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Abstract: Deep neural networks have been recently achieving high accuracy
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Introduction

Teaching computers to learn from experience has always been of great interest in
artificial intelligence research. Known by the name of machine learning, the field
has recently been successful (and achieved mainstream popularity) by reaching
high, in some cases almost human-like accuracy on tasks ranging from computer
vision to machine translation. This allowed many engineering problems to be
solved and found applications in multiple industries.

However, Szegedy et al. [2013] showed that most of these very well performing
models have easily exploitable weak spots. By changing the input data slightly
– so slightly it would not affect the decision of a human classifying these data,
and maybe even escape their attention – a potential attacker might be able to
completely change the model’s response. Such maliciously perturbed inputs are
called adversarial examples.

If deployed against real world systems that use machine learning, such as
autonomous cars, content filters or authentication systems, adversarial examples
could endanger security of the users or grant the attacker improper access. It
is therefore important to find ways to make machine learning models robust to
adversarial perturbation, and also to discover new ways of creating adversarial
examples, in order to be able to test our defenses against them.

It is unlikely that the problem of adversarial examples will be completely
solved anytime soon. A perfect defense would amount to having a perfect model
that would understand its input as well as a human would. We are still very
far from this goal, but hopefully we can at least make some steps in the right
direction.

The goals of this thesis are the following:

• To do a review of existing literature about adversarial examples. The paper
by Szegedy et al. [2013] sparked relatively big interest in this phenomenon
and it was soon followed by many others. There are multiple variables that
comprise the scenario of attack and defense and a review is needed to help
us orient ourselves in the plenty of work that has been done to explore the
task properties.

• To find new defenses against adversarial examples. Many approaches have
already been tried, but none of them solve the problem completely. We aim
to introduce defenses that would be simple and at least partially effective,
with the hope that they could be expanded with future work or combined
with other existing approaches for greater effectiveness.

• To explore new methods of adversarial examples generation. We need to
know what the adversary is able to do in order to estimate how much our
machine learning models could be affected and, hopefully, to devise a suitable
defense.

The structure of the thesis is as follows.
In Chapter 1, we describe the general machine learning tasks and commonly

used machine learning models. We focus on image classification, because it is the
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task that adversarial examples are most usually studied on, and convolutional
neural networks, which are the state-of-the-art model type for this task and other
computer vision problems.

In Chapter 2, we present a review of adversarial examples literature. We de-
scribe methods generating adversarial examples, their properties and classification,
as well as approaches that have been used to defend machine learning models
against them.

In Chapter 3, we propose new ways to make image classification models more
robust to adversarial perturbation and evaluate them on adversarial examples
generated from standard datasets by commonly used methods. We also explore
the possibility of generating adversarial examples without access to the original
example.
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1. Background

In this chapter we introduce basic machine learning concepts and several models
that appear in the works on adversarial examples or are used in the third chapter.
We describe the task of image classification, which is most commonly targeted by
adversarial examples, as well as some of the datasets that image classification is
studied on.

1.1 Machine learning concepts

The machine learning tasks are divided mainly into supervised and unsupervised
learning.

Unsupervised learning is generally concerned with describing the distribution
of the observable data, without predicting any unobserved values. In this text, we
are mostly interested in supervised learning.

Supervised learning generally tries to construct a model of the conditional
probability P(Y ♣X) from given data. The random variable X may be called an
input, a predictor, an independent variable or features, whereas Y is known as an
output, a response or a dependent variable [Friedman et al., 2001]. Only a finite
dataset sampled from the distribution P(X, Y ) is available. This dataset is split
into two parts, the training set that is used to train the model, and the test set
which is used to estimate the model’s expected population error. Sometimes a
validation set is taken from the training set to estimate model’s error on unseen
data during training.

If Y is quantitative, e.g. the height of a person, the supervised machine learning
task of predicting this quantity is called regression, whereas if Y is categorical, e.g.
representing species of the Iris genus, the task of predicting this category (also
label or class) is called classification.

The quality of a model is measured by an error function (loss, cost) evaluated
on the test set (during training, evaluation on the training set may be used). For
regression, a popular error function is the mean squared error

MSE(f, x, y) =
1

n

n
∑

i=1

/

/

/f(x(i))− y(i)
/

/

/

2

2
,

where x(i) and y(i) are the individual observations of (X, Y ) and f(x(i)) is the
value of Y that the model predicted. MSE can be used for classification, too,
as f(x(i)) is often represented as an one-hot vector, i.e. a vector with 1 for the
predicted class and zeros elsewhere. However, the mean cross-entropy

1

n

n
∑

i=1

H(y(i), f(x(i))) =
1

n

n
∑

i=1

∑

j

−y
(i)
j log f(y(i))j

is usually preferred over MSE for classification [Golik et al., 2013]. Another useful
measure is the accuracy – the rate of correctly classified inputs or, conversely, the
error rate – the rate of incorrectly classified inputs.
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1.1.1 Image classification

Image classification is just a specific kind of classification. The inputs have the
form of matrices of pixel intensities in the case of grayscale images and matrices of
channel intensity vectors (i.e. tensors) in the case of color images. The channels
usually account for the red, green and blue component of the RGB color space.
For simplicity, we often assume that the intensities are real numbers from the
interval [0, 1]. However, in practice, they have to be discretized, with 256 possible
values (corresponding to one byte) per pixel channel being a common choice.

Datasets

Publicly available datasets of labeled images are very valuable for computer vision
research. They alleviate researchers from having to collect and label their own
images, which is tedious or costly work. They also serve as a common benchmark
for model comparison.

The Modified National Institute of Standards and Technology (MNIST) data-
base of handwritten digits was created by LeCun et al. [1990] from the larger NIST
database. They rescaled the black and white NIST images to 28× 28 pixels, thus
introducing grayscale levels (see Figure 1.1 for examples). They also mixed new
training and test sets, with 60 000 and 10 000 images, respectively, approximately
half of them coming from the original training set and half from the original test
set. The mixing was done because the NIST training and test set digits were
written by different groups of people, the former being more easily recognizable.
In 1998, LeCun et al. [1998] obtained 0.7% error rate on MNIST and since than,
the achieved error rate dropped as low as 0.21% [Wan et al., 2013].

Figure 1.1: Examples of the MNIST digits.

The CIFAR10 and CIFAR100 datasets [Krizhevsky and Hinton, 2009] consist
of 60 000 color images of size 32 × 32 pixels, divided into 10 and 100 classes,
respectively. See Figure 1.2 for examples of the classes and corresponding images.
The training and test set contain 50 000 and 10 000 images, respectively. The
number of images belonging to each of the classes is the same. The state-of-the-art
accuracy is about 0.95 on CIFAR10 [Springenberg et al., 2014] and about 0.72 on
CIFAR 100 [Snoek et al., 2015].

The ImageNet Large Scale Visual Recognition Challenge 2012 (ILSVRC 2012)
image classification task dataset [Russakovsky et al., 2014] is much bigger in terms
of the size and number of images as well as the number of classes. It is based
on the ImageNet [Deng et al., 2009] – an image database organized according to
the WordNet hierarchy [Miller, 1995]. ImageNet contains more than 14 million
URLs of labeled images for more than 20 000 synsets (synonym sets) of WordNet.
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airplane

automobile

bird

cat

deer

Figure 1.2: Examples of the CIFAR10/CIFAR100 images.

ILSVRC 2012 selected 1000 classes from the synsets such that no class is an
ancestor of another class in the hierarchy of synsets. The width and height of the
images vary, but generally they are in the order of hundreds of pixels. See Figure
1.3 for an example.

The ILSVRC 2012 training set contains more than 1.2 million images (at least
732 for each class) and the validation set contains 50 000 images (50 for each class).
Their sizes are 138 GB and 6.3 GB, respectively. The test set of 100 000 images is
not publicly available and is used during the annual competition to evaluate the
submitted models.

The models are compared by measuring the top-5 error rate, i.e. the rate of
images for which the correct class does not appear in the five most probable classes
according to the model. This is done mainly because each image was labeled with
only one “correct” class to keep the costs of labeling manageable, but there are
often multiple objects in the images.

The competition has been running since 2010, but since 2012 the dataset
has been kept the same. Krizhevsky et al. [2012] won the ILSVRC 2012 by a
large margin of 9.8%, achieving 16.4% error rate. The subsequent editions of the
challenge saw further decrease in top-5 error rates, going below 4% [He et al.,
2016]. Note that Russakovsky et al. [2014] reported top-5 error of 5.1% for a
human annotator, so trying to decrease the error of machine learning models even
further may not be reasonable.

In the following sections we describe several machine learning models that
have been targeted by adversarial examples in the literature. We focus on neural
networks, which are most commonly targeted, probably because they have been
achieving state-of-the-art results in image recognition for some time.

1.2 Neural networks

Neural networks are machine learning models consisting of connected nodes, each
performing a simple computation based on its inputs, that together can represent
much more complex relationships. Although originally inspired by networks of
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monarch butterfly, . . . Gordon setter Border terrier

sax, saxophone Australian terrier potpie

toaster kuvasz passenger car, . . .

Figure 1.3: A random sample from the ILSVRC 2012 validation set. These nine
images are all 500 pixel wide and 333 to 375 pixel high. The whole class name of
the first one is “monarch, monarch butterfly, milkweed butterfly, Danaus plexippus”
and of the last one “passenger car, coach, carriage”.

interconnected neuron cells in human brain that gave them their name, generally
they are designed for computational efficiency rather than biological plausibility.
It can be more useful to think of them in terms of function composition.

The simplest case of a neural “network” is a perceptron, introduced by Rosen-
blatt [1958]. It consists of one node with d incoming connections (dendrites,
edges) and one output (axon). The incoming connections have associated weights
w ∈ R

d and bias (threshold) b ∈ R. Input x ∈ R
d is classified as one of two classes

depending on the output

f(x) =

∏

⨄

⋃

1 if w · x + b ≥ 0,

0 otherwise.

See Figure 1.4 for an illustration of a perceptron.
The weights are fitted to the training data by the perceptron training algorithm

[Rosenblatt, 1958].
Of course, this is a simple model, and can only learn to classify linearly

separable data. To make it more capable, we could try to connect more nodes and
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f(x)

x1

w1

x2

w2

x3

w3

xd

wd

. . . 1

b

Figure 1.4: A perceptron with weights w ∈ R
d computing w · x + b for an input

x ∈ R
d. The elements of x can be thought of as nodes in an input layer and

w1, . . . , wd as weights of the edges connecting the inputs to the perceptron. The
bias b can be considered a weight of a connection from an input node which is
always set to 1.

f 2
1 (x)

f 1
1 (x) f 1

2 (x) f 1
3 (x) 1

x1 x2 x3 . . . xd 1

w1
1,1 b1

3

w2
1,1 w2

1,2 w2
1,3 b2

1

Figure 1.5: An example of a multilayer perceptron with one hidden layer
(f 1

1 , f1
2 , f1

3 ). We omit most weight labels for space reasons.

create an actual neural network or a multilayer perceptron (MLP). Nodes from
the second layer up would use the outputs of the previous layer as their input.
The layers except for the last one (output) are called hidden, because we cannot
observe their values when we use the network as a black box. However, without
any further modifications, the MLP would be equivalent to a simple perceptron.
Consider for example a two layer perceptron with three nodes f 1

1 , f1
2 , f1

3 in the
first and one node f 2

1 in the second layer (see Figure 1.5).

