
Masaryk University
Faculty of Informatics

Use of Transactions within a
Reactive Microservices

Environment

MasterŠs Thesis

Bc. Martin Štefanko

Brno, Spring 2018

Declaration

Hereby I declare that this paper is my original authorial work, which
I have worked out on my own. All sources, references, and literature
used or excerpted during elaboration of this work are properly cited
and listed in complete reference to the due source.

Bc. Martin Štefanko

Advisor: Bruno Rossi, PhD

i

Acknowledgement

I would like to express my sincere thanks to my supervisor Bruno
Rossi, PhD for his help and support in my work on this thesis. I would
also like to thank Mgr. Ondrej Chaloupka from the Narayana team
for his supervision, neverending passion and interest in this topic that
was inspiring to complete many of achieved results. Last but foremost,
I would like to direct my thanks to my family and my beloved Mag-
dalena who comprehensively supported me throughout the formation
of this publication.

ii

Abstract

Transaction processing is an inherent part of application development.
However, particularly in the distributed environment, the utilization
of transactions introduces several challenges that transaction man-
agement must be able to handle. Microservices represent an emerg-
ing architectural style for the modern distributed application design.
These applications commonly address similar concerns to stay respon-
sive, elastic and resilient which is why the use of traditional locking
transaction commit protocols may not be acceptable. The saga pattern
presents a suitable alternative solution to transaction processing that
relaxes some of the ACID properties in order to promote availability.
In this work, we examine how sagas differ from conventional trans-
actions, investigate currently available saga solutions and propose a
saga execution implementation for the Narayana transaction manager.

iii

Keywords

transactions, Narayana, Long Running Actions (LRA), reactive, mi-
croservices, asynchronous, saga, compensating transactions

iv

Contents

1 Introduction . 1

1.1 Problem domain . 1

1.2 Research objectives . 2

1.3 Research contributions . 3

1.4 Structure . 3

2 Transaction concepts . 5

2.1 Transaction . 5

2.2 ACID properties . 5

2.2.1 Atomicity . 6
2.2.2 Consistency . 6
2.2.3 Isolation . 7
2.2.4 Durability . 10

2.3 Transaction manager . 11
2.3.1 TM types . 11
2.3.2 JTA and JTS . 11
2.3.3 XA speciĄcation 12

2.4 Transaction models . 12
2.4.1 Local transaction model 13
2.4.2 Programmatic transaction model 13
2.4.3 Declarative transaction model 14

2.5 Distributed transactions 16
2.6 Consensus protocols . 17

2.6.1 2PC . 18
2.6.2 3PC . 18
2.6.3 Paxos . 20
2.6.4 Conclusions . 21

3 Microservices architecture pattern 23
3.1 Architectural pattern . 23

3.1.1 Monolithic architecture 23
3.1.2 Microservices architecture 24

3.2 Principles of microservices 25
3.3 Reactive microservices . 29

3.3.1 Reactive systems 29
3.3.2 Reactive programming 31
3.3.3 Reactive streams 32

v

3.3.4 Summary . 33
3.4 Challenges . 34

3.4.1 Distributed systems 34
3.4.2 Eventual consistency 35
3.4.3 CAP theorem . 36
3.4.4 Operations . 37
3.4.5 Human factor . 38

4 Saga pattern . 40
4.1 Operations . 41
4.2 Compensations . 41
4.3 BASE transaction . 42
4.4 Saga execution component and transaction log 43
4.5 Recovery modes . 44
4.6 Distributed sagas . 45
4.7 Current development support 47

4.7.1 Axon framework 47
4.7.2 Eventuate ES . 49
4.7.3 Eventuate Tram 50
4.7.4 Narayana LRA 51
4.7.5 Summary . 53

5 Saga implementations comparison example 55
5.1 Common scenario . 55
5.2 Order saga . 56
5.3 Axon service . 58

5.3.1 Platform . 58
5.3.2 Project structure 60
5.3.3 Problems . 61

5.4 Eventuate service . 62
5.4.1 Platform . 62
5.4.2 Project structure 64
5.4.3 Problems . 65

5.5 Eventuate Tram service . 68
5.5.1 Platform . 68
5.5.2 Project structure 68
5.5.3 Problems . 70

5.6 LRA service . 71
5.6.1 Platform . 71
5.6.2 Project structure 71

vi

5.6.3 Problems . 74
5.7 Used technologies . 75

5.7.1 Microservices platforms 75
5.7.2 Docker . 77
5.7.3 Containerization platforms 78

5.8 Performance test . 80
6 LRA executor extension . 85

6.1 Motivation . 85
6.2 Design . 86
6.3 Implementation . 88

6.3.1 LRA deĄnitions 88
6.3.2 LRA executor . 89

6.4 Narayana LRA integration 90
6.5 LRA executor quickstart 91
6.6 Future work . 92

7 Conclusion . 94
7.1 Saga pattern research . 94
7.2 Narayana asynchronous LRA execution 95
7.3 Contributions . 96
7.4 Future tasks . 97

Bibliography . 98
A CQRS pattern . 107
B Reactive Streams v1.0.2 API 109
C Saga scenarios . 110

