
Masaryk University
Faculty of Informatics

Tool for forensic analyses of
digital traces

MasterŠs Thesis

Bc. Mária Hatalová

Brno, Spring 2018

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Mária Hatalová

Advisor: prof. RNDr. Václav Matyáš M.Sc. Ph.D.

i

Acknowledgements

I would like to express my gratitude to my advisor prof. Václav Matyáš
for the continuous guidance throughout writing the thesis, for his
insightful comments, and for enhancing my motivation.

My thanks also go to my technical consultant Mgr. Roman Pavlík
from Trusted Network Solutions, a.s. for providing me an insight
into the work of expert witnesses in the Ąeld of IT, for his encourage-
ment, and for giving me the perception that the work is meaningful
and useful in practice.

I would also like to thank Petr Svoboda from Trusted Network Solu-
tions, a.s. for consultations regarding IT Forensic Tool v1.0 and for tech-
nical support.

Last but not least, my gratitude goes to my family and friends
for their support and patience.

ii

Abstract

The thesis examines selected issuesin the area of forensic analy-
sis and their impact on expert witnesses that work for the Police
of the Czech Republic. A description of a typical forensic task as it is
assigned by the police is provided, together with an overview of avail-
able tools that could be used for solving the task. The most promising
candidate Ű Autopsy Ű is tested on a real task, but it turns out to be
not suitable for this purpose. The rest of the thesis is devoted to the IT
Forensic Tool that is being developed by the consultant of the thesis
for solving forensic tasks. A number of improvements on function-
ality and optimization of the tool are proposed and implemented
in the thesis.

iii

Keywords

Autopsy, database, expert testimony, forensic analysis, indexing, LaTeX,
optical character recognition, pattern matching, PostgreSQL

iv

Contents

1 Introduction 1

2 Typical forensic task 3

2.1 Raw formats . 3

2.2 EnCase Evidence File format (version 1) 4

2.3 Split images . 4

2.4 Creating raw and EnCase images 4

3 Forensic tools 6

3.1 Tools overview . 6

3.1.1 EnCase Forensic 6
3.1.2 CAINE . 7
3.1.3 The CoronerŠs Toolkit 7
3.1.4 The Sleuth Kit and Autopsy 7

3.2 Comparison criteria . 8
3.3 Tools comparison . 9

3.3.1 Supported features 9
3.3.2 Supported image formats 10
3.3.3 Supported platforms 10
3.3.4 License . 11
3.3.5 Extensibility . 11
3.3.6 Up to date, support, documentation 12
3.3.7 Conclusion . 13

4 Autopsy 14

4.1 Features . 14
4.2 Test methodology . 16
4.3 Hardware . 16
4.4 Performance test . 17
4.5 Problems encountered . 18
4.6 Conclusion . 20

5 IT Forensic Tool 21

5.1 Description . 21
5.2 Case analysis . 23

v

6 IT Forensic Tool v2.0 25
6.1 Database design . 26

6.1.1 PostgreSQL . 26
6.1.2 Entity-relationship model 26

6.2 Keyword Search . 28
6.2.1 Keyword search in PostgreSQL 28
6.2.2 Pattern matching 30
6.2.3 Full text search 33
6.2.4 Indexes . 35
6.2.5 pg_trgm module 36
6.2.6 Keyword search method choice 37
6.2.7 Implementation 42
6.2.8 Performance test 43

6.3 Optical Character Recognition 44
6.3.1 Tools overview 45
6.3.2 Comparison criteria 46
6.3.3 Sample data . 47
6.3.4 Tools comparison 48
6.3.5 Implementation 52

6.4 Automated Reporting . 53
6.4.1 Limitations . 53
6.4.2 Report creation process 53
6.4.3 Supported Ąle formats 54
6.4.4 Conversion to pdf 54
6.4.5 Implementation 55

7 Future work 57

8 Conclusion 58

Bibliography 60

A Appendix 65
A.1 Usage of IT Forensic Tool 65
A.2 Pattern matching: Performance test 67

vi

List of Tables

3.1 Supported features. 9
3.2 Supported image formats. 10
3.3 Platforms. 10
3.4 License. 11
3.5 Up to date, support, documentation. 12

5.1 IT Forensic Tool Ű User commands. 22

6.1 Case. 27
6.2 Image. 28
6.3 File. 29
6.4 Keyword. 30
6.5 Hit. 30
6.6 Enumerated Types. 31
6.7 Indexing in the keyword search. 39
6.8 Supported languages and character encoding. 50
6.9 Supported formats. 51
6.10 License. 51
6.11 Supported platforms. 52

A.1 Performance test. 67

vii

List of Figures

4.1 Autopsy performance. 17

5.1 Sequence diagram. 24

6.1 Entity-relationship diagram. 27
6.2 Pattern matching Ű Performance. 40
6.3 Pattern matching Ű Performance (40 keywords). 41
6.4 Keyword search performance. 44
6.5 Usability of output Ű Overall score. 49
6.6 Speed. 50

viii

1 Introduction

Forensic analysis is a dynamically growing area of IT. Its purpose is to
reconstruct Ű from samples of supplied data Ű the timeline of events
that occurred or to Ąnd speciĄc digital traces of usersŠ activities. Foren-
sic analysis of digital traces, also referred to as digital forensics, is widely
used by the police when investigating crimes. With the aim to Ąnd
evidence that could be used at the court, the police often seizes com-
puters and data carriers throughout house search. They delegate an ex-
pert witness with the specialization in IT to analyze the data carriers
and to write an expert testimony with interpretation of outcomes
of the analysis. The analysis consists of Ąnding all Ąles with occur-
rences of predeĄned keywords (e.g., names of suspected persons
or companies).

The thesis studies the work of an expert witness starting with an ac-
quiry of images of the data carriers from the police, through analy-
sis of the data, ending with the completion of an expert testimony
that is subsequently submitted to the judge. The aim of the thesis
is to simplify and speed up the work of expert witnesses and to re-
duce the amount of manual work that needs to be done. The thesis
focuses on the requirements and needs of expert witnesses that work
for the Police of the Czech Republic (later referred to as ŞpoliceŤ).

Chapter 2 describes a typical forensic task as it is assigned by
the police, the formats of the images of the data carriers, and how
the images are created. Chapter 3 provides an overview of several
digital forensics tools and environments. Based on their properties
and functionality, we suggest the best candidate for the use by expert
witnesses for completion of the typical forensic task. Chapter 4 is
devoted to Autopsy Ű the most prominent tool out of the tools that
were described in Chapter 3. The aim of this chapter is to test the use of
Autopsy on a real case with real data and to evaluate how it copes with
completing the typical forensic task. We describe the methodology
of the test and the hardware on which the test was executed. It also
provides evaluation of the performance and stability of the tool and it
concludes whether it is suitable or not for fulĄllment of the forensic
task. Due to multiple issues Ű described in Section 4.5 Ű that were

1

1. Introduction

encountered during the testing, Autopsy turned out not to be suitable
for the task.

As Autopsy failed in the test on a real task, another way how to
efficiently fulfill the forensic tasks needs to be found. The rest of the the-
sis is devoted to the IT Forensic Tool (ITFT) that is being developed
by the technical consultant of the thesis for this purpose. Chapter
5 introduces the tool and its features and it provides a step-by-step
description of the whole process of solving a typical forensic task by
this tool.

Chapter 6 is devoted to a new version of IT Forensic Tool – IT
Forensic Tool v2.0. It discusses the requirements for further function-
ality that should be added to ITFT and it proposes and implements
solutions for each of the requirements. The first requirement is inte-
gration of a database design into the tool in order to simplify the way
how it stores data and to enhance its extensibility over time. There is
also a need for speeding up the keyword search. Several options of its
acceleration are discussed and the best approach is selected. Besides
this, in order to be able to search automatically for keywords in the text
that is inside images, the keyword search should be equipped with
Optical Character Recognition (OCR). The possibilities of integrat-
ing OCR into ITFT are discussed and a suitable OCR tool is chosen
for this purpose. Last but not least, the manual work required for
creating an expert testimony as a pdf document should be minimized.
The thesis suggests and implements means for partially automating
the process.

Chapter 7 suggests more improvements for further work and Chap-
ter 8 concludes the thesis.

2

2 Typical forensic task

This chapter describes a typical forensic task as it is assigned by the po-
lice. We specify the most common formats in which the data for the anal-
ysis are provided and the procedure of creating images from the orig-
inal data.

A typical task looks as follows:

1. Find electronic Ąles (including the deleted ones) containing
documents, e-mail communications and history of online com-
munications of speciĄed persons on the data carriers provided
by the police.

2. Out of the found Ąles choose those that contain the listed key-
words or their parts (business companies and institutions, natu-
ral persons, words).

3. Create an expert testimony as a pdf document containing the cho-
sen Ąles together with their metadata. The report is to be accom-
panied by electronic copies of the Ąles on a suitable data carrier.

The provided data carriers contain bit-by-bit images of the carri-
ers seized throughout house search or the seized devices themselves.
Typically, there are images of hard disks or Ćash disks and they can be
stored in various formats. The most common formats are raw formats
and the EnCase format, and for the purpose of the thesis we will con-
sider only these two. The total capacity of the provided data carriers
is typically thousands of gigabytes.

2.1 Raw formats

A raw format is a bit-by-bit copy of the original [1]. It does not contain
any metadata and it is not compressed. Some tools provide the meta-
data in separate Ąles. Typically, raw images have suffixes .dd, .raw,
or .img, and can be created by a Linux tool dd or by one of its followers,
for example, dc3dd, dcfldd, or dd.exe that is a Windows implementation
of the original dd [2].

3

2. Typical forensic task

2.2 EnCase Evidence File format (version 1)

The EnCase Evidence File format is a proprietary format developed by
the Guidance Software Inc. [3]. It uses the file extension .E01 and it is
based on the Expert Witness Format (EWF) by ASR Data. These image
files are commonly referred to as Expert Witness, E01 or EWF files [4].

EnCase files contain a header and a footer with metadata, such
as the source disk operating system, timestamps, and cryptographic
hashes. They also contain a Cyclic Redundancy Check (CRC) in order
to preserve the integrity and they are compressed by default.

Version 2 of the EnCase Evidence File format with some additional
features was introduced in Encase 7. It is not backward compatible
with version 1.

2.3 Split images

Both raw and EnCase allow for separation of disk images into so-
called split images that are more manageable. The naming conventions
for split image file sets are as follows:

• EnCase: suffix Enn

image_set.E01
image_set.E02
image_set.E03
. . .

• Raw: suffix nnn

image_set.001
image_set.002
image_set.003
. . .

2.4 Creating raw and EnCase images

Before creating a bit-by-bit copy of an original data carrier gained
from house search, e.g., a hard disk of a laptop, the disk is removed

4

2. Typical forensic task

from the powered down system and then the image can be created.
This is called dead imaging. When creating forensic images, it is essen-
tial that the original data is not altered. In order to ensure the integrity
of the data, write-blockers are used. As the name implies, they pre-
vent any data from being written to the original disk and allow only
for the read access [4]. Therefore, timestamps of the files on the disk
remain the same. Write-blockers can be either hardware or software
based.

Another requirement for forensic images is that we have to be able
to verify that the created image is the same as the original disk [5]. This
is done by computing hashes of both the original disk and its image
and comparing them. Imaging tools support various hash functions,
such as SHA-2 or MD5.

Multiple tools for creating forensic images are available. The most
common are FTK Imager, EnCase Forensic Imager, ewfacquire from the li-
brary libewf, dd, and other dd-like tools that have already been men-
tioned in Section [4]. All these tools support the raw formats and FTK
Imager, EnCase Forensic Imager, and ewfacquire support also the EnCase
format.

5

3 Forensic tools

This chapter provides an overview of several commonly used digi-
tal forensics tools and environments that could be used for solving
a typical forensic task assigned by the Police of the Czech Republic.
The tools were chosen based on recommendations from the technical
consultant of the thesis and based on experience and opinions of mem-
bers of the digital forensics community at Forensic Focus online forum
[6] [7].

Together with the tools overview we introduce the criteria that
the best candidate for being used for solving the typical task should
satisfy. Then, based on applying the criteria, the most suitable tool
is chosen. The tool should support the basic functionality needed by
expert witnesses, such as extraction of Ąles from disk images and key-
word search. It should be up-to-date, and preferably it should be open
source.

3.1 Tools overview

This section introduces four candidates for a forensic tool for the typ-
ical forensic task: EnCase Forensic, CAINE, The CoronerŠs Toolkit,
and The Sleuth Kit with Autopsy.

3.1.1 EnCase Forensic

Encase Forensic is a commercial product by Guidance Software Inc.
It is a widely used forensic tool that provides a variety of forensic
features, including disk imaging, keyword search, etc. Images are
stored in EnCase Evidence File format (see 2.2) [8]. The tool supports
a wide range of operating and Ąle systems and since the version 8,
released in 2016, also Ąle system acquisition on mobile operating
systems is provided [9].

Encase Forensic allows efficient management of the individual
investigation workĆows and reporting is done using customizable
templates. Extensibility of the tool is ensured through EnScripts which
are automated code commands that streamline tasks.

