
Minimizing Convex Piecewise-affine Functions by Local Consistency TechniquesMinimizing Convex Piecewise-affine Functions by Local Consistency Techniques
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Problem

We consider the problem of minimizing a convex
piecewise-affine function, given as the sum of point-
wise maxima of affine functions, i.e.

f(x) =
l∑

i=1

mi

max
j=1

(aT
i,jx + bi,j), (1)

where a1,1, ..., al,ml
, x ∈ R

n.

This problem can be formulated as a linear pro-
gram, however, for very large sparse instances, on
which we focus, solving this LP might be in practice
impossible because of the space and time complexity
of general LP solvers. Alternatively, minimizing such
function can be seen as an instance of convex non-
differentiable minimization and thus one could apply
subgradient methods which have linear space com-
plexity, but these methods have been experimentally
observed to be very slow. Additionally, we are not
looking for its global minimum, but for local minima
(not local in topological meaning) that we denote as
locally consistent points.

Contribution

We designed a novel algorithm that searches for
the locally consistent points. The algorithm is itera-
tive and in each iteration

1. decides whether it is in a locally consistent
point (if it is, it terminates),

2. finds a decreasing direction from this point,

3. performs line search to find a step size,

4. shifts current point in the direction by the step
size.

Additionally, we have also introduced local ǫ - con-
sistency generalization that further relaxes the notion

of locally consistent points and provides a significant
speed-up that is based on the idea of capacity scal-

ing (i.e. gradually tightening the conditions on the
result until satisfactory solution is reached). This
relaxation improves the results and also allows us
to prove the correctness of the algorithm – it al-
ways reaches a locally ǫ-consistent point after a finite
amount of iterations under the assumption of precise
arithmetic.

We have also introduced an integer version of the
algorithm, whose correctness was justified using only
the assumption of finite-precision arithmetic. We
implemented it in C++ and made our experiments
with it.

Finally, we formulated theorems that in some
cases allow us to determine the optimality of the
found solution.

Experiments and Results

We tested the algorithm on instances that corre-
spond to Schlesinger’s upper bound of a binary

max-sum problem, which was also the original mo-
tivation for solving this problem. The upper bound
is a function that can be expressed in form (1) and
the mentioned max-sum problem was based on two-
dimensional grammars and searching the closest im-
age generated by a given grammar.

For example, we could be given an image that is
in the left part of the figure below – it is an image
with noise and we would like to find the closest black
and white image to it that is generated by rectangles

grammar. Such images contain only black rectangles
that do not touch or overlap on white background.
The optimal solution (and also the output of our al-
gorithm) is on the right side of the figure below. Sim-
ilar experiments were done with 4 different grammars
and various amounts of noise on 24 images in total.

The minimized function in the form (1) in the largest
instance consisted of 8736000 subfunctions (i.e. dif-
ferent vectors ai,j) that were of dimension 6986000
(which is also the amount of real scalar variables in
the problem).

The relaxation used by the algorithm showed to be
suitable for such problems because it often reached

the true optimum. Moreover, our algorithm had
significantly shorter runtime on all the instances
when compared to an optimal LP solver (i.e. ap-
proximately 10–104 times faster, depending on the
instance). Note that comparing our solver with a
general LP solver is reasonable, since any LP can be
in linear time transformed into minimizing a function
in form (1). However, for LPs that are not sparse,
the locally consistent points would not be good local
minima.

On the generated instances, we also tried re-
optimizing the solution after a small change in the
input instance was done, which could become useful
in ill-conditioned or ambiguous problems.

Future Work

Continuation of this topic is going to be a part of
the PhD work of the author. We have encountered
a number of open questions that might be resolved
in the future – for example whether the algorithm
would work also with subfunctions that are not only
affine, its usage in branch-and-bound methods, and
generalizing further the local consistency notion.


