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Abstract

A novel heart rate estimator, HR-CNN —
a two-step convolutional neural network,
is presented. The network is trained end-
to-end by alternating optimization to be
robust to illumination changes and rel-
ative movement of the subject and the
camera. The network works well with
images of the face roughly aligned by an
of-the-shelf commercial frontal face detec-
tor.

An extensive review of the literature
on visual heart rate estimation identi-
fies key factors limiting the performance
and reproducibility of the methods as:
(i) a lack of publicly available datasets
and incomplete description of published
experiments, (ii) use of unreliable pulse
oximeters for the ground-truth reference,
(iii) missing standard experimental proto-
cols.

A new challenging publicly available
ECG-Fitness dataset with 205 sixty-
second videos of subjects performing phys-
ical exercises is introduced. The dataset
includes 17 subjects performing 4 activi-
ties (talking, rowing, exercising on a step-
per and a stationary bike) captured by
two RGB cameras, one attached to the
currently used fitness machine that signif-
icantly vibrates, the other one to a sepa-
rately standing tripod. With each subject,
“rowing” and “talking” activity is repeated
with a halogen lamp lighting. In case of
4 subjects, the whole recording session is
also lighted by an LED light.

HR-CNN outperforms the published
methods on the dataset reducing error
by more than a half. Each ECG-Fitness
activity contains a different combination
of realistic challenges. The HR-CNN
method performs the best in case of the
“rowing” activity with the mean absolute
error 3.94, and the worst in case of the
“talking” activity with the mean absolute
error 15.57.
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Abstrakt

Je predstavena nova metoda odhadu sr-
dec¢ni frekvence, HR-CNN — dvoustupnova
konvoluéni neuronova sif. Sit je trénovana
end-to-end alternujici optimalizaci a je
robustni vi¢i zméndm osvétleni a rela-
tivnimu pohybu snimaného objektu a ka-
mery. Sit funguje dobfe s nepresné regis-
trovanym obli¢ejem z komercéniho oblicejo-
vého detektoru.

Z rozsdhlého rozboru relevantnich
zdroju vyplyvaji klicové faktory omezu-
jici pfesnost a reprodukovatelnost metod
jako: (i) nedostatek verejné dostupnych
datovych sad a nedostatec¢né popsané ex-
perimenty v publikovanych ¢lancich, (ii)
pouziti nespolehlivého pulzniho oximetru
pro referen¢ni ground-truth, (iii) chybéjici
standardni experimentalni protokoly.

Je predstavena nova verejné dostupnd
datova sada ECG-Fitness, kterd obsahuje
205 minutovych videi, v nichz 17 dobro-
volnikil cvi¢i na posilovacich strojich. Dob-
rovolnici provadi celkem 4 aktivity (roz-
hovor, veslovani, cviceni na stepperu a na
rotopedu). Kazda aktivita je zachycena
dvéma RGB kamerami, z nichz jedna je
pripevnéna k pravé pouzivanému posilo-
vacimu stroji, ktery vyrazné vibruje, a
druhd je uchycena na samostatné stojicim
stativu. Aktivity “veslovani” a “rozhovor”
opakuji dobrovolnici dvakrat. Pii druhém
opakovani jsou osvétleni halogenovou lam-
pou. 4 dobrovolnici jsou osvétleni LED
sveétlem ve vSech Sesti videich.

HR-CNN ma o vice jak polovinu lepsi
vysledky nez dosud publikované metody.
Kazda aktivita v ECG-Fitness datasetu
predstavuje jinou kombinaci realistickych
vyzev. HR-CNN mé nejlepsi vysledky
v pripadé aktivity “veslovani” s prameér-
nou absolutni chybou 3.94 a nejhorsi v pti-
padé aktivity “rozhovor” s primérnou ab-
solutni chybou 15.57.

Klicova slova: srdce, srdecni tep, tep,
puls, tepova frekvence, srdecni puls,
vizualni, odhad, odhad srde¢niho pulsu,
photoplethysmografie, reflektivni,
bezkontaktni, video, odhad srde¢niho
pulsu z videa, robustni, robustni vici
pohybu, robustni vici zméné osvétleni

Preklad nazvu: Robustni vizualni
odhadovani tepu
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Chapter 1

Introduction

Heart rate (HR) is a basic parameter of cardiovascular activity [1]. The
measurement of HR is broadly used — from monitoring of exercise activities
to prediction of acute coronary events. The HR measurement is commonly
performed simply by palpating the pulse or by dedicated devices, e.g. pulse
oximeters or electrocardiographs. The more expensive the device, the more
precise and reliable the measurement. These methods of measurement require
physical contact.

Visual HR estimation, i.e. HR estimation from a stored video sequence or
a direct feed from a camera, has recently received significant attention [2, 3].
In suitable conditions [4], the accuracy of visual HR estimation methods is
comparable to the accuracy of contact methods and by not requiring physical
contact, the subject’s comfort is improved. Moreover, the measurement can
be done at a distance. Also, the recorded material need not to be primarily
designed for HR estimation allowing ex post analysis.

The accuracy of the visual HR estimation depends on acquisition conditions.
Best known visual HR methods are highly sensitive to motion and lighting
and thus require subject’s cooperation. Commonly, the ground truth is
provided by the pulse oximeter, which is sensitive to the quality of contact
with the skin and the lighting setup. The datasets used for evaluation of the
visual HR methods reflect their assumptions — subjects do not move and they
are illuminated by daylight or a professional studio light source. As a rule,
an engineered, complicated signal processing pipelines consisting of several
consecutive steps have been used (e.g. [5] or [6]) and thus it is non-trivial to
robustify such approaches.

The thesis presents HR-CNN, a novel heart rate estimator which is a two-
step convolutional neural network. The network is trained end-to-end by
alternating optimization and is robust to illumination changes and relative
movement of the subject and the camera. The network works well with
an image of the face roughly aligned by an of-the-shelf commercial frontal
face detector.

HR-CNN is evaluated on a newly collected dataset. The dataset, called
ECG-Fitness, contains 205 videos of 17 subjects. The subjects perform rapid
movements in unconstrained directions. Lighting conditions include daylight
and interfering lighting. The videos are uncompressed and the ground-truth



1. Introduction

HR is given by an electrocardiograph.

An experimental protocol evaluating robustness to motion and illumination
conditions is introduced alongside the dataset. The protocol adopts the error
statistics of Heusch et al. [7] and follows the proposed methodology. We note
that there is no common methodology and experimental protocol used in the
visual HR estimation research.

In a summary, we consider multiple aspects of the visual HR estimation
problem. We develop a motion and lighting robust HR estimation method
and evaluate on a newly collected challenging dataset with a standardized
protocol.

The rest of the thesis is organized as follows. Chap. 2 presents the related
work and discusses methodology and terminology of the visual HR estimation
research in detail. Chap. 3 introduces the developed method — the two-step
convolutional neural network “HR-CNN”. In Chap. 4, an extensive experimen-
tal evaluation including a large-scale comparative study, two experiments on
the network’s interpretation, and five experiments inspecting the network’s
robustness are given.



Chapter 2
Related Work

Visual HR estimation methods compute heart rate (HR) by analyzing subtle
changes of skin-color. It is believed that these changes are caused by periph-
eral circulation of blood — the analyzed signal is a “blood volume signal”.
Historically, analysis of peripheral circulation was a domain of plethysmogra-
phy. Plethysmography, from Greek mhndoc (fullness) and ypagpdc (to write)
[8], measures changes in volume inside a living body. In 1936, Molitor and
Kniazuk [9] introduced photoplethysmography (PPG) that performs the mea-
surements remotely with a photosensitive device. Today, PPG is in fact
a synonym for non-contact monitoring of cardiovascular activity [10]. PPG
based devices monitor the human heart rate and estimate the level of oxy-
gen in blood. PPG may be performed in two basic modes. Transmittance
PPG (tPPG) and reflectance PPG (rPPG). In tPPG, the photodetector
captures light transmitted through the body tissue, in rPPG, the reflected
light is recorded. Both forms exist in contact and non-contact versions.

We are interested in HR estimation performed remotely by monitoring
peripheral circulation of blood, i.e. in non-contact reflective photoplethysmo-
graphic (NrPPG) HR estimation or simply “visual HR estimation”. To the
best of our knowledge, there are four recent studies that review the NrPPG
research.

The earliest is the work of Allen [10] from 2007. Allen focuses on the clinical
application of PPG approaches and includes references to the rPPG as well.
The rPPG is represented by several papers. The topics range from plastic
surgery post-operative monitoring to oculoplethysmography, a non-contact
method of detecting carotid occlusive arterial disease.

A more recent work of Liu et al. [11] tracks the rapid development of the
rPPG approaches between years 2007 and 2012. Authors interpret the cause of
the development as the introduction of cheap and relatively precise measuring
devices, e.g. web cameras and alike. Liu et al. conclude that although the
NrPPG is comparable with the traditional contact tPPG systems it needs
further improvement for the clinical use in terms of signal-to-noise ratio.

A paper by Sun and Thakor [3], published in September 2015, provides
a survey of a large body of the literature focused on contact and NrPPG
methods, there referred to as imaging PPG. The differences between the dis-
cussed methods are shown on the different choices taken during the procedure

3



2. Related Work

of obtaining the blood volume signal. The authors conclude that the NrPPG
“will dramatically change our lifestyle in the near future”.

The most recent work of Hassan et al. [2] from September 2017 provides
a comparison of the heart rate estimation methods that employ a video
recording. Authors provide a review of the methods based on illumination
variance and subtle head motion induced by ballistic forces of the heart and
they conclude that “non-invasive nature [of the NrPPG] opens possibilities
for health monitoring towards various fields such as health care, telemedicine,
rehabilitation, sports, ergonomics and crowd analytics”.

The reviews present over 60 studies on HR estimation using NrPPG.
Majority of them is performed on private datasets with ad hoc evaluation
procedures. Only one of them [5] is validated on a publicly available dataset.

