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Abstract: The thesis describes a design, development, and analysis of

an agent-based NetLogo model of a spectrum trading system

that uses a Roth-Erev reinforcement learning algorithm on a

wholesale and various pricing mechanisms on a retail market,

namely: successful-ratio, linear-reward, and trial-and-error.

Model behavior is analyzed from the view of the operators,

the group with the highest computational complexity of de-

cision making, whose objective is to maximize their profit.

From the simulation results can be concluded, that the opera-

tors’ profit is highly affected by the forgetting and experimenta-

tion parameters. In the more advanced pricing schemes, e.g.,

successful-ratio and linear-reward, the addition of the for-

getting parameter significantly improves the performance in

terms of the measured indicators, namely, the average profit

and Sharpe ratio. In the zero-intelligence trial-and-error ap-

proach, however, we do not see any positive changes. In ad-

dition, several notable phenomena emerged from the inter-

actions of the agents. For example, the classification of op-

erators who take on the role of spectrum investors as either

risk-averse or risk-seeking based on the pricing schemes uti-

lized in the retail market was shown to be an emergent feature

of the model.
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Abstrakt: Záverečné práca sa zaoberá návrhom, vývojom a analýzou

agentového NetLogo modelu obchodovania s frekvenčým

spektrom s využitím Roth-Erev učenia posilňovaním na

veľkoobchodnom trhu a trojicou cenových mechanizmov na

maloobchodnom trhu, menovite: "successful-ratio", "linear-

reward" a "trial-and-error". Správanie modelu je analyzo-

vané z pohľadu operátorov, skupiny používateľov s kom-

plexným procesom rozhodovania, pri snahe o maximalizo-

vanie zisku. Z výsledkov vyplýva, že zisk operátorov je

značne ovpyvňovaný parametrami zabúdania a experimen-

tovania. Pri použití pokročilejších cenových mechanizmov

"successful-ratio" alebo "linear-reward", má zvýšenie hod-

noty parametra zabúdania za následok výrazné zlepšenie sle-

dovaných ukazovaľov: priemerný zisk a Sharpov pomer. Na

druhej strane, pri použití jednoduchého mechanizmu "trial-

and-error", nie je badateľné žiadne zlepšenie. V závislosti

od použitých cenových mechanizmov boli v správaní mod-

elu pozorované emergentné javy prejavujúce sa charakteri-

stickým správaním investorov na maloobchodnom trhu.
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Introduction

There is no doubt about the importance of wireless communication in current so-

ciety. According to Cisco’s forecast [1] mobile data traffic grew sevenfold over

2016 with mobile video accounting for 78 percent of total mobile traffic (a nine-

fold increase is expected in the 2016-2021 period). The average smartphone will

generate about 6.8GB per month by 2021 which is a fourfold increase over the 2016

average of 1.6GB with a Compound Annual Growth Rate (CAGR) of 33 percent.

Such enormous increase of data traffic and a number of active network de-

vices changes the way society sees the frequency spectrum and arises the question

about the future of current mobile communications markets that are not prepared

either suitable for the observed trend as they suffer from outdated regulatory

models. These models have created an oligopoly of network operators [2] which

makes it extremely difficult to enter the market. A potential service provider first

needs to acquire spectrum at one or more of the occasional spectrum auctions,

and only then build a dedicated network or share an existing one while their new

infrastructure is made operational, thus, the entry conditions are challenging.

Operator present on the market, have the exclusive right to utilize the leased

frequency spectrum under the negotiated conditions. However, it is not uncom-

mon that spectrum is not utilized evenly all the time and across the whole area

where the license is valid. Majority of currently used models does not allow so-

called secondary usage which enables the license holders to lease the spectrum

further to the secondary users when it is not utilized.

Secondary usage in an open access network is a promising solution that may

improve the utilization of the frequency spectrum and fulfill the increasing re-

quirements and expectations of end-users. Extensive research is however required

to understand the nature of such system and to design the working solution. This

thesis focuses on the three-stage model of the spectrum investments in the open
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Introduction

access network and pricing strategies of the operators as well as the interactions

between the operators and end-users. The following sections of thesis describe

the different approaches of spectrum trading in the open-access networks and the

design of agent-based model implementing mechanisms of trading.

Analysis of the model will focus on the impact of spectrum pricing mecha-

nisms and on the economic market indicators such as profit, its variance and Sharp

ratio. Furthermore, the parameter sensitivity of the Roth-Erev algorithm will be

performed to determine how the numerical results of certain models respond to

changes in their inputs. By conducting a sensitivity analysis of the learning pa-

rameters, information about how well the system functions as a "unique super

agent" as it looks for effective learning and pricing trends can be deduced.

The analysis of the wholesale market will explore The different working regimes

(the stable mixed strategy profile, pure selection strategy and win-stay, lose-switch)

determined by the variation of the Roth-Erev algorithm parameters. In turn, the

effect of the data history on the profit for the operator will be examined. More-

over, operators will be characterized in terms of their spectrum investments using

the stylized Sharpe ratio measure.

Research conducted during the writing of this thesis resulted in several pub-

lished papers including:

• Gazda, J., Bugár, G., et al. : Dynamic spectrum leasing and retail pricing

using an experimental economy. Computer Networks, 121, 173-184

• Gazda J., Tóth P., et al. : On the Interdependence of the Financial Market

and Open Access Spectrum Market in the 5G Network. Symmetry. 2018;

10(1):12

• Vološin, M., Gazda, J., et. al. : Spatial real-time price competition in the dy-

namic spectrum access markets. 2017. In: Lecture Notes in Computer Sci-

ence (including subseries Lecture Notes in Artificial Intelligence and Lecture

Notes in Bioinformatics) volume 10207 : EUMAS 2016. - Cham : Springer,

2017 P. 217-229.
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1 Objectives

The main objective of the thesis is an application of the experimental economics

in the model of a cognitive network with the Roth-Erev algorithm. The thesis

focuses on the design and the development of the agent-based model of the cog-

nitive network with the spectrum trading utilizing not only the Roth-Erev algo-

rithm but also the variety of retail pricing mechanisms. Model programmed in

the NetLogo environment has to be analyzed with various configurations in or-

der to discover the emergent phenomenon that may arise from the agents’ and the

markets’ interactions.

Not only the environment’s but also the agents’ characteristics have an impact

on the overall model’s behavior, therefore, additional effort needs to be put in their

configuration.
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2 Dynamic spectrum access networks

The arrival of 5G networks in 2020 may cause a further breakthrough in terms

of a number of devices connected, bandwidth, latency and reliability required as

Fig. 2.1 shows. This new generation of radio systems and network architectures

will push the capabilities further than ever before by combining existing technolo-

gies with the novelty approaches to serve the variety of devices with different re-

quirements. Authors of [3] address the characteristics of networks that need to be

improved to deal with such complex task:

High bandwidth

Observed trend of increasing data traffic requires improvement of bandwidth.

The most challenging task is the improvement of an edge rate, which is the worst

rate user can expect in range of the network. Typical 4G systems have capabili-

ties to serve 1Mbps to 5% of users however 5G targets towards 100Mbps for 95%.

Aggregate data rate (total amount of data network can serve) and peak rate (best

data rate user can achieve) are both expected to reach about 100-1000x of current

4G networks

Low latency and high reliability

To satisfy the requirements of virtual/enhanced reality systems, gaming industry,

cloud systems etc., roundtrip latencies need to be reduced from the current 4G’s

15ms as close as possible towards a 1ms to support devices dealing with time-

critical problems for example communication of autonomous vehicles which does

not only require low latency of communication but also highest possible reliability

of network to be able to operate in environment of crowded cities without a risk.

4



Chapter 2. Dynamic spectrum access networks

Figure 2.1: Goals of 5G networks according to Nokia [4]

Massive machine communication

5G networks also need a native support for machine-to-machine (M2M) commu-

nication which is expected to grow in the near future. Macrocells are therefore

required to serve up to 104 of various devices such as metering sensors, smart

grid components, wearable devices etc., at the same time. According to [5], cur-

rent systems are able to easily serve 5 devices at 2Mbps each, however, are not

optimized for short data blocks and therefore cannot serve 10000 devices each re-

quiring 1Kbps. Enhancement of low data rate, on the other hand, can not degrade

performance required by traditional high-rate mobile users.

Low energy and cost

The efficiency of the 5G network represented by Joule per bit needs to be improved

at least 100x to keep service costs on par with the 4G. This can be achieved via the

use of small cells that are not only 10-100x cheaper but also more power efficient

than macrocells. Another way of decreasing the costs is the utilization of mmWave

spectrum, ranging from 30 GHz to 300 GHz, that is 10-100x cheaper per Hz than

spectrum below 3GHz. However, usage of this spectrum requires new techniques

to deal with high propagation loss, directivity and sensitivity to blockage [6].

Although, 5G network seems to improve every important aspect of wireless

communication it primarily does not solve the major issue which is the scarcity of

5



Chapter 2. Dynamic spectrum access networks

Power

Frequency

Time

Spectrum hole

Figure 2.2: Spectrum holes - Temporarily unused spectrum

frequency spectrum. Importance of this issue is being increased, as the demand

for spectrum grows. China with it’s 1.286 billion of mobile subscribers, which

makes it the country with the largest number of mobile users on the planet, is

a great example of the country facing a spectrum scarcity. Sufficient frequency

bands needed for 5G can be divided into two parts: bands below and above 6GHz.