9



Then the network’s output is

f(x) = f 2
1

((

f 1
1 (x), f1

2 (x), f1
3 (x)

⎡⎡

= w2
1 ·
(

w1
1 · x + b1

1, w1
2 · x + b1

2, w1
3 · x + b1

3

⎡

+ b2
1

= w2
1 ·
((

d
∑

i=1

w1
1,ixi

⎜

+ b1
1,

(

d
∑

i=1

w1
2,ixi

⎜

+ b1
2,

(

d
∑

i=1

w1
3,ixi

⎜

+ b1
3

⎜

+ b2
1

= b2
1 +

3
∑

j=1

w2
1,j

(

b1
j +

d
∑

i=1

w1
j,ixi

⎜

= b2
1 +

3
∑

j=1

w2
1,jb

1
j +

d
∑

i=1

3
∑

j=1

w2
1,jw

1
j,ixi

=

∏

∐b2
1 +

3
∑

j=1

w2
1,jb

1
j

∫

ˆ+

∏

∐

3
∑

j=1

w2
1,jw

1
j

∫

ˆ · x.

This is equal to b + w · x for some b ∈ R and w ∈ R
d, and hence the network is

equivalent to a perceptron with weights w and bias b.
To make a neural network able to represent nonlinear functions, a nonlinear

activation function is applied to the output of every node. The traditional
activation function is the logistic sigmoid

σ(x) =
1

1 + e−x
.

Other possibilities include the hyperbolic tangent or the rectified linear unit
ReLU(x) = max(0, x), which has been popular recently [Goodfellow et al., 2016].
See the plot in Figure 1.6. Note that because neural networks are typically trained
by gradient descent, the activation function should be differentiable at least almost
everywhere.

With a non-constant, bounded and monotonically increasing activation func-
tion, neural networks can represent the approximation of any function f : Rd → R

arbitrarily well, given they have (at least) two layers and enough nodes in the
first layer [Hornik et al., 1989]. However, it took some time before an efficient
algorithm for their training was devised.

1.2.1 Training of neural networks

When training neural networks, we are trying to minimize their error on training
data (loss function). This is commonly done by using gradient descent – repeatedly
computing the gradient of the loss function with respect to the network’s weights,
scaling it by a learning rate constant and subtracting it from the weights. Note
that the loss function for a neural network is usually quite complex and non-convex,
with a lot of local minima, and therefore gradient descent is not guaranteed to
find the global minimum. Nevertheless, the method usually works well in practice.

Differentiating the loss function with respect to one weight is a relatively
straightforward application of the chain rule of calculus:

∂f(g(x))

∂xi

=
n
∑

j=1

∂f(g(x))

∂g(x)j

∂g(x)j

∂xi

,
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−4 −3 −2 −1 0 1 2 3 4

−1.0

−0.5

0.0

0.5

1.0
σ(x)

tanh x

ReLU(x)

Figure 1.6: Plots of the three possibly most frequently used activation functions.
Note how σ and tanh are almost constant (and therefore have gradient of almost
zero) for most of R.

for g : Rd → R
n and f : Rn → R. It can be computationally inefficient if done

naively, though, as many shared subexpressions can arise that would be computed
exponentially many times. A fast algorithm for gradient computation in neural
networks is called backpropagation (of errors) [Rumelhart et al., 1986], as opposed
to the forward propagation during computation of the network’s output f(x). The
algorithm saves intermediate results in a way similar to dynamic programming.

Backpropagation

Let us consider a fully connected network with n layers of d1, . . . , dn neurons. The
weight of the connection from the i-th neuron in the (k − 1)-th layer to the j-th
neuron in the k-th layer is denoted wk

j,i. Each neuron in the k-th layer computes
its value as a weighted sum of the outputs of the neurons in the previous layer
and applies the activation function a:

fk
j (x) = a

(

sk
j (x)

⎡

= a

∏

∐

dk−1
∑

i=1

wk
j,i · fk−1

i (x)

∫

ˆ .

The loss function J(x, θ) depends on the training inputs x, which are fixed, and
all the network parameters (weights) θ, which we are trying to set so that J is
minimized. To do that, we initialize the weights to small random values (chiefly to
break their symmetry; for discussion of initialization see Goodfellow et al. [2016])
and then repeatedly find the gradient ∇θJ(x, θ) and move the weights in the
opposite direction by a small step (i.e. we perform gradient descent).

We compute the derivatives with respect to the weights of the last (n-th) layer
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using the chain rule:

∂J(x, θ)

∂wn
j,i

=
∂J(x, θ)

∂a(sn
j (x))

∂a(sn
j (x))

∂sn
j (x)

∂sn
j (x)

∂wn
j,i

.

Because the activation function is being differentiated with respect to its argument
and sn

j (x) is a sum with only one term depending on wn
j,i, we have

∂J(x, θ)

∂wn
j,i

=
∂J(x, θ)

∂a(sn
j (x))

a′(sn
j (x))

∂

∂wn
j,i

dn−1
∑

k=1

wn
j,k · fn−1

k (x)

=
∂J(x, θ)

∂a(sn
j (x))

a′(sn
j (x))fn−1

i (x).

The derivative of the loss function depends on its realization, for MSE it would be

∂J(x, θ)

∂a(sn
j (x))

=
∂

∂fn
j (x)

dn
∑

k=1

(yk − fn
k (x))2 = 2

(

yj − fn
j (x)

⎡

and for cross-entropy

∂J(x, θ)

∂a(sn
j (x))

=
∂

∂fn
j (x)

dn
∑

k=1

−yk log fn
k (x) = − yj

fn
j

.

For the j-th node in the m-th layer we save

δm
j =

∂J(x, θ)

∂a(sm
j (x))

a′(sm
j (x)).

The gradient at hidden layers is computed similarly. The differentiation differs
only in the first factor:

∂J(x, θ)

∂wm
j,i

=

(

∂J(x, θ)

∂a(sm
j (x))

⎜

∂a(sm
j (x))

∂sm
j (x)

∂sm
j (x)

∂wm
j,i

=

(

∑

l

∂J(x, θ)

∂sm+1
l (x)

∂sm+1
l (x))

∂a(sm
j (x))

⎜

a′(sm
j (x))fm−1

i (x)

=

(

∑

l

∂J(x, θ)

∂sm+1
l (x)

∂

∂fm
j (x)

∑

r

wm+1
l,r fm

r (x)

⎜

a′(sm
j (x))fm−1

i (x)

=

(

∑

l

∂J(x, θ)

∂sm+1
l (x)

wm+1
l,j

⎜

a′(sm
j (x))fm−1

i (x)

=

(

∑

l

∂J(x, θ)

∂a(sm+1
l (x))

∂a(sm+1
l (x))

∂sm+1
l (x))

wm+1
l,j

⎜

a′(sm
j (x))fm−1

i (x)

=

(

∑

l

δm+1
l wm+1

l,j

⎜

a′(sm
j (x))fm−1

i (x).

Note that the first factor can be computed using the saved values in the following
layer without looking further up. The computation of the whole derivative requires
two other local quantities, namely sm

j (x) and fm−1
i (x). These should be saved

during the forward pass. In the above, we did not explicitly account for bias
updates; biases can be regarded as weights on connections to neurons that always
output 1. Also note that the activation function could be different for every node
and the above computation would still work.
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Weight update

After the gradient ∇θJ(x, θ) is computed, θ is updated. In its basic form the
update rule of gradient descent looks like this

θ := θ − λ∇θJ(x, θ),

where λ > 0 is called the learning rate. Many modifications have been proposed,
mostly adding momentum to the θ moving through the space of parameters to
avoid oscillations, and adapting the learning rate over time. Examples of popular
optimizers include AdaGrad [Duchi et al., 2011] or Adam [Kingma and Ba, 2014].

Because the training sets are usually large and exact gradient computation
would be unnecessarily slow, approximating it by computing a gradient on a
smaller batch is often preferred. In theory, such stochastic gradient descent (SGD)
requires the learning rate to approach zero to converge.

Regularization

Neural networks with a lot of nodes are complex machine learning models and as
such can easily overfit to the training set, leading to decreased accuracy on the test
set. To avoid overfitting, several regularization techniques can be employed. We
can penalize big weights (L2, L1 regularization), augment the training set, inject
noise, apply dropout (randomly set weights to zero during training [Srivastava
et al., 2014]), stop the training early using a validation set, force some weights to
share value (convolutional neural networks can be seen as an instance of parameter
sharing) or use adversarial training, which we describe in the next chapter. For
an overview of regularization methods, see Goodfellow et al. [2016].

1.2.2 Logistic regression

Logistic regression [Cox, 1958] is a machine learning model used for classification.
Although it has been developed independently, logistic regression can be thought
of as a simple neural network with one layer. In the case of classification into only
two classes, it consists of one node with the sigmoid activation function:

f(x) = σ(w · x + b).

The input is then classified as the first (positive) class if f(x) > 0.5 and as the
second (negative) class otherwise. When classifying into multiple classes, the
output layer becomes the softmax layer:

f(x)i =
exp (wi · x + bi)

∑

j exp (wj · x + bj)
.

The multiple class classification case is sometimes also called multinomial logistic
regression. As the output elements are in the range [0, 1] and sum to 1, they
can be used to estimate the probabilities of the input belonging to the each of
the classes. This estimated probability is called the confidence of the model. A
softmax layer is often used as the final layer of a neural network classifier.
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1.2.3 Convolutional networks

Most machine learning models, including the neural networks we have seen so far,
do not take the order of input dimensions into account – they are permutation
invariant. However, for some kinds of data, and especially for images, this ordering
is intuitively very important. When an image is taken, it is usually not possible
to ensure that the photographed object will be located at some exact pixel
coordinates. If the dimensions were not ordered naturally, a small change in the
object’s location could result in a big perceived difference in the captured image
data.

The Neocognitron [Fukushima and Miyake, 1982] was designed to exploit this
structure of image data. It later inspired the creation of convolutional neural
networks (CNNs) [LeCun et al., 1990], which are widely used today.

CNNs usually contain mainly two alternating types of layers – convolutional
(which gave them their name) and pooling. The last few layers are usually fully
connected.

Convolutional layer

A convolutional layer contains spatially arranged neurons. They are usually
divided into multiple channels (filters). The channels contain neurons positioned
in a rectangular grid. Each neuron looks only at a small rectangular group of
neurons (a patch) in the previous layer. Each channel contains the same number of
neurons covering the same patches as neurons in other channels, and, importantly,
all neurons in a channel share weights. The rectangular patches covered by a
channel are all of the same size and are themselves arranged in a rectangular grid,
possibly overlapping with their neighboring patches. The distance between two
neighboring patch centers is referred to as the step size (stride).