Recently, Heusch et al. [7] reimplemented two baseline HR estimation
approaches [12, 13] and a method of Li et al. [5]. Also, an experimental
protocol was introduced in [7] enabling a comparison of the rPPG methods.
The authors tested the three works on the MAHNOB HCI-Tagging dataset
[14]. Interestingly, they were not able to fully reproduce the results reported
by Li et al. They argue that it might be caused by an unknown parameter
setting of the blood volume signal extraction pipeline. Heusch et al. pro-
vided all reimplemented codes and also collected a publicly available dataset
COHFACE!. Since the three reported studies are the only ones tested on
public datasets, we will discuss only these three.

An approach of Haan et al. [12] (referred to as CHROM) is based on
combining color difference, i.e. chrominance, signals. First, skin-color pixels
are found in each frame of input sequence. Then, an average color of skin
pixels is computed in each frame and projected on a proposed chrominance
subspace. The projected signals are bandpass filtered separately in the XY
chrominance colorspace and projected into a one-dimensional signal. The
algorithm is shown to outperform blind source separation methods on a private
dataset of 117 static subjects.

Li et al. [5] (referred to as LiCVPR) is the only approach validated on
a publicly available dataset. Bottom part of a face is found in the first frame of
a sequence and tracked with Lucas-Kanade tracker [15]. An average intensity
of the green channel over the area of measurement is computed in each
frame and corrected for illumination changes. Background is segmented and
its average green intensity is used to mitigate illumination variations with
a Normalized Least Mean Squares filter. Then, subject’s non-rigid motions
are eliminated simply by discarding the motion-contaminated segments of
the signal. Finally, temporal filters are applied and Welch’s power spectral
density estimation method is used to estimate the HR frequency. Experiments
are performed on two datasets, a private one and the MAHNOB HCI-Tagging
dataset. Pearson’s correlation coefficient of 0.81 is reported in the experiments
on the MAHNOB dataset.

The last considered approach is Spatial Subspace Rotation (referred to
as 2SR) by Wang et al. [16]. First, skin pixels are found in each frame.

"https://idiap.ch/dataset/cohface
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2.1. Terminology and Taxonomy

Then, subspace of skin pixels in the RGB space is built for each frame in
the spatial domain. The rotation angle between the spatial subspaces is
computed and analyzed between consecutive frames. Authors claim that no
bandpass filtering is required to obtain the blood volume signal. The method
is validated on a private dataset consisting of 54 videos. Performance of
the algorithm under various conditions such as skin tone, subject’s motion
and recovery after a physical exercise is examined resulting in correlation
coefficient of 0.94.

The rest of the chapter is organized as follows. In Sec. 2.1, a taxonomy of
the NrPPG approaches is given. Sec. 2.2 comments on the methodology in the
NrPPG research. Sec. 2.3 discusses the gold standards of NrPPG. Sec. 2.4 and
Sec. 2.5 analyzes the difficulties in the blood volume signal reconstruction. In
Sec. 2.6, subtle movements of human body caused by cardiovascular activity
are discussed. Sec. 2.7 concludes the whole chapter.

B 21 Terminology and Taxonomy

Sun and Thakor [3] were the first to provide a detailed survey on the NrPPG
methods, there referred to as imaging PPG. We consider this naming con-
vention potentially misleading. It suggests that there is something unique to
the NrPPG approaches employing CMOS and CCD cameras. We find the
only difference in the number of photodetectors performing the readings. It
comes natural that any two methods that process the same type of signal
coming from the same type of sensor should be in the same category. The
fact that in one case only a single sensor and in the other millions of them
are used should not play a role. Furthermore, the term is very similar to
the “PPG imaging” (e.g. [17]). PPG imaging refers to a process of mapping
spatial blood-volume variations in living tissue with a video camera [18]. Not
surprisingly, there is a line of research by Kamshilin et al. [19, 20] in which
the term imaging PPG is used when the PPG imaging is actually thought.
Therefore we propose a taxonomy based on a clear distinction between the
approaches.

We recognize tPPG and rPPG methods as described in the beginning
of Chap. 1. These may be performed in either contact or non-contact
manner.

Inside the NrPPG branch, another important partitioning may be made.
One group of approaches preforms the NrPPG capture with an ambient
lighting, the second uses a supplementary lighting. This classification
follows a line of research showing the importance of the light source spectral
composition [21, 22, 23, 24, 25, 26].

A PPG method may perform a blood volume imaging or a blood
volume signal (BVS) reconstruction. Both the blood volume imaging
and BVS refer to the measured quality — the volume of blood passing through
the tissue. PPG, on the other hand, refers to the measurement setup —
measuring is performed with a specific illumination and photosensitive device
setup.
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HR may be estimated from the BVS, e.g. by counting the number of
peaks in a given time interval of the signal. HR estimated from the BVS is
sometimes called the “blood volume pulse”. Visual HR estimation is a NrPPG
method performing blood volume pulse estimation.

Note that this taxonomy is not used by the researchers. In the discussed
literature, the terminology is vague and inconsistent. The only common
denominator is that the research is performed with a PPG technology.

B 22 Experimental Methodology

In 2007, Allen [10] complains that there are no internationally recognized
standards for a clinical PPG measurement, and that the published research
tends to be using “quite differing measurement technology and protocols,”
thereby limiting the reproducibility of the outcomes.

Schafer and Vagedes [27] review existing PPG studies in 2013 and they
conclude that generally speaking, “quantitative conclusions are impeded by
the fact that results of different studies are mostly incommensurable due to
diverse experimental settings and/or methods of analysis”.

Works published during the rapid development period of the NrPPG field
in the last decade did not follow the recommendations given by Allen nor
Schafer and Vagedes. In 2018, there are still no PPG measurement standards,
the researchers in the NrPPG field use different experimental settings, the
studies fail to report fundamental details about the setup of the experiments.
However, an attempt has been made to improve the reproducibility of the
NrPPG research by Heusch et al. [7] as discussed earlier.

. 2.3 Gold Standard

It was reported by numerous works (e.g. [28, 29, 30, 31, 32, 18, 33, 34, 35, 36,
6, 37]) that a signal obtained from a transmittance-mode pulse oximeter may
serve as a gold standard in the evaluation of a NrPPG approach. However,
the results of the research discussed bellow suggest that the reliability of the
device is limited.

Mardirossian and Schneider showed that various physiological factors, heavy
skin pigmentation including, are a source of the erroneous measurement of
the device [38]. Trivedi et al. [39] examined five commercially available pulse
oximeters during hypoperfusion?, probe motion, and exposure to ambient
light interference. None of the inspected devices performed the best under all
conditions with failure rates varying from approximately 5% to 50%. Teng
and Zhang [40] showed that the BVS obtained from a pulse oximeter is
affected by a “contacting force between the sensor and the measurement site”.
Moreover, Palve in [41] concludes that a reflection-mode pulse oximeter gives
more accurate readings under less than ideal conditions, which is agreed also

2Hypoperfusion is the inadequate perfusion of body tissues, resulting in inadequate
supply of oxygen and nutrients to the body tissues.

6



2.4. Blood Volume Signal Reconstruction Difficulty

by Wax in [42] and Nesseler in [43]. We consider these findings as a very
good reason for abandoning the transmittance-mode pulse oximeter as a gold
standard.

Due to the results of Buchs et al. [44], who showed that the BVS measured
in the two index fingers and the two second toes differs for diabetic and
non-diabetic subjects, and Nitzan et al. [45], who found that the pulse transit
time is a function of a subject’s age, we also consider the reflectance-mode
pulse oximeter as compromised.

Based on the outcomes of the presented works and our own readings
(see Fig. 4.5 on how a BVS differs for two devices), we conclude that an
electrocardiograph instead of the pulse oximeters should be used as the gold
standard for evaluation of a particular NrPPG approach.

B 2.4 Blood Volume Signal Reconstruction Difficulty

Advanced signal processing methods “needed to recover the [heart rate]
information” are presented in [29]. Independent component analysis (ICA),
principal component analysis, auto- and cross-correlation are compared and
it is concluded that the most suitable method for the purpose of heart rate
estimation is the ICA. In the following paragraphs, we discuss the conditions
strongly affecting the accuracy of the heart rate estimation methods. As the
heart rate in NrPPG approaches is obtained by processing a blood volume
signal, we will focus on the BVS reconstruction.

We identify four major causes that can make the BVS reconstruction task
difficult: (i) a video compression, (ii) a lighting setup, (iii) subject’s movement
and (iv) a skin type. The compression is discussed in Sec. 4.2.3.

Subject’s movement may be mitigated by precise tracking and weighted
spatial averaging [31]. Also a multi-imager array was proposed to improve
the motion robustness of the NrPPG reconstruction [46, 47]. When the
NrPPG imaging or deeper analysis of the BVS mechanisms is pursued, also
the ballistocardiographic movement (BCG), i.e. the movement induced by
the ballistic forces of the heart, must be accounted for [13] (see Sec. 2.6).

By the lighting setup the light source position and intensity, both in
space and over time, and its spectral composition are meant. Stationary,
uniform and orthogonal lighting was shown to minimize artifacts in the BVS
that are induced by the BCG movement — the variations in the light flux
“amplify the modulation caused by subtle BCG motions” [18]. Effects of the
light source spectral range were studied intensively [25, 23, 24, 26, 22|, and
a model predicting the relative NrPPG-amplitude was proposed [21] and
verified [12]. Given the spectral composition of light, absorption spectrum of
the oxygenated blood and dermis, and assuming 3% concentration of melanin,
the authors were able to determine the spectral response of the BVS in the
red, green, and blue channels of a camera.

The blood volume signal-to-noise ratio is typically unfavorable. However,
if properly captured, the BVS may be recovered by simple spatial averaging [28,
48, 31, 4, 35, 13, 49, 50] as confirmed in our experiments.

7
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Furthermore, we discourage from use of blind source separation methods
(BSS) in the BVS reconstruction. When the BSS methods are employed,
an assumption has to be made that a blood volume signal is the only periodic
component in the video [51]. This assumption is generally not true [12].
When the cameras have the sampling rate close to the AC current frequency
and a common light source illuminates the subject, aliasing effect might
occur resulting in a corruption of the signal. Moreover, use of the BSS for
the clinical application is limited by the fact that, as to the order of the
decomposed components, BSS methods are ambiguous [37], and a heuristic-
driven selection must be performed. Hence, instead of trying to recover the
signal that might not even be present one should focus on avoiding video
compression, improving the lighting setup, and accounting for the subject’s
movement.