While finding an unoccupied spectrum above 6GHz is not an issue, vital bands be-

low 6GHz, needed for their coverage capabilities, are heavily utilized by various

services. According to authors of [7], spectrum required by 5G in China is sig-

nificantly larger than currently required by 2G, 3G, and 4G networks, therefore

using only licensed spectrum may not be sufficient, which means that sophisti-

cated mechanisms used in so-called cognitive networks are required to meet 5G

requirements.

The term “Cognitive network”(CN) has multiple definitions. According to

Thomas et al. [8] CN can be described as a flexible and extensible framework

able to, directly and indirectly, observe a network in order to gain the information

used to alter a future behavior depending on the state of the network. Its goal is

to predict the conditions, to act proactively rather than retroactively in order to

improve end-to-end performance under which better spectrum utilization, qual-

ity of service (QoS) and security is considered. Implementation of the cognitive

network requires more effort and a more complex system than noncognitive one,

however, these costs will not be considered substantial in the near future with

high probability.

Principles of spectrum auctions are not only insufficient for the future high

data traffic networks but also guilty of spectrum holes emergence in the frequency

6



Chapter 2. Dynamic spectrum access networks

National
roaming
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Direct
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market

Figure 2.3: Different approaches of wholesale market mechanisms

spectrum (Fig. 2.2). These temporally unused chunks of the licensed spectrum

can be utilized under certain conditions but this secondary usage is prohibited

according to the policies of most currently used regulatory models.

A promising solution to promote increased competition is the establishment

of the open access network concept [9]. An open access network is a public-private

partnership that is structured similarly to those in the restructured electricity mar-

kets, which have been in operation for the past twenty years. Service providers

in the open access network compete for frequency resources on a wholesale mar-

ket and then sell those resources to mobile communications end-users on a re-

tail market. The regulators hope to increase spectrum utilization and stipulate

the level of operator competition through dynamic spectrum access (DSA), end-user

multi-homing techniques and national roaming.

2.1 Wholesale market models

Dynamic spectrum access (DSA) also referred to as dynamic spectrum manage-

ment (DSM) is a paradigm that allows utilization of unused frequency spectrum,

spectrum holes, by so-called secondary users in the licensed spectrum bands [10].

According to [11] it may also decrease costs associated with the spectrum trans-

actions and entry barriers that potential operators face too, however, implementa-

tion requires high investments. This promising approach is a subject of ongoing

research on both low and high levels.
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Chapter 2. Dynamic spectrum access networks

On the low level, the interference detection and its avoidance is the main issue

[12], because the QoS of primary users cannot be diminished by secondary usage.

Dynamic spectrum access requires sensing of ongoing utilization with the aim to

not only discover white holes but also predict their future appearance which is the

especially challenging task when the communication patterns of license holders

are not defined.

2.1.1 National roaming

According to [13], national roaming is mostly considered to be an instrument of

public policy, with the ability to increase competition by allowing the entrance

of new competitors to the market without whole infrastructure already built. It

is especially suitable for the countries with the large area and rather insufficient

coverage. In case of emergency situation, end-users are most likely to appreciate

the existence of this roaming because thanks to its implementation, it is possible

to perform emergency calls with the phones with or even without SIM inserted

over the foreign network all over the European Union and the USA (with few ex-

ceptions [13]). The mechanism itself improves the allocative efficiency (network

capacity and spectrum utilization) by increasing served demand and decreasing

the unused capacity. On the other hand, this approach meets with the resistance

of established operators holding the monopoly and their objections against as-

sistance to potential competitors. The [11] also reminds that national roaming re-

quires careful regulation due to a possibility of agreement about the high roaming

fees among operators that will be charged together with retail prices.

2.1.2 Opportunistic sharing

Opportunistic sharing is an approach which uses the advantages that cognitive

networks offer. Spectrum holes discovered by sensing of real-time utilization of

the licensed spectrum, can be used opportunistically by non-legitimate users [14],

which increases the spectrum utilization. However, attention to retention of the

interference-free system is required because sharing the same radio channel may

degrade the system performance and limit the primary user. One of the possible

solutions is the application of transmit beamforming.

8
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2.1.3 Secondary trading

On the high level, secondary spectrum trading mechanisms are the subjects un-

dergoing intense study. These determine the actions taking part in process of

trading and define the market structure. Authors of [15] describe following mech-

anisms:

Auction

In the auctions, stakeholders are divided into two groups with different interests,

selling brokers with their goal to maximize revenue by trading and buying and

service providers who attempt to acquire bandwidth at the desired price. As was

already described, auctions are the way the operators negotiate with the state au-

thorities to obtain the spectrum license, however, licenses acquired this way are

long-term, mostly with duration of 10 years. Auction mechanisms proposed for

the usage on the secondary markets are considered to operate in shorter than hour

intervals offering the licenses with corresponding time validity.

On the other hand, the nearly real-time auction process is not trivial since

interference-free connections need to be ensured in the networks. Authors of [16]

claim that many of the existing auction mechanisms require complex bid expres-

sion that grows exponentially with the size of goods, therefore, are insufficient

due to their inability to deal with NP-hard problems in real-time. According to

[15] there is also a possibility of monopoly in the auction controlled spectrum trad-

ing environment, with few participants able to overbid the concurrency easily.

Brokerage system

A process of trading in a brokerage system is managed by a broker, who receives

the offers from primary users and secondary users and afterward matches the

pairs to optimize the social welfare. Broker plays a role of mediator that attempts

to satisfy both sides of a contract by maximizing the subscribers’ surplus and

providers’ profit. This approach is commonly used in smart grid models [17] [18]

including the European Union’s Horizon 2020 founded project NOBEL [19].

9
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Direct trading

Unlike in the brokerage system, in a direct trading, there is no mediator between

the sellers and buyers on the secondary market. The major issue in the direct

spectrum trading is a pricing. Authors of [15] explain, that a trading price is set

according to the demand and the supply. In case of high demand and low supply

prices are set by sellers and on the contrary when demand is lower than supply,

prices are set by the buyers who turn over each offered price in mind.

2.2 Retail market approaches

Network switching allows users to automatically choose the right network to get

the best connection according to given requirements. Price, throughput, latency

etc. or combination of given can be a deciding criterion. This mechanism does

not require a support from the operator. The approach of end-user switching was

applied in Project Fi by Google [20] which represents a mobile virtual network

operator (MVNO). Fi-ready phones can seamlessly switch to the fastest of three

4G LTE networks on the area of USA (Sprint, T-Mobile, and U.S. Cellular), and get

free access to 1 million Wi-Fi hotspots to maintain the best possible connection in

any location with the real-time network switching. To ensure the security, Project

Fi supports the encryption of communication through an automatic VPN over

Wi-Fi hotspots.

End-user multihoming is an approach that allows users to utilize multiple mo-

bile networks at the same time to increase connection throughput by aggregating

network capacity. Data packets are being split by the user’s device and no infor-

mation about an adoption of this mechanism is shared with concerned networks,

so no operator support is required in this user-centric strategy. Fig. 2.4 shows an

example of multihoming between the end-user and various service providers’ de-

vices. End-user multihoming can be described as a special case of network switch-

ing when not single but at least two best networks are chosen to be utilized.

Multihoming exists in three forms depending on who controls the traffic flow.

We distinguish between the network-centric and user-centric approach which com-

bined creates hybrid option [21]. This approach performs well in the environ-

ments with a low density of network devices, however, according to [22] it has no

benefits over switching in dense environments. Results of simulations show that
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Chapter 2. Dynamic spectrum access networks

Figure 2.4: End-user multihoming between user, WiFi access point, rooftop

base transceiver station (BTS), dron mounted BTS and vehicle mounted BTS

usage of a best near network is more efficient than splitting the packets between

more networks in the most cases.

Devices with the multihoming support have to be equipped with the multiple

network interfaces to efficiently increase their throughput by using parallel trans-

missions over multiple paths [23]. Because different paths tend to have different

bandwidth and delay, mechanisms to mitigate out-of-order packet receiving are

required. Another issue related to the multihoming is a need to monitor and an-

alyze paths to ensure the optimal routing. The scope of the thesis is the economic

analysis of network featuring end-user switching with a spectrum trading capa-

bilities thus none of the given issues will affect the analyzed model.

11



3 Modeling approaches: game theory

vs agent based modeling system

Game theory is a collection of analytical tools made to help understand the deci-

sion making of rational entities who take their knowledge or expectations of other

decision-makers’ behavior into an account. Various highly abstracts models that

represent the classes of real-life situations exist. The most famous are: the the-

ory of Nash equilibrium (used to study oligopolistic and political competition),

the theory of mixed strategy equilibrium (explains the distributions of tongue

length in bees and tube length in flowers), the theory of repeated games (used

to study social phenomenon like threats and promises) and the theory of the core

(describes a sense in which the outcome of trading under a price system is stable

in an economy that contains many agents) [24]. Usage of game theory allows the

investigation of a steady state existence and convergence to the steady state.

