
MASTER THESIS

Petr Mánek

A system for 3D localization of gamma sources
using Timepix3-based Compton cameras

Department of Software Engineering

Supervisor of the master thesis: RNDr. Filip Zavoral, Ph.D.

Study programme: Software Systems

Study branch: System Programming

Prague 2018

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In date signature of the author

i

I would like to express my deep sense of gratitude to the staff of the Institute
of Experimental and Applied Physics, CTU. In particular, I would like to thank
Dr. Martin Pichotka for proposing this project and Ing. Petr Burian, Ph.D. for
providing measuring equipment and technical documentation necessary for the
completion of this work.

I would also like to thank my supervisor RNDr. Filip Zavoral, Ph.D. for his
valuable insight. Lastly, I would like to appreciate the support of my friends and
family, for without them, this work would not have been possible.

ii

Title: A system for 3D localization of gamma sources using Timepix3-based
Compton cameras

Author: Petr Mánek

Department: Department of Software Engineering

Supervisor: RNDr. Filip Zavoral, Ph.D., Department of Software Engineering

Abstract: Compton cameras localize γ-ray sources in 3D space by observing
evidence of Compton scattering with detectors sensitive to ionizing radiation.
This thesis proposes a software system for operating a novel Compton camera
device comprised of Timepix3 detectors and Katherine readouts.

To communicate with readouts using UDP-based protocol, a dedicated hard-
ware library was developed. The presented software can successfully control the
acquisition of multiple Timepix3 detectors and simultaneously process their mea-
surements in a real-time setting. To recognize instances of Compton scattering
among observed interactions, a chain of algorithms is applied with explicit con-
sideration for a possibly high volume of measured information. Unlike alternate
approaches, the presented work uses a recently published charge drift time model
to improve its spatial resolution. In order to achieve localization of γ-ray sources,
the software performs conical back projection into a discretized cuboid volume.

Results of randomized evaluation with simulated data indicate that the presented
implementation is correct and constitutes a viable method of γ-ray source local-
ization in 3D space. Experimental verification with a prototype model is in
progress.

Keywords: Medipix, Timepix3, Katherine readout, SPECT, Compton camera,
Back projection, 3D localization

iii

Contents

1 Introduction 4
1.1 Timepix3 Detector . 4
1.2 SPECT & γ-ray Imaging . 4
1.3 Thesis Outline . 5

2 Background 6
2.1 Compton Camera . 6

2.1.1 Related Work . 6
2.1.2 Motivation . 7
2.1.3 Compton Scattering . 7
2.1.4 Architecture . 8
2.1.5 Stationary Source Detection 8
2.1.6 Computed 3D Reconstruction 9

2.2 Timepix3 Detector . 9
2.2.1 Motivation . 9
2.2.2 Detector Design . 10
2.2.3 Working Principles . 10
2.2.4 Operation Modes . 11
2.2.5 Readout Modes . 12

2.3 Detector Calibration . 12
2.3.1 Threshold Equalization . 13
2.3.2 ToT Energy Calibration 13
2.3.3 Column Time Offset Correction 13
2.3.4 Time-walk Correction . 14
2.3.5 Drift Time Calibration . 14

2.4 Katherine Readout . 14
2.4.1 Hardware Parameters . 14
2.4.2 Data Acquisition Control 15

3 Acquisition Control 16
3.1 Operational Overview . 16

3.1.1 Typical Operation . 16
3.1.2 Communication Channels 17
3.1.3 Issuing Commands . 18
3.1.4 Receiving Measurement Data 19

3.2 Library Architecture . 19
3.2.1 Network Communication 19
3.2.2 Internal Command Interface 20
3.2.3 Public Command Interface 21
3.2.4 Measurement Data Listener 22
3.2.5 Configuration Parser . 24

1

4 Compton Event Detection 25
4.1 Hardware Setup . 25

4.1.1 Detection Unit . 25
4.1.2 Readout Unit . 26
4.1.3 Control Unit . 26
4.1.4 Time Synchronization . 27
4.1.5 Coordinate System . 27

4.2 Pixel Stream Processing . 29
4.2.1 Calibration Evaluation . 29
4.2.2 Ensuring Time Monotony 31
4.2.3 Spatial & Temporal Clustering 32
4.2.4 Filter Cascade . 36
4.2.5 Drift Speed Evaluation . 37

4.3 Coincidence Group Matching . 38
4.3.1 Thread Synchronization 38
4.3.2 Matching Algorithm . 39
4.3.3 Filter Cascade . 40

4.4 Handling Common Problems . 41
4.4.1 Pixel Circuit Malfunctions 41
4.4.2 Temperature Monitoring 42
4.4.3 Readout Infrastructure Malfunctions 43

5 Volume Reconstruction 44
5.1 Operational Principles . 44

5.1.1 Volume Restriction . 44
5.1.2 Volume Discretization . 44
5.1.3 Forward Projection . 45
5.1.4 Back Projection . 46
5.1.5 Aggregation . 47

5.2 Compton Event Processing . 48
5.2.1 Spectroscopic Source Discrimination 48
5.2.2 Batch Aggregation . 48
5.2.3 Response Function Caching 49
5.2.4 Batch Projection . 51
5.2.5 Forward Mapping Construction 51
5.2.6 Back Mapping Construction 53

5.3 Interpolation Methods . 55
5.3.1 Nearest Neighbor Interpolation 56
5.3.2 Bilinear Interpolation . 56

5.4 Implementation Notes . 57
5.4.1 Subsampling . 57
5.4.2 Parallelization . 58
5.4.3 Symmetry Compression 59

6 Evaluation 60
6.1 Performance Experiments . 60

6.1.1 Rate Estimation . 60
6.1.2 Task Description . 61
6.1.3 Results . 62

2

6.2 Interpolation Experiments . 62
6.2.1 Task Description . 62
6.2.2 Parameter Configurations 63
6.2.3 Visual Demonstration . 63
6.2.4 Evaluation by Random Sampling 64
6.2.5 Discussion . 65

6.3 Point Source Experiments . 66
6.3.1 Task Description . 66
6.3.2 Parameter Configurations 67
6.3.3 Single Event Projection . 67
6.3.4 Localization Demonstration 68

7 Conclusion 71
7.1 Future Research . 72

Bibliography 73

List of Figures 76

Acronyms 78

A Attachments 79
A.1 Contents of the Enclosed DVD . 80
A.2 Software Implementation Overview 81

A.2.1 Dependencies . 81
A.2.2 Provided Docker Images 81
A.2.3 Directory Structure . 82
A.2.4 Redistributable Libraries 82
A.2.5 Katherine Data Acquisition Tool 83
A.2.6 Katherine Network Localization Utility 83
A.2.7 Drift Time Calibration Tool 83
A.2.8 3D Cluster Viewer . 84
A.2.9 Performance Benchmark 84
A.2.10 Random Generators . 84
A.2.11 Interpolation Test Program 84
A.2.12 Forward Projection Test Program 85
A.2.13 Back Projection Test Program 85
A.2.14 Volume Reconstruction Test Program 86

3

1. Introduction

Active pixel detectors measure interactions with ionizing particles. Similarly to
CCD chips found in commercial photographic cameras, their operation relies on
a thin1 layer of solid semiconductive material, which is evenly partitioned into
orthogonal grid of discrete pixels. Each pixel of the grid is physically attached
to a circuit, which measures its interactions. Ionizing particles interact with the
semiconductive material, inducing currents in pixel circuits.

1.1 Timepix3 Detector

Timepix3 [1] is an active pixel detector, conceived within the Medipix collabora-
tion at CERN, replacing the older Timepix design. The detector has 256 × 256
pixels with a 55 µm pitch. Each pixel has its own CMOS-based readout circuit
with multiple integral counter registers, which can be operated independently of
other pixels.

Much like CCD chips of digital photographic cameras, Timepix3 detectors are
operated by opening and closing a shutter – a binary signal controlling the state
of the detector. Opening the shutter initiates a data acquisition period, during
which the detector pixels are responsive to interactions with incident charged
particles. However, opposite to standard CCDs, Timepix3 provides a mode for
so-called event-based readout. Here, upon observed interaction, the pixel is im-
mediately blocked and read out, providing a data stream of observed events.

The information recorded by pixels of a Timepix3 detector mainly depends on
the operation mode of the detector. The choice of this parameter usually depends
on the application and determines the interpretation of values stored in integral
counter registers. It has been shown that in the Time-over-Threshold operation
mode, information recorded by pixels corresponds with the amount of energy
deposited in the detector by incident particles [2].

1.2 SPECT & γ-ray Imaging

Single-photon emission computed tomography is a method of functional nuclear
imaging, which relies on the measurement of γ-rays. The method requires a
so-called γ-camera – a scanning device which is sensitive to γ-rays. After a suffi-
ciently long scanning period, information measured by the γ-camera is combined
by a reconstruction algorithm in order to obtain a three-dimensional image repre-
sentation of the scanned environment in the γ spectrum. Since the reconstructed
image reveals the location of the γ-ray emission source (or sources), SPECT may
be also viewed as a three-dimensional localization method.

In medical applications, SPECT is considered to be an important tool in differ-
ential diagnosis of neurological, psychiatric and oncological diseases [3]. SPECT
acquisition protocols usually require an injection of γ-emitting radioisotope into
the bloodstream of the patient prior to scanning. The radioisotope is diffused

1CCD sensor chips are usually substantially thinner than chips of Timepix3 detectors.

4

and carried along with blood vessels, resulting in an image depicting areas of the
scanned tissue, which are accessible to the blood flow.

SPECT also has wide applications beyond the field of medicine. In nuclear
energy, the imaging technique is used to determine and verify radioisotope dis-
tributions in nuclear fuels [4]. SPECT γ-cameras are utilized for localization of
radioactive sources during decommissioning operations or in homeland security
applications [5, 6]. Furthermore, SPECT systems have also found applications in
chemical engineering, particularly for monitoring of chemical processes [7].

1.3 Thesis Outline

The aim of this thesis is to develop a viable system for data acquisition control,
processing and three-dimensional γ-ray source localization based on Timepix3
detectors. The goal of the work is to utilize modern technology in development
of a novel γ-camera, which may be integrated with existing SPECT imaging
solutions.

The rest of the text is divided as follows:

• Chapter 2 describes the architecture and detection principles used by Comp-
ton cameras. It also includes relevant information on the hardware compo-
sition and operation of Timepix3 detectors and Katherine readouts.

• Chapter 3 presents an implementation of a novel C library package, capable
of controlling Timepix3 detectors by means of Katherine readouts. The text
includes architecture design notes and simple usage examples.

• Chapter 4 describes a proprietary hardware and software setup for detection
of Compton interactions. It also derives a series of algorithms, sequentially
applied during data processing.

• Chapter 5 gives details on the process of volume reconstruction, which com-
bines detected interactions in order to localize stationary point source in
three-dimensional space.

• Chapter 6 describes various experiments designed to demonstrate the be-
havior of selected parts of the system. It also shows experimental results,
and discusses their implications.

• Chapter 7 includes discussion of presented work and proposals for various
applications. It also emphasizes several possibilities for research in the
future.

5

2. Background

The usage of Compton cameras for γ-ray source detection has been investigated in
previous works. The purpose of this chapter is to provide a concise introduction
into the physics of Compton scattering, the detection principle based on this
interaction and the devices utilized for the implementation.

2.1 Compton Camera

Compton camera [8, 9] is a detection device capable of determining the location of
γ-ray sources based on Compton scattering. While Compton cameras are usually
configured in stationary setups, their output can be viewed as a three-dimensional
image in the γ-ray spectrum.

2.1.1 Related Work

Compton cameras (and more generally γ-cameras) have been known and per-
fected for several decades. Naturally, this presents a wide range of other related
works in published literature, which may be viable for drawing comparisons with
the presented system.

The first known γ-camera was proposed by Anger [10] in 1957 and relied on the
scintillation property of inorganic crystals rather than Compton scattering. The
device referred to as Anger camera has eventually become a significant imaging
tool with its main application in nuclear medicine. Over 60 years, its angular and
energy resolution have been subject to ongoing study and improvement.

The use of Compton scattering for γ-ray source localization was proposed
by Todd et al. [8] and Everett et al. [9] over a decade after the introduction
of Anger camera. Since then, various architectures of Compton cameras have
been investigated by Singh and Doria [11], Singh and Brechner [12], Gormley
et al. [13], LeBlanc et al. [14] and Sauve et al. [15]. In comparison with Anger
cameras, Compton cameras are considered to be more sensitive. The properties
of both devices have been extensively studied by Gormley et al. [16] and Han et
al. [17].

As previously mentioned, the purpose of this work is to create a novel γ-
camera device. Compared with the referenced camera devices, the presented
system differs in two key aspects:

1. The system uses only Timepix3 semiconductor detectors as its sensing com-
ponents.

2. The system estimates the point of interaction with γ-rays in three dimen-
sions rather than only two, effectively reconstructing the depth of the inter-
action point within Timepix3 detector. This is possible due to charge drift
time calibration [18] and allows to considerably suppress the angular error.

At the time of writing, no other γ-camera complying with these characteristics
was known to the author. The presented system may thus be viewed as proposed
enhancement of a general Compton camera.

6

2.1.2 Motivation

Since Compton camera is not the only known implementation of a γ-camera, it is
appropriate to provide a justification and motivation for its choice as the imaging
device used in this work.

Opposite to other alternatives, Compton cameras do not necessitate the pres-
ence of mechanical collimators between the scanned object and the sensitive com-
ponents. Since collimators significantly contribute to the occlusion of the object,
their removal creates a larger field of view, allowing for faster and more efficient
scanning procedure.

In addition, since collimators are usually manufactured from heavy γ-opaque
materials such as lead or tungsten, Compton cameras have overall smaller and
more lightweight construction. This makes their design ideal for portable, hand-
held, or even drone-mounted devices. Thanks to their smaller size, medical Comp-
ton cameras may access remote or possibly otherwise unreachable tissues, improv-
ing the quality of diagnostic information obtained during radiological procedures.

Compared to collimated cameras, Compton cameras are inherently capable of
capturing three-dimensional information. This eliminates any need for specialized
gantries or complex rotational systems. Theoretically, the camera resolution is
limited only by the angular error and parallax, implying that the usage of multiple
viewpoints brings better in-depth resolution in comparison to single devices.

Lastly, Compton cameras are known to have a small fingerprint. In practice,
this means that a relatively low number of observations is required in order to
fully localize the emission source in a three-dimensional space.

2.1.3 Compton Scattering

When a γ photon traverses a solid medium, one of the following three cases
occurs:

1. The photon is scattered, depositing a fraction of its energy in the medium.

2. The photon is absorbed, depositing its entire energy in the medium.

3. The photon does not interact with the medium at all.

The first two of these interactions are referred to as Compton scattering and
photoelectric absorption, respectively. Depending on the medium and the initial
energy of the photon, some interactions may be more probable than others. For
instance in silicon, Compton scattering is dominant at energies ranging from
around tens of keV to tens of MeV [19].

During Compton scattering (illustrated in Figure 2.1a), an incident γ photon
of initial energy Eγ interacts with an electron, causing it to recoil. Energy Ee is
transferred from the photon to the electron, and the photon is scattered through
the Compton angle β with a remaining energy E ′

γ. The angle β is related to the
initial energy Eγ and final energy E ′

γ of the photon by the Compton equation:
[20, 21]

cos β = 1−mec
2

⎠
1

E ′

γ

− 1

Eγ

⎜
(2.1)

7

(a) Compton scattering of a γ photon.
(b) Relationship between a Compton
cone and emission source M .

Figure 2.1: Compton scattering and its use in source localization [19].

Here, me is the electron mass at rest and c is the speed of light. Note that
this description assumes that the scattered electron was completely at rest prior
to the interaction, which is often not the case in reality. This is the cause of the
so-called Doppler broadening, which constrains the accuracy when measuring the
angle β in practical applications.

2.1.4 Architecture

As mentioned earlier, Compton camera was originally introduced by Todd et
al.in 1974 [8, 9]. Its design relies on facilitation and measurement of Compton
scattering. In general, the device is comprised of two types of components:

Scatterer This component, usually a semiconductor, facilitates Compton scat-
tering with incident γ photons.

Absorber This component, a semiconductor or a scintillation detector, facili-
tates photoelectric absorption of scattered electrons.

In order to maximize the probability of Compton scattering, some camera
designs utilize multiple scatterers arranged in a telescopic configuration. In this
work, both the scatterer and absorber components are Timepix3 detectors.

2.1.5 Stationary Source Detection

The detection principle used in Compton cameras expects two observed points
V1 and V2, one occurring in a scatterer and the other in the absorber component.
Along with their locations in space, each point is associated with a corresponding
measured energy E1 and E2. The aim is to localize a stationary γ-ray source at
some unknown location M (depicted in Figure 2.1b).

Assuming that a γ photon was emitted at M in a direction towards the cam-
era, underwent Compton scattering at V1 and was subsequently absorbed at V2,

the vector
−−→
V1V2 represents the direction of the scattered particle. Under this as-

sumption, the energy E1 can be viewed as energy Ee transferred from the photon
to the electron. Similarly, the energy E2 is the final energy E ′

γ of the photon after

8

the interaction. Assuming that the photon energy loss between scattering and
absorption is negligible, its energy before the interaction is given by Eγ = Ee+E ′

γ.
Knowing both energies prior to and after the interaction, the magnitude of

the scattering angle β may be resolved from the Compton equation 2.1. Under

ideal conditions, the source of emission M lies at angle β from vector −−−→V1V2

placed at V1. In other words, M is located on the mantle of a cone with apex V1,

half-angle β and axis
−−→
V2V1. This gives definition of the so-called Compton cone,

denoted as C(V1, V2, β).

2.1.6 Computed 3D Reconstruction

Observing a single Compton interaction with a camera yields a Compton cone
– an infinite quadric surface in three-dimensional space. By the derivation of
the method, the unknown emission source M is located somewhere on this cone.
With no additional information, this is still insufficient in order to localize M
exactly. It may, however, be used to constrain its domain and remove impossible
solution candidates.

In bulk, cones produced by interactions corresponding to a single source may
limit the solution space enough to localize M within the requested margin of
error. This motivates various analytical and iterative approaches.

As their name suggests, analytical algorithms attempt to find an exact ana-
lytical solution (or operator) based on the observations. While this solution is
exact in the continuous model, for practical application it is usually discretized.
The assumes that the camera can be modeled analytically and that the solution
can be derived in tractable manner, which may not always be the case.

Unlike analytical algorithms, iterative algorithms operate in a discrete solu-
tion space. Their output is produced by repeated evaluations, usually increasing
the precision of the localized source by every cycle. Their disadvantage lies in
obvious loss of information due to discretization and possibly large number of
iterations required in order to achieve sufficient solution quality. On the other
hand, iterative approaches allow to incorporate prior knowledge by probabilistic
means, thereby allowing to remove intractable noise and artifacts in subsequent
volumetric reconstruction.

2.2 Timepix3 Detector

Timepix3 detectors [1] are active pixel detectors comprised of a square matrix
of 256 × 256 pixels with 55 µm pitch. While all pixels in a single assembly are
usually operated in orchestrated manner, each pixel may be viewed as a separate
detector, capable of performing individual measurements.

2.2.1 Motivation

Since there exist multiple alternative detector designs other than Timepix3, it is
important to explain why specifically has Timepix3 been selected for this work.

Thanks to its high time resolution, Timepix3 allows accurate recognition of
coincident events across multiple synchronized detectors. In comparison with
other detector models, this enables its use in environments with considerably

9

increased particle flux, where frame-based detectors might observe ambiguous
patterns such as cluster overlaps.

Furthermore, the precise time measurements allow to reconstruct interaction
depth within the detector by means of drift time calibration [18]. This effectively
eliminates angular error, which is otherwise inherently present in the outputs of
other detector models.

Since Timepix3 supports data-driven readout mode, the measured information
may be processed immediately after its occurrence rather than the end of the
measurement period. In comparison with frame-based detectors, this removes
the trade-off between efficiency and the response time of the device.

Finally, since Timepix3 offers better energy resolution than previous genera-
tions, Compton cameras based on Timepix3 consequently have the potential to
achieve higher angular accuracy.

2.2.2 Detector Design

Timepix3 uses so-called hybrid design, wherein the detector is physically divided
into two components:

Detection Medium A thin1 layer of solid semiconductive material. Frequently
used media include silicon, gallium arsenide or cadmium telluride.

