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Abstract: Multi-robot systems are an established research area with a growing
number of applications. Efficient coordination in such systems usually requires
knowledge of robot positions and the global map. This work presents a novel map-
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Introduction

Multi-robot systems are established research area within robotics and artificial
intelligence with a growing number of applications. A multi-robot system, con-
sisting of several individual robots, can improve efficiency in terms of both per-
formance and robustness over a single robot. A team of robots can also solve
tasks that cannot be tackled by a single robot. Multi-robot systems can scale to
large environments and to the most demanding applications.

Multi-robot systems have been deployed to several application domains in-
cluding space exploration [15, 22], autonomous patrolling [35], disaster rescue
and victim search, aerial surveillance, unmanned delivery, mine cleaning, snow
removal [8], assembly of large-scale buildings or planetary habitat [15] and robotic
football [2]. Those applications require robots to operate in dynamic environ-
ments, with a high degree of uncertainty and external changes caused by other
robots, humans and other agents that are not part of the multi-robot system
itself.

To be able to solve such demanding problems multi-robot systems rely on
distributed planning, communication and control algorithms. This work presents
an algorithm for estimating positions of the robots in the shared environment and
for building the global map of the environment (map-merging) without any pre-
vious knowledge or assumptions about the environment. Knowledge of positions
of the robots and the map of the environment are crucial elements of effective col-
laborative planning and coordination. For most of the multi-robot systems, this
knowledge is essential and required for the operation, making the map-merging
a key problem to solve. Multi-robot systems that don’t have knowledge of the
presence of other robots (unaware systems [10]) are normally used only for very
simple tasks, as noted by Farinelli et al. [10].

A typical multi-robot system consists of many software parts typically struc-
tured in a multi-layer architecture. The implementation presented in this work
leverages modularity of the widely-used Robot Operating System (ROS) frame-
work and respects community established standards. This allows easy integration
with existing planning, mapping and communication algorithms enabling quick
development of multi-robot systems suited for the particular task. To my best
knowledge, the presented implementation is the first implementation of a three-
dimensional (3D) map-merging algorithm for multi-robot systems within the ROS
ecosystem.

Chapter 1 of this work discusses related works and various approaches to
estimation of robot positions in an unknown environment. Chapter 2 introduces
the presented map-merging algorithm. Chapter 3 presents the implementation of
the developed map-merging algorithm for the ROS framework. Chapter 4 accesses
the performance of the implementation using several standard robotic datasets
and experiments done by the author. Documentation for the ROS implementation
is attached as Appendix A.
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1. Analysis

Knowledge of the positions of robots and knowledge of the environment is essential
for solving complex tasks efficiently in multi-robot systems. Over time various
techniques evolved to acquire this knowledge.

1.1 Map-merging

This work focuses on multi-robot systems consisting of mobile robots, each capa-
ble of building a 3D map of the surrounding environment. Typically, each robot
uses a Simultaneous Localization and Mapping (SLAM) algorithm to create a
map and is equipped with appropriate sensors such as stereo camera rigs, active
Red-Green-Blue-Depth (RGB-D) cameras or laser rangefinders. Such sensors are
available in the broad weight and cost range enabling a large variety of SLAM-
capable robots operating both on the ground and in the air. This variety leads to
possible heterogeneous teams of robots capable of solving a broad range of tasks.

The map-merging problem for multi-robot systems, which is the focus of this
work, is to estimate positions of the robots in the environment and to merge the
maps from individual robots to produce a single globally consistent map.

1.2 The map representation

3D maps are becoming more common in the robotics as the capable sensors
are getting more affordable and suitable for many applications. Unlike two-
dimensional (2D) occupancy grids used extensively in the past, 3D maps enable
cooperation of robots, that are not fixed to a 2D plane, such as aerial vehicles,
humanoid robots, outdoor robots operating in a rough terrain as well as tradi-
tional ground-based platforms. This allows us to create possibly heterogeneous
multi-robot teams, that are able to take advantage of their different strengths and
weaknesses to solve the assigned task efficiently. For example, a robotic team can
consist of aerial vehicles, capable of fast reconnaissance in large-scale outdoor
environments, and ground-based vehicles carrying heavy equipment.

This work expects maps represented as point clouds (Definition 1). Point
clouds can be implemented as an array of points, making them suitable for serial-
isation and exchange between robots. Points in the point cloud can have assigned
additional information, such as Red-Green-Blue (RGB) colour information or re-
flection intensity, based on the available sensor. Especially colour information,
that is provided by stereo camera rigs and active RGB-D cameras is commonly
exploited for further processing (Figure 1.1).

Definition 1 (Point cloud). A point cloud is a set of data points in space.

Other data structures used in the 3D mapping, such as octree-based maps
used by Hornung et al. [21], can be converted to point clouds without any loss of
information because point clouds do not pose any restrictions on the geometry of
the points and it is easy to add metadata associated with the points. This makes
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Figure 1.1: Partial point cloud map of a room created from the aerial vehicle
equipped with greyscale stereo cameras rig. Intensity captured by the camera
is stored alongside the points and visualised in greyscale. The map was created
from The EuRoC micro aerial vehicle dataset “Vicon Room 1 02” (Section 4.1).
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point clouds a suitable data structure for exchange between different mapping
approaches, even when they use different representations internally.

Point clouds data messages are supported and well established in the ROS
framework. There are mature libraries to work with point clouds, such as Point
Cloud Library (PCL). This makes point clouds suitable map representation for
multi-robot systems.

1.3 Related works

The map-merging is often a core part of a multi-robot system and various ap-
proaches have been developed to solve the map-merging problem. Most of the
listed techniques work with robots operating in the 2D space (ground-based
robots), but some of those techniques may be adapted to work in the 3D space
too. The robot rendezvous techniques (Section 1.3.1) and indirect map-merging
techniques (Section 1.3.2) have been used mostly with a 2D assumption, while
distributed SLAM techniques (Section 1.3.3) can be used also in the 3D case.

1.3.1 Direct map-merging

Early map-merging techniques, classified as direct map-merging by Lee et al. [28],
use direct sensor measurements to compute the transformation between robots.
This involves especially the case of robot rendezvous used by Zhou and Roume-
liotis [44], which relies on robots’ ability to sense each other position directly.
Popular techniques use a camera and special recognizable markers on the robots
to compute the transformation using computer vision algorithms.

A robot rendezvous might be hard to achieve in large-scale environments,
especially if the robots are starting from different locations or in a different time
(for example to react to increasing demands for the service). Such applications
typically need map-merging to be able to work only with the sensed surrounding
environment instead of the presence of other robots in the same space.

Direct map-merging also involves techniques relying on global localization in
the environment being available. This involves purpose-adapted environments
with installed markers or beacons to locate robots within environment and sys-
tems using global localization such as Global Positioning System (GPS).

While purpose-adapted environments may greatly simplify the map-merging
problem, they make deployment of the multi-robot systems harder and might
introduce severe costs. For applications such as space exploration, disaster res-
cue, victim search and mine cleaning any modifications of the environment are
not conceivable and in many more applications such as unmanned delivery, the
modifications are usually not practical.

Global localization systems are usually not available indoor and while such
systems are a great aid for navigating large-scale outdoor environments, the pro-
vided accuracy is usually not high enough for merging high-resolution point cloud
maps. The position from global localization systems can be however used as an
initial guess for map-merging algorithms.
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1.3.2 Map-merging on occupancy grids

Later developed techniques work with 2D maps, usually represented as occupancy
grids. Lee et al. [28] categorize these techniques as indirect map-merging. These
techniques rely on overlapping areas in maps for map-merging.

Using 2D maps limits operational space of robots and practically limits multi-
robot teams to only ground-based vehicles operating indoor or in light terrain,
flat environments. Particularly 2D maps prohibit promising multi-robot teams
consisting of aerial and ground-based vehicles.

Map-merging techniques for 2D occupancy grids involves spectra-based ap-
proach of Carpin [7] and my previous work based on image feature approach [23].

My previous work is available in the ROS distribution as a ready-made solu-
tion for merging 2D maps. It influenced the presented 3D map-merging algorithm
as I have gathered feedback from the ROS community. From experience, it is es-
pecially important to select a suitable interoperable map format in ROS, so that
the implementation can be used with existing SLAM algorithms in ROS. The
idea of automatic robot discovery (Section 3.3.3) enabling convenient configu-
ration and the idea of decoupling inter-robot communication platforms and the
map-merging algorithm (Section 3.3.1) are reused in the presented implementa-
tion (Chapter 3). However, the presented map-merging algorithm (Chapter 2)
has been designed from scratch and is based on different techniques as the data
structures for 2D maps (occupancy grid) and 3D maps (point cloud) are differ-
ent. The idea of converting occupancy grids to images and the idea of reusing
image-based techniques, as used in my previous work, are not applicable.

1.3.3 Map-merging as distributed SLAM

Map-merging algorithms have been also implemented as distributed SLAM algo-
rithms. These techniques take advantage of the research in the area of SLAM
algorithms and use loop-closure techniques developed for SLAM to implement
map-merging. Especially graph-based SLAM implementations can be naturally
extended to merge maps from multiple robots. Nodes from other robots can be
added to the SLAM graph and connected through loop-closures with existing
nodes to form a single map.