On the other hand, according to [25] game theory struggle to model the real in-

termediated competitive markets that are characterized by power-law distributed

market shares. The more competitive the market is, the larger the magnitude of

the exponent in the power law equation is. Therefore game theoretic models may

struggle to capture the dynamic process of interactions among dense networks of

meta-stable agents precisely.

Another issue of this modeling approach is its inability to model the entities

with a bounded rationality e.g. asymmetries in abilities and in perceptions of a

situation by different entities[24]. Game theory assumes that the entity’s knowl-

edge of the rules is perfect and its ability to analyze the situation is ideal. This

drawback, however, makes it impossible to model the desired spectrum trading

system with the non-cooperating operators and end-users because the operators

are not supposed to share their information therefore are required to operate with

12
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Agent

Environment

action At

reward Rt

state St

Rt+1

St+1

Figure 3.1: Agent’s interaction with the environment in an agent-based model

the only partial knowledge about the environment state.

The second well-known approach is the agent-based modeling (ABM) com-

monly used to simulate the behavior of systems that consist of a large number

of subjects interacting in a shared environment. These models are the systems of

identifiable, discrete and self-directed individuals with own characteristics, rules,

behavior and decision capability. Agents are situated in the environment with

which they can interact to achieve the desired goals. The behavior of agents is

commonly flexible which allows the process of learning driven by the previous

experience. Figure 3.1 shows a simple process of interaction between the agent

and the environment. The inner state of the agent determines its actions towards

the environment. Each action is rewarded which serves as a feedback that affects

the future behavior through the change of inner state or modification of behav-

ioral rules [26]. Agent’s actions may affect the environment and subsequently

other agents or the other agents directly.

Agent-based models are popular because of their modularity, flexibility, ex-

pressiveness ability to capture emergent phenomena and the possibility to be ex-

ecuted in parallel. Another advantage is the ability to be coupled with differ-

ent type of models including, continuum models or models of human response

to simulate specific or very complex scenarios [27], for example pandemics [28],

pedestrians [29], evacuation [30], ocean microbe ecosystems [31] etc.

These models are not only used by researchers and modelers to confirm their

assumptions but also in real situations by decision-makers. An integrative deci-

sion support system DANUBIA [32] is an example of the agent-based simulation
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model used for decision support with the components for natural science as well

as socio-economic processes and their interactions. It was used for simulation of

various sectors including e.g. farming, economy, water supply companies, pri-

vate households, tourism etc., with the intention to predict the climate change in

the area of the Upper Danube. The UrbanSim [33] is another great example of an

agent-based simulation system. It is used for planning support, analysis of urban

development, quick evaluation of land parcels or building suitability for afford-

able housing development mainly in San Francisco. It also simulates the inter-

actions between land use, transportation, the economy, and the environment. To

prevent the potential San Francisco’s housing crisis a number of affordable hous-

ing units was estimated by the simulations made in UrbanSim’s sub-system called

Penciler.

There are however some issues related to the ABM too. It is very important to

determine the right amount of abstraction so the result will serve its purpose well.

Another issue is a performance. Even trivial models may become too demanding

with a plenty of agents involved, therefore it is advised to reconsider the usage of

ABM approach. Moreover, due to potential irrationality or subjectivity of humans’

behavior in the models with the human agents involved, one must be careful when

implementing such model to capture the nature of decision making [34].

The ABM approach is commonly applied by researchers investigating smart-

grid electricity distribution networks. For example, in [35] and [36], the strength

of the ABM approach was demonstrated by modeling a self-healing grid through

collaborative fault location and power restoration. As was highlighted in [37],

there are several points of commonality between smart-electricity distribution

and real-time spectrum distribution. However, one key difference is that wireless

communications networks are much simpler. This is because electricity markets

have resources that are expensive to turn on, which limits the speed with which

they can be adjusted. In contrast, wireless network elements are quick to respond

and can be efficiently controlled with marginal prices. These underlying realities

make the application of ABM of special relevance in real-time spectrum trading

schemes. A class of models designed to assess the efficiency of spectrum markets

has been successfully implemented in several cases, e.g., increased spectrum uti-

lization by allowing the incumbent users to further lease the spectrum to other

entities [38], the formation of coalitions to improve spectrum sharing access [39],

14



Chapter 3. Modeling approaches: game theory vs agent based modeling system

the efficiency of brokerage mechanisms, an auction-based approach with direct

trading [40], and efficient tax policies that impact the market economy [41]. Fi-

nally, the market dynamics, including the transactional and switching costs for

mobile markets based on ABM, are evaluated in [42].
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4 The proposed agent based model of

the wholesale and retail market spec-

trum distribution

The proposed agent-based model focuses on the competition of operators with

a variable capacity and coverage who compete to serve a common pool of end-

users. In these scenarios, operators dynamically lease spectrum from a Spectrum

Exchange (SpecEx) server and then compete to sell the spectrum to end-users in

order to maximize their individual profits. Our intent is to understand how the

operators evaluate their spectrum investments on the wholesale market and, in

turn, make their selling decisions on the retail market, respectively. Participating

operators’ heterogeneity arises from the different placements of base transceiver

stations (BTSs) in the region of interest, which results in various spectrum cover-

age efficiencies.

The model implements a three-stage agent-based computational model to study

the spectrum investments and pricing strategies of the operators as well as the in-

teractions between the operators and end-users. In Stage I, the operators lease

temporarily varying frequency resources from the SpecEx server. Owing to the

uncertain demand in the retail market, a heuristic probabilistic model based on

the Roth-Erev algorithm is applied [43]. It resembles the natural learning behav-

ior in smart-electricity distribution studies, e.g., [44], [45]. The combined use of

the two learning parameters (forgetting and experience) in the Roth-Erev algorithm

reflects the fact that some information needs to be stored for a period of time, but

other information should be forgotten at certain time horizons. A similar philoso-

phy is used when processing financial market data, where traders seek to optimize

the extent to which the market history is important for forecasting. In general, the
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Roth-Erev algorithm can be perceived as the product of a framework coined un-

der the term experimental economy. In Stage II, operators simultaneously announce

their retail prices to users using a family of well-known pricing strategies. In Stage

III, users jointly make their decisions based on the prices and level of quality of

service (QoS) offered by the operators. In our analysis, it is assumed that the end-

users are equipped with the software-defined radios and can transmit in a wide

range of frequencies as directed by the operators. Such network structure is ad-

vantageous because it places most of the implementation complexity for dynamic

spectrum leasing and allocation on the operators, and thus is easier to implement

than a "full" cognitive radio network.

This study focuses on DSA and end-user multi-homing, both of which have great

potential to improve the economics of the operators, such as the profit, profit vari-

ance, etc.

4.1 Model preliminaries

The simulation environment was inspired by models proposed in [46] and [47].

Operators’ base stations are uniformly distributed across the linear region along

with the end-users according to the assumptions of Hoteling competition model

[48], not taking the typical travel costs considered in the original Hoteling model

of spatial market competition into the account. One dimensional environment

may look like an inappropriate simplification of the real-world situation but we

believe it is sufficient for the objectives of this research. Uniform distribution of

agents along the line segment with a single BTS in the middle can be easily trans-

formed into two-dimensional arrangement since the exact coordinates of agents

does not affect the agents’ behavior, but the distance between agents does. The

tested scenario with multiple base stations is especially suitable for investigation

of the competition between entities with different properties and environmental

advantages. Operators with the base stations positioned on the sides of Hottel-

ing’s linear environment may need to compensate the disadvantageous location

via slightly decreased prices to attract more users.

Figure 4.1 illustrates the agent arrangement in the simulated world. Triangles

represent the end-users and colorful arrows are the base stations of five different

operators. The green tint shows the overlapping coverage of base stations how-
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Figure 4.1: Linear deployment

ever in our simulated environment there is no interference between the overlap-

ping effective regions of the networks of different operators, since we consider an

interference-free system in which the spectrum allocations are valid throughout

the region and no two sessions can occupy the same frequency band, as was pro-

posed in [49]. The basic motivation for competition between spatial operators is

found in the work provided in [50] in which the authors study how two operators

simultaneously compete in the case where one provider operates in a sub-area of

the other. In our scenario, one operator maintains its coverage in a sub-domain of

four other operators, which is a highly competitive scenario.

Figure 4.2 illustrates the basic hierarchy of the agent in the model. Three dif-

ferent agent types are present in the simulation environment, each with its own

interests and goals. The role of SpecEx server is rather simple - lease frequency

spectrum for the fixed price on the wholesale market. It is important to clarify,

that the SpecEx server used for the purposes of the simulations controls spec-

trum large enough to satisfy the needs of all operators present, therefore operators

do not compete for the resources via overbidding the competitors. Competition

between operators takes place on the retail market only, where the overlapping

coverage of the BTSs enables end-users to choose the service provider based on

their preferences.
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Figure 4.2: Structure of agent-based model

4.2 Wholesale market trading

Mechanism of the implemented wholesale market is inspired by the methodology

of adaptive heuristics commonly used in electricity networks. Authors of [44] and

[45] used the principles of reinforcement learning to learn the behavior patterns

of electricity networks in order to optimize retail-prices with the aim to increase

profit. At their core, adaptive heuristics are simple behavioral rules that are di-

rected towards payoff improvement but may be less than fully rational. In the

model, two well-known heuristic based methods were applied. First, the cumu-

lative payoff matching strategy in which the agent initiates actions in the next

period with probabilities proportional to the cumulative rewards they collected

in the past [51]. Second, the Roth-Erev algorithm was applied, which adds the

forgetting and experimentation parameters to the action probabilities.