Readout Electronics An ASIC2 consisting of configurable CMOS-based cir-
cuits corresponding to individual pixels of the detector.

Due to the clear division between the two components, a single readout circuit
design may be used in combination with various semiconductive materials, giving
the detector different properties depending on the aims of particular applications.

2.2.3 Working Principles

To observe ionizing radiation with Timepix3, potential difference is artificially
generated within the detection medium. For that purpose, the material is fitted
with a multitude of contacts. On one side, back-side electrode is common to all
pixels, whereas on the other side pixel site electrodes are separately bump-bonded
to individual pixel circuits within the ASIC. The potential between the electrodes
is called bias voltage and is a configurable parameter of the detector. This setup
is shown in Figure 2.2.

When an ionizing particle passes through the detector, fraction of its energy
is deposited in the detection medium due to single elastic collision with electrons
of the semiconductive material. This produces free charge carriers, which drift
through the medium due to the applied potential difference. Eventually, charge
carriers are collected at pixel site electrodes, generating currents which contribute
to analog voltage pulse. The components of the ASIC are designed to efficiently
measure, amplify and analyze this signal.

Rather than storing samples of the observed voltage pulse, pixel circuits keep
three integral counter registers with 14-bit, 10-bit and 4-bit depth. Depending

1Sensor layer thickness usually ranges from 100 µm to 1 mm.
2Application Specific Integrated Circuit

10

(a) Schema with annotated components. (b) Photo of Timepix3 [22].

Figure 2.2: Timepix3 hybrid detector assembly.

on the operation mode of the detector, the information from the voltage pulse is
encoded into the contents of these three registers.

2.2.4 Operation Modes

The analysis of the voltage pulse is performed using analog discriminator, which
periodically compares the measured value to an adjustable threshold parameter.
Once a pulse exceeds the set threshold, counter registers become active and record
information about the pulse. On the falling edge, the counters stop and their
values are read out. This process usually takes up to 475 ns and is sometimes
referred to as the dead time, since the pixel is not responsive to any changes in
the voltage pulse while the reading operation takes place. After its completion,
the pixel circuit is reset and the analysis begins anew.

The meaning of the values stored in the counters is determined by the opera-
tion mode, which is usually the same for all pixels of the detector. In Timepix3,
three modes are available:

ToA Mode In this mode, the detector keeps a global clock signal with pulsing
frequency up to 40 MHz. Once the analog pulse exceeds the set threshold,
the first rising edge of the clock signal latches the current timestamp into
the 14-bit register. The register thus contains the time of arrival (abbr.
ToA) accurate up to (40 MHz)−1 = 25 ns.

ToA & ToT Mode This mode is an extension of the ToA mode, wherein the
circuit also tracks the number of clock cycles pulse spends above the set
threshold. The cycle count is referred to as the time over threshold (abbr.
ToT) and is stored in the 10-bit register.

Event Counting Mode In this mode, the pixel circuit does not reset after the
second crossing of the set threshold, eliminating the undesirable dead time.
Instead, the circuit tracks the number of such events in the 10-bit register.
In addition, the 14-bit register holds the integral time over threshold (abbr.
iToT), which can be viewed as a sum of ToT values across all observed
events.

To increase time resolution in ToA operation modes, pixel circuits may be
configured to utilize a second, faster clock signal provided by voltage-controlled

11

Analog Pulse

Discriminator

640 MHz Clock

40 MHz Clock

ToT Clock

Pixel ToT X 0 1

ToA Latch

Global ToA 0 1 2

Pixel ToA X 0

Threshold

Figure 2.3: Schema of Timepix3 signals during a single event [1]. The red vertical
lines mark the upward and downward crossing of the threshold. The first upward
edge of the primary clock signal after event start is marked by a blue line.

oscillators (abbr. VCOs). The pulsing frequency of this signal can reach 640 MHz,
yielding time resolution up to (640 MHz)−1 = 1.5625 ns. If enabled, the 4-bit
register stores the number of fast clock cycles from the moment the set threshold
was exceeded until the first rising edge of the slower primary clock signal.

During ToA measurements with fast VCO enabled, the 14-bit ToA value tslow

and the 4-bit value tfast (abbr. fToA) are usually combined into so-called pixel
timestamp as follows.

T (tslow, tfast) = 25 · tslow − 1.5625 · tfast [ns] (2.2)

2.2.5 Readout Modes

As the name suggests, the readout mode determines the process used to retrieve
measured information from a Timepix3 detector. The hardware design supports
two modes:

Sequential Mode In this mode, pixel circuits keep information recorded in
counter registers until explicitly queried by an external command. This
mode resembles polling and may result in lower power consumption.

Data-Driven Mode In this mode, pixel circuits are read and reset as soon as
possible after recording new information. The detector proactively notifies
the user about newly available data. This mode resembles pushing and
attempts to minimize pixel dead time.

2.3 Detector Calibration

Before practical operation, Timepix3 detectors undergo various calibration, equal-
ization and correction procedures. Their goal is to correlate detector measure-
ments with known response, and minimize known systematic errors and biases
due to hardware design.

12

Figure 2.4: The dependence of ToT counter value (vertical axis) on the deposited
energy in a pixel (horizontal axis) [2].

2.3.1 Threshold Equalization

Due to technological inaccuracies induced by the manufacturing process, individ-
ual pixels of a detector may produce varied response under the same configuration.
The aim of threshold equalization is to eliminate this behavior by measuring the
differences and altering the configuration in order to minimize their magnitude.

At the beginning of the process, the threshold level is set to the same value
for all pixels. After a measurement is performed, pixel response is examined and
additional corrective bias voltage is introduced into the amplifier channel of each
pixel. Upon completion, noise levels of individual pixels are equalized.

2.3.2 ToT Energy Calibration

Recent works have shown that ToT counter values are related to the amount
of energy deposited in pixels by incident particles [2]. The aim of the energy
calibration process is to estimate this relationship (illustrated in Figure 2.4) by
performing measurements with characteristic X-ray fluorescence lines.

The result of the process are four fitted constants a, b, c, t ∈ R for every pixel
[23]. For a pixel of ToT value x, the deposited energy is then approximated by
function

E(x ♣ a, b, c, t) = ax + b− c

x− t
[keV]. (2.3)

2.3.3 Column Time Offset Correction

Due to hardware malfunctions, pixel ToA values may be consistently offset by
additive constants. Curiously, this additive offset has been observed to be equal
for pixels of a single column.

To correct against this, ToA offsets are measured in all columns. In subse-
quent measurements, inverse values of these offsets are added in order to obtain
corrected ToA values.

13

2.3.4 Time-walk Correction

Time-walk is an undesirable effect caused by different slope of signals with differ-
ent amplitudes. If left uncompensated, energy-dependent error is induced in pixel
timestamps. For instance, neighboring pixels ionized by the same particle may
observe timestamps offset depending on the distribution of the collected charge
between them.

Since simultaneous measurement of both the amplitude and the timestamp is
supported by Timepix3 detectors, time-walk may be corrected by prior calibration
[24]. The result of the process are two fitted constants c, d ∈ R. For a pixel with
threshold energy E0 observing calibrated energy E (both quantities given in keV),
the time-walk offset is then estimated by function

∆T (E ♣ E0, c, d) =
c

(E − E0)d
[ns]. (2.4)

To correct against time-walk, ∆T is simply subtracted from the original pixel
timestamp.

2.3.5 Drift Time Calibration

The aim of drift time calibration is to accurately reconstruct depth information
from pixel timestamps, effectively estimating three-dimensional location of the
incident particle within the detector at the time of interaction. This procedure
has been described and evaluated in previous works [18].

To reconstruct the depth, the time of charge drift within the detector is first
measured in radiation environment, where particles enter and exit the detection
medium at opposite sides. This way, the speed of charge drift vdrift is estimated.
At a later time, clusters of pixels ionized by the same particle may reconstruct
the depth using function

Z(T ♣ T0, vdrift) = (T − T0) · vdrift [µm]. (2.5)

Here, T is the corrected timestamp of the reconstructed pixel, T0 is the lowest
corrected timestamp within the pixel cluster (both given in ns). Lastly, vdrift is
the drift speed fitted from prior calibration (given in µm/ns).

2.4 Katherine Readout

To facilitate communication between a computer and a Timepix3 detector, read-
out devices are utilized. In this work, focus is put on the recently developed
Katherine readout.

2.4.1 Hardware Parameters

Katherine readout [25] (shown in Figure 2.5) is an autonomous device capable of
operating a single Timepix3 detector. Unlike other readouts such as FITPix [26]

14

(a) Katherine with Timepix3. (b) Annotated ports of the readout.

Figure 2.5: Katherine readout [25].

or SPIDR [27], the readout can be viewed as an embedded computer rather than
a direct connection interface.

The readout connects to the detector with a 68-pin VHDCI3 connector and au-
tomatically provides the detector with an appropriate bias voltage up to ±300 V.
In addition, the device provides GPIO4 interface for up to 4 signals, which may
be used for triggering or synchronization in advanced measurement setups.

Designed to be remotely operated in possibly harsh radiation environments,
the readout supports a long distance Gigabit Ethernet connection up to 100 m.
For the event of connection failure, the device is equipped with 1 GB of DDR3
memory, capable of temporarily buffering measured data.

2.4.2 Data Acquisition Control

For operation, Katherine can be controlled by other network agents using a pro-
prietary UDP-based5 protocol. Its command set features 36 instructions [28],
capable of configuration, status inquiry and control of data acquisition.

Apart from direct control, the readout may also be configured to perform
autonomous acquisition and periodically deposit measurement data in a known
storage facility via SFTP6.

For performance considerations, the readout implements certain correction
procedures directly in hardware. For instance, pixel column time offsets are
automatically determined during the readout power-up sequence and subtracted
from pixel ToA values during measurements.

3Very High Density Cable Interconnect
4General Purpose Input/Output
5User Datagram Protocol
6Secure File Transfer Protocol

15

3. Acquisition Control

The localization process described in the following two chapters relies on a source
of pixel data, which may be viewed as a continuous sequence of records with
various attributes. Such a sequence is produced by the process of data acquisition,
which requires Timepix3 hardware and may take place over an extended period
of time. With this motivation, the focus of this chapter is on the specifics of
communication and control of a Timepix3 detector by means of a Katherine
readout.

Since data acquisition is a general task required in many practical applications,
software components which interact with the readout hardware are deliberately
isolated from the rest of the system. The implementation of these components,
which was originally created only for the purposes of this work, is concentrated
in a stand-alone C library package with the motivation of possible reusability in
other projects. The C programming language was selected since it offers desirable
performance capabilities, and its flexible interoperability allows easy integration
into other applications.

The processing logic described in the remaining chapters of this work can be
viewed as a documented usage example of this library. Consequently, this chapter
may be considered to be its user documentation.

3.1 Operational Overview

Similarly to various hardware controllers in computers, Katherine readout acts as
a controller of Timepix3. Upon receiving commands from a user application, it
autonomously engages in an exchange of low-level instructions with the detector,
leaving the application free to perform other tasks. At a later time, the application
is asynchronously notified of the success or failure of the issued command.

Katherine may thus be viewed as an intermediary component, which facilitates
the communication between the computer and the Timepix3 detector. However,
it may be also viewed as an autonomous computing unit, to which low-level
detector management tasks are offloaded by the computer in order to minimize
CPU processing strain. In a typical scenario, Timepix3 detector is mounted in
the vicinity of sources of ionizing radiation. Since this type of radiation is harmful
to computing equipment, Katherine is usually placed in a shielded container, or
preferably outside the contaminated area. Both the readout and the computer
are connected to the same network infrastructure, which relays commands and
measured data. This setup is illustrated in Figure 3.1.

In the computer which communicates with the Katherine readout, an applica-
tion uses the operating system network interface to exchange messages with the
device. It is at this point, where the presented hardware library would be utilized
to abstract readout communication interface and protocol.

3.1.1 Typical Operation

Conventionally, Katherine may be operated as follows:

16

Computer Katherine

Application

HW Library

OS Embedded OS

Timepix3

Ethernet
VHDCI
< 100 m

GPIO
Trigger Signals

Ionizing
Radiation
Environment

Radiation
Sources

Figure 3.1: Expected hardware setup used in measuring ionizing radiation with
Timepix3 detectors and Katherine readout.

1. The application queries the readout state and checks all necessary precon-
ditions (e.g. sensor presence, communication lines).

2. The application configures the readout with acquisition parameters (e.g.
DAC registers, bias voltage, acquisition duration).

3. The application initiates data acquisition. From this point on, the readout
starts producing measurement data. The application processes this data
for its purposes.

4. During acquisition, the application periodically monitors important indica-
tors (e.g. temperature, voltage, communication performance).

5. Eventually, the acquisition is stopped and the measurement data stream is
terminated. The application is asynchronously notified of this event.

A typical exchange of messages between the application and the readout is
depicted in Figure 3.2. In all interactions, the application sends commands and
receives acknowledgments upon their completion. The commands may cause
exchange of multiple low-level instructions (case A), a single instruction (case B)
or no instruction (case C) between the readout and the Timepix3 detector.

During data acquisition, the readout autonomously communicates with Time-
pix3 and periodically transmits batches of pixel measurement data to the appli-
cation (cases D, E). Occasionally, the readout also transmits frame measurement
data (case F), which may not require prior detector communication.

3.1.2 Communication Channels

In order to efficiently exchange commands, configuration and measurement data
with user applications, Katherine is connected to a computer network via the
Ethernet bus. On this bus, the device communicates using a proprietary UDP-
based protocol [28].

The communication is divided into two parallel channels:

Control Channel This channel is utilized for sparse communication, such as
issuing commands and receiving their acknowledgments. Both the readout
and the application are permitted to initiate communication on this channel.

17

PC Katherine Timepix3
Ethernet / UDP VHDCI

Co
nfi

gu
ra

tio
n

A

B

C

Ac
qu

isi
tio

nD

E

F

Figure 3.2: Communication diagram showing typical operation of Katherine read-
out.

Data Channel This channel serves for dense communication, such as unac-
knowledged measurement data transmissions. Only the readout can initiate
communication on this channel.

In practical implementation, Katherine is identified on the bus by a single
static IP address, whereas individual communication channels correspond to par-
ticular ports.

3.1.3 Issuing Commands

Commands are issued to the readout over the control channel in the form of indi-
vidual UDP datagrams. To initiate a command, an application transmits 8 byte
datagram containing a known header and optionally a multitude of parameters.
Upon receiving, the readout processes the command and responds with a simi-
lar 8 byte datagram containing command acknowledgment along with optional
values, depending on the command type.

The available commands may be semantically divided into three categories:

Status Commands These commands inquire about various observable parame-
ters of the readout or the detector (e.g. temperature, voltage, performance
or configuration).

Configuration Commands These commands alter the internal state of the
readout or the detector, usually for purposes of subsequent data acquisition.

Acquisition Control Commands These commands initiate or abort an ongo-
ing data acquisition.

While status and configuration commands may be expected to always pro-
duce a particular outcome, results of acquisition control commands may vary
depending on whether the readout is performing data acquisition at the time of
execution.

18

3.1.4 Receiving Measurement Data

During data acquisition, the readout generates a sequence of records referred to
as measurement data. This data is transmitted asynchronously over the data
channel in the form of 6 byte long UDP datagrams. Unlike command datagrams,
measurement data are not acknowledged by the receiving side, opening the pos-
sibility of data loss during unreliable network transmissions.

Measurement data may be divided into two categories:

Pixel Data This measurement data contains information about a single active
pixel in the Timepix3 sensor. The contents and structure of pixel data are
determined by the operation mode requested at acquisition start.

Frame Data This measurement data may contain various information about
the ongoing data acquisition (e.g. timestamps, number of lost pixels).

3.2 Library Architecture

The purpose of the presented library is to abstract all communication with
Katherine readout from a user application, thereby allowing its developer to focus
on the task of data processing rather than implementation of network protocols.

The library has been divided into the following components (illustrated in
Figure 3.3):

Network Communication This component is responsible for abstracting net-
work interface for UDP communication. Such interface may be for instance
BSD sockets on the Linux platform.

Internal Command Interface This component encodes commands into data-
grams and transmits them using the network communication layer. It is
also responsible for properly formatting command parameters and decod-
ing their acknowledgments, if applicable.

Public Command Interface This component implements high-level command
interface for the user application, often performing multiple calls to the
internal interface to complete a single command.

Measurement Data Listener This component efficiently processes incoming
datagrams containing measurement data. The user application is notified
by means of high-level events of interest.

Configuration Parser This component is responsible for parsing proprietary
formats of configuration files into internal memory structures.

3.2.1 Network Communication

The purpose of the network communication layer is to form a close abstraction of
the system network communication interface, thereby making the library easily
portable to a multitude of platforms.

19

Network Communication

Operating System

Internal Command Interface

Public
Command Interface

Measurement Data
Listener

User Application

Co
m

m
un

ica
tio

n
Lib

ra
ry

Pl
at

fo
rm

NIC Driver

Figure 3.3: Architecture of library components and their communication rela-
tionships (indicated by arrows).

Since the library has been originally developed on a Linux system, the interface
of the network communication layer essentially mimics that of BSD sockets. The
interface defines the following six operations:

Open & Close Session This initializes (or terminates) a new communication
session with a remote host (identified by an IP address and a port number).
Optionally, a timeout for blocking transmission operations may be specified.

Send & Receive Datagram This transmits (or receives) a UDP datagram of
arbitrary size to the remote host of an open session. Note that unlike
conventional socket operations, 1 successful completion of these operations
guarantees complete transmission (or reception) of the entire datagram.

Lock & Unlock Mutex This locks (or unlocks) a mutual exclusion synchro-
nization primitive bound to an open session. While its state is not checked
or assumed at any point during the execution of other operations, it is
utilized by other components striving to offer thread-safe implementation.

3.2.2 Internal Command Interface

The internal command interface implements features required for transmission
of commands using the network communication layer. As its name suggests,
the interface is designed for exclusive usage by other library components and
is not intended to be called by user applications. Instead, their developers are
encouraged to utilize the public interface described in the following section.

The features implemented by the internal interface include operations common
to transmission of most commands. For instance, the interface implements generic
functions for transmission of a command with up to two parameters, functions
capable of waiting for acknowledgments and functions to decode return values
from acknowledgment datagrams. In addition, the internal interface also includes

1See the entries sendto(3) and recvfrom(3) in the POSIX Programmer’s Manual [29].

20

definitions of command codes in accordance with the Katherine command set
specification [28].

Similarly to the network communication layer, the internal interface makes
no guarantees about thread safety. For that reason, synchronization is performed
by other components prior to calling the interface.

3.2.3 Public Command Interface

The public command interface is the main expected point of interaction between
the library and user applications. It implements thread-safe and reliable trans-
mission of high-level commands to the Katherine readout.

The interface implements over 20 high-level commands for state inquiry, con-
figuration and acquisition control. Command execution has synchronous seman-
tics, waiting for positive acknowledgments from the readout before reporting suc-
cessful completion to the user application. As a consequence, this also allows
detection of transmission reliability in otherwise unreliable UDP communication
environment.

In order to avoid possible misinterpretation of acknowledgments corresponding
to simultaneously issued commands, the public command interface utilizes mutual
exclusion capabilities implemented by the network communication layer. Before
execution, each command acquires a lock of the open control channel. At that
point, its thread may be suspended until another partially executed command
completes. With the lock acquired, the command sends a sequence of command
datagrams via the internal command interface and waits for their corresponding
acknowledgments, relying on the nonexistence of outside interference guaranteed
by the acquired lock. After completion, the lock is released, possibly waking up
other waiting threads.

In code, the interface defines the katherine device t structure, which repre-
sents a single Katherine readout. Internally, this structure holds the control and
the data channel information and tracks their state. A device is initialized with
the readout IP address, and upon successful initialization opens communication
sessions to both channels. Commands provided by the public interface operate
with these sessions. For an example of such usage, see Listing 1.

21

1 int result;

2 katherine_device_t device;

3

4 result = katherine_device_init(&device, "192.168.1.126");

5 if (result != 0) perror("katherine_device_init");

6

7 float temp;

8 result = katherine_get_readout_temperature(&device, &temp);

9 if (result != 0) perror("katherine_get_readout_temperature");

10

11 printf("The temperature is %.3f degrees.\n", temp);

12 katherine_device_fini(&device);

Listing 1: A simple C program, which establishes connection with the readout
and prints the temperature measured by its internal sensors.