When a loop-closure between 2 maps is detected, it can be used to com-
pute the transformation between maps. We need to extend the loop detection to
work across map boundaries, not only within a single map as usual in the SLAM,
which typically requires exchanging implementation-specific data between robots.
This poses several disadvantages. Based on the SLAM loop-closure approach the
internal SLAM data may be quite large (Table 1.1), stressing communication
bandwidth. Exchanging implementation-specific data usually leads to running
the same SLAM algorithm on all robots in the multi-robot system, or the im-
plementations must be adapted to exchange compatible loop-closure data. This
is challenging for heterogeneous multi-robot systems when individual robots use
different sensors, which is often the case when using both ground-based and aerial
robots. For example, if ground-based robots are equipped with accurate heavy
3D laser range finder and aerial vehicles use lightweight stereo rig cameras, the
SLAM approaches are typically different and the loop-closure data are inherently
incompatible (image features and 3D laser scans). In such scenarios, we need to
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use a different approach.
Lee et al. [28] list scan matching loop closure approaches used for map-

merging, which are used with 2D SLAM algorithms. 2D distributed SLAM based
on scan matching was implemented by Pfingsthorn et al. [36] for the RoboCup
Rescue Virtual Robots competition. Fox et al. [13] used a direct exchange of laser
range scans and odometry motion information coupled with a particle filter to
localize a robot in the second map.

In 3D camera-based SLAM algorithms, visual appearance-based techniques
are particularly popular. Tomono [43] used an appearance-based algorithm based
on Scale-Invariant Feature Transform (SIFT) features to merge visual maps, val-
idated by travelled paths to reject false similarities in repetitive environments.
Visual bag-of-words loop closure approach was used by Labbé and Michaud [27]
to merge maps in multi-session SLAM. Multi-session SLAM works with maps
generated by a single robot starting consecutively in the different positions. In
such setup there is no need for communication, so a local database was used by
the authors to store loop-closure related data for map-merging.

1.4 Map-merging on point clouds

The algorithm presented in Chapter 2 works exclusively with 3D point clouds
without any additional exchange of data to offer maximum flexibility. The algo-
rithm does not require any exchange of implementation-specific data and can be
used with any SLAM approach available, allowing future integration of the newest
state-of-the-art methods in fast-paced SLAM research. With the presented ap-
proach, each robot in the heterogeneous multi-robot system can use a different
SLAM implementation, which allows using best-suited implementation to robot
sensors and computational capabilities.

Using point clouds can also save communication bandwidth especially com-
pared to image-based loop closure methods, which may require to exchange a
significant amount of data. Size comparison between local database size used
in multi-session SLAM by Labbé and Michaud [27], implemented in popular
RTAB-Map SLAM, and point cloud representation of the same maps are shown
in Table 1.1. The maps have been recorded at Charles University campus, see
Section 4.3 for details. The point clouds are significantly smaller with the reso-
lution of 0.05 meters per voxel. The presented merging algorithm can work with
the resolution of just 0.1 meters per voxel in which point clouds are even smaller,
so we could save more bandwidth if necessary.

Note that the local database has been used only in multi-session SLAM and
might not be size-optimised. Still, the table demonstrates the order of magnitude
differences between the two representations.

There are some challenges for map-merging on point clouds. When using
SLAM-based approaches for map-merging, the resulting graph is usually opti-
mized, which can repair mapping errors present in the individual maps. Repairing
mapping errors in point clouds maps is much harder. Bonanni et al. [4] addressed
this problem by using pose graphs of point clouds. In the pose graph represen-
tation, the map is represented as a graph of smaller point cloud sub-maps, not
as one big point cloud. This representation allows repairing maps in the similar
manner as done in distributed SLAM approaches, by optimizing the graph after
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merging.
Another challenge is to register the point clouds (to compute the transfor-

mation between point clouds) using only information stored within point clouds.
The algorithm implemented by Bonanni et al. [4] relies on an external place recog-
nition routine that reports matching pairs of local maps. The external routine
is needed because authors used a pairwise registration algorithm, that needs an
initialisation with a roughly-correct transformation to align point clouds. The
algorithm presented in Chapter 2 can register point clouds directly using a global
registration approach that does not need any external place recognition routine.
To the best of my knowledge, this approach is the first map-merging method that
can work directly on 3D point clouds without any external pre-alignment routine.

Most of the methods for point cloud registration are based on the Iterative
Closest Point (ICP) algorithm introduced by Besl and McKay [3]. The ICP algo-
rithm uses an initial transformation estimate and it iteratively tries to minimise
error metric (usually a Euclidean distance between point clouds). The initialisa-
tion is extremely important as the algorithm always finds a local minimum. Since
the introduction of the ICP algorithm, variants, reviewed in Pomerleau et al. [37],
of the original algorithm has been developed, which are less susceptible to an ac-
curate initialisation, but all ICP-derived algorithms need the initialisation and
are susceptible to local minima problems.

When using ICP-family algorithms for scan matching in the context of SLAM,
the initial estimate is usually provided by the odometry source. In the map-
merging problem, the initial estimate must be provided from an external source,
either manually by the operator or using an automated routine (for example
vision-based place recognition method). The need for an accurate initial estimate
is a severe drawback in the context of map-merging.

To be able to work without any initial estimate the algorithm presented in
Chapter 2 uses a feature matching approach, that does not require any initial es-
timate and is not affected by the initial configuration of the maps. These feature-
matching approaches use descriptors developed specifically for point clouds, such
as Point Feature Histogram (PFH), introduced by Rusu et al. [39], to match key-
points between two maps. These algorithms have been developed for high-density
point clouds produced directly by sensors such as laser range finder and RGB-D
cameras. Some of the proposed features, such as Normal Aligned Radial Feature
(NARF) introduced by Steder et al. [41], use range image representation and a
single viewpoint assumption, that cannot be generalised to 3D point cloud maps.

Map Database Point cloud Ratio

“MFF Refectory 1” 217 MiB 14 MiB 0.066
“MFF Refectory 2” 551 MiB 33 MiB 0.060
“MFF Rotunda 1” 231 MiB 11 MiB 0.048
“MFF Rotunda 2” 350 MiB 16 MiB 0.046

Table 1.1: Table comparing sizes of the local database of loop closure data for
map-merging used by Labbé and Michaud [27] and the point cloud representation
of the same maps stored in pcd files. Ratio denotes the fraction of the point cloud
size to the database size. The maps are from the MFF dataset (Section 4.3).
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I show that it is viable to use feature-matching also for registration of low-density
point cloud when we take specifics of the point cloud maps into account.
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2. The map-merging algorithm

This section presents a novel map-merging algorithm for estimating transforma-
tions between n maps and merging them together. The algorithm is based on
a feature-matching approach and works solely on 3D point cloud maps without
any additional auxiliary information. As discussed in Chapter 1, we work with
maps represented as point clouds, possibly with RGB information for each point.
To the best of my knowledge, the presented approach is the first map-merging
algorithm working directly on point clouds without any extra information.

The feature-matching approach uses point cloud features designed to work
with high-density direct sensor measurements, using the features with low-density
point cloud maps is challenging. To overcome some of the challenges, I introduce
a novel feature matching scheme (Section 2.1.6).

Generally, there are two core problems for estimating the transformations
between maps. First, we need to be able to estimate pair-wise transformation
for two maps using only geometrical and possibly colour information available
within point clouds. We discuss our method in Section 2.1. Second, we want to
get a transformation for each of the maps to the selected reference frame. This
is discussed in Section 2.2.

After we have estimated the transformations, we can stitch them to create
the global map.

2.1 Estimating pair-wise transformation

Algorithm 1 describes an algorithm pipeline to estimate the pair-wise transfor-
mation. The algorithm first down-samples the point cloud (Section 2.1.1), then it
filters the outliers (Section 2.1.2), after filtering, surface normals are estimated for
the whole point cloud (Section 2.1.3). To reduce the number of points for further
processing, keypoints are detected using either SIFT-based or Harris keypoint de-
tector (Section 2.1.4). To match keypoints between point clouds, each keypoint
is assigned a descriptor (Section 2.1.5). Using assigned descriptors, keypoints are
then matched and initial rigid transformation between point clouds is estimated
(Section 2.1.6). After matching, the transformation is refined using all points in
the filtered point cloud with local minimisation method (Section 2.1.7).

To deal with inaccurate estimates each transformation estimate is evaluated
using a confidence measure (Section 2.1.8).

2.1.1 Down-sampling

As we are working with possibly large-scale maps, input point clouds may contain
millions of points. To reduce computation times it is highly desirable to reduce
the number of points.

A common technique for reducing the resolution of point clouds is the vox-
elization, which produces a voxel grid. The voxel grid is a regularly spaced,
three-dimensional grid (Figure 2.1). We can represent the voxel grid as a normal
point cloud, with each point representing a voxel of the voxel grid. We don’t
usually save empty space information, so the grid is sparse.
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Algorithm 1 Estimates pair-wise transformation between two maps

Input: 2 maps represented as point clouds
Output: transformation estimate between 2 maps

1: procedure estimateTransform(map1,map2)
2: down-sample to working resolution
3: remove outliers
4: estimate surface normals
5: detect keypoints
6: compute descriptor for each keypoint
7: match descriptors and compute the initial transformation
8: refine transformation with ICP
9: end procedure

Figure 2.1: Point cloud map voxelized to resolution 0.05 meter per voxel. Notice
the regular spacing between points.
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Algorithm for voxelization is following. For each voxel (size of the voxel is
determined by the resolution) we take all points contained in the voxel and ap-
proximate them with their centroid.

As discussed in Section 1, in a multi-robot system the down-sampling is typi-
cally performed by the SLAM algorithm running on each robot before publishing
the map, thus saving bandwidth of the communication. However, in a typical
situation, we might want to reduce the resolution even further for the purpose
of transformation estimation to reduce the computation time (for example each
robot might publish a map with the typical resolution of 0.05 meters per voxel,
but for estimation we work with the resolution of just 0.1 meters per voxel).

We show in Section 4 that the presented algorithm can reliably estimate the
transformation for point clouds with 0.1 meters per voxel resolution.