The SpecEx server offers frequency channels on the wholesale market. The

j-th operator leases i frequency channels at each time instant t, (1 ≤ i ≤ N ).

The N -size vector is defined as vj , which symbolizes the possible actions of the

operator on the wholesale market i.e. the number of channels being leased by the

j-th operator. In the model the cardinality of the action space of the operator is

equal, i.e., ∀j, ||vj||0 = N = 30.

For simplicity, the index j is ignored in the following expressions. The algo-
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rithm maintains the propensity qi(t) for each possible choice of operator, i.e., for

v(i). By considering the idea underlying the Roth-Erev algorithm regarding expe-

rience and forgetting, can be defined as:

(∀i) : qi(t+ 1) =































[1− r]qi(t) + Ei(e, n, k, t) ,

if ( [1− r]qi(t) + Ei(e, n, k, t)) ≥ 0 ,

0 , else

(4.1)

(∀i) : Ei(e, n, k, t) =







Πk(t)[1− e] , if i = k ,

Πk(t)
e

N−1
, if i 6= k ,

(4.2)

where qi(0) is the initial propensity of action i at time t = 0, i.e., aspiration level,

qi(t) is the propensity of action i at time t, Πk(t) is the profit obtained for taking

action k at time t, which in the model is interpreted as the difference between

the revenue achieved on the retail market and the total cost for the spectrum re-

sources on the wholesale market. The parameter r is the forgetting parameter, e is

the experimentation parameter, and N is the number of actions the operator must

choose. The experimentation parameter e where e ∈ [0, 1] assigns different weights

between the played action and the non-played actions, which in turn influences

the redistribution of profits along the propensity vector q. The forgetting parameter

r where r ∈ [0, 1] contributes toward an exponential decrease in the effect of past

results.

The propensities are then normalized to determine the probabilistic action se-

lection policy for the next wholesale market round:

pi(t+ 1) =
qi(t+ 1)

∑N−1
j=0 qj(t+ 1)

. (4.3)

The above equalizations postulate the basic principles of the Roth-Erev algorithm,

which is commonly used across many heuristic-based learning problems, includ-

ing the problem of modeling electricity markets. In general, the Roth-Erev algo-

rithm is used to solve a myopic stimulus-response problem in the following form:

given the profit of the selected strategy, what strategy should I choose next? In

answering this question, concrete look-ahead reasoning is considered, e.g., while

considering the potential impact of own actions on the choices of other operators
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in the future. This is in full agreement with the bounded rationality assumption

of the agents present in the simulated environment.

In a discussion, a special model configuration is employed when e = 0∧ r = 0.

The decision policy of operator can be formulated as follows:

(∀i) : qi(t+ 1) = qi(t) + Πi(t). (4.4)

In this case, no experiments are conducted in the strategy space and past values

are not discounted. This special case characterizes the cumulative payoff match-

ing rule and was initially proposed by psychologist Nathan Herrnstein [52]. Later,

the application of this rule spread to the wireless communications arena [53]. The

key feature of the algorithm is that the probability of choosing an action increases

monotonically along with the total payoff generated in the past.

Figure 4.3: Roth-Erev - example e = 0.2 r = 0.2 and initial q = 0.5

Figure 4.3 shows an example of strategy selection controlled by the Roth-Erev

algorithm based on randomly generated rewards from interval < 0; 1 >. Follow-

ing parameters were chosen for the illustration purposes: e = 0.2 r = 0.2 and

initial propensity of all strategies q = 0.5 which results in probabilities being all

equal in the initial state Tab. 4.2a). During the process of learning, the mechanism

adjusts the propensities and therefore probabilities according to rewards they ob-

tain as shown in Tab. 4.2. In the first iteration, a random strategy is chosen out of

20 possible options. The selected strategy number 17 is rewarded by 0.25 which

increases the future probability of choosing the concerned option as seen in Tab.

4.2b) and decreases of probabilities of other strategies at the same time. Change
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of the probabilities is affected by chosen experimentation parameter e, recency

parameter r and initial propensities q. In the second iteration, strategy number 19

is chosen and rewarded by a slightly lower reward of 0.15. Tab. 4.2c) shows that

probability of strategy 19 that earned lower profit has a lower probability of being

chosen in the next iteration than strategy number 17. In the next iteration strategy

number 17 is chosen again obtaining the reward of 0.30 which results in a further

increase of its probability meanwhile probabilities of other strategies are lowered

according to algorithm rules. In the next iteration strategy number 8 is rewarded

by 0.35 which adjusts the probabilities in the way shown in Tab. 4.2e). Tab. 4.2f)

shows the state of probabilities after series of 500 decisions that were rewarded by

random rewards from interval < 0; 1 >. Due to the experimentation parameter

e being greater than 0 all strategies retain at least minimum probability of being

chosen.

4.3 Retail market trading

The concept of the retail marked used in the model was inspired by the micro-

economics theory [38]. QoS seeking end-users evaluate each offer proposed by

the operators according to own needs to determine the most suitable one. QoS

is determined by utility function U which is affected by the spectral efficiency of

the end-user-operator pair. Utility function is assumed to map quality related-

parameter r, where 0 ≤ r ≤ ∞, onto an interval of real numbers. The spectral

efficiency of the transmission between the ith end-user with respect to the jth

operator is defined as:

ri,j = log2

[

1 +
Ps

N0

( di,j
L/4

)−2]

, (4.5)

where N0 is the additive white Gaussian noise (AWGN) variance, Ps is the signal

power, di,j is the distance between the i-th end-user and BTS of the j-th operator.

L represents the total length of the linear region (L = 1, 000m in used simulation

setup). Setting Ps = 2N0, guarantees the end-user signal-to-noise ratio (SNR)

SNR = 3dB at a distance of L/4 = 250m from the BTS of the operator.

The utility of the jth operator’s offer towards the ith end-user is defined as the

mapping Ui,j : R
+
0 → [0, 1]:

Ui,j = e
−α( 1

ri,j
)β

. (4.6)

22



Chapter 4. The proposed agent based model of the wholesale and retail market spectrum
distribution

(a) Initial state (b) After strategy 17 earns reward 0.25

(c) After 19 earns 0.15 (d) After 17 earns 0.30

(e) After 8 earns 0.35 (f) Probabilities after 500 iterations

Table 4.2: Roth-Erev - Evolution of probabilities

where α, β are positive real-valued parameters. Higher spectral efficiency results

in a higher utility U of connection. A rational expectation of utility is a general

concept that is the basis of modern finance. Accordingly, each end-user has a util-

ity function, which is an element of the decision-making process and determines
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Figure 4.4: Acceptance probability of the end-user

their preferences. The proposed model uses the micro-based Cobb-Douglas pro-

duction formula for Ui,j , which historically belongs to the new Keynesian models

[54]. It reflects the dual nature of the relationship between end-users and opera-

tors. On the one hand, it is related to the spectrum efficiency level, on the other

hand, it is closely linked to end-users.

QoS, however, is not the only decisive factor in offer evaluation. The operators

purchase a limited and variable number of frequency channels on the wholesale

market and then seek to maximize their total revenue by reselling those resources

on the retail market. Thus, it becomes necessary to measure the utility of the end-

users while analyzing the role of pricing from the perspective of the operators.

Here, the perception of the service for end-users is remarkably different if the

price has increased or been reduced. In practice, end-users are satisfied with the

service if both the quality and price are considered acceptable [55].

Therefore, it seems reasonable to enforce an acceptance probability Ai,j which

depends on QoS (through the utility Ui,j defined by Eq.(4.6)) and the price κi,j .

The acceptance probability that the i-th end-user will accept the offer from the j-

th operator is a function of the κi,j and Ui,j variables, and is defined as a mapping

of Ai,j : [0, 1]
2 → [0, 1], which can be expressed as:

Ai,j(Ui,j, κi,j) = 1− e−cUδ
i,j(1−κi,j)

γ

, (4.7)

where δ, γ ≥ 0 are the parameters describing the sensitivity of the end-user to both
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Figure 4.5: Switching of End-users

the utility and price, respectively. This particular acceptance-probability function

was selected based on its relationship to the Cobb-Douglas demand curves used

in microeconomics [54]. Figure 4.4 shows the nonlinear dependency of the dis-

tance di,j , price di,j , and acceptance probability A. As can be seen, despite its

highly nonlinear characteristics, intuitive assumptions are confirmed. When the

end-user is infinitely close to the BTS of the operator and simultaneously the price

κ → 0, the end-user tends to accept the offered service with A = 1. On the other

hand, there is a strong nonlinear decay of the acceptance probability A as both

the price and distance increase. Dependency between the price, utility, and ac-

ceptance probability is in general governed by the setting of the α, β, γ, and δ

parameters.