C.1 CQRS . 110
C.2 Eventuate Tram service . 111
C.3 LRA service . 112

D Example applications public APIs 113
D.1 Axon service . 113
D.2 Eventuate service . 113
D.3 Eventuate Tram service . 114
D.4 LRA service . 114

E LRA executor extension class diagrams 117
E.1 LRA definitions . 117
E.2 LRA executor . 118
E.3 Narayana integration . 119

E.3.1 LRA REST deĄnitions 119
E.3.2 LRA coordinator 120

vii

List of Tables

2.1 Consensus protocols comparison 22

4.1 Saga implementations comparison 54

5.1 Performance test Ű scenario 1 (1 000 requests, 10
threads) 84

5.2 Performance test Ű scenario 2 (10 000 requests, 100
threads) 84

viii

List of Figures

2.1 Dirty write (adapted from [17]) 8
2.2 Non-repeatable read (adapted from [17]) 9

4.1 Example saga execution 40
4.2 Distributed saga example [73] 47

5.1 Product information example JSON 56
5.2 The saga model 57
5.3 LRA deĄnition example JSON 72
5.4 Action example JSON 73
5.5 Saga performance test execution 82

6.1 Narayana LRA executor extension component
diagram 88

C.1 CQRS saga example success 110
C.2 CQRS saga example invoice failure 110
C.3 Eventuate Tram service saga example success 111
C.4 Eventuate Tram service saga example invoice

failure 111
C.5 LRA service saga example success 112
C.6 LRA service saga example invoice failure 112

E.1 LRA deĄnitions class diagram 117
E.2 LRA executor class diagram 118
E.3 LRA REST deĄnitions class diagram 119
E.4 LRA coordinator required integration changes 120

ix

1 Introduction

Transaction processing is widely recognized as a critical technology
for modern applications [1]. The capability to group a sequence of
operations into a logical unit of work represents a common business
concept that relies on certain guarantees of correctness. Particularly in
the distributed environment, the comprehension and the achievement
of these requirements, based on the currently available technology
stack, represents a considerably complex programming task.

1.1 Problem domain

Microservices architectural pattern deĄnes a sophisticated develop-
ment technique which separates the application domain into a set of
isolated services that collaborate together to model various business
concepts [2]. Each service depicts an autonomous self-maintained unit
that is decoupled from other services to promote independent lifecycle
management, deployment, and failure isolation. In order to cooperate
their activities, microservices must employ a non-blocking remote
invocation model that is frequently utilizing a form of asynchronous
communication mechanisms.

Due to their distributed character, microservices applications are
often inclined to many issues associated with the failure processing
and the isolated development model. To ensure that the system is
able to function even in a degraded state, these applications com-
monly provide a design that guarantees certain quality properties
which are deĄned in the Reactive Manifesto [3] as the reactive systems.
The four recognized attributes of reactive microservices systems are
responsiveness, resilience, elasticity and the asynchronous message
passing.

These characteristics naturally extend to the application of the
transaction processing in a reactive environment. As transactions may
presumably span multiple services while still providing ACID (Atom-
icity, Consistency, Isolation, Durability) guarantees, it is required that
all impacted participants reach a shared uniform consensus on the
transaction result. This consensus is achieved through the utilization
of consensus protocols represented conventionally by the Two-phase

1

1. Introduction

commit protocol (2PC). However, due to their commonly locking na-
ture, these protocols may present difficulties with the achievement of
properties reactive systems need to provide.

The saga pattern [4] represents an alternative approach to trans-
action processing applicable for long living transactions. In a long
running transaction, traditional consensus protocols may hold locks
on resources for long time periods which is not acceptable in a re-
active environment. The saga addresses this problem by allowing
participants to commit their intermediate states as local operations.
Each operation is required to deĄne a compensation action that can
semantically undo the performed operation. The pattern guarantees
that either all operations are completed successfully, or the compensa-
tion actions are executed for each performed operation to amend the
partial processing.

1.2 Research objectives

There are three main objectives in this work:

1. The investigation of asynchronous approaches available for
transaction processing in the microservices context.

2. The proposal of a proof of concept implementation utilizing the
Narayana transaction manager [5] to create a service providing
transaction management in reactive microservices systems.

3. The preparation of a quickstart example presenting practical
considerations of the applied solution for the asynchronous
execution.

The research investigation is focused on the saga pattern [4] ap-
plication in reactive architectures by means of the available solutions
based on the Java platform. The four studied frameworks are Axon
[6], Eventuate Event Sourcing (ES) platform [7], Eventuate Tram [8]
and Narayana Long Running Actions (LRA) [9].

2

1. Introduction

1.3 Research contributions

As a part of the saga implementations research, we created an example
quickstart project that simulates an order processing application for
each investigated framework. Additionally, a performance test has
been created to examine how these frameworks perform under large
load. This test discovered several issues present in investigated saga
solutions that have been reported to the respective platforms.