6

3. Forensic tools

3.1.2 CAINE

CAINE (Computer Aided INvestigative Environment) is an Italian
Linux live distribution that offers a complete forensic environment
[10]. It integrates existing software tools, such as dc3dd, exif, libewf,
and Autopsy. The complete list of the tools can be found at [11].

3.1.3 The Coroner’s Toolkit

The Coroner’s Toolkit (TCT) is a collection of forensic utilities writ-
ten by Wietse Venema and Dan Farmer for a post-mortem analysis
of a UNIX system [12]. The software dates to the year 1999, when it
was first presented at the Thomas J. Watson Research Center. TCT is
currently not being developed anymore, however, it has its official
successor called the Sleuth Kit. It was developed by Brian Carrier
and it uses some code and design of TCT.

TCT consists of multiple components including grave-robber tool
that serves for the capture of forensic information, mactime for time
analysis, lazarus for recovery of deleted files, and findkey for recovery
of cryptographic keys form running processes or from files [13].

3.1.4 The Sleuth Kit and Autopsy

As already stated, The Sleuth Kit (TSK) is the successor of The Coro-
ner’s Toolkit. It consists of a collection of command line file and volume
system forensic analysis tools and a C library and it serves for analysis
of disk images and for recovering files from them [14]. It is written
in C and Perl and it runs on both Windows and Unix platforms.

In order to avoid using the command line tools of TSK directly,
a graphical interface called Autopsy can be used. Autopsy provides
case management, image integrity, volume and file system analysis,
keyword search, and other features [15]. It was designed with a mod-
ular architecture. Some of the modules come with it out of the box
while others are available from third parties.

When it comes to reporting, Autopsy provides three default types
of reports – HTML, XLS, and Body file. Users can also create their own
customized reporting modules to match their specific needs or they
can edit the existing ones.

7

3. Forensic tools

3.2 Comparison criteria

1. Supported features: The tool should provide at least the follow-
ing features that are essential for the typical forensic task:

• Extraction of files: The tool should support extraction of files
from the obtained images, in order to be able to further an-
alyze them and to perform the keyword search. The tool
should be able to detect also hidden and deleted files.

• Keyword search: The key requirement for the tool is that
it can find all files that contain the keywords specified by
the police.

• Report generation: It is desirable that the tool provides
an option to automatically generate a report summarizing
the results of the keyword search, so that it does not have
to be created manually by an expert witness.

2. Supported image formats: The tool should support the formats
of the images that are supplied by the police. These are typically
in the raw/dd format or in the EnCase (E01).

3. Supported platforms: The tool should be supported on Linux.
Linux operating systems are open source and the tools and ap-
plications for them are typically also open source.

4. License: Preferably, the tool should be open source. Buying
a license for a commercial tool can be cost prohibitive for self-
employed expert witnesses or for smaller companies that offer
expert witness services. Also, the functionality that is needed by
expert witnesses with respect to the typical forensic task is very
narrow compared to what forensic tools typically offer. There-
fore, it might be inadequate to pay for a whole toolkit when only
a small part of it is needed.

5. Extensibility: Since a typical forensic task is very specific in its
requirements, it would be beneficial if the tool was extensible
and could be adjusted to the needs of expert witnesses.

8

3. Forensic tools

6. Up to date, support, documentation: It is essential that the tool
is up to date, has a thorough documentation, and a sufficient sup-
port is available in case of any problems. An advantage of com-
mercial products is that the support is usually included in the li-
cense, but open source tools can also have an adequate support
in form of mailing lists, wiki pages, or discussion fora.

3.3 Tools comparison

This section provides a comparison of the selected tools with respect
to the criteria defined above.

3.3.1 Supported features

As already mentioned, the tool should support certain features in order
to be usable for solving the typical forensic task. Table 3.1 summarizes
the features that are provided by the tools1.

Autopsy and EnCase Forensic support all the required features,
while The Coroner’s Toolkit supports only extraction of deleted files.

Tool
Extraction of

files
Keyword

search
Report

generation

EnCase Forensic X X X

The Coroner’s
Toolkit

X2

Autopsy X X X

Table 3.1: Supported features.

1. CAINE is not included in the table due to the fact that it contains Autopsy.
Therefore, it supports all the features that are supported by Autopsy. The same
holds for the image formats.
2. Only extraction of deleted files is directly supported (lazarus and unrm tools).
The authors expect the users to mount the image manually to extract the regular
files.

9

3. Forensic tools

3.3.2 Supported image formats

Table 3.2 provides an overview of the image formats supported by
the tools. Autopsy supports both raw and E01 formats, while EnCase
Forensic supports only the E01 format owned by Guidance Software
– the author of Encase Forensic. The Coroner’s Toolkit does not directly
support any of the formats.

Tool raw/dd E01

EnCase Forensic X

The Coroner’s
Toolkit3

Autopsy X X

Table 3.2: Supported image formats.

3.3.3 Supported platforms

The preferred platform is Linux. The Coroner’s Toolkit together with
Autopsy are supported on Linux systems, CAINE itself is a Linux dis-
tribution, however, EnCase Forensic is strictly designed for Windows.

Tool Linux Windows Mac

EnCase Forensic X X

CAINE X

The Coroner’s
Toolkit

X

Autopsy X X X

Table 3.3: Platforms.

3. The authors expect the users to use the mount Linux command line utility which
supports both raw and E01 formats.

10

3. Forensic tools

3.3.4 License

On one hand, CAINE, The Coroner’s Toolkit, and Autopsy are issued
under free software licenses, on the other hand, EnCase Forensic has
a commercial license.

Tool
IBM

Public
License

Apache
License

2.0
LGPL4 Commercial

License

EnCase Forensic X

CAINE X

The Coroner’s
Toolkit

X

Autopsy X

Table 3.4: License.

3.3.5 Extensibility

This section provides an overview of the extensibility options of the in-
dividual tools. In short, all the tools can be extended in some way.

• EnCase Forensic: Extensibility in EnCase Forensic is provided
by so-called EnScripts, which are automated code commands
that streamline tasks. They can be written by developers via En-
Case AppCentral5.

• CAINE: As a free GNU/Linux distribution, CAINE can be arbi-
trarily modified under the terms of the LGPL license.

• The Coroner’s Toolkit: As a free software, The Coroner’s Toolkit
can be further extended. Extended versions containing addi-
tional functionality implemented by other developers can be,
based on a mail request, listed at the official TCT page.

4. LGPL – GNU Lesser General Public License.
5. AppCentral is an EnCase platform that features dozens of applications from
users. The applications are tested and verified by the team at Guidance Software
Inc. [16]

11

3. Forensic tools

• Autopsy: Autopsy has been designed with a modular architec-
ture and it provides an option to incorporate third-party mod-
ules. These can be written in Python or Java.

3.3.6 Up to date, support, documentation

Table 3.5 provides an overview of what kind of support is provided
with the individual tools, the form of and the quality of the documen-
tation and, last but not least, whether the tool is still being developed.

Tool Up to date Support Documentation

EnCase
Forensic

X
technical support for
customers

When customers pur-
chase EnCase Forensic
they receive a delivery
email containing User
Guides/Manuals in pdf.

CAINE X discussion forum

At the official page a brief
description of CAINE is
provided together with
the links to related tutori-
als. Some of the links are
not operational anymore.

The
Coroner’s
Toolkit

FAQ
mailing list

Handouts from a class on
UNIX computer forensic
analysis given by the au-
thors of the tool – Dan
Farmer and Wietse Ven-
ema. They provide a brief
description and guide-
lines for the individual
tools of TCT.

Autopsy X

wiki page
mailing list
discussion forum

A very thorough and un-
derstandable documenta-
tion for both users (User’s
Guide) and developers
(Developer’s Guide).

Table 3.5: Up to date, support, documentation.

12

3. Forensic tools

3.3.7 Conclusion

Examining the properties of each of the individual tools, Autopsy
seems to be the most promising one. It supports all the required
features and image formats, and it is available for Linux systems.
Thanks to being issued under a free software license and thanks to
having a modular architecture, it is possible to add new functionality
and to adjust the tool to the needs of expert witnesses. The tool is up to
date, it is provided with a thorough documentation and an adequate
support.

Comparing Autopsy to The Coroner’s Toolkit, it is a clear choice
as TCT is not being developed anymore and Autopsy is its official
successor. In regard to CAINE distribution that integrates Autopsy
and, therefore, provides the required functionality, it is a better option
to use Autopsy as a standalone. There is no need for using the other
tools that are incorporated into CAINE and to maintain the whole
distribution instead of a single application. Autopsy also has an ad-
vantage over EnCase Forensic. On one hand, EnCase supports the
functionality needed for processing the typical forensic task, it is ex-
tensible, and it is supplied with a customer support. On the other
hand, it is a commercial tool with a yearly license of several thousands
of dollars, which might not be affordable by some expert witnesses.

To conclude, Autopsy has an advantage over the rest of the tools
and will be further examined using real data in order to see how it is
usable in practice.

13

4 Autopsy

Now that we have chosen Autopsy we need to look at its functionality
in more detail and to test how it copes with solving the task assigned
by the police in practice. We are interested in the usability of the tool
in terms of performance and stability.

The Ąrst part of this chapter provides a closer look at the features
Autopsy is equipped with, while the rest of the chapter is devoted
to testing it on a real forensic task using real data. The test methodology
is presented together with the used hardware, the results of the perfor-
mance test and the problems encountered during the testing. Finally,
a conclusion on usability of Autopsy for solving the typical forensic
task is provided.

4.1 Features

This section outlines the process of analysis of a typical forensic task
using Autopsy. Descriptions of the key features/modules that are used
throughout the individual steps are provided.

1. File system analysis: Autopsy provides a File system analysis
feature. It accepts disk images in raw (i.e., dd), EnCase, and AFF
formats. Firstly, the images are analyzed using volume system
tools that examine the layout of disks and other media and they
identify and export partitions. Secondly, the identiĄed partitions
are analyzed with Ąle system analysis tools. Autopsy supports
a wide range of Ąle systems, including NTFS, Ext2/Ext3/Ext4,
FAT12/FAT16/FAT32/ExFAT, HFS+, and many others. The whole
process of image analysis covering volume and Ąle system anal-
ysis is referred to as Şimage ingestionŤ.

2. Keyword search: The Keyword search module can be run either
during the image ingestion process or after the ingest. Before
running the module, a list of keywords and regular expressions
to be searched for has to be deĄned. The keyword search consists
of two steps. Firstly, Autopsy extracts texts from different Ąle
types (html, Microsoft Office, pdf, ...). For this purpose, Apache

14

4. Autopsy

Tika toolkit and other libraries are used. Secondly, a full text
search using Apache Solr is performed. Results of the search are
provided continuously in the “Keyword hits” section of the Au-
topsy navigation panel.

3. Reporting: After the keyword search is performed, a report
needs to be created in order to document the findings. By default,
Autopsy provides three types of reports: html, xls, and Body
file. Each of them is configurable and the user can choose what
information he wants to include. For example, the html and xls
reports can be, for example, configured to display keyword hits,
which is particularly useful for the purpose of the typical foren-
sic task. The Body file report is intended for timeline analysis,
which is not applicable in this case. A significant advantage of
the reporting infrastructure of Autopsy is that it allows edit-
ing the existing reporting modules and also creating new ones
to customize the behavior to suit users’ specific needs.

On top of the above described features that are essential for the typ-
ical forensic task, Autopsy provides several other features that may
be helpful in improving the efficiency of the analysis.

• Hash set filtering: This feature allows users to filter out known
files automatically, e.g., various system files. By omitting these
from the keyword search, the analysis can be speeded up.

• Tags: Users can tag files with arbitrary labels and they can add
comments. The tags and comments can be also included in the re-
port.

• Android support: Autopsy supports extraction of data from
SMS messages, call logs, contacts, and more. This could be
used in cases when there are also mobile phones or tablets
with the Android operating system among the data carriers
supplied by the police.

15

4. Autopsy

4.2 Test methodology

This section introduces the methodology of our tests. It describes
the data set for the analysis and it outlines the actions to be taken
in the Autopsy user interface.

As was stated in the description of the typical task in Chapter 2,
the amount of data to be analyzed is typically in terabytes. For the pur-
pose of the test we will use a set of 15 images (raw or E01) with their
total size of 2 TB. The task is to inspect all the images and find all occur-
rences of predefined keywords. The keyword list contains 20 words.
The case is ignored and diacritic in not taken into account.

The steps of the test are as follows:

1. Configure Autopsy to use 4 threads. The rest of the configuration
stays in default settings.

2. Create a keyword list. For simplification, set each keyword to be
looked for as an exact match.

3. For each image (“data source” in the Autopsy terminology) is-
sue the “Add data source” command and select the keyword
search module with the keyword list to be run simultaneously
with the image ingestion.

4.3 Hardware

This section provides a description of the hardware used for the per-
formance testing.