2.1.2 Removing outliers

Although the voxelization can deal with some of the noise and inaccuracies, during
experiments it has been beneficial to perform further outliers filtering to remove
far laying points. Far-laying outliers may end-up being detected as keypoints,
but they are usually not matched. Reducing the number of detected keypoints
speeds up the later phases of estimation.

I have selected to use a simple radius-based outlier removal. This method
searches for neighbours of each point within a certain radius and removes points
that have below threshold neighbours count.

Because descriptors of the outlier points are based on just a few points, which
don’t produce robust matching candidates, and the radius outlier removal removes
only the points with few neighbours, it has not been observed to reduce the
robustness of the estimation.

For example on two maps from Alpen-Adria-Universität Klagenfurt (AAU)
dataset (Section 4.2), the outlier removal step removes 326 and 271 points re-
spectively (7.29%, 6.16%), but the number of detected keypoints decreases from
66, 63 to 51, 56 (22.73%, 11.11%). Outlier removal didn’t impact the estimation
process negatively.

2.1.3 Estimating surface normals

The last preprocessing step is to estimate surface normals (Figure 2.2). Surface
normals are vectors perpendicular to the surface in the neighbourhood of the
point. Surface normals are used in later steps to compute descriptors and by
Harris keypoint detector.

The algorithm for estimating surface normals is described by Rusu [38]. The
algorithm is based on the neighbourhood search. For each point neighbourhood,
we do a least-square plane fitting estimation and select the orientation of the
estimated normal.

The most important parameter for normals estimation is the size of the neigh-
bourhood which is used for the estimation. This can be configured by the user.

13



Figure 2.2: A voxelized point cloud map with estimated surface normals (red).
Only each fifth normal is visualised.
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Figure 2.3: SIFT keypoints (red) detected in the point cloud map (green).

2.1.4 Detecting keypoints

Even after the down-sampling, the maps usually contain too many points to
work with all of them in later steps. We need to reduce the number of points
further. A common technique used in the area of computer vision and robotics is
to search for keypoints that identify suitable landmark points for later matching
(Figure 2.3).

There are two families of keypoints detectors that are being used with point
clouds. Most of the approaches have been adapted from keypoints detectors that
have been originally developed to work on images.

The first class of detectors uses RGB colour information stored for each point
in the point cloud. This approach supposes that the point cloud has been obtained
with a detector that provides the colour information such as a stereo camera rig,
an active RGB-D camera etc. For the presented approach, I use SIFT keypoint
detector, which is an adapted algorithm from Lowe [29] that works on point clouds
with RGB information.

The second class of algorithms works with just geometrical information and,
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therefore, is able to work with point clouds that do not store any additional infor-
mation for points. These algorithms can be used with point clouds composed of
laser scans. The presented algorithm implements Harris 3D keypoint detector for
this purpose, which is an adapted algorithm from Harris and Stephens [19]. In-
stead of using image gradients, which are not available in the point cloud without
colour information, it uses surface normals, that capture geometrical properties
of the point neighbourhood.

2.1.5 Computing descriptors

Next step is to compute a local descriptor around each detected keypoint to be
able to match keypoints between maps. Unlike the keypoint detection algorithms,
algorithms for computing descriptors has been mostly designed from scratch to
work on point clouds. A comprehensive review of the point cloud descriptors is
given by Ali [1].

Most of the descriptors do not use the colour information and use only local
geometry around the point. Widely used PFH descriptors, introduced by Rusu
et al. [39], use a multi-dimensional histogram with 125 bins to provide an infor-
mative signature of a point neighbourhood. The histogram captures relationships
between estimated surface normals (Section 2.1.3). It uses relationships between
all pairs of points in the neighbourhood and, therefore has complexity O(k2),
where k is the number of points in the neighbourhood. There is a variant of
PFH descriptors Point Feature Histogram with colour (PFHRGB) that stores
also colour information in the extended histogram of 2× 125 bins.

The main disadvantage of PFH descriptors is the high algorithmic complex-
ity, and therefore the slow processing speed [40]. The presented implementa-
tion supports also Fast Point Feature Histogram (FPFH), introduced by Rusu
et al. [40], Signature of Histograms of Orientations (SHOT) with colour, intro-
duced by Tombari et al. [42], Radius-based Surface Descriptor (RSD), introduced
by Marton et al. [30], and 3D Shape Context (SC3D), introduced by Frome et al.
[14], novel descriptors which offer better processing speed compared to PFHRGB
and PFH.

2.1.6 Matching descriptors

Next step in the pipeline is the descriptors matching, which yields an initial
transformation estimate. It uses the features extracted from point clouds in the
previous steps.

We match two sets of descriptors from two point clouds (Figure 2.4). For
each descriptor from the first set, we want to find a descriptor in the second set,
which describes the same place (in the second point cloud). This step is chal-
lenging because the descriptors might be less descriptive than desired. Therefore,
the correct match might not be always the closest descriptor, but the k-nearest
descriptor.

To overcome the issue, Sample Consensus Initial Alignment (SAC-IA) algo-
rithm has been proposed by Rusu et al. [40] (Algorithm 2).

The algorithm combines random matching of k-nearest descriptors and the
RANSAC algorithm, introduced by Fischler and Bolles [11].
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Figure 2.4: Matched keypoint descriptors between two point cloud maps (green,
blue). Only inlier matches from Random Sample Consensus (RANSAC) are
shown.

Algorithm 2 SAC-IA algorithm from Rusu et al. [40].

Input: D1, D2 set of descriptors
Output: rigid transformation estimate

1: function SAC-IA(D1, D2)
2: loop repeat N times
3: K ← draw n descriptors from D1

4: for all di ∈ K do

5: M ← k-nearest matches from D2

6: mi ← a random sample from M

7: end for

8: estimate rigid transformation for selected samples
9: determine inliers

10: end loop

11: return transformation with the most inliers.
12: end function
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The algorithm was originally developed to work with FPFH descriptors, that
are fast to compute, but less descriptive that PFH. With PFH and PFHRGB de-
scriptors, SAC-IA sometimes yields sub-optimal transformation, even when there
are good potential matches available in the descriptors sets because it selects
matching candidates randomly instead of preferring better matches. This moti-
vated me to develop a new matching algorithm (Algorithm 3). This algorithm
is deterministic to avoid problems caused by the randomness in SAC-IA, has a
good accuracy across different descriptors (Section 4.8) and requires a very little
configuration (the only parameter is k), which does not need to be adjusted per
descriptor.

The algorithm is based on the idea of reciprocal match validation. When
we are considering match di → dj, we try to match also dj → di. We consider
all k-nearest neighbours for matching to deal with potential low descriptiveness
and then select the best match with reciprocal match validation. Considering k-
nearest neighbours is a key idea, that can improve the robustness of the matching
for point cloud descriptors compared to typically employed “1-on-1” matching
with reciprocal match validation (Section 4.8). Unlike SAC-IA, the RANSAC
algorithm is not incorporated in the scheme, the output of the algorithm is just
matched pairs of descriptors.

Algorithm 3 My matching approach using k-nearest matches validated with
reciprocal matching

Input: D1, D2 set of descriptors
Output: set of matches between D1, D2

1: function matchReciprocalK(D1, D2)
2: M = ¶♢
3: for all di ∈ D1 do

4: N ← k-nearest neighbours of di in D2

5: for all dj ∈ N do

6: N ′ ← k-nearest neighbours of dj in D1

7: if di ∈ N
′ then

8: M ←M ∪ ¶(di, dj)♢
9: end if

10: end for

11: end for

12: return M

13: end function

Notice that our algorithm does not need any threshold for the maximum match
distance and, therefore, can work with various kinds of descriptors without any
need for a specific configuration. The only parameter is k – number of neighbours.
As discussed in Section 4.8, my approach shows better performance than SAC-IA
in most of the cases and is not influenced by the randomness.

Both SAC-IA and my reciprocal matching algorithm need to quickly find k-
nearest neighbours. To achieve a good performance we use an approximative
nearest neighbour search introduced by Muja and Lowe [33]. This solution allows
us to match a large number of descriptors quickly, even though computational
complexity rises significantly with k. During the experiments (Section 4.7), the
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matching step takes usually just a fraction of time needed to extract keypoints
and descriptors.

2.1.7 Estimating the final transformation

SAC-IA embeds RANSAC into its algorithm and therefore provides directly an
initial transformation estimate. When we use the reciprocal matching scheme
(Algorithm 3), we need to run RANSAC step with rigid transformation model
after the matching to get inlier matches. In the typical scenario most of the
matches are outliers, so without the RANSAC step, it is not possible to estimate
a consistent transformation.

RANSAC transformation estimate is always based on the minimum number
of points required to estimate the model (rigid transformation). To get a better
estimate for all inlier pairs we recompute the transformation estimate using least-
squares on inlier pairs. We use Singular-Value Decomposition (SVD) to compute
the new estimate, the technique is described by Golub and Reinsch [16]. Another
widely used technique in Computer Vision is to use a non-linear least squares
approach, such as the Levenberg-Marquardt algorithm described by Moré [32], to
optimize the transformation estimate re-projection error considering all inliers.
Because we refine the transformation further with ICP, there hasn’t been any
observed difference between using Levenberg-Marquardt or SVD-based technique.
The implementation uses SVD to refine the transformation on inliers.

So far we have used only detected keypoints and descriptors computed around
the keypoints to estimate the transformation. To refine the transformation using
all the points in the point cloud we use ICP algorithm introduced by Besl and
McKay [3]. ICP algorithm tries to minimize Euclidean error distance between
the estimated corresponding points (Figure 2.5). The estimated transformation
from either SAC-IA or the reciprocal matching scheme presented in Section 2.1.6
is used as an initial guess for ICP.