End-users present in the model can switch between 3 different states namely:

IDLE, ACTIV E and CONNECTED in a stochastic way. Fig. 4.5 explains the

nature of switching. State change IDLE ⇒ ACTIV E occurs randomly with the

probability of Pact. When in ACTIV E, the user willing to use a wireless service

searches for the offer with maximum A by evaluation of all offers found. If the

offer is accepted, end-user switches its state from ACTIV E to CONNECTED,

or switch ACTIV E ⇒ IDLE else. The user remains in CONNECTED state,

using the service, with the probability of 1 − Pdisc. However, it is important to

mention, that only single state change of end-user is possible per retail market

iteration (principle of simulation iterations will be described in later a section).
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4.4 Pricing schemes

The main issue of the retail market included in modeled DSA network is the

pricing, that provides a reasonable profit for the operators. As a result of the

end-users’ multi-homing and the role of an acceptance probability in the decision-

making process, operators may benefit from real-time dynamic pricing schemes,

which means that the price of a product or service can vary over time. Gener-

ally speaking, the aim of dynamic pricing is to increase the profit of the operator.

Modeled end-users are both quality and price sensitive, which requires operators

to take advantage of different price intelligence mechanisms to attract the con-

sumers’ demand.

In this section, three typologically different retail pricing mechanisms will be

reviewed. The trial-and-error (T-E) strategy belongs to the group of zero-intelligence

learning models, while the linear-reward-inaction (LR-I) strategy is based on the

learning-automata in which the automaton selects its current action based on past

experiences in the environment. In contrast, the successful-ratio strategy (S-R) de-

termines the price based on the instantaneous technical indicators of the network,

i.e., the number of end-users accepting the current price, rather than the market

characteristics (instantaneous or cumulative profit). Implementation of multiple

pricing schemes makes thorough agent-based model analysis possible and creates

an opportunity to discover more emergent phenomena.

4.4.1 Trial-and-error strategy

When the spectrum demand functions are unknown and vary over time, one pos-

sible solution how to optimize the revenue of the operator is to continuously adjust

the spectrum price based on the observed instantaneous profit. A simple method

to achieve this is the T-E strategy proposed in [56]. In this method, an initial price

is chosen randomly from the range (0, 1]. At regular intervals with a small prob-

ability, a random price increment is chosen from a truncated normal distribution

that has a small σ. After the price changes, the profit earned in the next time in-

terval is monitored. If the profit of the operator is improved after the new price is

adopted, that price is used. Otherwise, the operator reverts back to the previous

price and the whole process continues. Figure 4.6 clearly shows that Trial-and-

error pricing strategy with σ = ±0.05 is the most stable mechanism implemented
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Figure 4.6: Trial-and-error example σ = ±0.05

in the model due to its nature and configuration.

4.4.2 LR-I strategy

The LR-I algorithm was introduced in [57] for application in dynamic spectrum

agile markets. The algorithm underwent slight modification process to support

the three-stage game by considering the cumulative profit resulting from the in-

teraction on both the retail and wholesale markets, respectively.

The operator has a finite price level in the range [κmin, . . . , κmax], where κmin =

0.1 and κmax = 1, respectively. The remaining possible prices are uniformly dis-

tributed within this region. An action space of an operator is thus defined to be a

probability vector p = [p1, p2, . . . , pM ], where the operator selects the price κj with

the probability of pj and M denotes the number of candidate price levels. The

algorithm operates as follows:

1. The initial probability vector is defined as p(0).

2. At each time instant t, the operator chooses the price κ based on the action

probability vectorp. Thus, the operator chooses an action a at instant t based

on the probability distribution p(t).

3. The operator receives the profit Πa(t) for the given action a.
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Figure 4.7: Linear-reward example η = 0.04

4. Each operator updates the action probability vector following the rule:

pj(t+ 1) = pj(t)− ηΠa(t)pj(t) a(t) 6= pj,

pj(t+ 1) = pj(t) + ηΠa(t)
∑

s 6=j

ps(t) a(t) = pj,

j = 1, . . . ,M, (4.8)

where η is the learning parameter (η ∈ [0, 1]).

5. The algorithm stops when there are no incremental changes in the probabil-

ity vector p between iterations.

In a price dynamic game with K players (K = 5 in case of described model),

provided each player (i.e., operator) uses the LR-I strategy, it is guaranteed that the

game converges to a Nash equilibrium under the assumption that the game has

only strict Nash equilibrium in pure strategies [58]. In our model implementation,

a uniform initialization of the probability distribution function was used because

it best reflects the assumption that there is no prior information available about

the preferences. In the simulation conditions, the equilibrium manifests itself as

a narrowing of the fluctuations accompanied by a shadowing of the impact of the

initial distribution. A complete discussion about the low relevance attributed to

the initial uniformity can be found in the seminal work by Oomen and Christensen

in [59].

Example of price evolution controlled by the LR-I mechanism can be seen in

Fig. 4.7. The figure shows the mechanism’s attempt to optimize price selection
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from the initial state when the probability of choosing each available price is the

same. Compared to the previous mechanisms, price evolution controlled by LR-I

appears to be the most volatile over first 500 iterations.

For further investigation of learning process plots showing price decisions, the

evolution of probabilities affected by rewards, Tab. 4.4 can be used. Rewards in

the example were random and uniformly distributed from interval< 0, 1 >which

is sufficient for mechanism demonstration. LR-I attempts to find the optimal price

from interval < 0, 1 > with price step 0.05. Initial probabilities of choosing each

price are shown in Tab. 4.4a). At the first iteration, price 0.95 is chosen randomly

earning the reward of 0.75 which affects the distribution of probabilities accord-

ing to equations 4.8 as shown in Tab. 4.4b). The probability of choosing price 0.95

in the next iteration is increased significantly and therefore probabilities of other

strategies are decreased slightly. However, price 0.15 is chosen in the second itera-

tion earning the slightly lower reward of 0.60. Lower reward results in a lower in-

crease of chosen price probability as shown in Tab. 4.4c) and also a lower decrease

of other probabilities. In the following two iterations 0.10 is chosen resulting in

reward of 0.65 Tab. 4.4d) and 0.50 being rewarded by 0.40. Probabilities of each

strategy after four iterations are shown in Tab. 4.4e). Slight probability decrease

of price 0.95 chosen in the first iteration caused by following selections is clearly

visible too. State of probabilities after 500 iterations is shown in a plot Tab. 4.4f)

with modified y axis interval. In contrast to the previously described Roth-Erev

mechanism, multiple strategies scoring the lowest rewards have probabilities of

being chosen equal to 0% due to missing experimentation feature.

4.4.3 Successful-ratio strategy

This equation was recently proposed in [41] and belongs to the family of adaptive

pricing methods. Here, the price is dynamically adjusted in each time period, and

the retail price κ is adaptively accommodated as follows:

κ(t+ 1) = κ(t) + (Ψ(t)− 0.5) · µ, (4.9)

where κ(t) is the channel price of the operator at time t, Ψ(t) is the acceptance

ratio of the operator (Ψ(t) ∈ [0, 1]), and parameter µ is the price change shaping

parameter. In the price adaptation process, the evolution of the price is dependent
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(a) Initial state (b) After price 0.95 earns reward 0.75

(c) After 0.15 earns 0.60 (d) After 0.10 earns 0.65

(e) After 0.50 earns 0.40 (f) Probabilities after 500 iterations

Table 4.4: Linear reward - Evolution of probabilities

on the average number of end-users that accept the offered price, as follows:

Ψ =















1/2 (BWavail = 0) ∧ (S = 0)

0 (BWavail > 0) ∧ (S = 0)
Sidle−>conn

S
(BWavail > 0) ∧ (S > 0)

, (4.10)
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where S represents the number of end-users that maximize their acceptance prob-

ability A of connecting to the operator, BWavail is the number of unoccupied fre-

quency channels of the operator, and Sidle−>conn is the number of end-users that

accept the offer by connecting to the operator. Note that the acceptance decision

of the agent has probabilistic characteristics that are determined by the acceptance

probability of the end-users, and thus Sidle−>conn ≤ S. The pricing definition for-

mulated in (4.9) ensures that operators establish the price in a given time frame

based on their previous experience with end-user price acceptance and simulta-

neously, the definition offers smooth price evolution. Figure 4.8 illustrates the

price adjustments performed by Successful-ratio mechanism according to valid

randomly generated values of BWavail, Sidle−>conn and S.

Figure 4.8: Successful-ratio example µ = 0.2

In the applied behavioral models for dynamic regimes, there is a lack of access

to real information about the future behavior of game opponents, so it is nec-

essary to put more effort into analyzing either the strategies based on historical

information (i.e., LR-I), or so-called myopic policy decisions (i.e., T-E and S-R).

The time-filtered series, including information on the success or failures of pre-

viously applied strategies, can be an important guideline for future behavior. On

the other hand, one specific class of suboptimal policies that has attracted a lot of

attention is the class of myopic policies. In a myopic policy, we attempt to min-

imize the expected cost for each period within the period itself, while ignoring

the potential effect on the cost in future periods. The myopic policy is attractive

since it yields a base-stock policy that is easy to compute on-line, that is, it does
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not require information on the control policy in the future periods.