B 2.5 Motion Corruption

The biggest limitation of the existing NrPPG methods seems to be the
inability to cope with the motion-induced artifacts in the captured signal.
Recent approaches try to resolve this issue by increasing the dimensional-
ity of the signal, thus improving separability of the BVS from distortions
caused by motion. We recognize two major research directions in this matter.
The first is represented by [52]. Here the dimensionality of the measurement
is increased algorithmically by decomposing the RGB-signals into different fre-
quency bands. In the second, the dimensionality of measurement is increased
physically, e.g.. by using a 5-band camera as in [53]. Currently, the approaches
based on the algorithmic principles are receiving more attention, probably
because the price of the specialized hardware is high and its availability is
limited.

B 26 Ballistocardiographic Movements

HR estimation may be performed by analysis of subtle movements of human
body caused by cardiovascular activity. The movements are known as bal-
listocardiographic movements. Ballistocardiography (BCG) studies ballistic
forces of the heart, i.e. the inertial forces induced by the blood pulsation.
Balakrishnan et al. was the first to recognize the BCG movement of a human
face in a video and demonstrated reconstruction of the BVS with a blind
source separation based approach [54].

One of the recent works [55] uses a combination of the BCG movement and
color information to reconstruct the BVS related measures. A key BCG study
was performed by Moco et al. who inspected an extent to which the BCG
artifacts, i.e. motion artifacts inflicted by cardiac activity, influence the PPG
imaging techniques [18]. Contamination of blood volume imaging maps was
showed to be severe implicating that the BCG artifacts must be accounted for
in any research in the NrPPG imaging field. Otherwise a misinterpretation of
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the results is at hand. In this matter a recently proposed new physiological
model of the remote PPG introduced by Kamshilin et al. [56] was inspected
and needs to be reexamined.

As to the BCG movements, we are not making use of them in the HR
estimation but we consider them to be a source of a corruption of the BVS.

. 2.7 Lessons Learned from Literature

By reviewing the visual HR estimation literature we identified the key factors
limiting the research as: (i) vague terminology, (ii) heterogeneous methodology,
(iii) incomplete description of the datasets and experimental setups, and
(iv) absence of publicly available datasets.



10



Chapter 3
Method

We develop a two-step convolutional neural network to estimate a heart rate
of a subject in a video sequence. Overview of the method is shown in Fig. 3.1.
The input of the network is a sequence of images of the subject’s face in time.
The output is a single scalar — the predicted HR.

The network composes of two parts, each performs a single step. In the first
step, the Fxtractor network takes an image and produces a single number.
By running the FEztractor over a sequence of images, a sequence of scalar
outputs is produced. In the second step, the Eztractor-produced sequence is
fed to the HR Estimator network that outputs the HR. The two networks are
trained separately. First, given the true heart rate, the Ezxtractor is trained to
maximize the signal-to-noise ratio (SNR). Then, the HR Estimator is trained
to minimize the mean absolute error (MAE) between the estimated and the
true HR.

Let T = {(le-,...,xjy,f;) € XN x F|j=1,...,1} be the training set
that contains [ sequences of N facial RGB image frames x € X and their
corresponding HR labels f* € F. Symbol X denotes a set of all input images
and F is a set of all sequence labels, i.e. the true HR frequencies measured in
hertz. We presume the HR to be constant within a given sequence. If the
HR changes rapidly, we use a piece-wise constant approximation by a sliding
window.

. 3.1 Extractor

Let h(x"; ®) be the output of the Eztractor CNN for the n-th image and
® a concatenation of all convolutional filter parameters. The quality of the

extracted signal is measured by the SNR using a power spectral density
(PSD). Given frequency f

PSD(f,X; ®) = Cz_:: h(x™; ®) - cos (%f”))z + Cz_; h(x"; ®) - sin (27rfn)>2

S (3.1

N is a sequence of N facial images, and f, is a sampling

where X = (x!,...,x
frequency.

Intuitively, given a true HR, amplitude of its frequency should be high
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Figure 3.1: HR-CNN - architecture of the heart rate convolutional neural
network. The Fatractor takes an image and produces a single number. By
running the extractor over a sequence of images, a sequence of scalar outputs is
produced. The sequence is fed to the HR FEstimator and a heart rate is predicted.
The question marks illustrate that the architecture of the HR Estimator differs
between datasets.

while amplitudes of background frequencies low. To measure the quality of
the Extractor, the SNR introduced in [12]

SNR(f*,X;®) = 10-logy [ Y_ PSD(f,X; <1>)/ > PSD(f.X;®)

feF+ FEF\F+

(3.2)

is used where f* is the true HR, F© = (f* — A, f* + A), and a tolerance

interval A accounts for the true HR uncertainty, e.g. due to the HR non-

stationarity within the sequence. The nominator captures the strength of

the true HR signal frequency. The denominator represents the energy of the

background noise, the tolerance interval excluding.

The structure of the CNN used in our experiments is shown in Table 3.1.

The parameter ® is found by minimizing the loss function

l
UT;®) = —% > SNR(f},X;; ®). (3.3)
Jj=1

. 3.2 HR Estimator

The HR Estimator is another CNN taking 1D signal — output of the Eztractor
CNN — and producing the HR. The training minimizes the average L; loss
between the predicted and the true HR f

l
> o ([pxts @), h(xN; )] :0) - 17 (34)




3.3. Implementation Details

Layer type  Configuration

Convolution filt: 1, k: 1 x1,s: 1, p: 0
ELU

MaxPool 15 x 10, s: (1,1), p: O
Convolution filt: 64, k: 12 x 10, s: 1, p: 0
ELU

MaxPool 15 x 10, s: (1,1), p: O
Convolution filt: 64, k: 15 x 10, s: 1, p: 0
ELU

MaxPool 15 x 10, s: (1,1), p: O
Convolution filt: 64, k: 15 x 10, s: 1, p: 0
ELU

MaxPool 15 x 10, s: (2,2), p: 0
Convolution filt: 64, k: 15 x 10, s: 1, p: 0

Input 192 x 128 RGB image

Table 3.1: Structure of the Extractor network. The second column describes
the number of filters ‘filt’, the filter size ‘k’, stride ‘s’ and padding ‘p’.

where ¢ ([h(xl;fb),-u ,h(xN;<I>)} ;0) is the output of the CNN for a se-
quence of N outputs of the Extractor, and 6 is a concatenation of all convo-
lutional filter parameters of the HR Estimator CNN.

B 3.2.1 Discussion

Our first experiments were conducted on a non-challenging dataset. A simple
argument maximum in the PSD of the Eztractor’s output

A

f=arg m?XPSD(f,X,G) (3.5)

gave MAE less than 3 (see Sec. 4.4.1). However, this simple HR estimation
was not robust to challenges in videos from other datasets where a video
compression was used, the subject’s HR was not stationary, or subject’s
motion was present. Therefore, we introduced the HR Estimator CNN.

B 33 Implementation Details

In all experiments, the FExtractor was trained on the training set of the
PURE dataset (see Sec. 4.1) and fixed. Data augmentation including random
translation (up to 42 pixels in y-axis and 28 pixels in x-axis), cropping and
rotation (£5 degrees) was applied to each frame of the training sequence.
Brightness was randomly adjusted for a whole sequence. The HR Estimator
was trained for each dataset separately. During the training of the ECG-
Fitness dataset, the sequences were split to 10 seconds clips to account for
the rapid HR changes.

13



3. Method

Block Layer type Configuration

Convolution filt: 1, k: 1,s: 1, p: O
ELU

12  MaxPool p: 0
Convolution s: 1, p: 0

11 ELU
Convolution s: 1, p: 0

10 o _

onvolution s:1,p: 0

ELU

3 MaxPool p: 0
Convolution s: 1, p: 0

9 ELU
Convolution st 1,p: 0

1 ELU
Convolution s 1,p: 0

Input 192 x 128 RGB image

Table 3.2: Modular structure of the HR Estimator. The final structure is
configured on-the-fly by selecting active blocks. The block number 1 is always
activated. The first column denotes the number of the block, the second the
type of a layer and the third describes the number of filters ‘filt’, the filter size
‘k’, stride ‘s’ and padding ‘p’. The number of convolutional filters, filter sizes and
MaxPool kernel sizes is different for each dataset.

Both networks use a standard chain of convolution, MaxPool and activation
functions and share the following settings. Before the first convolution
layer and after every MaxPool layer, a batch normalization was inserted.
Exponential Linear Units [57] were used as the activation functions. Dropout
was used. Batch normalization was initialized with weights randomly sampled
from a Gaussian distribution with ¢ = 0 and ¢ = 0.1, convolution layers were
initialized according to the method described in [58]. Both networks were
trained using PyTorch library, Adam optimizer was used with learning rate
set to 0.0001 in case of the Extractor and to 0.1 in case of the HR Estimator.

For both training setups, a set of all input facial RGB images X = R192x128,
Faces were found by a face detector, the bounding boxes were adjusted to
the aspect ratio 3 : 2 to cover the whole face, cropped out and resized to
192 x 128 pixels. The set of true HR F = {%, %, ey %} in case of extractor
and F = R in case of estimator.

The Extractor’s configuration (shown in Tab. 3.1) was the same for all
experiments. The structure of the HR Estimator was “task specific” — it was
configured for a particular dataset or its subset.

14



3.3. Implementation Details

Algorithm 1 Metropolis-Hastings Monte-Carlo Random Walk
Given X,
1: Generate Y; ~ X; + ¢4
2: Take

Y; with probability min {1, f(¥)
s { {1755

X otherwise.

B Configuring Structure of HR Estimator with Metropolis-Hastings
Random Walk

In the first experiments, the structure of the Extractor was selected ad hoc.
Challenging videos motivated us to perform the HR estimation by another
CNN - the HR FEstimator. To configure the structure of the HR Estimator,
namely the depth of the network, the number of filters, and the conv and
MaxPool sizes, the Metropolis-Hastings Monte-Carlo Random Walk was used.

