
SAT with differential equations

Author: Tomáš Kolárik (tomaqa@gmail.com)

Supervisor: Stefan Ratschan (stefan.ratschan@cs.cas.cz)

Faculty of Information Technology

CTU in Prague

Introduction

◮ Many systems, especially embedded systems, must nowadays satisfy high specification requirements, which often depend
on physical features of the real world. Formal verification showed to be convenient method to guarantee specifications
fulfillment in complex systems.

◮ A widely used approach of formal verification is SAT. Here, a problem arises when one needs to use another means
of modeling—differential equations (ODEs), which describe physical features natively.
⊲ Neither SAT nor its arithmetic extensions handle ODEs.
⊲ Embedded systems are typically set into a physical environment.

Example: thermostat

◮ Thermostat is modeled by a simple state machine.
◮ Variable x stands for temperature.

⊲ Temperature must remain in given interval: 70 ≤ x ≤ 80.

◮ State machine can be encoded into Boolean formula; ad-
ditionally, each state describes different ODE.

◮ Proposed thermostat is only a demo example, SAT and its
derivatives are aimed to much more complex tasks.

OnOff

State of the art

◮ Solvers combining SAT with ODEs already exist. All state of the art solvers handle ODEs using interval arithmetic,
which prefers accuracy over speed. This causes its usage to be limited in industry (practical instances might be huge).
⊲ It allows interval initial values of ODEs and guarantees maximal approximation error.
⊲ But it is slow.

◮ One of these solvers is e.g. dReal [1], which comes from a dissertation at Carnegie Mellon University,
supervised by Turing award recipient, Edmund Clarke.

Objectives

1. Prove the concept, that handles ODEs with classic numerical methods.
⊲ These methods require exact initial values (initial value problems, IVPs), and might be less precise than interval arithmetic, but are faster.
⊲ Intervals can be efficiently approximated by value enumerations in logical sum.
⊲ Mostly known methods: Euler, Runge–Kutta, linear multistep.

2. Utilize these methods for the purposes of formal verification.
⊲ I.e. to combine selected ODE solvers with SAT solvers. Instead of pure SAT, SMT problem (Satisfiability Modulo Theories) was chosen,

which extends SAT of arithmetic theories. SMT problem is still under active research.

3. Compare performance of our prototype implementation with dReal.

Components model

◮ The tool is named SOS (SMT+ODE Solver). It con-
sists of four main parts: input processing, SMT solver,
ODE solver and central component.

◮ Input language is similar to SMT-LIB, which is be-
ing standard among SMT solvers. Input is forwarded
to SMT solver directly with minor modifications.
Preprocessor allows generic code constructions (con-
ditional, iterative or recursive) viamacros, which can
be useful for e.g. BMC (bounded model checking).

◮ Both ODE and SMT solvers are modeled as stan-

dalone and exchangeable components.
Entire communication with SMT solver is based
on SMT-LIB standard, thus provides high flexibility.

Central

component

Parser Preprocessor

SMT solver

interface

ODE solver

interface

SMT solver 1

SMT-LIB

SMT solver 2

API

ODE solver 1 ODE solver 2