The proposed proof of concept implementation of the asynchronous
LRA processing in Narayana transaction manager is called the LRA
executor extension. This project is built on top of the current Narayana
LRA coordination management to allow the asynchronous LRA exe-
cution based on the user deĄnition. Together with this extension, an
example quickstart project the LRA executor quickstart has been created
to demonstrate asynchronous capabilities of this solution.

The research and the development conducted within this thesis
have been performed in collaboration with the Narayana open source
transaction manager [5] development team. All originated source code
associated with this thesis is available under the open source GNU
LGPL 2.1 license [10].

1.4 Structure

This thesis can be divided into three logical segments. The Ąrst part
consists of the problem introduction and the motivation for this work
included in the Ąrst chapter and the introduction of the basic trans-
action concepts and their application in the Java environment in the
second chapter. Furthermore, it presents the microservices architec-
tural style with the emphasis placed on reactive applications in the
third chapter.

The second segment provides the detailed description of the saga
pattern [4]. The fourth chapter describes what the saga is, how it relates
to the traditional transaction processing and it presents an overview
of four investigated frameworks that provide saga execution capa-
bilities. The Ąfth chapter covers the detailed description of the saga
implementation in each example and the study of the performance
test execution performed on researched saga solutions.

3

1. Introduction

The last part represents the description of the proposed solution
of the asynchronous saga execution in the Narayana LRA project. The
sixth chapter provides the motivation, design, and implementation
of the LRA executor extension project together with its integration re-
quirements and the description of the possible future inclusion of
this project in the Narayana code base. The last chapter provides a
summary of the performed work and concludes with the achieved
results.

4

2 Transaction concepts

This chapter introduces the basic notions of transactions, their proper-
ties and common problems with their management both in centralized
systems (e.g., databases) and in distributed systems where transac-
tions must be coordinated across multiple service nodes connected by
a computer network.

2.1 Transaction

A transaction is a unit of processing that provides all-or-nothing prop-
erty to the work that is conducted within its scope, also ensuring that
shared resources are protected from multiple users [1]. It represents
a uniĄed and inseparable sequence of operations that are either all
performed or none of them take effect.

The transaction can end in two forms: it can be either committed or
aborted. The commit determines a successful outcome - all operations
within the transaction have been executed. The abort means that all
performed operations have been undone and the system is in the same
state as if the transaction has not been started.

From the developer point of view, it is frequently only required to
start and end the transaction. All complex processing necessary for
the achievement of the transaction’s properties is commonly hidden
by the transaction system [1] which allows developers to focus on the
business processing contained in the transaction.

Generally, the achievement of above mentioned features may differ
depending on the scope and the utilization of the transaction concepts
in the application.

2.2 ACID properties

A transaction can be viewed as a group of business logic statements
with certain shared properties [11]. Generally considered properties
are one or more of atomicity, consistency, isolation, and durability.

5

2. Transaction concepts

These four properties are often referenced as ACID properties [12] and
they describe the major points important for the transaction concepts.1

2.2.1 Atomicity

The transaction consists of a sequence of operations performed on
different resources. The atomicity property means that all operations
in the transaction are performed as if they were a single unit.

As the word atomicity is an overloaded term in many computa-
tional science branches, some authors prefer to reference it in the
ACID context as the abortability property. The abortability is deĄned
as the ability to abort a transaction on error and have all writes from
that transaction discarded [14]. This implies that when the transaction
commits successfully, all of its operations are also required to execute
a valid commit. Conversely, when the transaction fails and needs to
be aborted, all realized operations and effects must be undone.

2.2.2 Consistency

The word consistency refers to restrictions placed on data changes that
may happen only in allowed ways. When the data is persisted, it must
be valid according to all deĄned rules which meet the application
invariants. The consistency property describes that the transaction
maintains the consistency of the system and resources that it is being
performed on. When the transaction is started on the consistent system,
this system must remain consistent when the transaction ends Ű it
moves from one consistent state to another.

Unlike other transactional properties (A, I, D), consistency cannot
be realized by the transaction system as it does not hold any seman-
tic knowledge about the resources it manipulates [1]. Therefore, the
achievement of this property is the responsibility of the application
code.

1. Although the ACID acronym has been associated with transactions since their
beginning, Eric Brewer, the inventor of the CAP theorem (Section 3.4.3), stated in
his article from 2012 that it is "more mnemonic than precise"[13].

6

2. Transaction concepts

2.2.3 Isolation

The isolation property takes effect when multiple transactions can be
executed concurrently on the same resources. It provides a guarantee
that parallel transactions cannot interfere one with another. Therefore,
each concurrent execution on the shared resource must be equivalent
to some serial ordering of contained transactions. This is why the
isolation is often also referred to as a serializability.

From the perspective of an external view, the isolation property
means that the transaction appears as it was executed in the system
entirely alone. This means that even if there are multiple transactions
performed concurrently, this fact is hidden from the external perspec-
tive.

As an instinctive extension of the consistency property, the serial
execution of transactions preserves the consistent state. The execution
of the transactions in parallel, therefore, cannot result in an inconsis-
tent system.