In the Metropolis-Hastings Monte-Carlo Random Walk, a Markov chain
denoted by (X;) is used to sample from some target probability distribution
p(z) = f(z)/C, where C is an unknown constant, for which a direct sampling
is difficult [59]. To do so, a proposal distribution ¢ is defined. Candidate Y;
is sampled depending on the current state X; as

Y;f = Xt + & (36)

where ¢; is a random perturbation with distribution ¢, independent of X;.
To perform the sampling, a heuristic is implemented: if f(Y;) > f(Xy),
keep the proposed state Y; and set it as next state in the chain, otherwise
accept the proposed state with a probability f(Y;)/f(X:). Note that any
constant C cancels out. The whole algorithm is depicted in Alg. 1. For
a Markov chain to settle in a stationary distribution, probability of the
transition X; — X;41 must be equal to the probability of the reverse transition
Xi¢+1 — Xy This constraint is fulfilled when the proposal distribution ¢ is
symmetric. Symmetric proposal distribution is the Normal, Cauchy, Student’s-
t, and Uniform distribution. In our case, we used the uniform proposal
distributions in all cases.

In our setting, we presumed the target distribution f to be a multivariate

9w

with four dimensions corresponding to “layer activation/deactivation”; “num-
%W

ber of convolution filters”, “size of convolutional filter” and “size of MaxPool
kernel”. The scaled probability density function is computed as

1
min  (¢(7;0¢))

e={1,...,500}

f() = (3.8)

where ¢(7;6°) is the Mean Average Error from (3.4) for an epoch e. We
applied a component-wise approach — in every iteration of the algorithm, we
performed four samples. In case of the first component Y;! (at the step t),
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3. Method

an identification number of the block (see Tab. 3.2) was drawn uniformly
from {2,3,4,...,12} and the corresponding block was activated, if it was
deactivated before, or deactivated, in the other case. The HR Estimator
was trained for 500 epochs and the f(Y;) was computed using the minimum
value of ¢(7;6) on the validation set. In the same manner, the procedure was
repeated for the size of the MaxPool kernel = {3,5,10, 15}, the size of the
convolutional filter = {3, 8,16, 32,64,90}, and the number of convolutional
filters = {4,8,16,32,64,128,256}. Non-valid combinations of parameters
were skipped.
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Chapter 4

Experiments

This chapter is organized as follows. In Sec. 4.1, four datasets used in
the experiments are introduced. Sec. 4.2 presents the results of the two
preliminary experiments showing the impact of the precise registration and
compression on the quality of the reconstructed blood volume signal (BVS).
An interpretation of the Extractor and the HR FEstimator is given in Sec. 4.3
in two qualitative studies. The last Sec. 4.4 presents a thorough comparative
study and five introspective experiments on the HR-CNN method.

. 4.1 Datasets

The visual HR datasets are small, usually 1 to 20 subjects, and private. To
the best of our knowledge, there are three publicly available datasets for
evaluation of HR estimation methods. In MAHNOB dataset [14], the ground
truth is derived from an electrocardiograph. The PURE dataset [60] and
COHFACE dataset [7] contain the ground truth from pulse oximeters. Devices
performing contact PPG differ in both software and hardware implementation.
Also, they are prone to inaccuracy due to various conditions (subject’s health
status, motion, external lighting) [38, 40, 39] and produce errors in the ground
truth. HR error statistics, especially when using a pulse oximeter as a gold
standard, might not be the best choice — here the HR may be obtained
by various approaches, e.g. by computing number of peaks detected in one
minute of a BVS for every consecutive sample, or by calculating the HR from
distances between a couple of peaks. In both cases, averaging of HR over
a certain time window may be applied. The peak detection algorithm and the
averaging window length are not known for a particular device and its different
setting was shown to have negative effects on the derived measures [61]. As
discussed in Sec. 2.3, an electrocardiograph synchronized with the capturing
device should be preferred as a gold standard reference. The issues of the
available visual HR datasets inspired us to create a novel challenging dataset.
We collected the ECG-Fitness dataset described in Sec. 4.1.4 where the
ground-truth HR is given by an electrocardiograph.

The experiments are performed on the three publicly available datasets and
on the newly collected ECG-Fitness dataset. For the purpose of evaluation,
the following factors affecting the datasets must be taken into account:
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4. Experiments

MAHNOB COHFACE PURE ECG-Fitness
. daylight,
lighting studio dayhght, daylight halogen lamp,
studio
LED
subject’s none talklng
talking translation
head none none ; .
translation rotation
movement .
rotation scale
number
of subjects 30 40 10 17
number 3490 160 60 102!
of videos
sequence compressed compressed lossless PNG raw
storage video video video
sequence. H.264 MPEG-4 Visual none none
compression
SeqUEence 15 x 107 ~5x 1070 24 24
bits per pixel
sequence 61 20 30 30
frame rate
frame - 780 x 580 640 x 480 640 x 480 1920 x 1080
resolution

1 51 videos of the same action from two cameras.

Table 4.1: Datasets used for visual heart rate estimation experiments in Chap. 4.

(i) the lighting conditions, (ii) the amount of subject’s movement during the
recording, and (iii) the data compression level. Tab. 4.1 contains the details
about the datasets including the evaluation-relevant facts. The MAHNOB
dataset (see Sec. 4.1.1) contains videos from 30 subjects. Majority of them sits
still and watches a screen positioned in front of them lighted uniformly with
a studio lighting. The COHFACE dataset (see Sec. 4.1.2) contains 40 subjects
starring at a camera, studio and natural lighting setups are used. The PURE
dataset consists of 10 subjects performing 6 different tasks, including head
rotation and translation, in daylight. The ECG-Fitness dataset contains 17
subjects practicing on fitness machines in daylight, halogen lamp light and
LED lamp light.

Note that a five-subject dataset used in the preliminary experiments is not
covered in this section (see Sec. 4.2 for the description of both the dataset
and experiment).

The rest of the section contains a more detailed description of the datasets
including technical details.

Bl 4.1.1 MAHNOB HCI-Tagging

3739 videos of 30 young healthy adult participants are available. However,
only 3490 videos are used in the experimental protocol. The corpus contains
one color and five monochrome videos for each recording session. The videos
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4.1. Datasets

were recorded in a controlled studio setup (see Fig. 4.1 for a sample video
frame). For full details, please see the dataset manual' [14]. The lengths of
the videos vary from 1 to 259 seconds. Subjects in the videos watch emotion-
eliciting clips. Every session is accompanied by rich physiological data that
include readings from electroencephalograph, electrocardiograph, temperature
sensor and respiration belt. The videos are compressed in H.264/MPEG-4
AVC compression, bit rate ~ 4200 kb/s, 61 fps, 780 x 580 pixels, which gets
~ 1.5 x 1074 bits per pixel — the videos are heavily compressed.

B 4.1.2 COHFACE

The COHFACE dataset? consists of 40 subjects (12 females and 28 males)
sitting still in front of a camera (see Fig. 4.1 for a sample video frame). With
each subject, two 60 seconds long videos for two different lighting conditions
are recorded. This gives a total of 160 one-minute long RGB video sequences).

The video sequences have been recorded with a Logitech HD C525. Physio-
logical recordings, namely blood volume signal (BVS) and breathing rate have
also been recorded. Physiological signals have been acquired using devices
from Tought Technologies and using the provided BioGraph Infiniti software
suite, version 5.

The videos are compressed in MPEG-4 Visual, i.e. MPEG-4 Part 2, bit
rate ~ 250 kb/s, resolution 640 x 480 pixels, 20 frames per second, which
gets &~ 5 x 1075 bits per pixel. In other words, the videos were heavily
compressed and in the light of recent findings of McDuff et al. [62] the BVS
is almost certainly corrupted.

B 4.1.3 PURE

The PURE dataset? [60] consists of 10 persons performing 6 different, con-
trolled head motions in front of a camera (see Fig. 4.1 for a sample video
frame). The video is captured by a professional grade camera with frame
rate of 30 Hz and resolution 640 x 480 pixels. There are 8 male and 2 female
subjects, each recording lasts 60 seconds. During the camera recordings, the
BVS is recorded from a clip pulse oximeter. The oximiter delivers blood
volume signal, heart rate and SpO2 readings.

The test subjects were placed 1.1 meters from the camera. The only source
of light was a daylight coming from a large window frontal to the subject.
The illumination conditions vary slightly for different videos due to weather
conditions.

The subjects were asked to perform the following tasks: (i) sit still and
look directly into the camera, (ii) talk while trying to avoid head motion, (iii)
move head slowly parallel to the camera plane, (iv) move head quickly, (v)
rotate head a little, (vi) rotate head a lot.

"https://mahnob-db.eu/hci-tagging/media/uploads/manual.pdf
2 Available at https://www.idiap.ch/dataset/cohface.
3 Available at http://www.tu-ilmenau.de/neurob/data-sets/pulse.
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Figure 4.1: MAHNOB, COHFACE, and PURE datasets — frames from selected
videos at the beginning of the sequence, after 30 and after 60 seconds.

Video frames in the PURE dataset are stored separately in PNG image
files. Unfortunately, this dataset only contains ground truth in form of the
BVS and SpO2 readings captured from the clip pulse oximeter.

Unlike the two previously described datasets, here the signal from the
camera was stored in lossless PNG files. A frame 640 x 480 pixels is ~= 390kB,
which gets ~ 10 bits per pixel. That is 2 x 10° times more than COHFACE
and ~ 6 x 10* times more than MAHNOB.

B 4.1.4 ECG-Fitness

We collected a realistic corpus of subjects performing physical activities
on fitness machines. The dataset includes 17 subjects (14 male, 3 female)
performing 4 different tasks (speaking, rowing, exercising on a stationary
bike and on an elliptical trainer, see Fig. 4.3 and Fig. 4.4) captured by two
RGB Logitech C920 web cameras and a FLIR thermal camera (see Fig. 4.2
for the capture setup). The FLIR camera was not used in the current study.
The subjects were informed about the purpose of the research and signed an
informed consent.