In another view, a convolutional layer is performing discrete 2D convolution
(or, usually, cross-correlation).

A convolution of functions f, g : R→ R is defined as

(f ∗ g)(x) =
∫ ∞

−∞
f(a)g(x− a) da,

basically a moving sum of g weighted by a kernel f . In real world computations,
the functions need to be discretized. In the case of images, we would do two-
dimensional discrete convolution of image I and kernel K : Z2 → R:

(I ∗K)(i, j) =
∑

i′∈Z

∑

j′∈Z

I(i− i′, j − j′)K(i′, j′).

A similar operation is the cross-correlation

(I ∗K)(i, j) =
∑

i′∈Z

∑

j′∈Z

I(i + i′, j + j′)K(i′, j′),

which differs only by having the kernel flipped and is equivalent to convolution
for the purpose of learning the right kernel.

In practice, both the image and the kernel need to be nonzero only at a finite
number of coordinates, so that we can evaluate the infinite summation by summing
over the bounding rectangle only. To further reduce computational costs, we may
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do steps of size s > 1 and perform a downsampled convolution of an image matrix
I ∈ R

h1×w1 by a kernel matrix K ∈ R
h2×w2 :

c(I, K, s)i,j = C =
h2
∑

i′=1

w2
∑

j′=1

Ih2+(i−1)·s−i′+1,w2+(j−1)·s−j′+1Ki′,j′ ,

where C ∈ R
(⌊(h1−h2)/s⌋+1)×(⌊(w1−w2)/s⌋+1).

Because the convolution reduces the input width by w2 − 1 (when s = 1;
similarly for height), sometimes the input is padded with zeros so that the shape
stays the same. This is handily called same convolution, as opposed to the valid
case without padding.

A convolutional layer typically performs several convolutions with different
kernels of the same size, each resulting in one channel. If already the input has
multiple channels, three-dimensional convolution will be used.

The last step is then to apply some activation function to every scalar in every
channel.

Pooling layer

A pooling layer combines several neighboring nodes in the previous layer into
one. Maybe the most popular type is the max-pooling layer [Zhou and Chellappa,
1988] which returns the maximum value for each rectangular patch. Pooling is
employed to make the network less sensitive to small translations of the input.
Pooling layers are also useful in gradually reducing the representation size, so that
the final fully connected layers (and the network in general) need less parameters
that have to be trained.

Image classification convolutional networks

Convolution networks have been successfully applied to image classification tasks.
They were used by LeCun et al. [1990] to recognize digits from the MNIST dataset
and widely popularized when Krizhevsky et al. [2012] won ILSVRC 2012 by a
large margin with their CNN architecture known as AlexNet. Subsequent editions
of the challenge were also won by CNNs like GoogLeNet [Szegedy et al., 2015] or
ResNet [He et al., 2016].

1.2.4 Radial Basis Function networks

Radial Basis Function (RBF) networks [Broomhead and Lowe, 1988] are neural
networks that make use of the distances of the input from some chosen points
in space called centroids (also prototypes). A basic RBF network with centroids
c1, . . . , cm computes

f(x) =
m
∑

i=1

wi ·Ki(x, ci),

where Ki are kernel functions. The most commonly used kernel function is the
Gaussian

Ki(x, c) =
1

√

2πσ2
i

exp

(

−∥x− c∥2
2

2σ2
i

⎜

.
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As Ki(x, ci) is weighted by wi, the coefficient 1/
√

2πσ2
i can be incorporated into

it. We also set βi = 1/(2σ2
i ) and get the simplified kernel

Ki(x, c) = exp
(

−βi ∥x− c∥2
2

⎡

.

The training of RBF networks is usually done in two steps. First, the positions
of the m centroids are chosen. They can be randomly sampled from the training
examples, or the training examples can be clustered by the K-means algorithm
(see Section 1.3.2) and the centers of the clusters then used as centroids of the
RBF network. Note that this step is unsupervised unless the clustering is done
independently on each class in the training data.

In the second step, the weights wi need to be determined. When doing
regression with a simple RBF network without any activation function, it is
possible to set the weights by linear regression. Otherwise, if the RBF network is
a part of some more complex neural network, they can be trained with SGD.

SGD can be also used to fine tune all the parameters in the network, including
centroid coordinates, after the initial training.

Because the Gaussian goes quickly to zero with increasing distance, RBF
networks can generally react only to inputs in the vicinity of the training data
and have difficulties when generalizing in some direction is required.

1.2.5 Autoencoder

An autoencoder is a neural network that is trained so that it tries to reconstruct
its input, i.e. the output layer has the same dimensionality as the input layer
and the originally unlabeled training data are duplicated as the target values.
Autoencoders are size constrained to not be able to copy the input perfectly, in
particular, one of their layers is relatively small and its activation serves as the
representation (code) of the input. Autoencoders can often learn useful properties
of the data [Goodfellow et al., 2016].

1.3 Other models

1.3.1 Decision tree

A decision tree is a tree with one condition in each of its non-leaf nodes. Every
condition acts on one feature xi and splits the input space into several parts; there
is one child node for each part. If the feature xi is categorical, the condition splits
the space into as many parts as there are categories of xi. If xi is continuous,
some threshold t is chosen and the condition splits the space into two parts, one
where xi < t and the other where xi ≥ t. Each leaf has one associated class (or a
constant when doing regression). During inference, we travel from the root and in
each node we evaluate the condition on our input x to decide into which child we
should descend. When we reach a leaf, x gets classified as the corresponding class.

There are multiple methods of decision tree construction (training) such as
CART [Breiman, 1984] or C4.5 [Quinlan, 1992].
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1.3.2 K-means

K-means [Lloyd, 1982] is an unsupervised machine learning algorithm performing
clustering. It divides the input space (and therefore also the training data) into
K clusters, represented by their centroids (also prototypes). Each point of the
input space belongs to the cluster represented by the nearest centroid. Note that
the algorithm does not pick K; it has to be supplied by the user.

The algorithm is as follows. First, initial centroid positions c1, . . . , cK are
chosen. A common approach is to sample them from the training data points.
Then two steps are repeated until convergence: the assignment step

Ci ← ¶x ∈ X : ∥x− ci∥2 ≤ ∥x− cl∥2 ∀l ∈ ¶1, . . . , K♢♢ ∀i ∈ ¶1, . . . , K♢ ,

where X are the training data, and the update step

ci ←
1

♣Ci♣
∑

x∈Ci

x ∀i ∈ ¶1, . . . , K♢ .

The algorithm may be restarted several times with different random initializations
and the final clustering chosen as the one with the lowest average distance from
the training data to their respective centroid.

1.3.3 Support Vector Machines

Support Vector Machines (SVMs) [Cortes and Vapnik, 1995] are machine learning
models that utilize so called “kernel trick” to transform the input space into a
space with a lot more dimensions and then aim to construct an optimal separating
hyperplane in the new space. Although they are primarily binary classifiers,
multiclass classification can be performed with one SVM for each class.

1.3.4 Ensemble

An ensemble combines predictions of multiple models. In the case of classification,
the predictions can be combined by voting; in the case of regression a weighted
sum can be used. The models in the ensemble are often of the same type and
can be constrained to remain simpler and to learn different aspects of the data.
Common ensembling techniques include bagging and boosting. Decision trees are
often used in ensembles, forming random forests. [Friedman et al., 2001]
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2. Adversarial Examples

Deep neural networks (DNNs) have been recently achieving state-of-the-art per-
formance on image classification datasets such as ImageNet [Deng et al., 2009,
Goodfellow et al., 2014b], as has been demonstrated by Krizhevsky et al. [2012],
Szegedy et al. [2015] and others. For example, He et al. [2016] have achieved
96.43% top-5 test accuracy with their ResNet architecture, which is difficult to
exceed even for humans [Russakovsky et al., 2014].

But test set accuracy alone might not be a good measure of machine learning
model robustness. Szegedy et al. [2013] discovered it is possible to force the
network to misclassify an image by adding a very small perturbation to it – so
small that a human would not notice the difference, implying the real class of the
image stays the same. They termed these perturbed inputs adversarial examples.

The existence of adversarial examples poses a threat to the security of systems
incorporating machine learning models. For example, autonomous cars could be
forced to crash, intruders could confound face recognition software [Sharif et al.,
2016] or other biometric authentication systems to be allowed improper access, or
SPAM filters and other content filters could be bypassed. Moreover, adversarial
examples can often be generated not only with access to the model’s architecture
and parameters, but also without it (such attacks would be called white-box and
black-box attacks, respectively). Hence, secrecy alone does not solve the problem.
The psychological aspect is also significant. Just as we see some opposition to
machine learning systems whose reasoning is difficult to interpret, systems prone
to misclassification of not visibly differing inputs might be met with distrust, even
if their overall accuracy was superior to humans. Therefore, it is important to
understand the weaknesses of our models and come up with ways to defend them
against potential adversaries.

This chapter is organized as follows. In Section 2.1, we describe methods of
adversarial examples generation that require access to the model architecture
and parameters (white-box attacks). Then we discuss properties of adversarial
examples in Section 2.2 and defenses that have been applied against them in
Section 2.3. In Section 2.4, we look at methods generating adversarial examples
without knowledge of the model architecture or parameters (black-box attacks).
Finally, in Section 2.5, we describe some research directions which are somewhat
related to adversarial examples.

2.1 Adversarial examples generation

In this section, we explore several methods of adversarial examples generation.
All of them need access to the model’s architecture and parameters, and hence
are sometimes referred to as white-box attacks (as opposed to black-box attacks,
which will be described in Section 2.4).
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2.1.1 Optimization-based methods

Szegedy et al. [2013] generated adversarial examples by finding an approximate
solution to the following optimization problem: Let f : [0, 1]d → ¶1, . . . , k♢ be a
classifier mapping image pixel values to a discrete label set with associated loss
function Jf : [0, 1]d × ¶1, . . . , k♢ → R

+. For a given image x ∈ [0, 1]d and target
label ỹ ∈ ¶1, . . . , k♢, ỹ ̸= f(x) minimize ∥η∥2 for η ∈ R

d subject to

f(x + η) = ỹ,

x + η ∈ [0, 1]d.

They used box-constrained L-BFGS for this problem and were able to successfully
generate adversarial examples for each image and each network they tried (the
accuracy on these examples was 0%). The networks were trained on the MNIST
dataset [LeCun et al., 2010], ImageNet [Deng et al., 2009] and YouTube video
frames dataset [Le et al., 2011]. Figure 2.1 shows some adversarial examples
generated with this technique. Adding Gaussian noise was not sufficient to
generate adversarial examples, as it caused images to be incorrectly classified only
when severely distorted.

