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The rapid progress in AI technologies based on deep 

and convolutional neural networks (CNN) has led to 

an enormous interest in efficient implementations of 

neural networks in low power embedded devices. 

The goal of this diploma thesis was to develop a new 

library for Convolutional Neural Networks (CNN) that 

allows the users to evaluate effects of using different 

data types and/or operations on CNN. The library, 

called TypeCNN, was developed and tested on 

commonly used data sets. Furthermore, this work 

also includes experiments with CNN based on fixed 

point representation. 

Problem statement 

 
 

Convolutional neural network 

  • Layers – Convolutional, Pooling (average and 

max), Fully connected, Drop-out, Activation, 

  • Activation functions - ReLU, Leaky ReLU, Sigmoid, 

Tanh, Softmax, 

  • Loss functions – Mean squared error, Cross-

entropy, 

  • Optimizers – SGD, Momentum, Nestorov 

momentum, Adagrad, Adam. 

Additional features 

 • XML schema for CNN specification, 

 • Persistency module (loading and saving trained 

CNN), 

 • Both CLI and API, 

 • Parsers for different formats (IDX, PNG, Binary), 

 • Support for up to three data types in each layer, 

independent between layers, 

 • FixedPoint data type – fixed point representation 

with configurable bit length of integer and fractional 

parts. 

 

TypeCNN library features 

 
 

The library contains three independent data type 

aliases: 

• WeightType – data type used for weights 

during inference and when saving to a disk, 

• ForwardType – data type used for all the 

computations done during inference, 

• BackwardType – data type used while 

updating learnable parameters (gradients, 

precise weights, …). 

 

Any data type that supports a set of predefined 

operations (arithmetical, logical, …) may be used, 

including user defined data types. That means that 

the user can also redefine these operations and 

support , for example, approximate operators. 
 

As a demonstration, the TypeCNN library contains 

fixed point data type FixedPoint<F, P>, where F is 

the amount of bits for the integer part and P is the 

amount of bits for the fractional part. This 

representation is beneficial wherever speed and 

low power consumption is important. However it 

introduces problems such as overflow. It is 

suggested to first train the network using floating 

point data type, then convert all relevant values to 

the fixed point data type and fine-tune for a few 

epochs. 
 

Replacing 32-bit floating point  by 8-bit fixed point 

leads to a speedup of over 3 times in performing 

the MAC (multiply-accumulate) operation and 

simultaneously decreases its power consumption 

by over 30 times [1].  
 

 

[1] Gysel, P.; Pimentel, J.; aj.: Ristretto: A Framework for 

Empirical Study of Resource-Efficient Inference in 

Convolutional Neural Networks. IEEE Transactions on 

Neural Networks and Learning Systems, 2018 

Data type independence  
 

Common data sets 

    The library was tested on the MNIST data set 

(accuracy of 99.37%) and the CIFAR-10 data set 

(accuracy of 73.59%). These results are acceptable 

with respect to the CNN architectures used. 
 

Comparison with other libraries 

    The TypeCNN library was compared to other 

publicly available libraries. It performs well in 

training performance, but is slower, than those 

widely used. See table below. 

 

 
 

Approximation using FixedPoint data type 

    It was shown that both NN and CNN can be used 

with representation included in this library. 16 or 

more bits are sufficient for CNN to perform with 

close to zero loss in precision. Lower bit widths can 

be used, however it depends on the task given and 

the architecture chosen. See experiments below. 

Results 

Table 4: Comparison of libraries using the same 

training settings 

Data type Before retraining [%] After retraining [%] 

Double 98.60 99.17 

Float 98.60 99.17 

FixedPoint<16,16> 86.37 99.15 

FixedPoint<8,8> 86.91 99.13 

FixedPoint<4,4> 10.58 79.59 

Library Training time [s] Accuracy [%] 

SimpleCNN 746 97.20 

TinyDNN 151 98.23 

Keras 

(TensorFlow) 

744 98.34 

TypeCNN 538 98.31 

Table 1: Effects on CNN when trained using floating 

point data type for 10 epochs and then fine-tuned 

using given data type for 5 epochs 

Data type Before retraining [%] 

Double 98.57 

Float 98.62 

FixedPoint<16,16> 98.79 

FixedPoint<8,8> 98.67 

FixedPoint<4,4> 64.38 

Table 2: Effects on CNN when trained using 

given data type from the beginning for 10 

epochs 

Data type Before retraining [%] After retraining [%] 

FixedPoint<8,8> 86.91 99.13 

FixedPoint<4,4> 81.97 98.97 

FixedPoint<1,3> 31.85 98.61 

FixedPoint<2,2> 10.05 97.67 

FixedPoint<1,1>   9.80 93.77 

Table 3: Effects on CNN using FixedPoint<8,8> as 

ForwardType and given data type as WeightType, 

trained on floating point for 10 epochs and fine-

tuned for 5 epochs with these settings 


