Profiling of Parallel App“cations | Jakub Beranek (author), Petr Gajdos (supervisor)

Motivation SOURCE CODE

Provide insight into runtime behaviour of CUDA threads
Help programmers optimize their code by discovering hidden bottlenecks
caused by non-optimal memory accesses

Design an easy to use CUDA instrumentation framework - current tools
are difficult to set up and break with new framework releases

Record all accesses - current tools provide only aggregated data

Contribution

Implementation

CUDA profiling library that records memory accesses

Analytical and visualization tool
Key features:

INSTRUMENTATION

» detailed thread memory access recording

» shared memory conflict detection

» visualization of memory access patterns

» simple setup (just include a single header file)
+ independent of CUDA SDK version

LLVM plugin that finds memory accesses
in CUDA functions

1 int val = data[threadldx.x]; 1 _ cu_load(
2 if (threadldx.y ==0) { 2 data + threadldx.x,
3 shared[threadldx.x] = val; 3 sizeof(int),
4} 4 "Int",
5 "kernel.cu:42",
6 data[threadldx.x]
700
CLANG JSON
COMPILER
1 [{
2 thread: {x: 0, y: 1},
3 type: "write",
4 value: 0x42,
5 address: OxFFFF1234
I
7 thread: {x: 0, y: 2},
8 type: "write",
9 value: 0x38,
10 address: OxFFFF1238
11 3o
12 thread: {x: 0, y: 3},
13 type: "read”,
14 value: 0x27,
15 address: OxFFFF123B
16 1]

Accesses are wrapped with code that
records their value, size, address,
data type and thread ID at runtime

GPU allocations are tracked to provide
detailed address space information

Accesses are exported to JSON or Protobuf files
and can be optionally compressed

Recorded data is visualized in a React web app,
which provides filtering of accesses and displays shared
memory conflicts and memory access strides

* Memory access anomalies become obvious when visualized
* Runtime behaviour inspection is useful for memory optimization experiments

* Working open-source tool tested on official CUDA samples

+ Created library also serves as a maintainable CUDA instrumentation framework

*+ Could be combined with CPU access recording and integrated into an IDE

Q https://github.com/kobzol/cuda-profile