3.2.4 Measurement Data Listener

The measurement data listener is responsible for receiving and efficient decoding
of measurement data during active acquisitions. Similarly to the public com-
mand interface, the listener provides a thread-safe synchronous call interface to
user applications. Apart from processing the received measurement data, this
component is also responsible for controlling the entire data acquisition process.
It is therefore assumed that at the time of initialization, the operated readout
is in idle state. The provided interface allows user applications to configure the
readout, initiate the data acquisition procedure and retrieve its results.

Before acquisition may be initiated, user application is required to provide
necessary configuration and event handler callbacks, which are notified during
various events of interest. After a successful acquisition start, the readout begins
to asynchronously send measurement data to the computer through the data
channel. For that reason, the application is required to relinquish control of one
processing thread to the measurement listener in order to process and decode such
messages. The internal logic of the listener then executes the provided callbacks
at appropriate times, and provides the application with measurement data in
well-defined format.

Data acquisition with Katherine is split into units called frames. During
a frame, the detector performs time-limited acquisition based on the provided
configuration parameters, most importantly the operation and readout mode. At
that time, the readout also transmits pixel measurement data, which describe
the activity of individual pixel circuits during the frame acquisition period. At
the end of each frame, the readout transmits frame measurement data, which
describe overall state of the readout (e.g. the number of lost pixels).

To avoid overhead due to frequent callbacks, the measurement data listener
includes a storage buffer for pixel measurement data of user-defined size. In the
course of message decoding, this buffer is filled with inbound information. The
provided interface defines callbacks for the following events of interest:

Frame Started This event occurs after of a new frame has been initiated.

22

Frame Ended This event occurs after the acquisition of the current frame has
ended. The provided data include timestamps corresponding to the acqui-
sition period, the number of sent and received pixel measurement data, and
information, whether the frame has been successfully completed.

Pixel Measurement Data Ready This event occurs after a group of pixel
measurement data has been prepared for reading by the application. Note
that the amount of ready items does not necessarily have to utilize full size
of the buffer.

In code, the measurement data listener component is represented by the
katherine acquisition t structure. Its example usage along with appropriate
event callbacks is illustrated in Listing 2.

1 typedef katherine_px_f_toa_tot_t pixel_t;

2 void my_handler(const void *pixels, size_t count) {

3 const pixel_t *px = (const pixel_t *) pixels;

4 for (size_t i = 0; i < count; ++i) {

5 /* do something application-specific with px[i] */

6 }

7 }

8

9 /* ... */

10

11 int result;

12 katherine_device_t device;

13 katherine_config_t config;

14 /* ... initialize device, set config ... */

15

16 katherine_acquisition_t acq;

17 result = katherine_acquisition_init(&acq, &device, mdbuf_size,

pxbuf_size);↪→

18 if (result != 0) perror("katherine_acquisition_init");

19

20 acq.handlers.pixels_received = my_handler;

21 result = katherine_acquisition_begin(&acq, &config,

READOUT_DATA_DRIVEN);↪→

22 if (result != 0) perror("katherine_acquisition_begin");

23

24 /* data incoming now, relinquish thread to the listener */

25 result = katherine_acquisition_read(&acq);

26 if (result != 0) perror("katherine_acquisition_read");

27

28 katherine_acquisition_fini(&acq);

Listing 2: An example C program, showing the usage of the measurement data
listener component in order to begin acquisition, receive and process data.

23

3.2.5 Configuration Parser

The configuration parser is the last of the three components provided to applica-
tions by the presented library. Its purpose is mostly auxiliary – to ease reading of
proprietary file formats used by other measurement tools for storing acquisition
configuration.

The parser operates on a valid memory range loaded with the contents of the
file. Its usage is shown in Listing 3.

1 void *buffer;

2 /* ... load file contents into the buffer ... */

3

4 int result;

5 katherine_bmc_t bmc;

6

7 result = katherine_bmc_init(&bmc);

8 if (result != 0) perror("katherine_bmc_init");

9

10 result = katherine_bmc_load(&bmc, buffer);

11 if (result != 0) perror("katherine_bmc_load");

12

13 katherine_bmc_fini(&bmc);

Listing 3: An example C program, showing the usage of the configuration parser
on one of the supported formats.

24

4. Compton Event Detection

In order to localize a γ-ray source in space by a Compton camera, a sufficient
number of Compton cones must first be generated. As shown in previous sections,
such cones may be obtained from pairs of photon interactions with semiconductor
detectors. For the purposes of this chapter, these pairs of interactions are referred
to as Compton events.

Since the algorithm described in Section 2.1.5 is sufficiently direct to be viewed
as a mapping from the set of Compton events to the set of Compton cones, the
primary challenge of this task lies in event detection rather than parameter fitting.
With this motivation, the focus of this chapter is on the approaches used to ensure
correct and efficient detection of Compton events.

4.1 Hardware Setup

The presented approach requires both proprietary hardware and software. Be-
sides the communication infrastructure, the components of the hardware setup
(illustrated in Figure 4.1) can be divided into three categories as follows:

Detection Unit This component is responsible for facilitating and observing
γ photon interactions. It thus needs to be positioned in the vicinity of a
suspected radiation source and use radiation-hard materials. It consists of
a multitude of Timepix3 detectors.

Readout Unit This component maintains connection between the detection
and the processing unit. It consists of multiple Katherine readouts.

Control Unit This component controls the readout unit, receives measured
data and generates the aggregated output of the Compton camera. It con-
sists of a computer with sufficient processing capabilities.

4.1.1 Detection Unit

To detect Compton events, conventional Compton camera architecture is used.
The detection unit is thus comprised of a multitude of scatterers and a sin-
gle absorber positioned in telescopic configuration. To implement both types of
components, Timepix3 detectors are used.

Since the aim of scatterer detectors is to facilitate Compton scattering – the
first of the two interactions of a Compton event, their detection medium is silicon.
This choice is motivated by the desirable properties of the material, such as
wide energy range, where Compton scattering dominates other types of γ photon
interactions.

In order to facilitate photoelectric absorption, the absorber detector uses cad-
mium telluride as its detection medium. Furthermore, in order to maximize the
probability of interaction, the semiconductive sensor layer is significantly thicker
than in scatterer detectors.

25

AbsorberScatterers

Source

K K K K K

ComputerEthernet

Katherine
Readouts

Timepix3
Detectors

Figure 4.1: Diagram of the proposed Compton camera setup.

Both absorber and scatterer detectors are configured to perform continuous
data-driven acquisition in the ToA & ToT operation mode. Moreover, equaliza-
tion, calibration and correction procedures described in Section 2.3 are applied
to normalize detector outputs prior to data acquisition.

4.1.2 Readout Unit

As the name suggests, the readout unit is comprised of a multitude of Katherine
readouts, each dedicated to a single Timepix3 detector from the detection unit.
For easy manipulation, readout devices are not connected to detector boards
directly, but rather indirectly using a VHDCI extension cable.

By the hardware specification [25], Katherine readouts are capable of con-
trolling detectors up to 100 m of distance. This implies that while the detection
unit must be manufactured with considerations for the possibly harsh radiation
environment, the readout unit may be placed outside or in a shielded container.

The readouts individually communicate with the control unit over the Giga-
bit Ethernet bus. While the bus communication infrastructure is not explicitly
defined, it may be easily implemented by an Ethernet switch with a sufficient
port count and performance capabilities.

4.1.3 Control Unit

The purpose of the control unit is to issue commands to Katherine readouts,
receive and process the measured data. It is thus implemented by a computer
with networking capabilities and sufficient processing power.

While the computer is generally not required to be positioned anywhere close
to the remaining components, the amount of network infrastructure between units
is usually minimized in order to decrease network communication latency and
packet loss probability.

26

The architecture of the computer software assumes a multi-threaded comput-
ing environment. Under this assumption, the software creates multiple threads
with assigned roles:

Readout Thread This thread is responsible for communication with a single
Katherine readout. One thread therefore spawned for every readout. The
purpose of the thread is to process pixel measurement data independently
on the outputs received from other readouts.

Compton Event Thread This thread is responsible for aggregation of outputs
of all readout threads. For this reason, only one such thread is created. The
result of the aggregation process is a sequence of Compton events.

Monitoring Thread This thread is serves auxiliary purposes, such as moni-
toring of temperature, communication performance and state of individual
readout devices.

Reconstruction Thread The purpose of this thread is to consume multiple
Compton events and reconstruct three-dimensional probability distribution
by the algorithm described in Chapter 5.

User Interface Thread This thread maintains the user interface, displays the
state of the device and receives commands from the human operator.

4.1.4 Time Synchronization

Since each Timepix3 detector assembly has its own set of internal clock signals,
pixel timestamps from different detectors do not necessarily represent the same
points in time. For this reason, readouts are synchronized prior to analysis.

The synchronization process is performed at the beginning of device operation
and relies on inducing predictable responses to a simultaneous phenomenon in all
detectors. By comparing timestamps of such responses from different detectors,
the difference between clock frequencies and offsets is identified. After examining
a sufficient amount of data, the procedure is completed.

Rather than alteration of detector clock signals, the result of the time synchro-
nization process is a set of fitted linear functions, which map detector-generated
timestamps to so-called global timestamps. If performed correctly, it holds that
simultaneous events receive the same global timestamps.

4.1.5 Coordinate System

For simplicity, the coordinate system used is based on that of Timepix3 detectors
[1]. Since the detectors are oriented in the same direction and arranged in tele-
scopic configuration, their detection planes are parallel to each other. This way,
directions of the X and Y axes are uniquely defined and consistent across all de-
tectors. The Z axis is then defined as the line intersecting pixels with coordinate
(0, 0) of each detector.

Assuming that detectors are well-ordered and numbered D1, D2, . . . , Dn for
n ≥ 2 such that detectors D1, D2, . . . , Dn−1 are scatterers and Dn is the absorber,

27

Detectors Reconstructed Volume

Source

ti di

Di

Figure 4.2: Detector depth di and thickness ti.

the origin is placed in the corner of D1 at the point of intersection with the line
of Z-axis. This is illustrated in Figure 4.2.

The direction from D1 towards the rest of the detectors is defined as the
negative Z-axis direction. For i ≤ n, detector Di has thus two spatial parameters:

Thickness ti This parameter measures the thickness of the detection medium
in the direction of the Z-axis.

Depth di This parameter is the Z-component of the point of Di closest to the
origin.

This completes the definition of the camera coordinate system. Note that by
the definition of the origin, d1 = 0. Since it holds that all di ≤ 0, ti > 0, and
di+1 ≤ di− ti for i < n by the assumption that detectors are well-ordered, ¶di♢n

i=1

is a strictly decreasing sequence.
Furthermore, the reconstruction process described in the next chapter relies

on the definition of a so-called volume – a cuboid body, in which the unknown
emission source is located. For spatial description of this body relative to the
camera assembly, five additional parameters are defined:

Volume Depth This parameter determines the dimension of the volume in the
direction of the Z-axis. As its name suggests, it is related to the depth
parameter of the detectors.

Volume Offsets These four parameters (marked in Figure 4.3) determine the
dimensions of the volume in the directions of the X- and Y-axis. They
represent two vertical and two horizontal distances between the edge of the
detector and the edge of the volume.

Since the X- and Y-dimensions of individual detectors are known, the offsets
determine the dimensions of the volume as well as the alignment of the camera
relative to the volume. For instance, zero offsets imply a volume of X- and Y-
dimensions matching those of the detectors.

For the reasons of consistency, all spatial parameters use Timepix3 pixels as
the unit of measurement. Note that 1 pixel corresponds to 55 µm.

28

256

Reconstructed Volume

25
6

Figure 4.3: Volume offsets.

4.2 Pixel Stream Processing

The rest of this chapter describes the algorithms executed by the control computer
in order to detect Compton events during continuous data acquisition.

For low-level communication with readouts, the computer uses the library
package described in Chapter 3. Assuming successful startup and configuration
of all components, the most dominant task performed by the software consists
of processing received measurement data, which can be viewed as a continuous
sequence of active pixels. For improved performance, pixels incoming from indi-
vidual readouts are processed independently in parallel by readout threads. This
section focuses on the actions of one such thread.

The architecture of a readout thread can be classified as a conventional pro-
ducer/consumer design pattern, wherein the program is divided into a producer
and a consumer component. During operation, the producer generates a sequence
of items with different contents but identical data structure. The sequence is usu-
ally buffered in batches and eventually processed by the consumer component,
which yields the requested results.

In the context of a readout thread, the remote readout device may be viewed as
a producer of pixels. However, due to the nature of the Compton event detection
problem, more than one instance of the pattern is required. For that reason, the
algorithm is decomposed into a chain consisting of several stages, which transform
and aggregate the received data into the output format. Strict ordering between
stages is defined, making the consumer of each stage the producer of the next
one (this is depicted in Figure 4.4). The output of the last stage is a sequence
of clusters, which undergoes coincidence group matching in the Compton event
thread.

4.2.1 Calibration Evaluation

The purpose of the first stage is to evaluate various correction and calibration
functions described in Section 2.3. The input consists of so-called raw pixels,

29

Readout

X,Y
ToT
ToA
fToA

Raw
Pixels

Calibrated
Pixels

X,Y
E
T

Clusters Filtered
Clusters

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

X,Y
E
T

Coincidence
Matching3D Clusters

X, Y, Z
E

ΔT
T

X, Y, Z
E

ΔT
X, Y, Z

E
ΔT

X, Y, Z
E

ΔT
X, Y, Z

E
ΔT

X, Y, Z
E

ΔT

Monotonic
Pixels

X,Y
E
T

Figure 4.4: Processing chain corresponding to a readout thread.

which contain outputs of Timepix3 data acquisition in the ToA & ToT mode
with fast VCO enabled. Each pixel thus contains information obtained directly
from the readout:

Point of Interaction A point in the detector plane, denoted by X- and Y-
coordinate.

ToT Value 10-bit value containing Time-over-Threshold information related to
energy deposited in the detector.

ToA, fToA Values 14-bit and 4-bit values containing Time-of-Arrival informa-
tion related to the pixel timestamp.

Before processing, the point of interaction is used to locate pixel-dependent
calibration constants in an auxiliary lookup table. With the values loaded, the
calibration function 2.3 is evaluated, transforming the ToT value into deposited
energy E. Based on the X-coordinate, a constant column offset is subtracted
from the ToA value, and the pixel timestamp T is calculated by combining ToA
and fToA information in Expression 2.2. Lastly, depending on the energy E,
the timestamp T is shifted one more time in order to compensate against the
time-walk distortion effect.

The result of the process (summarized in Algorithm 1) are items in one-to-
one correspondence with the input pixels. Each output item is comprised of the
following fields:

Point of Interaction A two-dimensional point matching that of the input pixel.

Deposited Energy The amount of energy (in keV) deposited into the pixel by
the incident particle.

Timestamp The time of the event start (in ns), expressed relative to the internal
clock of the detector.

Algorithm 1 Calibration Evaluation

Parameters: calibration functions E(x ♣ X), ∆T (E ♣ X)

1: for all incoming pixels (X, xT oT , xT oA, xfT oA) do
2: Ep ← E(xT oT ♣ X)
3: Tp ← 25 · xT oA − 1.5625 · xfT oA −∆T (Ep ♣ X)
4: ReportPixel(X, Ep, Tp)

30

4.2.2 Ensuring Time Monotony

The second stage is responsible for imposing monotonic ordering on the sequence
of incoming pixels with respect to their timestamps. This property is not nec-
essarily guaranteed by the readout and is required by the subsequent spatial
clustering stage.

Formally, the property of time monotony is defined for an ordered sequence
of pixels as follows.

Definition 1. Let Ti denote the timestamp (in ns) of the i-th pixel from an
ordered pixel sequence P. Then P is considered to be monotonic with respect to
time if for all i ≤ j holds that Ti ≤ Tj.

Note that while the received pixel sequence is not implicitly guaranteed to
be monotonic, due to the hardware design of the readout device, the property is
always satisfied to a certain extent. This can be captured by the following, more
general definition.

Definition 2. Let t ≥ 0 and Ti denote the timestamp of the i-th pixel from an
ordered pixel sequence P. Furthermore, let Si denote the time of transmission1 of
the i-th pixel. The sequence P is t-monotonic if for all i < j such that Si < Sj− t
holds that Ti ≤ Tj.

Comparing the wording of the definitions, one can see that both require the
sequence of timestamps Ti to be somewhat non-decreasing. However, unlike con-
ventional monotony, t-monotony is designed to relax the scope of this requirement
for a fixed local time interval of duration at most t. Consequently, for s ≥ t, every
t-monotonic sequence is also s-monotonic.

One desirable property of t-monotonic sequences is that they may easily be
transformed into monotonic sequences in the conventional sense by means of
buffering. As the name suggests, the algorithm relies on a dynamic ordered data
structure, capable of holding an arbitrary number of pixels for a limited time
duration. To transform a t-monotonic sequence into a monotonic sequence, its
elements are sequentially inserted into the structure, possibly re-arranging its
contents in the process, and removed from it at a later time. Upon removal,
the elements are enqueued into the transformed sequence, which is guaranteed to
satisfy the required property of monotony.

A simple way of understanding the motivation behind this approach involves
considering pairs of elements of a t-monotonic sequence, which would violate the
general monotonic property. If monotony is viewed as an ordering with respect to
timestamps, these are examples of disorder within the sequence. The definition
of t-monotony ensures that locally, elements of each such pair are not transmitted
too far behind each other. In fact, t represents a constant upper bound on the
maximum time duration between such transmissions.

When processing elements of the sequence online, it is not always clear whether
the currently transmitted element is a member of a disordered pair or not. To
instantly recognize such elements at all times would imply a certain degree of
clairvoyance on the part of the algorithm. Instead, each element of the sequence

1In this abstraction, pixels are associated with two time points. While the original event is
detected at time Ti, the information about the detected event is transmitted at a later time Si.

31

is retained for a time at least t, allowing its successors with earlier timestamps
to possibly surpass it within the buffer. Once an element with transmission time
Sj is added to the buffer, the element of the buffer with the lowest timestamp Ti

may be removed if Si < Sj − t. If the element satisfied this condition and was
a member of a disordered pair, contradiction of the t-monotony of the sequence
could be easily derived.

Assuming a constant fraction of disordered pairs in the sequence and uniform
transmission delay, the value of t influences the average number of elements in the
buffer. For lower values, the buffer may be evacuated more frequently and will
therefore hold less items. Since the number of items in the buffer may influence the
time complexity of its insert and delete operations, finding the smallest possible
t is critical for achieving good performance.

In practical implementation, the sequence of pixels consumed by the second
stage of the program is t-monotonic for t = 600 ms. The buffering algorithm
(summarized in Algorithm 2) is thus executed in order to obtain a monotonic
sequence in the general sense. The structure and data of the output matches
that of the input – the pixels are merely re-ordered. To improve performance,
the buffer is implemented by a priority queue, using Ti as a sorting key.

Algorithm 2 Pixel Buffering (with heap data structure)

Parameters: retention duration t

1: B ← empty heap
2: for all incoming pixels P do
3: HeapInsert(B, P)
4: Tready ←ReadyTime(B, t)
5: while ♣B♣ > 0 and AccessMinKey(B)≤ Tready do
6: P ′ ←ExtractMin(B)
7: ReportPixel(P ′)

8: while ♣B♣ > 0 do
9: P ′ ←ExtractMin(B)

10: ReportPixel(P ′)

4.2.3 Spatial & Temporal Clustering

During the operation of Timepix3 detectors, incident particles usually interact
with more than one pixel. This motivates the third stage, which is responsible for
aggregating pixels into so-called clusters – groups of adjacent pixels corresponding
to incident particles.

The clustering process is based on two assumptions, which are inferred from
the physics of a particle traveling through a solid material:

(A1) During its traversal of the detection medium, the particle interacts with
pixels, which consecutively lie in local neighborhood of each other.

(A2) A constant upper bound exists on the difference of timestamps between
pairs of consecutively activated pixels.

32

Figure 4.5: Examples of pixel 4-neighborhood (in the left) and 8-neighborhood
(in the right). While the pixel is filled in black color, its respective neighborhood
is filled with gray.