Figure 2.1: Adversarial examples generated for an ImageNet DNN. Left: a correctly
classified image. Right: an adversarial example, incorrectly classified as ostrich,
Struthio camelus. Middle: the difference magnified by 10. [Szegedy et al., 2013]

Liu et al. [2016] created targeted adversarial examples without the hard
constraint for the class; instead, it was part of the minimized function

λ · ∥η∥2 + Jf (x + η, ỹ),

where λ is a parameter controlling the importance of the examples staying unde-
tected. They optimized it using Adam optimizer [Kingma and Ba, 2014].

The disadvantage of optimization-based techniques is that they are relatively
computation heavy (see Section 2.1.2 for a faster approach). On the other hand,
they are usually able to generate closer, harder to detect adversarial examples
while at the same time achieving higher misclassification rate [Kurakin et al.,
2016a, Liu et al., 2016].
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2.1.2 Fast Gradient (Sign) Method

While for some time it had been hypothesized [Szegedy et al., 2013] that the
DNNs’ vulnerability to adversarial examples is caused by their excessive non-
linearity, Goodfellow et al. [2014b] tried to explain it the other way around – by
approximating the DNN with a linear classifier.

For a linear model with a weight vector w ∈ R
d, the answer to an adversarial

input x̃ = x + η, where x ∈ R
d is the original example and η ∈ R

d the adversarial
perturbation, is

w⊤x̃ = w⊤x + w⊤η.

The adversary wants to keep η small, so that the perturbation is not discovered.
Let us consider the max-norm constraint ∥η∥∞ < ε for some ε > 0. Then w⊤η is
maximized by assigning η = ε · sgn(w):

w⊤η = ε · w⊤sgn(w) = ε ·
d
∑

i=1

sgn(wi) ♣wi♣ sgn(wi) = ε ·
d
∑

i=1

♣wi♣ = ε ∥w∥1 .

Then, as ∥η∥∞ is not affected by dimensionality d, and assuming the average size
of elements of w does not change, w⊤η will grow linearly with increasing d. For
high-dimensional problems we can then make many small, imperceptible changes
that sum up to one large change to the output.

Goodfellow et al. [2014b] propose the following method for generating adversar-
ial examples for neural networks (and other non-linear models with loss function
which is differentiable almost everywhere). We linearize the model by considering
the gradient of its loss function Jf with respect to an input x ∈ R

d and then
compute the adversarial perturbation η as before:

η = ε · sgn(∇xJf (x, y)),

where y is the ground truth label corresponding to x.
This method is called fast gradient sign method (FGSM). As the gradient

can be computed using backpropagation, it is much more efficient than solving
L-BFGS. It also reliably generates adversarial examples: Goodfellow et al. [2014b]
found that using ε = 0.25 caused shallow softmax model trained on MNIST to
misclassify 99.9% of adversarial inputs with average confidence of 79.3%. A deep
convolutional network had an 87.15% error rate on adversarial examples generated
from a preprocessed version of the CIFAR-10 test set. See Figures 2.2 and 2.3 for
examples of adversarial inputs created by this method.

Note that in the above form, FGSM generates untargeted adversarial examples.
If we want to misclassify x as a given ỹ, it is simple to modify it accordingly:

η = −ε · sgn(∇xJf (x, ỹ)) (2.1)

FGSM has showed that easily generated adversarial examples are not caused
by the network’s depth – shallow models such as logistic regression are also
affected. [Goodfellow et al., 2014b] argue that deep neural networks are (at
least theoretically) able to resist adversarial perturbations, as they are universal
function approximators given enough units in a hidden layer Hornik et al. [1989].
Whether this can be achieved in practice remains to be seen.
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Figure 2.2: An adversarial example generated by FGSM for an ImageNet DNN.
Left: correctly classified image. Right: an adversarial example, incorrectly
classified as nematode with confidence 99.3%. Middle: the gradient sign of
the DNN’s cost function with respect to the input. It was multiplied by ε = 0.007
and added to the original image to form the adversarial example. [Goodfellow
et al., 2014b]

Figure 2.3: Adversarial examples generated by FGSM for a logistic regression
model discriminating between pictures of 3s and 7s from MNIST. Left: the original
images. Right: corresponding adversarial examples created with ε = 0.25. The
model has 1.6% error rate on the clean inputs and 99% error rate on the adversarial
inputs. Note the perturbations are much more visible than in Figure 2.2. This
is because of the larger dimensionality of ImageNet pictures and consequently a
much smaller ε. [Goodfellow et al., 2014b]

Fast Gradient Method

Alternatively, a fast gradient method (FGM) [Liu et al., 2016], similar to FGSM,
can be used:

η = ε · ∇xJf (x, y)

∥∇xJf (x, y)∥ .

Then η is the strongest perturbation subject to the given norm constraint.

2.1.3 Iterative FGSM

Kurakin et al. [2016a] introduced a simple extension of FGSM. They applied
FGSM multiple times while keeping each pixel value in ε-neighborhood of the
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original pixel:

x̃(0) = x, x̃(m+1) = Clipx,ε

(

x̃(m) + α · sgn
(

∇xJf

(

x̃(m), y
⎡⎡⎡

,

where Clipx,ε : Rd → [0, 1]d is a function

Clipx,ε(x̃)i = min ¶1, xi + ε, max¶0, xi − ε, x̃i♢♢ .

This is essentially equivalent to the projected gradient descent (PGD) on the
negative loss function, as pointed out by Madry et al. [2017].

In the above formulation, this method again produces untargeted adversarial
examples, but it is straightforward to change this by modifying the underlying
FGSM (see equation 2.1).

Iterative methods create finer perturbations than FGSM; the image stays
recognizable by humans with higher ε [Kurakin et al., 2016a]. See examples in
Figure 2.4.

2.1.4 Papernot’s method

[Papernot et al., 2015a] introduced a method in part similar to FGM. Instead of
directly computing the gradient of the loss function with respect to the input,
they take the gradients of the output of the model f : Rd → R

m with respect to
the input (these form a Jacobian matrix if m > 1):

∇xf(x) =

⎟

∂fj(x)

∂xi

]

i=1...d, j=1...m

.

Then they use this matrix to identify parts of the input that have a desirable
effect on the model’s output (adversarial saliency map) and perturb these parts
until the output changes to the adversarial target or the maximum allowed rate
of modified pixels is reached.

The algorithm is relatively complex, requiring tuning of multiple parameters,
and they themselves do not adhere to it, as in their experiments on a MNIST
CNN they take the gradients of the last hidden layer (as opposed to the output
layer) with respect to the input. Nevertheless, the algorithm was able to find
adversarial examples for 97% of inputs, modifying less than 14.5% of pixels.

2.2 Properties

Properties of adversarial examples that are being studied include their transfer-
ability, robustness to transformations, and detectability.

2.2.1 Transferability

An interesting property of adversarial examples discovered by Szegedy et al. [2013]
is their transferability (also generalization). An adversarial example created for one
model can sometimes serve as an adversarial example for a different model that
has been trained from scratch on the same training set (cross model generalization)
or even on a completely disjoint training set (cross training set generalization).
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(a) Original image (b) FGSM, ε = 32/255

(c) Iterative FGSM, ε = 32/255 (d) Iterative FGSM targeting the least
likely class, ε = 28/255

Figure 2.4: Comparison of adversarial examples created by different FGSM
variants. The maximum allowed change in individual pixel values is denoted by ε.
[Kurakin et al., 2016a]

Szegedy et al. [2013] performed experiments with several models trained with
different hyperparameters on either the same or a different part of the MNIST
training data. They measured the non-targeted transfer rate – i.e. the ratio of
adversarial examples generated for one model that were misclassified by another,
regardless of the particular incorrect class assigned. The cross model transfer rate
depended heavily on the pair of models examined (and was not symmetric); it fell
between 2% an 87%. The cross training set transfer rate was between 5% and
27%.

Transferability of adversarial examples is important for most of black-box
attack methods (see Section 2.4).
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2.2.2 Robustness to transformations

The usually considered threat model allows the adversary to directly feed their
perturbed inputs to the model being attacked. While this might be possible for
models operating entirely within a computer, often the system would get its inputs
from the real world through some kind of sensor. The question then arises whether
adversarial examples can survive transformations introduced by the sensor, such
as noise, translation, rescaling or a change of the viewing angle in the case of a
camera.

Kurakin et al. [2016a] explored the effect of noise on adversarial examples
crafted for Inception – an image classifying DNN [Szegedy et al., 2016] trained on
ImageNet. They used FGSM, untargeted iterative FGSM and iterative FGSM
targeting the least-likely class according to Inception (to avoid questionable
misclassifications to very similar classes that occur in ImageNet, such as many
different dog breeds). Then they printed each adversarial example, took a photo of
it with a mobile phone camera and applied an affine transformation and cropping
to get the image in the original shape. They measured destruction rate – the
fraction of adversarial examples that were no longer misclassified after the printer
and camera transformation.

Adversarial examples created by FGSM were generally more robust than
the ones created by the iterative methods (for example 40% versus 90.5% and
94.6% destruction rate with a top-5 classification and ε = 8/255). Recall that
iterative FGSM applies finer, harder to detect perturbations to the image; these
are probably more likely to be destroyed. The experiment shows that some fraction
of adversarial examples survives the photo transformation and physical adversarial
examples are thus conceivable. But it did not explore the effects of viewing images
from different distances or angles, which is often inevitable in the physical world
(consider e.g. traffic signs). Also, when misclassification with a confidence of
over 80% was required, the destruction rate was higher (70.8%, 91.2% and 97%
respectively).

Robustness to geometrical transformations

Athalye and Sutskever [2017] showed it is possible to create adversarial examples
robust to transformations that occur when viewing an image in the real world:
scaling, rotation, translation, lightening/darkening etc. Moreover, they successfully
generated adversarial textures for virtual 3D objects and even constructed two 3D-
printed real-world objects with these textures that were consistently misclassified
over a wide range of viewing conditions.

To this end, they introduced Expectation over Transformation (EOT) – an
approach that maximizes the expected log probability of target response over all
transformations, while trying to keep the perceived difference between the original
and the perturbed image low:

x̃ = argmin
x′

Et∼T [− log P(ỹ ♣ t(x′))] + λEt∼T [d(t(x), t(x′)] , (2.2)

where T is a given distribution of transformations, x the original sample, x̃ its
adversarially perturbed variant, ỹ the target (incorrect) response, d some distance
function, λ is a chosen parameter and P(y ♣ t(x′)) is the probability of the model
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outputting label y given randomly transformed input t(x′). Note the expected
distance between the transformations of the original and transformed input is
being minimized. The distance d used was the Euclidean distance in the LAB
color space. The above objective function can be optimized by approximating the
gradient of the expected value through sampling and running SGD.

In the case of 3D objects, the transformations in T were composed of mapping
the texture to a given object and subsequent rotation, translation, perspective
distortion or background addition. Instead of differentiating through the 3D
renderer, the authors simulated each rendering as a sparse matrix multiplication,
different at each sampling step, and differentiated through it.

