
Problem definition

The 5-Path Vertex Cover, 5-PVC problem:
Given a graph G, find a subset F of its
vertices such that each path on 5 vertices
in G has at least one vertex in F.

Given a map of cities (vertices) connected
with roads (edges), determine in which
cities we need to build a charging station
to ensure that when travelling through
5 cities (a path of 5 vertices) there is
a charging station in at least one of those
cities.

This problem is computationally very hard
(NP-complete), so we further parameterize
the problem by the size of the solution k,
i.e., we want the subset F to contain at most
k vertices.

Problem motivation

The problem is motivated by the design of
secure wireless communication protocols
or in route planning and speeding up
shortest path queries in graphs.

In a sensor network, it is typically very
costly or even impossible to secure all the
sensors (protect them from an adversary),
thus we want to protect only a convenient
subset of the sensors.

Hitting paths in graphs
Radovan Červený | Ondřej Suchý (supervisor)

Our contribution

Specifically for 5-PVC, only a trivial
branching algorithm with O(5knO(1))
running time was previously known.

However, there exists an algorithm
which involves a reduction from the
5-PVC to the 5-Hitting Set problem and
achieves O(4.0755knO(1)) running time.

Our algorithm

We used a general technique called
iterative compression, which starts with an
empty solution and builds it by adding
vertices one by one to it. When the current
solution becomes too big, it uses a so
called compression routine, which finds
a smaller solution or proves that no smaller
solution exists.

Compression routine

We designed the compression routine as
a branching procedure which uses
a ordered set of rules and repeatedly does
the following: If the graph contains a path
on 5 vertices, find the first rule that can be
applied and apply it.

There are two types of rules: reduction
rules simplify the current problem instance,
and branching rules that make at least two
recursive calls to our procedure.

We designed 50 rules to deal with the
problem. The key idea is that if there still is
a path on 5 vertices in the graph, then there
is always at least one rule that can be
applied. Together with the proofs of
correctness of each rule, the proof of this
idea constitutes the main body of our work.

e.g.:

We created an algorithm that solves
the 5-PVC in O(4knO(1)) running time,
thus giving a new upper bound for
the 5-PVC problem.

The input graph G

... has many paths on 5 vertices ...

... and many possible solutions F.
e.g.:

(crossed vertices are in the solution)