One Logitech camera was attached to the currently used fitness machine,
the other was positioned on a tripod as close to the first camera as possible.
Three lighting setups were used: (i) natural light coming from a nearby
window, (ii) a standard 400W halogen light and (iii) a 50W led light source
composed of 20W and 30W light (COB CN LED-FT-20W, COB CN LED-
FT-30W). The artificial light sources were positioned to bounce off the walls
and illuminate the subject indirectly.
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Figure 4.2: ECG-Fitness dataset — camera and illumination setup: (a) stationary
bike, (b) elliptical trainer, (c) rowing machine. RGB camera 1 and thermal
imaging camera TI were placed on a tripod, RGB camera 2 was attached to the
fitness machine. A standard 400W halogen lamp and a 50W led light source
composed of 20W and 30W light were used.

machine

tripod

talking (halogen) rowing elliptical trainer stationary bike

Figure 4.3: ECG-Fitness dataset. First row: camera attached to the currently
used fitness machine (camera 2 in Fig. 4.2), second row: camera placed separately
on a tripod.

Two activities (speaking and rowing) were performed twice — once with
the halogen lighting resulting in a strong 50 Hz temporal interference, once
without. In case of 4 subjects, an LED light was used during the recording
of all activities. In total 204 videos from the web cameras, 1 minute each,
were recorded with 30 fps, 1920 x 1080 pixels and stored in an uncompressed
YUV planar pixel format. The age range of subjects is 20 to 53 years.
During the video capture, an electrocardiogram was recorded with two-lead
Viatom CheckMe™Pro device with the CCs lead. The ground-truth HR
was computed with a Python implementation of Pan-Tomkins algorithm [63].
The lowest measured HR is 56, the highest 159 — a 10 second sequence was
used for the computations. The mean HR is 108.96, the standard deviation
23.33 beats per minute.

The dataset covers the following challenges: (i) large subject’s motion
(possibly periodic) in all three axes, (ii) rapid motions inducing motion blur,
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Figure 4.4: ECG-Fitness dataset. Overview of the pose and illumination
variability present in the ECG-Fitness dataset.

(iii) strong facial expressions, (iv) wearing glasses, (v) non-uniform lighting,
(vi) light interference, (vii) atypical non-frontal camera angles.

For the purpose of the dataset creation, a custom capture program was
developed in the C++ programming language. The two C920 web-cameras
were controlled by the OpenCV library?. Before the capture, the exposition
settings (shutter speed, ISO and aperture) were set manually and were frozen
during the capture. The cameras were focused manually. The FLIR thermal
camera uses an analogue PAL color encoding system, therefore the Blackmagic
Design Intensity Shuttle frame grabber was used to capture the analogue
thermal images. The grabber was controlled through a provided software
development kit.

4 Available at https://opencv.org/.
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4.2. Preliminary Experiments

B a2 Preliminary Experiments

Before the HR-CNN method was developed, effects of video compression and
precise face registration were examined. In the experiments, a simplistic BVS
extraction method was used — the signal was computed by spatial averaging
over the green channel of regions shown in Fig. 4.6 (a). The experiments
show that the quality of the BVS is adversely affected by the compression
and improved by a precise face registration.

B 4.2.1 Preliminary Experiments Dataset

Preliminary experiments were performed with 5 volunteers (4 male, 1 fe-
male) aged 22 to 30 years, all with Fitzpatrick skin type III. The subjects
were informed about the purpose of the research and signed an informed
consent. 60 seconds long videos were captured in 1920 x 1080 @ 29.97 fps
to an uncompressed YUV420 format, AVI container, by Logitech C920 web
camera with a hardware chromatic subsampling 4:2:0. A single video size
was approx. 7 GB. A BVS tPPG signal from the right index finger and an
electrocardiograph signal was recorded by a clinically certified two-electrode
Viatom CheckMe™Pro. Clinically certified pulse oximeter Beurer PO 80 was
used to record a BVS tPPG signal from the left index finger. Both devices
were synchronized with the camera. In case of four subjects, the light source
was an overcast light coming from a nearby window. In case of one subject,
the light source was an indirect light coming from a standard 500W halogen
light.

Two videos were recorded for each subject. In the first, four photogrammet-
ric markers were attached to the subject’s forehead and the subject was asked
to sit calmly, see Fig. 4.6 (a). In the latter, the subject’s head was stabilized
in a custom made frame, see Fig. 4.5 (a), and the subject was asked to turn
the palms to the camera.

To quantitatively asses the strength of the reconstructed signal, we employ
a signal-to-noise ratio (3.2). Here, F = {23, & ... 20} F* = (f* — & f*+
2) and f* is the median of heart rates (measured in hertz) computed from
the peak-to-peak distances from a pulse oximeter signal. Before the SNR
is computed, the signal is weighted by the Hann window over the entire
sequence to mitigate boundary effects.

B 4.2.2 Precise Face Registration

In this experiment, we examine the extent to which a precise registration
affects the SNR of the BVS.

An influence of the precise tracking and registration on the quality of a BVS
is inspected. A video stabilized by pixel-to-pixel registration is compared
to a non-stabilized case. Videos with subjects having four photogrammetric
markers attached to their foreheads were used (see Fig. 4.6 (a)). The stickers
were manually set as interest points in the first frame, the reference frame,
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Figure 4.5: Precise face registration experiment: (a) experimental setup with
a head fixed in a custom made stabilization frame, (b) 5 seconds of reference
electrocardiogram — navy blue, distinguishable by the QRS-complex, blood
volume signal measured by contact transmittance PPG — pulse oximeters on the
left and right index fingers (color-coded like areas 1. and 2.), and by non-contact
reflectance PPG — average over areas 3., 4., and 5. captured by a video camera.
The blood volume signal is high and low pass filtered, and amplified 500 times.
Arbitrary units.

and were tracked with a MATLAB implementation of Lukas-Kanade tracker.
A homography in each of the remaining frames was found between the reference
and the tracked points. The homographies were then used to register the
pixels of the forehead over frames. A linear interpolation was used. Two
rectangular areas of measurement (ROI) were examined: 15 x 15 and 75 x 75
pixels. Both were positioned at the first frame of the video and the BVS was
calculated by spatial averaging over a ROI in a green channel of every video
frame.

A power spectral density of the BVS for the subject number five is shown in
Fig. 4.7 (a). In both cases the heart rate frequency is clearly visible. Without
the registration, we observe false frequencies with significant energy, while in
the registered case the energy of these frequencies is reduced.

The results for all subjects are presented in Fig. 4.7 (b). After the registra-
tion, the SNR improves in all cases. The experiment suggests that a slight
movement does not corrupt only NrPPG imaging as discussed in Sec. 2.6
but that it also corrupts the BVS. The corruption is probably caused by
a combination of small ROI size and uneven texture of a skin. The smaller
the ROI, the stronger the influence of the imperfections present on the skin
surface. If an average over a small ROI is computed, the fluctuations of the
image intensity, caused by the moving texture, produce a false signal. In
a larger ROI, the fluctuations are averaged out. Note that the low SNR
in case of subject #2 and #b5 is caused by the low power of the heart rate
frequency.

B 4.2.3 Video Compression

In this section, we first discuss specifics of works that use videos as a container
for the captured data. Then an experiment showing how a video compression
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Figure 4.6: Precise face registration and compression experiment: (a) regions
used in the experiments; solid blue — 75 x 75 px, solid orange — 15 x 15 px, dashed
blue — 100 x 100 px, (b) blood volume signal-to-noise ratio as a function of video
compression level defined by the Constant Rate Factor; average for 5 subjects.
Results for 60 second videos with resolution 1920 x 1080 pixels (blue), downscaled
to 878 x 494 pixels (orange) and to 434 x 234 pixels (yellow). Dashed lines —
results with tracking stickers, full lines — with stabilized head, see Fig. 4.6 (a)
left and right respectively.

affects the quality of the reconstructed BVS is presented.

B Discussion

Surprisingly, many published studies fail to describe the dataset used to
perform the experiments. We believe that this failure comes from the fact
that the researches are not completely familiar with details of storing the
captured data in a video file.

A common denominator of the NrPPG studies is that they report the
captured data as being stored with 3 x 8 bits in some kind of video format.
Without specifying that the video signal was not compressed, this information
is useless. Let us explain why. In [64] we read that the videos “were recorded in
24-bit RGB (with 8 bits per channel)”, 25 frames per second. Also, a capturing
device is introduced — a Handycam Camcorder (Sony HDR-PJ580V) with
resolution of 1440 x 1080 pixels. However, this particular camcoder records the
videos (at the best) in the MPEG-4 AVC/H.264 format with a bitrate up to 24
Mbps. MPEG-4 AVC/H.264 is a block-oriented motion-compensation-based
video compression standard. This standard permits to employ several kinds
of compression principles including inter frame compression. This particular
compression method stores the frames as expressed in terms of one or more
neighboring frames. In other words, there is an image at the beginning and
at the end of some sequence. The images in between are reconstructed from
the two images. In between, only data needed for the reconstruction are
stored, not the whole images. Now, how much is 3 x 8 bits? In case of [64],
we can record up to 25 Mbps information per second. With 25 frames per
second, we have 1 Mb per frame, and inside a frame, we have 1440x1080
pixels. 1000000/(1440 x 1080) ~ 0.64, i.e. we ended up with 3 x 8 bits ~ 0.64.
In [65], the camera used is Sony XDR-XR500 recording in H.264, 1920 x 1080
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Figure 4.7: Precise face registration experiment: (a) power spectral density
of the blood volume signal before (blue) and after (orange) registration for
subject #1; the signal computed by spatial averaging over a ROI of size 15 x 15
pixels in a green channel of a video; the true heart rate is marked by an arrow,
(b) signal-to-noise ratio in decibels of the blood volume signal for 5 subjects.
The signal is computed by spatial averaging over the green channel of regions
shown in Fig. 4.6 (a). Results before and after registration of the regions.

pixels, 29.97 frames per second, and a bitrate up to 16 Mbps, i.e. the situation
is even worse.

In [37] we read that the videos “were further compressed in mp4 format”.
A clear distinction between a compression and a format must be made. When
one speaks about a video format, a video container is actually thought.
A container or wrapper format is a metafile format specifying how different
elements of data coexist in a particular file. A container does not describe how
the data are encoded. So, there is no such thing as “mp4 format compression”.

