vasho $tudijného planu
Predmety odovzdania:
V kazdom predmete dokument podl'a pokynov na www. fiit.stuba.sk v Gasti:
home > Informécie o > §tidiu > harmonogram $tidia > diplomovy projekt.

V Bratislave diia 12. 2. 2018 SLOVENSKA TECHN!GKA UNIVERZITA
RATISLAVE

Fakulta lnformaiiky a informaénych technol Z
likovidova 2, 542 16 Bratislava 4
prof. Ing. Pavol Névrat, PhD.

riaditel’ Ustavu informatiky, informaénych systémov
a softvérového inzinierstva

SLOVENSKA TECHNICKA
UNIVERZITA V BRATISLAVE
FAKULTA INFORMATIKY

A INFORMACNYCH TECHNOLOGII

MW
— =
-G

Ndvrh zadania diplomovej prace

Finélna verzia do diplomovej préce *

Student:
Meno, priezvisko, tituly: Branislav Pecher, Bc.
Studijny program: Inteligentné softvérové systémy
Kontakt: branop95@gmail.com
Vyskumnik:
Meno, priezvisko, tituly: Jakub Sevcech, Ing. PhD.
Projekt:
e Interpretovatelnost modelov neurénovych sieti vyuzivanych

na analyzu Gdajov

Interpretability of neural network models used in data
analysis

Ustav informatiky, informaénych systémov a softvérového
inZinierstva, FIIT STU, Bratislava

Oblast problematiky: strojové ucenie, neurdnové siete

Nazov v anglictine:

Miesto vypracovania:

Text navrhu zadania®

Modely neurénovych sieti sa v sti¢asnosti vyuzivajd v mnohych oblastiach, ako je napriklad
medicina a bankovnictvo. Pri typickom pouZivani sa snazime vytvorit také modely, ktoré
dokazu svoju Ulohu riesit ¢o najpresnejsie a teda s ¢o najmen3ou chybou. AvSak presnost
nie je v3etko, lebo takymto spésobom &astokrét vznikaju modely, ktoré sa ludom javia ako
Cierne skrinky, ktorym neddveruju. Ak im nie sme schopni vysvetlit ako sa nd% model
dopracoval k vysledku, tak fudia mézu mat problém s jeho akceptovanim a pouzivanim a
uprednostnia jednoduchsi, ale nepresnejsi model. Napriklad interpretovat modely
neurénovych sieti na zaklade vah prepojeni medzi neurénmi je vel'mi tazké, hlavne pri
sietach s vy$8im mnozstvom skrytych vrstiev.

Analyzujte existujlice pristupy, ktoré sa pouzivaji na vysvetlenie a zdévodnenie vysledkov
produkovanych modelmi strojového ucenia bez zavislosti od pouzitého modelu a na
pristupy, ktoré sa zameriavaji na zlepSenie interpretovatelnosti vysledkov modelov
neurénovych sieti. Navrhnite metddu na analyzu Gdajov vyuZivajicu neurdnové siete,
priCom sa zamerajte na jej interpretovatelnost a jednoduchost vysvetlitelnosti. Navrhnut
metddu overte a demonstrujte jej pouZitie na modeli netrividinej zloZitosti.

: Vytlacit obojstranne na jeden list papiera

2 150-200 slov (1200-1700 znakov), ktoré opisujd vyskumny problém v kontexte sii¢asného stavu vratane
motivacie a smerov rieSenia

Literatura®

« Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. "Why should i trust you?":
Explaining the predictions of any classifier. In Proceedings of the 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD '16, pages
1135-1144, New York, NY, USA, 2016. ACM.

» Montavon, G., Samek, W., and Mdllerr, K.-R. (In press). Methods for interpreting and
understanding deep neural networks. Digital Signal Processing, 73(Supplement C):1 - 15.
DOI: 10.1016/j.dsp.2017.10.011. Dostupné 7
http://linkinghub.elsevier.com/retrieve/pii/S1051200417302385.

Vyssie je uvedeny navrh diplomového projektu, ktory vypracoval(a) Bc. Branislav Pecher,
konzultoval(a) a osvojil(a) si ho Ing. Jakub Sevcech, PhD. a sthlasi, Ze bude takyto projekt viest
v pripade, Ze bude prideleny tomuto Studentovi.

V Bratislave dfia 7.1.2018

Podpis Studenta Podpis vyskumnika

Vyjadrenie garanta predmetov Diplomovy projekt I, 11, HI
N&vrh zadania schvéleny: 4no f}:ﬂ'eA

Dna: //"Z’f , 9?-’0%9

..

3 i

P/ g/
4 f F
\éﬁﬁ / i

Podpis garanta predmetov

3 2 vedecké zdroje, kazdy v samostatnej rubrike a s (idajmi zodpovedajlcimi bibliografickym odkazom podla
normy STN ISO 690, ktoré sa viazu k téme zadania a preukazujd vyskumnud povahu problému a jeho
aktualnost (uvedte vietky potrebné tdaje na identifikaciu zdroja, priCom uprednostnite vedecké prispevky v
¢asopisoch a medzindrodnych konferenciach)

Nehodiace sa preciarknite

Anotacia

Slovenska technickd univerzita v Bratislave

FAKULTA INFORMATIKY A INFORMACNYCH TECHNOLOGIT

Studijny program: Inteligentné Softvérové Systémy

Autor: Bc. Branislav Pecher

Diplomova prica: Interpretovatel’ nost’ modelov neurénovych sieti vyuzivanych na analyzu
udajov

Vedici price: Ing. Jakub Sevcech, PhD.

December 2019

Hlboké neurénové siete sa v poslednych rokoch stavaji najpopuldrnejSim modelom pre
rieSenie roznych uloh, ako su napriklad klasifikdcia obrdzkov a textu, alebo urCovanie senti-
mentu. Vo svojej podstate su hlboké neurénové siete schopné sa naucit’ reprezentdciu vysoko
nelinedrnych a komplexnych funkcif, pricom naucené znalosti ukladajd vo forme véh napriec
mnohymi vrstvami. To zapriCifuje, Ze je ' azké porozumiet’ jednotlivym rozhodnutiam, ktoré
boli spravené. Preto su neurénové siete povazované za Ciernu skrinku, ktorej chyba transpar-
entnost’, a preto ich prijatie a ndsledné vyuZivanie je st’azené v doménach, kde je cena chyby
vysokd, ako je bankovnictvo alebo zdravotnictvo, ked Ze takymto modelom je t'azké verit .
Aby sa zvySila dovera I'udi v modely hlbokych neurénovych sieti, je podstatné, aby modely
vedeli svoje rozhodnutia vysvetlovat’. Tieto dovody vedu k novym oblastiam vyskumu v
ramci hlbokého ucenia. Jednou z napopuldrnejSich metdd vyuzivanych na vysvetlovanie
rozhodnuti neurénovych sieti je urovanie vyznamnosti vstupnych ¢ft, vyjadrenej ¢islom,
pouzitim atribu¢nych metdd. V tejto diplomovej prici sa zaoberdme ndvrhom novej atribucnej
metddy zaloZenej na zavedeni portich do dét, ktord dokdZe zohl'adnit’ interakcie medzi jed-
notlivymi ¢rtami v datach. To bude mat’ za nasledok, Ze dovera v modely natrénované nad
datami so zévislost'ami sa zvySi. Zameriavame sa hlavne na vysvetlovanie rozhodnuti v
doméne textu, ktory je reprezentovany za pomoci vnarania slov, tym, Ze sa pozoruji zmeny
vo vystupe ked’ st niektoré vstupné Crty naruSené. Ro6zne pristupy na urCovanie interakcie
medzi slovami a na zavddzanie poruch do textu su vyskusané a overené. Vysledky z naSich
experimentov ndm naznacuju, Ze naSa metdda je lepSia v identifikovani dolezitych ¢it, ktorych
dodlezitost’ je inak schovand kvoli interakcidm v datach. Avsak, v pripade ked’ chceme ndjst’
iba td najdoleZzitejsiu Crtu, alebo zopar takychto ¢it, naSa navrhnutd metéda nie je najlepSou

vol’bou.

xi

Annotation

Slovak University of Technology Bratislava

FACULTY OF INFORMATICS AND INFORMATION TECHNOLOGIES
Degree Course: Intelligent Software Systems

Author: Bce. Branislav Pecher

Master thesis: Interpretability of Neural Network Models Used in Data Analysis
Supervisor: Ing. Jakub Sevcech, PhD.

April 2019

In the last few years, the deep neural networks are emerging as the most popular method for
many tasks, such as image and text classification or sentiment detection. Basically, the deep
neural networks are able to learn to represent highly non-linear and complex functions, with
its knowledge saved in weight across multitude of layers. Therefore, it is hard to understand
specific decisions made. This makes the neural networks a black box models that lack trans-
parency, and therefore their adoption and use in areas where the cost of errors is high, like
banking or healthcare, is impeded due to low levels of trust. In order to increase the trust in
deep neural network models and their use in industry, it is critical for models to be able to
explain their decisions. These reasons lead to new research areas in the field of deep learning.
One of the most popular approaches for explaining the decisions of neural network is using
attribution methods to assign relevance scores to input features. In this master thesis, we
propose a new perturbation-based attribution method that, unlike other attribution methods,
can take into consideration the inherent interactions present in data. Thus, increasing the
trust in model trained even on data with interactions. We are focusing on explaining the
decision in domain of text with word embedding representation by observing the changes
in output when the input features are perturbed. Different approaches for determining the
interactions between words and for perturbing the text are explored and evaluated. The results
from our experiments indicate that our method is better for finding the important features that
can otherwise be hidden due to the interactions. However, when we want to find the most

important feature, or a small number of them, our proposed method performs rather poorly.

xiil

Contents

1
2
2.1
2.2
3
3.1
3.2
33
3.4
4
5
6
6.1
6.2

Introduction

Artificial Neural Networks

Simple Feedforward Neural Networks

Convolutional Neural Networks

Interpretability of Neural Networks

Model-Agnostic Generation of Proxy Models
3.1.1 Local Interpretable Model-Agnostic Explanations
Extracting Rules from Trained Neural Networks
Visualising What Neural Network has Learned

3.3.1 Visualising Interesting Parts of Images Used for Prediction

3.3.2 Visualising the Activations of Neurons and Training Process

Generating Input Attribution for the Decision
3.4.1 Weight Magnitude Analysis Methods
342 GradientMethods L.
3.4.3 Input Perturbation Methods

Analysis Summary and Findings
Thesis Goals and Hypotheses

Determining Relevance of Correlated Features

Proposed Method Details
6.1.1 GenerateBaseline
6.1.2 Identify Interactions
6.1.3 PerturbFeatures
6.1.4 Calculate Relevance Score
6.1.5 PresentResults
Hypothesis Evaluation Approaches
6.2.1 Denoising

XV

11
13
13
15
16
17
19
21
23
25
31

39

41

6.2.2 Comparison with Attribution Based Methods
6.2.3 Evaluate through User Marked Results

7 Correlated Perturbations on Text Data Set

8 Experiments for the Proposed Perturbation Method

8.1 Datasets
8.2 Method Specifications

8.3 Experiment: Denoising

8.4 Experiment: Comparison with Attribution Methods

8.5 Experiment: User Experiment .

8.6 Results Summary and Discussion
9 Conclusion
Resumé
References
A Technical Documentation
B Plan of Work and its Fulfilment
C IIT-SRC Submission

D Electronic Medium

Xvi

55

59
59
61
62
63
67
70

75

77

87

Chapter 1
Introduction

Machine learning models are used in many different disciplines, like medicine for detecting
tumors or other diseases, or in banking for detecting fraud or deciding, if the person is eligible
for mortgage. When creating machine learning models, we aim to achieve the highest possible

accuracy to guarantee that there would be no errors present and so can be used freely.

However, to use the machine learning models, we should be able to tell why the decision
was made by the model. This way we ensure that the model is behaving like it should and
is not prone to making a mistake. This is really important in high risk environments, like
medicine, where a simple mistake can have severe consequence. If we cannot explain why
the machine learning model is behaving the way it is, we cannot build trust in it and people
will be inclined to use other models, for which the explanations can be provided even though

they achieve lower accuracy.

Interpretability matters [12]. Only with interpretability can machine learning algorithms
be debugged and audited. So even in low risk environments, like movie recommendation,
interpretability in the research and development stage as well as after deployment is valuable.
Having an interpretation for a prediction that went bad helps us understand the cause and fix
it. There are many recorded instances when machine learning models misclassified some
instances, because it was trained to look for things that are irrelevant in the decision process.
For example, instead of looking for differences between dogs and wolves, the model can learn
to look for snow in the image. Most of these mistakes are due to the faults in the training
process or the training data [12].