The initial guess is usually close to the final transformation estimated by
ICP, especially when using the reciprocal matching algorithm (Algorithm 3) and
RANSAC for the estimation. Even though we use all the points with ICP, be-
cause of the proximity of the guess to the final transformation only a couple of
iterations is needed for ICP to converge, so the refinement does not impact overall
performance significantly (Section 4.7).

Since the introduction of ICP, many ICP-derived algorithms have been intro-
duced to overcome issues associated with ICP, especially to avoid local minima.
A comprehensive review is given by Pomerleau et al. [37]. Because our initial
transformation is usually very close to the final transformation, the original ICP
algorithm performed well for our use case during experiments.

The ICP refinement is the last step in estimating pairwise transformation.
We use the output of the ICP as the final estimated transformation between two
maps.

2.1.8 Evaluating the estimated transformation

To ensure robustness in real-world applications it is valuable to have a confi-
dence measure for the estimated transformation. Commonly used measure for
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Figure 2.5: Two point clouds maps (green, blue) aligned after refining the initial
transformation with ICP. The initial transformation was computed from matches
shown in Figure 2.4.
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RANSAC-based estimates is to use the number of inliers to access the algorithm
performance. Brown and Lowe [5] proposed a probabilistic model for image match
verification based on the number of inliers. The authors used a model with chosen
α = 8.0 and β = 0.3 given by Equation (2.1), where m is the number of matches
and ψ is the number of inliers in RANSAC.

ψ

8 + 0.3 ·m
(2.1)

Another possible confidence measure is to use the error distance between the
two point clouds. This approach is common with point clouds and is imple-
mented in PCL. We typically use the Euclidean distance to have a natural metric
estimate. This approach has two main issues. Because we do not know the corre-
spondences between the two maps we need to use the nearest neighbour for each
point to compute the distance. Moreover, to deal with occlusions (points outside
intersection of the point clouds) we need to introduce cut-off threshold to deal
with too large distances caused by points outside of the intersection.

In the implementation, I use Euclidean distance to evaluate the transforma-
tion estimate because the implementation of SAC-IA in PCL does not provide
information about the inliers count.

2.2 Estimating global transformations

The map-merging problem for two maps is discussed in Section 2.1. To be able
to merge more than two maps we consider a map-merging graph (Definition 2).

Definition 2 (Map-merging graph). A graph whose nodes correspond to robots’
maps and whose edges represent pair-wise transformation estimates between the
maps.

To construct a map-merging graph for n maps we need to estimate O(n2)
pair-wise transformations. Depending on the environment and map relations the
map-merging graph might be dense or sparse, but typically will be missing some
edges, because some of the transformations could not be estimated, or could be
estimated only with low confidence, see Section 2.1.8.

Once we have constructed the map-merging graph, the global merged map
can be computed by finding a spatial configuration of the nodes (maps) that is
consistent with the transformations represented by the edges. In other words, we
want to find a transformation for each map from the global reference frame to
the particular map consistent with the pairwise transformations.

2.2.1 Map-merging as graph-based SLAM

The idea of a map-merging graph is similar to the idea of a pose graph used
in graph-based SLAM. Graph-based SLAM uses a so-called graph-based formu-
lation of the SLAM problem. “Solving a graph-based SLAM problem involves
constructing a graph whose nodes represent robot poses or landmarks and in
which an edge between two nodes encodes a sensor measurement that constrains
the connected poses.” [18].
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In the graph-based SLAM graph, we have poses at different points in time,
in the map-merging graph we have maps with origins in unknown positions. In
the map-merging graph, we associate our pairwise transformation estimates with
edges and in the SLAM graph, we use usually direct sensor measurements. In
both graphs, we want to find the spatial configuration of the nodes of the graph
that is the most consistent with constraints represented by the edges. If we are
able to construct the map-merging graph (for which we need to doO(n2) pair-wise
transformation estimates), we can apply the graph-based SLAM techniques on the
map-merging graph to find the spatial configuration of the nodes that is consistent
with our pair-wise estimates. Typically, the Gauss-Newton algorithm, described
by Fletcher [12, ch. 3], or the Levenberg-Marquardt algorithm, described by Moré
[32], are used to optimize the pose graph in graph-based SLAM.

To support graph-based SLAM approaches, there are libraries specifically fo-
cusing on graph optimization under constraints. Well-established examples in-
clude G2O, developed by Kümmerle et al. [26], and TORO, developed by Grisetti
et al. [17]. These libraries can be leveraged to solve the map-merging problem for
n maps.

2.2.2 Solving map-merging problem without loop closures

Graph optimizing techniques benefit from the presence of loop closures in the
graph. During SLAM mapping a loop closure occurs when the robot revisits a
node in the graph. Loops in the map-merging graph require the robot to be able
to estimate pair-wise transformation with at least two neighbours. For example
for the shortest loop in the graph, a triangle with three robots, we need each
robot to be able to estimate both pair-wise transformations to remaining robots.

Loops in the map-merging graph will usually only occur in fairly large envi-
ronments and when using many robots. Further on, unlike in graph-based SLAM,
loop closures may not be critical for good performance of the map-merging al-
gorithm in the typical setup. In the SLAM graph, we expect measurements
associated with the edges to be subject to the Gaussian noise and corrections
based on loop closures are usually vital for good SLAM performance. In the
map-merging graph, we have pair-wise estimates associated with edges based on
the geometry of whole maps containing a large number of points. The pairwise
estimates tend to be quite precise because they consider large portions of the en-
vironment. There are also available evaluation metrics for the pair-wise estimates
(see Section 2.1.8), which allow us to use only robust estimates in the graph.

Taking advantage of accurate pair-wise estimates in the map-merging graph
we may avoid estimating all O(n2) pair-wise estimates, especially since the pair-
wise estimation is the most time-demanding step. To save time we can avoid pair-
wise estimates introducing loops in the graph. We can stop pair-wise estimation
when the nodes are within one connected component of the graph. We may
want to employ a suitable heuristic for selecting the order of pair-wise estimates.
Using this approach we might need only O(n) pair-wise estimates to estimate
global transformations for the maps.

Below I present fast, non-iterative algorithm (Algorithm 4) for extracting
the global poses of maps from the map-merging graph suitable for use in such
setup. The algorithm does not take any advantage of the loops in the graph (we
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expect the use of the approach mentioned above, which avoids loop closures).
The algorithm, however, can work with graphs containing loops.

Algorithm 4 The algorithm to extract global poses of the maps from the map-
merging graph (Definition 2).

Input: weighted map-merging graph
Output: Transformation for each map from the global reference frame to the

map reference frame
1: function extractGlobalPoses(G = (V,E) map-merging graph, Pe∀e ∈
E pair-wise transformation estimates)

2: C = (VC , EC)← the largest connected component in G

3: T ← maximum spanning tree of C using confidences as weights
4: r ← any node from T , selected as the reference frame
5: Es ← edges of T sorted by the distance from r

6: Ar ← I

7: for all (i, j) ∈ Es do

8: Aj ← AiP(i,j)

9: end for

10: ∀i ̸∈ VC : Ai ← 0
11: return A0, A1, . . . An

12: end function

Because only the maps in the same component of the map-merging graph can
be related to the same reference frame, the first step in the algorithm is to extract
the largest connected component from the graph. In our setup we expect robots
to ultimately form one component and the transformations are computed only
for this component. Remaining transformations are set to null transformation. If
the robots are expected to operate separated in multiple components for a long
period, it might be beneficial for the coordination to compute transformations in
all the components, each component having its own reference frame.

Next step in the algorithm is to extract the maximum spanning tree. The
edges are weighted with estimated confidence for each pair-wise transformation
so that the most confident estimates are used. The possible loops are removed in
this step and the non-tree edges are not used.

We can select any node from the spanning tree as the future global reference
frame. All the transformations will be computed to this reference frame.

The last step is to compute the transformations to the selected reference frame.
For computing the transformation of the node (map) we need transformations on
the path from the reference frame (tree root) to the current node to be computed
first (actually we need just the preceding transformation, but that implies com-
puting all the transformations). To achieve this we can sort the edges by the
distance from the reference node, or just traverse the tree using Breadth-First
Search (BFS) or Depth-First Search (DFS) and compute the transformations
during the traversal.
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3. Implementation

I have implemented the map-merging algorithm (Chapter 2) in the ROS frame-
work (Section 3.1). This allows the implementation to be used with various
readily available SLAM algorithms and inter-robot communication solutions.

Point cloud algorithms are implemented with PCL (Section 3.2). PCL is a
popular open-source library for manipulating point-cloud data.

3.1 Robot Operating System

ROS is a popular open-source robotics middleware and distribution of community-
maintained robotics software. ROS provides hardware abstraction, low-level sen-
sors control, implementations of commonly-used robotics algorithms, including
several variants of SLAM, message-passing between processes, build system, and
package management.

The core of the ROS is a messaging system, that allows loose coupling be-
tween sensors, robotic algorithms and actuators. There are many community-
established message formats for various sensor types, visualisation, maps, robot
state, linear algebra etc., which enable software reuse.

Software in the ROS project is organised in a form of community-maintained
packages. The first type of packages integrate particular hardware sensors, actu-
ators or entire robot platforms with ROS and provide a message interface using
standard ROS messages. The second type of packages implements robotics al-
gorithms and usually depends only on standard ROS messages, making them
reusable between robots. The ROS project builds and distributes binary pack-
ages for Linux.