• Model: DELL PowerEdge(TM) 2950.
• Processor: 2x quad core Intel(R) Xeon(R) X5460, 3.16 GHz, L2

cache 12 MB.
• Chipset: Intel 5000X.
• RAM: 8 x 4096 MB, DDR2 FB-DIMM, 667 MHz.
• Network cards: 2 x onboard Broadcom(R) NetXtreme II(TM)

5708.
• Storage:

– LSI Logic / Symbios Logic MegaRAID SAS 1078 (rev 04),

16

4. Autopsy

– Dell PERC 6/i Integrated RAID Controller,
– RAID-5: 4 x WD10EZRX-00L4HB0, SATA, 1 TB, 64MB Cache,

5400 RPM.

4.4 Performance test

This section provides an overview of the results of the performance
test. The test was executed on a sample case for which 15 disk images
of the total size of 1895 GB had been provided. The following chart
displays the sizes of the images and the corresponding amount of time
needed for processing them with Autopsy. The average processing
speed is 0.3 GB per minute. This means that for processing 1 TB of data,
about 55 hours are needed.

Figure 4.1: Autopsy performance.

17

4. Autopsy

4.5 Problems encountered

Several more or less severe problems were revealed throughout the run
of the performance test.

• Keyword search module fails to load: The keyword search mod-
ule uses Apache Solr1, which is statically configured to use
the TCP port 23,232. During the test the keyword search failed to
load and the following error was reported: “Indexing server port
23,232 is not available.” Other Autopsy users have also experi-
enced this error [18][19][20]. According to the Autopsy documen-
tation [21] and a related conversation in The Sleuth Kit mailing
list [20], such an error message can have several causes. Firstly,
another application in the system can be using the same port.
Secondly, a security software can be blocking the port. Thirdly,
the system can be running very slowly and when Autopsy tries
to use Solr, it is not up and listening on the port yet.

• Freeze: It happened several times that Autopsy froze and stopped
running while performing the keyword search. In such cases Au-
topsy had to be forced to shut down and the keyword search had
to be rerun from scratch. Other users reported the same issue
in the Autopsy forum [22][23], however, the cause of the freezing
was not identified.

• Unexpected crash: There was another issue that we experienced
during the run of the keyword search ingest module. Autopsy
occasionally crashed and the search had to be started again.
The causes of the crashes were not investigated, however, other
users also reported unexpected crashes when running ingest
modules [24][25].

• Keyword search and other errors: In some cases, the keyword
search or other actions ended up with an error (e.g., Corrupted
bitsPerDocBase, IOException, No space left on device, Keyword
Indexing Warning, Failed to open or create core [26]) and had to
be repeated. Due to the nontrivial amount of different errors they

1. Solr is an open-source search platform which can be used to build search appli-
cations [17]. It was built on top of Lucene (full text search engine).

18

4. Autopsy

could not all be investigated more deeply. As a result, the key-
word search could not be finished for some of the images and
they remained unprocessed.

• Progress Bar Inaccuracy: The progress bar that continuously
displays what percentage of files has already been processed
with the keyword search module did not always reflect the real
progress. It happened that at the moment of reaching 100 per-
cent the keyword search had not finished yet and it continued
running for a considerable amount of time. This was caused by
the fact that the total number of files from which the current
percentage is calculated does not include the contents of ZIP
and other archives. Therefore, the keyword search will get stuck
at 100 percent in case a particular image contains a large number
of archives. The overall time needed for the search will signifi-
cantly exceed the amount of time that could be presumed based
on the progress bar. This is not a bug as such, however, it would
be appreciated if the real progress of the keyword search could
be known.

Other issues

The issues that are described below did not occur during our perfor-
mance test, but they were reported by other users of Autopsy and they
are closely related to the process of solving the typical forensic task.
The issues were reported either to the GitHub project of Autopsy [27]
or to the forum on the official website of The Sleuth Kit and Autopsy
[28]. They have not been fixed yet at the time of writing the thesis.

• Incorrect hash verification [29]: For some specific images the E01
verifier returns a result “not verified”, although other tools
(e.g., FTK Imager and EnCase Forensic Imager) can successfully
verify the hash. This is caused by the E01 verifier calculating
wrong hashes in some cases.

• Keyword search duplicate results [30]: When running a new
keyword search with a string that has already been sought for,
the occurrences are not unique but are added to the previous

19

4. Autopsy

request results. Therefore, the keyword hits in the results are du-
plicate.

• Error opening case [31]: Some users experienced issues when
trying to reopen an existing case, no matter if it had been closed
properly or not. Autopsy reported “Error opening the case.”
According to one of the users, it could have had been caused by
an improper encoding handling.

• Failed to add data source [32]: After creating a new case or open-
ing an existing one, it was not possible to add a data source
for some of the users.

4.6 Conclusion

Based on the overview of several currently available tools for digi-
tal forensic analysis, Autopsy seemed to be a very good candidate
for solving the forensic task assigned by the police. However, multiple
issues appeared when it was tested on a real case. Due to the issues,
the whole process of the analysis was prolonged significantly. It was
not possible to finish the keyword search for some of the images, there-
fore, the analysis is incomplete. Autopsy is considered unsatisfactory
for this kind of task due to the amount of issues that occurred during
the testing. A different approach needs to be considered.

20

5 IT Forensic Tool

Based on the fact that no tool that would be suitable for solving the typ-
ical forensic task had been found, programmers from Trusted Network
Solutions, a.s. developed a prototype with the aim to match the re-
quirements and to reduce the manual work of an expert witness when
creating an expert testimony. The name of the prototype is IT Forensic
Tool (ITFT).

This chapter describes the functionality of ITFT together with
the whole process of case analysis when this tool is used.

5.1 Description

ITFT is a command line utility written in Perl. It provides analysis
of images in different formats (raw, E01), extraction of Ąles that are
present in the images (including deleted Ąles and Ąles in free space),
keyword search, and Ąle export. It recognizes multiple Ąle formats
(plaintext, doc, docx, mdb, pdf, xls, xlsx, ...), it allows for extraction
of information from applications, such as Outlook, Skype, and Pohoda
(economic software), and it is able to analyze zip and rar archives.
The tool uses other opensource utilities, such as ExifTool, Foremost,
and PhotoRec, that provide functionality which is useful for complet-
ing the typical forensic task.

ITFT provides a user with a set of commands that allows for case
management, evidence management, processing of evidence data,
keyword search, and Ąle export.

Table 5.1 presents a list of available user commands together with
their description. Besides the user commands, ITFT also allows to run
internal commands and tools from the command line. However, these
are present only for test and debugging purposes. The manual for ITFT
including user commands, internal commands, and tools, can be found
in Appendix A.1.

21

5. IT Forensic Tool

User command Description

addcase Create a new case.

addevidence Add a new evidence to the case.

deletecase Delete a case.

digest

Process the data of a specified
piece of evidence or, if no
evidence is specified, process all
evidence images of a specified
case.

export
Export specified files and their
metadata summaries.

exportkeywords
Export all files that contain
predefined keywords.

listcases List all cases.

listevidence
List all evidence of a specified
case.

modifycase Change the name of a case.

mount Mount all evidence of all cases.

mark
Mark a file with a star (create
a symlink into a directory with
starred files).

Table 5.1: IT Forensic Tool – User commands.

22

5. IT Forensic Tool

5.2 Case analysis

Here is a step-by-step description of the whole process of solving
a typical forensic task with ITFT:

1. Add a new case (addcase).

2. Add all images that are to be analyzed (addevidence).

3. Process the images (digest). All files are extracted from the im-
ages, archives are uncompressed, and information from applica-
tions, such as Skype, Outlook, and Pohoda is extracted.

4. Define the keywords to be searched for (keywords.conf).

5. For each keyword create a list of all files where it occurs
(exportkeywords) and give the lists to an investigator.

6. The investigator chooses the files that are important and should
be included in the expert testimony, that will be used as an evi-
dence at the court.

7. Export the files chosen by the investigator (export). A separate
text file with a metadata summary is created for each file. It con-
tains information about the file, such as its path, source (which
evidence it comes from), access and modification times, check-
sums, and metadata of the content of the file.

8. Create an expert testimony as a pdf document containing the cho-
sen files together with their metadata summaries. This function-
ality is not supported by ITFT and it needs to be done manually.

Visualized process of the case analysis in the form of a sequence di-
agram is provided in Figure 5.1. Besides the ITFT commands, it covers
also the communication with the Police.

23

5. IT Forensic Tool

Figure 5.1: Sequence diagram.

24

6 IT Forensic Tool v2.0

ITFT has been successfully used in Trusted Network Solutions, a.s.
for processing multiple cases and creating multiple expert testimonies.
Although the tool provides all the essential features for completing
typical forensic tasks, there is still room for improvements. The fol-
lowing requirements emerged when working with ITFT:

1. Database design: As the functionality and complexity of ITFT
grows,it will be more and more difficult to keep the code simple
and readable. The way how it stores different kinds of informa-
tion about cases should be uniĄed in order to enhance exten-
sibility of ITFT over time. This could be done by integrating
a database into the current design of the tool.

2. Keyword search: The keyword search performance should be
optimized.

3. Optical Character Recognition: It would be useful to have a fea-
ture that would automize the keyword search on the text that
is contained in pictures, such as photographed documents or
scanned pages. This could be done using Optical Character
Recognition (OCR).

4. Automated reporting: The reporting process should become
more automated. Currently, an expert witness has to create an ex-
pert testimony by manually merging the chosen Ąles and their
metadata summaries into a single pdf document. The fact that
this is not done automatically makes the time needed for case
analysis signiĄcantly longer.

The aim of the thesis is to incorporate the above mentioned im-
provements to the current version of ITFT and to create a new version
of the tool Ű IT Forensic Tool v2.0. Each section of this chapter is de-
voted to one of the suggested improvements: it deĄnes the require-
ments, presents the solution, and describes the implementation.

25

6. IT Forensic Tool v2.0

6.1 Database design

Currently, most of the data related to cases, images, or files is stored
on the disk. Each case has its own directory with multiple subdirecto-
ries that contain mounted images, files detected by photorec, exported
files, uncompressed archives, and files with other information about
the particular case. The structure of the case directory had over time
become rather complex and there is a need to make it more compact
and easier to take in. With the integration of a database into the current
design of the tool a significant amount of data can be moved from
the case directory into the database. The use of a database brings sim-
plification of operations over the data, it creates space for optimization
on the database level, and it increases extensibility of the tool.

This section introduces PostgreSQL database system that is used
for the database design of ITFT v2.0 and it presents an entity-relationship
model of the database.

6.1.1 PostgreSQL

PostgreSQL is an open source object-relational database system [33].
It is available for all major operating systems, including Linux, UNIX,
and Windows. It is ACID compliant [34], it supports foreign keys, joins,
views, triggers, and stored procedures and its SQL implementation
strongly conforms to the ANSI-SQL:2008 standard [35]. It has a thor-
ough documentation and it provides native programming interfaces
for multiple programming languages, including C/C++, Java, .NET,
Python, and Perl. The PostgreSQL can be integrated with Perl using
Perl DBI module [36], which is a database access module for the Perl
programming language. The DBI module needs to be installed along
with its DBD::Pg driver [37].

6.1.2 Entity-relationship model

During the process of solving a typical forensic task the tool ITFT
works with five basic entities:

1. case that the investigation is related to,

2. images of the data carriers seized throughout house search,

26

6. IT Forensic Tool v2.0

3. files from the images,

4. keywords to be searched for,

5. and occurrences – hits – of the keywords in the files.

This section introduces an entity-relationship model of the database
for ITFT v2.0. Figure 6.1 displays an entity-relationship diagram con-
taining the entities, their attributes, and relationships between them.

Figure 6.1: Entity-relationship diagram.

Tables 6.1, 6.2, 6.3, 6.4, and 6.5 list the attributes of the particular
entities of the database together with their description.

Attribute
name

Domain Constraints Description

case_id integer primary key A numeric identifier of the case.

name
character
varying(255)

not null,
unique

Name of the case.

investigator
character
varying(255)

-
Name of the
investigator/expert witness
who is working on the case.

Table 6.1: Case.

The database makes use of enumerated types. Table 6.6 provides
an overview of declared types together with their description and their
values.

27

6. IT Forensic Tool v2.0

Attribute
name

Domain Constraints Description

image_id integer primary key
A numeric identifier of the
image.

case_id integer foreign key
A numeric identifier of the case
which the image belongs to.

name
character
varying(255)

not null,
unique

Name of the image.

path
character
varying(255)

not null,
unique

Path to the image.

digested boolean -

Information whether the image
was already digested – whether
the files were extracted from the
image.

Table 6.2: Image.

6.2 Keyword Search

The way how ITFT v1.0 performs keyword search is as follows. On
the input, there is a list containing the keywords that are to be searched
for and a directory with the files to be browsed. At the output, for each
keyword there is a text file created that contains paths to all the files
that contain the particular keyword. Also, a directory with all the files
with keyword hits sorted by images they belong to in the first place
and file types (e.g., pdf, doc) in the second place.

Now let us get back to the keyword list and its format. The key-
words are listed in keywords.conf file. For each keyword, there is
a unique label, the text and a regular expression to be searched for.
The regular expressions are not case sensitive and take into account
both diacritic and diacritic free versions of the words. Due to inflection
in the Czech language, the regular expressions contain only the roots
of the words in order to cover all grammatical cases.