The authors evaluated their method against the InceptionV3 ImageNet clas-
sifier which achieves 78% top-1 accuracy on clean images. The transformed 2D
adversarial images were misclassified as the target class (randomly chosen for
each image) for 96% of transformations on average. The transformed 3D models
with adversarial textures were misclassified as the target class (20 were randomly
chosen for each of the 10 models) for 83% of transformations on average and finally
the two physical adversarial objects (a turtle and a baseball) were misclassified
as the randomly chosen target class (“rifle” and “espresso”) in 82% and 59% of
cases, respectively (and were misclassified as other incorrect classes in additional
16% and 31% of cases, respectively). See Figure 2.5 for pictures of the turtle and
its adversarial variant.

2.2.3 Detectability

Perturbed input x̃ is regarded as an adversarial example only if it belongs to
the same class as the original image x. Thus, it must be similar enough – with
similarity being assessed by human judgment, and hence difficult (or costly) to
exactly quantify. But even if the perturbed input falls into the ground truth class
boundary, its similarity to the original image matters: the more different it is, the
easier it is to detect the perturbation.

To measure dissimilarity, distortion is sometimes used, defined as [Gu and
Rigazio, 2014]

∑d
i=1(xi − x̃i)

2

d
=
∥x− x̃∥2

2

d

or alternatively as [Szegedy et al., 2013, Liu et al., 2016]

√

∑d
i=1(xi − x̃i)2

d
=
∥x− x̃∥2√

d
.

2.3 Defenses

Several different approaches to defending machine learning models against ad-
versarial examples have been proposed. Unfortunately, none of them have so far
been able to completely solve the problem.

A truly successful defense would substantially decrease the misclassification
rate on adversarial examples (ideally so much so that they were not misclassified
more often than clean data), while not worsening the accuracy on clean data
significantly.
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Clean object

Adversarial object

Figure 2.5: A physical adversarial example. Top row: 3D-printed model of a turtle.
Bottom rows: 3D-printed model of a turtle with texture adversarially perturbed
by EOT (introduced in equation 2.2). Images with green border were classified
correctly, images with red border were misclassified as the target class (“rifle”)
and the image with black border was misclassified as a different class. [Athalye
and Sutskever, 2017]

2.3.1 Adversarial training

While training a model, adversarial examples can be periodically generated and
added to the training set. Szegedy et al. [2013] showed this could work as a
regularizer, but did not get better results than by using dropout.

Goodfellow et al. [2014b] used FGSM to directly include adversarial examples
in the cost function during training:

J̃f (x, y) = αJf (x, y) + (1− α)Jf (x + ε · sgn(∇xJf (x, y)), y),

where x, y and Jf are the input, output and the cost function of the model, and
α ∈ [0, 1] and ε > 0 are chosen parameters. This corresponds to pushing the
model to minimize the error also on adversarial examples.

Using this approach along with dropout, they were able to reduce their error
rate from 0.94% to 0.84% on MNIST. Early stopping on the adversarial validation
set together with an increased number of hidden units (from 240 to 1600 per layer)
further decreased the error rate to 0.78% on average. The model also acquired
some resistance to adversarial examples (the error rate on these fell from 89.4% to
17.9%), but remained highly confident when fooled (average confidence 81.4%).

Instead of teaching the model that moving an example x a bit in the direction
of the cost function gradient sign does not change its label, we could try to make
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it resistant to all changes in x features smaller than ε by training on many points
sampled uniformly from the ε max-norm box. However, Goodfellow et al. [2014b]
pointed out that the expected dot product between such a perturbation and the
weight vector is zero and many perturbed examples will actually have lower cost
function value. The model trained in this way had a 90.4% error rate with a
97.8% confidence on FGSM adversarial examples, so it does not seem to be a
viable alternative.

Kurakin et al. [2016b] studied the effects of adversarial training on the larger
dataset of ImageNet. Unlike on MNIST, adversarial training caused a small drop
(less than 1%) in accuracy on clean examples. This was compensated by greater
increase of accuracy on adversarial examples (e.g. top-5 accuracy increased from
57.2% to 91.4% for ε = 16/256). However, adversarial training did not help
against iterative FGSM (top-5 accuracy 23.2% with adversarial training, 25.9%
without).

The authors found that larger networks benefited from adversarial training
more than smaller networks. They also discovered what they called a label leaking
effect: when trained on FGSM adversarial examples, the model then reached
higher accuracy on FGSM adversarial examples than on clean images. They
hypothesize this happens because the transformation that one-step FGSM applies
when it has access to the true label is simple enough so that the model can learn
to recognize it, and recommend to replace the true label with the label predicted
by the model during adversarial training.

Madry et al. [2017] looked at adversarial robustness of neural networks from the
perspective of robust optimization and ended up using iterative FGSM adversarial
training.

They formulated the problem of finding the parameters that make a network
most robust to the perturbations of the most apt first-order adversary as a min-
max optimization problem, and argue that this formulation provides concrete
security guarantee for the trained model, as opposed to previous work, in which
the defenses were tested against some attack without ensuring its strength.

As the attack must be limited in some way, the authors consider a set of
allowed perturbations S ⊆ R

d. In line with previous work, they focus on max-
norm bounded perturbations, i.e. S = [−ε, ε]d.

The problem formulation stems from viewing training of machine learning
models as attempting to minimize the population risk

E(x,y)∼DJθ(x, y),

where D is the underlying data distribution, θ the model parameters and Jθ the
associated loss function. Finding the parameters that result in a model most
robust to attacks limited by S can then be written as a composition of an inner
maximization problem and an outer minimization problem:

min
θ

E(x,y)∼D

⎦

max
η∈S

Jθ(x + η, y)
⎢

.

Generally, this is a difficult problem to solve, as already the inner maximization
problem is highly non-concave. Still, the authors argue that the inner part can
be solved by projected gradient descent (iterative FGM) in practice, much like
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training of neural networks. Danskin’s theorem (see Madry et al. [2017] for a
formulation) then gives that descent direction for the outer minimization problem
corresponds to gradients at inner maximizers, i.e. the best adversarial examples.
The assumptions of the theorem technically do not hold because the function
is usually not continuously differentiable (albeit only on a set of measure zero)
due to ReLUs and max-pooling. Nevertheless, the application of the theorem,
i.e. adversarial training with an iterative FGSM adversary, seems to work well in
practice. Because PGD found very similarly valued (but distinct) local minima
across many restarts, we can assume it approximated the global minimum well.

The authors reported very good accuracy of 0.89 on adversarial examples
generated by iterative FGSM with ε = 0.3 for their best MNIST model and
accuracy of 0.45 for their best CIFAR10 model. These findings contrast with
those of Kurakin et al. [2016b], who could not get any benefits out of iterative
adversarial training during their experiments on ImageNet. The experiments also
show that having a higher capacity helps – a model more robust to adversarial
examples (after adversarial training) had more parameters than a model that only
achieved high accuracy on clean examples. This is in line with Kurakin et al.
[2016b].

2.3.2 Denoising autoencoders and DCN

In an attempt to make a DNN trained on MNIST immune to adversarial examples,
Gu and Rigazio [2014] trained an autoencoder to remove adversarial perturbations
(if any) and stacked the DNN on top. They were able to reduce the misclassification
rate of adversarial examples by more than 90%. However, they also noted that
new adversarial examples could just as easily be generated for the network as a
whole, i.e. including the autoencoder. Similar results were achieved with a mere
denoising autoencoder (i.e. an autoencoder trained to remove Gaussian noise).

Gu and Rigazio [2014] then proposed deep contractive networks (DCN), which
are still prone to adversarial examples, but should at least require larger perturba-
tions in order to be fooled (measured by distortion, see Section 2.2.3). However,
the achieved increase in average distortion is not very high (e.g. from 0.087 to
0.102 for a DNN with two hidden layers).

2.3.3 Simple image transformations

When an image classifier system gets its inputs from the real world, they are
transformed in some way by the used sensor. This transformation might destroy
adversarial examples (see Section 2.2.2). Similarly, we can artificially modify inputs
in an attempt to increase the model’s robustness to adversarial perturbations,
usually trading it for accuracy on unperturbed data.

Gu and Rigazio [2014] measured the effects of adding Gaussian noise and
Gaussian blurring on MNIST images. Additive Gaussian noise with a standard
deviation of 0.2 increased the error rate on clean data from about 1% to about
3% and decreased it from 100% to between 93% and 63% on adversarial examples.
Better results were achieved with a CNN than with a fully connected network. For
a CNN, Gaussian blur with blur kernel of size 5 increased error rate on clean data
from 0.9% to 1.2% and decreased it from 100% to 53.8% on adversarial examples.
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Kurakin et al. [2016a] explored the effects of Gaussian blur, Gaussian noise,
JPEG encoding and brightness and contrast change on adversarial examples
crafted by FGSM and its iterative variant for ImageNet classifying DNN Inception.
Generally, blur, noise and JPEG encoding had higher destruction rate than the
change of brightness and contrast, and FGSM-created adversarial examples were
more resilient than those created by iterative FGSM. Unfortunately, the size of
probable corresponding decrease in accuracy on clean examples was not reported.

2.3.4 Gradient masking

A variant of distillation [Hinton et al., 2015] can be employed to reduce effectiveness
of adversarial examples creation. Usually, distillation is used to transfer knowledge
from a larger DNN to a smaller one (to save resources during inference), by
training it on inputs with labels (or class probability vectors) assigned by the
larger network. Instead, Papernot et al. [2015b] used what they called defensive
distillation to improve resistance of the original network by training its substitute
with the same architecture. They reported it had smaller gradients and were
able to reduce the misclassification rate on adversarial examples from 95.9% to
1.3% for a DNN trained on MNIST and from 89.9% to 16.8% for a DNN trained
on CIFAR10. Adversarial examples were crafted using the Papernot’s method.
Accuracy on clean data was lowered by less than 2%.

This seems promising, however, defensive distillation has been shown to be
susceptible to substitution attacks (see Section 2.4.2) [Papernot et al., 2016].

2.4 Black-box attacks on ML models

The adversarial examples generating methods we have seen so far require access
to the model parameters (and hence, its architecture). While these might be
available (as state-of-the-art deep models usually take very long time to train,
pre-trained models are sometimes shared and used – see for example Caffe Model
Zoo1), often they will not be disclosed (and even an admitted pre-trained model
will be probably fine-tuned to the specific task by replacing one or more of its top
layers).

However, obscurity does not imply security and there are indeed methods
that can perform black-box attacks against machine learning models, i.e success-
fully create adversarial examples without knowledge of their architecture and
parameters.

2.4.1 Evolutionary generation of adversarial examples

Vidnerová and Neruda [2016] employed genetic algorithms to find adversarial
examples for a range of MNIST image recognition machine learning models (an
neural network with 2 hidden layers, a CNN, an ensemble of 10 neural networks,
an RBF network, an SVM and a decision tree). They used individuals encoded as
vectors of pixel values, two-point crossover, mutation by adding Gaussian noise to

1https://github.com/caffe2/caffe2/wiki/Model-Zoo

29

https://github.com/caffe2/caffe2/wiki/Model-Zoo


individual pixels, tournament selection and a fitness function defined as

F (x̃) = −∥x̃− x∥2 + ∥f(x̃)− ỹ∥2

2
,

where x̃ is the individual being evaluated (adversarial example candidate) that
should resemble image x, f(x̃) is the model response to x̃ and ỹ is the target
(i.e. incorrect) response. After 10 000 generations of 50 individuals, the neural
network, CNN, ensemble, SVM with sigmoid kernel and decision tree always
misclassified the resulting adversarial example, whereas SVM with polynomial
kernels misclassified it only in 44% to 77% of times and RBF network and SVM
with linear and RBF kernels never misclassified it.