Of course, we do not need an explanation for everything that happens, but mostly for
the unexpected events. In addition, not all machine learning models need methods for
interpretability, as they are easy to understand as they are. One such machine learning model
is the decision tree that generates simple rules that are interpretable for us. On the other hand,
there are many models that are hard to interpret. They are viewed as black boxes that no one

understands and therefore are not trusted.

One of the hardest models to interpret, but also one that can achieve highest performance
on most of the machine learning tasks, are the neural network models [17, 41]. Their
accuracy, but also hard interpretability, is due to the fact that they perform highly non-linear
transformations in the data and all the knowledge is saved in the connection weights in the
neural networks.

Due to the recent advances in the deep learning, which caused the neural networks to
have much more neurons and much more hidden layer, the need for methods for an easy
interpretation of neural network decisions is increased [17]. Increasing the accuracy of the
neural networks without the proper tools for interpreting their decisions is useless, as that
way they will never be used in the production environment. Many methods for providing
the explanations of the neural network decision have already been introduced. However,
most of them are unusable for the deep neural network models. Therefore, the main focus
of the research in the deep learning area is to develop a fast method that provides accurate
explanations for neural networks decisions.

One of the most used techniques for explaining the decisions of neural networks are the
attribution methods. The attribution method assigns one number, an attribution, to each input
feature. This attribution represents a relevance, or a contribution, of the input feature towards
a specific decision. These relevance scores can be either positive, reflecting that the feature
supports the decision, or negative, reflecting that the feature is suppressing the decision.
When arranged together, the relevance scores produce an attribution map that can be easily
visualised in a form of a heatmap that is easy to read by humans. One of the negatives of the
attribution methods is the fact that it is difficult for them to deal with interactions between
features.

The main focus of this thesis is to create a new perturbation-based attribution method that
takes into consideration the inherent interactions between different features in data. While it
can be used for any kind of data, we are focusing on explaining the decisions on textual data
with word embedding representations.

In chapter 2, a simple description of neural networks theory is presented, which shows
the complexity present in the neural network models. Chapter 3 deals with the problem of
interpretability, why it is important and what approaches are used when it comes to neural
networks. In chapter 4, we discuss the findings from the performed analysis on problem
domain. In chapter 5, we present the hypotheses we have set. The design of our method, and
how we want to evaluate it is in chapter 6 and the implementation details of our proposed
method are in chapter 7. Chapter 8 presents the performed experiments. More specific
implementation details and requirements of our method, and the experiments performed, are

included in appendix A.

Chapter 2

Artificial Neural Networks

Artificial neural networks were inspired by the biological neural systems, with individual
neurons and connections between them. But since their creation, they have diverged from
a simple representation of human brain and has become one of the most popular model for
machine learning tasks, because of their ability to perform really well. Neural network models
belong to the family of gradient optimized models, such as linear regression models or logistic
regression models [17, 4].

The first ever neural network model was the McCulloch-Pitts model. It was an extremely
simple artificial neuron model, where the inputs and outputs could either be zero or one,
while each input could be inhibitory (negative) or excitatory (positive). A sum of inputs was
computed and if it was larger than a given threshold, the output was one, otherwise it was
zero [17, 4].

This model was later extended to create the Rosenblatts perceptron, which is the basis
of todays models. The perceptron added a few things to the original model: each input
connection has a weight associated with it and so it is not limited to be of value zero or one.
A bias term is also present as an additional input. Same as the original model, the perceptron
performs a sum of inputs, however, in this case they are multiplied by their connection weights.
After the sum is computed, it is run through an activation function which produces an output
[17, 4].

A single perceptron can be used as a linear classifier, similar to the logistic regression. It
can be interpreted as a function in the form: y = f(wozo + w11 + ... + Wy,), where the
single perceptron models a straight line separating the classes of the output, with the bias term
serving as a shift of the line and the inputs serving as a rotation of the line. The f function
can be any differentiable function as the training is done by updating the weights according to
the gradient of the output. The most commonly used activation functions are sigmoid, tanh

and rectified linear unit and maxout [4].

However, there was a critique for the single perceptron models, as they could not model

3

every possible function. A single perceptron model can only be used for linearly separable
problems, which causes difficulties, as not many problems of that variety exists. Therefore,
instead of just simply using one perceptron model, multiple perceptrons, marked as neurons,
are stacked together in one layer. Additionally, multiple layers are connected together in
a graph, often acyclic one but also cyclic in special architectures like reccurrent networks,
producing multilayer perceptron models. These are the models we use today. The first layer
is called the input layer, the last layer is called the output layer and the layers between are
called hidden layers. It was proven that any neural network with one or more hidden layers
is an universal approximator and therefore, given a continuous function f(z), there exists a
neural network that can approximate it. However, deeper networks with more hidden layers
perform much better than networks with single hidden layers even though they have the same
representational power. Nowadays, the deep neural network can learn representation of highly
non-linear functions. This is allowed by the stacking of layers and the abstract representation

of learned information saved as network parameters [17, 4].

2.1 Simple Feedforward Neural Networks

Feedforward neural networks, also called multi-layer perceptrons, are the most important
and typical deep learning model. They form a basis of many important machine learning
applications. The goal of the network is to approximate a function f by defining a mapping
y = f(0,z), where the y is the output and 6 are the parameters, in this case weights, in the
feedforward neural network that are learned [17].

Feedforward neural networks are typically represented by composing together many
different functions, forming a directed acyclic graph that describes how these functions
are composed together. The feedforward aspect of the network is caused by the flow of
information through the network in only one direction, from the input layer, through hidden
layers and finally to the output layer. There are no feedback loops in the architecture of the
feedforward neural network [17].

There can be multiple layer types in feedforward neural network, however, almost always
a fully-connected layer is used. In this layer, each neuron is connected to all of the neurons
from the previous layer, but neurons on the same layer have no connections between them.
By increasing the number of layers, the capacity of the neural network improves, which
increases the space of representable functions. For this reason, high number of layers can lead
to overfitting on the given data and therefore need to be addressed with stronger regularization.
This overfitting can also be reduced using shallower networks, but it is not preferable as they
cannot perform as good as deep networks [4].

Simple feedforward neural networks are similar to linear models. They make use of a

4

loss function, or cost function, to determine the error rate of the network and better train the
model. The typically used loss function is the mean squared error for the regression tasks,
and the most likelihood cost function for classifications tasks. However, in recent years a
cross-entropy loss function became most popular for both tasks [4, 17].

The training of the feedforward neural network is performed by changing the weights
of the connections between neurons. For this, a gradient based learning is used, which is
similar to the learning in the linear regression. The biggest difference is that the nonlinearity
in neural networks causes most of the loss functions to become nonconvex. Therefore, they
are trained using an iterative gradient-based optimizers that just drive the cost function to its
minimum instead of using linear equations or convex optimization algorithms. This learning
has no guarantee of reaching global minimum and is highly sensitive to the values of initial
parameters and so it is important for feedforward neural networks to have their weights
initialized at small random values [17].

When using the feedforward neural network, the initial information from input x flows
forward through the network and is propagated to the hidden units and finally to the output unit
producing an output ¢. This is called forward pass. On the final layer, a scalar cost is produced.
However, to be able to train the neural network, the produced scalar cost must be propagated
backwards through the network [17]. This is allowed by using the back-propagation algorithm
proposed in [36]. This back-propagation algorithm computes the gradient of our cost function,
first on the output unit, with regard to individual inputs from other neurons and adjusts its
connection weights accordingly. This is done layer by layer and neuron by neuron from the
last output layer, through hidden layers and finally to the input layer. For the computation,
this algorithm uses the chain rule of calculus to compute derivatives of functions formed by
composing other functions, which is applied recursively [17].

There are many higher order optimization methods that can be used in neural networks,
such as Adagrad, RMSprop or Adam optimization or using a Nesterov momentum, which
improve the learning process of the neural network, but also increase the complexity of

computation [4].

2.2 Convolutional Neural Networks

Convolutional neural networks are an extension of simple feedforward artificial neural net-
works. They are still made of neurons with trainable parameters. Each neuron still gets an
input, performs a dot product and outputs a value. What is different is the architecture of the
network [3].

However, they are mostly used for tasks involving input with a much more complex

structure, such as image recognition or classification, as they are able to achieve much higher

5

accuracy on these tasks. This is due to the fact that they explicitly assume that the input is an

image and so their architecture is specialized for it [3].

This much better performance is evident from the results in the popular ImageNet Large
Scale Visual Recognition Competition (ILSVRC), where convolutional neural networks
outperform their multi-layer perceptron counterparts by a large margin [25]. The first con-
volutional neural network, which really outperformed non-convolutional approaches is the
AlexNet [25], which achieved an error rate of 16% in the 2012 ImageNet challenge, while the
network in second place achieved 26% error rate [49]. From that moment, the competition was
dominated by the convolutional neural networks like the ZF Net [49], which improved upon
the AlexNet by identifying its problems using approaches for interpreting the convolutional
neural networks. Further improvements were introduced by the Googl.eNet [45] or VGG Net

[43], where these networks introduced novel parts to the architecture.

One of the reasons why convolutional neural networks are better for tasks involving image
recognition or classification is the fact that typical images can be viewed as high dimensional
data. Every pixel can be considered as another input attribute and so a fully-connected
layer has a large number of parameters, weights. This large number of parameter greatly
increase the demand on the size of training data set and memory required for the simple

non-convolutional models [27].

Convolutional neural networks do not need another manual or automatic feature extractor
for them to be used effectively. In image recognition tasks, a feature extraction step is
important for the maximalisation of the output precision. When it comes to simple feedforward
neural networks, a manual or automatic feature extraction step must be first performed and its
output used as an input for the classificator. However, convolutional neural network performs
the feature extraction step using their hidden layers and so raw images can be used as an input,
without any further increase in their parameter count or the required size of training dataset
[27].

Last but not least, simple feedforward neural networks ignore the topology of the input
data. The individual attributes in the input data can be presented in any fixed order, without
it affecting the outcome of training. However, images have a strong two dimensional local
structure, where individual attributes, or pixels, are highly correlated with their neighbourhood.
These high local correlations are exploited in the convolutional neural network architecture.
The receptive field of hidden units is constricted to be local and so local features, like corners

or edges are extracted, before recognizing higher order features [27].

All in all, the main difference between convolutional neural network and simple multi-
layer feedforward neural networks is in its architecture, where neurons in hidden layers are
connected only to a small region of previous layer. In addition, neurons in layers are arranged

in 3 dimensions, width, height and depth, while each layer transforms a 3D input volume to a

6

3D output volume of neuron activations. They introduce a further abstraction and complexity
of representation of learned knowledge. Thus, the convolutional neural network can learn a
much more complex representation of data than the simple feedforward neural networks [3].

There are 3 main layer types used in convolutional neural networks:
* Convolutional layer
* Pooling layer
* Fully connected layer

The architecture of the first convolutional neural network, LeNet-5, is depicted in figure
2.1.

C3: f. maps 16@10x10
C1. feature maps S4: f. maps 16@5x5

INPUT 6@28x28
32x32 r C5:layer gg.|ayer OUTPUT
r E 120 o1 10

S2: f. maps
6@14x14

Full connection Gaussian connections
Convolutions Subsampling Convolutions Subsampling Full connection

Figure 2.1: Architecture of LeNet-5 convolutional neural network, consisting of a set of convolutional,
pooling and fully-connected layers. Each plane represents one feature map [27].

Convolutional Layer

Convolutional layer is the main building block of the convolutional neural networks and per-
forms most of the computational heavy lifting [3]. Each convolutional layer in convolutional
neural network consists of a set of learnable filters, which are small spatially, but extend
through the full depth of the input volume. These filters can be interpreted as small windows,
that are slided across the whole width and height of the input during forward pass. This
sliding produces a 2-dimensional activation map, called feature map that gives the response
of the specific filter at every position. The output volume is then produced by stacking of the
feature maps along the depth dimension, as each is of the same width and height. The width
and height of each feature map, and therefore also of the output volume, is determined by the
size of stride for the sliding of the filters, the size of filter and the use of zero-padding. The
number of filters is the determining factor of the depth of the output volume [3, 27].

The local connectivity of neurons in the convolutional layer is achieved by limiting the

width and height of the filters to a number smaller than the width and height of the input

7

volume. The size of filters for each layer can be controlled by a hyperparameter called
receptive field of neuron [3, 27].

To reduce the number of required parameters, weights and biases, a parameter sharing
is used. It is based on the fact that, if a specific filter is relevant for one part of the input, it
should also be relevant for the other parts as well due to the translationally-invariant structure
of images. Therefore, each filter only has one set of parameters, with their number determined
by the width and height of the filter. This eliminates the need to relearn the detection of
important features at every location. Thus, the convolutional neural networks are invariant to
rotation and translation in images [3, 27].