The influence of the compression on the quality of the BVS reconstruction
was examined by McDuff et al. in [62]. The experiments were performed on
combinations of different compression algorithms with different motion tasks.
The two tested compression standards were H.264 and H.265. The videos
were compressed with a different constant rate factor (CRF), a setting for
which we cannot find a more precise description other than that it “control[s]
the adaptive quantization parameter to provide constant video quality across
frames” [62]. It is not a surprise we can’t find a better description. The
crucial information here is that both H.264 and H.265 are standards. In other
words, H.264 is a sum of instructions on how to encode a video so an arbitrary
H.264 decoder can process it. The standard only specifies a structure of the
compressed stream and does not tell anything about its content, i.e. quality.
That is a domain of an encoder and since encoders are implementation specific,
we have no guarantees of quality at all. McDuff et al. solve this by using
a particular publicly available freeware implementation of the H.264 and H.265
standards, x264 and x265. But the message is clear — if a BVS reconstruction
is pursued, only none or lossless compression is safe.

McDuff et al. also mentioned the chroma subsampling, i.e. a method of
reducing the number of samples used to represent the chromacity. Although
the chroma subsampling may be used to represent an amount of color infor-

26



4.2. Preliminary Experiments

mation loss in a standard compression scheme, we would like to emphasize
its role in the design of the capturing devices. The most common way of
capturing an uncompressed signal is with use of a web camera. However,
even if stored in a raw format, still the “quality” of the signal might vary for
different capturing devices. The web cameras typically perform the chroma
subsampling already on the hardware level, before the captured data is sent
to the USB port. Therefore, we also find important to always include an
information whether there was any kind of “hardware” chroma subsampling
present for a particular capturing device.

B Experiment

In the experiment, effects of a video compression on the strength of the
recovered BVS are inspected. Every video file in the dataset was compressed
with a constant rate factor (CRF) setting varied from 0 to 35. Usually, the
CRF is explained as a setting that induces “constant video quality”, as opposed
to the constant bit rate. CRF set to 0 means that a lossless compression
is performed. FFmpeg program (version 2.8.11) was used to compress the
videos with an x264 encoder, a publicly available implementation of H.264
standard. The default CRF setting in x264 is 23. The BVS was obtained
by spatial averaging over a ROI of size 100 x 100 pixels (see Fig. 4.6 (a)) in
a green channel of a video. The videos with tracking markers were stabilized
first (as described in Sec. 4.2.2).

Results are shown in Fig. 4.6 (b). Originally, only experiments with the full
resolution videos, i.e. 1920 x 1080 pixels (Full HD), were used. However, we
did not experience the gradual decrease of the SNR reported by McDuff et al.
who used videos with resolution 658 x 492 pixels. Therefore we performed the
experiment also with videos downscaled to 878 x 494 and 434 x 234 pixels.
Bi-cubic interpolation was used. The ROIs were scaled proportionally. Here
the gradual SNR decrease is visible (see Fig. 4.6 (b)). Note that downscaling
the video also lowered the SNR, and in case of the Full HD videos, the SNR
remained high until CRF 23. We conclude that reducing the video resolution
negatively affects the SNR of the recovered BVS. Furthermore, steeper SNR
loss is experienced when the H.264 compression is applied to the videos with
a reduced resolution.

Next, we discuss results of Blackford and Estepp [46] who performed
a similar experiment — they reduced the resolution of videos from 658 x 492
to 329 x 246 pixels and concluded that there was “little observable difference
in mean absolute error” between the two reconstructed BVS. We identify four
reasons why their conclusion differs from the results reported by us. First,
independent component analysis, a powerful blind source separation (BSS)
method, was used to obtain the BVS. We argue, that use of BSS methods
in clinical application is not desirable (see Sec. 2.4). Second, the ICA was
computed with signals from five industry grade cameras that were part of a 9
camera array, each camera capturing images with resolution 658 x 492 pixels.
An array of high quality cameras loses the benefits of NrPPG approaches
built on cheap capturing devices. Third, a whole image, not a ROI, was
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Figure 4.8: The FEztractor output for 1270 facial images of a calmly sitting
subject #8 from the PURE dataset. Intensity values in arbitrary units.
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Figure 4.9: The Eztractor introspection. Sequence of Grad-CAM heatmaps of
convolutional layers through the Extractor network (from the earliest 1. convolu-
tional layer on the left to the latest 4. on the right). The activations in cheek
and lips areas contribute to the output the most.

used in their approach. Fourth, the blood volume signals recovered after the
downscaling were evaluated against the full sized videos with a mean absolute
error, not with a SNR.

An approx. 16 dB difference in the SNR reported by us and by McDuff
et al. remains to be explained. First, McDuff et al. use the same experimental
setup and approach as Blackford and Estepp [46]. Second, they compute the
SNR with a different, unspecified formula. Third, we compute the BVS by
spatial averaging over a ROI from the green channel of a single camera, they
compute by applying ICA on spatial averages of the whole images for red,
green and blue channels from 5 cameras.

B a3 Interpretation of HR-CNN

To provide an interpretation of what the CNNs have actually learned, we
present two insights. First, we give a “visual explanation” of the Extractor
network based on the Grad-CAM method [66] (Fig. 4.9) adapted to our
settings. Then a plot of the true and an estimated HR for a sequence with
a rapid HR change is presented.
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B 4.3.1 Extractor

Given a convolutional layer with a filter k, we compute activations Afj of each

Oy

neuron ij and derivatives 54

— of the output y with respect to the activations.
ij
Importance weights read

1 0
] )

where Z is the number of neurons in a given feature map. Weight oy captures
the “importance” of the feature map k for the output y. The result is a coarse
heat-map that is computed as a linear combination

Lérad—cam = Y _ agAF. (4.2)
p

The heatmap is resized and laid over an input image (see Fig. 4.9).
Sequence of heatmaps L provides a clue about the Extractor’s function.
In our case, the first layer (left) “focuses” on cheeks and lips, the next one
increases the importance of cheeks and reduces importance of hair, and this
trend follows in the next two layers. The fact that the extractor “focuses”
on the lips was surprising. We inspected lips as a possible source of the
BVS during the preliminary experiments but we were not able to obtain
stable results. However, we did not track the lips and in this case it is the
segmenting ability of the Extractor network that makes the difference.

B 4.3.2 HR Estimator

To inspect the behavior of the HR FEstimator, a plot of the ground truth
HR and the estimated HR for a sequence with a significant change of HR
(Fig. 4.10) is presented. The plot shows the true HR and an estimated one
for a “rowing” activity of the subject #0 from the ECG-Fitness dataset. The
camera attached to the rowing machine was used — strong vibrations of the
machine are clearly visible in the video. Both the true and estimated HR
were computed from 10 second windows at 1 second intervals. The predicted
HR follows the ascending trend of the true HR. Around the frame number
1500, the estimated HR deviates from the true HR for several tens of frames.
Visual inspection of the video revealed that the subject shows strong facial
expressions reflecting the difficulty of the rowing activity. However, the
subject shows facial expressions in the whole video to some extent so the
nature of the deviation might be of a different kind.

B 4.4 Evaluation

In this section, the introspection of the HR-CNN method is given along with
a comparative study.
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Figure 4.10: The HR Estimator introspection. Output of the HR Estimator for
a video with a significant increase of the subject’s HR. The estimated (blue solid)
and the true HR (red dashed) computed from a 10 second window at a 1 sec.
time interval.

An open source Python package bob.rppg.base® provided by Heusch
et al. [7] was used for the computations. The same error metrics reflecting dis-
crepancy between the true and the predicted HR were used. In particular, the
root mean square error (RMSE) and the Pearson’s correlation coefficient, were
used as in [7]. In addition, mean absolute error (MAE) was computed. We
test the developed HR-CNN method on four datasets (standard: COHFACE,
MAHNOB, PURE, newly collected: ECG-Fitness) against three baseline
methods (LiCVPR [5], CHROM [12], 2SR [16]). In addition, we compare the
methods against a naive “baseline”. The baseline always outputs a constant
HR — the average HR of the training set.

For the purpose of the face bounding boxes detection in case of the PURE
and ECG-Fitness datasets, a commercial implementation of WaldBoost [67]
based detector® was used. Bounding boxes for the MAHNOB and COHFACE
datasets were provided by the bob.rppg.base package.

Experimental protocol. Inspired by Heusch et al. [7], we define an experi-
mental protocol for evaluating visual HR estimation methods. The protocol
prescribes that the visual HR estimation method: (i) receives a sequence
of facial images and outputs a single number (an estimated HR), any other
output is considered to be invalid, (ii) is permitted to learn its parameters on
the training set, (iii) is evaluated on the test set with the Pearson’s correlation
coefficient, the mean absolute error, the root mean squared error, and the
percentage of videos with a successful HR estimation.

We adopt the training and test split for COHFACE and MAHNOB
datasets defined in the “all” experiment performed by Heusch et al. [7]
in the bob.rppg.base Python package. On the following pages, several exper-
iments are presented. The splits for the PURE and ECG-Fitness datasets
were performed randomly. The splits were made “subject-wise” — all videos
of a particular subject were either in the training set or in the test set. In
case of the ECG-Fitness dataset, “activity” subsets of the original set were
created containing videos of a particular activity. Again, the splits were made
“subject-wise” and also “protocol-wise” — once a video was assigned to the
training set in one experiment, it never appears in the test set of any other

Shttps://gitlab.idiap.ch/bob/bob.rppg.base
SEyedea Recognition Ltd. http://www.eyedea.cz/.
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experiment. In all presented experiments, the parameters of each method
were trained on the training set of the particular dataset. The testing was
done on previously unseen data — it used to be a common practice in the
community to tune parameters of the methods directly on the test sets.