3.2 Point Cloud Library

PCL is an open-source library for point cloud processing. It contains routines
for feature estimation, surface reconstruction, registration, the nearest neighbour
search, model fitting, including RANSAC algorithm, and segmentation. The
library offers serialisation of point clouds to its native, but widely supported
pcd file format. PCL is supported in ROS, with PCL point cloud format being
supported for message serialisation into ROS messages.

I have used PCL to implement the presented map-merging algorithm (Chap-
ter 2) and to read and save pcd files for the command-line tools (Section 3.3.5).

3.3 map merge 3d package

The software for this thesis is organised in a ROS package map merge 3d. This
package contains ROS node for online map-merging as well as command-line
applications for offline map-merging and visualisation of point cloud files.

The map merge 3d package is distributed within ROS starting from ROS
Melodic release. The package documentation is maintained as wiki text avail-
able online, a reproduction of the documentation is attached (Appendix A).
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Care has been taken to integrate the package with the rest of the ROS ecosys-
tem. The package is not tied to any particular package for inter-robot communi-
cation (Section 3.3.1) and it depends on the commonly used map representation
in ROS (Section 3.3.2).

The ROS node supports auto-discovery of the robots (Section 3.3.3) and is
designed to partially mitigate the high computing demands of the map-merging
(Section 3.3.4). The package also contains command-line tools for offline map-
merging and visualisation (Section 3.3.5).

3.3.1 Communication

The ROS node is designed to work with any software for inter-robot communica-
tion. This architecture allows users to use any kind of communication media and
software solution that is available for a given multi-robot system. The package,
therefore, does not provide nor expect any particular communication between
robots.

To achieve the loose coupling with communication software, the node expects
map topics to be available within the local ROS graph. A user of the package is
then expected to configure communication between robots that publishes robot
maps within the local ROS graph. There are several solutions available in ROS
to achieve this setup.

First of all, ROS natively supports sending messages between multiple com-
puters connected to the same network. However, the ROS master directory listing
(broker) service is not distributed and it needs to run on one of those comput-
ers. This creates a single-point-of-failure that is not acceptable for unreliable
communication media.

To achieve reliable multi-robot communication ROS Multimaster Special In-
terest Group was formed with the intent to support running multiple ROS master
broker services. Juan and Cotarelo [25] developed the multimaster fkie pack-
age, that deals with most of the problems of the multi-robot communication. This
package can be used together with map merge 3d to run online map-merging for
multiple robots.

Users are free to choose any other communication solution meeting their needs
for their particular application, map merge 3d does not depend on any particular
multi-master setup and can run also under single-master setup, for example in a
simulated multi-robot environment.

3.3.2 Map representation

Choosing a correct map representation is important to allow interoperability and
re-usability within the ROS ecosystem. We need to select a map format that is
supported by the most SLAM implementations in ROS to be able to consume
maps from the robots.

Widespread 3D SLAM approaches in ROS produce maps as sensor msgs/-

PointCloud2 messages, which are now de-facto standard for representing 3D
maps in ROS. This representation is suitable for the presented map-merging al-
gorithm (Chapter 2).

25



Unfortunately, there is no standard message format in ROS to represent maps
as a pose graph of point clouds, which would allow implementing map-merging
on point cloud pose graph discussed in Section 1.4. The point cloud pose graph
format allows repairing mapping errors.

The future standardised map format may take inspiration from Google’s Car-
tographer SLAM introduced by Hess et al. [20]. This 2D SLAM works on a graph
of occupancy grid submaps. This format would be suitable for the error correct-
ing approach (Section 1.4). The format would need to be adapted to support
3D maps or it could be extended to support both 2D and 3D maps. Standardis-
ing the message format in ROS would require a community discussion to ensure
that the format can be supported across different SLAM approaches. While some
SLAM implementations in ROS export their internal SLAM graph, to the best my
knowledge, Google’s Cartographer is the only implementation in ROS that offers
a suitable pose graph map format that would be suitable for the map-merging on
pose graphs. However, the offered map format is custom to Cartographer SLAM
and it is supporting only 2D maps as Cartographer is a 2D SLAM, so it cannot
be used in this work.

The map-merging node, therefore, uses monolithic maps represented in sen-

sor msgs/PointCloud2 messages, which always encode the whole map, to allow
the highest degree of interoperability with existing ROS packages.

Apart from not being able to correct mapping errors, a monolithic map repre-
sentation also causes unnecessary transfers of already-explored space, that slows
the map update rate for large-scale maps. A standardised pose graph map rep-
resentation in ROS might help to solve both issues.

3.3.3 Configuration

The ROS node supports merging maps from an arbitrary number of robots. To
make configuration of the node easy, maps for map-merging are auto-discovered
by the ROS node.

The node periodically scans the ROS graph to discover map topics, which are
then subscribed and passed to the map-merging procedure. This mechanism also
enables robots to be added to the multi-robot system later, for example, to tackle
a high demand for the service.

Full documentation of this mechanism is described in Appendix A.

3.3.4 ROS node architecture

Estimating transformations between maps with the presented map-merging algo-
rithm (Chapter 2) is computationally intensive and can take a long time, espe-
cially when merging many large-scale maps.

To achieve high update rates of the merged map, the ROS node uses an
asynchronous architecture. Because the map origins do not change, we don’t
need to re-estimate transformations between maps every time we are updating
the merged map, we can use the previous estimates to update the map.

The node is designed to run periodically asynchronous map composition and
transformation estimation tasks, which are independent, at user-settable frequen-
cies. The map composition uses already estimated transformations between maps,

26



transforms the input maps and concatenates the maps to produce the merged
map. This process is fast and allows the node to achieve high update rates of the
merged map to quickly incorporate newly-discovered areas by the robots.

The transformation estimation task uses a computationally demanding algo-
rithm (Chapter 2) to find the transformations between maps with enough over-
lapping space. This task can run with a lower frequency to save computational
resources.

3.3.5 Offline map-merging and visualisation

The ROS package contains also two command-line applications besides the main
ROS node. The applications work with point clouds saved in pcd files, a point
cloud file format of the PCL library.

The first application, map merge tool, is designed for the offline map-merging.
It accepts n point cloud files and produces a single merged map saved to a file.
It uses the same algorithm for map-merging as the ROS node. This application
may be used to create a complete global map of a large-scale environment for
deployment of a robotic system after a multi-session mapping of the environment
with a single robot.

The second application, registration visualisation, accepts two point
clouds and visualises pair-wise transformation estimation algorithm as described
in Chapter 2. The tool is mostly controlled by the command-line arguments, but
the visualisation window is graphical. Each step of the estimation is visualised in
3D, the user is able to freely navigate the point clouds or save the visualisation
as an image. This application is intended for estimation parameter tuning and
learning about the map-merging process.
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4. Evaluation

The presented map-merging algorithm (Chapter 2) has been evaluated on a num-
ber of demanding robotics datasets. The datasets include data captured by small
aerial vehicles (Sections 4.1, 4.2) as well as ground-based robots. The datasets in-
clude both widely used benchmark datasets in robotics research and data recorded
by the author.

Sensors used include stereo rig cameras and active RGB-D cameras, which are
popular visual sensors in the mobile robotics. This variety of sensors and robots
covers many typical multi-robot deployments. All datasets have been captured
under real-world conditions, none of them uses simulated data.

The evaluation focuses on properties of the presented pair-wise transformation
estimation algorithm for point clouds (Section 2.1), which is the core algorithm
of the implemented map-merging ROS node (Section 3.3). The accuracy of the
estimation algorithm is critical for the overall map-merging process.

4.1 The EuRoC micro aerial vehicle dataset col-

lection

The publicly available datasets introduced by Burri et al. [6] was collected on-
board a micro aerial vehicle (Figure 4.1) equipped with a stereo camera rig and an
Inertial Measurement Unit (IMU). Calibration data for the cameras and ground-
truth data are provided with the dataset. This dataset has been used extensively
by researches for evaluation of the visual SLAM algorithms and visual odometry
approaches.

4.1.1 Dataset description

The cameras produce a WVGA monochrome (greyscale) images at 20 frames
per second. Cameras have a global shutter. The automatic exposure control
is independent for both cameras. According to the published errata [6], this
“resulted in different shutter times and in turn in different image brightnesses,
rendering stereo matching and feature tracking more challenging”.

The dataset contains 11 mapping sessions in 3 different environments (“Ma-
chine Hall”, “Vicon Room 1”, “Vicon Room 2”). Each mapping session is avail-
able in a single ROS bag file. First 5 sessions were captured in ETH machine
hall (Figure 4.2), a fairly large industrial environment featuring piping, reservoirs
and different types of surfaces. The second and the third batch of datasets were
captured in a smaller furnished rectangular room. For the second and the third
batch, the furnishing was different.

4.1.2 Maps generation

The dataset is intended for evaluating SLAM algorithms, for our purposes, it was
necessary to process the data with a SLAM algorithm to create a point cloud
maps.
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Figure 4.1: An Asctec Firefly hex-rotor micro aerial vehicle used for collecting
the EuRoC micro aerial vehicle datasets. The picture shows reference frames of
the sensors – the stereo cameras and IMU. The image is courtesy of Burri et al.
[6].

Figure 4.2: ETH Machine hall industrial environment where 5 mapping sessions
of EuRoC dataset were captured. The image is courtesy of Burri et al. [6].
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First, I have used the provided calibration sequence and I have created a
calibration data for ROS using the camera calibration tool available with ROS.

Second, for each environment, I created a pair of maps using the “01” and “02”
mapping sessions from the datasets, which were used further for the evaluation
of the map-merging (Figures 4.3, 1.1, 4.4).