Both of these assumptions follow from the continuity of particle trajectory
and are crucial to derivation of the presented clustering algorithm. The concept
of pixel neighborhood referenced in A1 is conventionally defined as follows.

Definition 3. Let P ⊆ Z
2 be a set of pixels. The 4- and 8-neighborhood are set

functions N4,N8 : P → 2P respectively, such that for all pixels (x, y) ∈ P the
following conditions hold:

• N4((x, y)) = P ∩ ¶(x + h, y + k) ♣ h, k ∈ ¶−1, 0, 1♢ : ♣h♣+ ♣k♣ ≤ 1♢,

• N8((x, y)) = P ∩ ¶(x + h, y + k) ♣ h, k ∈ ¶−1, 0, 1♢♢.

The definition of neighborhood describes a set of closely adjacent pixels in a
discrete square grid such as the detector pixel matrix (illustrated in Figure 4.5).
While the 8-neighborhood is usually preferred, the presented implementation al-
lows to use 4-neighborhood instead, leading to possibly less accurate, but also
computationally less intensive algorithm, which may be favorable in performance-
critical applications.

To derive the clustering algorithm, a simpler problem may first be considered
by replacing A1 with the following assumption:

(A1′) At all times, the detector always observes at most one interaction.

Since time monotony of the input pixel sequence is guaranteed by stage 2,
the clustering algorithm for A1′ and A2 is very similar to the buffering algorithm
described in the previous section. The algorithm keeps a data structure for tem-
porary storage of pixels. This structure represents an open cluster – a group of
pixels involved in the singular ongoing interaction with an incident particle.

By A2, a constant upper bound ∆Tmax exists on timestamp differences be-
tween consecutive pixels of a cluster. The algorithm can thus sequentially con-
sume pixels from the input monotonic sequence and distinguish three possible
cases:

1. If the open cluster is empty, no interaction is in progress. The incoming
pixel marks the beginning of a new interaction. It is therefore inserted into
the cluster.

2. If the open cluster contains at least one pixel and the timestamp difference
∆T between the last inserted pixel and the received pixel is smaller than
∆Tmax, the received pixel is considered part of the current interaction and
thus inserted into the cluster.

33

3. If the open cluster contains at least one pixel and the timestamp difference
∆T is larger than ∆Tmax, the received pixel marks the beginning of a new
interaction, other than that represented by the open cluster. Since by A1′

at most one interaction occurs at all times, the open cluster is reported as
final and reset to empty contents. The received pixel is then inserted into
the open cluster.

The described algorithm (summarized in Algorithm 3) may be labeled as
location-unaware clustering. While the algorithm is efficient and simple to im-
plement, it heavily relies on the satisfaction of A1′, which may be quite hard
to ensure in reality. Still, the algorithm serves to illustrate the basic principles
of temporal clustering. Furthermore, as shown in the rest of this section, the
algorithm may be modified to use A1 instead of A1′ at the expense of increased
complexity.

Algorithm 3 Location-unaware Clustering

Parameters: temporal upper bound ∆Tmax

1: O ← ¶♢, Tend ← −∞
2: for all incoming pixels (X, E, T) do
3: if ♣O♣ = 0 then ▷ new interaction
4: O ← ¶(X, E, T)♢
5: Tend ← T
6: else
7: ∆T ← T − Tend

8: if ∆T ≤ ∆Tmax then ▷ part of the current interaction
9: O ← O ∪ ¶(X, E, T)♢

10: Tend ← T
11: else ▷ new interaction
12: ReportCluster(O)
13: O ← ¶(X, E, T)♢
14: Tend ← T

In the algorithm, the assumption A1′ serves primarily to limit the number
of open clusters to one. If this assurance is not available, the algorithm has to
track multiple open clusters simultaneously. In practice, this also complicates
the decision logic executed for every incoming pixel. While the location-unaware
clustering algorithm only decides whether the pixel is a part of the singular open
cluster or not, the generalized algorithm must also decide to which open cluster
the pixel belongs. This motivates the use of spatial adjacency in the formulation
of A1.

At this point, the generalized clustering algorithm may be derived. The algo-
rithm utilizes two types of data structures:

Open Cluster List This structure is a list of all open clusters, ordered ascend-
ing by the largest timestamp of a pixel within each cluster.

Pixel Pointer Lists These auxiliary structures serve to allow fast lookup of
clusters based on spatial coordinates. For every pixel of the pixel matrix,

34

1 2 3

3

Pixel Matrix

Pixel Pointer Lists

Open Cluster List
1 2 3

Figure 4.6: Data structures used by the generalized clustering algorithm.

the associated pixel pointer list holds pointers to open clusters, which are
known to contain it.

Upon receiving a new active pixel with timestamp Ti and spatial coordinate
(x, y), the generalized algorithm (also summarized in Algorithm 4) performs the
following operations:

1. The open cluster list is partially scanned from one side, closing, removing2

and reporting all clusters older than Ti −∆Tmax.

2. The pixel pointer lists corresponding to pixels in N ((x, y)) are scanned and
a list L of unique3 cluster pointers is compiled. In order to be included in
L, the largest timestamp of the cluster must be greater than Ti −∆Tmax.

3. Depending on the size of L, one of the three following actions is performed:

(a) If L is empty, a new open cluster is created and inserted into the open
cluster list. The incoming pixel is added to this cluster.

(b) If L contains exactly one cluster, the incoming pixel is added to it.

(c) If L contains at least two clusters, their contents are merged. Without
the loss of generality, the oldest of the cluster is selected to survive the
operation. The incoming pixel as well as all pixels of the remaining
clusters in L are then inserted into the selected cluster and cluster
pointers in referencing pixel lists are corrected. Lastly, the remaining
clusters are removed from the open cluster list.

4. A pointer to the cluster, which contains the incoming pixel, is inserted into
the pixel pointer list corresponding to (x, y).

2By remembering backward links to referencing pixel pointer lists in the cluster record, all
references to a removed cluster containing n pixels can be removed in O(n) time.

3Uniqueness can be achieved by extending cluster records with a zero bit. When compiling
the list L, the bit is set to one upon the first encounter, and all records with nonzero bits are
skipped. After the list is compiled, bits are reset in preparation for the next pass.

35

The output of the third stage is a sequence of closed clusters. Each such
cluster contains the following attributes:

Pixel List Non-empty list of pixels included in the cluster. Each pixel record
includes the attributes described as the output of the second stage.

Smallest/largest Timestamp The timestamps of the first and the last pixel
included in the cluster (in ns).

Integral Energy Sum of energies of all pixels included in the cluster (in keV).

Algorithm 4 Clustering

Parameters: temporal upper bound ∆Tmax, neighborhood function N

1: O ← empty open cluster list, P ← empty pixel pointer lists
2: for all incoming pixels (X, E, T) do
3: ReportOldClusters(O, P, T)
4: L← ¶♢ ▷ look for neighbors
5: for all X ′ ∈ N (X) do
6: M ←ClustersNearTime(T, ∆Tmax, O, P [X ′])
7: L← L ∪M
8: if ♣L♣ = 0 then ▷ create new cluster
9: A← ¶(X, E, T)♢

10: InsertCluster(O, A)
11: else if ♣L♣ = 1 then ▷ add pixel to cluster
12: A←FindOldestCluster(L)
13: A← A ∪ ¶(X, E, T)♢
14: else ▷ merge clusters
15: A←FindOldestCluster(L)
16: A← A ∪ ¶(X, E, T)♢
17: for all A′ ∈ L \ A do
18: for all (X ′, E ′, T ′) ∈ A′ do
19: DeleteClusterPointer(P [X ′], A′)
20: InsertClusterPointer(P [X ′], A)

21: InsertClusterPointer(P [X], A)

4.2.4 Filter Cascade

The goal of the fourth stage is to increase the performance of subsequent stages by
excluding all clusters, which clearly do not correspond with expected interactions
occurring during a Compton event.

In a cascade, the following predicates are verified:

1. The cluster contains at most 6 pixels.

2. The integral energy falls within the expected energy range characteristic for
Compton interactions in the selected detection medium.

36

3. The cluster does not contain a pixel in close vicinity to a malfunctioning
pixel or the edge of the pixel matrix.

The output of the fourth stage (summarized in Algorithm 5) has the same
structure as that of the third stage. Clusters, which do not satisfy at least one of
the listed predicates, are omitted.

Algorithm 5 Cluster Filter Cascade

Parameters: energy range [Emin, Emax], set Xbad of excluded pixel coordinates

1: for all incoming clusters C do
2: if ♣C♣ ≤ 6 then
3: Eintegral ←

√
(X,E,T)∈C E

4: if Emin ≤ Eintegral ≤ Emax then
5: R← Xbad ∩ ¶X ♣ (X, E, T) ∈ C♢
6: if ♣R♣ = 0 then
7: ReportCluster(C)

4.2.5 Drift Speed Evaluation

The aim of the fifth stage is to perform three-dimensional reconstruction of pixel
coordinates based on prior drift speed calibration of the Timepix3 detector de-
scribed in Section 2.3.5.

First, the smallest timestamp within the cluster is subtracted from every
pixel, leaving pixels with so-called relative timestamps. These are then used to
assign each pixel a Z-coordinate calculated from Expression 2.5. The calculated
three-dimensional coordinates are then aggregated into the volumetric centroid
as follows:

C =
1

E

n∑

i=1

EiCi (4.1)

Here, C is the volumetric centroid, E =
√n

i=1 Ei is the integral energy of the
cluster, n is the number of pixels in the cluster, Ei and Ci denote the energy (in
keV) and the reconstructed coordinates of the i-th pixel, respectively.

Lastly, all calculated coordinates Ci and C are transformed from the detector
coordinate system to the camera coordinate system by adding the detector depth
constant dj. The output of the fifth stage (summarized in Algorithm 6) are cluster
records, which are comprised of the following attributes:

Pixel List Non-empty list of pixels included in the cluster. Each pixel record
includes the following attributes:

Point of Interaction A reconstructed three-dimensional point in the ca-
mera coordinate system.

Deposited Energy The amount of energy (in keV) deposited into the
pixel by the incident particle.

37

Relative Timestamp The time of the event start (in ns), expressed rela-
tive to the lowest timestamp within the cluster.

Smallest/largest Absolute Timestamp The timestamps of the first and the
last pixel included in the cluster (in ns), expressed relative to the internal
clock of the detector.

Integral Energy Sum of energies of all pixels included in the cluster (in keV).

Volumetric Centroid A reconstructed three-dimensional point in the camera
coordinate system.

Algorithm 6 Drift Speed Evaluation

Parameters: drift speed vdrift

1: for all incoming clusters C do
2: Tstart ← min(X,E,T)∈C T
3: C ′ ← ¶♢
4: for all (X, E, T) ∈ C do
5: (x, y)← X
6: z ← Z(T ♣ T0, vdrift)
7: X ′ ← (x, y, z)
8: C ′ ← C ′ ∪ ¶(X ′, E, T)♢
9: ReportCluster(C ′)

4.3 Coincidence Group Matching

After three-dimensional cluster reconstructions are created, clusters undergo co-
incidence group matching. Just as the purpose of a clustering algorithm is to
aggregate pixels in clusters, the aim of coincidence group matching is to link
clusters together in so-called coincidence groups.

Coincidence group matching is the last step leading to Compton event detec-
tion. By their definition, Compton events can be viewed as coincidence groups
comprised of two occurrences of interactions, one in a scatterer and the other in
the absorber detector.

4.3.1 Thread Synchronization

Since coincidence group matching requires the inputs from all detectors, it is
executed in the Compton event thread, independently of readout-related algo-
rithms described in the previous section. This prompts the question of efficient
synchronization between threads.

After the last stage of the readout thread chain, reconstructed clusters are
saved in a shared queue (linked FIFO memory structure), which is owned by
each readout thread. To avoid memory strain, readout threads periodically check
the number of stored clusters. If a configurable threshold is exceeded, cluster

38

D1

D2

Dn

Readout Threads

Compton Event
Thread

Sync.

Figure 4.7: Data flow between readout threads and the Compton event thread.

processing is temporarily suspended or depending on the configuration, cluster
processing continues and threads start skipping clusters.

The Compton event thread is responsible for consuming clusters from all de-
tector queues (illustrated in Figure 4.7). Since due to parallel processing, a queue
might be accessed both by a readout thread and the Compton event thread si-
multaneously, synchronization primitives are used to prevent undefined states.
Rather than controlling access to the queue by mutual exclusion of threads, the
implementation uses a lock-free approach relying on carefully placed memory bar-
riers, which ensure that at all times the queue is accessed in a consistent state
[30]. The main benefit of this method is the absence of waiting, which increases
overall performance and eliminates the possibility of deadlocks.

4.3.2 Matching Algorithm

After a sufficient number of clusters is removed from individual detector queues,
the Compton event thread executes the matching algorithm, which identifies cor-
respondences between clusters from different detectors. The result is a sequence
of coincidence groups, each comprised of multiple clusters. If no correspondences
are found, clusters are simply reported as coincidence groups of trivial size.

In order to be mutually comparable, timestamps in all clusters are trans-
formed prior to processing from internal detector time to synchronized camera
time by linear functions described in Section 4.1.4. Due to the nature of the time
synchronization functions, no additional reordering is necessary to maintain the
property of time monotony.

The logic of the matching algorithm resembles that of the location-unaware
clustering algorithm. The algorithm operates in cycles – at the end of each cycle, a
single coincidence group is created. Since coincidence groups include at most one
cluster from each detector, the matching algorithm requires that all input queues
are non-empty. If that is not the case, the algorithm is temporarily suspended
until more data is available.

In the course of a single cycle, synchronized cluster timestamps are compared
among clusters at the end of each queue. The cluster with the lowest timestamp
Tmin is identified, and in a second pass, all clusters such that their timestamp Ti

39

satisfies Ti−Tmin < ∆T ′

max are greedily removed from their respective queues. The
constant ∆T ′

max is a configurable parameter of the matching algorithm, different
from that used in the clustering stage of the readout chain. The removed clusters
are inserted into a new coincidence group, which may be considered to be the
result of the cycle.

Note that the definition of the algorithm (summarized in Algorithm 7) ensures
that after each cycle, at least one cluster is removed. Consequently, an empty
coincidence group is never produced. In practical implementation, the presented
algorithm may encounter difficulties when matching multiple clusters observed by
a single detector simultaneously. If such a scenario occurs, greedy approach may
incorrectly aggregate irrelevant interactions depending on their ordering within
the cluster queue. However, due to high4 time resolution of Timepix3 with fast
VCO enabled, such scenarios are considered sparse and thus excluded.

Algorithm 7 Coincidence Group Matching

Parameters: temporal upper bound ∆T ′

max

1: Qi ← cluster queues for D1, D2, . . . , Dn

2: repeat
3: for all i ≤ n do
4: WaitForData(Qi)
5: Ti ←AccessMinKey(Qi)

6: j ← argminiTi

7: Tend ← Tj

8: G← ¶♢
9: P ← ¶1, 2, . . . , n♢

10: for all i ∈ P do
11: if T − Tend ≤ ∆T ′

max then
12: C ←ExtractMin(Qi)
13: G← G ∪ ¶C♢
14: P ← P \ ¶i♢
15: Tend ← max¶Ti, Tend♢
16: ReportGroup(G)
17: until stopped

4.3.3 Filter Cascade

To distinguish likely Compton events among coincidence groups, a filter cascade
similar to that used for clusters is applied to the output of the matching algorithm.
Sequentially, the cascade verifies a series of predicates for every coincidence group.
If any predicate is not satisfied, the analyzed coincidence group is discarded and
computational time is not spent verifying the remaining predicates.

The verified predicates are as follows:

1. The coincidence group consists of exactly 2 clusters.

4After applied calibrations and corrections, Timepix3 was shown to achieve time resolution
up to 2 ns [18].

40

2. One of the clusters has been observed in the absorber detector.

3. One of the clusters has been observed in a scatterer detector.

4. The sum of cluster integral energies falls within the expected Compton
event energy range for the used detection media.

5. The ratio of cluster integral energies falls within the expected range for
forward scattering.

6. Cluster integral energies satisfy the necessary conditions for a valid Comp-
ton event: [19]

∏
⨄
⋃

mec2E2
γ

2Eγ+mec2 ≤ E ′

γ ≤ Eγ

0 ≤ Ee ≤ 2E2
γ

2Eγ+mec2

(4.2)

Here, me is the electron mass at rest, c is the speed of light, Ee is the integral
energy (in keV) observed by the scatterer detector, E ′

γ is the integral energy
(in keV) observed by the absorber detector, and Eγ = Ee + E ′

γ.

The algorithm considers coincidence groups satisfying the listed predicates to
be Compton events with high probability. The output of the filter cascade is
therefore used for volume reconstruction described in the next chapter.

4.4 Handling Common Problems

During the operation of the camera, various malfunctions may occur in its compo-
nents. The presented work includes methods to alleviate and compensate against
some of the frequently encountered problems. This way, the resilience of the
device for use in practical applications is increased.

4.4.1 Pixel Circuit Malfunctions

Due to its high exposure to possibly harsh radiation fields, a common source of
malfunctions is presented by the detection unit, which is comprised of Timepix3
detectors. Radiation damage to their components may result in partial or com-
plete severance of connection, or incorrect outputs of the data acquisition process.
Of these, the latter is the only issue, which may not be fatal to the operation of
the camera.

Upon malfunction, pixel circuits of a Timepix3 detector usually exhibit one
of two behaviors:

1. The pixel becomes dead and does not report any changes in the analog
pulse, even if the pixel actually receives energy from an incident particle.

2. The pixel becomes noisy and reports changes at random times (in a special
case, at all times), even if the pixel actually receives no energy at all.

41

Due to their large number, occurence of dead pixels usually only limits the
spatial sensitivity of the device and does not pose a critical threat to its operation.
However, noisy pixels are responsible for producing a constant stream of false
information, which is undesirable, especially during data-driven acquisitions.

In order to detect pixel malfunctions, the number of observed events (or hits)
is counted for every pixel of each detector. The resulting counts form a matrix,
which is aggregated over an extended period of time. After the set time expires,
the matrix is analyzed for pixel malfunctions, reset and the aggregation process
begins anew.

In the hit count matrix, pixel malfunctions may be easily identified by com-
paring the observed values with two thresholds hdead and hnoisy, such that hdead <
hnoisy. If the hit count exceeds hnoisy, its corresponding pixel is labeled as noisy.
If the hit count falls below hdead, the pixel is labeled as dead. Otherwise, the
pixel is considered to be operating properly.

Depending on the expected radiation environment, the used thresholds may
be static or adaptive. While static thresholds do not require any additional com-
putational time, they also require prior knowledge of the camera surroundings.
If such information is not available, adaptive thresholds may offer a better alter-
native.

Assuming static unbiased radiation conditions in the vicinity of the detector,
observed hit counts follow the normal distribution. By the law of large numbers,
given a sufficiently large time window, the aggregated hit counts approximate the
expected value of this distribution. Under the assumption that the majority of
pixels is operating without malfunctions, one way to configure values of hdead and
hnoisy is by determining the median hit count h̃ and setting:

hdead = h̃− δ hnoisy = h̃ + δ (4.3)

Here, δ may be either a static configurable constant or adaptive outlier margin
calculated from the standard deviation σ with respect to h̃ as δ = ασ. In the
latter case, the multiplicative constant α > 0 determines the relative tolerance
of the method in multiples of the standard deviation. Setting α > 1 makes
the method more tolerant, but also increases the probability of false negatives.
Setting α < 1 has a converse effect.

After the thresholding procedure is completed, pixel labels are used to create
a mask – a binary matrix, where malfunctioning pixels are assigned non-zero
values. The mask is used at early stages of the readout chain to filter incoming
pixels in O(1) time. Furthermore, to prevent redundant communication, which
might lead to congestion of communication channels, Katherine readouts allow
to apply mask at the hardware level prior to acquisition start. For that reason,
data acquisition is not performed continuously, but rather in batches, between
which the hardware mask is reconfigured among other operations.

4.4.2 Temperature Monitoring

In order to prevent malfunctions due to overheating, the temperature of detectors
and readouts is periodically monitored. Abrupt increases in temperature values

42

usually hint at undesirable events, such as malfunctions or infinite loops executed
in the embedded hardware.