The adversarial examples were also transferable between models (trained on
the same dataset) to some extent, notably to the models resistant to adversarial
examples generated specifically for them.

Depending on the exact setting, the relatively high number of inferences
required to be made by the target model (one for each fitness evaluation) might
render this black-box method impractical. As we will see in Section 2.4.2, even
this obstacle can be overcome.

Su et al. [2017] used differential evolution to find one pixel (or few pixel)
adversarial perturbations. Unlike FGSM, this method does not use the high
dimensionality of image data, but on the other hand does not impose any constraint
on the magnitude of the one pixel perturbation other than the image representation
limits and the pixel is thus often clearly visible (see Figure 2.6).

Figure 2.6: One pixel attacks against a CIFAR10 trained CNN. The target labels
are in parentheses. [Su et al., 2017]

Their candidate solutions (differential evolution individuals) consisted of fixed
number (1, 3 or 5) of one pixel perturbations, each containing its own coordinates
and three-dimensional (RGB) perturbation value.
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The fitness function they were maximizing was directly ft(x + η), i.e. the
targeted classifier’s confidence that the perturbed input x + η belonged to the
target (incorrect) class t. Because this method requires the classifier’s confidences
(but not its parameters), the authors call it a semi-black-box attack.

They tested this method on three different CNNs trained on CIFAR10. It was
successful in ca. 23% when producing targeted adversarial examples and in ca.
71% producing untargeted adversarial examples. They unfortunately did not test
its transferability nor robustness to transformations.

2.4.2 Substitution attacks

Because of the transferability of adversarial examples demonstrated by Szegedy
et al. [2013], an adversary could train a substitution model (ideally on the same
dataset, but potentially even on an independent one), create adversarial examples
for it using e.g. FGSM and then apply them to the original model. Recall that
Szegedy et al. [2013] reported model transfer rate between 2% an 87% and cross
training set transfer rate between 5% and 27% on MNIST.

The transfer rate depended heavily on the pair of models examined; so although
this method can be seen as a black-box attack, it is usually strong enough only
when the target model architecture is known. The adversary also might not have
access to the dataset used for training of the target model or there might not be
any available dataset for a given task at all. As today’s deep image recognition
models are trained on datasets containing millions of images, assembling and
labeling of their own dataset can be too costly for the attacker.

Papernot et al. [2016] created their substitution DNN in a different way. They
trained it to mimic decisions made by the target model by using synthetic training
data labeled by the target model. Their method does not need any information
about the target model apart from its responses to given inputs and the number of
queries for such responses is limited. The method is thus appropriate for attacking
private, remotely hosted classifiers.

In the following, we will describe their algorithm in a bit more detail.

Substitute model training

First, substitute architecture is chosen and initial set of examples S0 ⊆ R
d is

assembled. Then m substitute training epochs are performed. In epoch number
i for i = 0, . . . , m − 1, the set of examples Si is labeled by the target model
M : Rd → ¶1, . . . , k♢, obtaining Di :

Di ← ¶(x, M(x)) : x ∈ Si♢.

The substitute model Fi : Rd → [0, 1]k is trained on Di from scratch. Note that
unlike M , Fi returns the probabilities of x belonging to a particular class. Subse-
quently, the set of examples is expanded by Jacobian-based dataset augmentation

Si+1 ← ¶x + λ · sgn(JFi
[M(x)]) : x ∈ Si♢ ∪ Si,

where

JFi
[M(x)] =

(

∂Fi(x)M(x)

∂x1

, . . . ,
∂Fi(x)M(x)

∂xd

⎜
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is the row of the Jacobian matrix of Fi corresponding to the label M(x) and
λ ∈ R is a parameter controlling the augmentation step size.

Refinements

Papernot et al. [2016] also introduced several refinements to the original algorithm.
To reduce the number of queries made to the target model, which in the

above algorithm grows exponentially with the number of epochs, for i > σ only κ
examples sampled uniformly from Si are augmented to be included in Si+1, where
σ and κ are controlling parameters. Although this does reduce the substitute
accuracy, the effect is relatively small (about 3–11%).

Increasing λ speeds up convergence but lowers adversarial example transfer-
ability. Somewhat surprisingly, alternating the sign of λ periodically helps to
achieve better approximation of the target model.

Performed attacks

After crafting untargeted adversarial examples on the substitution model using
FGSM, Papernot et al. [2016] deployed them against machine learning services
of Metamind, Amazon and Google. These classifiers are remotely hosted and
automatically trained; the user supplies only the training dataset (MNIST in this
case). Their accuracy on clean images was higher than 0.92 and lower than 0.16
on adversarial examples; we can consequently consider the attack successful.

Note that the target model does not need to be differentiable; interestingly,
the attack generalizes to models like decision trees and SVMs. The transferability
Papernot et al. [2016] reported after six substitute training epochs was between
43% and 76%, depending on the (locally trained) target model.

2.4.3 Targeted substitution attacks

Liu et al. [2016] reported that for models trained on ImageNet, transferability of
targeted adversarial examples is more difficult to achieve.

They measured cross-model transferability between well known deep CNNs
(such as ResNet [He et al., 2016] or GoogLeNet [Szegedy et al., 2015]). While the
untargeted transfer rate was between 61% and 95%, targeted transfer rate did not
exceed 4%.

To increase targeted transferability on ImageNet, Liu et al. [2016] proposed
to generate adversarial examples not for a single model, but for an ensemble of
several CNNs. Using optimization-based approach, they were able to achieve 63%
to 99% targeted transferability rate. However, adversarial examples generated
by FG(S)M had no better targeted transfer rate than when created for a single
model.

2.5 Related research

In this section, we will shortly describe two concepts which, while being similar to
or similarly named as adversarial examples, do not quite belong among them.
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2.5.1 Fooling examples

Fooling examples [Nguyen et al., 2014] (also rubbish class examples) are similar to
adversarial examples. While adversarial examples get assigned incorrect class by
the targeted machine learning model, fooling examples are assigned some class
with high confidence, although none is correct – humans do not recognize the
images as anything specific. The ideal answer in this case would be the same (and
therefore low) confidence for each class.

Nguyen et al. [2014] generated such images by evolutionary algorithms for
networks trained on MNIST and ImageNet. They used either direct encoding
(genes corresponding to pixels) or indirect encoding (genes being parameters of a
compositional pattern-producing network (CPPN) [Stanley, 2007]), which led to
noise-like or highly regular images, respectively (see Figure 2.7).

Figure 2.7: Fooling examples for an ImageNet DNN generated by evolutionary
algorithms with direct (top row) or indirect (bottom row) encoding of individuals.
[Nguyen et al., 2014]

For MNIST DNN, median confidence of the spurious classification was 99.99%
and retraining with new “fooling image” class and labeled data did not help, as
new fooling examples could be generated for the new network (and the whole
procedure iterated). Generating fooling images for ImageNet network was less
successful, with median confidence 22% and 88% for direct and indirect encoding,
respectively. Also retraining the ImageNet DNN with new “fooling image” class
did help to some extent – it reduced median confidence to 12% in the indirect
encoding case. The authors hypothesize this is due to the difference between
natural and CPPN images being more easily learned than the difference between
MNIST digits and CPPN images.

Some fooling images were transferable to a DNN with different architecture
(but trained on the same dataset).

2.5.2 Generative Adversarial Networks

Similarly named, but distinct area of research are generative adversarial networks
(GANs), introduced by Goodfellow et al. [2014a]. As the name suggests, a GAN
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consists of a generator network G, which is a generative model (i.e. it is trying
to sample from the data probability distribution P(x)), trained together with a
discriminator network D, which emits a probability value D(θD, x), interpreted as
the model’s confidence that the input x is a real example (as opposed to being
created by the generator). These two networks act as adversaries in a zero sum
game – the generator is trying to minimize and the discriminator to maximize the
value function

V (θG, θD) = Ex∼pdata(x)[log D(θD, x)] + Ez∼pnoise(z)[log(1−D(θD, G(θG, z)))],

where θG and θD are parameters of G and D, respectively. The process terminates
in a saddle point.

In each step the generator network creates samples mimicking the training
data. The discriminator network is then trained to recognize these as fake (in
practice only a few backpropagation steps are run). Finally, the generator is
updated by one backpropagation step. The training stops when the discriminator
outputs 1/2 as the probability of the sample being real for every sample.

Generative adversarial networks do not have much in common with adversarial
examples. The purpose of adversarial examples is to fool a classifier, whereas the
purpose of GANs is to train a good generative model, discarding the only classifier
involved (the discriminator network) at the end of the training. We will not deal
with GANs anymore; nevertheless, it is a very active research area at the moment.

2.6 Conclusion

Adversarial examples pose a threat to machine learning models and consequently
to systems where these models are used. They can greatly lower the accuracy of
the targeted model while still being perceived as members of the original class by
humans, and in some cases also being difficult to detect.

Several methods generating adversarial examples have been proposed and
none of them is the most suitable in all circumstances. The attacker’s choice
will depend on the information they have about the targeted model (white
box/black box), the amount of time available for adversarial examples gener-
ation (FGSM/iterative FGSM/evolutionary algorithms), whether misclassification
as particular class is required, and demand for robustness to input transformations
(iterative FGSM/FGSM/EOT).

Most methods have been evaluated on MNIST or ImageNet. Generally, it is
possible to make the adversarial perturbation much more subtle on ImageNet,
as a result of the high dimensionality where the perturbation can be hidden.
Adversarial examples for MNIST models are still correctly classified by humans
(and so they satisfy the definition), but their difference to the original MNIST
images is usually clearly visible (although such noisy images might very well be
encountered in the wild).

It seems unlikely that this problem will ever become completely solved, i.e.
that the model with state-of-the-art accuracy on clean inputs will correctly classify
all perturbations that do not change the true class. After all, what is known
as optical illusions could be considered to be a kind of adversarial examples for
humans. To decide whether the problem has been solved sufficiently well is difficult
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and depends on the task at hand. Sometimes enforced misclassifications must
be avoided at all cost, and in other cases, where adversaries would not have any
motivation or opportunity to perturb the input, spared bits of accuracy on clean
inputs might be more valuable.

Just as there are multiple kinds of attack, several defenses have been conceived.
Out of these, iterative FGSM adversarial training is maybe the most promising.
However, it is computationally demanding and nobody has managed to scale it to
ImageNet so far. Variants of gradient masking have been shown to be bypassable
by substitution attacks. Simple input transformations, both naturally occurring
and artificially added, have been largely overcome by EOT.