Based on evaluations of SLAM methods in ROS done by da Silva et al. [9]
and Ibragimov and Afanasyev [24], I used RTAB-Map SLAM, developed by Labbé
and Michaud [27], to create the maps. RTAB-Map can work with both stereo
cameras and RGB-D sensors and produces dense maps of good quality, as noted
by both da Silva et al. [9], Ibragimov and Afanasyev [24]. “RTAB-Map computed
coherent SLAM solutions on all evaluated datasets and thus can be considered an
efficient solution for 3D mapping scenarios”, summarise the results of RTAB-Map
da Silva et al. [9].

The odometry for mapping was provided from stereo camera data, using a
visual odometry approach, the available IMU data were not used. For the “01”
sessions I have used a native visual odometry approach of RTAB-Map. For the
“02” sessions I have used visual odometry approach of ORB-SLAM2, introduced
by Mur-Artal and Tardós [34] because the data exhibit more dynamic motions,
which lead to a frequent loss on visual odometry using the first approach. ORB-
SLAM2 visual odometry exhibited better robustness for this data. In both cases,
a loop-closure approach of Labbé and Michaud [27] has been used.

The maps have been voxelized to the resolution of 0.05 meters per voxel, which
yields suitable map sizes for map exchange in a multi-robot system.

Using a different SLAM pipeline for each of the maps contributed to intro-
ducing different mapping errors and artefacts, which makes map-merging of such
maps more difficult.

4.2 AAU dataset

The dataset recorded at Alpen-Adria-Universität Klagenfurt (AAU) on-board a
micro aerial vehicle in an outdoor forest environment. The vehicle was equipped
with a stereo camera rig and IMU. The cameras produce greyscale images.

This dataset contains two mapping sessions. The environment consists or
medium-sized trees, the ground is covered with leaves. The lighting conditions
are challenging as there are areas of direct sunlight as well as areas in the shade.
The lighting conditions are similar in both sessions, as the sessions were captured
in the similar time of day. This setup causes difficult conditions for the stereo
matching and the pose estimation, introducing mapping errors into the maps,
which in turn make the map-merging a challenging task.

Maps (Figures 4.5, 4.6) were generated in the similar manner as described
in Section 4.1.2. Mapping has been done with RTAB-Map SLAM [27] using its
native visual odometry approach.

4.3 MFF dataset

This dataset consists of my own experiments conducted at the campus of the
Faculty of Mathematics and Physics, Charles University. I have conducted two
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Figure 4.3: A point cloud map of the ETH Machine hall. The map was produced
from “Machine Hall 02” dataset using an ORB-SLAM2 visual odometry [34] and
RTAB-Map loop-closure approach [27].
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Figure 4.4: A point cloud map of “Vicon Room 2”. The map was produced
from “Vicon Room 2 02” dataset using an ORB-SLAM2 visual odometry [34]
and RTAB-Map loop-closure approach [27].
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(a) “AAU forest 1” map

(b) “AAU forest 2” map

Figure 4.5: Top view of the two point cloud maps from AAU outdoor forest data-
set. Notice the stripe of direct sunlight on the ground causing difficult conditions
for stereo matching.
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(a) “AAU forest 1” map

(b) “AAU forest 2” map

Figure 4.6: Lateral view of the two point cloud maps from AAU outdoor forest
dataset. In both maps, there is a non-flat terrain and number of outliers caused
by branches and difficult mapping conditions.
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Figure 4.7: The point cloud map of the second and third floor of the faculty
building recorded during handheld mapping. The visual odometry was reset im-
mediately after the tracking was lost. Due to frequent visual odometry failures,
the mapping attempt was not successful, although there are some partially con-
sistent areas within the map.

series of experiments.
The first series of experiments was using a handheld Orbbec Astra RGB-D

camera. I intended to create multi-floor maps of the campus building and evaluate
this scenario with the map-merging algorithm. It has soon become apparent that
without odometry source such mapping is challenging even for state of the art
visual odometry approaches (Figure 4.7).

Typically, during the mapping in narrow spaces, in difficult lighting conditions
or during fast movements, the visual odometry tracking is lost and needs to
be reset. Without the IMU or any other external odometry source to bridge
the loss of the visual odometry, it is hard to maintain a plausible odometry
estimate. Two situations have been observed to be especially challenging for
visual odometry approaches: rough movements (especially rotations) typical for
handheld mapping, as humans tend to do less disciplined movements than robots,
and transitions between spaces through narrow passages (e.g. doors), especially
between spaces with different lighting conditions. Orbbec Astra camera does not
contain an IMU and, therefore, is less suitable for the handheld mapping, which
typically exhibits rough movements.

Bridging the visual odometry gaps with SLAM loop-closures is not always
possible, especially for the second aforementioned type of errors. If the odometry
is always lost when moving in and out of the specific room, such room became
an isolated part of the SLAM graph without any connections to the rest of the
graph. Loop-closures between these two spaces connected by the narrow passage
are very hard to achieve.

Because of the presented issues, I have conducted the second series of exper-
iments with a TurtleBot2 robot. It is a ground-based robot research platform
designed to operate on flat surfaces.

The robot was equipped with Asus Xtion PRO RGB-D camera, which was
used for mapping, a gyroscope and wheel encoders providing 2D odometry.
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The datasets used for evaluation were recorded in two different spaces “Ro-
tunda”, a half-circle computer laboratory with adjacent rooms (Figure 4.8), and
“Refectory”, containing a baroque refectory and lecture rooms at the first floor
of the faculty building (Figure 4.9). In each of the environments, two maps were
recorded.

The maps were generated by RTAB-Map SLAM as in the previous datasets. I
used Extended Kalman Filter (EKF) to fuse odometry data from the gyroscope,
wheel encoders and the visual odometry provided by the native RTAB-Map ap-
proach. I used an EKF implementation for ROS by Moore and Stouch [31]. The
filtering was using a 2D assumption as the robot operates in the plane. Together,
these data provided a reliable odometry source for the SLAM algorithm. The
resulting maps were voxelized to the resolution of 0.05 meters per voxel. The
maps are examined in Section 4.9.

4.4 Accuracy

For all the aerial datasets, the map-merging is able to correctly merge the maps.
The Euclidean error scores, computed as per Section 2.1.8, are small across the
datasets (Figure 4.10). There are larger errors for the “AAU forest” and “Ma-
chine Hall” datasets caused by the outliers and mapping errors in those datasets,
as those datasets have been recorded in tough conditions. Considering the arte-
facts in the datasets, the alignment is almost perfect and would allow precise
coordination of the robots.

Both “Vicon Room” datasets show very small Euclidean error, well beyond
the size of one voxel (0.05 m). Considering the maps are down-sampled for the
registration to the resolution of 0.1 meters per voxel, the presented algorithm can
achieve a sub-voxel accuracy. The registration resolution of 0.1 meters per voxel,
which enables merging of larger maps in real-world conditions, was used for all
the evaluated maps.

The Euclidean error for the initial estimate is significantly lower for the pre-
sented reciprocal matching method (Section 2.1.6). For the SAC-IA algorithm,
the error is higher because the randomness used in the algorithm introduces ad-
ditional errors in case of well-performing PFH descriptors. The initial estimate
produced by the presented matching method is close to the final estimate refined
with ICP. The ICP refinement is then very fast without negative impact on the
overall time of the map-merging algorithm (Figure 4.14).

4.5 Estimation robustness

An important measure of the estimation robustness is the number of inliers (Fig-
ure 4.11) in the RANSAC estimate (Section 2.1.8). Inliers are the points which
are ultimately used for computing the initial transformation estimate. Estimates
based on a few inliers might be severely affected by the noise. On the other hand,
estimates based on a large number of inliers, especially with the high inlier ratio
(the number of inliers to the number of matches), are supposed to be reasonably
confident in typical applications.
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(a) “MFF Rotunda 1” map

(b) “MFF Rotunda 2” map

Figure 4.8: Maps of “Rotunda” computer laboratory with adjacent rooms
recorded at the faculty building. The maps share a common mid-size area of
a symmetrical half-circular laboratory. Both maps contain several mapping er-
rors.
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(a) “MFF Refectory 1” map

(b) “MFF Refectory 2” map

Figure 4.9: Point cloud maps recorded on the first floor of the faculty building.
The common area is highlighted. The larger map contains a baroque refectory
with adjacent areas while the smaller map contains two lecture rooms. Notice
the mapping errors in the corridor area, especially in the larger map.
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Figure 4.10: Euclidean error scores (the sum of Euclidean distances for corre-
sponding points) across the datasets. A threshold of 1.0 has been used to cut-off
fair laying point in non-overlapping areas, see Section 2.1.8 for details. The
map-merging run with default parameters including PFH descriptors and SIFT
keypoints. The first two scores are for the initial estimation, using my reciprocal
matching scheme (Algorithm 3) and the SAC-IA algorithm respectively (Sec-
tion 2.1.6). The last score is the Euclidean error after final refining with ICP
(Section 2.1.7). The ICP refinement uses the initial estimate from the reciprocal
matching.
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PFH descriptors and SIFT keypoints. The reciprocal matching algorithm (Algo-
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each environment.
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The inlier ratio is quite low, even for PFH descriptors (Figure 4.11), the
similar ratios have been observed for all the descriptors. This is partially caused
by the matching scheme designed to accept also more distant matches to improve
inlier ratio for less descriptive descriptors as discussed in Section 2.1.6. The same
behaviour causes the number of matches to be relatively high compared to the
number of keypoints (Figure 4.11).

The “AAU forest” and “Vicon Room 2” datasets have low numbers of inliers,
which might impact robustness in such environments. The “AAU forest” is a
relatively small, difficult environment for mapping containing noise and mapping
errors. Only a few regions in maps are suitable for producing reliable matching
points, which leads to the small number of inliers.