4.5 Investigated economic indicators

The role of an operator in the model is analogous to the role of investor who makes

decisions about his portfolio with the aim to earn the profit, however, with a slight

difference. There is no opportunity for operators to invest in multiple types of as-

sets in the model since the whole frequency spectrum is treated equally despite

the different characteristics of lower and higher frequencies in a real environment.

The operators, therefore, take on the role of investors and invest their finances into

a single-commodity portfolio (spectrum asset) with the expectations to earn the

profit by attracting the demand from end-users using different pricing schemes.

To examine and compare the performance of the investment opportunities in the

model with the different configuration, a suitable measurement is required. Em-

ployed in Portfolio Investment Theory, Sharpe ratio is sufficient for the comparison

and performance analysis.

Let Π(t) denote the one-period profit of a spectrum asset between time t − 1

and t as:

Π(t) = κ(t)Θr(t)− Γ(t)Θw(t), (4.11)

whereΘw(t) andΘr(t) denote the spectrum asset purchased at time t (i.e., number

of channels) and the spectrum asset successfully contracted to retail end-users,

respectively (i.e., Θr ≤ Θw). The wholesale price Γ(t) is provided by the SpecEx

server and κ(t) is the end-user retail price for the frequency channel set by the

operator. In general, the profit of the operator is characterized by the revenue

earned from the end-users using its services.

Now, let µ and σ2 be the mean and variance of the profit:

µ = E(Π(t)), (4.12)

and

σ2 = V ar(Π(t)). (4.13)

Stylized Sharpe ratio (SR) is then defined as the ratio of expected profit to the

standard deviation of the profit:

SR =
µ−Rf

σ
, (4.14)
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the expected profit is computed relative to the risk-free rate Rf normally, a risk-

free asset, such as short-dated government debt, earns the risk-free rate, [60]. For

the purpose of investment analysis, the risk-free rate Rf term is omitted as it is

common for all scenarios. Moreover, in the standard definition of the Sharpe ratio,

the returns on the investments are considered. However, as long as all investors

are concerned with the same temporarily leased commodity, this can be replaced

by the profits from the investments.

From Eq. 4.14 it is clear that any factor that affects the mean µ and variance

σ2 of the profit will also affect the Sharpe ratio of the spectrum investment. Thus,

it is evident that the spectrum pricing strategy will directly influence the Sharpe

ratio of the spectrum asset investment.

Instead of solely focusing on the profit, operators also need to be conscious

of the risk and volatility, measured as the profit deviation, to which they are ex-

posed. As risk-averse operators prefer high profits and low volatility, the alter-

native spectrum pricing method with the highest Sharpe ratio should be chosen

when assessing investment possibilities. On the other hand, risk-seeking opera-

tors may take advantage of the spectrum pricing method that results in the highest

risk (high profit deviation), but has the potential of earning high profits [61].
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5 Agents’ interactions and model con-

figuration

Although a significant part of the agent-based model has been described in previ-

ous sections, it is necessary to provide a more detailed description of agent inter-

actions to be able to implement the fully functioning system. Figure 5.1 is a graph-

ical representation of the simulation process which consists of multiple iterations.

Note, that few details including integration of S-R, T-E, LR-I, and end-users’ state

switching are not included in the diagram.

The simulation starts with the initialization of wholesale market by the SpecEx

server. Depending on the desired number of iterations, stops, or continues by

leasing of the frequency spectrum to operators, which consider the required vol-

ume according to the Roth-Erev mechanism. Leased channels are then offered on

the retail market in multiple iterations. End-users evaluate each offer present in

a system to determine the most convenient one, which is then accepted with the

probability according to its relevance. In case of acceptance, a fee is being paid

to the service provider, who maintains his allocated spectrum capacity during

all retail market iterations nested in a single wholesale market iteration. Result

of retail market iterations in time t0 affects operator’s behavior in t1. The retail

price is adjusted according to used pricing mechanism (S-R, T-E or LR-I) and also

propensities of Roth-Erev’s strategies are being updated. The process is repeated

until the desired number of iterations is not reached.

Settings of the executed model have a significant impact on the results. The

carefully chosen simulation parameters are given in Table 5.1. The parameters

characterizing the behavior of the end-users (α, β, γ, and δ) were defined accord-

ing to the recommendation given in [41] with the goal of simultaneously modeling

them as quality and price sensitive. To demonstrate the robustness of the model
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in general, parameters related to the Roth-Erev algorithm (e and r) were tweaked

within the defined interval {0, 0.1, . . . , 1}. The proposed sensitivity analysis of the

Roth-Erev parameters provided the regions in the space where the investigated

factors find their maximum and also show the transitions between these points.

Table 5.1: Table of parameter settings

Notation Value Description

L 1, 000 m length of the region

Ps 2N0 signal power

- 100 number of end-users

α 0.05 price shaping parameter

β 0.8 price shaping parameter

γ 2 price sensitivity of the end-user

δ 5 utility sensitivity of the end-user

c 4 acceptance probability coefficient

µ 0.2 price-shaping parameter (S-R)

η 4 ∗ 10−3 price-learning parameter (LR-I)

M 20 price candidate levels (LR-I)

e e ∈ {0, . . . , 1} experimentation parameter

r r ∈ {0, . . . , 1} forgetting parameter

N 30 number of wholesale market strategies

Γ 0.2 wholesale price

Pact 1 activation probability

Pdisc 1 disconnection probability
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Figure 5.1: Diagram of interactions
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6 Modeling tools and utilized software

Implementation environment determined by the objectives of a thesis is not con-

sidered to be generally recognized, therefore next two sections will be dedicated to

the basic introduction with the modeling environment and a platform developed

for the simulation purposes.

6.1 NetLogo

NetLogo [62] is the programmable multi-agent environment running in the Java

Virtual Machine, well suited for creating complex evolving models [63]. Accord-

ing to U. Wilensky, one of its creators, it is an appropriate tool for both, the edu-

cation and research, therefore, it is suitable for users with a lack of programming

experience too. The tool is shipped with a large model library covering different

areas of science including the documentation and the source codes, which may

be helpful for the new programmers.

The language itself is not fully object-oriented. Classes called "breeds" are sup-

ported but inheritance as known from Java is not possible. Breeds extend the su-

perclass called "turtle" but inheritance itself includes only attributes since meth-

ods are not tightly coupled with the classes. Further inheritance is however not

allowed.

Three different types of agents are supported. Already mentioned turtles are

first of them with the customizable shapes, color, attributes behavior, location etc.

Further diversification is possible thanks to breeds. Different breeds may have

different graphical interpretations and attributes. These are commonly used in

more complex models, where multiple types of entities are required. Next, the

tiles arranged in the matrix represent the environment. Tiles are programmable

too, their shape and location is fixed. And lastly, a so-called "observer" which
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Figure 6.1: NetLogo GUI - Interface

mediates the communication between the programmer and the agents.

Another important aspect of simulation is the time. In the NetLogo, it is rep-

resented via a simple variable called "tick". From the technical point of view, it is

the integer variable which is incremented on the call of "tick" method, its value

can not be modified by any other way. When the value of the simulation time is

changed, areas of the plots are updated as well as the simulation clock which is

displayed during the simulation.

The graphical interface is user-friendly and intuitive. It consists of three cards:

"Interface", "Info" and "Code". Large area for user-defined GUI of the model is

the most dominant part of the "Interface". GUI creation is easy thanks to drag-

and-drop principle. Numerous control components are available: button, slider,

chooser, input, variable monitor, plot, output, note etc. Coupling with the code

is intuitive, in the most cases, structures with the same name are tied together.

Plots functionality may not be sufficient. Although single plot can visualize mul-

tiple variables at the same time using multiple pens with a legend and descrip-

tion added, it displays the axis numbering only on mouse hover. On the smaller

screens, problems with a lack of space may arise when multiple plots are needed.

Documentation of the model is important, especially when models are shared.

Programmers can use the simple documentation editor hidden under the card
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Figure 6.2: NetLogo GUI - Info and Code

labeled "Info". Preset structure makes writing and reading easier, moreover, it

is a part of the model file so no extra effort is needed for distribution with the

implemented model.

Code editor, the "Code" card, lacks some useful features compared to well-

known integrated development environments. On the other hand, each new up-

date introduces new features that make writing a code more pleasant experience.

Latest update, version 6.0.2, brought functions like: possibility to move a code,

jump to declaration/usage, lines numbering etc. A vast majority of included mod-

els are written in the single file, but it is also possible to split code into multiple

files and use them thanks to the "include" functionality, however, this approach

requires more planning to gain an advantage over standard single-file approach.

As was already mentioned, NetLogo does not fulfill OOP and therefore language

itself does not force writers, for example, to code a breed functionality into its

corresponding file as known form Java. Support from the editors part could be

improved too.