All in all, new defenses, as well as attacks they can be tested against, are still
in demand.
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3. In search for new defenses and
attacks

In this chapter we present several attempts at finding a successful defense against
adversarial examples for image classification models. First, we compare the
robustness of models with RBF units and conventional CNNs on MNIST. We do
not manage to make traditional RBF models meet the expectations set up by
previous work, but our network with a convolution-like RBF layer does outperform
a CNN on adversarial examples. Then we try to defend a CNN MNIST model by
rounding individual pixel values of input images and obtain some good results.
We try applying rounding also on ImageNet, but the results are less promising.

Finally, we attempt to create adversarial perturbations without observing
the particular inputs that should be perturbed. We evaluate this approach on
MNIST, where it is able to decrease the accuracy of a CNN relatively strongly in
an untargeted scenario, but less so in a targeted case.

In our experiments, we use TensorFlow [Abadi et al., 2015] for neural networks
construction, the K-Means implementation from scikit-learn [Pedregosa et al.,
2011], NumPy [van der Walt et al., 2011] and Pandas [McKinney, 2010] for data
manipulation and Matplotlib [Hunter, 2007] for plotting.

3.1 RBF models on MNIST

Goodfellow et al. [2014b] suggested that deeper RBF networks could serve as a
more robust alternative to CNNs when dealing with adversarial examples due
to them being less linear and thus less readily generalizing in the direction of
unknown data. They explored a variety of models involving quadratic units,
but reported only the accuracy of a shallow RBF model on FGSM generated
adversarial examples (ε = 0.25).

Vidnerová and Neruda [2016] found that RBF networks were resistant to
adversarial examples generated by their evolutionary method. This provides some
support for the above hypothesis.

To investigate the possible robustness of such networks, we evaluated several
architectures incorporating RBF on images from MNIST perturbed by FGSM.
We chose FGSM because it is widely used in current research, thus serving as a
common benchmark, and computationally manageable. We compare these models
with regular CNNs.

3.1.1 Method

We trained the following models on the MNIST training set:

CNN CNN architecture taken from the TensorFlow MNIST tutorial1. It has
two convolutional layers (32 and 64 channels, respectively, kernel size 5× 5, stride
size 1) with ReLU activation and max pooling (pool size 2× 2, stride size 2), a

1https://www.tensorflow.org/get_started/mnist/pros
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fully connected layer (1024 neurons), a second fully connected layer (10 neurons
with 0.4 dropout rate) and an output softmax layer. It was trained by Adam
optimizer for 20 epochs.

CNN-adv The architecture is the same as above, but it was trained adversarially,
i.e. every training batch consisted of half clean and half adversarial examples
generated for the current version of the model by FGSM with ε = 0.25 (as
recommended by Goodfellow et al. [2014b]).

RBF-500 RBF network with one hidden layer (500 neurons), one linear fully
connected layer (10 neurons) and a softmax output layer. We chose the number
of neurons to match the number used by Vidnerová and Neruda [2016]. The
parameters of the hidden layer neurons were set by clustering the MNIST training
set with K-Means (30 iterations). Then the whole network was trained by Adam
optimizer to set the weights of the linear layer and fine-tune the RBF layer.

RBF-1000 The same architecture as RBF-500, but with 1000 neurons in the
hidden layer.

SGD-RBF-500 The same architecture as RBF-500, but the whole model was
trained using Adam optimizer for 1000 epochs (i.e. without K-Means pretraining).

SGD-2L-RBF-500 The model has two hidden RBF layers, with 500 and 125
neurons, respectively, a fully connected layer (10 neurons) and an output softmax
layer. It was trained by Adam optimizer for 1000 epochs.

RBFolutional Network This model features a layer that we call RBFolutional.
It is similar to a convolutional layer, but the operation used to combine the kernel
and the underlying patch of the image is RBF instead of dot product. Recall that
discrete convolution of image I by kernel K ∈ R

h×w might be written as

(I ∗K)(i, j) =
h
∑

i′=1

w
∑

j′=1

I(i + i′, j + j′)−K(i′, j′).

RBFolution of image I by kernel K is then

RBFol(I, K)(i, j) = exp

∏

∐−β
h
∑

i′=1

w
∑

j′=1

(I(i + i′, j + j′)−K(i′, j′))
2

∫

ˆ ,

where β > 0 is a parameter. Our RBFolutional network has one RBFolutional
layer (32 channels, kernel size 5× 5) with max pooling (pool size 2× 2, stride size
2), followed by a convolutional layer (64 channels, kernel size 5× 5), a dense layer
(30 neurons, ReLU activation), a second dense layer (10 neurons) and an output
softmax layer.

We did not manage to train this model by SGD from scratch, therefore we
initialized the RBFolutional layer with KMeans (on patches extracted from the
first 10 000 MNIST training images) and then trained the whole network with
SGD for 10 epochs.
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We generated adversarial examples for each model by perturbing the whole
MNIST test set by FGSM with ε ranging from 0 to 1. After inspecting the
resulting images, we discarded those generated with ε > 0.4, as they were already
too distorted and many would not be recognized by humans. For examples of the
resulting images, see Figure 3.1. We then measured the accuracy of the models
on their respective adversarial examples.
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Figure 3.1: Illustration of the effects of FGSM targeting RBF model on MNIST
with different ε levels.

3.1.2 Results and discussion

The results are in Figure 3.2. For every model, the accuracy drops rapidly with
increasing ε. Specifically for ε = 0.25, the accuracy of most models is lower than
the reported 0.45 of Goodfellow et al. [2014b].

To our surprise, all traditional RBF models achieved worse accuracy than the
CNN for every ε level. We thus found only limited support for the hypothesis of
RBF models being more robust to adversarial examples than the more commonly
used CNNs. Only the RBFolutional network was more robust than both the CNN
and the adversarially trained CNN, with accuracy of 0.39 for ε = 0.25.

3.2 The effects of rounding on MNIST

Kurakin et al. [2016a] tried various approaches to defending a model against
adversarial examples by distorting the input image, such as Gaussian blur, noise
or change of brightness. None of them proved to be very effective. What they
have in common is that they keep the space of images “mostly continuous” – not
much less than the original space, which is of course discretized by the finite
representation of numbers in the computer. We can then ask whether a more
significant discretization of the image space could lead to higher robustness to
adversarial perturbations due to removing the neighborhood of an image into which
it could be moved by the perturbations. At the same time, such discretization
must not greatly lower the accuracy of the defended model on clean examples.
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Figure 3.2: Accuracy of custom RBF and CNN models on MNIST based adversarial
examples generated by FGSM with varied ε.

3.2.1 Method

We take generalized rounding as our discretization method. For each channel of
each image pixel, we divide the interval [0, 1] into n consecutive rounding intervals,
each having the same length l = 1/n for some n ∈ N, n ≥ 1. If the image is not
being rounded at all we consider l = 0 for convenience. The new value of the
channel c after rounding is then

round(c, l) =

∏

⨄

⋃

c if l = 0,

⌊(c · n) + 1/2⌋/n if l = 1/n.

If rounding interval size is 1, round(c, l) corresponds to regular rounding.
We applied this method to adversarial examples generated from the MNIST

test set by FGSM and iterative FGSM for our CNN trained on MNIST training
set (the architecture is the same as in Section 3.1). The parameters for iterative
FGSM were chosen to match those of Kurakin et al. [2016a]: the number of
iterations was ⌈min(255 ·ε+4, 1.25 ·255 ·ε)⌉ and max-norm bound on one iteration
εiter = 1/255. We varied rounding interval size from 0 to 1 (note that only zero
size or sizes of the form 1/n are applicable) and ε from 0 to 0.4 and measured
accuracy.

3.2.2 Results and discussion

The results for FGSM are in Figure 3.3.
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The accuracy as a function of rounding interval size is not monotonic. Especially
for ε = 0.1 and 0.2, there are areas where it declines for several consecutive
rounding interval sizes and then jumps higher than it was in the beginning. In
some areas rounding actually reinforces the effect of FGSM. This is possible
because it moves the values of individual pixels up or down much like FGSM,
and their directions can agree. The reinforcement is then growing with rounding
interval size, until at some point the rounding interval becomes so big that the
direction of rounding is reversed. It is easily recognizable at rounding interval size
0.5: As most pixels in MNIST images are black (0) or white (1), FGSM will move
them towards the middle (0.5). When ε > 0.25, rounding will set the perturbed
pixels values to 0.5, thus increasing the effect of the perturbation and lowering
the accuracy. When ε < 0.25, rounding sets the perturbed pixel values to 0 or 1,
thus reverting the change introduced by FGSM and increasing the accuracy. See
also Figure 3.4, where this effect is also visible.

The best rounding interval size is in this case 1. It is most successful at
destroying adversarial examples and it still does not decrease the accuracy on
clean images. This is not very surprising as MNIST images are mostly black
and white. In fact, the original images from which MNIST was assembled were
black and white and the gray tones emerged only as a result of size normalization
[LeCun et al., 2010].

For iterative FGSM results, see Figure 3.5. The situation is simpler here,
because iterative FGSM makes more subtle changes to the images than FGSM
with the same ε. These are then easily reverted by rounding and at rounding
interval size 1, the accuracy is over 98% for ε < 0.4.
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Figure 3.3: Accuracy of a CNN model on rounded adversarial examples generated
by FGSM for different values of ε and rounding interval size. See Figure 3.4 for
the resulting images.
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Figure 3.4: Illustration of the effects of FGSM and rounding on MNIST.
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Figure 3.5: Accuracy of a CNN model on rounded adversarial examples generated
by iterative FGSM for different values of ε and rounding interval size. See Figure
3.6 for the resulting images.
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Figure 3.6: Illustration of the effects of iterative FGSM and rounding on MNIST.
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3.3 The effects of rounding on ImageNet

As discretization of the image space proved quite successful at defending the
classifier against adversarial examples on MNIST, a natural question is whether it
could help also on ImageNet – a dataset bigger in virtually all measures, where
adversarial examples are generally a greater problem, mostly because of the higher
dimensionality and number of classes.

3.3.1 Method

Because training a CNN on ImageNet from scratch requires extensive resources,
we resorted to using publicly available2 pretrained InceptionV3 model [Szegedy
et al., 2016]. This model achieves 96.54% top-5 accuracy on ILSVRC 2012 test
set.

We generated adversarial examples for this model using FGSM and iterative
FGSM. Again, we chose FGSM because it is widely used and efficient to compute.
Iterative FGSM then serves as a representative of more expensive and subtler,
but less robust methods. Its parameters were the same as in our experiment on
MNIST.

Our defensive discretization was again generalized rounding of individual pixel
channels. Note that the images have three color channels (red, green and blue),
therefore even with rounding interval size 1, there are still 8 possible colors for
each pixel.

We varied ε from 0 to 0.125 and rounding interval size from 0 to 1 and
computed accuracy and average confidence on the resulting rounded adversarial
examples generated from the first 10 000 (5000 for iterative FGSM) images from
ILSVRC 2012 validation set.