The convolutional layer is typically followed by an element-wise activation function,
similarly to the simple feedforward neural networks. Typically used activation functions are

rectified linear unit or sigmoid [3].

Pooling Layer

The pooling layer is in charge of down-sampling the spatial dimension of the input. By
reducing the spatial size of the representation, the amount of parameters and computations is
also reduced. In addition, this action also controls the over-fitting of the network by reducing
the resolution of the feature map and therefore reducing the precision with which the position
of the distinctive feature is encoded in the feature map [3, 27].

Pooling layer works similarly to the convolutional layer. A small window of a fixed size
is defined. It is used to stride through the input volume, but instead of computing a dot
product, a simple function is used. The function used determines the name of the pooling
layer. Typically a max-pooling layer is used, which simply takes the maximum of its inputs.
Additionally an average pooling, which takes the average of its input, or an L2-norm pooling,
which calculates euclidean distance between inputs, can be used. The output of the function
is then multiplied by a trainable coefficient and optionally can be passed to an activation
function [3, 27].

Fully-connected Layer

Fully-connected layer is the equivalent of the regular layers present in the simple feedforward
neural networks. Each neuron in fully-connected layer is connected to every neuron on the
previous layers. Therefore, they are usually only used as a last layer of the convolutional
neural network to output the class probabilities [3, 27].

The only difference between fully-connected layer and convolutional layer is that neurons
in convolutional layer are connected only to a local region of the input and share weights.

Other than that they are the same. Therefore, it is becoming very popular to convert fully-

8

connected layers to convolutional layers by defining a filter size equal to the whole image,
with no zero padding and stride value of 1. By performing this conversion, it is possible to
use the convolutional neural network on images of bigger size than the size they were trained
on, by sliding the original neural network across different spatial positions in larger image in

one forward pass and then averaging the output class probabilities [3].

Chapter 3
Interpretability of Neural Networks

Interpretability matters. In order to build trust in intelligent systems and move towards
their meaningful integration into our everyday lives, we must build transparent models that
are able to explain why they predict what they predict, in addition to doing the prediction
correctly. Therefore, the accuracy of the model is not the most important factor of it, but also
its interpretability is important. This is most apparent in the case of using machine learning
models in the environment, where small mistakes can lead to catastrophic consequences,
for example medicine. If machine learning model can not explain why it made the specific
prediction, it cannot be trusted and therefore it will not be used [12].

Additional need for interpretability originates not only from the need to understand and
therefore develop better models, but also from the law perspective. Recently, a law' was
adopted by the European Union that, among other things, introduces the right to explanation.
What this means is that every person has the right to demand the logical reasoning behind
the decision that directly or indirectly affected them. This is however problematic, if all the
machine learning models used are black boxes that cannot explain their decisions [18].

There is however a trade-off for interpretability of models. If we want to make a machine
learning model more interpretable, it often suffers in its accuracy and other way around. This
is apparent in the recently developed deep models that achieve great performance through
greater abstraction and tighter integration at the cost of interpretability. For example recent
deep residual networks (ResNets) are over 200 layers deep, which makes them especially
hard to interpret [41].

There are different machine learning models with different levels of the interpretability-
accuracy trade-off. Some machine learning models might not need explanations, because
they are used in a low risk environment, meaning a mistake has no severe consequences. Or

the method has already been extensively studied and evaluated or is easily interpretable as

'Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection
of natural persons with regard to the processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation), OJ L 119, 4.5.2016, p. 1-88

11

is, for example decision trees or linear models. On the other hand, there are models that are
considered as black boxes that are really hard to interpret and therefore they are not trusted
and are not used, even though their performance is much better [12, 18].

The neural networks are one such model. They perform a highly non-linear transfor-
mations in data by using multiple hidden layers with many neurons, which causes them to
be highly abstract. In addition, the learned interactions in the data are saved in the form of
weights between individual neurons across multitude of layers. For these reasons, they are
able to achieve high accuracy for many machine learning tasks, simply by adding layers. This,
however, also causes them to be viewed as black boxes that are hard to explain. In addition, it
has been shown that deep neural networks can be easily fooled into misclassifying inputs with
no resemblance to the specific class by making imperceptible alterations to its pixels [30].

Therefore, one of the main focus of the research in the field of deep learning and neural
networks is the creation of new methods for increasing the interpretability of the deep models,
while maintaining their high accuracy [41]. The deep neural networks can be looked at from
different perspectives. We can try to explain the processing done by the network, which
answers the question of why does a particular input lead to specific a output. Another approach
is to look at the representations learned by the neural network, which answers the question
of what does the network contain. The third approach is to create an explanation producing
system with architecture designed to interpret its own behaviour, either by explaining the
processing or learned representation. We mostly focus on explaining the processing of neural

network, which can be divided into 4 categories of approaches, that are often related [15]:

* Model-agnostic aproaches used for simplifying the model and generating explanations

from this proxy model.

* Automatic-rule extraction approaches used for generating simple rules for the deci-

sion process.

* Visualisation approaches that generate visualisation of either the processing or repre-

sentation learned by the network.
 Attribution approaches that generate attributions of input for the given output.

One last problem that not many researchers deal with when it comes to interpretability is
defining what is meant by the words interpretation and explanation. Many researchers are
using the two words interchangeably, even though they definee different things according to
[15]. The goal of interpretability is describing the internal workings of the model in human
understandable format. To get to the explainability, the approach must satisfy the goal of
completeness. The goal of completeness is to describe the workings of the system in an

accurate way. Nonetheless, achieving both interpretability and completeness simultaneously

12

is hard. There exists a trade-off between these two, as interpretable explanations often lack in
predictive power. This can be evident in the article by Ribeiro et al. [35], where by explaining
the prediction they mean to present a visual or textual artefacts that provide qualitative
representation between components and models prediction. They find it important to generate
explanations that can easily be interpreted by humans, even though they are not necessarily
complete, by limiting the number of generated ‘artefacts‘ to only the most important ones. In
this work, we take similar approach and therefore use the explainability and interpretability
interchangeably, which means to generate a visual representation of relevance of models

components to its output that is understandable for humans.

3.1 Model-Agnostic Generation of Proxy Models

Model-agnostic approaches hold a special place in the interpretability of the neural network
models. The main idea behind them is to treat the examined model as a black box that
transforms an input to output. Using this transformation, an approximation of the complex
model is created by training a surrogate model, which is much simpler. This surrogate
model is usually one of the more interpretable types of models, like simple linear model or a
decision tree. This approximated simple model is then assumed to be indicative of the internal
workings of the complex model and therefore the explanations produced by this proxy model

are representative of the explanations of the complex one.

3.1.1 Local Interpretable Model-Agnostic Explanations

Local Interpretable Model-agnostic Explanations (LIME) approach, introduced by Ribeiro
et al. [35], is one of the most notable representatives of this approach. This approach is
used to produce explanations for individual predictions made by the model, in order to
increase the trust of humans in a specific model. The inspection of individual predictions and
their explanations, in addition to accuracy metrics, is considered a worthwhile solution of
increasing trust and simplifying the task of deciding which model to use in the production.
The main idea is to provide a set of weighted features that are the most influential on the
output. This process can be illustrated as in figure 3.1.

The LIME algorithm can explain predictions of any classifier or regressor in a faith-
ful way, by approximating it locally with an interpretable model [35]. As we can see from
the citation of the creators of the LIME approach, there are two main points of focus for his
approach: generating a faithful explanation using a local approximation of the model.

In order to generate the faithful explanations, a number of desired characteristics was set

prior to the development of the approach. First criterion is that the generated explanations

13

sneeze I
headache

no fatigue

sneeze Explainer
weight (LIME)

headache
no fatigue

age 4

i .

Model Data and Prediction Explanation Human makes decision

Figure 3.1: LIME as used for explaining individual predictions. Model is predicting that a patient
has a flu. The LIME approach highlights the features that led to the prediction, where ‘sneeze‘ and
‘headache* is promoting the decision and ‘no fatigue ‘ is prohibiting the decision. Using the explanation,
a doctor can determine if the model can be trusted or not [35].

must be interpretable. What it means is they should provide qualitative understanding between
input variables and the response. In addition, the explanation must take users limitation into
account and therefore it should be easy to understand by humans. This can be satisfied by

presenting only small number of weighted features [35].

Another criterion is the local fidelity of explanations. What it means is that the explanation
should be indicative of the complex model, at least in the local vicinity of the observation.
Last but not least, the explanation approach should be model-agnostic, as this provides also

the flexibility of explaining future classifiers.

The local approximation part of the studied complex model is performed by training
a surrogate model. For the specific input, its neighbourhood is perturbed, generating new
observations. This perturbation is done uniformly around the observation and each new data
is weighted by a distance to the observation metric. Each new observation is passed to the
black box classifier to determine its output. This generates data which describe the behaviour
of the complex model in the surroundings of the examined decision. The new observations are
then used to construct a much simpler surrogate model on the neighbourhood of the decision
and used for generating the explanation for complex model. This simple model can either
be a linear classifier, a decision tree or anything else that can provide explanations easily. It
was shown that the method can be used to identify regions that are most influential for the
specific decision. One such process can be seen in figure 3.2, which represent the explanation

of decisions on the Googles Inception neural network [35].

In addition, a method for global interpretation is proposed, which uses the local interpreta-
tions. Providing a global perspective on the model is important to improve the trust in the
model. For this purpose, a set of local interpretations are used as a mean to create a global
representation. These local interpretations are not picked at random. The observations that are
picked must be selected to cover the most important components, but still not be redundant
between each other. To achieve this, a maximization of a weighted coverage function is

performed using a greedy algorithm.

14

R 7
7 5\\".

Figure 3.2: Explanation of image classification of 3 top classes, on the Google Inception neural network
produced by LIME approach. From the left the images represent: an original image; explanation for
the class ‘Electric Guitar®; class ‘Acoustic Guitar*; the class ‘Labrador‘ [35].

3.2 Extracting Rules from Trained Neural Networks

Methods of rule extraction from neural networks deal with producing a description of the
neural network hypothesis that is comprehensible and yet closely approximates the networks
predictive behaviour given a trained neural network and the data it was trained on [11]. The
extracted rules can be in different forms: simple IF-THEN rules with multiple conditions
that need to be satisfied and one implication. M-of-N rules, where if M instances of set of NV
instances are satisfied then the outcome is usable. Or in the form of decision trees typically
used in machine learning [19].

There are three different sets of approaches that can be used for rule extraction: decompo-
sitional approaches, pedagogical approaches and eclectic approaches [19, 7).

Decompositional approaches work by splitting the network into individual neurons and
extracting rules from them. These rules are then aggregated across layers and used for the
whole network [19, 7]. One such approach is called KT proposed in [13] and it is used
for extracting IF-THEN rules. For each hidden and output unit, a set of positive attributes
and negative attributes is generated. The set of positive attributes is first searched for the
combination of those, whose summed weights exceed the threshold of the neural network.
Afterwards, the set of negative attributes is searched in similar way. The attributes from both
searches are then aggregated into a one IF-THEN rule and used for interpretation.

Another such approach is the DeepRED [52], which was specifically designed to be used
on deep neural networks. This method decomposes the neural network into a decision tree. It
is an extension of a previously specified algorithm that could have only been used on shallow
networks to work on any number of hidden layers. Multiple strategies are used to generate
this decision tree, a C4.5 algorithm for training the tree and a pruning algorithm to remove
unnecessary inputs. The decision tree generated this way very closely approximates the neural

network, which causes it to be quite large and therefore not really interpretable.

Pedagogical approaches treat the neural network as a black-box, as their main focus is

15

finding an output rule for a corresponding input. The internal structure of neural network
is not taken into consideration [19, 7]. One such approach is called TREPAN [10]. This
approach extracts a M-of-N split points and decision tree by using a query and sampling
approach. What it basically does is training a decision tree on the input-output mapping of
the neural network [10].

Eclectic approaches combine the previous two approaches [7, 19]. One of the represen-
tatives is called Rex-CGA [22] and is used for multilayer perceptrons. It uses a clustering
genetic algorithm to generate a set of clusters of hidden units activation values. After finding
these clusters, it treats them as individual neural networks and use an input-output map-
ping rule generation from pedagogical approaches to generate rules for then. They are then
aggregated across the networks and used for the whole neural network.

Each set of approaches has its own positives and negatives. The decompositional ap-
proaches are much more transparent but because they work layer by layer, they are highly
dependent on the architecture of neural network and can be rather slow and memory con-
suming and therefore not scalable. The pedagogical approaches on the other hand are much
more flexible, as they are architecture independent, however they usually perform worse.
The eclectic approaches combine the decompositional and pedagogical ones, so they take
the positives and negatives from both of them, and therefore are slower than pedagogical
but faster than decompositional and more accurate than pedagogical but less accurate than
decompositional. Another negative for most of the rule extraction approaches is the fact that
they perform rather poorly on deep neural networks as they were created in time, when the

deep learning was not so widespread [7, 19, 52].