Isolation levels

The ANSI SQL-92 [15] standard distinguishes several levels that
describe to which extent the isolation guarantees are provided. Levels
are differentiated by simpliĄcations of the locking mechanism in ex-
change for the faster processing. These levels, in decreasing order, are
serializable, repeatable read, read committed and read uncommitted
isolation. The standard deĄnes the distinction between levels by the
type of anomalies they are able to prevent.

In practice, this approach is not always considered as sufficient due
to its locking expectations [16]. One of the well known alternative tech-
niques which is not based on locking mechanisms is called the Multi
Version Concurrency Control (MVCC). This section describes isola-
tion levels based on the SQL-92 standard, but the MVCC is referenced
where applicable to present the similarities.

7

2. Transaction concepts

Read uncommitted

The read uncommitted is the lowest level in which the transaction
sets the lock only when it needs to modify the data item and releases it
immediately after the transaction is completed (long write-locks). This
allows that one transaction may read the not yet committed changes
of any other transaction which is phenomena referred to as the dirty
read.

However, the read uncommitted isolation level already prevents
the dirty write conĆict which represents the transaction that overwrites
a value previously written by another transaction that has not yet been
committed. This problem can be easily described on an example de-
picted in Figure 2.1. In this execution, the resulting data state contains
different values for variables (x = B and y = A). However, in any serial
execution of these transactions the result would be consistent. The
read uncommitted level prevents this phenomenon as it prohibits
write access to data items before the former write locks are released.

Figure 2.1: Dirty write (adapted from [17])

8

2. Transaction concepts

Read committed

Read committed level differs from the previous level in that it
prohibits dirty reads. It allows to read the data item only when it has
been committed. This directly implies that the dirty read phenomenon
is impossible to occur in this isolation level by deĄnition.

Repeatable read

This isolation level prevents the anomaly called the non-repeatable
read which may still appear in read committed. The non-repeatable read
is a problem of reading the data values in different points of time in
which the whole consistent data state may not be ensured. This means
that the transaction may read the data change at the later point in
time which may invalidate already read information from previous
processing.

For example, imagine a bank system with two accounts Ű both with
starting balance 500 and a transfer of 100 from account 1 to 2 as a trans-
action. If another transaction reads the balance of the account 2 prior
to the start of the transaction, it will get 500. However, the subsequent
read from the account 1, after the Ąrst transaction has committed,
would output 400 which results in inconsistent information.

Figure 2.2: Non-repeatable read (adapted from [17])

9

2. Transaction concepts

The MVCC alternative to the repeatable read is the snapshot iso-
lation. Both the repeatable read and the snapshot isolation prevent
non-repeatable reads, but they differ in implementation [17]. Repeatable
read is based on the locking mechanisms. However, the snapshot iso-
lation allows each transaction to read data from a snapshot of the
(committed) data which is created at the time the transaction is started
[16]. The database is required to internally keep track of several states
and to provide each transaction with the snapshot that is appropriate
for its time span.

Serializable

On top of the repeatable read, the serializable isolation prevents
the system from one more race condition known as the write skew. The
fundamental principle of the write skew is a transaction that reads data
from the storage and then makes a decision based on this information.
Different transactions may write these decision results into different
parts of the database and therefore they cannot conĆict. The problem
is that by the time the transaction commits, the premise of the deci-
sion may no longer be valid and the resulting state may break the
consistency of the system.

2.2.4 Durability

This property characterizes that all changes done by the transactions
must be persistent, i.e., any state changes performed during the suc-
cessfully committed transaction must be preserved in case of any sub-
sequent system failure. How the state is preserved usually depends
on the particular implementation of the transaction system. Generally,
to achieve this property the use of the persistent storage like a disk
drive or a cloud is sufficient. Even if this kind of storage is acceptable,
it still cannot prevent data loss in the case of more critical catastrophic
failures.

10

2. Transaction concepts

2.3 Transaction manager

A transaction manager (TM) is a component responsible for transac-
tion processing, coordination and the sequential or parallel execution
of transactions across one or more resources. It ensures the proper
and valid completion of each transaction. It is also accountable for
making the Ąnal decision whether to commit or rollback the transac-
tion. Clients often communicate with the transaction manager only
when they need to start or end the transaction.

Main responsibilities of the transaction manager are starting and
ending (commit or abort) of transactions, the supervision of trans-
actions scoped across multiple resources and rollback capabilities
ensuring the failure recovery.

2.3.1 TM types

A local transaction manager or a resource manager is responsible for
the coordination of transactions concerning only a single resource.
Because of the range of its scope, it is often built in directly into the
resource. The span of the resource is deĄned by the managing platform,
e.g., the JMS context or the JDBC database connection.

The scope of the local TM does not intend its application across
multiple resources. This means that it cannot provide ACID guarantees
if the transaction contains, for instance, both the database update and
the JMS message send as these resources are handled by different
resource managers.

The management of transactions over multiple resources is sup-
ported by a global transaction manager. It represents an operation
external component that is able to coordinate several resource man-
agers in order to provide ACID transactions spanning two or more
different transactional resources.

2.3.2 JTA and JTS

The deĄnition and the management of transactions with a guarantee
of all ACID properties are in the Java environment represented by
two Java speciĄcations: the Java Transaction API (JTA) and the Java
Transaction Service (JTS).

