
• Provide insight into runtime behaviour of CUDA threads

• Help programmers optimize their code by discovering hidden bottlenecks
 caused by non-optimal memory accesses

• Design an easy to use CUDA instrumentation framework - current tools
 are difficult to set up and break with new framework releases
• Record all accesses - current tools provide only aggregated data

• CUDA profiling library that records memory accesses

• Analytical and visualization tool

• Key features:
 • detailed thread memory access recording

• shared memory conflict detection
• visualization of memory access patterns
• simple setup (just include a single header file)
• independent of CUDA SDK version

• LLVM plugin that finds memory accesses
 in CUDA functions

• Accesses are wrapped with code that
 records their value, size, address,
 data type and thread ID at runtime

• GPU allocations are tracked to provide
 detailed address space information

• Accesses are exported to JSON or Protobuf files
 and can be optionally compressed

• Recorded data is visualized in a React web app,
 which provides filtering of accesses and displays shared
 memory conflicts and memory access strides

• Memory access anomalies become obvious when visualized

 • Runtime behaviour inspection is useful for memory optimization experiments

 • Working open-source tool tested on official CUDA samples

 • Created library also serves as a maintainable CUDA instrumentation framework

 • Could be combined with CPU access recording and integrated into an IDE

B F
E

C
D

D

A

E F

https://github.com/kobzol/cuda-profile

Conclusion

Profiling of Parallel Applications Jakub Beránek (author), Petr Gajdoš (supervisor)

Implementation

Contribution

Motivation SOURCE CODE INSTRUMENTATION

JSONCLANG
COMPILER

USER INTERFACE

1 int val = data[threadIdx.x];
2 if (threadIdx.y == 0) {
3 shared[threadIdx.x] = val;
4 }

1 __cu_load(
2 data + threadIdx.x,
3 sizeof(int),
4 "int",
5 "kernel.cu:42",
6 data[threadIdx.x]
7);

|

1 [{
2 thread: {x: 0, y: 1},
3 type: "write",
4 value: 0x42,
5 address: 0xFFFF1234
6 }, {
7 thread: {x: 0, y: 2},
8 type: "write",
9 value: 0x38,
10 address: 0xFFFF1238
11 }, {
12 thread: {x: 0, y: 3},
13 type: "read",
14 value: 0x27,
15 address: 0xFFFF123B
16 }]