3.3.2 Results and discussion

The results for FGSM are in Figure 3.7. Unlike on MNIST, rounding decreases
accuracy on clean examples, finishing at low 69% for rounding interval size 1. At
the same time it increases accuracy on adversarial examples only slightly. Maybe
the most promising rounding interval size is 0.2, where the accuracy on clean
images is still 90% and for a few values of ε > 0 it is near its maximum. For
ε = 1/255, it brings the accuracy up from 66% to 85%. Examples of the resulting
images are in Figure 3.9.

For iterative FGSM results, see Figure 3.8. In this case, rounding helped
significantly more. The recommendable rounding interval size again seems to be
0.2 and even for high ε = 32/255, rounding with this rounding interval size brings
the accuracy up from 13% to 69%. Similarly to the results of rounding on MNIST,
this can be explained by the subtlety of the changes introduced by the iterative
FGSM method, which are relatively easily eliminated by the greater changes made
by rounding. See Figure 3.10 for examples of the perturbed and rounded images.

2https://www.tensorflow.org/tutorials/image_recognition
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Figure 3.7: Accuracy of Inception-v3 model on rounded adversarial examples
generated by FGSM for different values of ε and rounding interval size.
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Figure 3.8: Accuracy of Inception-v3 model on rounded adversarial examples
generated by iterative FGSM for different values of ε and rounding interval size.
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Figure 3.9: Illustration of the effects of rounding and FGSM on ImageNet sample.
The original image (upper left) has been perturbed by FGSM with ε = 8/255
(middle column) or ε = 24/255 (right column) and then rounded with rounding
interval size of 1/9, 1/3, 1/2 and 1 for the second to fifth row, respectively.
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Figure 3.10: Illustration of the effects of rounding and iterative FGSM on ImageNet
sample. The original image (upper left) has been perturbed by iterative FGSM
with ε = 8/255 (middle column) or ε = 24/255 (right column) and then rounded
with rounding interval size of 1/9, 1/3, 1/2 and 1 for the second to fifth row,
respectively.
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The effects of rounding on average confidence are in Figure 3.11. They
correspond to the effects on accuracy: the confidence lowered by FGSM is not much
affected by rounding; on the other hand, iterative FGSM lowers the confidence
much more, but rounding quickly restores it to higher levels.
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Figure 3.11: The effects of rounding on accuracy and average confidence of
InceptionV3 model on clean examples (top), examples perturbed by FGSM (middle)
and iterative FGSM (bottom) with ε = 8/255.
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To better understand why rounding helps or does not help against FGSM,
we tried to quantify the restrictions it poses on the images. We computed the
differing channels rate – the rate of pixel channels that would have been rounded
to a different value had they not been adversarially perturbed. For the results, see
Figure 3.12 (FGSM) and Figure 3.13 (iterative FGSM). Generally, the differing
channels rate is the highest when no rounding is applied, and goes quickly to zero
with increasing rounding interval size. This decrease is even more pronounced
for examples perturbed by iterative FGSM. After some point, almost all FGSM
perturbation is removed and further decrease in accuracy is due to the rounding
only.
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Differing pixels rate on misclassified inputs

Figure 3.12: Comparison of average top-5 accuracy and the differing channels
rate on adversarial examples created for InceptionV3 model by FGSM with four
different values of ε. The differing channels rate goes quickly to zero with growing
rounding interval size (more slowly with larger ε). At some point, almost no
FGSM perturbation survives. After that, rounding is mostly responsible for any
lowering of accuracy.
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Figure 3.13: Comparison of average top-5 accuracy and the differing channels rate
on adversarial examples created for InceptionV3 model by iterative FGSM with
four different values of ε. The differing channels rate goes to zero even faster than
for regular FGSM (Figure 3.12), hence rounding can increase the accuracy more
before destroying the images.

As rounding with a larger interval distorts the images (see Figure 3.9) and
thus decreases the accuracy of the model, we could ask whether some further mod-
ification of the images (after rounding has removed the adversarial perturbation)
could make them more recognizable again. The rounded images look grainy, with
big differences between neighboring pixels. Therefore we tried smoothing them
with Gaussian blur (see examples in Figure 3.14). The results are in Figure 3.15
(FGSM) and 3.16 (iterative FGSM). Blurring did not help much in restoring the
accuracy decreased by rounding. For rounded clean examples, it makes almost no
difference. The effect is slightly better for higher ε, where it can be also caused
by the blurring destroying some of the adversarial perturbation, as has been
previously shown by Kurakin et al. [2016a].
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Figure 3.14: Illustration of the effects of Gaussian blur on rounded adversarial
examples. The original images had been perturbed by FGSM with ε = 8/255
(second row) or ε = 16/255 (third row), rounded with rounding interval size 1/15
(pairs in the left column) or 1 (pairs in the right column). In each pair of the
images, the image on the right was then blurred.

50



0.0

0.2

0.4

0.6

0.8

1.0
ε = 0/255 ε = 2/255

0.0 0.5 1.0

Rounding interval size

0.0

0.2

0.4

0.6

0.8

1.0
ε = 8/255

0.0 0.5 1.0

Rounding interval size

ε = 32/255

Top-5 accuracy on FGSM-pertubed inputs

Top-5 accuracy on blurred FGSM-pertubed inputs

Figure 3.15: The effect of blurring on accuracy for inputs perturbed by FGSM.
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Figure 3.16: The effect of blurring on accuracy for inputs perturbed by iterative
FGSM.
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3.4 Common adversarial perturbation

All current methods of adversarial examples generation need access to the clean
example in order to create the adversarial perturbation that is then added to the
clean example. We might consider a situation where the attacker does not have
access to the clean example when generating the perturbation. For example, they
might be preparing a sticker that would be applied to a traffic sign to change the
way it is perceived by an autonomous car without knowing the exact sign (or even
its type) that will be available. If the attacker could do this, they would also be
able to mass-produce the one perturbation without fine-tuning it to each original
example they aim to perturb, so as to save time and resources.

We tried to create such adversarial perturbation on MNIST. We performed
both untargeted and targeted attack against the CNN from section 3.1. We set
our ε to 0.25, which is in line with Goodfellow et al. [2014b] and does not stop
humans from recognizing the correct class.

In the untargeted scenario, we maximized the following error function by
manipulating our common perturbation η:

argmax
η

∑

i

Jf (x(i) + η, y(i)),

where x(i) are images from the MNIST training set, y(i) their corresponding labels
and Jf (x, y) is the model’s error function for a single input.

In the targeted case, we tried to make the model output label t on perturbed
examples, whose correct label is different from t. To this end, we minimized the
following error function by manipulating the common perturbation η:

argmin
η

∑

i:y(i) ̸=t

Jf (x(i) + η, t),

where Jf and x(i) are the same as above.
To carry out the optimization, we ran the Adam optimizer for 20 epochs.
As a baseline, we used a random perturbation that modified each pixel by

either adding or subtracting 0.25.
After adding a perturbation, each example was clipped so that the value of

every dimension fell into the [0, 1] interval.

3.4.1 Results and discussion

We measured the accuracy of the CNN model on the MNIST test set. The model
achieves accuracy of 0.993 on clean examples. When the examples were perturbed
by the untargeted common perturbation, the accuracy fell to 0.650, whereas when
the random untargeted common perturbation was used, the accuracy decreased
only slightly to 0.982 (averaged over 10 runs). Given the restrictions, we can
consider this attack to be quite successful. See Figure 3.17 for the result of
applying the common perturbation to MNIST digits.

In the targeted scenario, we measured the targeted misclassification rate on
examples from the MNIST test set whose original correct labels were different
from t, but we replaced them with t. The average targeted misclassification
rate was 0.001 on clean examples, 0.267 on examples with the targeted common
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Figure 3.17: Illustration of the application of the common adversarial perturbation
to MNIST digits.

target clean acc. common pert. common random pert.

0 0.001 0.046 0.002
1 0.000 0.048 0.001
2 0.001 0.585 0.004
3 0.000 0.417 0.002
4 0.001 0.308 0.001
5 0.002 0.505 0.004
6 0.001 0.089 0.001
7 0.001 0.345 0.001
8 0.001 0.201 0.003
9 0.001 0.130 0.001

Table 3.1: Targeted misclassification rate.

perturbation added and 0.002 (averaged over 10 runs) on the examples with the
random perturbation added. There were big differences in misclassification rate
for different targets, see Table 3.1. These are probably due to some digits being
similar to more digits than some others. This attack was less successful overall,
but it can still cause considerable misclassification rate if the adversary selects an
easy to target class.
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Conclusion

In this thesis, we had three main goals, namely to review existing literature about
adversarial examples, to find new kinds of defense against them and to explore
new ways of adversarial example generation.

We presented a review of literature in Chapter 2. We then introduced our
new defense and attack types in Chapter 3. We have focused more on the former,
because at the current time, defenses are generally weaker than the attacks and
are therefore in greater demand.

We compared how several models with RBF units and regular CNNs resist
adversarial perturbation by FGSM on MNIST. Every traditional model with RBF
units we tried achieved lower accuracy than a CNN for every level of ε, so we
cannot recommend these to be employed when robustness to FGSM is needed. On
the other hand, our RBFolutional network had higher accuracy than the CNN on
adversarial examples and comparable accuracy on clean examples, even when the
CNN had been adversarially trained. The RBFolutional network hence constitutes
a promising alternative.

The second approach we tried, input space discretization by rounding of
individual pixels, turned out to be quite successful at defending the CNN from
both FGSM and iterative FGSM attacks on MNIST. When the rounding interval
size is 1, i.e. every pixel is forced to stay either black or white, the accuracy of the
model is higher than 98% for ε < 0.4. Therefore, we can recommend this method.

We applied rounding also as a defense against FGSM and iterative FGSM for
the InceptionV3 ImageNet model. Probably the best trade-off between accuracy
on clean and adversarial examples was reached for rounding interval size 0.2. This
size lowered the accuracy on clean examples from 96.5% to 92% and kept it above
74% for iterative FGSM with ε as high as 32/255. But for regular FGSM, it
was less successful: the accuracy stayed above 74% only for ε ≤ 2/255. Whether
rounding should be used on ImageNet depends on task specific requirements – on
the importance of accuracy on clean examples and on the probability and strength
of a potential adversarial attack.

Finally, we explored the possibility of generating adversarial perturbation
without looking at the particular input that should be perturbed. We optimized
a common perturbation for a CNN trained on MNIST. In the untargeted case,
we were able to reduce the model’s accuracy from 99.3% to 65%. The targeted
misclassification rate depended heavily on the target, but overall was relatively
low 27%.

Future research might include training and testing the RBFolutional network
on ImageNet, which we did not attempt in this work due to lack of computational
resources. It would also be interesting to try to combine several defenses and
evaluate their collective effectiveness.

We hope that this thesis might serve as a reference about adversarial examples,
and that the RBFolutional network and input space discretization could be
improved upon and contribute to creating robust machine learning models.
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