3.3 Visualising What Neural Network has Learned

Methods for visualising the neural network models are numerous and are based on the fact
that, for most people, visual representations of structures and relationships are much easier
to understand than rows of numbers and data. In machine learning, it is popular to perform
visual analysis of data before training a model, which leads to getting the idea about what
relationships are in the data. Then, after visualising what model has learned, if there are these
relationships also present in the trained model, it enhances our trust in the model, as we see it
has learned something that was apparent to us in the data [51].

Most of the methods for visual interpretation of neural networks are aimed at convolutional
neural networks and images, as they are far more simple to design to provide the necessary
explanations we need. These methods, most of the time, display the input image, but with
modifications that highlight the parts of the image that are used for the classification of the

image [50, 41, 49]. We can say that these visualisation techniques are used to provide a

16

visual explanation for the decisions of the trained model. However, to provide a good visual
explanation, the visualisation approach should be class-discriminative, therefore localize the
target category in the image, and high-resolution, therefore capture a fine-grained detail [41].

However, there are also methods that visualise the structure of the neural networks, the
individual hidden layers, neurons on them and connection weights between them [1]. The
problems with these methods are that they are not really usable for neural network models
that contain high number of hidden layers and neurons and therefore they are not often used.

The last category of methods for visualising neural networks are the methods that visualise
the activations of neurons on individual layers of the network, usually the last layer, along
with the training process of the network [34]. These methods can be used for images, but also
for tabular data, however they are a bit harder to interpret than the methods used purely for

convolutional neural networks and image input data.

3.3.1 Visualising Interesting Parts of Images Used for Prediction

One example of the methods that visualise interesting parts of images is the method pro-
posed in [50]. This visualisation method exploits the remarkable localization abilities of
convolutional neural network that is apparent even despite being trained on image level labels.
The main focus is on generating a class activation map using a global average pooling, that
was introduced in recent year to the convolutional neural networks to remove most of the
fully-connected layers but still retain performance.

For this method to work, a change in architecture must be introduced to most of the
convolutional neural networks. This change includes the addition of the global average
pooling layer before the output layer, which is essential for this method. Afterwards, a class

activation map can be computed using following equation:
Me(w,y) = > wifu(w,y) 3.1
k

where M. (x,y) represents the activation of class ¢ for pixel located on position x and y
respectively in the input image, the wy, represents the corresponding connection weight
to class ¢ for neuron k and the fi(z,y) represents the activation of neuron & in the last
convolutional layer at spatial position (x, y). Basically, the class activation map represents
the importance of image regions for the classification and it is computed by projecting back
the weights of the output layer on to the convolutional feature map [50]. The generated class
activation map is illustrated in figure 3.3.

The downside of this method is the fact that the architecture of the neural network model
must be changed by removing most of the fully-connected layers and adding a global pooling

layer just before the output layer. This, however, is often not possible and therefore a much

17

monastery
0.05 1

Figure 3.3: Class activation map of top 5 predicted labels for the given image with a dome present
in it. The predicted class along with its probability is shown above each class activation map. The
highlighted parts show which part of image activate which class, with the red color specifying the
highest activation and blue color the lowest [50].

more general method was introduced in [41], which can be used on a much wider variety of
convolutional neural networks, for example those with fully-connected layers, those that are
used for captioning, or for those with multi-modal inputs or reinforcement learning, without
the need for the architectural change or re-training.

This method is a direct extension of the class activation method and is based on computing
a gradient and therefore called gradient weighted class activation map. However, instead of
using gradients with respect to the output of the whole network, which is usually produced
by fully-connected layer, this method uses the output of the last convolutional layer. The
reason is that the convolutional layers still retain a spatial information, which is lost in the
fully-connected layers, and so it is the best compromise between high-level semantics and
detailed spatial information. It uses a gradient information flowing into this last convolutional
layer to understand the importance of each neuron for a decision of interest [41].

There are two steps that are used for computing the gradient weighted class activation

map that use the following two equations:
.1 oy
PO @
2 J ()

LcGradfCAM = ReLU(Z aZAk) (33)
k

First a gradient of the probability for class ¢, y¢, is computed with the respect to the feature

map A* of a convolutional layer. These gradients are then global average pooled to obtain the

18

neuron importance weights af, that captures an importance of feature map £ for class c. A
weighted combination of forward activation maps is performed and is followed by a ReLU
function to produce the importance map. ReLLU is applied because we are only interested in
positive impact on the class of interest and not the negative one. For this method to work, the
y¢ only needs to be a differentiable activation function [41]. The produced activation maps

are shown in figure 3.4.

Figure 3.4: Output of the gradient weighted class activation map (Grad-CAM) approach. The important
parts of the image for classfication are highlighted. From the left: original image; class discriminative
regions for class 'dog’ in simple convolutional neural network; class discriminative regions for class
'dog’ in ResNet-18 layer; occlusion map for class'dog’ generated by the Grad-CAM method [41].

3.3.2 Visualising the Activations of Neurons and Training Process

One method that deals with visualising the neural network neuron activations and visualising
the process of training the neural network is presented in [34]. It was designed to be used
with convolutional neural networks, but also with multi-layer perceptrons and was used for
image datasets, but it can be used also for other types.

It is based on the extraction of the hidden layer activations from the network for a given
dataset. This method can be divided into two parts: creating projections from the extracted
activations from the network and depicting the relationships between neurons from which

these activations were extracted. This method goes as follows [34]:
1. A subset of observations is selected from the test set and fed to the neural network.

2. For each observation, the activation of neuron on the observed layer is extracted and

added to the observation.

3. The observations along with their activations are projected to the two-dimensional
space using a fast approximate implementation of t-distributed stochastic neighbour

embedding (t-SNE) using default parameters.

4. The projections are then visualised as scatter plots with points colored according to

their class assignment.

19

This helps understand the relationships between learned representations of different
observations. However, it does not show relationship between neurons or their interaction that
leads to fulfillment of the discriminative task. Therefore it is extended by neuron projections.
In neuron projections, the neurons are also visualised as scatter plots based on similarity
between them, which is computed as Pearsons correlation coefficient. The color of the neuron
in the scatter plot is determined by the power of the neuron for discriminating specific class
in comparison to the rest. Similarly to observations, neurons also have to be projected to
two-dimensional space, in this case, using multidimensional scaling (MDS) [34]. These

visualisation are shown in figure 3.5.

activation projection neuron projection
o B o0
& .
= - %
= & .23 Ty,
(1] B D
-:3 o * ¢ @ s
[} o . .
S .8 . i
S o sa® o* 2"
_g Ve .
L) Y - »
b)
&0 .
c R &
=1 ¥
(1 B
b
— L2 =~ Fg-mm e
B . ; ; ., .
e v] . _®
o et - L
<A o
g ‘;_ g £ - |
&ng‘ [.qfln\'- b-=FR ey 7
c) N d)
ETERTE T low B Rl
0123456789 discriminative power (8 vs rest)

Figure 3.5: Visualisation of activations and neuron projections of the last layer of convolutional neural
network trained on MNIST dataset. The plots a) and b) represent the visualisation before training,
while the plots c) and d) are after training. The plots a) and c) show the observations and their
activations colored according to their class. The plots b) and d) represent the neuron activations, with
the position determined by the similarity between neurons and color determining the discriminative
power for specific class in comparison to the rest, in this case the discriminative power is for class 8
[34].

In addition to visualising the activations, this approach can be used to visualise the training
process of the neural network. It provides a way to visualise the inter-layer evolution, e.g.
activations between layers, of the activations of the observations, but also the inter-epoch
evolution, activations between individual epoch of training. The visualisation is color-coded

similarly to activation projections, where individual colors show individual classes. In addition,

20

an arrow is also shown that goes from pure black to white, portraying the change through
training. This approach can be viewed as performing the previous activations multiple times
during training and aggregating them into a single diagram [34]. This technique is illustrated
in figure 3.6.

/
7 AN
raining epechs tf A

0123456760 ! \
EEEEEE A

- layer 1 layer 4
- %1 0123456789
EEEEEE

Figure 3.6: Visualisation of the training process of the neural network. The plot on the left shows the
evolution of activations between individual layers, with colors representing individual classes and
the brightness represents the layer number, with brighter trails indicating later layers. The plot on
the right shows the evolution of activations between individual epochs of the last layer, with colors
representing individual classes and the brightness representing the number of epoch, with brighter
trail indicating later epoch [34].

3.4 Generating Input Attribution for the Decision

Attribution methods deal with assigning an attribution value to each feature in a network for a
single observation. The attribution value represents a relevance or a contribution of the feature.
Consider a neural network with inputs defined as = = [z, 22, ..., x|, wWith N representing
the number of features. This neural network is used to produce an output vector in form
S(x) = [Si(x), Sa(z), ..., Sc(x)], where C represents the number of output classes. The goal
of attribution method is to determine the contribution of each feature in the input vector x to
the output S., when given an output neuron ¢ [2]. For example, when it comes to classifying
an image, the output neuron is the neuron representing correct class for classification and the
contributions are calculated for each pixel in the input image.

One of the main positives of using the attribution methods is the simplicity of visual
representation of the generated attributions. When examining an individual observation,
the attributions for each features can be arranged together to create an attribution map.
This attribution map can be easily displayed using a heatmap, with red color indicating the
promotion of the class and blue color indicating a suppression of the correct class [2].

The attribution methods have their roots in the sensitivity analysis approach, as it was the

name of the first approach that was developed. The sensitivity analysis approach involves a

21

series of methods quantifying how the uncertainty in the output is related to the uncertainty in
its input. In other words, it assesses how sensitive is the output of the model to the fluctuations
in its input and parameters that it was built with [48, 38]. This, in fact, is the same thing as
generating attributions, as it determines which input features are the most contributing for
achieving high accuracy in output.

The sensitivity analysis approach was first designed to be used for statistical regression

models. The regression models, or linear models can be expressed as
Y =X3+¢ (3.4)

with Y representing vector of dependent variables, X representing matrix of independent
variables, 3 representing vector of coefficients and e representing vector of errors. This was
one of the requirements for it, as the way it computed the importances was by using gradients.
Nonetheless, this requirement is fulfilled by the neural networks too, as the individual

neurons can be expressed as
Y = f(X,w) (3.5

with Y and X representing same variables as in regression model and w representing the
matrix of weights of the network, which is just the extension of vector of coefficients from
regression models. The only requirement is for the function f to be differentiable, which
is also one of the requirements in most neural networks and therefore it is fulfilled as was
determined in chapter 2. Therefore, sensitivity analysis can still be applied to neural network
models [47].

While the requirement of the specific form of the model representation is fulfilled by the
neural network, it is not really neccessary. This requirement is only necessary for the methods
stemming from the sensitivity analysis. There are, however, additional advances in attribution
approaches, that do not require it.

The specific way the attribution is computed in neural network model is determined by

the type of method used. There are three main categories of methods that can be used:

* Weight magnitude analysis methods using weights to determine the importance of

features.
* Gradient methods that use the gradient to backpropagate the importance.

* Input perturbation methods that perturb the input to determine the importance of

features.

We can say that using this specification of attribution methods, also the LIME method

described in previous sections (3.1.1) can be considered a model-agnostic attribution method.

22

Additionally, the methods visualising the interesting parts of the image can be considered a
type of attribution method as well.

By determining the feature importances using the attribution method, we can verify that
the model does what it is intended to do and therefore determine its stability and applicability
in practice [23, 48, 38, 2].

3.4.1 Weight Magnitude Analysis Methods

These methods are defined by observing the connection weights between the input and hidden
nodes. The idea behind this is that the variables with higher influence on the output node
result should also have larger connecting weights between the input and the hidden nodes
[33].

One of the most common approaches is to sum all the weight magnitudes. For each input
node, the sum of its output weight magnitudes from each of the hidden layer nodes is the
relative influence of that hidden node on the output. To determine relative importance for each
variable, it is done for all input nodes, where one input node represent one variable. However,
a normalization of the weights must first be done. It is done by dividing weight magnitude of
each of the input nodes by the largest connecting weight magnitude between the input and
the hidden layer. After normalization, the weight magnitudes from each input node to the
nodes in the hidden layer are subsequently summed and ranked in a descending order. The
rank indicates the relative influence of the input variable on the output and its formula can be

denoted as: o

L= — Tk (3.6)

—~ max; (W)

where w), denotes the connection weights between the ith node on the input layer and kth
node on the second layer and /; denotes the importance of the ith input variable [33].
Another approach, called neural interpretation diagram, is used to calculate relative
magnitude of each connection weight and then using it for visualisation. It is a tool for
providing a visual representation of the connection weights among neurons, where the
calculated relative magnitude of connection weight magnitude is represented by the line
thickness, where thicker line indicates larger weights. The connections are also shaded
according to the sign of their magnitude, where black lines represent positive or excitation
signal and grey line represent negative or inhibitory signal. The neural interpretation diagram
is displayed in figure 3.7. By calculating the connection weight magnitude, visualizing it and
tracking its direction between each neuron, this technique enables to identify individual and
interacting effects of the input variables on the output. However, the interpretation of this
neural interpretation diagram can become really challenging with increasing number of input

variables and hidden layers. It is also quite difficult task even when it comes to simple neural

23

networks due to the complexity of connections among neurons as the magnitude and sign of

weights can change from layer to layer [32, 31].