11

2. Transaction concepts

The JTA is a speciĄcation which deĄnes high-level interfaces be-
tween a transaction manager and the parties involved in a distributed
transaction system: the application, the resource manager and the
application server [18]. It also determines the Java mapping of the
industry standard X/Open XA protocol which allows local resource
managers to participate in the global transaction managed by an ex-
ternal transaction manager.

The JTS represents a speciĄcation of the transaction manager im-
plementation which supports the JTA speciĄcation at the high-level
and implements the Java mapping of the Object Management Group
(OMG) Object Transaction Service (OTS) speciĄcation at the low-
level [19]. It utilizes the Common Object Request Broker Architecture
(CORBA) OTS interfaces for the interoperability and portability of the
transaction context between different JTS transaction managers over
the Internet InterORB Protocol (IIOP).

2.3.3 XA specification

The eXtended Architecture (XA) standard is the X/Open Common Ap-
plications Environment (CAE) speciĄcation published in 1991 which
describes the bidirectional interface between a transaction manager
and a resource manager [20]. It maintains two types of components
that clients can interact with: the transaction manager (TM) which
deĄnes the global TM in a sense described in the previous section and
the XA resources that represent local resource managers.

The resource manager implements the XA interface in order to
provide a switch that effectively delegates the transaction control to
the TM. The XA TM coordination is based on the two-phase commit
protocol (2PC) which means that the XA interface contains all nec-
essary function calls that needs to available for 2PC Ű xa_prepare,
xa_commit and xa_rollback. The Java mapping of the XA standard is
present in the class javax.transaction.xa.XAResource.

2.4 Transaction models

The transaction model deĄnes rules and semantics of how developers
declare and work with transactions. From the development point of

12

2. Transaction concepts

view, there exist three distinct transaction models that may be applied
in the Java environment Ű local, programmatic and declarative trans-
actions. This section describes each model respectively and examines
how it can be established in Java applications based on the Enterprise
JavaBeans (EJB) technologies.

2.4.1 Local transaction model

The local transaction model derives its name from the fact that transac-
tions are managed by a local resource manager which was described in
the previous section. This approach represents the transaction as a con-
nection to the individual resource. Common use-cases for this model
include the Java database connectivity (JDBC) or the Java Message
Service (JMS) connection providers.

The connection is usually by default conĄgured to commit the local
transaction after each operation, e.g., a database query or sending
a message to a queue. The interaction with the local manager may
differ depending on the underlying resource. For instance, the JMS
Session interface provides both methods commit() and rollback()

that process or destroy message operations included in the transaction
respectively.

The major drawback of this model is that local transactions cannot
be joined into the single ACID transaction that spans over multiple
resources using the XA global transaction [21] (e.g., we need to update
a database and propagate this information to the JMS topic). Another
important problem is the requirement of the manual transaction man-
agement in the application code base.

2.4.2 Programmatic transaction model

The programmatic transaction model (also referenced as the Bean-
Managed transaction (BMT)) is introduced by the Java Transaction API
(JTA) speciĄcation. In this model, the developer handles the complete
management of transactions in the source code.

Although the JTA speciĄcation provides a range of APIs, the main
concerned interface for the utilization of the programmatic transac-
tions is the javax.transaction.UserTransaction [18]. This interface
represents an abstraction for the developer to programmatically con-

13

2. Transaction concepts

trol transaction boundaries. The only concerned methods are begin(),
commit(), rollback() and getStatus(). The call to the begin() will
start a new transaction and associates it with the current thread. As
the Java platform allows only one transaction to be associated with the
thread, a call to the begin() method may result into an exception in
case the transaction has already been started in the current context. The
transaction end methods (commit() and rollback()) perform their re-
spective actions and disassociate the transaction with the thread. The
getStatus() method returns an integer value representing the status
of the current transaction derived from javax.transaction.Status

class [18].
The most important problem introduced by the programmatic

model is that the developer must ensure that the transaction is always
terminated in the method that started the transaction [21]. This is
often the case when the initiating method ends up with an uncaught
exception and for this reason, the transaction needs to be committed
or rollbacked before the method returns.

2.4.3 Declarative transaction model

The declarative transaction model is also referred to as the Container-
Managed Transactions (CMT). In this model, the supplying, under-
lying container manages all transactions on the user’s behalf. This
includes starting and the administration of the end phases (either
commit or rollback) of transactions. The developer is only required
to set up the container with the transaction conĄguration that de-
clares, for instance, that the transaction should be rollbacked on any
exception.

The javax.transaction.TransactionManager is the main inter-
face utilized for the declarative transaction model. However, in prac-
tice CMT transactions are generally controlled by speciĄc annotations
and the direct use of TransactionManager interface is discouraged.
This interface is targeted for the use in the application server which
allows it to control transaction boundaries on behalf of the application
being managed [18].