For monitoring detector and readout temperature, an independent monitor-
ing thread is included in the application, periodically querying all readouts for
temperature information.

Once retrieved, temperatures are compared with their previously recorded
values. For safety of the equipment, the application allows to set configurable
limits, which abort the operation of the device, if exceeded.

4.4.3 Readout Infrastructure Malfunctions

Since the camera consists of multiple components, which communicate over bus
infrastructure, malfunctions might arise from severed or otherwise disrupted con-
nections between detectors, readouts and the control computer.

At the level of the control computer, all communication with readouts is
limited by a configurable timeout window. Depending on the activity performed
during connection disruption, the expiration of the set timeout may have different
effects. If the activity is not critical to device operation, the application attempts
to mitigate any possible temporary disruptions by re-sending the communication.
If the activity has at-most-once semantics or is critical in other sense, re-sending
is not attempted. If the communication failure persists consistently, the affected
readout is labeled as unreachable along with its corresponding detector, and both
devices are excluded from device operation.

At the level of the Katherine readout, the presence of a Timepix3 detector is
detected by the embedded computer. While the readout does not have the capa-
bility to proactively report communication loss to the computer, its command set
offers a communication test instruction, which checks for detector presence and
verifies the integrity of the communication lines upon request [28]. This command
is periodically executed by the monitoring thread to detect communication dis-
ruptions. If at any point, communication is consistently disrupted, the detector
is labeled as unreachable and excluded from device operation.

Depending on the hardware configuration, occurence of unreachable detectors
may or may not be fatal to the operation of the camera. If at least one scatterer
and the absorber detector are still reachable, the device remains operational.

43

5. Volume Reconstruction

Having obtained a sufficient quantity of Compton events, the process of volume
reconstruction allows to produce a three-dimensional image of the immediate
surroundings of the detection unit. The resulting image depicts the environment
in the γ-ray spectrum, hinting at the relative location of the emission source.
With this motivation, the topic of this chapter is the process of generating such
an image.

5.1 Operational Principles

As shown earlier in Section 2.1.5, a correspondence exists between Compton
events and spatial cones. Each Compton event can thus be assigned a cone,
which is determined by the points of interaction and the amounts of deposited
energy. By the derivation of the cone, the unknown emission source M is located
in its mantle. To efficiently localize M , multiple cones are required.

5.1.1 Volume Restriction

While the domain of M may be considered to be R3, this definition is not actually
used in practice for the reasons of tractability. Instead, the domain is artificially
limited to be a compact set V called the volume, which can later be easily dis-
cretized. One example of such a set is axis-parallel cuboid – a convex polyhedron,
which may be defined in three dimensions as a Cartesian product of intervals
[l1, h1] × [l2, h2] × [l3, h3], where li < hi are finite numbers for i ≤ 3. Any x ∈ V
such that x = (x1, x2, x3) then satisfies the constraints: li ≤ xi ≤ hi for all i ≤ 3.

It is important to note that the process of domain restriction is not without
its dangers. If the constraints are chosen to be excessively strict, the resulting
volume V may not contain M at all, leading to ill-conditioned problem definition.
Fortunately, this is not the case in practice, where measurements are burdened by
noise and detection range of localization hardware is limited by the laws of physics.
For this reason, sufficiently large constant values of li and hi always exist that
allow M ∈ V . Usually, the values are chosen such that h1− l1 = h2− l2 = h3− l3,
making V an axis-parallel cube of side d = h1 − l1.

Restriction of the solution space presents an opportunity for the user to in-
fluence the behavior of the reconstruction process by inputting knowledge about
the emission source known a priori. If used conservatively, this allows to improve
performance or precision of the reconstruction without impacting correctness of
the algorithm.

5.1.2 Volume Discretization

Before reconstruction, the volume V is discretized into a finite number of identical
cells. The cells are arranged in an orthogonal, axis-parallel grid such that no cell
pair overlaps, and the union of all cells is the original volume V . The set of all
cells may thus be called a discrete partitioning of V .

44

c1

c2

c3

N1

N3

N2

Figure 5.1: The cell grid, which is a result of the discretization process. Note
that while ci denotes cell dimensions, Ni labels cell count for i ≤ 3.

In the presented work, the shape of axis-parallel cuboid has been selected
for the solution space with explicit consideration for the complexity of the dis-
cretization process. Discretization of cuboids is simple to implement and efficient
to address, as it can be obtained by cutting the cuboid by axis-orthogonal planes
at regular intervals. Consequently, if V is an axis-parallel cuboid, the produced
cells are also axis-parallel cuboids.

In order to regularly divide V into identical cells, three integer parameters
N1, N2 and N3 must be provided such that 1 ≤ Ni for all i ≤ 3. The values of
these parameters represent requested cell counts in directions along the principal
axes. The cell size ci in the direction of the i-th axis is then given by inverse
relationship ci = (hi − li)/Ni for i ≤ 3. If x1, x2 and x3 are integer coordinates
of a cell such that 0 ≤ xi ≤ Ni − 1 for i ≤ 3, the dimensions of its corresponding
cuboid are defined as follows.

U(x1, x2, x3) = [c1x1, c1(x1 + 1)]× [c2x2, c2(x2 + 1)]× [c3x3, c3(x3 + 1)] (5.1)

The relationship between the cell size ci and the number of cells Ni gives
the user means of leveraging precision with complexity, which is characteristic to
discretized models. While the choice of large Ni will produce more cells, leading
to longer processing times, the choice of small Ni will inevitably limit the spatial
resolution of the localized emission source.

In the presented implementation, it holds that N1 = N2 = N3 = N . Since
also hi − li = d for all i ≤ 3, this implies that c1 = c2 = c3 = c. Consequently, all
cells are cubes of side c = d/N .

5.1.3 Forward Projection

The first part of the volume reconstruction process is called forward projection
[31, 32]. As the name suggests, the purpose of the procedure is to project a
single Compton cone forward into an arbitrary axis-orthogonal plane within the
discretized volume V .

45

V1

Figure 5.2: Forward projection of a Compton cone C(V1, V2, β).

In the input, the cone is parameterized by points V1 and V2, and half-angle β.
The plane ρ is parallel to the XY-plane and thus parameterized by a single
constant coordinate z of all its points. Usually, z is chosen to be the mean
Z-coordinate of the cells determined by the set S3(N3 − 1), which is generally
defined for arbitrary integer i ≤ 3 as follows.

Si(y) = ¶(x1, x2, x3) ♣ xi = y ∧ (∀j ≤ 3 : 0 ≤ xj ≤ Nj − 1)♢ (5.2)

Semantically, the set Si(y) represents a slice in the cell grid coordinate system
at the coordinate y of the i-th axis. Formally, the set function Si is well-defined
for any integer y such that 0 ≤ y ≤ Ni − 1, and integer i ≤ 3.

The output of forward projection is a mapping f : S3(N3 − 1) → R, which
assigns real values to the cells of the selected slice depending on their location
relative to the cone mantle. The interpretation of these values is determined by
a so-called response function r : R→ R, which is a configurable parameter of the
method. Composed, the mapping r ◦f yields likelihood that a given cell contains
the source of γ-ray emission.

5.1.4 Back Projection

If viewed as a partial image function, the mapping r ◦ f produced by the forward
projection method may be considered to be the first part of the reconstructed
three-dimensional image I. To obtain its remaining parts, the back projection
method is utilized [31, 32].

In a näıve view, back projection may be deemed unnecessary, as forward
projection can simply be executed multiple times for various axis-orthogonal
planes ρ at arbitrary depths z. In a given discretized volume V , the remain-
ing parts of I would then be obtained by evaluating forward projection for the
slices S3(N3− 2),S3(N3− 3), . . . ,S3(1),S3(0). While this approach is technically
correct, in practice it is considered excessively wasteful since the calculation of
forward projection is a computationally intensive operation. This motivates the
use of back projection, which attempts to minimize processing time by re-using
previously obtained information. With decreased processing time, a finer dis-
cretization may be performed, producing outputs of better accuracy.

46

V1

Figure 5.3: Back projection of a Compton cone C(V1, V2, β).

To hint at the basic principle used by back projection, a two-dimensional
analogy may first be examined. When projecting a point along a set transversal
direction onto multiple parallel lines, it is sufficient to calculate only one of its
projections. Due to the mutual relationship between the parallel lines, the remain-
ing projections may be extrapolated from the original point, the first projection
and known distances between the lines. In general, back projection performs
analogous extrapolation in three-dimensional space.

In the input, the algorithm receives a cone parameterized by points V1 and
V2, and half-angle β. Moreover, the algorithm also requires coordinates z and
z′ of the axis-orthogonal planes used for forward projection and back projection,
respectively. Lastly, the algorithm relies on the mapping f , which is the result of
forward projection of C(V1, V2, β) onto the plane ρ at depth z.

The back projection algorithm uses the relationship between V1, z and z′

to construct a transformation T , which defines the projection f ′ of C(V1, V2, β)
onto the plane ρ′ at depth z′ as f ′(x) = f(T (x)). Since values of T (x) are not
guaranteed to be integral, an interpolation method is employed to estimate values
of f in undefined points.

Similarly to forward projection, the output of back projection is a mapping
f ′, which assigns cells at depth z′ real values. Consequently, r ◦ f ′ represents
another component of the reconstructed three-dimensional image I.

5.1.5 Aggregation

Thus far, the volume reconstruction process has been described only for the in-
stance of a single Compton cone Cj. To summarize, the cone first undergoes for-

ward projection, obtaining the projection mapping f
Cj

N−1 for the farthest slice. Af-

ter that, multiple back projections are performed, where f
Cj

N−1 is used to produce

mappings f
Cj

N−2, f
Cj

N−3, . . . , f
Cj

1 , f
Cj

0 . Eventually, a three-dimensional image ICj of

the cone is created by composition with response function r as ICj = r◦⋃N−1
i=0 f

Cj

i

Given a set of cones ¶C1, C2, . . . , Cn♢, this process is repeated for each cone,
obtaining a set of corresponding images ¶IC1 , IC2 , . . . , ICn♢. The images then
are combined into a single image I as I =

√n
j=1 ICj . Provided that a sufficient

number of distinct cones is available and all cones correspond with the same
emission source, I reflects the probability that a given cell contains the source.

47

5.2 Compton Event Processing

By the taxonomy used in the previous chapter, the process of volume recon-
struction may be viewed as a chain of multiple producer/consumer components,
wherein the first component is a consumer of Compton events, and the last com-
ponent is a producer of reconstructed images.

5.2.1 Spectroscopic Source Discrimination

The purpose of the first stage of the chain is to discriminate incoming Compton
events by their source of emission, ensuring that subsequent stages operate only
on events originating from a single source. If the presence of at most one source
is guaranteed by a priori knowledge, this stage may be omitted from processing
in order to increase performance.

In the presented work, source discrimination is performed by comparing in-
tegral energies of both interactions with a baseline established by prior measure-
ments. If the energies significantly deviate from the baseline, their corresponding
event is rejected and excluded from processing. The remainder of events is passed
on to the next stage. The baseline and tolerance interval width are static config-
urable parameters of the algorithm.

Algorithm 8 Spectroscopic Source Discrimination

Parameters: baseline energies Ẽs, Ẽa, tolerance ∆Emax

1: for all incoming events (T, Cs, Ca) do
2: (Ts, Ps, Es)← Cs

3: (Ta, Pa, Ea)← Ca

4: if ♣Es − Ẽs♣ ≤ ∆Emax and ♣Ea − Ẽa♣ ≤ ∆Emax then
5: ReportEvent(T, Cs, Ca) ▷ Event is consistent with the baseline

5.2.2 Batch Aggregation

Since multiple Compton events are required by the reconstruction process, the
purpose of the second stage is to aggregate a sufficient number of events in so-
called batches.

The aggregation process is sequential, grouping events in the order of appear-
ance. Once a sufficient number of events is reached, the batch is passed on to the
next stage. The size of a batch is a configurable parameter, which is constrained
by the available memory of the control computer and the requested frequency of
reconstruction. Usually, the batch size is chosen to be in the order of hundreds
or thousands of events.

To avoid possible smearing due to source or camera manipulation over an
extended period of time, the size of the interval determined by the lowest and the
largest timestamp within the batch is tracked. If the interval size exceeds a set
threshold, Compton events are not detected at a sufficient rate, and the entire
batch is thus rejected. Analogous to the batch size, the maximum interval size
is a configurable parameter of the algorithm, chosen with consideration for the
source expected decay rate.

48

Algorithm 9 Batch Aggregation

Parameters: batch size Nb, maximum time interval size Tmax

1: B ← ¶♢, Tstart ←∞, Tend ← −∞
2: for all incoming events (T, Cs, Ca) do
3: B ← B ∪ ¶(T, Cs, Ca)♢
4: Tstart ← min¶T, Tstart♢
5: Tend ← max¶T, Tend♢
6: if ♣B♣ = Nb then
7: ReportBatch(B) ▷ Pass batch on to the next stage
8: B ← ¶♢, Tstart ←∞, Tend ← −∞
9: else if Tend − Tstart > Tmax then

10: B ← ¶♢, Tstart ←∞, Tend ← −∞ ▷ Reject batch due to timeout

5.2.3 Response Function Caching

During volume reconstruction, the constructed image mapping f is composed
with a response function r, yielding a three-dimensional image I. While the values
of the mapping f are determined by the orientation of the projected cone, the
arbitrary function r is considered to be a parameter of the algorithm, and can thus
be modified depending on the expected application of the method. Since r ◦ f is
evaluated for every cell of the discretized volume V and usually comprised of non-
linear elements, which are computationally expensive to calculate, its evaluation
time is thus subject to optimization.

By introducing the process of back projection, the number of cells in which
r ◦ f is evaluated is significantly limited. Consequently, the function is only
evaluated for the cells of the last slice S3(N3 − 1) of V . To further minimize the
calculation time of a single cell, values of r ◦ f are cached in a dedicated data
structure analogous to a look-up table.

In the implementation, values of r ◦ f are not calculated when needed but
rather only once, in advance. Since the points of evaluation are not known prior
to processing start, r ◦ f is evaluated in multiple discrete points obtained by
uniform division of a multi-dimensional interval. The results of this evaluation
are cached. Later during processing, when (r ◦ f)(X) would conventionally be
evaluated, the cached points closest to X are identified and used in inference
of (r ◦ f)(X) by an interpolation method. If the look-up and interpolation is
performed faster than direct evaluation of (r ◦ f)(X), this approach presents a
viable improvement in processing time, especially provided that r ◦f is evaluated
frequently.

It should be noted that usage of interpolation inherently introduces inaccu-
racies into further calculations. The magnitude of such inaccuracies however
depends on the number of points sampled in the pre-calculation stage. With a
greater number of samples, interpolation interval size decreases along with the
interpolation error. This work therefore assumes that the available memory of
the control computer allows to calculate a sufficient number of samples.

The description thus far is identical to that of conventional look-up tables. The
presented approach however differs in its dimensionality and the use of geometric
information in calculation of the sampled points. While look-up tables in the

49

ρ

ρ

ρ

Figure 5.4: Different locations and orientations of ρ dependent on the half-angle
of the intersected cone.

conventional sense are usually one-dimensional, the domain in which r ◦ f is
calculated is rather a discretized two-dimensional plane ρ analogous to a slice of
the reconstructed volume V .

By the definition of f and r, the values of r ◦ f cached within points of ρ
may be viewed as indicators1 of intersection between ρ and a Compton cone. In
this context, the conic section may either be an ellipse or a circle depending on
the location and orientation of ρ relative to the intersected cone. For the reasons
of consistency, additional condition is thus imposed, ensuring that both bodies
are positioned and oriented so that the section is a perfect unit circle. As shown
below, this leads to unique determination of ρ by the parameters of the cone up to
rotational symmetry. Consequently, the distance of ρ from the cone apex varies
depending on the half-angle of the cone, as depicted in Figure 5.4.

Let C(V1, V2, β) be a general Compton cone. In order to achieve a section
in the form of a perfect circle, the plane ρ must be orthogonal to the principal

axis of the cone. The normal vector of ρ is therefore
−−→
V2V1. This fully defines the

orientation of ρ, leaving only one remaining degree of freedom representing the
distance d between ρ and the apex V1 of the cone.

To calculate d, it is sufficient to enforce the unit property of the intersected
circle. By a simple geometric observation (illustrated in Figure 5.5), the radius s
of the circle is related to d by the expression:

tan β =
s

d
(5.3)

Since β is a constant parameter of the cone, and s = 1 by the unit property,
d is derived as:

d =
1

tan β
(5.4)

In this expression, note that the non-triviality condition for the cone arises
from tan β > 0.

1Unlike indicators in the conventional sense, cached values of ρ are not binary and their
interpretation depends on the choice of r.

50

d

s

β

ρ

Figure 5.5: An orthogonal triangle within a Compton cone, which shows the
relationship between β, s and d described by Expression 5.3.

This concludes the calculation of the parameters of ρ from the parameters
of C(V1, V2, β). While the location and orientation of ρ changes depending on
the cone, the values of r ◦ f contained in its cached points remain the same, if
expressed relative to the unit circle within the plane.

Returning to the look-up table analogy, this derivation allows to evaluate
r ◦ f without any prior knowledge of the cone or the plane, on which the cone
is projected. Instead, r ◦ f is evaluated only once for the points of the generic
plane ρ. Later during forward projection of non-trivial cone onto a general Z-
orthogonal plane σ, the parameters of ρ are found by the presented calculation,
and a projection is constructed between σ and ρ. The value of (r ◦ f)(X) for
a point X ∈ σ is then obtained by interpolation of the points in ρ close to the
projection of X.

5.2.4 Batch Projection

To facilitate projection of a cone batch by the approach described in the previous
section, a specialized three-stage algorithm is used. While the first stage is only
performed once during initialization, the remaining two stages are repeated for
each cone of the batch.

The purpose of the first stage is to allocate an empty volume V , to which all
cones of the batch will eventually contribute. At that time, constant values of
r ◦ f are also pre-calculated. The second and the third stage of the algorithm
correspond to forward and back projection of a particular cone. In the second
stage, the projection mapping between ρ and σ is constructed and the cells of the
last slice S3(N3 − 1) of V are filled with interpolated values. In the third stage,
the cells of the remaining slices S3(N3 − 2),S3(N3 − 3), . . . ,S3(1),S3(0) are filled
from S3(N3 − 1). This approach is summarized in Algorithm 10.

5.2.5 Forward Mapping Construction

In Algorithm 10, the second stage performs forward projection in three steps:

1. The parameters θρ of the plane ρ are calculated from the projected cone.

51

Algorithm 10 Batch Projection

Parameters: cone batch B, response function r

1: V ← empty volume with slices Si(y) ▷ Stage 1
2: ρ← PrecalculateResponse(r)
3: for all (V1, V2, β) ∈ B do ▷ Stage 2
4: θρ ← FindPlaneParameters(V1, V2, β)
5: Pσ ← ForwardMapping(θρ, V1, V2)
6: Interpolate(V,S3(N3 − 1), ρ, Pσ)
7: for all 0 ≤ y ≤ N3 − 2 do ▷ Stage 3
8: P ′ ← BackMapping(y)
9: Interpolate(V,S3(y),S3(N3 − 1), P ′)

10: ReportVolume(V)

V1

ρ

σ

Figure 5.6: Perspective transformation used for forward projection.

2. The forward mapping Pσ is constructed between ρ and the target plane σ.

3. Points of ρ are projected onto σ by means of reverse interpolation using Pσ.

Given a Compton cone C(V1, V2, β), parameters θρ are derived by the geometric
calculation presented in Section 5.2.3. To simplify the calculations performed in
the second step, an alternate cone coordinate system is introduced, wherein the

origin is placed in V1 and the principal axes are rotated so that
−−→
V2V1 defines the

positive direction of the Z-axis. Transitioning between this coordinate system
and the camera coordinate system thus only requires application of translation
and rotation. Henceforth, for the clarity of distinction all bodies in the cone
coordinate system are denoted using prime notation (e.g. X ′), whereas bodies in
the camera coordinate system use regular notation (e.g. X).