6.2.1 Keyword search in PostgreSQL

As described in Section 6.1, ITFT in the version v2.0 uses a database
for storing data related to cases. Therefore, the keyword search can
be performed over the database. This chapter provides an overview

28

6. IT Forensic Tool v2.0

Attribute
name

Domain Constraints Description

file_id integer primary key A numeric identifier of the file.

image_id integer foreign key
A numeric identifier of the
image which the file was
detected in.

name
character
varying(255)

not null,
unique

Name of the file.

path
character
varying(255)

not null,
unique

Path to the file.

xxhash
character
varying(255)

-

A 64-bit xxHash value of the
file. Used as an identifier for
fast manual recognition of
identical files.

sha512
character
varying(255)

- A SHA-512 value of the file.

known boolean -

Information whether the file is
a well-known file (e.g. a system
file). Keyword search is not
performed for such files. The
function horizon is used for
determining whether a file is
well-known or not.

marked boolean -

Information whether the file
was selected by an investigator
to be included in the expert
testimony.

type enum -
Type (format) of the file. See
file_type enumerated type in
Table 6.6.

application enum -
Application the file was created
by. See file_application
enumerated type in Table 6.6.

class enum -
Class which the file belongs to.
See file_class enumerated type
in Table 6.6.

plaintext text -
Plaintext (printable characters)
extracted from the file.

Table 6.3: File.

29

6. IT Forensic Tool v2.0

Attribute
name

Domain Constraints Description

file_id integer primary key A numeric identifier of the file.

case_id integer foreign key
A numeric identifier of the case
which the keyword belongs to.

name
character
varying(255)

not null,
unique

Name of the file.

regex text not null
Regular expression to be
matched with.

Table 6.4: Keyword.

Attribute
name

Domain Constraints Description

hit_id integer primary key A numeric identifier of the file.

keyword_id integer foreign key
A numeric identifier of the case
which the hit relates to.

file_id integer foreign key
A numeric identifier of the file
in which the keyword was
found.

Table 6.5: Hit.

of PostgreSQL features for pattern matching and full text search, it de-
scribes how they work, and it introduces the ways how they can be
optimized using indexes1. The different approaches are compared
in terms of speed and then, based on the needs of expert witnesses,
the most suitable approach is chosen and implemented into ITFT v2.0.

6.2.2 Pattern matching

PostgreSQL provides several approaches to pattern matching: LIKE
operator, SIMILAR TO operator, and POSIX-style regular expressions.

LIKE. The LIKE expression (~~) returns true if the string matches
the supplied pattern. In order to make the match case insensitive,

1. The description of pattern matching, full text search, indexes, and pg_trgm
module is based on the official PostgreSQL documentation at [38].

30

6. IT Forensic Tool v2.0

Enumerated type Set of values Description

file_type

’sqlite’, ’pst’, ’dbx’, ’mdb’,
’vcard’, ’vfat’, ’doc’, ’docx’,
’xls’, ’xlsx’, ’zip’, ’rar’, ’pdf’,
’cdf’, ’txt’, ’unknown’, ’gif’,
’application/octet-stream’

File type is the format of the
file based on the magic
number.

file_class

’image’, ’archive’,
’plaintext’, ’mail-archive’,
’document’, ’contacts’,
’database’, ’unknown’

File class represents a group
of file types that have some
common properties. Files
that belong to the same
class are processed in a
similar way.

file_application

’skype’, ’outlook’,
’outlook-express’, ’pohoda’,
’word’, ’excel’, ’access’,
’unknown’, ’unspecified’,
’image’

This type labels application
specific files, e.g. an SQLite
database file containing
skype conversations.

Table 6.6: Enumerated Types.

ILIKE operator (~~*) can be used. PostgreSQL provides also NOT
LIKE (!~~) and NOT ILIKE (!~~*) expressions

s t r i n g LIKE pat tern

The pattern can contain special characters – an underscore (_)
and a percent sign (%). An underscore represents an arbitrary charac-
ter and a percent sign matches any sequence of zero or more charac-
ters. The percent sign is of a great importance to the keyword search,
as the keyword can be preceded and followed by any sequence of char-
acters. Therefore, the search pattern will typically have the form “%key-
word%”. The complete query to get a list of all file IDs that contain
a specific keyword looks as follows:

SELECT f i l e _ i d FROM f i l e
WHERE p l a i n t e x t LIKE "%keyword%" ;

SIMILAR TO. As the LIKE expression, the SIMILAR TO opera-
tor returns true or false depending on whether the string matches
the supplied pattern or not. It uses an underscore (_) and a percent
sign (%) to represent an arbitrary character or any string, respectively.

31

6. IT Forensic Tool v2.0

In addition to these, SIMILAR TO utilizes a group metacharacters
used by regular expressions. These metacharacters can for example
be used for alternation (use either of two alternatives) or for repe-
tition of the previous item a specified number of times. Thanks to
the metacharacters SIMILAR TO it is more powerful than LIKE, how-
ever, the extended functionality degrades the performance.

The syntax of SIMILAR TO is as follows:

s t r i n g SIMILAR TO pat te rn

POSIX regular expressions. Regular expressions, as defined in POSIX
1003.2, represent a concise and flexible means for pattern matching.
They are more powerful than LIKE and SIMILAR TO operators.

A string is said to match a regular expression if it is a member of
the regular set (a set of strings) that is represented by the expression.
As opposed to LIKE and SIMILAR TO, a regular expression returns
true not only if the string matches the expression as a whole, but also
when its substring matches it.

’ abc ’ ~ ’ abc ’ t rue
’ abcd ’ ~ ’ abc ’ t rue

PostgreSQL provides the following operators for regular expres-
sions:

• ~ for a case sensitive match,
• ~∗ for a case insensitive match,
• !~ for a negation of a case sensitive match,
• !~∗ for a negation of a case insensitive match.

Regular expressions consist of branches that are separated by a verti-
cal bar (|). A string matches a regular expression if it matches any of its
branches. Branches are constructed of atoms and constraints. Atoms can
contain alphanumeric characters to be matched, non-alphanumeric
characters to be matched (need to be preceded by a backslash), a dot (.)
that matches any single character, special escape characters, and bracket
expressions. Atoms can be followed by quantifiers that specify the length
of the sequence of the matches of the atom.

More detailed information on regular expressions use in Post-
greSQL can be found in the PostgreSQL documentation [39].

32

6. IT Forensic Tool v2.0

6.2.3 Full text search

Full text search provides identification of documents that match a given
query. A document is a unit of searching. In the context of the keyword
search in ITFT v2.0 it corresponds to the plaintexts extracted from files
detected in the images. A query represents the search pattern.

The main difference between full text search and the pattern match-
ing operators described above is, that the full text search has linguistic
support and recognizes also derived words with respect to the config-
ured language. Moreover, it provides an option to order the results
based on their similarity to the query.

Before the full text search is performed, the documents are pre-
processed in the following way: firstly, the documents are parsed into
tokens, secondly, the tokens are converted into lexemes, and thirdly,
the preprocessed documents are stored in a form that is optimized
for searching.

Full text search in PostgreSQL is conducted using the operator @@.
A sample full text search query looks as follows:

SELECT ’ to be or not to be ’ : : t s v e c t o r
@@ ’ to & be ’ : : tsquery ;

As can be seen from the example above, the document is of the type
tsvector and the query is of the type tsquery. The tsvector type
is used for storing preprocessed documents and tsquery is used
for preprocessed queries, respectively. PostgreSQL provides functions
to_tsvector and to_tsquery to convert text documents and queries
to tsvector and tsquery types.

Configuration. On top of a simple text search, as demonstrated
in the example, the full text search provides a number of enhance-
ments to document processing, such as skipping indexing of certain
words, processing synonyms and whole phrases, and more. These
options can be set in the postgresql.conf configuration file, using
an ALTER DATABASE query, or set default_text_search_config for
each session.

The configuration options also allow for use of different languages
for the search instead of English, which is the default language. This
is essential for the keyword search that is performed when processing

33

6. IT Forensic Tool v2.0

a forensic task assigned by the Police of the Czech Republic. The pro-
cessed documents and the predefined keywords to be searched for
are typically in the Czech language, or in some cases also in English.
Czech is not supported by PostgreSQL, however, a Docker image with
Czech full text search dictionaries is available [40].

Indexing in full text search. In order to speed up full text searches,
indexing can be used. The full text search in PostgreSQL supports two
types of indexes: Generalized Inverted Index (GIN) and Generalized
Search Tree (GiST). GIN contains an index entry for each word together
with a compressed list of matching locations. GiST indexes are lossy,
as they may produce false matches. Therefore, additional checks need
to be done and it causes degradation of the performance.

The following examples show how GIN and GiST indexes can be
created. file_gin_index and file_gist_index are names of the in-
dexes, file is the table, and plaintext_tsvector is the column on
which the indexes are created. The column must be of tsvector type,
alternatively, in the case of GiST indexes it can be also of tsquery

type. In these examples plaintext_tsvector is a column that con-
tains plaintexts extracted from files related to a case, that have been
converted to tsvector type using to_tsvector function.

CREATE INDEX f i l e _g i n_ i nde x ON f i l e
USING GIN (p l a i n t e x t _ t s v e c t o r) ;

CREATE INDEX f i l e _ g i s t _ i n d e x ON f i l e
USING GIST (p l a i n t e x t _ t s v e c t o r) ;

After creating an index, the full text search can be performed
in the following way. Note that the search can be performed even
without explicitly creating an index.

SELECT ∗ FROM f i l e
WHERE p l a i n t e x t _ t s v e c t o r

@@ to_tsquery (keyword) ;

Limitations. PostgreSQL’s full text search has limitations to the length
of lexemes, the length of a tsvector, the number of lexemes, and more.
The length of a tsvector must be less than 1 megabyte and this may

34

6. IT Forensic Tool v2.0

be an issue in the searches performed within a typical forensic task.
This issue will be discussed in more detail in Section 6.2.6.

6.2.4 Indexes

Indexes are a commonly used method for enhancing database perfor-
mance. See the following example of a query.

SELECT name FROM f i l e
WHERE p l a i n t e x t LIKE ’%keyword%’ ;

With no preprocessing, the system would need to scan the entire
file table row by row, to find matches of the pattern. However, after
creating an index on the plaintext column a more efficient method
for finding the matching rows can be used, for example, walk several
levels into a search tree.

Indexes are created in the following way:

CREATE INDEX index_name
ON table_name
(column_name [operator_class_name]) ;

When creating an index (index_name) on a particular column
(column_name), an operator class (operator_class_name) can be speci-
fied. The operator class determines what operators can be used by the in-
dex for that column.

Index types. PostgreSQL supports several types of indexes. Here
is an overview of the types together with a discussion whether they
would be suitable for speeding up the keyword search that is per-
formed when solving a typical forensic task assigned by the police.

• B-tree index: The B-tree index can be used for equality and range
queries on data that can be ordered. It can also be used for pattern
matching queries with LIKE and ~ operator. However, it works
only for constant search patterns that are anchored to the be-
ginning of the string, e.g. LIKE ’keyword%’. For the purpose
of solving typical forensic tasks, a wildcard search is needed
(LIKE ’%keyword%’). Therefore, B-trees are not suitable for the task
as they do not support wildcards.

35

6. IT Forensic Tool v2.0

• Hash index: Hash indexes can be used only for simple equality
comparisons, therefore, they are not sufficient for typical forensic
tasks.

• Generalized Inverted Index (GIN): GIN indexes are inverted
indexes and they are suitable for cases where items that are to be
indexed are composite values. For example, they can be used for
finding strings that contain a specific substring, which is exactly
what is needed for the keyword search in typical forensic tasks.
GIN can use many indexing strategies and besides the operator
classes that are a part of the standard PostgreSQL distribution,
it allows for the development of custom operator classes. Many
GIN operator classes are included in the contrib directory of
the PostgreSQL distribution and many are available as separate
projects.

• Generalized Search Tree Index (GiST): GiST is a tree-structured
access method. It works as a base template for which different in-
dexing strategies can be implemented. As with GIN, custom op-
erator classes can be developed for GiST as well. In the contrib

directory, there is a module called pg_trgm which provides both
GiST and GIN operator classes for working with strings. The de-
scription of the module is provided in the following section.

6.2.5 pg_trgm module

The pg_trgm module is used to determine the similarity of alphanu-
meric text. It provides functions and operators for searching for similar
strings together with operator classes for speeding up string search.

The module is based on trigram matching. A trigram is a sequence
of three successive characters from a string. Similarity of two strings
can be measured in such a way that the number of trigrams that they
share is computed. This approach is a very powerful and efficient for
measuring similarity of words in natural languages.

The pg_trgm module provides a number of functions and operators
for determining similarity of strings and to set a similarity threshold
(the minimum similarity between two strings for them to be con-
sidered similar, e.g. to be misspellings of each other). For solving
a typical forensic task, it would be beneficial to be able to detect also

36

6. IT Forensic Tool v2.0

misspellings of the keywords that are searched for. However, in this
task we would compare a keyword to the whole plaintext extracted
from a file instead of a potentially misspelled keyword which would
typically be only a substring of the plaintext. Therefore, the pg_trgm

module is not usable for the task in this way.