With the declarative transaction model, users are required to con-
Ągure the container with the settings of how individual transactions
should be managed. This can be set up through the transaction at-

14

2. Transaction concepts

tribute represented by, for instance, TransactionAttributeType (En-
terprise JavaBeans (EJB)), Transactional.TxType (Context and De-
pendency Injection (CDI)) or TransactionDefinition (Spring) classes.
The supported values are Ű Required, Mandatory, RequiresNew, Sup-
ports, NotSupported and Never2:

• Required Ű If the transaction context is already present on the in-
vocation, it will be used. Otherwise, a new transaction is started.
This is the most characteristic attribute and it is usually conĄg-
ured as a default value.

• Mandatory Ű Similarly to the Required, mandatory transaction
attribute represents that the transaction must be present on
the execution. However, it requires that the transaction is al-
ready started prior to the invocation. Alternatively, it throws
TransactionRequiredException if the transaction context can-
not be found.

• RequiresNew Ű The container will begin a new transaction on
every invocation. If there is already a transaction context present,
it is suspended for the duration of the processing of the new
transaction.

• Supports Ű This attribute represents an invocation that is not
required to run under the transaction context. It tells the con-
tainer to use the transaction context, if it exists before the call, or
to execute the operation non-transactionally if the transaction is
not present.

• NotSupported Ű The method will not be executed within the
transaction context. If the transaction exists prior to the invoca-
tion, it is suspended and the method is invoked. In other case,
the method is immediately started without the initiation of a
new transaction.

2. The Spring framework adds one more transaction attribute called Nested which
represents a single physical transaction with multiple savepoints that it can rollback
to [22]

15

2. Transaction concepts

• Never Ű The container is forbidden to invoke the method if there
is a transaction context present. In contrast with the NotSup-
ported attribute which only suspends former transaction, this
attribute will throw a runtime exception when the transaction
is present before the invocation.

2.5 Distributed transactions

Transaction concepts, presented in the previous sections, described
the transaction processing in a centralized environment. This included
resource local and XA transactions that manage transactions spanning
multiple resources through a global transaction manager.

However, these concepts can certainly be expanded to the dis-
tributed environment [1]. The distributed transaction represents an
ACID transaction that is executed over a number of independent par-
ticipants connected through a communication network3. The main
disadvantage of these transactions is their liability to frequent failures
of individual nodes or communication channels that connect them Ű
which is something that the Distributed Transaction Processing (DTP)
needs to account for.

Each node is associated with a transaction manager (TM) that
manages a local transaction and communicates with other TMs in
order to perform a global transaction. Generally, there is one TM
selected as a global coordinator that administers TMs participating in
the distributed transaction. The coordinator can be allocated with the
participating node or can act as a standalone service.

The accomplishment of ACID properties with the frequent parti-
tions failures is very difficult to achieve. In order to achieve the atomic
outcome, all of the participating nodes need to reach a shared con-
sensus on whether it is possible to execute a successful commit. The
standardized protocol which guarantees the consensus for the ACID
transactions is the two-phase commit protocol (2PC) which is used by
the majority of modern transaction systems. The consensus protocols
are discussed in detail in the following section.

3. The distributed transaction may also in some sources describe the XA transaction.
In this text, it refers to the transaction spanning resources over the network.

16

2. Transaction concepts

Even if the DTP system is able to provide the distributed consensus,
it often comes with a performance cost. This lead to the commonly
hesitant utilization of the DTP concepts in distributed applications in
the past.

However, recent network speeds and computational capacities are
increasing. This allows consensus protocols (2PC, Paxos) and other
DTP solutions (e.g., sagas [4]) to be easily employed in modern, scal-
able distributed applications.

2.6 Consensus protocols

The consensus problem represents the procedure of achieving the
agreement for the shared data value between several components. It
has its application in many environments including transactions where
the TM needs to conclude whether a transaction can be committed
depending on the participants consensus.

A consensus protocol describes a series of steps that solve the con-
sensus problem. These steps can be typically divided into three phases
Ű the selection of candidate values, the exchange of values between
participants and the agreement. The Ąnal decision of each participant
is irreversible. The consensus protocol is correct if it complies with
these conditions [23]:

• Agreement - all non-faulty4 nodes decide on the same single
value

• Validity - if all non-faulty nodes have the same initial value,
then the consensus must be reached on this value

• Termination - all non-faulty nodes eventually decide

In the transactions environment, the consensus represents the
shared decision whether to commit or rollback the transaction. The
following sections describe some of the most widely used consensus
protocols that may be employed in (potentially distributed) transac-
tional systems.

4. Some nodes may provide invalid or intentionally wrong information Ű these are
known as Byzantine failures [24]

17

2. Transaction concepts

2.6.1 2PC

The Two-phase commit protocol is one of the most known employed
consensus protocols used not only in the transaction processing. The
procedure consists of two phases:

• The prepare phase - All participants send their proposals to
the coordinator (TM) in which each of them states either that
it is able to proceed and commit its work segment or that the
transaction needs to be aborted.

• The commit phase Ű After collecting all proposals, the transac-
tion coordinator makes a Ąnal decision Ű if all participants are
able to commit, the transaction can be committed; conversely, if
any participant stated that it needs to abort, the transaction is
aborted. The Ąnal outcome is subsequently forwarded to every
participant and the transaction can be Ąnished.

