
Problem definition

The 5-Path Vertex Cover, 5-PVC problem:
Given a graph G, find a subset F of its 
vertices such that each path on 5 vertices 
in G has at least one vertex in F.

Given a map of cities (vertices) connected 
with roads (edges), determine in which 
cities we need to build a charging station 
to ensure that when travelling through 
5 cities (a path of 5 vertices) there is 
a charging station in at least one of those 
cities.

This problem is computationally very hard 
(NP-complete), so we further parameterize 
the problem by the size of the solution k, 
i.e., we want the subset F to contain at most 
k vertices.

Problem motivation

The problem is motivated by the design of 
secure wireless communication protocols 
or in route planning and speeding up 
shortest path queries in graphs.

In a sensor network, it is typically very 
costly or even impossible to secure all the 
sensors (protect them from an adversary), 
thus we want to protect only a convenient 
subset of the sensors.
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Our contribution

Specifically for 5-PVC, only a trivial 
branching algorithm with O(5knO(1)) 
running time was previously known.

However, there exists an algorithm 
which involves a reduction from the 
5-PVC to the 5-Hitting Set problem and 
achieves O(4.0755knO(1)) running time.

Our algorithm

We used a general technique called 
iterative compression, which starts with an 
empty solution and builds it by adding 
vertices one by one to it. When the current 
solution becomes too big, it uses a so 
called compression routine, which finds 
a smaller solution or proves that no smaller 
solution exists.

Compression routine

We designed  the compression routine as 
a branching procedure which uses 
a ordered set of rules and repeatedly does 
the following: If the graph contains a path 
on 5 vertices, find the first rule that can be 
applied and apply it.

There are two types of rules: reduction 
rules simplify the current problem instance, 
and branching rules that make at least two 
recursive calls to our procedure. 

We designed 50 rules to deal with the 
problem. The key idea is that if there still is 
a path on 5 vertices in the graph, then there 
is always at least one rule that can be 
applied. Together with the proofs of 
correctness of each rule, the proof of this 
idea constitutes the main body of our work.

e.g.:

We created an algorithm that solves 
the 5-PVC in O(4knO(1)) running time, 
thus giving a new upper bound for 
the 5-PVC problem.

The input graph G ....

... has many paths on 5 vertices ...

... and many possible solutions F.
e.g.:

(crossed vertices are in the solution)