Figure 3.7: Neural interpretation diagram for neural network with 8 input variables, one hidden layer
with 4 neurons and one output neuron. The thickness of the lines determine the magnitude of the weight
connection proportional to other connection weights. The colour determines the sign of connection,
black is for positive (excitation) connection and grey is for negative (inhibition) connection [31].

All the methods that were described so far, from the weight magnitude analysis methods,
considered that connection weight between neuron from previous layer to the neuron on the
current layer had the exact same effect on the size of connection weights between neurons
on current layer and the next layer. However, in most cases it is not the case. The approach
that takes this into consideration was first proposed by Garson [14] and later modified by
Goh [16]. It is called the weight deconstruction or partitioning method, as it partitions the
connection weights between each neuron in hidden layer and each neuron in output layer into
components associated with each neuron in input layer. Consider a neural network with large
connecting weight between one hidden layer neuron and the output neuron. If the neuron
on the input layer has small connecting weight to that specific neuron on hidden layer, its
importance will be determined to be much smaller than input neuron with large connecting
weight, as its contribution to the output connection weight can be considered as much smaller.

The computation consists of these steps:

1. For each input neuron ¢ the absolute value of the connection weights between hidden
and output layer is multiplied by the absolute value of the connection weight between
input and hidden layer. This is done for each variable j and the products Pj; are

produced.

2. For each hidden neuron, the product F;; is divided by the sum for all input variables,

getting the product Q);;.
3. For each input neuron, its ();; products are summed to produce product S;.

24

4. Each S; product is divided by the sum of all input variables (3_; .S;). This expresses the
relative importance or distribution of all output weights attributable to the given input

variable.

However, it is important to note that this algorithm uses the absolute values of connecting
weights when calculating the variable importances and therefore it ignores the sign of the
relationship between input and output [31].

The last approach, proposed in [31], is to use randomisation test for the connection weight
selection. It eliminates null-connection weights that do not differ too much from random
weights, which significantly simplifies the interpretation of the neural network, for example
when it comes to the neural interpretation diagram. This approach is very similar to other

pruning approaches. This approach consists of these steps:

1. A number of neural networks with random weights are constructed using the original
data.

2. The best network is selected and following specifications are recorded: its initial
weights, the connection weights after training, their product, their overall value and the

relative importance for variables.
3. Original response variable is randomly permuted producing ¥, qndom.-
4. New network is constructed using ¥,qndom and random weights.

5. Steps (3) and (4) are repeated a number of times while recording weight specified by
step (2).

Then, the significance of each connection weight and relative importance of attribute can be
calculated as the proportion of randomised values equal or greater than the observed values.

The problem with these methods is the fact that they can not be really effectively used for
neural networks that are more complex and contain large number of hidden layers. Another
important thing is the fact that the input data must be first normalized for them to be used
effectively as the large difference in the scale of variables can lead to weights having different
magnitude, which does not represent the importance of the variable [40]. Another downside is
the fact that to use these methods it is required to know the architecture of the neural network
[47].

3.4.2 Gradient Methods

The distinction of these methods is that they are computing an approximation of the attribution

in a single forward and backward pass through the network, one layer at a time, starting

25

from the output layer and proceeding backwards to the input layer. There is one fundamental
requirement for these methods. The activation function must be differentiable, as the basis for

them is found in using the gradient [21, 2].

Sensitivity Analysis

The sensitivity analysis represents the first and most simple gradient method. The feature
importances are computed by applying a simple backward chaining partial differentiation rule.
First the output relevances, with respect to variations in the values in neurons of layer N are
calculated and then a backward chaining is employed to calculate the output relevance in the
layer input variables. The equation for calculating the influence of each input variable on the
output for a simple feedforward neural network with one hidden layer, one output unit and j

input variables can be denoted as:

L=>"0(1 - 0)wivi(l —vwy, ; Vi=1,2,...,j (3.7)
k

Where O denotes the value on the input node, w}, denotes the outgoing weights of the
kth node in the second hidden layer, v; denotes the output value of the kth node in the second
hidden layer, w), denotes the connection weights between the ith node on the first layer and

kth node on the second layer and /; denotes the importance of the ith input variable [21, 33].

The augmented equation method can also be found in interpretation of the deep neural
network models. It is based on the models locally evaluated gradient or some other local

measure of variation. A common formulation of it in deep neural networks is as follows:

af

2
8xi) (3.8)

Ri(x) = (
where the gradient is evaluated at the data point x;. The most relevant input features are those
to which the output is most sensitive. The technique is easy to implement for a deep neural

network, since the gradient can be computed using backpropagation.

However, there is a problem that this method is strongly exposed to derivative noise that
characterizes complex machine learning models and the accuracy of these methods is often
questioned. This problem is evident in figure 3.8, where the heatmaps are discontinuous,
scattered and do not focus on class-relevant features. Instead it indicates what pixels make the
digit belong more or less to target class rather than what pixels are specific for the target class
[29]. Additionaly, this method can compute only the positive relevance of the features. It is,

however, also desirable to show the features that are prohibiting the decision [2].

26

input sensitivity analysis

Figure 3.8: Sensitivity analysis applied to a convolutional deep neural network trained on MNIST data
set, and resulting explanations (heatmaps) for selected digits. Red color indicates positive relevance
scores [29].

Integrated Gradients

The integrated gradients method was built upon predefined axioms, or desirable characteristics,
that allow for better empirical evaluation of attribution methods. There is a significant
challenge in developing an attribution method, due to the fact that they are hard to evaluate
empirically. It is hard to separate the errors of model from errors of the attribution method.
For this reason, 2 axioms are set in this work and an attribution method is designed to satisfy

both of them. No other gradient attribution method satisfies these axioms [44].

First defined axiom is called sensitivity(a), which is usually broken when using simple
gradients. The definition of sensitivity is that for every observation, if the specific observation
differs in one feature from a baseline observation and the prediction for these two observation
is different than the differing feature should have a non-zero attribution. It is common to
inspect the products of model coefficients, weights, and feature values when debugging a
model. Gradients are a natural analog of the model coefficient and therefore using a product
of gradient and feature values is a reasonable starting point for any gradient based attribution
method. The problem with gradients is that they break the first axiom, sensitivity. This is
due to the fact that the prediction function may flatten at input and have zero gradient despite
getting different input values. This causes simple gradients to focus on irrelevant features
[44].

The second defined axiom is called implementation invariance. What it means is that
if two different networks are functionally equivalent, e.g. their outputs are equal for all
inputs, then the attributions should always be identical too, even when the networks are wildly
different. The functional equivalence is often present in neural network architectures, where
two different sets of parameter values lead to the same function learned. Therefore, the
attribution method should not be dependent on a simple parameter initialization. It is proven

that gradients have this property and therefore are implementation invariant [44].

27

Using these two axioms, a new attribution method is proposed, the integrated gradients.
This method first defines a baseline input z', which can be a black image or a zero word. For
a given input x, the method considers a straightline path from the baseline to this input and a
gradient is computed at each point along the path. These gradients are then cumulated using
an integral along the path. The integrated gradient is then defined along the ' dimension for

input x and its baseline 2 as [44]:

da (3.9

(x; — x;) *

/ /1 OF (z' 4+ a* (x — "))

=0 8%

As computing the integral over the gradients can be problematic, an approximation is
usually used instead. One efficient approximation is to use summation over gradients at
sufficiently small intervals of the input perturbation [44]. Therefore, this method is a kind
of hybrid between the perturbation and the gradient based approach, as an input is being
perturbed, however a gradient is computed at each perturbation.

One important part of using this method is selecting a good baseline. It should have a near
zero score in the classifier. In addition it should not be just simply an adversarial example, but

a complete absence of signal in input [44].

DeepLIFT

The DeepLIFT approach explains the difference in output from a reference output in terms of
difference of the input from the reference input. This reference input/output can be viewed as
the baseline input from the integrated gradients method. It must also be chosen appropriately
to the problem at hand. To obtain insightful results, both references must be chosen by relying
on domain knowledge or trying the method using multiple references [42].

It uses a summation-to-delta property. Given a target output neuron of interest ¢, a set of
inputs 1, o, ..., T, that are neccessary but also sufficient to compute ¢, the summation-to-

delta property can be expressed using an equation:

n
> Cagar = At (3.10)
i=1

The At represents the difference from baseline for the output neuron. The Ca,,a; is the

contribution score, which can be thought of as a difference from output that is blamed on the

difference from reference of x;. One of the positives of this contribution scores is that it can
be non-zero even if the gradient of output in regards of the input is zero.
For the assignment of contribution scores to the input features, a set of rules is defined.

These rules can be used to find the contribution of any input to a target output using a backprop-

agation. These rules are using the summation-to-delta property and a differentiation between

28

positive and negative contributions. The computation of contribution is also dependent on the
activations used, for example when considering a softmax or sigmoid activation on the output,
it is preferable to compute the contributions using the layer preceding this final non-linearity
instead [42].

Layer-wise Relevance Propagation

The layer-wise relevance propagation is a technique for estimating which input features are
important for achieving a certain decision. The main idea is in redistributing the output
prediction score, for each possible class separately, back to the input space using a backward
propagataion procedure. This backward propagation procedure should satisfy a layer-wise
conservation principle. Using this principle, not only the last input features get the relevance
scores from output, but also all the intermediary layer neurons are assigned a relevance scores.
It also holds that the sum of all relevance scores on each layer should be equal to the output
prediction score [8, 6]. Lets consider a neural network with one hidden layer. The input
layer contains k features, denoted = = [x1, %3, ..., 2%]. The hidden layer contains n neurons,
denoted v = [vy,vs,...,v,]. And the output layer consists of m output neurons, denoted
Y = [y1, Y2, .., ym). Then we can depict the conservation principle with following equation,
where Ry, R, and R,, represents the relevance scores for input features, hidden layer neurons

and output neurons respectively:

> Ri,=)Y R,=) Ry (3.11)

The redistribution process can be defined in multiple ways, and for each different model it
has to be specifically tailored for it. One possibility is to use a first order Taylor decomposition
[8]. However, specifically for the neural network models, the Taylor decomposition is not
used. Instead, a kind of message sending is introduced. When the relevance is known for
neuron on upper layer, its decomposition can be redistributed on the lower layer by using
the ‘message sending*‘ from this lower layer [8, 6]. In other words, the connecting weights
between the one neuron on the upper layer to all neurons on the lower layer is used as the
means to redistribute the relevance score. Therefore, the decomposition can be denoted using
following equation:

R = ZZ]J « R (3.12)
The R;._; represents the message sent from lower layer ¢ to upper layer j. R and denotes
the relevance score of lower layer neurons from the upper layer neuron [+ 1 and R+
denotes the relevance scores of one upper layer neuron. The expression z;; can be calculated
using formula z;; = X; * w;; and represents the activation of specific neuron. Alternatively,

z;j can be expressed using equation Y_; z;; + b; and represents the activation of neuron on the

29

upper layer from all neurons from the lower layer [8, 6].

Using these equations, the relevance can be propagated using a backward propagation
procedure in the neural network to the input layer and therefore on all the features. Note
that there is no bound on the relevance and therefore the relevance scores are portraying the
relative importance of features between each other [8, 6]. One thing that needs to be done,
however, is to set the relevance scores on the output layer arbitrarily, either by using the output

probabilities, or any other number [6].

One problem using the propagation rule is that for small values of z;, the relevance
message can take unbounded values which produces a numerical instability in the model. To
counter this, an ¢ stabilizer term is introduced. When the LRP is modified in this way, it is
denoted as e-LRP [8, 6].

As is evident from the way the relevances are computed, this approach is dependent on the
architecture of the model. If introduced to a model with other than tanh or ReLU activation,
it fails spectacularly, as the decompositional approach was designed only for these 2 functions
[8, 6]. Additionally, if we want to use this approach on other types of network, for example

convolutional or recurrent, the decompositional equation must also be changed [6].

Comparison of Described Methods

One of the positives of these approaches is that they are much faster, as they require only one

forward and one backward pass of the neural network.