BehaviorSpace is a useful feature when a model’s behavior needs to be veri-

fied with different setting combinations. Figure 6.3 shows an example of Behav-

ior space configuration to test simple NetLogo model of Fire [64]. Using this tool,

all desired variables can be varied over specified intervals or given specific val-

ues with the possibility to repeat each combination multiple times to obtain more
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Figure 6.3: NetLogo - BehaviorSpace

results for later aggregation. To perform the experiment the following parame-

ters needs to be defined: allowed values of varied variables, number of repeti-

tions each combination will be executed, reporters of desired output attributes,

so-called setup and go commands and optional stop conditions, final commands

and time limit. Upon defining everything necessary, the experiment can be exe-

cuted with the combinations running in parallel. The execution time is, of course,

dependent on the hardware, especially central processing unit and the amount

of random-access memory (to avoid swapping on the hard drive when running

memory demanding models).

One of the greatest features of the NetLogo is the presence of Java API. Models

can be executed and controlled from the external code written in Java, Scala, R etc.

Performing loops from the external application may improve the performance in

some cases [65] too, but what one may finds really handy is the possibility to write

the scripts that can execute the multiple simulations in parallel, gather and process

the data after simulations are finished and plot the results with a single click.
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Worker
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server
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computers

Figure 6.4: NetLogo Launcher - Architecture

6.2 NetLogo Launcher

The functionality of already described BehaviorSpace may be found insufficient

for demanding experiments because the execution of simulations is limited to a

single computer. When a large number of parameter combinations is required, a

powerful computer is needed that is able to serve the results in acceptable times.

Hoverer, in case such hardware is not reachable a different approach may be taken

which consists of utilization of multiple computers at the same time to run the

simulations in parallel across all available machines.

Figure 6.4 illustrates the architecture of custom-made solution [66] that makes

carrying an experiment across multiple computers possible. In case of the im-

plemented solution, we call them Worker servers. These servers may be regular

workstations, servers or notebooks running Java application. However, notebooks

are not recommended for this purpose due to, for such experiments common, high

long-term system load that may damage the internal components. Worker servers

capable of running NetLogo simulations are not contacted by users directly. A

device acting like a bridge between users and Worker servers responsible for dis-

tribution of simulation requests is called Control server. It is not only responsible

for the distribution of requests but also for monitoring of running simulations,

gathering of results and monitoring of worker servers’ processor load and mem-

ory utilization. After termination of the experiment, all obtained results are being

sent to an e-mail address specified by the user upon simulation request submis-

sion.

Both Worker and Control servers are capable of handling multiple requests

incoming from same or different users. Each user of the system has its own gen-
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Figure 6.5: NetLogo Launcher - Server GUI (left Control, right Worker)

erated unique token identifier which is used for the authentication and the au-

thorization. In case multiple requests were submitted, these are scheduled in the

way that no request will suffer from so-called starvation that may negatively im-

pact user experience. The progress of users’ active request can be tracked using a

featured list that also contains an estimation of finish time that is calculated from

already processed simulation instances.

The user interface of server part is rather simple as shown in Fig. 6.5. The only

required parameter of Control server is the path where incoming requests and

results will be stored for each conducted experiment. On the other hand, Worker

server calls for more complex yet still not too complicated configuration. It is

possible to run both Control and Worker server on the same machine. The path

where local requests and results will be stored is required too. When needed, it is

possible to limit the number of processor cores that will be utilized by Worker by

parallel execution of configured simulation instances. Address of Control server

and also the local server name needs to be filled in order to successfully connect

Worker server with the Control Server. Figure 6.5 shows both server applications

up and running on the same computer listening to different ports.

GUI of a client application is shown in Fig. 6.6. It offers functionalities sim-

ilar to the official BehaviorSpace. The figure shows an execution of the same

model as shown in Fig. 6.3 with the same configuration. Submitting new simula-

tion request requires specification of the following details: pathname of NetLogo

model file or a .zip archive containing needed files (feature implemented for the

multiple-file NetLogo models), starting commands, desired values or intervals of
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Figure 6.6: NetLogo Launcher - Client GUI - New request

varied variables, number of repetitions and finally output variables or NetLogo

reporters. The right part of the GUI contains the list of available Worker servers

with their current state displayed. The user is able to choose how many cores of

each server he wants to utilize. Simulation instances will be then split according

to the defined number of cores.

Each part of implemented software solution was written in Java due to its

portability that allows easy deployment on any computer running Java Virtual

Machine. Simple graphical interfaces were designed in JavaFX and the RESTful

API capabilities of both Worker and Control server were implemented using Jetty.

Correct functionality is being tested by JUnit test cases during the process of devel-

opment. Further plans for software evolution exist since the project is in its early

stage of a lifetime. These plans include improvement of security features, stability

improvements, recovery capabilities and overall improvement of user experience.
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Figure 7.1 shows the characteristics of retail pricing mechanisms used by the Op-

erator III in a simulated model with the following configuration: e = 0 ∧ r = 0,

i.e., cumulative payload matching. In the Fig. 7.1a) evolution of retail price is shown.

While both the S-R and T-E strategies vary around a certain mean µ with a vari-

ance σ2, the LR-I algorithm converges to a ß, stable equilibrium significantly lower

than µ of S-R and T-E. This is caused by the end-users’ price sensitivity and the

properties of the LR-I algorithm. Coupling of these two attributes results in an

emergent phenomenon called price-war which forces the prices to drop. This re-

sults in the minimum acceptable return that assures the operators of a positive

profit. The existence of the price-war in the model confirms the validity of the

model, as per other recent works (e.g., [57]). Effect of price-war is also visible in

a Fig. 7.1b), which shows the average price on the retail market. An initial phase

of a price war, the gradual decline of retail prices, is also clearly visible in the Fig.

7.2. Operators push down the retail prices to attract the price-sensitive end-users

until the point where there is no further possibility of lowering the price due to

expenses being equal or higher than actual return. The LR-I algorithm has the

lowest average retail price followed by those of the S-R and T-E algorithms. Geo-

graphical location of the operators has no significant impact on the retail prices.

Figure 7.1c) illustrates the average profit of the operators. The highest profit is

achieved by the S-R strategy followed by the T-E which tends to maintain higher

retail prices, therefore, discouraging end-users. On the other hand, the price-war

that occurs when the LR-I strategy is used achieves the lowest yet still relatively

high profit when its mean retail price that attracts the highest number of end-

users is considered. The relevance of a central spatial location (in terms of end-

user demand attraction, i.e., increased profit) indicates the emergence of the real

phenomena [67], which confirms the validity of the model.
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c) d)

b)a)
S-R T-E LR-I S-R T-E LR-I

S-R T-E LR-I S-R T-E LR-I

Figure 7.1: Evaluation of retail price with tested methods

Figure 7.1d) shows the average spectrum utilization (E( Θr

Θw
)) under the given

conditions. It is evident that the end-users benefited from the price-war that oc-

curred in the market when the LR-I strategy was used. This showed that they are

usually willing to accept low prices, which in turn results in the highest spectrum

utilization.

The emerging phenomena observed within the simulations indicate the valid-

ity of the model with respect to the previous works i.e., price war [57], central

spatial location dominance [67], and end-user price sensitivity [68], therefore, we

believe that the proposed agent-based model accurately reflects operations on the

real-time spectrum trading market.

An understanding of the interactions among various strategies can be extremely

valuable for the operators who wish to ensure economic efficiency and stability.

The Nash equilibrium could provide a theoretically satisfactory framework in the

cases where multi-agent systems operate close to the static equilibrium. How-

ever, the dynamic properties of the analyzed model are often of equal or greater
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Figure 7.2: Price-war on retail market (wholesale price = 0.1)

concern. Even in a real environment, not all DSA agents have the knowledge

and computational resources to compute the equilibrium. Even when the agents

have this common knowledge and the resources, it is still desired to address the

question of which equilibrium is chosen and how the agents coordinate to reach

it. Thus, the basic terminology of game theory can be used, including the well-

known concepts of pure strategy and mixed strategy into the discussion [69]. The

concept of pure strategy refers to the complete definition of how the agent will

play the game in different elementary situations dictated by the environment. In

contrast, more complex behavior and decision-making can be obtained by a hi-

erarchical and probabilistic mixture of several pure strategies, i.e., the concept of

mixed strategy.

Figure 7.3 shows the Roth-Erev action probabilities pi(t) of the Operator I and

Operator III with the parameters e and r chosen to illustrate possible scenarios

discovered by sensitivity analysis over parameter space. Interestingly, found con-

cepts are often discussed in the traditional game theory. In other words, the deci-

sions of the operators on the wholesale market create four fundamentally differ-

ent regimes. Based on the results of extensive simulations, the existence of these

regimes is not coupled with any specific retail pricing scheme and, for illustrative

purposes, the results from the simulations with S-R applied are used.

Parameter set e = o ∧ r = 0, which can be also described as cumulative payoff
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matching learning, converges to the stable mixed strategy profile for both Operators

I and III as can be seen in the Fig. 7.3a)-b). However, the mixed strategy equi-

librium is not asymptotically stable as cumulative payoff matching learning suffers

from the habit forming [52]. This means that the decisions of the operators are con-

centrated on certain actions simply because they were taken early and often. It

should be noted that Operator III, which is located in the geometric center of the

investigated region, leases a higher amount of frequency spectrum than leased

by Operator I on average. The existence of the mixed strategy profile in the deci-

sion process of the operators in the micro-economy level signalizes the presence

of the strategic obfuscation. As will be shown later, the strategic obfuscation may

in certain cases decrease the profit of the obfuscating operator compared to the

situation when pure-strategy is present in the decision process of the operator.