The 2PC protocol is able to handle node failures to some extent
through the use of transaction log. However, this does not cover every
scenario and certain failures may require manual intervention.

The algorithm expects one node to act as a coordinator. This does
not necessarily need to be an elected participant. Any node can act as
a coordinator and initiate 2PC prepare phase by asking other partic-
ipants for their votes. Furthermore, there also exits a decentralized
variant but with the higher massage complexity.

The main disadvantage of the 2PC is that it is a lock based protocol.
After the Ąrst phase, participants are required to hold locks on pre-
pared resources until they receive a decision from the coordinator. If
the coordinator fails after the Ąrst phase is completed, all participants
will block waiting for the coordinator’s decision and cannot progress
(i.e., release locks) until it recovers.

2.6.2 3PC

The Three-phase commit protocol is a consensus protocol introduced in
1982 by Dale Skeen [25]. It extends the 2PC protocol in a non-blocking
way Ű it allows participants to place upper time bounds on the phases
completion which assures that resources are not held indeĄnitely. The
three phases are:

18

2. Transaction concepts

• The prepare phase Ű Same as in the 2PC protocol.

• The pre-commit phase Ű If all participants voted in the Ąrst
phase to commit the transaction, the coordinator sends to every
participant a preCommit message. After the participant receives
preCommit, it will proceed by preparing the commit by lock-
ing the required resources assuring that it is able to Ąnish the
commit. By this stage, the participant cannot execute any irre-
versible actions. If the preparation was successful, it responds
to the coordinator with the acknowledgment message.

• The commit phase Ű After the coordinator receives preparation
conĄrmation from all participants (the original paper [25] also
allows to specify a majority vote count), it will commence the
commit phase by sending the commit or abort messages, same
as in the 2PC protocol.

The termination is achieved by the timeout boundaries set on every
message expedition. If the coordinator timeouts, it always assumes
the rollback outcome Ű it cannot proceed after the Ąrst phase as it
did not receive votes from every participant and if the coordinator
fails after the second phase, the state of the protocol would not be
recoverable. However, the participant rollbacks in the same way after
phase one (as it did not receive the outcome from the coordinator,
it must assume abort) but if it timeouts after the second phase, it
proceeds with the commit. This is allowed as the preCommit message
is sent by the coordinator only if all participants wanted to commit
the transaction in phase one.

If the coordinator fails, the new coordinator is selected by any
election algorithm. This recovery node can determine the outcome of
the protocol based on the state of other nodes Ű if any node received
a preCommit message, the transaction can be committed (all other
participants must have also received the preCommit message). If some
node did not receive the preCommit message, the transaction can be
aborted.

By contrast to the 2PC protocol, the 3PC is resilient to more types of
failures. Nevertheless, it cannot withstand the network partition. If the
partition disassociates nodes that did receive the preCommit message
from those which did not, the newly selected coordinators on each

19

2. Transaction concepts

side of the partition will result into opposite outcomes and thereby an
inconsistent system. These resilience capabilities are at the expense of
the performance cost which approximately two times higher than in
the 2PC protocol [25].

In 1998, Keidar and Dolev introduced an Enhanced three-phase com-
mit protocol (E3PC) which maintains the consistency in the face of
site failures and network partitions [26]. It is using two additional
counters that impose a linear order on the majorities of system nodes
while still preserving the same computational complexity as 3PC.

2.6.3 Paxos

The Paxos represents a family of distributed algorithms designed to
solve the consensus problem. It was introduced by Leslie Lamport in
1998 [27].

The idea of the basic variant of the algorithm is reasonably straight-
forward. The Paxos distinguishes three types of system nodes: pro-
posers, acceptors, and learners. One node can be of more than one
type, even act as all of them. Proposers act as client representatives
proposing values that the client wants the system to agree on. Ac-
ceptors serve as the voting mechanism and all nodes are required to
know the number of acceptors that form a majority. Learners serve
as the representatives that can be queried for the decided value. The
algorithm runs in two phases:

• The promise phase Ű The proposer Ąrst sends its proposed
value with a new unique identiĄcation number generated from
a sequence to all acceptors (or the majority). When the acceptor
receives a proposed value, it Ąrst checks whether the received id
number is higher than the last id it promised to ignore. In that
case, it will respond to the proposer with the promise message
which denotes that it will ignore any newly received messages
with lower ids. Otherwise, it already promised to the higher
proposed id and therefore no action is taken.

• The commit phase Ű If the proposer collects promises from the
majority of acceptors, it sends the accept-request message to
all acceptors (or the majority) with the same id and the proposed
value. When the acceptor receives the accept-request message,

20

2. Transaction concepts

and it did not already promise to ignore the received id, it sends
the accept message to the proposer and all learners. If the id
in the message is lower than the promised id, the message is
ignored. As the accept-request message is sent to the majority
of acceptors and all of them accept the value, the consensus is
reached.

If the acceptor accepts a value, it appends the accepted id and
value to each subsequent promise message. In this case, the proposer
knows that there is some value already being decided in the system
and it continues the processing with the value received in the promise

message containing the highest of all received ids. If it wants to update
this value, it needs to initiate a new run of the algorithm after the
current one has ended.