Indexing. Besides similarity functions and operators, the pg_trgm

module also provides a support for indexes. There are GiST and
GIN operator classes available. They can be used for creating indexes
that can subsequently be used for very fast similar searches and also
for trigram-based index searches for LIKE, ILIKE, ~ and ~* operators.
The trigram-based indexes could be used to speed up keyword search
using these operators. The indexes for keyword search are created
as follows:

CREATE INDEX t rgm_gist_ index ON f i l e
USING GIST (p l a i n t e x t gist_trgm_ops) ;

CREATE INDEX trgm_gin_index ON f i l e
USING GIN (p l a i n t e x t gin_trgm_ops) ;

6.2.6 Keyword search method choice

This section discusses usability of the above described approaches
to pattern matching, full text search, and indexing, for handling key-
word search in typical forensic tasks. It justifies the choice of pattern
matching rather than full text search and it chooses a suitable indexing
method. At the end, it provides a comparison of the speed of different
pattern matching operators with and without using indexing.

Pattern matching vs full text search. The full text search has a sig-
nificant advantage over the pattern matching, as it provides linguistic
support and it can detect derived words with respect to a configured
language. However, there is an issue with the size of tsvector, as has
already been outlined in Section 6.2.3. The tsvector size is limited to
1 megabyte. Within a set of files that are related to a particular forensic
task it is likely to happen that some of the tsvector values generated
from their plaintexts would exceed the limit.

37

6. IT Forensic Tool v2.0

UPDATE f i l e SET p l a i n t e x t _ t s v e c t o r =
t o _ t s v e c t o r (’ eng l i sh ’ , p l a i n t e x t) ;

ERROR: s t r i n g i s too long for t s v e c t o r
(1215888 bytes , max 1048575 bytes)

An option would be to split the files that would exceed the limit
into parts and analyze the parts one by one. Another option would
be to omit the full text search on the large files and to process them,
for example, by using the simple pattern matching. However, there
is no reasonable way how to predict the size of a tsvector based on
the original size of the file so that it would be possible to set the maxi-
mum file size. There is an approximation of the tsvector size that is
based on the number of unique words in the file, the average word
size, and the word count. Nevertheless, finding out the values of these
parameters that are needed for computation of the approximation
would consume too much time.

Another workaround would be to remove the 1 MB limit. In 2017,
a suggestion for a patch that would remove it appeared in PostgreSQL
mailing list [41], but at the time of writing the thesis the patch has not
been issued yet.

Since there is currently no reasonable workaround for the tsvector

size limit, the full text search is not a good candidate for processing
a typical forensic task. The pattern matching will be used instead.
However, if the patch is issued later on, switching to the full text
search should be considered.

Indexing. PostgreSQL provides several types of indexes that can
be used for different operator classes. Out of the supported index
types the B-tree, GIN, and GiST indexes are considerable for the use
in keyword search. The table 6.7 summarizes, which operator classes
for textual data types, are these three index types usable with.

The default operator class for the text data type is available only
for the B-tree index, not for the GIN and GiST indexes.
The text_pattern_ops class is also supported only for the B-tree
indexes. Unluckily, for both these operator classes some of the files
related to forensic tasks exceed the maximum index size. Based on
the size of a file it is difficult to estimate the size of the index. A solu-

38

6. IT Forensic Tool v2.0

Operator class B-tree index GIN index GiST index

default operator class
(data type text)

exceeded
maximum index
size

no default
operator class

no default
operator class

text_pattern_ops
exceeded
maximum index
size

not supported not supported

pg_trgm not supported OK
exceeded
maximum
index size

Table 6.7: Indexing in the keyword search.

tion suggested in the PostgreSQL documentation and by PostgreSQL
users in different discussion fora [42][43] is to hash the value on which
the index is to be created and then to create the index on the fixed hash
instead. However, by using the hash, the resulting index can be used
only for simple equality checks and not for searching for substring
matches. Therefore, the B-tree index is not a good candidate to be used
in the keyword search.

CREATE INDEX t e x t _b t _ idx
ON f i l e
USING bt ree
(p l a i n t e x t t ex t_pa t t e rn_ops) ;

ERROR: index row requ i res 8848 bytes ,
maximum s ize i s 8191

The pg_trgm module provides operator classes for GIN and GiST
indexes. For the GiST index the same problem occurs as with the B-
tree index. The CREATE INDEX query ends up with an error saying that
an index row exceeded the maximum size. Only the GIN index could
be created successfully and so it will be used for the keyword search.

Performance test. Figure 6.2 displays the time needed for processing
different pattern matching queries using either no index or the pg_trgm

GIN index. The test was performed on a table containing 49,460 en-
tries, which correspond to files extracted from images. The queries
in the following form were executed during the test. OPERATOR stands

39

6. IT Forensic Tool v2.0

for the LIKE, ILIKE, SIMILAR TO, ~, and ~* operators, respectively.
The values used for the graph are in a table in A.2.

SELECT count (∗) FROM f i l e
WHERE p l a i n t e x t OPERATOR ’%onion%’ ;

Figure 6.2: Pattern matching – Performance.

As can be seen from the graph, the search using the pg_trgm GIN
index is significantly faster for all the tested operators. Neverthe-
less, it should be noted that the index creation takes a non-negligible
amount of time. In this particular test the duration of the CREATE INDEX

query was 146176.687 ms, which is almost 10 times more than the du-
ration of the most time consuming SIMILAR TO query. No matter what
search operator is used, it is clear that if a single keyword is searched
for, it is not efficient to use indexing, as the sum of the duration of
the index creation and the search query itself exceeds the duration
of the search query without indexing. The dilemma at this point is,
whether it is efficient to use indexing in the case of a typical forensic
task where the search query is executed multiple times for different
keywords. Typically, tens of keywords are searched for.

40

6. IT Forensic Tool v2.0

Figure 6.3: Pattern matching – Performance (40 keywords).

Figure 6.3 compares the total durations sumno_idx and sumtrgm_idx

of search queries for 40 keywords with and without using the pg_trgm

index. sumno_idx and sumtrgm_idx are defined as

sumno_idx = n × tno_idx

sumtrgm_idx = n × ttrgm_idx + tcreate_idx,

where n is the number of keywords, tno_idx is the duration of a search
query without using indexing, ttrgm_idx is the duration of a search
query with the use of pg_trgm index, and tcreate_idx is the duration of
the CREATE INDEX query.

For most of the tested operators, it can be seen that for 40 keywords
it is more efficient to perform the search using indexing. In order
to optimize the keyword search in ITFT v2.0, indexing should be
used only when the number of keywords exceeds a threshold maxn,
which can be defined as the maximum number of keywords for which
sumno_idx < sumtrgm_idx.

Choice of pattern matching operator. This section is devoted to
a choice of a suitable pattern matching operator. The criteria to be

41

6. IT Forensic Tool v2.0

considered are the supported functionality and the performance of
the search with and without indexing. Based on the performance,
the LIKE operator seems to be the best candidate (see Figure 6.3).
However, it is case sensitive and for the typical forensic task a case
insensitive search is preferred. The two operators that support the case
insensitive search are ILIKE and ~* (regular expression). Out of these
two, the ~* operator has a better performance and it is also more pow-
erful than ILIKE. Therefore, it will be used for the keyword search.

As already discussed in the section above, pattern matching is to be
performed using indexing only when the number of keywords ex-
ceeds the threshold maxn. The threshold needs to satisfy sumno_idx <

sumtrgm_idx. Taking the sumno_idx and sumtrgm_idx values from the con-
ducted performance test, the threshold value for the ~* operator
is maxn = 26.

6.2.7 Implementation

The keyword search is performed as a part of the exportkeywords()

function, which is executed after issuing the exportkeywords com-
mand. The function operates as follows:

1. The keywords that are defined in the configuration file
keywords.conf are added to the database to the table keyword.

2. If the number of the keywords exceeds the defined threshold,
the pg_trgm GIN index is created.

CREATE INDEX trgm_gin_idx ON f i l e
USING gin (p l a i n t e x t gin_trgm_ops) ;

3. Select IDs and regular expressions (keyword_id, regex) for all
keywords in the keyword table.

SELECT keyword_id , regex FROM keyword ;

4. For each file ID do the following:

• Select IDs of all files (file_id) that match the regular ex-
pression.

42

6. IT Forensic Tool v2.0

SELECT f i l e _ i d FROM f i l e
WHERE p l a i n t e x t ~∗ ’ $regex ’ ;

• For each file ID add a new keyword hit into the hit table.

INSERT INTO h i t (h i t_ id , keyword_id ,
f i l e _ i d)
VALUES (’ $h i t _ id ’ , ’ $keyword_id ’ ,
’ $ f i l e _ i d ’) ;

6.2.8 Performance test

This section describes a performance test which compares the perfor-
mance of the keyword search in ITFT v1.0 and ITFT v2.0. We describe
the methodology, the sample data, and the results of the test.

Methodology. In the test we measured the duration of the command
exportkeywords for both tools. The test was performed in the follow-
ing steps:

1. Add a new case (addcase).

2. Add a new piece of evidence (addevidence).

3. Extract all files from the piece of evidence (digest).

4. Create a keyword list (keywords.conf).

5. Perform the keyword search (exportkeywords2).

Hardware and sample data. The test was run on the hardware de-
scribed in Section 4.3. We analyzed a case containing a disk image
the size of 7.9 GB in the test. We were looking for occurrences of 11
keywords. As the number of keywords did not exceed the threshold
maxn = 26, the pg_trgm GIN index was not created.

2. For ITFT v2.0 run the exportkeywords command with an option –noocr, which
disables Optical Character Recognition (OCR). OCR is computationally demanding
and it would influence the duration of the command.

43

6. IT Forensic Tool v2.0

Figure 6.4: Keyword search performance.

Results. Figure 6.4 displays the duration of the exportkeywords

command for both ITFT v1.0 and ITFT v2.0. It can be seen that the com-
mand requires less time when it is run with ITFT v2.0. The difference
between the durations in ITFT v1.0 and ITFT v2.0 would be even more
significant for a number of keywords larger than maxn = 26. In such
a case, the pg_trgm GIN index would be created and the time required
for the search of a single keyword would decrease.

6.3 Optical Character Recognition

This chapter discusses the possibilities of integrating Optical Charac-
ter Recognition (OCR) into ITFT v2.0. There are several open source
tools that provide OCR functionality and the aim of this chapter is
to compare them in terms of speed, file formats and languages they
support, and how successful they are in recognizing a text in different
types of images.

The process of finding a suitable tool is done in the following steps:

1. Find several OCR tools for the analysis.

44

6. IT Forensic Tool v2.0

2. Define criteria based on which the tools will be compared.

3. Create a set of sample images that will be processed using
the tools.

4. Automatically process all the sample images using the chosen
tools.

5. Manually analyze outputs of the tools.

6. Based on the results pick the most suitable tool.

6.3.1 Tools overview

The first step is to find several OCR tools that will be subsequently
compared. It is desired that the tools for the analysis work on Linux
platforms, they are runnable from the command line, and, prefer-
ably, are open source. There are multiple articles, reviews, and fora
on the web that discuss OCR tools [44] [45] [46] [47], describe their
properties, platforms, and languages they support, and, last but not
least, their accuracy. Based on the information provided by the reviews
the tools that seem to be the most promising ones for the use by expert
witnesses are the following: Tesseract, GOCR, CuneiForm, and Ocrad.

Tesseract. Tesseract is an open source OCR engine available under
the Apache 2.0 license [48]. It works on Linux, Windows, MacOS,
and can be compiled for a variety of other targets, including Android
and the iPhone. Tesseract is a command line program, however, there
are third-party frontends that use it as an OCR engine. It supports
tens of languages, including the Czech. In order to be able to use
a non-standard language, one needs to simply install training data
package for the particular language. The tool can read various file
formats, including jpeg, png, and pdf, that are most likely to appear
in the data carriers that are to be analyzed. A great plus of Tesseract
is that it is still being maintained and updated and it has a thorough
documentation.

GOCR. GOCR is an OCR program developed under the GNU Public
License [49]. As with Tesseract, GOCR can be used with different

45

6. IT Forensic Tool v2.0

front-ends, which makes it very easy to port to different operating
systems and architectures. It supports multiple file formats [50], such
as png, jpg, jpeg, tiff, and pdf3. It can read text in different encoding
schemes, including UTF-8 that covers also characters with diacritic
which is crucial for being able to extract text in the Czech language.
GOCR is documented in Linux manual pages [50] and its latest release
GOCR 0.51 is dated May 2017.

CuneiForm. CuneiForm is an OCR system originally developed
and open sourced by Cognitive technologies [51]. It is available under
the Simplified BSD License. It does not have its own GUI but it can be
successfully run from the OCRFeeder graphical interface [44]. It can
process jpeg, png, pdf, and all other formats that GraphicsMagick
knows how to open [52]. When it comes to languages, CuneiForm rec-
ognizes English by default, however, it supports many other languages,
including the Czech. The tool is still being updated and the documen-
tation is available on Ubuntu manual pages [53].

Ocrad. GNU Ocrad is an OCR program developed under GNU Gen-
eral Public License. It can be run on Linux operating systems and can
be used as a stand-alone console application, or as a backend to other
programs. It reads images in pbm (bitmap), pgm (greyscale) or ppm
(color) formats and produces a text in byte (8-bit) or UTF-8 formats.
In order to be able to process jpeg, png and pdf files using Ocrad,
conversion to one of the supported formats needs to be applied first.
The latest version of the tool is 0.26 released in March 2017 and is
thoroughly documented.

6.3.2 Comparison criteria

This chapter defines the criteria that will be applied to compare the tools
with respect to utilization by expert witnesses. Subsequently, based
on this comparison the most suitable tool will be chosen.