For the “Vicon Room 2” dataset, colour-based descriptors exhibited generally
better performance (Figure 4.12) and they allow robust estimation for this data-
set. The “Vicon Room 2” maps also contain noise caused by the dynamic motion
of the aerial vehicle.

Interestingly in both cases with a limited number of inliers, the map-merging
algorithm has been able to produce an accurate merge (Figure 4.10), even before
ICP refining. The inliers proved to be the correct matches.

4.6 Descriptors

As I already noted in the previous section, the performance of the descriptors
varies significantly in some cases (Figure 4.12). The PFHRGB descriptors exhib-
ited the highest number of inliers across the datasets (Figure 4.12). The SHOT
descriptors with colour also exhibited a decent amount of inliers, especially con-
sidering the fast processing speed (Section 4.7).

The lowest number of inliers have been produced by SC3D descriptors. More-
over, the PCL implementation of SC3D crashed in two instances. Together with
RSD descriptors, which has not been able to produce any inliers and are not
shown in the plots, the SC3D may not be suitable for map-merging in the evalu-
ated setup.

Euclidean error distances (Figure 4.13) mostly reflects the number of inliers
for respective descriptors, with PFHRGB descriptors generally providing the best
initial transformation. With one exception, the ICP refining was able to produce
high-quality alignment for all descriptors with small error differences, neglecting
the differences between initial alignments for different descriptors. For the FPFH
descriptors, the initial estimate in “Machine Hall” dataset has a significantly
higher error and the ICP refining stuck in a local extreme.

4.7 Runtime performance

Although the runtime performance was not a primary concern of the presented
algorithm, it is interesting to take a look at the processing time. In the default
configuration (Figure 4.14), there are orders of magnitude differences between
algorithm steps as presented in Section 2.1. Most of the processing time is taken
by the SIFT keypoints detection and the computation of PFH descriptors.
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Figure 4.12: Number of inliers across the datasets for different descriptor algo-
rithms. Apart from descriptors algorithms, the default parameters have been used
including SIFT keypoints and the reciprocal matching algorithm (Section 2.1.6).
The PCL implementation of SC3D descriptors crashed on “Machine Hall” and
“Vicon Room 2” datasets. This might indicate that the implementation in PCL is
probably not as mature as the remaining descriptors, but I have not investigated
further.
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Figure 4.14: Processing time for the respective parts of the map-merging algo-
rithm (Section 2.1) across the datasets. The data has been recorded during one
run of the algorithm on Intel(R) Core(TM) i5-2520M and do not incorporate mea-
surements from multiple runs to deal with various sources of non-determinism,
although the runtime of the algorithm has been observed to be quite stable. The
data are intended to show the order of magnitude differences of processing time
between particular parts of the algorithm. The map-merging algorithm has been
run with default parameters including PFH descriptors and SIFT keypoints.
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Figure 4.15: Processing time for descriptor algorithms across the datasets. Simi-
lar to Figure 4.14, the data has been recorded during one run of the algorithm on
Intel(R) Core(TM) i5-2520M and are intended to show the order of magnitude
differences of processing time between particular descriptors.

There are, however, significant differences between descriptors regarding pro-
cessing time (Figure 4.15). All PFH-family descriptors require orders of magni-
tude higher processing time. There are also significant differences between the
PFH-family, the processing time nearly doubles between FPFH, PFH and PFH-
RGB descriptors.

The SHOT descriptors with colour are very fast, which makes them a com-
pelling choice, considering they also showed a good robustness (Figure 4.12).
PFHRGB descriptors exhibited the best robustness, but also the longest process-
ing time.
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Figure 4.16: The number of inliers in matches produced by the presented recip-
rocal matching algorithm (Algorithm 3) for different k and the evaluated descrip-
tors. For k = 1 the algorithm is the standard “1-on-1” matching with reciprocal
match validation. The evaluation was running with default parameters.

4.8 Initial estimate algorithms

Comparing the presented reciprocal matching algorithm (Algorithm 3) with the
SAC-IA algorithm, the reciprocal matching algorithm produces a better initial
estimate in most of the evaluated cases (Figure 4.13). A significantly worse initial
estimate was produced only for the FPFH descriptors in “Machine Hall” dataset,
which may not come as a surprise as the SAC-IA algorithm was introduced with
FPFH descriptors.

For PFH, PFHRGB and SHOT descriptors the reciprocal matching algorithm
produced better initial estimates in the evaluation than the SAC-IA algorithm.
Especially for the PFH and PFHRGB descriptors, the Euclidean error distance is
significantly lower for the initial estimates produced by the reciprocal matching
algorithm.

Comparing the presented algorithm with the standard “1-on-1” matching with
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Figure 4.17: The Euclidean error distance for a different number of neighbours
(k) in the presented reciprocal matching algorithm (Algorithm 3). For k = 1 the
algorithm is the standard “1-on-1” matching with reciprocal match validation.
The evaluation was running with default parameters.
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reciprocal match validation, the presented approach can improve robustness in
terms of number of inliers (Figure 4.16) and consecutively also accuracy in terms
of smaller Euclidean distance (Figure 4.17). The standard “1-on-1” matching,
which considers only the nearest match, is equivalent to the presented reciprocal
matching with k = 1.

As expected, the increased number of neighbours considered for matching is
beneficial for FPFH descriptors, where the increased k is essential for a good
initial estimate in some cases. With higher than default k = 10, the reciprocal
matching algorithm can produce a significantly better initial matching estimate
than the SAC-IA algorithm.

Surprisingly, we can obverse the increased number of inliers also for PFH and
PFHRGB descriptors with k = 5 (Figure 4.16). Broadening the neighbour search
further to k = 10 does not seem to increase robustness significantly for PFH and
PFHRGB descriptors, in some cases the number of inliers is even lower than for
k = 5. The SHOT descriptors with colour generally slightly benefit from the
increased k, but in the case of “Machine Hall” dataset, the number of inliers
decreases with increasing k. For SC3D descriptors, there are fewer data as the
implementation in PCL crashed in “Machine Hall” and “Vicon Room 2” datasets.
However, it seems that SC3D descriptors work well with the increased k, in “AAU
forest” dataset there are no inliers for the standard “1-on-1” matching, but the
presented matching approach was able to generate 5 inliers with the increased k,
yielding a good initial estimate (Figure 4.17).

Good performance across different descriptors makes the presented reciprocal
matching a preferred matching strategy over the SAC-IA algorithm for the map-
merging of point cloud maps.

4.9 Overlapping areas

As the presented map-merging algorithm (Chapter 2) relies entirely on informa-
tion contained in the point cloud maps, properties of the overlapping area in maps
(which is the only source of information for the map-merging) greatly influence
the map-merging process.

First of all, the size of the common area in maps is the most influencing factor.
Large common areas may contain more features, which in turn can yield more
feature matches and inliers providing a more robust transformation estimate.

In real-world environments, however, even fairly large common areas might
not be sufficient if they do not contain enough outstanding landmarks for the
feature detection. These feature-poor areas are fairly common in man-made en-
vironments including industrial areas. Flat, single-colour surfaces typically pose
a great challenge for common feature-based methods.

For example, “MFF Refectory” dataset (Figure 4.9) contains two maps with
an overlapping area at the corridor. Although the area is fairly large, it has proven
to be insufficient for a reliable transformation estimate and the map-merging. The
corridor does not contain enough significant landmarks. Moreover, the same lack
of landmarks in corridor areas leads to mapping errors in the maps, that make
map-merging even more challenging. If no common feature-rich areas are present
in maps, the map-merging based exclusively on point cloud maps is expected to
be a challenging task.
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Ambiguities and self-similarities in the environment may also compromise the
map-merging. “MFF Rotunda” dataset (Figure 4.8) was recorded in a symmetri-
cal half-circular laboratory with many similar looking workplaces. The symmetry
of the environment causes the SAC-IA algorithm to wrongly match the maps up-
side down (Figure 4.18).

The presented reciprocal matching algorithm (Algorithm 3) uses a stricter
non-probabilistic approach and it is able to avoid the upside down match. How-
ever, inliers are clustered in one particular area of the map (Figure 4.19a), which
leads to a visible angular error (Figure 4.19b). Other parts of the common area
proved unable to provide stable matches, especially the circular area seems to
contain more mapping errors and only unstable features.

This example shows that even a fairly large overlapping areas might not be
suitable for the map-merging. Suitable common areas allowing a robust trans-
formation estimate between maps should contain a decent amount of significant
landmarks and should contain a minimal amount of ambiguities, self-similarities
and symmetries.
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(a) Top view

(b) Lateral view

Figure 4.18: The initial transformation estimate of the SAC-IA algorithm for
“MFF Rotunda” dataset. The symmetry of the environment causes wrong upside
down match of the second map.
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(a) Inliers

(b) The initial estimate with an angular error

Figure 4.19: The initial transformation estimate and inliers of the presented
reciprocal matching algorithm (Algorithm 3) for “MFF Rotunda” dataset. The
inliers are clustered in a single area, which introduces an angular error in the
initial transformation estimate.
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Conclusion

This work presented a novel map-merging algorithm for merging 3D point cloud
maps in multi-robot systems. The algorithm is based on feature-matching trans-
formation estimation and works solely on point cloud maps without any addi-
tional auxiliary information. This makes the algorithm applicable in heteroge-
neous multi-robot systems and the algorithm can work with different SLAM ap-
proaches and sensor types. To the best of my knowledge, the presented approach
is the first implemented map-merging algorithm working directly on point clouds
without any extra information.

The work showed the feasibility of the feature-matching approach for registra-
tion of low-density point cloud maps produced by SLAM algorithms while using
3D point cloud features typically employed with high-density sensor data.