Figures 7.3c) and d) illustrate the situation with parameters e = 0∧r = 0.1. This

set of parameters is very important because in this case, the operators’ probability

vector collapses into the case characterized as a pure strategy (i exists, where pi =

1). As can be seen, the deterministic strategy remained stable over the investigated

time interval and Operator III systematically leased a larger amount of frequency

spectrum than its competitor. Holding on to the chosen strategy is natural and

common in the micro-economy if it warrants success and results in profit [70].

Another possible scenario can be illustrated with the parameter set e = 0∧r =

0.1. Figure 7.3e) shows so-called win-stay, lose-switch, which is often observed in

the real conditions when are social or economic entities exposed to a decline in

utility or profit exhibit preferences for switching instead of stagnation. It makes

the operators switch the action if the payoff is below their aspiration level, oth-

erwise, the strategy is repeated. Finally, Fig. 7.3f) shows the situation with the

parameter setup e = 1 ∧ r = 1. This example can be considered as a case of the

mixed strategy profile where (∀i, i ∈ N, pi is equal), which can be interpreted as

the random selection strategy.

The results illustrate how a wholesale market modeled by Roth-Erev algorithm

behaves under different sets of guiding parameters. Note that only the bordering

set of parameters are included in the simulations e ∈ {0, 1}, r ∈ {0, 0.1, 1} and the

configuration of the remaining parameters governs the transitions among these

regimes.

As was stated in one of the previous sections, Sharpe ratio is a measurement
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i
a) Wholesale strategies p (t), operator I, e=0 ˄ r=0i b) Wholesale strategies p (t), operator III, e=0 ˄ r=0i

e) Wholesale strategies p (t), operator III, e=0 ˄ r=1i f) Wholesale strategies p (t), operator III, e=1 ˄ r=1i

c) Wholesale strategies p (t), operator I, e=0 ˄ r=0.1i d) Wholesale strategies p (t), operator III, e=0 ˄ r=0.1i

i
i

i
i

i

Figure 7.3: The dynamics of wholesale market regimes. The color levels are

proportional to the probabilities pi(t) of the strategies i = {1, 2, . . . , N} at given

time t (index i refers to the number of contracted frequency channels)

method suitable for financial performance analysis and comparison of investment

opportunities, therefore, it is a suitable way to determine whether the tested pric-

ing strategies suit the different types of trading operators. The operators, which

take on the role of investors, can be risk-averse with respect to this uncertainty

they may consider both the average profit u at time t and the volatility of that

profit σ2. In contrast, risk-seeking investors are willing to accept greater volatility

and uncertainty in their investments in exchange for anticipated higher profits. A

Sharpe ratio greater than 1 is rated acceptable by risk-averse investors and a ratio

higher than 3 is rated as very good [71]. Nevertheless, risk-seeking investors by

virtue of their nature seek to maximize their long-term profit with no regard for

the perceived profit volatility. To determine the suitability of used pricing meth-

ods, extensive parameter sensitivity of experimentation parameter e ∈ [0, 1] and

recency parameter r ∈ [0, 1] was performed (Fig. 7.4).

The parameters e, r affect the Sharpe ratio only marginally in case of T-E strat-

egy (Fig. 7.4a). The values of the Sharpe ratio are relatively low [0.6, 0.8] which

suggests that the T-E strategy is not a promising investment opportunity for the
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operators. The corresponding average profits as a function of the e, r parameters

are plotted in Fig. 7.4d).

On the other hand, the LR-I strategy provides interesting results with its Sharpe

ratio values from interval [1.4, 5.8](Fig. 7.4b)) with a maximum reached for the set

of parameters r∈ {0.1, 0.2} ∧ e ∈ {0}. The operators are guaranteed a very stable

profit with low volatility when they operate in the regime characterized by the

existence of pure strategy in their decisions (Fig. 7.3c)). The Strategic obfuscation

regime (e = 0 ∧ r = 0) provides rather worse results, followed by the win-stay,

lose-switch (e = 0 ∧ r = 1) regime. As the results indicate, the LR-I strategy is

perfect for use by risk-averse operators willing to maximize their Sharpe ratios.

The S-R pricing strategy provides Sharpe ratios in the range of [1.2, 2] (Fig.

7.4c)). As in the previous case, the Sharpe ratio reaches its maximal values in the

parameter interval r ∈ {0.1, 0.2} ∧ e ∈ {0}. Although the Sharpe ratio of S-R is

notably lower compared to the LR-I strategy, it provides larger profits across the

whole parameter space than those of the corresponding LR-I strategy as can be

seen by comparing Figs. 7.4e) and 7.4f). The Sharpe-ratio is lower in this case at

the expense of higher profit volatility. The simulation results suggest that the S-R

strategy serves as a worthwhile pricing strategy for operators with risk-seeking

characteristics.
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a) Sharpe ratio (T-E) c) Sharpe ratio (S-R)

e) Average profit (LR-I) f) Average profit (S-R)d) Average profit (T-E)

b) Sharpe ratio (LR-I)

Figure 7.4: Heat maps of sensitivity analysis related to the e and r parameters,

the Sharpe ratio and average profit
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8 Conclusions

Frequency spectrum became the scarce resource due to the mass utilization of

wireless technologies. The gradual increase of a data traffic and the expected

breakthrough in numbers of connected devices caused by the arrival of 5G in

2020 requires replacement of the outdated regulatory models that are not flexi-

ble enough. Moreover, using only licensed spectrum may not be sufficient soon,

therefore one of the key features of dynamic spectrum access networks, secondary

spectrum usage, will be needed to meet requirements of 5G and satisfy the grow-

ing demand. License holders are allowed to lease unused spectrum to the sec-

ondary users and so prevent the emergence of spectrum holes which improves

the spectrum utilization in DSA network and provides a reasonable profit to the

primary license holders.

The issue of pricing on the secondary spectrum market, investigation of which

was the main objective of this thesis, is a widely studied topic with the raising

importance. To study nature of open access network that utilizes various pricing

mechanisms an agent based model of the wholesale and retail market spectrum

distribution was implemented in the NetLogo simulation environment.

On the modeled wholesale market, learning mechanism called Roth-Erev al-

gorithm was used to control the amount of leased frequency spectrum. Four dif-

ferent regimes of the operators’ behavior were analyzed strategic obfuscation, exis-

tence of a stable pure strategy in the decision of the operator, win-stay, lose-switch

and random selection. On the retail market, three different pricing strategies were

utilized namely, LR-I, S-R, and T-E. Best results were achieved by more advanced

schemes LR-I and S-R in the regions where the operator follows the pure strategy

in his decisions on the wholesale market (parameter set r ∈ {0.1, 0.2} ∧ e ∈ {0}),

which showed that forgetting parameter has the potential to increase the perfor-

mance of the measured indicators. Nevertheless, the experimentation parameter
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does not bring any relevant improvement. The results of the sensitivity analysis

focused on the parameters of the Roth-Erev algorithm demonstrated broad con-

sistency with the aforementioned regimes.

For the financial performance analysis and comparison of investment opportu-

nities in the simulations with different pricing mechanisms, Sharpe ratio measure

was used which showed that the LR-I pricing strategy, achieving Sharpe ratio val-

ues from [1.4, 5.8], can be used to advantage by operators who are characterized

as risk-averse investors. On the other hand, S-R with lower Sharpe ratios ([1.2, 2])

and a promise of higher profit is convenient for risk-seeking investors.

The most significant finding to emerge from this research is that the spectrum

pricing strategies determine the characteristics of the operators, who in this case

take on the role of investors. Moreover, the study also revealed that certain dis-

counting of the past profit values in the system has the potential to increase the

profit for operators, provided that a more advanced pricing scheme is used (e.g.,

LR-I or S-R).

Although the proposed agent-based model of spectrum trading in the sim-

ulated open-access network served well for the purpose of wholesale and retail

market analysis and the analysis of the nature of operators’ behavior, we are aware

of its limitations. These include the overly simplified topology of the network with

the heterogeneous BTSs and end-users as well as the omission of the real-world

environment influences. To avoid the presence of interference, simulated BTSs

utilized different frequencies, on the other hand, slightly different characteristics

of these frequencies were not taken into account but we believe this did not void

the conclusions made.

The extensive topic of wireless communication, cognitive networks, and dy-

namic spectrum trading opens space for further research. Introduction of base

stations with various characteristics, e.g. macrocells, static femtocells, dynamic

femtocell mounted drones [72] etc., coupled with sophisticated traffic splitting

and routing mechanisms will improve the relevance of model significantly as well

as the extension of the current model with the heterogeneous agents and 3D envi-

ronment can result in interesting results with the opportunity of comparison with

the already gathered data. Mobility models can be used to overcome the limita-

tions caused by static end-users and the future work may benefit from the real

data instead of relying on the randomly generated end-users’ demand.
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