Parameter tuning. Parameters of the LICVPR, CHROM and 2SR methods
needed to be tuned for each training set (of each dataset or its “experiment
subset”). LiCVPR has 12 parameters, CHROM 6 and 2SR 4. The range
of the parameter space is unknown and no learning procedures were given
by the authors. Tuning then becomes an unpleasant an difficult task. Ex-
haustive evaluation of even a sparsely sampled parameter space is virtually
impossible. Fortunately, in case of the COHFACE and MAHNOB datasets,
Heusch et al. [7] provide the best-result-yielding parameters for all three
methods. We tried our best to find the right parametrization in case of
the ECG-Fitness and PURE datasets. We followed a strategy applied by
Heusch et al. — we first optimized the parameters of the first step of the signal
processing pipeline, fixed them, and kept on with the optimization of the
parameters of the second step, and so on. Obviously, failure to find the right
parametrization would lead to an unfair comparison. However, such failure is
an inherent part of the processing pipeline of the three methods.

Note that in case of the ECG-Fitness dataset and the HR-CNN method,
the Eztractor and HR Estimator were trained on the dataset by alternating
optimization — in every iteration, the parameters of one network were fixed,
the other network was minimizing the MAE on the training set. In the next
iteration, the roles of the networks switched. The network tuple yielding the
lowest validation MAE was selected. A limited time schedule did not allow
us to apply the alternating optimization in case of other datasets.

B 4.4.1 HR Estimator Variants

As pointed out earlier (see Sec. 3.2.1), our first experiments were conducted
on a non-challenging PURE dataset. The video sequences in this dataset
are uncompressed and the subjects perform a little to none movement in
a controlled fashion (see Fig. 4.1). In this case, a simple argument maximum
in the PSD (3.1) of the Extractor’s output (3.5) gives MAE less than 3.
Tab. 4.2 shows results of five different HR estimation methods. The input
of these methods is the signal coming from the Fxtractor network. First four
lines for each of the measures (Pearson’s corr. coeff., MAE and RMSE) show
results of different types of estimation with the HR FEstimator network. The
first line shows the situation where the HR Estimator is fed by 10 second
windows evaluated at 10 second intervals. The estimated HR is compared to
the true HR computed at the corresponding 10 second window. Note, that
this only applies for the ECG-Fitness dataset. In case of the other datasets,
the results from the 10 second windows are compared to the true HR of
the whole sequence. Results in the following two lines represent mean and
median of the HR FEstimator’s results for non-overlapping 10 second windows
evaluated at 10 second intervals. The estimated HR is compared to the true
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+— whole / whole  10.78 (1) 11.77 9.24(1) 2.37(D) 11.00 (D)

argmaxy PSD(f) whole / whole  26.80 55.49 28.67 2.50 12.85

Table 4.2: HR-CNN evaluation — HR estimation variants. HR estimation is
performed with the HR FEstimator and by the argument maximum in the power
spectral density (PSD) of the blood volume signal (3.1). The estimation is made
either from 10 second windows at 10 second intervals or on a whole sequence. The
same applies for the ground truth HR. When evaluating estimation from 10 second
windows against the ground truth HR of a whole sequence, results for median
and average of the estimated heart rates are presented. Pearson’s correlation
coefficient, mean average error and root-mean-square error is computed on the
test sets of the datasets.

HR of the whole sequence. Next, the input to the HR Estimator is the whole
output of the Extractor and the estimated HR is compared to the true HR of
the whole video sequence. The last presented HR estimation approach is the
argument maximum in the PSD (3.1) of the Extractor’s output.

The results show: (i) Pearson’s correlation coefficient is generally high in
all cases when the HR Estimator network is used, no matter which estimation
procedure is used. This also holds for the case of the uncompressed PURE
dataset. As mentioned before, this dataset is not challenging and output of
the Extractor (see Fig. 4.8) strongly resembles a sine wave, therefore the 0.99
Pearson’s correlation coefficient for the argument maximum. (ii) MAE is the
best in case of the HR FEstimator approaches, but the argument maximum
yields the best results in case of the compressed PURE dataset. This is
hard to interpret since the effects of video compression on the quality of the
extracted signal are severe. (iii) RMSE is the best in case of the HR Estimator.
(iv) The argument maximum yields low MAE, RMSE and high Pearson’s
correlation coefficient when the dataset is not challenging. Video compression
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Table 4.3: Evaluation of visual HR methods — Experiment “All” (see Sec. 4.4.2).
Pearson’s correlation coefficient, mean average error and root-mean-square error
on test sets of the datasets for four baseline methods and the developed HR-
CNN.

significantly decreases the performance of the argument maximum even when
the subject’s HR is stationary as it is the case with the COHFACE and
MAHNOB datasets. In cases when the HR changes rapidly during the video
recording, the argument maximum is not suitable for predicting the average
frequency — there is usually no dominant peak in the PSD spectrum of the
signal.

B 4.4.2 Experiment “All”

In this section, a large-scale comparative study is presented. Tab. 4.3 contains
the central result of the evaluation.

Since this is the first time the results of all compared methods on all
available datasets are presented, we make the discussion “dataset-wise” and
report the sizes of the training and test sets for this experiment.

Il MAHNOB HCI-Tagging

The training set consists of 2302 sequences with an average length of 1812
frames. The test set contains 1188 sequences with an average length of 1745
frames.

The results are presented in Tab. 4.3. The HR-CNN clearly dominates
over the other methods. This is true even for LICVPR that was developed
directly on the MAHNOB dataset. Interestingly, Li et al. [5] reports Pearson’s
correlation coefficient of 0.81, but neither we nor Heusch et al. were able to
reproduce the result. The reason is probably the unknown parameter setting
of the signal extraction pipeline. In the dataset, the most informative area for
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HR estimation is the lower part of a face. The subjects in the dataset wear
an electroencephalographic caps that either cover the forehead completely or
force hair in the forehead’s direction. Also, the cap’s color is very similar to
the skin’s tone. With these limitations, the selection of a measuring area is
less or more given — LICVPR estimates HR only from the lower part of the
face. Also, subjects in the dataset rarely move. If a subject moves, LICVPR
removes such sub-sequence as not suitable for the estimation since it contains
a “non-rigid motion”.

B COHFACE

The COHFACE training set contains 24 subjects, the test set 32 subjects.

The dataset contains the most compressed videos. The results are presented
in Tab. 4.3. CHROM method yields the best MAE for the test set and
HR-CNN performs the best in all other cases. 2SR and LiCVPR perform
significantly worse. CHROM and HR-CNN methods use the whole input
sequence to reconstruct the BVS and estimate the HR, while the other
aggregate local estimates. The first approach seems to best account for the
heavy compressed COHFACE videos.

Bl PURE

The PURE training set contains 36 videos of 6 subjects, the test set 24 videos
of 4 subjects.

The results are depicted in Tab. 4.3. Surprisingly, MAE on the test set is
less than 3 in case of three methods out of four. Poor results of LICVPR are
probably caused by the fact that unlike in the MAHNOB dataset, the subjects
in the PURE dataset were asked to perform various head movements in two
tasks and to talk in one task. Also, a different video compression method was
used. We believe that the main reason behind the good prediction accuracy
of the methods is the fact that the PURE dataset is not compressed. To
confirm our hypothesis, we decided to perform another experiment.

The PURE dataset was compressed with the same compression method
and to the same average bit rate as videos from the COHFACE dataset. The
results shown in Tab. 4.3 confirm our hypothesis. A drop of the accuracy is
visible in the table in case of three methods.

B ECG-Fitness

There is 72 videos of 12 subjects in the training set and 24 videos of 4 subjects
in the test set of the ECG-Fitness dataset. Videos from both cameras (one
positioned on a tripod and the other attached to the currently used fitness
machine) were used.

The results presented in Tab. 4.3 show that our method is the most robust
one when a strong motion and heavy light interference is present in the
videos (see Fig. 4.11 for an example of facial images from the ECG-Fitness
dataset used in the experiments). Due to the rapid movement of subjects,
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Figure 4.11: Facial images extracted from a rowing session video of male subject
from the ECG-Fitness dataset. Bellow, the subject’s position (pink) with respect
to the camera (blue) is depicted.

the face bounding boxes were not found in videos in all frames. In that cases,
the last found bounding box was used. Visual inspection of the extracted
faces revealed a strong clutter. The clutter and motion blur are the reason
why the LICVPR and 2SR methods do not perform well. CHROM performs
better, because it averages skin-colored pixels in each frame and then performs
computations on the sequence as a whole.

B 4.4.3 Experiment “Single Activity”

The “single activity” experiment inspects robustness of the HR estimation
methods to different amounts of motion present in the videos. The methods
were trained on the training set of the experiment “all” and evaluated on the
testing sets of each activity separately. Videos from both cameras, i.e. the
one placed on a tripod and the one attached to the fitness machine, were
used.

The results in Tab. 4.4 imply high robustness of the HR-CNN method to
strong subject’s motion (represented by videos from the “Rowing” activity).
Considering MAE and RMSE, in all but one case HR-CNN yields the best or
the second best results. Continuing with the discussion of HR-CNN, compared
to the other methods, if a halogen light source was used in the “Talking’
activity, the results improved. This has two explanations: (i) the method is
robust to 50Hz perturbation, and (ii) the method performs better in good
illumination conditions. By comparing the MAE and RMSE results of the
“Rowing” activity with and without the halogen lamp light, it seems that we
can’t easily explain the effects of the halogen lamp light on the accuracy of
the HR-CNN method. On the other hand, Pearson’s corr. coeff. is better if
the halogen lamp light was used. Still, more experiments would be needed to
give a conclusion.

i
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Table 4.4: Evaluation of visual HR methods — Experiment “Single Activity”.
Percentage of videos with successful HR estimation, Pearson’s correlation co-
efficient, mean average error and root-mean-square error on test sets of the
ECG-Fitness dataset for four baseline methods and the developed HR-CNN.

CHROM method is the most accurate in case of the “Talking” activity.
This might be accounted to the fact that in the talking videos, the least
amount of motion was present. The only significant movement present was
that of the lips. In case of other activities, CHROM performs significantly
worse.

The results of the baseline estimator, i.e. predicting the HR by returning
the average HR of video sequences from the training set, gives an important
insight about the practicality of the HR estimation methods — the only activity
in which the methods are significantly better is “Talking”, in case of other
activities the only method beating the average from the training set is the

HR-CNN method.