The purpose of the cone coordinate system is to allow the construction of
a perspective projection (shown in Figure 5.6) defined by the viewpoint V ′

1 and
the projection plane ρ′. Note that in this interpretation, the parameter d of θρ

denotes the focal length of the projection.
The unknown projection mapping may be viewed as a matrix P , which maps

arbitrary points in the cone coordinate system onto ρ′. For practical purposes,
it is advantageous that P is derived in so-called homogeneous coordinates, which
introduce an additional fourth dimension into all coordinates. In the subsequent
calculations, point coordinates are thus normalized so that this extraneous di-
mension is equal to one, removing ambiguity due to the fact that multiple ho-

52

mogeneous points may represent the same2 point in space. If a normalized point
in space X ′ = (x′, y′, z′, 1) is projected3 onto ρ′ as X ′

ρ = (x′

ρ, y′

ρ, z′

ρ, z′

ρ/d), the
projection matrix P satisfies:

X ′

ρ = P ·X ′ (5.5)
⎡
⎢⎢⎢⨄

x′

ρ

y′

ρ

z′

ρ

z′

ρ/d

⋂
⎥⎥⎥⎦ = P ·

⎡
⎢⎢⎢⨄

x′

y′

z′

1

⋂
⎥⎥⎥⎦ (5.6)

One matrix P which is compliant with this constraint is given by:

P =

⎡
⎢⎢⎢⨄

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/d 0

⋂
⎥⎥⎥⎦ (5.7)

Finally, if PR and PT represent standard rotation and translation transforma-
tion matrices required to transition from the camera coordinate system to the
cone coordinate system, the projection of a point X expressed in homogeneous
coordinates of the camera coordinate system may be calculated as:

X ′

ρ = PPRPT
Pρ

·X (5.8)

Here, the matrix Pρ denotes the product of the three previously specified
matrices, which corresponds with the sought mapping. Furthermore, note that
the computation of Pρ is not dependent on X, allowing the implementation to
calculate the matrix only once prior to projecting all points of the given cone.

At this point, a curious reader might have noticed that while the aim of
the forward projection process is to project points of ρ onto σ, the derivation
described thus far allows the exact opposite – this is no coincidence. To minimize
interpolation errors, the projection process is implemented in reverse. One way
of understanding this optimization is to observe that in order to calculate a value
of a single point in σ, the implementation can reverse-project its location into ρ
to identify nearby points in ρ which contribute to the interpolation of its value.

5.2.6 Back Mapping Construction

In comparison with forward projection, the process of back projection is more
simple and computationally less intensive. Its goal is to project the values of
cells of the last slice S3(N3 − 1) onto an arbitrary slice S3(y) of the volume V
determined by y ∈ N0 such that 0 ≤ y ≤ N3− 2. Consistent with the notation of
the previous section, the cells of S3(N3−1) correspond with points in Z-orthogonal

2(x, y, z, 1) is the normalized representative of equivalence class ¶(kx, ky, kz, k) ♣ k ∈ R\¶0♢♢.
3Note that X ′

ρ normalizes to (x′

ρ/z′

ρ, y′

ρ/z′

ρ, d, 1) and therefore lies in ρ′.

53

plane σ. Similarly, the cells of S3(y) correspond with points in plane τ , which is
parallel to σ.

In the implementation, back projection is repeatedly executed by the third
stage of Algorithm 10. For each target slice, two steps are performed:

1. The back mapping Pσ is constructed between σ and the target plane τ .

2. Points of σ are projected onto τ by means of reverse interpolation using Pσ.

The process of calculation of Pσ mimics that of Pρ described in the previous
section. First, an alternate coordinate system is constructed (here denoted by
double prime notation, e.g. X ′′) by placing the cone apex V1 in the origin. For
this purpose, the previously calculated matrix PT is re-used. Since both planes τ
and σ already are Z-orthogonal, no further rotation is required in order to begin
the construction process.

By the Z-orthogonality of σ, the shortest distance dσ of σ from the origin is
obtained as the Z-coordinate of any of its points. In this context, the distance
dσ may be interpreted as the focal length of the constructed perspective. To
derive Pσ, two points in homogeneous coordinates of the alternate system are
considered.

Let X ′′ = (x′′, y′′, z′′, 1) be a normalized point of τ ′′, which is projected onto
σ′′ as X ′′

σ = (x′′

σ, y′′

σ, z′′

σ, z′′

σ/dσ). The projection matrix Q satisfies:

X ′′

σ = Q ·X ′′ (5.9)
⎡
⎢⎢⎢⨄

x′′

σ

y′′

σ

z′′

σ

z′′

σ/dσ

⋂
⎥⎥⎥⎦ = Q ·

⎡
⎢⎢⎢⨄

x′′

y′′

z′′

1

⋂
⎥⎥⎥⎦ (5.10)

Matrix Q is then analogous to P . It is defined as follows:

Q =

⎡
⎢⎢⎢⨄

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1/dσ 0

⋂
⎥⎥⎥⎦ (5.11)

The general projection matrix Pσ is obtained by transitioning from the camera
coordinate system into the alternate system, projecting by Q and transitioning
back. With this motivation, Pσ is given by:

X ′′

σ = QPT ·X (5.12)

Xσ = P −1
T QPT

Pσ

·X (5.13)

Here, note that it is not necessary to calculate inverse matrix of PT in order
to obtain P −1

T . Since PT is a standard translation matrix, it corresponds to a
vector w⃗. By the invertibility of translation, the matrix P −1

T is also a translation
matrix which corresponds to vector −w⃗.

54

Figure 5.7: Coordinate transformation, which motivates the use of interpolation.

This concludes the derivation of the projection matrix Pσ. Similarly to forward
projection, the value of each cell of τ is calculated by projecting its corresponding
point X onto σ. The coordinates of Xσ are then used by the interpolation method
to calculate the value of the cell.

5.3 Interpolation Methods

In each of the presented projection procedures, multiple coplanar points are pro-
jected onto a target plane. Much like in conventional two-dimensional images,
the input points are arranged in a uniform two-dimensional lattice and addressed
by their grid coordinates. In the target plane, the point projections are organized
in the same structure (e.g. cells of a volume slice).

After a projection mapping is constructed, the projection procedure is reduced
to the calculation of values corresponding to points of the target plane. For each
such point, the projection mapping supplies coordinates in the source plane, which
are projected onto its location. If these coordinates are integers, the specified
point in the target plane can be directly matched with a template point in the
source plane, which has the same value. Unfortunately, in reality that is often
not the case.

If it is not possible to find a template point, the coordinates supplied by the
projection mapping are either decimal or out of bounds (shown in Figure 5.7).
In the latter case, a constant zero value is chosen for the target point by the
implementation. In the former case, an interpolation method is used to calculate
the value of the target point.

In the context of projection, the task of an interpolation is formalized as
follows. Let T ⊆ R

2 be a finite set of template points in the source plane and
ν : T → R be a mapping which assigns values to template points. Let X ∈ R

2 be
a point in the source plane supplied by the projection mapping. Assuming non-
trivial conditions (X is within bounds and has at least one decimal coordinate),
the goal of interpolation method is to find the value assigned to X based on its
location and known values assigned to points in T .

The presented work contains two interpolation methods further described in
this section.

55

Y X

N

Figure 5.8: Nearest neighbor interpolation.

5.3.1 Nearest Neighbor Interpolation

Nearest neighbor interpolation is a simple method, which infers the value of X
from a single point of Y ∈ T , as if the coordinates of X were integral. However,
since Y is not fully determined by X, the method chooses a surrogate point
instead based on the distance from X. As the name of the method suggests, the
point Y is thus selected to be the nearest neighbor of X, which minimizes the
distance between X and Y .

Since T is a two-dimensional lattice, the search for the nearest neighbor can
be optimized to be performed in O(1) time. If X = (x, y), T may be constrained
to a set TC of candidate points as follows:

TC = T ∩N where (5.14)

N = ¶(⌊x⌋, ⌊y⌋), (⌊x⌋, ⌈y⌉), (⌈x⌉, ⌊y⌋), (⌈x⌉, ⌈y⌉)♢ (5.15)

Since ♣TC ♣ ≤ 4, at most 4 distance comparisons are required in order to identify
the nearest neighbor Y ∈ TC . This is illustrated in Figure 5.8.

5.3.2 Bilinear Interpolation

An example of a more complex interpolation method is presented by bilinear
interpolation [33]. Unlike nearest neighbor interpolation, this method does not
infer the value of X directly from a single point in T . Instead, the method
combines values of nearby points by means of conventional linear interpolation.

The points used to estimate the value of X = (x, y) are the points of the set
N defined in the previous section. For the sake of clarity, these points may be
labeled ¶YT L, YBL, YT R, YBR♢, where the letters in subscript abbreviate top, left,
bottom and right.

Linear interpolation is first performed in the direction of the X-axis. This
results in two values, which may be attributed to imaginary points YT = (x, ⌊y⌋)
and YB = (x, ⌈y⌉) (shown in Figure 5.9). Their values are given by:

56

YTL

X

YTR

YBL YBRYB

YT

Figure 5.9: Bilinear interpolation.

ν(YT) =
⌈x⌉ − x

⌈x⌉ − ⌊x⌋ · ν(YT L) +
x− ⌊x⌋
⌈x⌉ − ⌊x⌋ · ν(YT R) (5.16)

ν(YB) =
⌈x⌉ − x

⌈x⌉ − ⌊x⌋ · ν(YBL) +
x− ⌊x⌋
⌈x⌉ − ⌊x⌋ · ν(YBR) (5.17)

Next, linear interpolation is performed in the direction of the Y-axis between
points YT and YB. This yields the value for X as follows:

ν(X) =
⌈y⌉ − y

⌈y⌉ − ⌊y⌋ · ν(YB) +
y − ⌊y⌋
⌈y⌉ − ⌊y⌋ · ν(YT) (5.18)

= (⌈x⌉ − ⌊x⌋)−1(⌈y⌉ − ⌊y⌋)−1 (5.19)

·
[
⌈x⌉ − x x− ⌊x⌋

] ⎟ν(YBL) ν(YT L)
ν(YBR) ν(YT R)

] ⎟
⌈y⌉ − y
y − ⌊y⌋

]
(5.20)

Here, the interpolated value of X is given explicitly and can thus be obtained
in O(1) time, similarly to the nearest neighbor interpolation.

5.4 Implementation Notes

In order to improve performance and precision of the volume reconstruction
process, the presented implementation includes various minor optimizations. This
section describes the most notable changes.

5.4.1 Subsampling

The precision of the volume reconstruction process is in part determined by the
density of discretization of the reconstructed volume V . While this density is
specified as cell counts N1, N2 and N3, the numbers of lattice points used in
projection source planes ρ and σ are usually chosen differently.

To minimize interpolation error, both lattices are structured to contain a
greater number of points than the dimension of the volume. This results in sub-
sampling during the projection process, leading to more accurate reconstruction.

57

V1

Back
Projection

Forward
Projection

ρ

σ

Figure 5.10: Reconstructed volume V and projection planes ρ and σ.

Consequently, due to the change in lattice point count, the plane σ is not
considered to be a part of the volume. Instead, the plane is positioned just
behind the last slice S3(N3 − 1) (as shown in Figure 5.10), which is calculated
as a result of back projection along with the remaining slices. Among others,
this change allows to extend the range of points in σ to a larger neighborhood,
avoiding any possible problems due to cropped cone projections.

5.4.2 Parallelization

The presented series of algorithms is compatible with optimization by means
of data parallelization. Since the presented implementation already uses multi-
threaded computing architecture for simultaneous processing of detector outputs,
this optimization is not integrated. However, for use in certain applications, its
basic notion is described by this section.

To reconstruct a cone batch using parallelized computation, the same algo-
rithm may be used. However, the volume V is allocated privately for each pro-
cessing unit. Cones are divided uniformly among units, and each unit performs
forward and back projections for its assigned cones sequentially. The only major
difference is that the projected cones are saved into the local copy of V owned
by the processing unit to avoid writing into shared memory. At the end of the
calculation, local copies of V are aggregated into one volume by means of additive
reduce operation.

If wide vector registers are available in the processing units, multiplicative
speedup may be achieved by re-ordering stages 2 and 3 of Algorithm 10. If the
vector register width is k and a sufficient amount of memory is available, the unit
may then process k cones simultaneously.

58

Horizontal
Flip

Vertical
Flip

Horizontal
& Vertical

Flip

Figure 5.11: Point symmetry used to reduce memory requirements.

5.4.3 Symmetry Compression

In stage 1 of Algorithm 10, the values of the mapping r ◦ f are pre-calculated
for a lattice of points in ρ. By the definition of ρ, the values of f exhibit point

symmetry with respect to the intersection point of ρ and the cone axis
−−→
V2V1

placed in V1. This relationship is utilized to decrease memory requirements of
the interpolation look-up table.

The plane ρ is divided into four quadrants, split by the point of symmetry.
Of these four quadrants, it is necessary to calculate and store values of points in
only one quadrant. By the symmetry, the points of the remaining quadrants may
be matched with those of the first quadrant by horizontal and vertical flips. This
is indicated in Figure 5.11.

59

6. Evaluation

To show the viability of the implementation, selected parts of the work are pre-
sented in this chapter. Due to lack of a sufficient amount of ground truth data,
it is not suggested that these results lead to qualitative comparison with other
state-of-art technologies. Instead, the motivation is to simply demonstrate the
operation of the system under simulated conditions.

6.1 Performance Experiments

In the first set of experiments, the performance of various parts of the system
is evaluated. The purpose of this evaluation is to investigate the performance
properties of the components responsible for sequential processing of Timepix3
detector data with consideration for possibly high volume of information pro-
duced.

6.1.1 Rate Estimation

In order to relate the results of this experiment with the parameters of the hard-
ware components, it is first necessary to estimate the rate of information generated
by the sensing equipment.

The rate of measured information produced by pixel detectors is usually ex-
pressed in hits (activated pixels) per second. Naturally, this quantity is only given
as a theoretical upper bound determined by the limitations of readout electron-
ics. The actual observed hit rate heavily depends on the radiation environment
around the detector at the time of measurement. However, the upper bound
guarantees that hit rate increases along with particle flux only up to some point,
at which the detector may be considered fully saturated.

In Timepix3, the upper bound given by authors is 40 · 106 hits per second
for a square centimeter of sensor material [1]. The area of a conventional 256×
256 detector with 55 µm pitch is (256 · 55 µm)2 ≈ 1.98 cm2. This amounts to
approximately 79.3 · 106 hits per second.

When controlling a Timepix3 detector by a Katherine readout, the maximum
hit rate is additionally limited by the throughput of the Ethernet bus, which
is used to communicate the measured data, and the used data encoding [28].
According to its authors, the largest hit rate is thereby constrained to 16 · 106

hits per second [25]. For the purposes of this work, this rate may thus be viewed
as the worst-case scenario.

However, as previously mentioned, the maximum hit rate merely describes the
capability of the detector and the readout to convey the measured information
to the operator. In practical applications, the actual observed hit rate may be
considerably smaller depending on the particle flux of the measured environment.
This motivates the definition of another quantity used to describe the rate of
information – the number of events (observed clusters) per second. In this context,
an event is regarded to be an interaction of a single incident charged particle with
the sensor material. Trivially, events may thus consist of multiple hits, depending

60

on the particle species and trajectory, and the event rate is always bounded from
the top by the hit rate.

In SPECT applications, the event rate varies based on the type of the used
radioisotope. Assuming that only a fraction of the γ-rays emitted by the source
reaches the Timepix3 detector, and only a limited fraction of those interact with
its sensor material, the observed event rate may be disproportionately smaller
in comparison to the rate of emission. In the prospective applications of the
presented system, the event rate is therefore expected to fluctuate between 105

and 106 events per second.

6.1.2 Task Description

The goal of the performance evaluation task is to determine the information
rate, at which the presented system is capable of processing measured data. If
the system is able to process data in real time for the purposes of the specified
applications, the measured rate is expected fall into the range estimated in the
previous section.

The tested components are selected stages of the producer/consumer chain
described in Section 4.2. Since stages are applied sequentially to incoming data
and the execution of each stage requires the output of the previous one, their
evaluation is conducted as follows.

A Timepix3 detector output is simulated by re-playing a previously recorded
acquisition from an ASCII file. Unlike a real detector, the simulation passes pixels
to the chain as fast as possible, allowing to measure the smallest time required
by the chain to process the entire file. Since the number of hits and events in the
file is known, the time measurement gives a sufficient amount of information in
order to estimate the rate of processing.

To investigate the time complexity of the individual stages of the chain, the
measurement is started with empty chain, and repeated multiple times, adding a
single stage to the chain each time. For the purposes of this task, four stages are
evaluated:

1. Raw Pixel Reading

2. Calibration Function Evaluation

3. Monotonic Pixel Buffering

4. Spatial & Temporal Clustering

While the first stage serves as a control measurement, capturing only the
complexity of the simulator, the remaining three stages contain the main logic of
the chain.

To avoid bias due to the non-deterministic nature of preemptive scheduling,
the entire experiment is repeated 10 times, and the presented results are aggre-
gated as mean values over all attempts.

61

6.1.3 Results

The evaluation was performed on a computer with 2.7 GHz Intel Core i5 processor
and 8 GB DDR3 RAM. The aggregated results are displayed in Table 6.1.

Last Stage Time Hit Rate Event Rate
Raw Pixel Reading 1.168 s 16.98 · 106 px/s 1.78 · 106 ev/s
Calibration Function Evaluation 1.161 s 17.08 · 106 px/s 1.79 · 106 ev/s
Monotonic Pixel Buffering 3.153 s 6.31 · 106 px/s 0.66 · 106 ev/s
Spatial & Temporal Clustering 13.126 s 1.51 · 106 px/s 0.16 · 106 ev/s

Table 6.1: Mean results of the performance experiments.

Consistent with the initial expectations, computation time seems to increase
along with the length of the processing chain. While calibration function evalua-
tion seems to consume a negligible amount of processing time in comparison with
raw pixel processing, the remaining two stages of the chain appear to produce a
multiplicative slowdown of factors two and four, respectively. This observation
seems to match the relative increase in complexity of algorithms executed at each
stage.

Overall, the observed hit rates fall into the expected range for SPECT ap-
plications, suggesting that the presented system is a viable choice for processing
measurements in a real time setting. Nevertheless, in the established worst-case
scenario, the system is still considered prone to data congestion problems. This
warrants the use of data rate safeguards and further research into the optimization
of the presented work.

6.2 Interpolation Experiments

In the second set of experiments, the accuracy and the performance of the imple-
mented interpolation methods is tracked in an isolated setting. While interpola-
tion is usually performed multiple times during volume reconstruction, a single
simplified interpolation task was selected in order to provide a better insight into
the behavior of tested methods.

6.2.1 Task Description

The interpolation task closely models the one solved during forward projection
of a cone onto a target plane. In it, a known mapping r ◦ f is first evaluated in a
uniform lattice of N×N points from domain D. The interpolation then attempts
to use values of these points to estimate values r ◦ f for arbitrary points in D
without having to explicitly evaluate r ◦ f .

For this set of experiments, D was chosen to be the two-dimensional interval
[−1.5, 1.5]2, and the mapping r ◦ f was chosen to correspond with the definitions
listed in Section 5.2.3. Since f describes a unit circle, it is defined as:

f(x, y) = x2 + y2 − 1 (6.1)

62

−1 0 1

−1

0

1

Figure 6.1: Values of the mapping r ◦ f prior to interpolation.

The response function r is an exponential defined for a real parameter σ > 0:

r(x) = exp(−x2/σ2) (6.2)

The resulting mapping r ◦f (shown in Figure 6.1) returns values in [0, 1] such
that the points close to the circle receive large values, and points far from the
circle receive small values. Furthermore, with increasing distance from the circle,
the mapped values decrease exponentially.

6.2.2 Parameter Configurations

In the experiments, two previously introduced interpolation methods are evalu-
ated:

1. nearest-neighbor interpolation,

2. bilinear interpolation

To illustrate the behavior of both methods under different circumstances, both
methods are evaluated for input lattices of various densities N . This choice is
motivated by the expectation that providing an interpolation method with more
sample points should have a desirable effect on the output quality.

In all experiments, the real parameter σ of the response function r is set to√
0.1.

6.2.3 Visual Demonstration

To produce visual demonstration of the interpolation process, images were pro-
duced by both tested interpolation methods. This corresponds with evaluation
of the interpolation methods on a simple 50× 50 point lattice, which represents
individual pixels of the target image.