On the other hand, they are highly dependent on the architecture of the neural network.
Some of these approaches, for example can not deal with the ReLLU activation or some of
them can only deal with them and not the others. Another problem is that the generated

feature importances are affected by interaction between different input features [2].

While the mathematical formulation for Integrated Gradients, DeepLIFT and LRP meth-
ods is wildly different, their generated feature importances are very similar. This is mostly
evident when it comes to the Integrated Gradients and DeepLIFT, which are highly correlated,
suggesting that DeepLIFT is faster approximation of the Integrated Gradients method. How-
ever, it fails in presence of multiplicative interactions between features. The LRP method
produces a bit different outputs, though it is a simplest of the three methods. In addition, it
fails when presented with other activation function than ReLLU [2]. The comparison between
the three methods is illustrated in figure 3.9. Additional illustration of visual comparison,
along with the mathematical formulation of methods and their use on different activation

function is in figure 3.10.

30

Original {label: "garter snake"} Integrated Gradients DeepLIFT (Rescale) £-LRP

Figure 3.9: Comparison of attribution maps generated by the three gradient based methods, Integrated
Gradients, DeepLIFT and LRP. We can notice that attributions map of LRP is different from the other
two, which are more similar [2].

ReLLU Tanh Siemoid Softolus

' os.a i

tiel EEREORY M2 da {1 R 1@’5
radient a=0 8(=££) F=Fta(z—F) ; “y‘ -\.&;ﬁ/ /s i ,‘/_;"
_ g _

T)) U O

g
i

) = g velk Ak
DeepLIFT | (z; — ;) - 69&5;{:(1.)’ g = f(i - J:(V) @ @ h@y‘ w

Figure 3.10: Visual comparison of the three gradient based methods, along with their mathematical
Sformulation and usage on neural networks with different activations. We can see that the attribution
maps for them are very similar. Notice, how the LRP method can not deal with the sigmoid and softplus
activation functions [2].

3.4.3 Input Perturbation Methods

The last set of approaches, the input perturbation methods, test the rate of change in the
output when the input is directly changed. It is much more straightforward and different than
the previous two sets of approaches, as it observes the direct change of input and not just
the change in weights. One important assumption is required, for the input variables to be
continuous, which guarantees that the variable is still meaningful when it is perturbed. For
example, if we had categorical variables with values from 1 to 5, setting it to value 2.5 would
not make sense [47, 2].

The basic idea for these methods is that a change is introduced to one of the input
variables, while keeping the other input variables untouched. These changes could take form
of I, = I, +dor I, =1, x 9, where the [, represents the observed input variable and ¢
represents the introduced change. This is done for every variable, and optionally for multiple
values of J, while making note of the change in the output. Afterwards, the input variable
that introduced the highest change in output is considered to be the most influential relative to

other input variables [47].

31

The change in the output can be measured in multiple ways. A baseline error for neural
network model can be established for the observation by passing it to the neural network
and then a change in this error after perturbing specific input variable can be measured [5].
Another possibility, when it comes to the classification task, a change in the probability of
the correct class can be measured and used, optionally with including the changes in other
classes [49]. Last possibility is to use one of the sensitivity measures. These include following

measures [9]:
* Range: S, = max(fa,) — min(ja,),i,j € {1,..., L}
* Gradient: S, = Y%, [, — §a,_,|/(L — 1)

* Variance: S, = 37 (o, — ¥a)?/(L — 1)

* Average Absolute Deviation: Sy = Y7, 4, — 7al/L

The §,, represents the output for jth change in the ath input variable, y, represents the mean
of ath variable, 7, represents the median of ath variable and the L represents the level or the
number of changes for the variable, e.g. the number of different values that the § variable can
attain [9].

For all the mentioned methods for calculating the change in output, it holds that the higher
the value then the more relevant input variable is. Therefore, we can calculate the relative

importance of the input variable as:

ro =104/ 0 (3.13)

Where the r, represents the relative importance of the input variable a, the 9, represents the
change in the output or the sensitivity measure calculated for the input variable a, and the M
represents the number of input variables [9].

The most commonly used perturbation approaches can be divided into two distinct

categories, which define how the input variables are changed:
1. Local perturbations
2. Global perturbations

One of the positive traits of these methods is the fact that the architecture of the neural
network does not need to be known, as these methods take the neural network model as a
black box and so are only interested in the input-output mapping of changes [47].

The problem for it comes from the fact that in many approaches, there is an implicit

assumption that the input variables are not dependent on each other. This causes errors when

32

encountering data with dependent variables, as when one of the variables is removed, its
value can still be reproduced from its dependent variables, and so it is considered to not be
important. This can be partially prevented by using global perturbations. However, there it is
still limited as it is based on randomisation approach [5]. Another problem for perturbation
method is that they tend to be slow. As a change is introduced to each feature, the number
of operations is proportional to the number of features. For example, when used on images,
where each pixel is considered to be a feature, generating one explanation using perturbation
method can take hours [2]. In addition, the produced feature importances are highly dependent

on the number of features perturbed.

Local Perturbations

Local perturbation methods are defined by changing of value of only one input variable,
while others remain fixed. In the most basic case the other variables are usually fixed at the
representative value for them, for example median, mean or 1! or 3" quartile [5]. The term
'local’ in this case refers to the fact that the change, or derivative, of the output is calculated at
a single point in hyperspace of the input variables [37]. This method is also referred to as a
'One-at-a-time’ method [23].

The most common case for the local perturbation approach goes as follows [9, 26]:

1. Generate a new observation .., With each attribute in the x,,.., equal to the mean

of the various attribute values for all records in the data set.
2. Find the network output for input .., and call it output,,cqn.

3. For each attribute, vary .., from minimum to maximum to reflect its range of
values. For each attribute value find the output of the neural network and compare it to

output meqn producing a dif f,,, difference from mean for attribute a and ith value.
4. Sum all of dif f,,, values producing o, value.
5. Rank the attributes in descending order depending on their J, value.

The rate of change of a specific attribute value is often determined by their minimum and
maximum value. The minimum-maximum interval is divided by number L and the result is
the value that is added to the minimum value each time. Therefore, the computation is done L
times, always with different value in the attribute interval and so the final feature importance
is computed as average across these values [9].

There are some problems with this approach. Specifically the fact that only a small portion
of a highly-dimensional hyperspace is scanned, due to the fixing of other variables on their

mean value, when they are not perturbed. Another problem is, if the data contains dependent

33

attributes on each other. Varying only one of them is not a logical, nor representative solution,
as the value of the variable is still contained in other dependent attributes. This is partly solved
by using other approaches from local perturbation or the global perturbation approaches
[5, 37].

One method from the local perturbations type that can deal with the problem of not
exploring the whole highly-dimensional hyperspace of the input variables is called 'Leave-
one-covariate-out’ (LOCO) [28]. It was originally described in the context of regression
models, however, its default idea is model agnostic and therefore can be used in other models
as well, because it can be implemented in various ways. It creates local interpretations for
each row in the data by scoring this row once and then again for each input variable in the

row. The general idea of the LOCO goes as follows:

1. Take each row and calculate output value for it by introducing it to the neural network

model.

2. For each input variable, set it to missing, by assigning to it some appropriate value, for

example mean, median or zero, therefore leaving it from the prediction.

3. Introduce each row with its one missing input variable to the neural network model.
Calculate the output and compare it to the output from the run where all variables were

present.

4. Rank the input variable for the specific row in descending order by their absolute impact

on the change of the output.

This way, the approach produces variable importance for each row in the data. However, it
can also be used to determine the relative importance of input variables for the whole model,

by averaging the variable importances across the entire data set.

Global Perturbations

When it comes to the global perturbation approaches, the variation of a singular input variable
is considered, while the values of other input variables are allowed to vary. This way, the
highly-dimensional hyperspace of input variables is more thoroughly explored, resulting in
much more meaningful interpretations, as it can capture some of the corner cases in the data
set [5].

There exists diverse global perturbation methods, but the following ones are used the most
often [23, 9]:

» Simple Global perturbation - it is very similar to the local perturbation approaches, with
the exception that multiple input variables are simultaneously varied in their minimum-

maximum interval instead of just one. The others are still held at their respective

34

value, e.g. mean or median. This approach better captures the interactions between
input variables, however, it requires more computation and still cannot capture all the

interactions.

* Data-based perturbation - it is also very similar to local perturbation, with the exception
that instead of using the means for other values, a set of random samples is taken from
the data set and a local perturbation is performed on each of them. When taking the

whole original dataset, this method is closely related to the LOCO approach.

* Monte-Carlo perturbation - similarly to the Data-based perturbation, a set of random
samples is generated from the original dataset. The exception is that instead of taking
samples directly, values for each input variables are sampled from a uniform distribution

defined by its minimum-maximum interval.

* Cluster-Based perturbation - is very similar to Data-based perturbation. However,
before sampling the set of random samples, the dataset is divided into a set of clusters
according to the observed input variable values and the samples are generated and the

perturbation method is performed for each cluster.

Perturbation Based Attribution Methods for Convolutional Neural Networks

As was established, attribution methods can be used on any type of neural network model,
even the deep convolutional neural network. In the case of [49], this approach is mostly used
to determine if the model is truly identifying the location of the object in the image or just
using the surrounding context.

However, because of the fact that the convolutional neural networks are specialized to be
used on image data, the basic method perturbing the input had to be augmented. There is
much higher number of features in convolutional neural networks, as each pixel in the image is
considered to be a feature. In addition, each pixel is highly correlated with its neighbourhood,
which is in direct contradiction with the assumption of independent features [49].

Therefore, instead of removing only one feature at a time, multiple pixels are removed at
the same time. This is done by introducing a grey, or otherwise coloured, rectangular patch
to the image, with its center defined by the observed feature. First, an image is introduced
to the network to determine its true class classification. Then, the rectangular grey patch is
slided across the input image, each time introducing it again to the network and monitoring
the increase or decrease in the probability of the correct class. Each change in the correct
output class probability is noted and used in the creation of a heatmap of class probabilities
for the correct class with a specific part of the image occluded. By using visualisation of a

heatmap of the changes, this approach ensures that the interpretation is as easy as possible

35

[49]. The created heatmap with its input image with an example of the grey rectangular patch

is shown in figure 3.11.

True Label: Pomeranian _

Figure 3.11: Visualisation of the perturbation based attribution method for the convolutional neural
network. A grey rectangular patch is slided across the input image, producing a heatmap of correct
class probabilities as a function of the position of the grey square. Each pixel in the heatmap represents
the class probability in the case, where the grey rectangular patch is centered on its location. From the
visualisation we can determine that when the dog’s face is obscured, the probability for the correct
class drops significantly [49].

Similar approach as this was proposed by Zintgraf ef al. [53]. Similarly to the previous
method, a patches of image pixels were also removed. However, instead of using a grey
patch for the removal of pixel, they decided to use something else. The goal of their method
is to compute a probability p(c|z\;), which denotes the probability of class ¢ when all the
features are present except x;. This probability can then be compared with the probability
of class with all the features, p(c|x) and a difference can be calculated and used as a feature
importance. There are three possible ways of removing the feature x;. First is to set it to
unknown, which only a few classifiers allow. The second is to retrain the whole classifier
with the specific feature missing, which is infeasible. The third approach is to marginalise
the feature by modeling a probability p(x;|x\;). This modeling is, however, infeasible with
large number of features and thus an independence of variable x; with all others is assumed
[53]. Therefore, the approximation of probability of correct class with missing feature can be

denoted as:
p(clzyi) = Zp(flfi)p(dflf\i’ﬂ?i) (3.14)

Nonetheless, the approximation of p(x;|x\;) is crude, mainly when it comes to images, and
so they are proposing a fourth approach. They propose a much more accurate approximation
based on the observations that pixels are strongly correlated with their neighbourhood and the
value of pixel is independent of its position in the image. Therefore for pixel x;, a patch &; of

size [zl that contains z; is used [53]. The approximation used can then be denoted as:

p(xi)p(clan) = p(z]dy) (3.15)

36

Figure 3.12: Visualisation of the perturbation based attribution method using a marginal sampling.
The visualisation explains why GoogLeNet predicts the correct class of ‘cockatoo’. The red parts of
the heatmap are supportive of the decision, while blue parts are prohibiting the decision. We can see
that the face of the cockatoo is supporting the decision, while the body is prohibiting it. This can be
due to the fact that the other highest scoring class is ‘white wolf* [53].

The patch removal is implement in a sliding window fashion, with the patches overlapping.
For this reason, the relevance of pixel is obtained by taking an average of all of its relevances
obtained from all the patches it was in. Additionally, for sampling, the empirical distribution
is always used and a patch is replaced using samples taken directly from other images at the
same location. The idea of using a multivariate approach, e.g. removing patches and not
single pixels, is based on the fact that neural network should be robust to such a small change.
This stems from the observation that there is high correlation between neighbourhood pixels
[53]. The results of this method are illustrated in figure 3.12.