A reciprocal descriptor matching algorithm was introduced for estimating the
initial transformation using feature-matching. The algorithm requires very little
parametrisation and exhibited good performance across descriptors in the eval-
uation. In the most configurations, it outperforms SAC-IA algorithm for initial
alignment available in the PCL library.

The map-merging algorithm has been evaluated on real-world datasets cap-
tured by both aerial and ground-based robots with a variety of stereo rig cameras
and active RGB-D cameras. It has been evaluated in both indoor and outdoor
environments ranging from forest to a single furnished room. The datasets used
for evaluation include both well-established benchmark robotics datasets and my
own experiments.

The proposed algorithm was implemented as a ROS package. To the best of
my knowledge, it is the first ROS package for map-merging of 3D maps. The
package has been submitted to the ROS distribution, the binary packages has
been distributed with the ROS since the ROS Melodic Morenia release. The
implementation does not require any particular communication solution between
robots and can work with ROS in both multi-master and single-master setup.
Likewise, the implementation does not presume any particular SLAM method,
nor any particular sensor and uses a portable point cloud map representation,
which makes it compatible with existing readily available SLAM implementations.

While the selected map representation enables great interoperability with ex-
isting software, the monolithic point clouds do not permit efficient repairing of
mapping errors in the merged map. A pose graph of point clouds representation
would be beneficial for the map-merging, but there is no standardised message
format in the ROS for such a representation nor there is a common graph rep-
resentation established across different SLAM implementations. In the future it
would be beneficial to introduce a portable pose graph representation to the ROS,
as discussed in Section 3.3.2, support it within the core ROS packages and pro-
mote its usage across SLAM implementations. This representation would allow
the presented algorithm to work on sub-maps in the pose graph and repair the
mapping errors in the merged map.
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A. map merge 3d

This is a reproduction of the text available online at http://wiki.ros.org/

map_merge_3d. Although maintained as the wiki the current version of the text
reproduced below has been written solely by the author.

A.1 Package Summary

Merging multiple 3D maps, represented as point clouds, without knowledge of
initial positions of robots.

• Maintainer status: developed

• Maintainer: Jiri Horner <laeqten AT gmail DOT com>

• Author: Jiri Horner <laeqten AT gmail DOT com>

• License: BSD

• Source: git https://github.com/hrnr/map-merge.git (branch: melodic-
devel)

A.2 Overview

This package provides a 3D global map for multiple robots and the respective
transformations between robots. It merges robots’ individual maps based on
the overlapping space in the maps and requires no dependencies on a particular
SLAM or communication between the robots.

The ROS node can merge maps from the arbitrary number of robots. It
expects maps from individual robots as ROS topics and does not impose any
particular messaging between robots. If your run multiple robots under the same
ROS master then map merge 3d may work for you out-of-the-box, this makes it
easy to setup a simulation experiment.

In the multi-robot exploration scenario your robots probably run multiple
ROS masters and you need to setup a communication link between robots. Com-
mon solution might be multimaster fkie package. You need to provide maps from
your robots on local topics (under the same master). Also if you want to dis-
tribute merged map and tf transformations back to robots your communication
must take care of it.

A.3 Architecture

map merge 3d finds robot maps automatically and new robots can be added to
the system at any time. 3D maps are expected as sensor msgs/PointCloud2,
other map messages are not supported.

Recommended topics names for robot maps are /robot1/map, /robot2/map

etc. However the names are configurable. All robots are expected to publish
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Figure A.1: Visualisation of registration between 2 maps using a map merge 3d

package.

Figure A.2: Diagram showing ROS Application Programming Interface (API) of
the map-merging node.
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map under <robot namespace>/map, where topic name (map) is configurable, but
must be the same for all robots. For each robot <robot namespace> is of cause
different, but it does not need to follow any pattern. Further, you can exclude
some topics using robot namespace parameter, to avoid merging unrelated point
clouds.

A.4 Estimation

Transformations between maps are estimated by feature-matching algorithm and
therefore it is required to have sufficient amount of overlapping space between
maps to make a high-probability match. If maps don’t have enough overlapping
space to make a solid match, merger might reject those matches.

Estimating transforms between maps is cpu-intesive so you might want to
tune estimation rate parameter to run the re-estimation less often.

A.5 ROS API

A.5.1 map merge node

Provides map merging services offered by this package. Dynamically looks for
new robots in the system and merges their maps. Provides tf transforms.

Subscribed Topics

<robot namespace>/map (sensor msgs/PointCloud2)
Local map for a specific robot.

Published Topics

map (sensor msgs/PointCloud2)
Merged map from all robots in the system.

Parameters

Node Parameters Parameters affecting general setup of the node.
˜robot map topic (string, default: map)

Name of robot map topic without namespaces (last component of the topic
name). Only topics with this name are considered when looking for new maps
to merge. This topics may be subject to further filtering (see below).

˜robot namespace (string, default: <empty string>)
Fixed part of the robot map topic. You can employ this parameter to further
limit which topics are considered during dynamic lookup for robots. Only
topics which contain (anywhere) this string are considered for lookup. Unlike
robot map topic you are not limited by namespace logic. Topics are filtered
using text-based search. Therefore robot namespace does not need to be a
ROS namespace, but it can contain slashes etc. This string must be a common
part of all maps topic name (all robots for which you want to merge map).

˜merged map topic (string, default: map)
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Topic name where merged map is published.
˜world frame (string, default: world)

Frame id (in tf tree) which is assigned to published merged map and used as
reference frame for tf transforms.

˜compositing rate (double, default: 0.3)
Rate in Hz. Basic frequency on which the node merges maps and publishes
merged map. Increase this value if you want faster updates.

˜discovery rate (double, default: 0.05)
Rate in Hz. Frequency on which this node discovers new robots (maps). In-
crease this value if you need more agile behaviour when adding new robots.

˜estimation rate (double, default: 0.01)
Rate in Hz. Frequency on which this node re-estimates transformations be-
tween maps. Estimation is cpu-intensive, so you may wish to lower this value.

˜publish tf (bool, default: true)
Whether to publish estimated transforms in the tf tree. See below.

Registration Parameters Parameters affecting only registration algorithm
used for estimating transformations between maps. These parameters should be
defined in the same namespace as normal node parameters.
˜resolution (double, default: 0.1)

Resolution used for the registration. Small value increases registration time.
˜descriptor radius (double, default: resolution * 8.0)

Radius for descriptors computation.
˜outliers min neighbours (int, default: 50)

Minimum number of neighbours for a point to be kept in the map during
outliers pruning.

˜normal radius (double, default: resolution * 6.0)
Radius used for estimating normals.

˜keypoint type (string, default: SIFT)
Type of keypoints used. Possible values are SIFT, HARRIS.

˜keypoint threshold (double, default: 5.0)
Keypoints with lower response that this value are pruned. Lower this threshold
when using Harris keypoints (you can set 0.0).

˜descriptor type (string, default: PFH)
Type of descriptors used. Possible values are PFH, PFHRGB, FPFH, RSD,
SHOT, SC3D.

˜estimation method (string, default: MATCHING)
Type of descriptors matching algorithm used. This algorithm is used for initial
global match. Possible values are MATCHING, SAC IA.

˜refine transform (bool, default: true)
Whether to refine estimated transformation with ICP or not.

˜inlier threshold (double, default: resolution * 5.0)
Inlier threshold used in RANSAC during estimation.

˜max correspondence distance (double, default: inlier threshold * 2.0)
Maximum distance for matched points to be considered the same point.

˜max iterations (int, default: 500)
Maximum iterations for RANSAC.

˜matching k (int, default: 5)
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Number of the nearest descriptors to consider for matching.
˜transform epsilon (double, default: 1e-2)

The smallest change allowed until ICP convergence.
˜confidence threshold (double, default: 0.0)

Minimum confidence in the pair-wise transform estimate to be included in
the map-merging graph. Pair-wise transformations with lower confidence are
not considered when computing global transforms. Increase this value if you
are having problems with invalid transforms being estimated. The confidence
value is computed as a reciprocal of Euclidean distance between transformed
maps.

˜output resolution (double, default: 0.05)
Resolution of the merged global map.

Provided tf Transforms

world → mapX frame

Transformation from the world frame (which name can be configured using
world frame parameter) to each of the maps. Each map must have a correct
frame id set (instead mapX frame) in the sensor msgs/PointCloud2 message.
If the transformation could not be estimated, null transformation is published.

A.6 Tools

Alongside ROS node map merge 3d provides command-line tools to work with
point cloud maps saved in pcd files. Both tools accept any of the registration
parameters described in Section A.5.1.

The tools use PCL command-line parsing module. PCL command-line pars-
ing has some limits (PCL users won’t be surprised): it supports only --param

value format, --param=value is not accepted. Unknown options are ignored.
Options may be arbitrarily mixed with filenames. There are no short versions for
parameters.

A.6.1 map merge tool

Tool for merging maps offline. Produces output.pcd with merged global map.
This tool can merge arbitrary number of maps.

Usage

rosrun map_merge_3d map_merge_tool [--param value] map1.pcd

map2.pcd [map3.pcd...]

For example to use SHOT descriptors with 3 maps:

rosrun map_merge_3d map_merge_tool --descriptor_type SHOT map1.pcd

map2.pcd map3.pcd
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A.6.2 registration visualisation

Visualises pair-wise transform estimation between 2 maps. Uses PCL visualiser
for the visualisation.

Usage

rosrun map_merge_3d registration_visualisation [--param value]

map1.pcd map2.pcd

After one step of the estimation a visualisation window appears. You can
freely navigate the point cloud, save a screenshot or camera parameters (press h

to see all shortcuts). After the window is closed, estimation continues with the
next phase and the next visualisation window appears. Details about estimation
progress are printed to stdout.
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