1. Output usability: The output of OCR tools is to be subsequently
processed by an automated keyword search. In order to be able

3. The pdf format is not listed in the manual pages, however, the tool accepts it
and can extract text from it.

46

6. IT Forensic Tool v2.0

to detect the specified keywords, the output needs to correspond
to the text in the original image. We want to compare the tools
in the sense how successful the tools are in extracting the text
correctly and whether their outputs are usable for further analy-
sis.

2. Speed: An expert witness is given a specific amount of time for
analyzing the data carriers, therefore, it is essential that the tool
is fast enough to perform the analysis within the given time
frame.

3. Supported languages and character encoding: For the use by
the Police of the Czech Republic it is necessary that the tool is
able to read Czech words and characters with diacritics. The tool
should therefore support the Czech or at least a character encod-
ing that contains characters with diacritics (e.g., UTF-8).

4. Supported formats: Images that are extracted from the evidence
data carriers can be of various formats. In order to be able to
process the image using the particular tool without the need
of conversion to another format, it is preferable that the tool
supports various formats, at least the most common ones, such
as jpeg, png, or pdf.

5. License: If a suitable tool is found it is likely to be integrated
into an existing proprietary software that is currently used by
expert witnesses working for the Police of the Czech Republic.
For this reason, open source tools issued under a free software
license are preferred.

6. Supported platforms: It is preferred that the tool can be run
on Linux due to the same reason described above when dis-
cussing the preferred licensing.

6.3.3 Sample data

This section describes the set of sample images that are to be processed
by the tools. The set contains 100 images and in order to simulate
the diversity of real evidence data the images are of various types
and formats.

47

6. IT Forensic Tool v2.0

Types of pictures

• Scanned documents.

• Photographed typed text (e.g. photographed documents, titles).

• Images with text blocks (e.g. a logo with a title).

• Photographed handwritten text.

Formats. The evidence data can contain images in different formats.
The formats that are the most common ones and are likely to contain
some text that could be extracted using OCR are jpeg, png, and pdf.
All these three are included in the sample set.

6.3.4 Tools comparison

This chapter is devoted to comparison of the chosen tools based on
the predefined criteria. The outputs of the tools processing the pre-
pared set of images are evaluated and the most suitable tool is chosen.

Output usability. In order to be able to enumerate usability of out-
put of the tools, a score from 0 to 3 is assigned to each output text
based on whether it is readable and whether it corresponds to the text
that can be seen in the original image.

• Score 3: The output text is readable without any issues (few
spelling mistakes tolerated) and corresponds to the original
image.

• Score 2: The output text contains multiple misspellings and in-
correctly interpreted characters, however, is still readable by
a human and mostly corresponds to the original image.

• Score 1: The output text seems to be derived from a meaningful
text, however, is hardly readable by a human or a significant
amount of text from the original image is omitted.

• Score 0: The output text is a meaningless sequence of characters
that does not correspond to the original image at all.

48

6. IT Forensic Tool v2.0

Figure 6.5: Usability of output – Overall score.

Figure 6.5 plots the sums of scores for 100 images of the sample
set for each of the tools. Results with the highest overall score are
produced by Tesseract meaning that the output texts it produced were
more accurate than the texts produced by other tools.

Speed. Figure 6.6 displays the speed of each of the tools in kilobytes
per second. The speed is calculated as a proportion of the total size of
the sample set and the time spent with processing the sample set using
the particular tool. The speed test was performed on the following
hardware:

• Model: DELL PowerEdge 2950.
• Processor: 2x quad core Intel(R) Xeon(R) X5460, 3.16 GHz, L2

cache 12 MB.
• Chipset: Intel 5000X.
• RAM: 8 x 4096 MB, DDR2 FB-DIMM, 667 MHz.

Out of the tested tools, the fastest one is GOCR with the speed
519.9 kB/s, followed by Ocrad with 375.7 kB/s, CuneiForm with 372.5
kB/s, and the last one is Tesseract with the speed of only 57.6 kB/s.

49

6. IT Forensic Tool v2.0

Figure 6.6: Speed.

Supported languages and character encoding. As was already men-
tioned, we aim to be able to recognize the text in the Czech language.
All of the tools support UTF-8 character encoding and therefore can
read characters with diacritics, which is essential for the Czech lan-
guage. However, only Tesseract and CuneiForm provide direct support
for multiple languages (including the Czech) and, based on training
data in the particular languages, they can perform linguistic analysis
that increases the accuracy of the extraction.

Tool
UTF-8

encoding
Czech

language

Tesseract X X

GOCR X

CuneiForm X X

Ocrad X

Table 6.8: Supported languages and character encoding.

50

6. IT Forensic Tool v2.0

Tool jpeg png pdf

Tesseract X X X

GOCR X X X

CuneiForm X X X

Ocrad

Table 6.9: Supported formats.

Tool
Apache
License

GPL
BSD

License

Tesseract X

GOCR X

CuneiForm X

Ocrad X

Table 6.10: License.

Supported Formats. As already stated, we focus on jpeg, png, and pdf
formats. Therefore, we prefer to use a tool that supports all of them
in order to avoid additional format conversion. Table 6.9 summarizes
which of the three formats are supported by each of the tools.

License. Table 6.10 summarizes the licenses under which the chosen
tools are developed. All of the listed licenses are free. Apache License
2.0 and BSD License under which Tesseract and Cuneiform are avail-
able are permissive software licenses meaning they have minimal
requirements about how the software can be redistributed. GOCR
and CuneiForm are available under GNU General Public License
(GPL), which is a copyleft license. The copyleft license is more re-
strictive than a permissive license in a sense that when the software
is being redistributed, the copyleft license enforces the publication
of the source code to be issued under copyleft as well [54]. Due to
the fact that the tool that will turn out to be the most suitable one
will be likely to be integrated into an existing proprietary software,
a permissive software license is more preferable.

51

6. IT Forensic Tool v2.0

Tool Linux Windows Mac OS

Tesseract X X X

GOCR X X

CuneiForm X X

Ocrad X

Table 6.11: Supported platforms.

Supported platforms. For each of the tools, Table 6.11 shows which
platforms there are installation packages or binaries available for. Ad-
ditionally, there are source codes available for all of the tools. Therefore,
they can be compiled for other platforms in addition to those that are
listed in the table.

Tool choice. The most important criterion for the choice of the tool
is the output usability. Based on the analysis, Tesseract appears to be
the best candidate thanks to accuracy of its output being significantly
higher than the rest of the tools. Although it is significantly slower
than the other tools, it is still feasible in the amount of time an expert
witness is generally given for analyzing the data carriers. It provides
support for the Czech language, it is issued under a permissive soft-
ware license, and it can be run on Linux operating systems. It matches
all the requirements and in spite of the deficiency in speed of process-
ing, it is clearly the most suitable tool for solving a typical forensic
task assigned by the Police of the Czech Republic. Therefore, it is to
be used by ITFT v2.0.

6.3.5 Implementation

Tesseract is integrated into ITFT v2.0 in such a way, that before adding
a new file of jpeg, png, or pdf (not text) into the database, Tesseract is
executed on the file and the output is filled into the plaintext parameter.

52

6. IT Forensic Tool v2.0

6.4 Automated Reporting

As it was already mentioned in Section 5.2, the creation of the pdf
report – the expert testimony – needs to be done manually. For each
file that is to be included in the report, ITFT v1.0 generates a text file
containing a summary of the file metadata. The expert witness has
to manually merge all the selected files together with their metadata
summaries to create the pdf report.

The goal of this chapter is to propose and implement a method
for partial automation of the pdf report creation process. For a number
of most frequent file formats, suitable tools for conversion to pdf are
chosen. Also, the means for automated merging of the converted pdf
files together with the metadata summaries into a complete report are
introduced.

6.4.1 Limitations

It is not possible to automate the report creation process completely
and a manual intervention of an expert witness could be necessary
in some cases.

For many file formats, it is possible to convert them automatically
to pdf using various pdf converters. However, for some of the for-
mats there are either no converters available, or sometimes the layout
of the created pdf files is not satisfactory (e.g., tables from an xls file
may not be displayed nicely).

A reasonable workaround to this problem is to give the users an op-
tion to manipulate the pdf files that are to be included in the report,
if necessary. The proposed solution will be discussed in more detail
in the following section.

6.4.2 Report creation process

This section describes the individual steps of the enhanced report
creation process in ITFT v2.0.

1. Run the function preexport(dir), where dir is the directory
containing copies of the files that are to be included in the report.
The directory is provided by the police. The function converts all

53

6. IT Forensic Tool v2.0

the files that are in the supported file formats to pdf. It creates
a new directory called pdf, where it puts the created pdf files.

2. In this step, the expert witness reviews the files in the pdf di-
rectory. If there are some files missing, i.e., some of the original
files were in formats that are not supported by ITFT v2.0 (see
6.4.3), he creates the corresponding pdf files manually and saves
them to pdf. Also, if he finds any of the pdf files created by ITFT
v2.0 not satisfactory, he can manually create his own pdf files
with a more suitable layout and replace them.

3. After the expert witness reviews the files in pdf and makes
any changes, if necessary, the function export() can be run.
The function takes the created pdf files from pdf, it appends
a metadata summary to each of them, and finally, it merges all
the pdf files together with the metadata summaries into a single
pdf report (report.pdf), which is saved to a report directory.

6.4.3 Supported file formats

The automated reporting utility focuses on a set of file formats that
tend to appear in the reports most often. Here is a list of the selected
file formats:

• Documents: doc, docx, odt, pdf.

• Presentations: ppt, pptx.

• Spreadsheets: xls, xlsx.

• Raster graphics: jpeg, png, tiff.

• Text files: txt.

6.4.4 Conversion to pdf

After deciding which file formats are to be supported, suitable tools for
converting them to pdf need to be selected. Based on opinions and ex-
perience of users from various IT fora [55][56], a Linux command line
utility unoconv seems to be a good candidate. According to its manual

54

6. IT Forensic Tool v2.0

page [57], it can convert any file format that LibreOffice can import,
to any file format that LibreOffice is capable of exporting. Therefore,
it can convert all the file formats that are required by the automated
reporting utility in ITFT v2.0.

The unoconv utility was tested on a set of files containing samples
of files in the formats listed in 6.4.3 and all the resulting pdf files
corresponded to the original files which they were generated from.
Therefore, it will be used in ITFT v2.0. Although the users in [55]
claim that there are some limitations in the accuracy of the outputs4,
for the purpose of the automated reporting in ITFT v2.0 it can be
considered acceptable. In case of occasional inaccuracies in the result-
ing pdf files, the user has an option to replace the problematic ones
manually.

6.4.5 Implementation

After creating the pdf versions of all the selected files, the report itself
can be generated. It will be done using a document preparation system
LaTeX [58].

This section provides a brief description of LaTeX and outlines
the steps how the report is created.

TeX and LaTeX. TeX is a typesetting computer program that takes
a “plain” text file and converts it into a high-quality document for print-
ing or on-screen viewing [59]. LaTeX is a macro system built on top
of TeX that aims to simplify its use.

A LaTeX plain text file describes the document’s structure and pre-
sentation [60]. It contains the source text combined with markup.
It works in a similar way as HTML which uses markup to describe
the structure of Web pages.

LaTeX can be utilized in the report creation process in such a way,
that the export() function will automatically generate the plain text
file which will subsequently be converted into the pdf report. The fol-
lowing steps present the whole process of the generation of the report
including the description of its contents.

4. More specifically, unoconv turned out to have problems with rendering smart
art from Microsoft Office correctly.

55

6. IT Forensic Tool v2.0

Report creation with LaTeX

1. Create a plain text file report.tex where the LaTeX code and
the contents of the report will be gradually inserted as described
in the following steps.

2. Insert a preamble of the document specifying the document
class and the used packages. The document class defines the lay-
out style of the document. In this case, the report document
class will be used. After the preamble, other commands defining
the properties of the document, such as the style of the headers
and the footers, are inserted.

3. Set the title of the document (“An expert testimony”) and its
author (the name of the expert witness).

4. Start the body of the document using \begin{document}.

5. For each file that is to be included in the report do the following:

(a) Specify the number of its copies present in the analyzed
images.

(b) For each copy insert a table with its metadata including
its source, path, access and modification times, and other
information.

(c) Insert a table with MD5, SHA1, and SHA256 checksums.

(d) Insert a table with the metadata of the file contents.

(e) Insert the pdf file that has been created by a conversion
from the original file.

6. End the body of the document using \end{document}.

7. Generate the document – the report – by running the following
command:

pdf la tex repor t . tex .

8. Find the report (report.pdf) in the current directory.

56

7 Future work

This chapter discusses ideas and suggestions on what improvements
could be made to ITFT and what other features could be added to it
in order to ease the work of expert witnesses.

First of all, ITFT is still a prototype. As it is growing fast and new
features are added on regular bases, it is starting to be difficult to un-
derstand the structure of the program and to follow the dependen-
cies between the functions. It also makes the process of integrating
and testing new components harder. ITFT has reached the point where
it should be transformed from a prototype into a proper tool. The cur-
rent imperative Perl script should be rewritten into an object-oriented
program with clearly deĄned entities and relationships between them.