By decreasing values of the source lattice density N while maintaining the
dimensions of the image, the information available as a basis for interpolation
was incrementally reduced, possibly revealing various artifacts and undesirable
patterns.

63

−1 0 1

−1
0
1

S
o
u
rc
e

N = 40

−1 0 1

−1
0
1

N = 30

−1 0 1

−1
0
1

N = 20

−1 0 1

−1
0
1

N = 10

−1 0 1

−1
0
1

N
ea
re
st

N
ei
g
h
b
o
r

−1 0 1

−1
0
1

−1 0 1

−1
0
1

−1 0 1

−1
0
1

−1 0 1

−1
0
1

B
il
in
ea
r

−1 0 1

−1
0
1

−1 0 1

−1
0
1

−1 0 1

−1
0
1

Figure 6.2: Example outputs of interpolation methods for various values of N .

The results (displayed in Figure 6.2) show that both methods seem to have
successfully completed the interpolation task, creating images resembling the one
shown in Figure 6.1.

In accordance with the initial expectation, the quality of the interpolated
image seems to increase for larger values of N . For the particular circular shape
created by r ◦ f , bilinear interpolation appears to have distorted the image less
than nearest-neighbor interpolation.

6.2.4 Evaluation by Random Sampling

Motivated by the results presented in the previous section, the second experiment
was designed to further investigate the dependence of interpolation output quality
on the source lattice density N .

In the experiment, interpolation methods were executed on sets of points,
independently sampled from D at random. For each point, the value of r ◦ f
was first evaluated directly from its explicit definition, and then estimated by the
evaluated interpolation method. The interpolated value ŷ was compared with the
value y yielded by direct evaluation.

The quality of output is quantified by means of root-mean-square error, which
is conventionally defined for values yi and ŷi as follows:

RMSE(y) =

√ 1

n

n∑

i=1

(yi − ŷi)2 (6.3)

In addition to the interpolation error, the wall time of evaluation of ŷi was
tracked. To achieve sound measurements, the time of evaluation of the entire
point set was measured, and the set size was chosen to be 106.

The experiments were performed for various densities N ∈ ¶20, 40, . . . , 1000♢.
In order to achieve comparability of results, the same point set was evaluated

64

0 200 400 600 800 1,000

0

2 · 10−2

4 · 10−2

6 · 10−2

8 · 10−2

0.1

N

M
ea
n
R
M
S
E

Nearest Neighbors
Bilinear

0 200 400 600 800 1,000

150

200

250

300

350

N

M
ea
n
T
im

e
[m

s]

Nearest Neighbors
Bilinear

Figure 6.3: Results of the interpolation experiments.

in all experiments. To avoid bias due to random sampling, 10 independently
sampled random point sets were used, and mean values were calculated across all
sets.

After the experiments were performed, their outputs were successfully exam-
ined and aggregated. The results (shown in 6.3) confirm the prior expectation,
indicating that in both cases, the interpolation error decreases as the number N of
input lattice points increases. Furthermore, in accordance with the visual demon-
stration, bilinear interpolation seems to consistently outperform nearest-neighbor
interpolation, achieving results of significantly lower error at all times.

Unlike interpolation error, the mean time of the computation was burdened by
noise, presumably due to the non-deterministic nature of preemptive scheduling.
Still, a discernible pattern may be spotted in the plots. The mean calculation
time seems to consistently increase along with N . Moreover, the calculation
time of nearest neighbors seems to increase at a slower rate than that of bilinear
interpolation.

6.2.5 Discussion

Since the definition of both interpolation methods does not include any explicit
dependence of their time complexity on N , it may be speculated that the observed
relationship is due to the underlying implementation of the memory architecture,
which may not always offer O(1) read access. This theory assumes a conven-
tional multi-tier cache hierarchy, where read latencies are small for tiers which
are physically closer to the processing unit, and increase in subsequent tiers.

Since the points of evaluation are chosen independently at random, the mem-
ory transfers during testing may be viewed as random reads. For small N , a
significant fraction of the read values fits in the cache. This leads to more cache
hits during interpolation, overall yielding low memory latency. Since the proba-
bility of a cache miss increases along with N , the expected read latency is also
related to the value of N in the same way. In aggregation, this may be considered
to be a plausible explanation for the observed increasing trend.

Curiously, this theory may also be used to explain why nearest-neighbor in-
terpolation seems to outperform bilinear interpolation in evaluation time. While
both methods are analogous in the sense that they consider four surrounding

65

points, their actual memory read counts differ. Whereas nearest-neighbor inter-
polation requires only one value corresponding to the selected nearest neighbor,
bilinear interpolation always performs exactly four reads, and then combines the
retrieved values with various weights. Since the bilinear method performs four
times more reads than the nearest-neighbor method, any influence of N on the
read latency is amplified, leading to a more prominent slope.

In the observed results, points of discontinuity may be consistently identi-
fied in evaluation times of both methods. In the presented theory, these points
may correspond with transitioning points between individual tiers of the cache
hierarchy.

6.3 Point Source Experiments

The third set of experiments demonstrates the operation of the volume recon-
struction process on a simple point source. In a practical experimental setting,
this would correspond to emissions originating from a source body (e.g. a ra-
dioactive element), observed through a collimator.

6.3.1 Task Description

In order to evaluate the volume reconstruction component independently of the
readout component, the Compton events are simulated artificially at random.
First, the volume V is defined as a product of intervals [x0, x1]× [y0, y1]× [z0, z1].
The volume is then discretized into N cells in each dimension, yielding N3 cells
in total. In the specified domain, the location M of the emission source is deter-
mined. This location serves as a basis for subsequent randomized generation of
Compton events.

To produce a random Compton event related to the specified emission source
M , parameters of the corresponding Compton cone C(V1, V2, β) are generated
from specified prior distributions as follows. First, an arbitrary location repre-
senting the cone apex V1 is selected. After that, an arbitrary vector representing

the cone axis −−−→V1V2 is chosen, yielding the location of the point V2. Finally, the

angle β is calculated as the angle between vectors
−−→
V1V2 and

−−→
V1M :

cos β =

−−→
V1V2 ·

−−→
V1M

∥−−→V1V2∥ ∥
−−→
V1M∥

(6.4)

By the derivation of the described method it holds that the selected source
location M lies in the mantle of the constructed cone. The set of multiple such
cones may then be viewed as simulated Compton events corresponding to the
specified emission source.

The experiments are motivated by a simple notion of verification. If the
presented volume reconstruction method is implemented correctly, the cells in
the vicinity of M are expected to be assigned large values by the mapping r ◦ f .
Furthermore, in a volume aggregated for a sufficient number of non-trivial events,
the global maximum is expected to determine the cell containing the point M .
The values of cells adjacent to M may also provide an insight into the spatial
resolution of the volume reconstruction method.

66

6.3.2 Parameter Configurations

For the purposes of the performed experiments, the volume V is defined as a cube
of side equal to 20 pixels. The values of the interval bounds are determined by
the following parameters:

x0 = −10, y0 = −10, z0 = −5
x1 = 10, y1 = 10, z1 = 0

(6.5)

The number of cells in each dimension of the volume is set to N = 300, yielding
N3 = 27 · 106 cells in total. Using conventional double precision floating-point
number representation, this quantity corresponds to approximately 216 MB of
memory. Note that since the volume is a cube and each its dimension contains
the same number of cells N , each cell is consequently also a cube.

The mapping f and response function r are defined consistently with inter-
polation experiments by Expressions 6.1 and 6.2, respectively. The value of the
smearing parameter is set to σ =

√
0.005.

Since it has proven to achieve more accurate results in the previous set of
experiments, bilinear interpolation is used for all projections. The plane ρ is
discretized into a uniform lattice of 100 × 100 points. Furthermore, the plane
σ is positioned at z = 20. In order to avoid propagation of errors caused by
cropped forward projections of cones with more extreme directions, the point
lattice of σ is extended by factor of ten in both dimensions. To compensate
for possibly increased interpolation errors, the plane is subsampled so that the
uniform distance between points matches that of the rest of the volume.

The simulated emission source is placed at M = [4,−2, 8]. In order to mimic
a stack of Timepix3 detectors arranged in telescopic configuration, the prior dis-
tribution for the apex V1 of the simulated cones is restricted to [−2, 2]× [−2, 2]×
[−5, 0].

6.3.3 Single Event Projection

The goal of the reconstruction of the first event set is to present the results of the
implemented forward and back projection algorithms. For the reasons of clarity,
only one simulated event was included in the set. The results are expected to
contain a singular cone surface projected into the volume.

The produced volume is displayed in Figure 6.4. For better visualization,
multiple views of the volume are included, and in addition to the to the volume,
three cuboid wireframes are plotted.

Volume Wireframe This wireframe is the largest of the three bodies. It de-
scribes the boundaries of the reconstructed volume V .

Emission Source Wireframe This wireframe is completely contained by the
volume wireframe. Its center marks the point M of emission within V .

Apex Prior Distribution Wireframe This wireframe describes the bound-
aries, which constrain the prior distribution, from which the cone apex
V1 is sampled. It is located outside, yet adjacent to the volume wireframe.
It may be viewed as a plausible location of the detection unit.

67

The observations of the volume seem to confirm all prior expectations. The
plots show apparently continuous curved surface, consistent with a cone mantle.
In an orthogonal cut, the surface resembles the two-dimensional circular pattern
produced by the mapping r ◦ f shown in Figure 6.1.

The surface is divided into two separate components, which would presumably
connect at the randomly chosen apex V1 located outside the volume. Finally,
the simulated emission source M seems to be directly intersected by one of the
components of the described surface. Apart from the surface itself, no undesirable
artifacts appear to be present within the volume.

In summary, the projection of a single Compton cone has fulfilled all expec-
tations, demonstrating the correctness of both derived projection methods.

6.3.4 Localization Demonstration

Motivated by the results of the previous experiment, the reconstruction of the
second simulated event set aims to fully localize the emission source M based
on the intersection of projected conic surfaces. For that reason, 5 · 103 events
corresponding to the specified point source were simulated. After repeating the
same projection procedure for every cone of the set and aggregating cell values
by additive reduce operation, the results are expected to contain a single cluster
located in a close vicinity of the point M .

The results of the experiment are plotted in Figure 6.5. For comparison with
the previous experiment, the same camera locations and orientations are used.
However, note that in order to ensure that the majority of the plotted volume
is transparent, the range of the color map has been shifted, excluding cells with
small values.

Similarly to the previous experiment, the results are in close agreement with
the stated expectations. In the volume, the cells maximizing aggregated values
form a singular cluster around the emission source M . In addition, cell values
seem to increase exponentially when approaching M in axis-orthogonal cuts.

The described cluster does not appear to have a discrete boundary. Instead,
cell values seem to rather continuously increase towards its center, where the
maximum is located. Curiously, the derivative of the cell value appears to be
significantly anisotropic. This may be observed for instance when comparing
various axis-orthogonal views, thresholded at the same value. In particular, the
smearing in the direction of the X- and Y-axis seems to be less prevalent than
smearing in the direction of the Z-axis. This suggests a possible relative difference
in localization accuracy between individual dimensions.

Overall, the experiment has successfully demonstrated the viability of the
presented volume reconstruction method as means of emission source localization
under ideal simulated conditions.

68

(a) Superior view. (b) Lateral view.

(c) Anterior view. (d) Perspective view.

Figure 6.4: Reconstructed volume corresponding to a single event (various views).

69

(a) Superior view. (b) Lateral view.

(c) Anterior view. (d) Perspective view.

Figure 6.5: Reconstructed volume corresponding to 5 ·103 events (various views).

70

7. Conclusion

The goal of the thesis was to design and implement a software system capable
of three-dimensional localization of γ-ray sources based on Timepix3 detectors.
This goal has been successfully accomplished.

For detection of γ-rays, multiple Timepix3 detectors were arranged in a tele-
scopic configuration, creating a Compton camera. In order to efficiently commu-
nicate with detectors, it was decided that a semi-autonomous readout device will
relay application commands and aggregate detector outputs. For this purpose,
the recently developed Katherine readout was selected.

To remotely control the Katherine readout by a proprietary UDP-based proto-
col, a novel C hardware library was developed and tested. The library is capable
of issuing commands to the readout, inquiring its state and processing aggregated
detector outputs in a real-time setting. Furthermore, the library is designed to
operate independently of the rest of the system, and thus be redistributable for
various other applications.

To recognize instances of Compton scattering in detector outputs, a pro-
ducer/consumer chain of data processing algorithms was implemented with ex-
plicit consideration for possibly high volume of retrieved information. The chain
consists of filter cascades, various calibration functions and morphological aggre-
gation of spatially adjacent events. To optimize its performance with multiple
detectors, the chain is divided into two components, where the first component
is replicated for each detector, while the second component is common to all de-
tectors. This allows a considerable speedup of operation in multi-threaded pro-
cessing environment, where the first components of the chain may be executed
simultaneously in parallel, independently of each other.

To perform three-dimensional γ-ray source localization based on the outputs of
the processing chain, a conventional discretized approach to tomographic volume
reconstruction was chosen. In the implemented algorithm, each observed Comp-
ton event is assigned a three-dimensional conic surface containing the unknown
location of the emission source. Having aggregated a sufficiently large number of
events, the most frequently intersected cells of the volume are identified. To cal-
culate cell values related to intersection counts, a variant of the well-known back
projection algorithm was implemented. To improve its scalability with respect to
volume size, the algorithm was divided into more computationally intensive for-
ward projection, which is performed only once for each event, and a less complex
back projection, which is executed multiple times. For each of these projections,
a corresponding perspective mapping was algebraically derived. In order to avoid
evaluation of non-linear response function in each cell of the volume, two common
interpolation methods were implemented.

Due to manufacturing delays, it was not possible to evaluate the presented
system as a whole with a real hardware assembly at the time of writing. For that
reason, its individual components were evaluated instead. The hardware library
was successfully tested with a singular Katherine readout device. The behavior
of the implemented interpolation functions was examined for various counts of
sampled points. Lastly, the correctness of the derived perspective projections was
demonstrated on artificially generated conic surfaces. The results indicate that

71

under ideal simulated conditions, the presented implementation of back projection
algorithm is a viable localization method of γ-ray point sources.

7.1 Future Research

The presented work offers many opportunities for further investigation and im-
provement. Since Timepix3 assemblies are theoretically capable of producing up
to 80 million detected events per second, a natural avenue of exploration presents
itself in the field of performance optimization of all presented algorithms. With
greater processing speeds, stronger γ-ray sources may be observed with the de-
vice, reducing overall scan time.

On the hardware level, utilization of wide vector registers or modern many-
core architectures such as GPUs may yield a significant speedup of data process-
ing. In addition, a considerable performance improvement may be obtained by
employing iterative tomographic techniques, which repeatedly trim the volume
of empty cells, refine the reconstruction, and refocus on the remaining regions.

Further work is also required in practical integration of the presented tech-
nology with industrial SPECT systems. The experimental nature of the pro-
totype assembly warrants implementation of fault tolerant behaviors and user
safeguards protecting against adversarial configurations, which may lead to un-
desirable states. In addition, a qualitative comparison study of the γ-ray source
localization accuracy is necessary before integrating the system with any com-
mercial solutions.

In addition to improvements in the software solution, optimizations of the
hardware configuration may also be explored. For instance, to improve local-
ization accuracy, the detection unit may be positioned at various angles with
respect to the scanned object, or mounted on a ring frame equipped with actua-
tors. Consequently, more sophisticated tomographic algorithms may be applied
to efficiently correlate multiple projections of the same body in the volume re-
construction phase.

Finally, the visualization of the reconstructed volumes also warrants further
research. In commercial volume visualization tools, the user is conventionally
presented with the results in the form of parallel slices or an interactive three-
dimensional model. Recent technological advances have however opened possi-
bilities of efficiently rendering volume representations in mobile devices, such as
tablets with augmented reality capabilities or virtual reality headsets like Ocu-
lus Rift1. Thanks to their flexibility and portability, such devices may have the
potential for creating a more comprehensible user experience.

1https://www.oculus.com/rift/

72

https://www.oculus.com/rift/

Bibliography

[1] T Poikela, J Plosila, T Westerlund, M Campbell, M De Gaspari, X Llopart,
V Gromov, R Kluit, M van Beuzekom, F Zappon, et al. Timepix3: a 65K
channel hybrid pixel readout chip with simultaneous ToA/ToT and sparse
readout. Journal of instrumentation, 9(05):C05013, 2014.

[2] Jan Jakubek. Precise energy calibration of pixel detector working in time-
over-threshold mode. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
633:S262–S266, 2011.

[3] AB Newberg and A Alavi. Single photon emission computed tomography
(SPECT): Technique. New Encyclopedia of Neuroscience, 2008.

[4] Staffan Jacobsson Svärd. A tomographic measurement technique for irra-
diated nuclear fuel assemblies. PhD thesis, Acta Universitatis Upsaliensis,
2004.

[5] O Gal, C Izac, F Jean, F Lainé, C Lévêque, and A Nguyen. Cartogam–
a portable gamma camera for remote localisation of radioactive sources in
nuclear facilities. Nuclear Instruments and Methods in Physics Research
Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,
460(1):138–145, 2001.

[6] Frédérick Carrel, Roger Abou Khalil, Sébastien Colas, Daniel de Toro, Gilles
Ferrand, Emmanuelle Gaillard-Lecanu, Mehdi Gmar, Daniel Hameau, Sylvie
Jahan, Frédéric Lainé, et al. Gampix: A new gamma imaging system for ra-
diological safety and homeland security purposes. In Nuclear Science Sympo-
sium and Medical Imaging Conference (NSS/MIC), 2011 IEEE, pages 4739–
4744. IEEE, 2011.

[7] Apostolos Kantzas, Kelly Hamilton, Taghi Zarabi, Amit Bhargava, Ian
Wright, Glen Brook, and Jinwen Chen. Application of gamma camera imag-
ing and SPECT systems in chemical processes. Chemical Engineering Jour-
nal, 77(1-2):19–25, 2000.

[8] RW Todd, JM Nightingale, and DB Everett. A proposed γ camera. Nature,
251(5471):132, 1974.

[9] DB Everett, JS Fleming, RW Todd, and JM Nightingale. Gamma-radiation
imaging system based on the compton effect. In Proceedings of the Institution
of Electrical Engineers, volume 124, pages 995–1000. IET, 1977.

[10] Hal O Anger. A new instrument for mapping gamma-ray emitters. Biology
and Medicine Quarterly Report UCRL, 3653:38, 1957.

[11] Manbir Singh and David Doria. Single photon imaging with electronic col-
limation. IEEE Transactions on Nuclear Science, 32(1):843–847, 1985.

73

[12] Manbir Singh and R Ricardo Brechner. Experimental test-object study of
electronically collimated SPECT. Journal of Nuclear Medicine, 31(2):178–
186, 1990.

[13] JE Gormley, N Clinthorne, GF Knoll, JW LeBlanc, WL Rogers, DK Wehe,
and SJ Wilderman. Effects of shared charge collection on compton cam-
era performance using pixellated ge arrays. In JOURNAL OF NUCLEAR
MEDICINE, volume 37, pages 745–745. SOC NUCLEAR MEDICINE INC
1850 SAMUEL MORSE DR, RESTON, VA 22090-5316, 1996.

[14] JW LeBlanc, NH Clinthorne, C Hua, WL Rogers, DK Wehe, and SJ Wilder-
man. A compton camera for nuclear medicine applications using 113min1.
Nuclear Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment, 422(1-3):735–739,
1999.

[15] Anne C Sauve, AO Hero, W Leslie Rogers, SJ Wilderman, and
NH Clinthorne. 3d image reconstruction for a compton SPECT camera
model. IEEE Transactions on Nuclear Science, 46(6):2075–2084, 1999.

[16] Jerome Edward Gormley, WL Rogers, NH Clinthorne, DK Wehe, and
GF Knoll. Experimental comparison of mechanical and electronic gamma-ray
collimation. Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment, 397(2-
3):440–447, 1997.

[17] Li Han, W Leslie Rogers, Sam S Huh, and Neal Clinthorne. Statistical per-
formance evaluation and comparison of a compton medical imaging system
and a collimated anger camera for higher energy photon imaging. Physics
in Medicine & Biology, 53(24):7029, 2008.