37

Chapter 4
Analysis Summary and Findings

Interpretability is an integral part of machine learning research. Its importance lies in the
simple fact that without the ability to explain the reasoning behind the decisions of our models
there is no real possibility for them to be used in practice. Without explanations, we cannot
trust that our model will behave correctly. And without trust, machine learning models cannot
be used in the fields where the cost of an error is huge, like medicine.

Neural networks are one of the most used machine learning models today. They are much
more accurate than other models when used correctly. The accuracy of neural networks is
due to the fact that their representation of learned knowledge is highly abstract. Additionally,
their architecture allows them to be extended really easily by stacking layers on each other.
This way, they can represent complex interactions present in the data as close as possible and
thus model highly non-linear functions. In addition, there is a tendency to construct more and
more complex neural network models for more tricky tasks, like for example convolutional
neural networks.

However, this is also the reason why they are regarded as one of the hardest models to
interpret and explain. There is extensive research that deals with the problem of explaining
the decisions of neural networks and many approaches were already developed. They include
things like looking at the weights in the network, visualising weights or activations or any
other characteristic of neural network and many others.

Attribution methods for neural networks are the ones that are researched and used the
most. These methods are one of the most accurate, as they work directly with the trained
network when determining the most important input features for the individual predictions.
By assigning a simple number to features, they allow for simple, but effective, visualisation
of the neural network.

The visualisation of important features is much better than a simple table output. Humans
can interpret images much better than a long list of text. Therefore by visualising which

features are important, rather than just listing them, the understanding of what neural network

39

is doing is easier. This is much more obvious when it comes to images, where each pixel
represents one feature.

Almost every attribution method is intended for use on images, while other data types are
mostly ignored. It is understandable, that it is this way, as a large number of neural networks
are used on images, as no other machine learning models can deal with them easily, due to
the complexity of representation of the data. However, there are other data types with similar
complexity of representations. One typical example is a text represented as a vector model to
take advantage of the order of words and not just the presence of words. Therefore, a method
that can easily deal with text is also required.

Each type of attribution methods has some kind of positives, but also negatives. Methods
that are using gradients to determine the feature importance are dependent on the architecture
of the neural network. For example, some methods cannot deal with rectified linear units,
while others work only with them. On the other hand, the methods that use perturbation are
independent of the architecture but suffer from massive slowdown when there is large number
of features present. For example, when dealing with images, explanation of one decision can
take several hours. They are, however, more precise than gradient methods, as the gradient
methods work as a kind of approximation. The problem in both types is the inability to deal

with the dependence between the different features. Therefore, their results are skewed.

40

Chapter 5
Thesis Goals and Hypotheses

The goal of our work is to develop a modified perturbation-based attribution method that can
reduce the drawbacks of the simple attribution methods. We primarily focus on taking into
consideration the interactions that are present in data in the explanation generation process
and thus allowing the effective use of this method even on data where the independence of
features is not satisfied. In addition, we focus on presenting the created explanation in a form
that is interpretable for other people and can give them insight into the decision process of the
neural network. The main goals of this thesis can be summarized in the following hypotheses

we have set:

1. Inclusion of inherent interactions, present in data, in perturbation-based attribution

method can help in producing more precise attributions.

2. Relevance scores, and their visualisation, produced using a modified-perturbation based
method on textual data can provide insight into the decision process of the trained

model, allowing humans to better understand its behaviour.

To confirm the first hypothesis, we use a statistical evaluation, which consists of the
comparison of our method to other attribution methods without the inclusion of interactions.
For the second hypothesis, we propose a user experiment, as we want to confirm the user
understanding of the explanations and their ability to provide insight into the decision process.
More in-depth description of our methods for confirming these hypotheses is presented in

section 6.2.

41

Chapter 6

Determining Relevance of Correlated

Features

Our proposed method is focused on improving the understanding of neural network mod-
els with any kind of architecture, by explaining the decisions of these models. It is a
perturbation-based attribution method that during its explanation generation process, takes
into consideration the inherent interactions between features. The reasoning for this method
is the fact, as was determined in previous sections (3.4.3), the perturbation-based methods
produce more precise attributions when the assumption of independence between different
features holds. This assumption, however, does not hold in many cases and therefore there is a
need for a method that can overcome this shortcoming, in order to produce better explanations
even where there are interactions in the data. As with all the attribution methods, this method
assigns a relevance score, or attribution, to each input feature in a specific decision.

The basic process of our method is presented in figure 6.1 and it consists of the following

steps:

1. Generate a baseline for comparison.

2. Identify correlations between input features.

3. Perturb the examined feature.

4. Calculate final relevance score for the examined feature.

5. Present the generated explanation.

43

[Unprocessed features]
(Generate Identify] [Calculate ’ - O
. baseline Interactions Perturb feature relevance [Features processed] Present resuls

Figure 6.1: Basic overview of the proposed method. First, a baseline is created. Afterwards, the
interactions are identified. Using these interactions each feature is perturbed and its relevance score is
calculated. When all the features are processed, the generated results are presented.

6.1 Proposed Method Details

While the majority of attribution methods were built atop the image data, we have decided
to concentrate on textual data. The reasoning for this is the fact, that by using textual data,
we can best showcase the possibilities of our new approach. When considering individual
words as separate features, the interactions between individual features in textual data become
very distinct. The sequence of words is one of the most obvious ones, where the words
‘new* and ‘york‘ mean something entirely different when separate and when together. Further
interactions are slightly hidden as they are present in the use of synonym words, where two
words are considered separate features while representing the same kind of information.

Nonetheless, the decision to concentrate on textual data brings with it some complications
that need to be resolved. One of them is the sheer number of features, which causes significant
problems for the use of perturbation-based methods. When each individual word is considered
one feature, the number of features can be in thousands or tens of thousands. Even though it
is not so bad as with the image data, where producing attribution for one image can take even
one day, it can still cause significant slowdown. Another problem is the representation of the
data. Typical models require the data to be in static one-dimensional vector form. Therefore a
bag of words representation is often used, which creates a sparse vector with size equal to the
size of dictionary of words used, with each number representing the frequency of individual
words. However, this representation ignores the main interaction of words, their sequence,
and therefore cause further problems if used.

Fortunately, both of these problems can be counteracted using word embeddings. Word
embedding representation produces a two-dimensional representation of text, where the words
are mapped to vector of real numbers, thus keeping the order of words and reducing the total
number of features for specific decision. Only the words present in the specific observation are
used and not all the words from dictionary of all words. This representation is almost identical
to the image pixel data representation with one difference. Where pixels are represented as
three different channels, red, green and blue, when it comes to words, only one channel is
used. Therefore neural networks can still be used for this representation. Based on these facts,
we decided to utilize the word embedding representation in our method. Note that in this new

representation, individual word, and thus the whole word embedding vector for the specific

44

word, is still considered as one feature.

Although the aforementioned proposed method generates only local interpretations of the
model, e.g. explaining individual decisions and not the model as a whole, it can be further
extended to produce approximations of global interpretations of models. The individual
feature relevance scores can be aggregated together using, for an example, a simple average of
all the relevance scores for specific features across all decisions. These aggregated relevance
scores can then be used as a means of explaining which features the model finds most
important as a whole.

Nonetheless, in our case, where the focus is on textual data and each word is considered
one feature, this approach provides only a crude approximation. Due to the sheer amount of
features, this approach could cause s shift in preference. Instead of preferring words with
high relevance, which are infrequent, it could prefer the words that appear often, even with
low relevance, instead. Although, should the nature of the data change, the case would not
apply anymore.

The process of generating an explanation using our proposed method specifically for
textual data with word embedding representation is described more in-depth in following

sections. The graphical representation of this process is shown in figure 6.2.

6.1.1 Generate Baseline

In this step, a baseline from the selected observation is created. This baseline serves as an
important starting point, as in later steps, the effect of the perturbation will be gauged using a
comparison with this baseline. The easiest possibility for creating the baseline is to use the
basic output of the neural network after the chosen observation is passed to it. The output of

the neural network is therefore marked as ypuseine-

6.1.2 Identify Interactions

The identification of correlated, or interacting, features is performed for each input feature
in the selected observation. There are multiple possibilities of how to generate this set of
correlated features, each with slightly different output and different properties.

In the case of textual data, we have identified the following 4 possibilities. First possibility
is to exploit the character of input data and determine the correlation using an order of
words. In this case, a number of previous and following words is used. This simple approach
guarantees us that the size of the set of correlated features is consistent between features, but
also between multiple observations, which causes less problems in further steps. On the other
hand, the relevance of some of the features may be overestimated.

As we are dealing with texts with differing sizes, setting the size to be static may not be

45

the best idea. Imagine having 2 texts, one with 10 words and the other with 50 words. We
decide to take 2 previous and 2 following words for the set of correlated features. This way,
the first text would have 50% of its features perturbed and the second only 10%. It is clear that
the result of the perturbation in the first case would be much more significant than in the other
case. To better deal with this, we identify a second possibility of using a percentual order
of words. Instead of taking static number of words, we change this number in accordance to
the word size of the chosen observation. This way, we get much more consistent relevance
scores between different observations. However, we must take into consideration this change
in the size of the set of correlated features in further steps. Additionally, the problem of

overestimation of some of the features is still present.

Another possibility is to exploit the vector representation of textual data we use. In this
case, we use a cosine similarity between the individual vector representations of words to
determine which are most similar. Each word, whose cosine similarity is above a defined
threshold, is therefore inserted into the set of correlated features. This approach should
produce better results in some cases, as the relevance scores are not overestimated. However,
it creates an inconsistency in the size of the correlated features set. Additionally, it can cause
underestimation of the relevance scores instead, as the similarity between stop words should

be much higher and therefore more features are perturbed when dealing with them.

Last, but not least, there exists the possibility to use a combination of the cosine similarity
approach with either one of the order or percentual order approaches. This approach should
effectively deal with the problem of overestimation and underestimation of relevance scores

for the features.

6.1.3 Perturb Features

The perturbation is performed for all the input features present in the observation. Instead
of perturbing only the examined feature, the perturbation is performed on the whole set of

correlated features that correspond to this feature.

As a means of perturbation, there exist multiple possibilities. First possibility is setting
the value of the perturbed feature to its mean, or average, value. This approach, however, does
not make sense, especially when dealing with words, as the average value is something that
would make no sense in regard of the data set.

The better possibility is removing the feature altogether. As this is not really possible
without retraining the model in each step, which would be counterproductive, setting the value
of the feature to indicate an absence of signal is the best solution. In the case of textual data

this means setting the embedding vector to a zero vector.

46

6.1.4 Calculate Relevance Score

After the observation is perturbed using the currently examined feature, we need to generate
a new output. This output should be generated the same way as the baseline, in order to be
able to compare them. In the most basic case, the observation is again passed to the neural
network and its output is saved and marked as y* _,, where k = 1, ..., K, with K indicating
the word size of the observation and k representing the index of currently examined word.
A relevance score for the examined feature, 7, is then calculated using equation r, =
f (Ybasetines y,’fwd). This equation calculates the difference between baseline output and the
output from perturbed observation. The function f() can be chosen as an arbitrary metric. It
should take into account the fact that the perturbation is performed on multiple features at once,
which can cause unwanted artefacts in the results. Consider a case, where an unimportant
feature is preceded and followed by an important word. Without any normalization, it would
get much higher relevance score as it should. Additionally, the size of the correlated features
set could cause artefacts when it is not static. If more words are perturbed, the change in the
output is expected to be more significant even though only unimportant words are perturbed.
Therefore the size of the correlated features set should be used as an additional normalization.
The final relevance score, r, represents the importance of the examined word, with
index of k, for the chosen observation. It is expected that if the examined word was really
important for the decision process, its perturbation should have significant impact on the
output. Therefore higher positive number of the relevance score indicates higher importance
for the specific decision, e.g. it was one of the features that was used in the decision making
process. The relevance score can also be negative. This indicates that it was one of the words
that oppose the decision made, again with lower number indicating higher level of opposition.

If the score is zero, or close to zero, it has no quantifiable effect on the decision.

6.1.5 Present Results

The explanation of the decision of the neural network model is presented using the relevance
scores calculated in previous step. By sorting the relevance scores in descending order, we
can determine the words that were the most important for the decision, as they would be on
top. When normalized to a range [—1, 1], we can present the relative importance of the words
to each other. This way, we can determine if the decision process was mostly influenced only
by a single word, or if multiple words were significant.

As the created relevance scores are numbers that are bounded by a minimal and maximal
value, their visualisation can also be created. They can be used for a heatmap visualisation
across words, where the background colour of the word is determined by its relevance. We

assign the green colour to positive relevance and red colour to negative relevance, with the

47

deepness of the colour indicating the significance of the word. One such visualisation is

presented in figure 6.2.

