

 A Library for Convolutional Neural Network Design
 Petr Rek

 Supervisor: prof. Ing. Lukáš Sekanina, Ph.D.

The rapid progress in AI technologies based on deep

and convolutional neural networks (CNN) has led to

an enormous interest in efficient implementations of

neural networks in low power embedded devices.

The goal of this diploma thesis was to develop a new

library for Convolutional Neural Networks (CNN) that

allows the users to evaluate effects of using different

data types and/or operations on CNN. The library,

called TypeCNN, was developed and tested on

commonly used data sets. Furthermore, this work

also includes experiments with CNN based on fixed

point representation.

Problem statement

Convolutional neural network

 • Layers – Convolutional, Pooling (average and

max), Fully connected, Drop-out, Activation,

 • Activation functions - ReLU, Leaky ReLU, Sigmoid,

Tanh, Softmax,

 • Loss functions – Mean squared error, Cross-

entropy,

 • Optimizers – SGD, Momentum, Nestorov

momentum, Adagrad, Adam.

Additional features

 • XML schema for CNN specification,

 • Persistency module (loading and saving trained

CNN),

 • Both CLI and API,

 • Parsers for different formats (IDX, PNG, Binary),

 • Support for up to three data types in each layer,

independent between layers,

 • FixedPoint data type – fixed point representation

with configurable bit length of integer and fractional

parts.

TypeCNN library features

The library contains three independent data type

aliases:

• WeightType – data type used for weights

during inference and when saving to a disk,

• ForwardType – data type used for all the

computations done during inference,

• BackwardType – data type used while

updating learnable parameters (gradients,

precise weights, …).

Any data type that supports a set of predefined

operations (arithmetical, logical, …) may be used,

including user defined data types. That means that

the user can also redefine these operations and

support , for example, approximate operators.

As a demonstration, the TypeCNN library contains

fixed point data type FixedPoint<F, P>, where F is

the amount of bits for the integer part and P is the

amount of bits for the fractional part. This

representation is beneficial wherever speed and

low power consumption is important. However it

introduces problems such as overflow. It is

suggested to first train the network using floating

point data type, then convert all relevant values to

the fixed point data type and fine-tune for a few

epochs.

Replacing 32-bit floating point by 8-bit fixed point

leads to a speedup of over 3 times in performing

the MAC (multiply-accumulate) operation and

simultaneously decreases its power consumption

by over 30 times [1].

[1] Gysel, P.; Pimentel, J.; aj.: Ristretto: A Framework for

Empirical Study of Resource-Efficient Inference in

Convolutional Neural Networks. IEEE Transactions on

Neural Networks and Learning Systems, 2018

Data type independence

Common data sets

 The library was tested on the MNIST data set

(accuracy of 99.37%) and the CIFAR-10 data set

(accuracy of 73.59%). These results are acceptable

with respect to the CNN architectures used.

Comparison with other libraries

 The TypeCNN library was compared to other

publicly available libraries. It performs well in

training performance, but is slower, than those

widely used. See table below.

Approximation using FixedPoint data type

 It was shown that both NN and CNN can be used

with representation included in this library. 16 or

more bits are sufficient for CNN to perform with

close to zero loss in precision. Lower bit widths can

be used, however it depends on the task given and

the architecture chosen. See experiments below.

Results

Table 4: Comparison of libraries using the same

training settings

Data type Before retraining [%] After retraining [%]

Double 98.60 99.17

Float 98.60 99.17

FixedPoint<16,16> 86.37 99.15

FixedPoint<8,8> 86.91 99.13

FixedPoint<4,4> 10.58 79.59

Library Training time [s] Accuracy [%]

SimpleCNN 746 97.20

TinyDNN 151 98.23

Keras

(TensorFlow)

744 98.34

TypeCNN 538 98.31

Table 1: Effects on CNN when trained using floating

point data type for 10 epochs and then fine-tuned

using given data type for 5 epochs

Data type Before retraining [%]

Double 98.57

Float 98.62

FixedPoint<16,16> 98.79

FixedPoint<8,8> 98.67

FixedPoint<4,4> 64.38

Table 2: Effects on CNN when trained using

given data type from the beginning for 10

epochs

Data type Before retraining [%] After retraining [%]

FixedPoint<8,8> 86.91 99.13

FixedPoint<4,4> 81.97 98.97

FixedPoint<1,3> 31.85 98.61

FixedPoint<2,2> 10.05 97.67

FixedPoint<1,1> 9.80 93.77

Table 3: Effects on CNN using FixedPoint<8,8> as

ForwardType and given data type as WeightType,

trained on floating point for 10 epochs and fine-

tuned for 5 epochs with these settings