ITFT does not address situations when execution of an action is
interrupted for some reason, for example, when the system is rebooted.
Currently, if a command is interrupted it has to be rerun again from
the start. This is particularly adverse in the cases where Ąles are being
carved from images or when the keyword search is being performed.
These operations that can take hours for images that have the size
of several hundreds of gigabytes. To mitigate the delays caused by
interruptions ITFT should regularly save its current state. After an in-
terruption, it should be able to continue from where it stopped.

The keyword search is performed regardless of the language of
the analyzed text. Besides detecting exact string matches, it would
be useful if it could detect derived or misspelled words with respect
to the language of the text. This could be achieved by using the full
text search, but due to the limitation to the size of tsvector it can
not currently be used for solving the typical forensic task. However,
if the proposed patch that would remove the limit is issued (see 6.2.6),
the full text search should be integrated to ITFT. For this reason, the cur-
rent state of the patch development and approval process should be
checked regularly.

57

8 Conclusion

The thesis studied forensic analysis and its use by expert witnesses
that work for the Police of the Czech Republic. We described a typical
forensic task as it is assigned by the police and we introduced several
digital forensic tools that could be used for solving the task. Autopsy
seemed to be a good candidate. However, when it was tested on a real
case it turned out not to be usable due to multiple issues that occured
(e.g., unexpected crashes and keyword search errors).

The rest of the thesis was devoted to the IT Forensic Tool that is be-
ing developed by the technical consultant of the thesis for the purpose
of processing forensic tasks. We described the functionality of the tool
together with the process of solving a typical task with its use. We also
proposed a number of improvements that were subsequently inte-
grated into a new version of the tool Ű IT Forensic Tool v2.0.

The Ąrst improvement was integration of the PostgreSQL database.
The goal was to simplify the way how the tool stores the information
about forensic tasks. Instead of using multiple conĄguration Ąles, most
of the information is now stored into the database. It consists of Ąve
tables that represent the basic entities the forensic tasks work with Ű
case, evidence, image, Ąle, and keyword.

The second improvement was optimization of keyword search that
is performed within forensic tasks. The purpose of keyword search
is to Ąnd all Ąles with occurrences of predeĄned keywords. We ana-
lyzed PostgreSQL features for pattern matching and full text search
and the options for their optimization using indexes. The pattern
matching operators were compared in terms of speed and function-
ality and, as a result, regular expressions were chosen to be used
in ITFT v2.0. Full text search turned out not to be usable for the task
due to limits to the size of tsvector, which is a data type used for
storing preprocessed strings. Analysis of indexing features that are
available in PostgreSQL showed that the only suitable option is to
use pg_trgm GIN indexes. Due to non-negligible duration of index
creation, indexing is set to be used only when the number of key-
words to be searched for exceeds a threshold value 26. To conclude
the optimization of keyword search, our performance test showed

58

8. Conclusion

that keyword search over the database in ITFT v2.0 is faster than
in the previous version of ITFT.

The third improvement was integration of Optical Character Recog-
nition (OCR) in order to be able to analyze texts in images automat-
ically. Based on a comparison of several OCR tools, Tesseract was
selected as the most suitable one and it was integrated into ITFT v2.0.

The fourth improvement was reduction of the amount of manual
work needed for creating an expert testimony – a pdf report. For a num-
ber of most common file formats, we managed to generate the pdf
report automatically. Still, manual intervention of an expert witness is
needed for other file formats and for validating the results of automatic
conversions to pdf.

Besides the implemented improvements, we submit a number
of suggestions for the future work. Namely, to rewrite the tool in
an object-oriented way, to create means to handle unexpected inter-
ruptions, and to consider implementing full text search if a patch
to remove the tsvector size limit is issued.

To sum up, the thesis assessed the nature of a typical forensic task
assigned by the police and it meets the needs of expert witnesses
by optimizing and extending the existing forensic tool ITFT.

59

Bibliography

[1] Forensicswiki.org. Category: Forensics File Formats. 2015. url: http:

//www.forensicswiki.org/wiki/Category:Forensics_File_

Formats (visited on 05/09/2018).
[2] Forensicswiki.org. Raw Image Format. 2014. url: http://www.

forensicswiki.org/wiki/Raw_Image_Format (visited on 05/09/2018).
[3] Guidance Software. Guidance Software. url: https://www.guidancesoftware.

com/ (visited on 05/09/2018).
[4] Sans.org. Forensic Images: For Your Viewing Pleasure. 2016. url:

https://www.sans.org/reading-room/whitepapers/forensics/

forensic-images-viewing-pleasure-35447 (visited on 05/09/2018).
[5] Sans.org. An Overview of Disk Imaging Tool in Computer Forensics.

2001. url: https://www.sans.org/reading-room/whitepapers/

incident/overview-disk-imaging-tool-computer-forensics-

643 (visited on 05/09/2018).
[6] Forensic Focus. url: https://forensicfocus.com/ (visited on

05/09/2018).
[7] twebster01. Autopsy 3: The Limitations. 2014. url: https://www.

forensicfocus.com/Forums/viewtopic/t=11981/ (visited on
05/09/2018).

[8] Guidance Software. EnCase Forensic. url: https://www.guidancesoftware.

com / docs / default - source / document - library / product -

brief/encase-forensic-product-overview.pdf?sfvrsn=6

(visited on 05/09/2018).
[9] Guidance Software. What’s new in EnCase Forensic 8. url: https:

//www.guidancesoftware.com/docs/default-source/document-

library/product-brief/whats-new-in-encase-forensic_

061417.pdf?sfvrsn=40 (visited on 04/01/2018).
[10] caine-live.net. CAINE: Computer Forensics Linux Live Distro. url:

http://www.caine-live.net/ (visited on 05/09/2018).
[11] caine-live.net. CAINE Tools List. url: http://www.caine-live.

net/page11/page11.html (visited on 05/09/2018).
[12] Dan Farmer and Wietse Venema. Forensic Discovery. 2004. url:

http://www.fish2.com/security/wf-book.pdf (visited on
05/09/2018).

60

http://www.forensicswiki.org/wiki/Category:Forensics_File_Formats
http://www.forensicswiki.org/wiki/Category:Forensics_File_Formats
http://www.forensicswiki.org/wiki/Category:Forensics_File_Formats
http://www.forensicswiki.org/wiki/Raw_Image_Format
http://www.forensicswiki.org/wiki/Raw_Image_Format
https://www.guidancesoftware.com/
https://www.guidancesoftware.com/
https://www.sans.org/reading-room/whitepapers/forensics/forensic-images-viewing-pleasure-35447
https://www.sans.org/reading-room/whitepapers/forensics/forensic-images-viewing-pleasure-35447
https://www.sans.org/reading-room/whitepapers/incident/overview-disk-imaging-tool-computer-forensics-643
https://www.sans.org/reading-room/whitepapers/incident/overview-disk-imaging-tool-computer-forensics-643
https://www.sans.org/reading-room/whitepapers/incident/overview-disk-imaging-tool-computer-forensics-643
https://forensicfocus.com/
https://www.forensicfocus.com/Forums/viewtopic/t=11981/
https://www.forensicfocus.com/Forums/viewtopic/t=11981/
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/encase-forensic-product-overview.pdf?sfvrsn=6
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/encase-forensic-product-overview.pdf?sfvrsn=6
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/encase-forensic-product-overview.pdf?sfvrsn=6
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/whats-new-in-encase-forensic_061417.pdf?sfvrsn=40
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/whats-new-in-encase-forensic_061417.pdf?sfvrsn=40
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/whats-new-in-encase-forensic_061417.pdf?sfvrsn=40
https://www.guidancesoftware.com/docs/default-source/document-library/product-brief/whats-new-in-encase-forensic_061417.pdf?sfvrsn=40
http://www.caine-live.net/
http://www.caine-live.net/page11/page11.html
http://www.caine-live.net/page11/page11.html
http://www.fish2.com/security/wf-book.pdf

BIBLIOGRAPHY

[13] Brian Carrier. The Coroner’s Toolkit (TCT). url: http : / / www .

porcupine.org/forensics/tct.html (visited on 05/09/2018).
[14] Brian Carrier. Open Source Digital Forensics. url: https://www.

sleuthkit.org/ (visited on 05/09/2018).
[15] Brian Carrier. Autopsy. url: https : / / www . sleuthkit . org /

autopsy/ (visited on 05/09/2018).
[16] Guidance Software. EnCase App Central. 2013. url: https://www.

forensicmag.com/product- release/2013/03/encase- app-

central (visited on 05/09/2018).
[17] Tutorialspoint.com. Apache Solr - Overview. url: https://www.

tutorialspoint.com/apache_solr/apache_solr_overview.

htm (visited on 05/09/2018).
[18] Digi Forensics. Autopsy Error. 2015. url: https://sourceforge.

net/p/sleuthkit/mailman/message/33242031/ (visited on
05/09/2018).

[19] peachy189. Error initializing keyword search module. 2015. url: https:

//forum.sleuthkit.org/viewtopic.php?f=6&t=2432 (visited
on 05/09/2018).

[20] lucacalcaterra. Indexing server port 23232 is not available. 2013. url:
https://github.com/sleuthkit/autopsy/issues/317 (visited
on 05/09/2018).

[21] wiki.sleuthkit.org. Autopsy 3 Troubleshooting. 2014. url: https:

/ / wiki . sleuthkit . org / index . php ? title = Autopsy _ 3 _

Troubleshooting (visited on 05/09/2018).
[22] steorra. hanging at 77%. 2015. url: https://forum.sleuthkit.

org/viewtopic.php?f=6&t=2486 (visited on 05/09/2018).
[23] Bunnysniper. Complete Freeze. 2015. url: https://forum.sleuthkit.

org/viewtopic.php?f=6&t=1581 (visited on 05/09/2018).
[24] DarkShadow316. Program Crashes. 2015. url: https://forum.

sleuthkit . org / viewtopic . php ? f = 6 & t = 2496 (visited on
05/09/2018).

[25] bbrezi57. Autopsy ingest module crash. 2015. url: https://forum.

sleuthkit . org / viewtopic . php ? f = 6 & t = 2609 (visited on
05/09/2018).

[26] edp05373. Failure to open or create core. 2018. url: https://github.

com/sleuthkit/autopsy/issues/3422 (visited on 05/09/2018).
[27] The Sleuthkit. Autopsy Issues. url: https://github.com/sleuthkit/

autopsy/issues (visited on 05/09/2018).

61

http://www.porcupine.org/forensics/tct.html
http://www.porcupine.org/forensics/tct.html
https://www.sleuthkit.org/
https://www.sleuthkit.org/
https://www.sleuthkit.org/autopsy/
https://www.sleuthkit.org/autopsy/
https://www.forensicmag.com/product-release/2013/03/encase-app-central
https://www.forensicmag.com/product-release/2013/03/encase-app-central
https://www.forensicmag.com/product-release/2013/03/encase-app-central
https://www.tutorialspoint.com/apache_solr/apache_solr_overview.htm
https://www.tutorialspoint.com/apache_solr/apache_solr_overview.htm
https://www.tutorialspoint.com/apache_solr/apache_solr_overview.htm
https://sourceforge.net/p/sleuthkit/mailman/message/33242031/
https://sourceforge.net/p/sleuthkit/mailman/message/33242031/
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2432
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2432
https://github.com/sleuthkit/autopsy/issues/317
https://wiki.sleuthkit.org/index.php?title=Autopsy_3_Troubleshooting
https://wiki.sleuthkit.org/index.php?title=Autopsy_3_Troubleshooting
https://wiki.sleuthkit.org/index.php?title=Autopsy_3_Troubleshooting
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2486
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2486
https://forum.sleuthkit.org/viewtopic.php?f=6&t=1581
https://forum.sleuthkit.org/viewtopic.php?f=6&t=1581
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2496
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2496
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2609
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2609
https://github.com/sleuthkit/autopsy/issues/3422
https://github.com/sleuthkit/autopsy/issues/3422
https://github.com/sleuthkit/autopsy/issues
https://github.com/sleuthkit/autopsy/issues

BIBLIOGRAPHY

[28] Sleuthkit.org. Autopsy Troubleshooting. url: https://forum.sleuthkit.

org/viewforum.php?f=6&sid=275932b05c086a8bcc90361d761c265d

(visited on 05/09/2018).
[29] volavka. E01 Verifier fails to verify. 2015. url: https://forum.

sleuthkit . org / viewtopic . php ? f = 5 & t = 2473 (visited on
05/09/2018).

[30] colino. Keyword Search duplicate results. 2015. url: https://forum.

sleuthkit . org / viewtopic . php ? f = 6 & t = 2438 (visited on
05/09/2018).

[31] johnmccash. Error opening the case. 2014. url: https://forum.

sleuthkit.org/viewtopic.php?f=6&t=586 (visited on 05/09/2018).
[32] likangqi666. Couldn’t add data source. 2016. url: https://github.

com/sleuthkit/autopsy/issues/2001 (visited on 05/09/2018).
[33] The PostgreSQL Global Development Group. PostgreSQL - About.

url: https://www.postgresql.org/about/ (visited on 05/09/2018).
[34] Wikipedia. ACID. 2018. url: https://en.wikipedia.org/wiki/

ACID (visited on 05/09/2018).
[35] International Organization for Standardization. ISO/IEC 9075-

1:2008. 2008. url: https://www.iso.org/standard/45498.html

(visited on 05/09/2018).
[36] Perl.org. About DBI. url: https://dbi.perl.org/about/ (vis-

ited on 05/09/2018).
[37] Cpan.org. DBD::Pg. url: http://search.cpan.org/dist/DBD-

Pg/Pg.pm (visited on 05/09/2018).
[38] Postgresql.org. Part II. The SQL Language. url: https://www.

postgresql.org/docs/10/static/sql.html (visited on 05/09/2018).
[39] Postgresql.org. Pattern Matching. url: https://www.postgresql.

org/docs/9.3/static/functions-matching.html (visited on
05/09/2018).