Enjoyable in spite of Leslie Howard's performance. Mr. Howard plays Philip as a flat,
uninteresting character. One is supposed to feel sorry for this man; however, | find myself
cheering Bette Davis' Mildred. Ms. Davis gives one her finest performances (she received an
Academy Award nomination). Thanks to her performance she brings this rather dull movie to
life. **Be sure not to miss when Mildred tells Philip exactly how she feels about him.

Enjoyable in spite of Leslie Howard's performance. Mr. Howard plays Philip as a

One is supposed to feel sorry for this man; however, | find myself
cheermg Bette Davis' Mildred. Ms. Davis gives one her finest performances {she received an
Academy Award nomination). Thanks to her performance she brings this rather |movie to
life. **Be sure not to miss when Mildred tells Philip exactly how she feels about him.

Enjoyable in spite of Leslie Howard's performance. Mr. Howard plays Philip as a flat,
uninteresting character. One is supposed to feel sorry for this man; however, | find myself
cheering Bette Davis' Mildred. Ms. Davis gives one her finest performances (she received an
Academy Award nomination). Thanks to her performance she brings this rather dull movie to
life. **Be sure not to miss when Mildred tells Philip exactly how she feels about him.

Figure 6.2: Process overview of our proposed method when used on a text observation. The observation
is from a sentiment detection task and is assigned a negative sentiment. For each word, its correlated
features set is identified. In this case, the examined word is ‘uninteresting‘. The words ‘flat‘ and
‘character’ are in the correlated set due to their proximity to the word and the word ‘dull* due to its
similarity. These words are perturbed by setting them to zero vector (represented by a grey rectangle).
The calculated relevance scores are then used for a heatmap visualisation across words. The darker
the green colour around word, the more relevant it is for the current prediction, e.g. negative sentiment.
The darker the red colour around word, the more it is in opposition of the decision, e.g. points to
positive sentiment. Words with white, or almost white, colour are irrelevant for the decision.

6.2 Hypothesis Evaluation Approaches

Attribution methods are often hard to evaluate empirically [2, 44]. The main difficulty results
from the fact that the explanations are generated using an already pretrained model. There is
no special guarantee that the model is error free and therefore distinguishing between what is
the error of the trained model and what is the error of the explanation method used for the
model is hard to make. Common practice is to assume that the pretrained model is perfect, or
error free, and therefore each error present in the explanation is caused by the method used
[2, 6,53, 39, 8].

48

In addition, evaluating only the correctness of the generated explanations is not enough.
As the explanations are used by humans, they should be presented in such a way, that they
are interpretable themselves and provide an insight into the decision process of the used
model. The insightfulness of the presentation should also be evaluated. The result of the
attribution method is a list of relevance scores for the individual input features. Such output is
not really interpretable for humans and thus cannot provide any insights. Therefore it should
be presented in an interpretable way, preferably in a form of visualisation.

For the evaluation of the attribution method, following 3 properties should be examined:

* Correctness of the used model. The assumption that the pretrained model is error
free does not make much sense. Without the confirmation that it is really correct, the

explanations cannot be judged correctly.

* Faithfulness of the generated attributions. This property indicates if the generated
explanations really mirror the behaviour of the model. It is the main thing that is

evaluated in each attribution method.

* Insightfulness of the generated attributions. This property indicates if the generated
explanations are understandable and enhance the user understanding of the model. Even

though the explanations can be correct, without this property they are useless.

To correctly evaluate our proposed method, we have decided to examine all three of those

properties. To do this, we have identified the following 3 ideas for experiments:
* Denoising
* Comparison with attribution based methods

» Using user marked results for evaluation

6.2.1 Denoising

To determine if the neural network model has learned relevant feature representations, and
therefore if it is really correct, we decided to use denoising. For the task of denoising a special
kind of neural network model is used, a denoising autoencoder [20, 46]. The autoencoder gets
an input, forwards it through the network and is expected to output the same representation as
the one on the input. When extended to be able to denoise, its training is modified. The input
is first modified by introducing some kind of noise to it and the encoder is trained to be able
to remove it. Therefore, the autoencoder is used as a kind of dimensionality reduction, where
the most important features are extracted and more robust representation of data is learned

[20, 46]. We can think of denoising autoencoder as a kind of unsupervised feature selector.

49

As we are doing something similar, determining which features are relevant for a specific
decisions, we can use the denoising autoencoder as a way of evaluation. First, a simple
denoising autoencoder is trained with either fully-connected layers or convolutional and
maxpooling layers, with their number (in the encoding part) equal to the number of layers of
our trained model. Subsequently, a decoding part of an autoencoder, using the architecture of
our trained model, is trained, while keeping the already trained parts of the architecture static.
An error rate for both of these models is calculated and compared with each other. If the error
rate from our trained model is not greater than the one from the simple model, we can state
that our trained model has learned the best representation of input data it could and can be
used for evaluation of the attribution methods. Otherwise, some kind of modification needs to
be performed upon our trained model. Note, that this decision can be made only when the
error rate of the simple denoising autoencoder we trained is sufficiently small. If this is not

the case, a more complex architecture must be used.

6.2.2 Comparison with Attribution Based Methods

The comparison with other attribution based methods can be viewed as a natural idea, as
the method we are proposing produces explanations in similar fashion to other attribution
methods, by calculating relevance scores, while taking into consideration interactions in the
data. These relevance scores should be comparable, with some preprocessing. In addition,
most of the attribution methods can identify features supporting, but also those that oppose,
the specific decision. Therefore, it makes sense to compare it to other methods, in order to
examine the faithfulness of our proposed method.

Nonetheless, there is also slight problem with this approach. When comparing between
our proposed method and other attribution method, we are comparing between two sets of
numbers, the produced relevance scores for all input attributes. Therefore, we can produce an
aggregated difference between them, to evaluate, if the generated explanations are different.
However, if large difference occurs, we cannot tell which method produced better explanations,
as we have no golden standard against which to compare. Therefore, we select a bit different
approach in this comparison.

First, using the numerical, but also statistical comparison, we determine if our proposed
method produces different explanations than other methods. As we are assuming that our
method generates better explanations, the difference should be present. If there is no difference,
there is no point in continuing the evaluation and we can determine that the produced
explanations are not better.

After observing a difference in the explanations, we can determine the correctness of the
explanations. For this, we first select the top k£ most important words from our proposed

method, and all other attribution methods against which we want to make a comparison. Then,

50

we remove those words from the observation, similarly as in our method, by setting them to
zero vector. After the removal, we calculate the percentual difference in output of the neural
network. This can most easily be performed in a classification problem, where the output
probability is bounded. We expect that the method that identified the most important words
will attain highest difference in the output. As the point of the attribution method is not only
in finding most important words that support the decision, but also those that oppose it, the
same is performed with the bottom k& words. Both results for single method are aggregated, as
the method should be able to do both things very well.

A big advantage of the attribution methods is the fact that they are easily visualised and
therefore we do not need to rely only on quantitative comparison, but an expert evaluation

can be performed on them. This property is exploited in the user evaluation experiment.

6.2.3 Evaluate through User Marked Results

The last idea for evaluating the proposed method is to use the user marked words to evaluate,
if the proposed method generates explanations that correspond to the expected behaviour of
the model. We examine if the explanations provide the necessary explanations for the decision
process and if they correspond to the human expectations. As humans, we have a pretty good
idea about which words are important for promoting the decision, which are in opposition of
the decision and which are irrelevant. For example, when presented with sentiment analysis,
we can easily determine that the words not good together promote a negative sentiment,
while just word good impede the negative sentiment.This is the very thing we want to take
advantage of. This experiment consists of two parts called user marking and user trust. To
guarantee best results, the data for this evaluation approach are from a sentiment detection
problem. Both parts of the experiment are used for the examination of the faithfulness and
insightfulness property of the method. This experiment only makes sense, and generates good

results, when the correctness of the model is guaranteed.

User Marking

In this part, users are choosing words that they think are important. They are presented with a
specific observation from the text corpus. The task for them is to choose the words they think
are the ones that promote the positive sentiment the most, but also the ones that they think
correspond to the negative sentiment. The number of words for either category is not limited.
The words selected by users are then used to create a golden standard against which will we
then compare our proposed method, along with other attribution methods.

Since users are not asked for any kind of ranking of the words, first, a set of the most

relevant words for either category, the one promoting and the one opposing the sentiment,

51

needs to be chosen. This is performed by defining a threshold value individually for each
observation. One possibility is to just take the 10 (or 90) percentile of relevance scores.
Afterwards a percentual overlap of these sets is calculated, while taking into consideration
the size of the set provided by the user and its proportionality to the overall number of words.
When encountering a 100% overlap, if the user has chosen only one important word then it
should have different weight than when the number of chosen words is for example 5. Another
possibility is to use the Jaccard index for evaluating the overlap. The overlap is calculated for
each attribution method we want to use in comparison as well.

When comparing the overlap, multiple approaches are chosen. First, the numerical values
are observed, as multiple situations can occur. Both the overlap for our method and for other
attribution methods is similar, however very small. In this case, the neural network is not
performing as the user expects and therefore there is a problem with the representation the
neural network has learned. On the other hand, when both overlaps are high enough, we
can declare that the neural network is behaving like is expected. Another case is when the
overlaps are significantly different. If the one produced by our method is much higher, then
we have encountered a situation where our method has generated better explanation for the
behaviour. Or when it is much smaller, we can declare that there is some problem with our
approach. If the resulting overlaps are sufficiently high, we can perform a statistical evaluation
to determine, if overlap with our method and the other is different with statistical significance.

If the difference is statistically in favor of our proposed method, we can declare that it
performs better on correlated data. In addition, in the first part, we can declare the same thing
if the occurrence of the case where the overlap of our method is better is most frequent and
the case where it is worse is infrequent. The case where both overlaps are very small should

be minimal.

User Trust

In the second part of the experiment, we are evaluating if the produced explanations are
understandable for humans and if they provide a meaningful insight into the decision process
of the trained model.

This evaluation is performed by presenting explanations to the user and asking them some
questions. In order to correctly determine this, the process is performed multiple times, each
time with differently trained model. Some of the models presented to the users will be good,
with high accuracy, but others will be error-prone, with incorrect training process. To get the
best results, the users will be presented with all the models, but in different order.

Each presentation for different model will be performed in 2 steps. In the first step,
user will be presented with a number of text samples, along with the information about the

predicted outcome and the correct outcome. The given task will be to inspect the samples

52

and answer few questions. The questions will be about the level of trust in the model and
about the way they think the model decides. After answering these questions, the user will be
presented with explanations of decisions for the previous text samples and asked the same
questions again.

When evaluating the results, we will be comparing the level of trust of users in the correct
and incorrect model with our expected results. We expect that before being presented the
explanations, the correct and incorrect models should attain approximately the same level of
trust. However, after being presented with the explanations, the trust in the incorrect model
should plummet significantly, with the trust in the correct model staying at approximately the
same level. The questions about the way the users think the model behaves will mostly be
used as a means of control questions, to determine if the trust was selected randomly, and to
inspect if some trends are identified in the text samples and their explanations. We mainly
expect that the explanations should help in identifying the bad models from the good models,

but in indirect way to avoid any bias.

53

Chapter 7

Correlated Perturbations on Text Data
Set

In this chapter we present the implementation details for the method presented in chapter
6. We present these implementation details in regards of a classifying individual textual
observations into multiple classes.

In order to be a bit implementation independent, the textual data is not immediately
represented using the embedding vector representation. Instead, we expect the input to be in a
form of vector of numbers. These numbers indicate the index of the individual words in a
dictionary created from all the words present in the corpus. The index 0 is specially reserved
for words without any embedding vector representation. The translation of these words into
embedding representation is then handled by the neural network. Additional reason for this
representation is the fact that keeping the vector embedding representation beforehand is
much more memory inefficient and is not needed for our method to work.

As the word sizes of individual observations are variable, we deal with this problem as
well. We define a maximum number of words that can appear in a single observations. The
observations having the word size larger than this are cropped. The observations with lesser
word size are padded using the aforementioned zero index words.

The implementation of our method can take any number of observations and calculates the
attributions in bulk, which makes it more efficient. For the implementation of neural networks
we use the Keras framework with Tensorflow backend. The representation which we use for

the data is the numpy array.

Generate Baseline

The generation of the baseline for our method is done simply by passing the unmodified
observation to the neural network. As we are dealing with a classification problem, this

outputs a probability for each class present.

55

As having the baseline consist of all the probabilities would be too much implementation
dependent and would cause problems further down the line, we reduce this number to 2 values.
First value is the probability for the class, which the neural network model assigns to the
observation, e.g. the one with the highest probability (even if it is incorrect predict