[18] Benedikt Bergmann, Martin Pichotka, Stanislav Pospisil, Jiri Vycpalek, Petr
Burian, Pavel Broulim, and Jan Jakubek. 3D track reconstruction capability
of a silicon hybrid active pixel detector. The European Physical Journal C,
77(6):421, 2017.

[19] Xavier Lojacono. Image reconstruction for Compton camera with application
to hadrontherapy. Theses, INSA de Lyon, November 2013.

[20] Arthur H Compton. A quantum theory of the scattering of x-rays by light
elements. Physical review, 21(5):483, 1923.

[21] Arthur H Compton. The spectrum of scattered x-rays. Physical Review,
22(5):409, 1923.

[22] The Medipix Collaboration. The Medipix Chips and Collabora-
tions: from medical imaging to space dosimetry., 2018. https:

//kt.cern/success-stories/medipix-chips-and-collaborations-

medical-imaging-space-dosimetry [Accessed: 17/02/2018].

74

https://kt.cern/success-stories/medipix-chips-and-collaborations-medical-imaging-space-dosimetry
https://kt.cern/success-stories/medipix-chips-and-collaborations-medical-imaging-space-dosimetry
https://kt.cern/success-stories/medipix-chips-and-collaborations-medical-imaging-space-dosimetry

[23] Jakub Begera. Calibration and control software for network of particle pixel
detectors within the Atlas experiment at the LHC at CERN. Bachelor’s the-
sis, Faculty of Electrical Engineering, Czech Technical University in Prague,
2016.

[24] D Turecek, J Jakubek, and P Soukup. Usb 3.0 readout and time-walk
correction method for timepix3 detector. Journal of Instrumentation,
11(12):C12065, 2016.

[25] P Burian, P Brouĺım, M Jára, V Georgiev, and B Bergmann. Katherine: eth-
ernet embedded readout interface for Timepix3. Journal of Instrumentation,
12(11):C11001, 2017.

[26] V Kraus, Michael Holik, Jan Jakubek, M Kroupa, P Soukup, and Z Vykydal.
FITPix—fast interface for Timepix pixel detectors. Journal of Instrumenta-
tion, 6(01):C01079, 2011.

[27] J Visser, M van Beuzekom, Henk Boterenbrood, B van der Heijden,
JI Muñoz, S Kulis, B Munneke, and F Schreuder. SPIDR: a read-out system
for medipix3 & timepix3. Journal of Instrumentation, 10(12):C12028, 2015.

[28] Katherine: Command Set, November 2017.

[29] POSIX Programmer’s Manual, April 2013.

[30] Cameron. A fast lock-free queue for C++, 2013. http://moodycamel.com/

blog/2013/a-fast-lock-free-queue-for-c++ [Accessed: 19/03/2018].

[31] Dan E Dudgeon and Russell M Mersereau. Multidimensional Digital Signal
Processing Prentice-Hall Signal Processing Series. Prentice-Hall, Englewood
Cliffs, NJ, 1984.

[32] Gabor T Herman. Fundamentals of computerized tomography: image recon-
struction from projections. Springer Science & Business Media, 2009.

[33] Earl J Kirkland. Bilinear interpolation. In Advanced Computing in Electron
Microscopy, pages 261–263. Springer, 2010.

[34] T Holy, E Heijne, J Jakubek, S Pospisil, J Uher, and Z Vykydal. Pat-
tern recognition of tracks induced by individual quanta of ionizing radiation
in medipix2 silicon detector. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment, 591(1):287–290, 2008.

75

http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++
http://moodycamel.com/blog/2013/a-fast-lock-free-queue-for-c++

List of Figures

2.1 Compton scattering and its use in source localization [19]. 8
2.2 Timepix3 hybrid detector assembly. 11
2.3 Schema of Timepix3 signals during a single event [1]. The red verti-

cal lines mark the upward and downward crossing of the threshold.
The first upward edge of the primary clock signal after event start
is marked by a blue line. 12

2.4 The dependence of ToT counter value on the deposited energy. . . 13
2.5 Katherine readout [25]. 15

3.1 Expected hardware setup used in measuring ionizing radiation with
Timepix3 detectors and Katherine readout. 17

3.2 Communication diagram showing typical operation of Katherine
readout. 18

3.3 Architecture of library components and their communication rela-
tionships (indicated by arrows). 20

4.1 Diagram of the proposed Compton camera setup. 26
4.2 Detector depth di and thickness ti. 28
4.3 Volume offsets. 29
4.4 Processing chain corresponding to a readout thread. 30
4.5 Examples of pixel 4-neighborhood and 8-neighborhood. 33
4.6 Data structures used by the generalized clustering algorithm. . . . 35
4.7 Data flow between readout threads and the Compton event thread. 39

5.1 The cell grid, which is a result of the discretization process. Note
that while ci denotes cell dimensions, Ni labels cell count for i ≤ 3. 45

5.2 Forward projection of a Compton cone C(V1, V2, β). 46
5.3 Back projection of a Compton cone C(V1, V2, β). 47
5.4 Different locations and orientations of ρ dependent on the half-

angle of the intersected cone. 50
5.5 An orthogonal triangle within a Compton cone, which shows the

relationship between β, s and d described by Expression 5.3. . . . 51
5.6 Perspective transformation used for forward projection. 52
5.7 Coordinate transformation, which motivates the use of interpolation. 55
5.8 Nearest neighbor interpolation. 56
5.9 Bilinear interpolation. 57
5.10 Reconstructed volume V and projection planes ρ and σ. 58
5.11 Point symmetry used to reduce memory requirements. 59

6.1 Values of the mapping r ◦ f prior to interpolation. 63
6.2 Example outputs of interpolation methods for various values of N . 64
6.3 Results of the interpolation experiments. 65
6.4 Reconstructed volume corresponding to a single event (various

views). 69
6.5 Reconstructed volume corresponding to 5·103 events (various views). 70

76

A.1 Forward Projection Test Program 85
A.2 Back Projection Test Program . 86

77

Acronyms

CERN The European Organization for Nuclear Research (also known as Organ-
isation européenne pour la recherche nucléaire)

SPECT Single-photon Emission Computed Tomography

CCD Charge-coupled Device

MPX The Medipix Collaboration

ASIC Application Specific Integrated Circuit

VHDCI Very High Density Cable Interconnect

GPIO General Purpose Input/Output

LEMO Léon Mouttet (connector standard)

FIFO First in, first out

OS Operating System

RAM Random Access Memory

NIC Network Interface Controller

IP Internet Protocol

UDP User Datagram Protocol

SFTP Secure File Transfer Protocol

VCO Voltage-controlled Oscillator

ToT Time-over-Threshold

iToT Integral Time-over-Threshold

ToA Time-of-Arrival

fToA Fast Time-of-Arrival

RMSE Root-mean-square Error

HTML Hypertext Markup Language

YAML YAML Ain’t Markup Language

VTK Visualization Toolkit

GNU GNU’s Not Unix

POSIX Portable Operating System Interface

78

A. Attachments

79

A.1 Contents of the Enclosed DVD

README.md................................description of the DVD contents
data/...examples of input data files
outputs/.............................results of the performed experiments
work/.......................thesis implementation source files and headers

katherine/................................Katherine hardware library
ccl/..Compton camera library
krun/..................................Katherine data acquisition tool
kfind/...........................Katherine network localization utility
calib drift time/ drift time calibration tool
cluster view/ 3D cluster viewer
random point gen/............................ random point generator
random cone gen/..............................random cone generator
benchmark/...................................performance benchmark
test interpolation/....................... interpolation test program
test forward projection/ forward projection test program
test back projection/...................back projection test program
test projector/...................volume reconstruction test program

text/...thesis text
src/..........................structured thesis text in the LATEXformat
img/.....................................figures used in the thesis text
data/..................................data files used to generate plots
plots/plots used in the thesis text
thesis.pdfcompiled thesis text in PDF format

80

A.2 Software Implementation Overview

This text provides a practical overview of the software included in the electronic
attachment.

A.2.1 Dependencies

The provided software implementation is dependent on the following tools and
libraries:

• GNU Make Build System 4 or newer,

• CMake Build System 3.10 or newer,

• GNU C++ Compiler (g++) 7.3 or newer,

• ROOT Framework 6.14 or newer with the support for Qt, Python and
C++17,

• VTK Visualization Framework 8.1 or newer,

• Python 3.6 or newer with the matplotlib package,

• Qt GUI Framework 5.10 or newer.

Optionally, the project documentation requires Doxygen 1.8 or newer.

A.2.2 Provided Docker Images

For convenient usage, the electronic attachment is compatible with the Docker
virtualization platform. This way, the included programs may be easily compiled
without any dependence on the host operating system. In particular, the work
provides two Docker images:

pm thesis mff env (in Dockerfile.env) Extending the latest version of the
Archlinux image, this image compiles all required dependencies listed in
the previous section.

pm thesis mff (in Dockerfile.work) Extending the environment image, this
image contains a working installation of all software tools described in this
summary.

For usage of both images, the reader is referred to the documentation of the
Docker platform, available online at https://docs.docker.com/. For conve-
nience, a shell script for building both Docker images has been provided in the
dockerize.sh file.

81

https://docs.docker.com/

A.2.3 Directory Structure

The attached implementation is provided in the form of a single CMake project.
For convenient access, the software is semantically organized into multiple targets
– programs and libraries, which are referenced as subprojects of the main project.
This way, all targets are compiled together by default. It is, however, easy to
selectively compile or install individual targets, if required.

Generally, targets are represented by individual directories located in the work

directory. Each directory has a systematic structure:

work/

target/

src/..source files
include/ header files (only in libraries)
docs/ documentation (only in libraries)
README.md.......................................usage information
CMakeLists.txt build declaration, dependency list

Note that the contents of the docs directory have been automatically gen-
erated by the Doxygen documentation generation utility. If any changes are
made to the source files or headers, the documentation may be simply updated
by executing the doxygen program. For more information about Doxygen, see
http://doxygen.org.

A.2.4 Redistributable Libraries

To allow easy integration into future works, the majority of the presented im-
plementation is structured in the form of redistributable library packages. In
particular, the work is divided into two libraries:

Katherine Hardware Library (libkatherine) This C library contains im-
plementation of Katherine proprietary communication protocol. It is fur-
ther described in Chapter 3.

Compton Camera Library (ccl) This C++ library contains implementation
of data processing algorithms described in Chapters 4 and 5.

While the first of the two is a development library in a conventional sense,
designed to be built and later linked with other applications, the second is a
header-only library, exclusively comprised of header files. This decision is primar-
ily motivated by its extensive use of C++ template engine and heavy reliance
on inline optimizations provided by the compiler backend. For practical usage,
this only means that for the second library, no prior build operation and linking
is required, however, overall build time of any application referencing the library
headers may be increased.

The Katherine library depends on the C11 standard library and GNU/Linux
multi-threading and network socket interface. The Compton Camera Library
depends on the C++17 standard library, GNU/Linux multi-threading and op-
tionally, the Katherine library.

82

http://doxygen.org

For a high-level overview of the architecture and features provided by both
libraries, the reader is encouraged to examine the referenced chapters of this text.
In addition, both implementations include appropriately structured developer
documentation, which may be compiled into a HTML page or LATEXdocument by
Doxygen. Build instructions are noted in the provided README files.

A.2.5 Katherine Data Acquisition Tool

Katherine Data Acquisition Tool is capable of performing simple data acquisi-
tions with the Katherine readout. Consistently with the description provided in
Section 3.1, the tool establishes connection with the readout device, configures its
parameters and initiates data acquisition. The program source files are located-in
the krun directory and are reference in the main CMake project.

Upon execution, the program expects a valid acquisition configuration file.
Among others, the contents of this file determine the acquisition duration and
readout mode. The results of the acquisition are printed in the standard output,
allowing the user to chain the program with other scripts or applications, or save
its results into a file.

A.2.6 Katherine Network Localization Utility

The purpose of the Katherine Network Localization Utility is to identify oper-
ational Katherine readouts in a specified region of the network infrastructure.
This may be a necessary task when connecting a new Katherine readout to the
network for the first time. The utility source files are saved in the kfind directory
and are referenced in the main CMake project.

When executed, the utility performs a sequential search, during which multiple
network addresses are probed one-by-one. The probe message is a state inquiry
command, which prompts an immediate informative response by the readout.
After transmitting the message, the utility waits for the arrival of such response. If
the response arrives within a short timeout period, the tested address is considered
to be a found Katherine readout.

A.2.7 Drift Time Calibration Tool

Drift Time Calibration Tool contains an implementation of the calibration pro-
cedure, which is necessary in order to reconstruct depth information from pixel
timestamp differences [18]. This calibration is not required for the operation of
the presented algorithms. It is, however, recommended as it may have positive
effect on the accuracy of the subsequent reconstruction. The source files of the
tool are saved in the calib drift time directory and are referenced in the main
CMake project.

The drift time calibration operates on a record of a prior measurement, which
is expected to be provided in the form of an ASCII file. During the calibration
procedure, the spatial & temporal clustering algorithm described in Section 4.2.3
is executed. Identified clusters are then filtered based on their morphological
classification [34]. Finally, the duration determined by the smallest and the largest
pixel timestamp of each cluster is examined. A bell curve is fitted from the
durations and the fit parameters are presented to the user.

83

A.2.8 3D Cluster Viewer

The purpose of the 3D Cluster Viewer is to demonstrate the evaluation of the drift
time calibration function described in Section 2.3.5 and previous works [18]. The
program source code is located in the cluster view directory and is referenced
in the main CMake project.

Upon execution, the program requires calibration function parameter values,
and a measurement ASCII file similar to that read by the Drift Time Calibration
Tool. The program presents the user with a graphical user interface, which plots
ToA and ToT values of individual clusters in a two-dimensional pixel matrix. The
reconstructed depth information is displayed in a three-dimensional rendering of
the detector in the bottom part of the screen.

A.2.9 Performance Benchmark

The purpose of the Performance Benchmark is to evaluate the rate of information
consumed by selected components of the presented system. It may be used to
re-create the results of the experiments described in Section 6.1. The program
sources are located in the benchmark directory and are referenced in the main
CMake project.

When executed, the benchmark program expects an ASCII file containing a
recording of an earlier data acquisition as well as calibration function parameter
files. The program performs several performance tests and for each test prints
the measured time, the hit rate and the event rate (if applicable).

A.2.10 Random Generators

For some of the included programs, input data is required. For occasions, when
the user is not in possession of real measurements or experimental devices, random
generators are provided in order to produce a faithful substitute of experimental
results. In particular, two random generators are provided:

Point Generator (in random point gen) This generator samples points from
a two-dimensional domain. The points are selected uniformly from a set
interval.

Cone Generator (in random cone gen) This generator samples parameters of
random Compton cones, which correspond to a single specified point source.
The cones are selected uniformly from set prior distributions.

Both generators have the capability to condition the pseudo-random number
generator on a specified seed number. This may be used to obtain reproducible
results.

A.2.11 Interpolation Test Program

The purpose of the Interpolation Test Program is to benchmark the accuracy
of selected interpolation methods. It may be used to reproduce evaluation re-
sults presented in Section 6.2. The program source code can be found in the
test interpolation directory and is referenced in the main CMake project.

84

Figure A.1: Forward Projection Test Program

For execution, the test program requires a file containing two-dimensional
points, in which the interpolation is performed. These points may be for instance
produced earlier by the Point Generator. In the output, the program prints
interpolation errors for the given point set, correlated with point count of the
look-up table.

A.2.12 Forward Projection Test Program

The purpose of the Forward Projection Test Program (shown in Figure A.1) is
to demonstrate effects of changes of various parameters on the results of the
forward projection algorithm described in Section 5.1.3. The program source files
are located in the test forward projection directory and are integrated with
the main CMake project.

Since the program has a purely demonstrative nature, it has no inputs or out-
puts. Instead, it presents the user with a graphical interface, in which a forward
projection of a cone is displayed. The interface allows the user to change various
parameters of the projected cone, the projection plane and the parameters of the
projection, and to observe the effects of the change on the displayed rendering.

A.2.13 Back Projection Test Program

Analogous to the Forward Projection Test Program, the purpose of the Back
Projection Test Program (shown in Figure A.2) is to demonstrate the operation
of the back projection algorithm described in Section 5.1.4. The program source
code is saved in the test back projection directory and is referenced in the
main CMake project.

The program shows a graphical interface, in which two projections of a singular
cone are depicted. The left view shows the forward projection, which serves as
a two-dimensional look-up table for the back projection algorithm. The result

85

Figure A.2: Back Projection Test Program

of back projection is displayed in the right view, expected to closely mimic the
forward projection. By changing the depth of the secondary plane, the user may
observe effects of various depths on the rendered image, thereby verifying the
correctness of the back projection algorithm.

A.2.14 Volume Reconstruction Test Program

As its name suggests, the purpose of the Volume Reconstruction Test Program is
to perform volume reconstruction for a specified set of Compton cones. The list
of cones is expected to be provided in an ASCII input file. Such file may be for
instance generated earlier by the Random Cone Generator. The reconstructed
volume is saved into a sparse list of cells, which may be visualized by commercial
or open-source volume viewers, such as ParaView1. The program sources are
located in the test projector directory and are integrated with the main CMake
project.

Upon execution, the program performs Algorithm 10. First, the response
function look-up table is calculated for all cones in advance. After that, an empty
volume is allocated. Cones then sequentially undergo the projection procedure,
which consists of a projection forward and back, incrementing values of all cells
within the volume. Once all cones are processed, the output file containing volume
cell values is printed.

1ParaView is an open-source, multi-platform data analysis and visualization application.
Further information about ParaView is available at https://www.paraview.org.

86

https://www.paraview.org

	Introduction
	Timepix3 Detector
	SPECT & γ-ray Imaging
	Thesis Outline

	Background
	Compton Camera
	Related Work
	Motivation
	Compton Scattering
	Architecture
	Stationary Source Detection
	Computed 3D Reconstruction

	Timepix3 Detector
	Motivation
	Detector Design
	Working Principles
	Operation Modes
	Readout Modes

	Detector Calibration
	Threshold Equalization
	ToT Energy Calibration
	Column Time Offset Correction
	Time-walk Correction
	Drift Time Calibration

	Katherine Readout
	Hardware Parameters
	Data Acquisition Control

	Acquisition Control
	Operational Overview
	Typical Operation
	Communication Channels
	Issuing Commands
	Receiving Measurement Data

	Library Architecture
	Network Communication
	Internal Command Interface
	Public Command Interface
	Measurement Data Listener
	Configuration Parser

	Compton Event Detection
	Hardware Setup
	Detection Unit
	Readout Unit
	Control Unit
	Time Synchronization
	Coordinate System

	Pixel Stream Processing
	Calibration Evaluation
	Ensuring Time Monotony
	Spatial & Temporal Clustering
	Filter Cascade
	Drift Speed Evaluation

	Coincidence Group Matching
	Thread Synchronization
	Matching Algorithm
	Filter Cascade

	Handling Common Problems
	Pixel Circuit Malfunctions
	Temperature Monitoring
	Readout Infrastructure Malfunctions

	Volume Reconstruction
	Operational Principles
	Volume Restriction
	Volume Discretization
	Forward Projection
	Back Projection
	Aggregation

	Compton Event Processing
	Spectroscopic Source Discrimination
	Batch Aggregation
	Response Function Caching
	Batch Projection
	Forward Mapping Construction
	Back Mapping Construction

	Interpolation Methods
	Nearest Neighbor Interpolation
	Bilinear Interpolation

	Implementation Notes
	Subsampling
	Parallelization
	Symmetry Compression

	Evaluation
	Performance Experiments
	Rate Estimation
	Task Description
	Results

	Interpolation Experiments
	Task Description
	Parameter Configurations
	Visual Demonstration
	Evaluation by Random Sampling
	Discussion

	Point Source Experiments
	Task Description
	Parameter Configurations
	Single Event Projection
	Localization Demonstration

	Conclusion
	Future Research

	Bibliography
	List of Figures
	Acronyms
	Attachments
	Contents of the Enclosed DVD
	Software Implementation Overview
	Dependencies
	Provided Docker Images
	Directory Structure
	Redistributable Libraries
	Katherine Data Acquisition Tool
	Katherine Network Localization Utility
	Drift Time Calibration Tool
	3D Cluster Viewer
	Performance Benchmark
	Random Generators
	Interpolation Test Program
	Forward Projection Test Program
	Back Projection Test Program
	Volume Reconstruction Test Program