B 4.4.4 Experiment “Single Activity — Retrained”

The “Single Activity — Retrained” experiment uses the same settings as
the “Single Activity” experiment with one difference — the methods were
retrained for each activity separately on its training set. That being said,
the primary focus of this experiment is the ability of a particular method to
adapt to a new environment with a limited amount of training samples. Due
to the requirement of the CHROM, LiCVPR and 2SR methods to manually
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HR-CNN 17.29(1) 9.16(1) 5.02(1) 10.53(1) 10.25(1) 13.59 (1)

Table 4.5: Evaluation of visual HR methods — Experiment “Single Activity —
Retrained”. Pearson’s correlation coeflicient, mean average error and root-mean-
square error on the test sets of the ECG-Fitness dataset for the HR-CNN method
and a baseline method.

tune their parameters for a given dataset, we did not include them in the
experiment. Efforts to do so would be much higher than the possible profits.
Hence, this experiment only compares the baseline method, i.e. returning the
average HR of the training set for all testing sequences, and HR-CNN.

If we compare the results of the “all-trained” and “re-trained” methods
in Tab. 4.5, we clearly see that HR-CNN is very sensitive to the size of the
training set. This result follows our observations on the performance of the
CNNs — when there was not enough training examples, we were not able
to train the network to minimize the error on the validation set. There is
not a single case in the experiment where the HR-CNN method would yield
better results when retrained on a smaller training set.

Taking look at the baseline method, one would expect to see better results
after retraining on a particular set but that is not the case for the “Talking’
activity. This might be caused by the fact that we randomly permuted the
sequence in which the subjects performed the activities. We did so to record
a more diverse dataset. Hence, the subject’s HR differs greatly in this activity.

)
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Table 4.6: HR-CNN evaluation — experiment “HR Estimator Cross-dataset”.
Pearson’s correlation coefficient, mean average error and root-mean-square error
on the test sets of the datasets evaluated in a cross-dataset setting by the
developed HR-CNN. The Eztractor network trained on the PURE dataset was
used in all cases. The HR Estimator was evaluated in a cross-dataset setting.

B 4.45 Experiment “HR Estimator Cross-dataset”

The HR FEstimator network was introduced to account for specifics of the
recording setup of a particular dataset, i.e. various compression methods
and different amounts of relative subject’s and camera movement. It is thus
interesting to inspect the HR Estimators trained for a particular recording
setup on a different recording setup — in a cross-dataset setting. Note that
in all cases the Ezxtrator network trained on the PURE dataset was used.
The estimators were trained on the training sets of the datasets from the
experiment “all”.

The results are presented in Tab. 4.6. Each column represents the HR FEs-
timator trained on a particular dataset, e.g. the first column represents the
estimator trained on the COHFACE dataset and each row contains its result on
a particular dataset. All combinations of the “trained-on-dataset x evaluated-
on-dataset” pairs were computed.

In the table, the expected pattern is visible. The best results for a particular
dataset are received when the HR FEstimator trained particularly for that
dataset is used. However, there is an exception. The HR FEstimator trained
on the uncompressed PURE dataset gives better MAE and RMSE than the
one trained directly on the compressed dataset. Even if the difference is small,
still we would expect this not to be the case. On the other hand, this result
implicates that it is better to train the model on a non-compressed dataset
and then use it in a compressed setting and not the other way.
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Table 4.7: Evaluation of visual HR methods — experiment “Camera Vibration’
Part 1. Percentage of videos with successful HR estimation, Pearson’s correlation
coefficient, mean average error and root-mean-square error on the test sets of
the ECG-Fitness dataset for four baseline methods and the developed HR-CNN.
The videos from the camera attached to the currently used fitness MACHINE and
the camera attached to the TRIPOD were evaluated separately for each activity.

The next interesting part of this experiment is the second best HR Estimator
and the amount of the difference between the first and the second best. Here
we only discuss the MAE. We see three interesting findings. The first one
was discussed in the previous paragraph. The second one is the second best
estimator for the COHFACE dataset — the PURE trained estimator. How
come that an estimator trained on an uncompressed dataset, such as the
PURE dataset, also works for heavily compressed videos? We argue that
in this case, the reason is that the subjects in the COHFACE dataset do
not move which results in two things: (i) since there is no movement in the
sequences, the video compression algorithm has much easier job reducing the
output bitrate and the BVS measured by a camera might not be corrupted
so heavily as when there is a significant movement in the video, (ii) HR
estimation performed on still subjects is easier due to various reasons (as
discussed in Sec. 4.2.2). We believe that the third surprise, i.e. the reasonable
result of the ECG-Fitness-trained estimator on the MAHNOB dataset, is of
the same kind as the second one — subjects in the MAHNOB dataset move
a little or none at all.
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Table 4.8: Evaluation of visual HR methods — experiment “Camera Vibration”
Part 2. Percentage of videos with successful HR estimation, Pearson’s correlation
coefficient, mean average error and root-mean-square error on the test sets of
the ECG-Fitness dataset for four baseline methods and the developed HR-CNN.
The videos from the camera attached to the currently used fitness MACHINE and
the camera attached to the TRIPOD were evaluated separately for each activity.

B 4.4.6 Experiment “Camera Vibration”

The “Camera Vibration” protocol inspects the effect of the camera vibration
on the performance of the methods. The methods were trained on the training
set of the experiment “all” and evaluated “activity-" and “vibration-"wise —
the vibrations were either present (the camera was attached to the currently
used fitness MACHINE) or not present (the camera was firmly attached to
a TRIPOD).

The results are presented in Tab. 4.7 and Tab. 4.8. In all activities but
“Talking”, HR-CNN dominates the results.

HR-CNN performs the best in the “Rowing” activity. The “Rowing” activity
is the one where the strongest camera vibration is present. Interestingly, the
method yields better results if attached to the vibrating rowing machine and
the halogen lamp light is not present. The reason for this behavior might
come from the positioning of the cameras. The MACHINE camera attached to
the rowing machine sees the subject en face all the time. That is not the case
with the TRIPOD camera. Although the best efforts were made to position the
TRIPOD camera as close as possible to the MACHINE camera, in case of the
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rowing machine the TRIPOD camera needed to be positioned to the side of
the machine (see Fig. 4.3) to make sure that no vibrations are present at the
TRIPOD camera. If the halogen lamp light is present, the difference between
the two cameras is less extreme. Just to remind, the Fxtractor was trained
on the PURE dataset first, and then by an alternating optimization (together
with the HR Estimator). The distance between the TRIPOD camera and the
subject was ~ 10 cm greater than in case of the MACHINE camera.

The results from the “Stationary Bike” activity are somewhat surprising.
The LiCVPR method is better than the HR-CNN method by more than
a half in case of the camera placed on a TRIPOD. This is however not true
in case of the MACHINE camera. The reason is that the MACHINE camera
captures the subject from a low angle (see Fig. 4.3). On contrary, the TRIPOD
camera has a nice view of the subject’s face and during the “Stationary Bike”
activity, there is only a little movement present. LICVPR seems incapable of
handling the low angle of view, but when a little movement is present and
the face is clearly visible, the method works well.

HR-CNN yields the most stable results in case of the “Elliptical Trainer”
activity — the difference between the recording angles was not so dramatic as
in the previous cases. Here, the most important factor was ~ 10 cm greater
distance between the TRIPOD camera and the subject than the distance
between the MACHINE camera and the subject (see Fig. 4.3).

To briefly comment the results of other methods, CHROM and 2SR, preform
the best in the “Talking” activity, probably because of lack of subject’s
movement, and LiICVPR yields very bad results for the cameras with extreme
angles of view since it requires to track the subject’s face, which is very
difficult given the challenging recording setup. LiCVPR fails completely for
the “Rowing” activity with the most rapid movement.

B 4.4.7 Summary of Experiments

The developed method performs significantly the best on the ECG-Fitness
dataset that contains realistic challenges. In contrast to the commonly used
COHFACE and MAHNOB datasets, the videos are not compressed. In terms
of practical impact, there is a little point in validating the heart rate estimation
methods on datasets where the only challenge is the compression. If one
is interested in visual HR estimation from compressed videos, raw material
may be always compressed with the desired compression standard and the
required compression level.
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Chapter 5

Conclusion

A novel two-step convolutional neural network for heart rate estimation,
called HR-CNN, was introduced. The HR-CNN network comprises of the
Extractor and the HR FEstimator network. Both networks use a standard
chain of convolution, MaxPool and activation blocks. The Extractor is trained
on the PURE dataset. Structure of the HR FEstimator is configured for each
target dataset — it was introduced to cope with the compression and motion
artifacts. The structure, namely the depth of the network, the number of
filters, and the conv and MaxPool sizes, is found by the Metropolis-Hastings
Monte Carlo Random Walk algorithm.

The HR-CNN network yields the state-of-the-art results outperforming
three published methods [12, 5, 16] and a baseline according to a new ex-
perimental protocol. The protocol prescribes that the visual HR estimation
method: (i) receives a sequence of facial images and outputs a single number
(an estimated HR), any other output is considered invalid, (ii) is permitted
to learn its parameters on the training set, (iii) is evaluated on the test set
with the Pearson’s correlation coefficient, mean absolute error, root mean
squared error, and a percentage of videos with a successful HR estimation.

A new challenging publicly available ECG-Fitness dataset with 205 sixty-
second videos of subjects performing physical exercises has been introduced.
The dataset includes 17 subjects performing 4 activities (talking, rowing,
exercising on a stepper and a rowing machine) captured by two RGB cameras,
one attached to the currently used fitness machine that significantly vibrates,
the other one to a separately standing tripod. With each subject, the “rowing”
and “talking” activity is repeated with a halogen lamp lighting. In case of
4 subjects, the whole recording session is also lighted by an LED light.

The performance of the methods differs the most on the ECG-Fitness
dataset. In contrast to the other datasets, the ECG-Fitness dataset contains
realistic challenges. HR-CNN outperforms the published methods on the
dataset reducing error by more than a half.

The structure of the HR FEstimator requires to be configured for each target
dataset. We believe that a single structure should be sufficient for a group of
videos stored with the same compression method. Due to time constraints,
we leave this research for a future work.
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