[40] Datlowe. postgres-tsearch-czech. url: https://github.com/datlowe/

postgres-pgq-tsearch-czech (visited on 05/09/2018).
[41] Ildus Kurbangaliev. Remove 1MB size limit in tsvector. 2017. url:

https://www.postgresql.org/message-id/flat/20170801170846.

66e3ab06%40wp.localdomain#20170801170846.66e3ab06@wp.

localdomain (visited on 05/09/2018).

62

https://forum.sleuthkit.org/viewforum.php?f=6&sid=275932b05c086a8bcc90361d761c265d
https://forum.sleuthkit.org/viewforum.php?f=6&sid=275932b05c086a8bcc90361d761c265d
https://forum.sleuthkit.org/viewtopic.php?f=5&t=2473
https://forum.sleuthkit.org/viewtopic.php?f=5&t=2473
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2438
https://forum.sleuthkit.org/viewtopic.php?f=6&t=2438
https://forum.sleuthkit.org/viewtopic.php?f=6&t=586
https://forum.sleuthkit.org/viewtopic.php?f=6&t=586
https://github.com/sleuthkit/autopsy/issues/2001
https://github.com/sleuthkit/autopsy/issues/2001
https://www.postgresql.org/about/
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://www.iso.org/standard/45498.html
https://dbi.perl.org/about/
http://search.cpan.org/dist/DBD-Pg/Pg.pm
http://search.cpan.org/dist/DBD-Pg/Pg.pm
https://www.postgresql.org/docs/10/static/sql.html
https://www.postgresql.org/docs/10/static/sql.html
https://www.postgresql.org/docs/9.3/static/functions-matching.html
https://www.postgresql.org/docs/9.3/static/functions-matching.html
https://github.com/datlowe/postgres-pgq-tsearch-czech
https://github.com/datlowe/postgres-pgq-tsearch-czech
https://www.postgresql.org/message-id/flat/20170801170846.66e3ab06%40wp.localdomain#20170801170846.66e3ab06@wp.localdomain
https://www.postgresql.org/message-id/flat/20170801170846.66e3ab06%40wp.localdomain#20170801170846.66e3ab06@wp.localdomain
https://www.postgresql.org/message-id/flat/20170801170846.66e3ab06%40wp.localdomain#20170801170846.66e3ab06@wp.localdomain

BIBLIOGRAPHY

[42] Tute Costa. How to fix PostgreSQL error on index row size. 2015.
url: https://github.com/doorkeeper-gem/doorkeeper/wiki/

How-to-fix-PostgreSQL-error-on-index-row-size (visited
on 05/09/2018).

[43] Huang Suya. Thread: werid errorïndex row size 3040 exceeds btree
maximum, 2712öccur randomly. 2013. url: https://postgrespro.

com/list/thread-id/1538018 (visited on 05/09/2018).
[44] Holger Gehrke. OCR. 2015. url: https://help.ubuntu.com/

community/OCR (visited on 05/09/2018).
[45] Linux.com. How to scan and OCR like a pro with open source tools.

2008. url: https://www.linux.com/learn/how-scan-and-ocr-

pro-open-source-tools (visited on 05/09/2018).
[46] Karthick Murugadhas. What’s the best, simplest OCR solution?

2010. url: https://askubuntu.com/questions/16268/whats-

the-best-simplest-ocr-solution (visited on 05/09/2018).
[47] Slant.co. What are the best Linux OCR programs? 2017. url: https:

//www.slant.co/topics/4148/~linux-ocr-programs (visited
on 05/09/2018).

[48] Tesseract. Tesseract Wiki. 2017. url: https://github.com/tesseract-

ocr/tesseract/wiki (visited on 05/09/2018).
[49] Joerg Schulenburg. GOCR. 2017. url: http : / / www - e . uni -

magdeburg.de/jschulen/ocr/ (visited on 05/09/2018).
[50] Tim Waugh. gocr(1) - Linux man page. 2006. url: https://linux.

die.net/man/1/gocr (visited on 05/09/2018).
[51] Jussi Pakkanen. Cuneiform for Linux. url: https://launchpad.

net/cuneiform-linux/ (visited on 05/09/2018).
[52] Ubuntu Manuals. GraphicsMagic. url: http://manpages.ubuntu.

com/manpages/trusty/man1/gm.1.html (visited on 05/09/2018).
[53] Ubuntu Manuals. Cuneiform - multi-language OCR system. url:

http : / / manpages . ubuntu . com / manpages / trusty / man1 /

cuneiform.1.html (visited on 05/09/2018).
[54] Gnu.org. What is Copyleft? 2017. url: https://www.gnu.org/

licenses/copyleft.html (visited on 05/09/2018).
[55] Askubuntu.com. Convert docx to PDF. 2017. url: https://askubuntu.

com/questions/396825/convert-docx-to-pdf?utm_medium=

organic&utm_source=google_rich_qa&utm_campaign=google_

rich_qa (visited on 05/09/2018).

63

https://github.com/doorkeeper-gem/doorkeeper/wiki/How-to-fix-PostgreSQL-error-on-index-row-size
https://github.com/doorkeeper-gem/doorkeeper/wiki/How-to-fix-PostgreSQL-error-on-index-row-size
https://postgrespro.com/list/thread-id/1538018
https://postgrespro.com/list/thread-id/1538018
https://help.ubuntu.com/community/OCR
https://help.ubuntu.com/community/OCR
https://www.linux.com/learn/how-scan-and-ocr-pro-open-source-tools
https://www.linux.com/learn/how-scan-and-ocr-pro-open-source-tools
https://askubuntu.com/questions/16268/whats-the-best-simplest-ocr-solution
https://askubuntu.com/questions/16268/whats-the-best-simplest-ocr-solution
https://www.slant.co/topics/4148/~linux-ocr-programs
https://www.slant.co/topics/4148/~linux-ocr-programs
https://github.com/tesseract-ocr/tesseract/wiki
https://github.com/tesseract-ocr/tesseract/wiki
http://www-e.uni-magdeburg.de/jschulen/ocr/
http://www-e.uni-magdeburg.de/jschulen/ocr/
https://linux.die.net/man/1/gocr
https://linux.die.net/man/1/gocr
https://launchpad.net/cuneiform-linux/
https://launchpad.net/cuneiform-linux/
http://manpages.ubuntu.com/manpages/trusty/man1/gm.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/gm.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/cuneiform.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/cuneiform.1.html
https://www.gnu.org/licenses/copyleft.html
https://www.gnu.org/licenses/copyleft.html
https://askubuntu.com/questions/396825/convert-docx-to-pdf?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://askubuntu.com/questions/396825/convert-docx-to-pdf?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://askubuntu.com/questions/396825/convert-docx-to-pdf?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://askubuntu.com/questions/396825/convert-docx-to-pdf?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa

BIBLIOGRAPHY

[56] Superuser.com. Converting doc to pdf. 2011. url: https://superuser.

com/questions/337667/converting- doc- to- pdf/337668?

utm _ medium = organic & utm _ source = google _ rich _ qa & utm _

campaign=google_rich_qa (visited on 05/09/2018).
[57] Linux.die.net. unoconv(1) - Linux man page. url: https://linux.

die.net/man/1/unoconv (visited on 05/09/2018).
[58] The LaTeX Project. An introduction to LaTeX. url: https://www.

latex-project.org/about/ (visited on 05/09/2018).
[59] en.wikibooks.org. LaTeX. url: https://en.wikibooks.org/

wiki/LaTeX (visited on 05/09/2018).
[60] en.wikibooks.org. LaTeX/Basics. url: https://linux.die.net/

man/1/unoconv (visited on 05/09/2018).

64

https://superuser.com/questions/337667/converting-doc-to-pdf/337668?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://superuser.com/questions/337667/converting-doc-to-pdf/337668?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://superuser.com/questions/337667/converting-doc-to-pdf/337668?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://superuser.com/questions/337667/converting-doc-to-pdf/337668?utm_medium=organic&utm_source=google_rich_qa&utm_campaign=google_rich_qa
https://linux.die.net/man/1/unoconv
https://linux.die.net/man/1/unoconv
https://www.latex-project.org/about/
https://www.latex-project.org/about/
https://en.wikibooks.org/wiki/LaTeX
https://en.wikibooks.org/wiki/LaTeX
https://linux.die.net/man/1/unoconv
https://linux.die.net/man/1/unoconv

A Appendix

A.1 Usage of IT Forensic Tool

Usage :

f t [< general option >] <command>

General Options :

[−−debug]

User commands :

addcase|ac <name>

addevidence|ae <case > [−−name <evidence_name >] < f i l e |di rec tory >

A < f i l e > can be in raw ("dd") or EWF format .

de l e t e ca se|dc <name>

diges t|dg <case > [−− f o r ce] [< evidence >] [<path >]

Process the data of <evidence > or a l l evidence images of <case > ,
i f no <evidence > i s s p e c i f i e d . I f <path> i s spec i f i ed , process only
t h i s f i l e /d i r e c to ry (/ cases/<case >/data/<path >) .

−−f o r ce fo r ce process ing even i f already done

export|ex <case > [−−sha512 < f i l e >]

Export f i l e s and i t Š s metadata .

−−sha512 < f i l e > export f i l e s with SHA512 checksums from < f i l e > .
The f i l e should conta in one hash per l i n e (everything from
column 129 to the end of l i n e i s ignored) .

exportkeywords|ek <case >

Export a l l f i l e s matching predefined keywords .

l i s t c a s e s | l c [−−verbose]

l i s t e v i d e n c e | l e <case > [−−verbose]

modifycase|mc <name> [−−name <new_name>]

mount

Mounts a l l evidence under a l l cases .

s t a r < f i l e >

65

A. Appendix

Mark f i l e with a s t a r (c r e a t e symlink to < f i l e > in /cases/case/ s t a r) .

I n t e r n a l commands :

carve <case > <evidence >

Carves dele ted f i l e s and f i l e s on f reespace from given <case > <evidence >.

Tools :

b lackhole|bh [−−de le t e] <path> [<path > , . . .]

S tore f i l e ’ s (or d i r e c to ry name) checksum in database of un in t e r e s t ing
data , opt ionaly de le t ing i t (−−de le t e) . See a l so " suck " command .

The chechsum i s SHA512 hash . F i l e ’ s and d i reco r i e ’ s names are normalized
(lowercased , ’/ ’ cha ra c t e r s removed) .

dedupl icate [−− l i s t s h a 5 1 2 l i s t] [−−keep−empty−dir] <dir >

Delete a l l dupl i ca te f i l e s from <dir > (by comparing t h e i r
SHA512 checksums) . Unless −−keep−empty−dir option i s given , de l e t e a l so
a l l empty s u b d i r e c t o r i e s .

Options :

−− l i s t < sha512 l i s t > de l e t e a l so a l l f i l e s from <direc tory > tha t match
SHA512 hash l i s t e d in <sha512 l i s t > f i l e . The f i l e should conta in
one hash per l i n e (everything from column 129 to the end of l i n e
i s ignored) . This option can be s p e c i f i e d mult ip le times .

−−keep−empty−dir do not de l e t e empty s u b d i r e c t o r i e s

descr ibe|ds < f i l e >

Pr in t < f i l e > ’ s metadata .

dkim < f i l e > [< f i l e 2 > . . .]

Ver i fy DomainKeys s ignature from saved email .

hash < f i l e > [< f i l e > . . .]

Display < f i l e > ’ s hash .

horizon|hz < f i l e >

Display whether i s < f i l e > un in te re s t ing . See " blackhole " command .

ibackup2t imel ine <backupdir > <outputdir >

Create t ime l ine from iTunes backup . The backup must be in the pla in form , as
produced by ibackupext rac t command .

ibackupext rac t <backupdir > <outputdir >

Renames f i l e s from iTunes backup to i t ’ s o r i g i n a l name .

66

A. Appendix

suck|sk <path> [<path > , . . .]

Delete a l l un in t e re s t ing f i l e s under <path >. See " blackhole " command .

sum < f i l e > [< f i l e 2 > . . .]

P r in t < f i l e > ’ s checksum (xxHash) .

tidyup <dir >

Sor t f i l e s in <dir > in to s u b d i r e c t o r i e s according to t h e i r type .

type < f i l e >

Display < f i l e > ’ s type .

ufed2t imel ine <Report . xml> <outputdir >

Create t ime l ine from UFED’ s XML repor t .

A.2 Pattern matching: Performance test

Table A.1: Performance test.

Operator Duration (no index) Duration (pg_trgm - GIN)

LIKE 3905.356 929.795

ILIKE 15748.788 3758.209

SIMILAR TO 10728.921 1697.714

~ 7164.954 1605.714

~* 7212.436 1600.380

67