Many variants of the Paxos algorithm allows it to sufficiently han-
dle various types of failures that may inĆuence the achievement of
the consensus. In particular, even the basic variant handles problems
of the 3PC algorithm, namely, network partitions and the restriction
to the fail-stop model. Instead, the Paxos protocol is resilient to the
fail-recover model which allows individual nodes to recover and con-
tinue processing from the point of the failure Ű which is expected in
the modern distributed systems.

The problem that the algorithm cannot solve is two proposers
that actively compete for the highest proposal number. This happens
between phases as the proposer’s accept-request message is rejected
due to the higher proposal issued by the different proposer. The system
is blocked until the conĆict can be resolved. To mitigate this impact,
systems can employ a form of the exponential back off mechanisms
which allow one proposer to wait sufficiently long for the other one
to Ąnish. Another expectation of the algorithm is that acceptors are
also required to have persistent storage to avoid providing misleading
information in case of the fail-recovery.

2.6.4 Conclusions

This section presented in detail three consensus protocols that can be
employed to solve the transaction commit / abort consensus in the
distributed systems. There also exist many other algorithms, for in-

21

2. Transaction concepts

stance, the Raft or the Ark which cannot be discussed due to the space
limitations. The summary of the presented algorithms is available in
Table 2.1 (this table represents scenarios without any failures).

Protocol Time (phases) Message complexity Client delay

2PC 2 3(n − 1) 3 RTTs

3PC 3 5(n − 1) 5 RTTs

Paxos 2 4(f + 1) (f = majority) 4 RTTs

Table 2.1: Consensus protocols comparison

The consensus is a very sophisticated and complex problem. One
of its applications is the distributed transaction commit which denotes
a consensus whether to commit or abort a transaction. The mostly
applied protocol for this purpose in the current development is the
Two-phase commit protocol [20, 28] (there is also research conducted
with other mentioned protocols [29]). However, the application of
consensus protocols, particularly in the distributed environments,
may present problems mainly because of their locking nature. As
it will be discussed in the following chapters, the saga pattern [4]
provides a sophisticated alternative to the distributed transaction
commit processing for long lived transactions.

22

3 Microservices architecture pattern

This chapter introduces the concept of microservices and it explains
why modern, elastic and resilient enterprise systems should be de-
signed and implemented according to this pattern. It provides an
updated microservices status overview from my previous work publi-
cation [30].

3.1 Architectural pattern

Microservices are an architectural pattern which offers an intuitive
approach to common problems following a software development.
They represent a subset of a Service Oriented Architecture (SOA) [31]
that advocates creating a system from a collection of small, isolated
services, each of which owns its data, and is independently isolated,
scalable and resilient to failure [32]. Instead of the SOA, which builds
the applications around the system logical domain, microservices are
focused around the application business model. Each microservice
represents the separated and independent part of the system that inter-
acts with other components only through predeĄned communication
interfaces1.

3.1.1 Monolithic architecture

The effective way of describing why the microservice architecture is
emerging as a practical development style is to begin with the deĄni-
tion of the opposite pattern Ű the monolithic architecture. When the
application is developed in the monolithic fashion, all of its content
is being implemented and deployed as a single archive. Every com-
ponent, i.e., a unit of software that is independently replaceable and
upgradeable [33], is tightly coupled within the application. Because
of the easy development of the monolithic software, this approach
has been preferred by the majority of edging enterprise applications.
However, when the application requires to add new functionality or
to Ąx a software problem, any additional maintenance represents an

1. throughout the rest of this publication we will be using terms microservice and
service interchangeably

23

3. Microservices architecture pattern

issue. For instance, even because of the minor change or update in
the single component, the scalability, continuous deployment and the
general advancement of the whole application lifecycle can stagnate.

Monolithic applications present a few advantages Ű the develop-
ment model is often easy to adjust to the application requirements2,
the deployment is reduced to single archive (or a small number of
archives), and it is easy to horizontally scale by adding more servers
behind a shared load balancer. The problems arise when the system
becomes large. The monolithic code base is often complex and hard to
understand which results in long learning curves [35] and developer
concerns. The automatic deployment and the continuous delivery
(CD) of the system also decelerate Ű in order to update one compo-
nent you have to redeploy the entire application [36]. Although it is
still able to scale horizontally, the replicated server instances take up
more resources and overload the container with slower startup speeds.
In general, the monolith also represents a commitment to a particu-
lar technology (or even its speciĄc version) which makes the system
difficult to maintain and also adapt to new emerging technologies.

3.1.2 Microservices architecture

Microservices introduced the application separation into the self-
maintained units Ű services [37]. The service is a single scalable and
deployable unit, which is not dependent on any context. This means
that services may be deployed and scaled independently of each other,
and may employ different middleware stacks for their implementation
[38].

The important attribute of the microservices system is service iso-
lation. Each microservice is responsible for the management of its own
resources and it is prohibited to access resources of any other service
directly. This means that each data request must be processed by the
operating microservice which is allowed to accordingly control the
data access and computation requirements. Services often correspond
to components in the monolithic architecture.

Microservices further extends the Law of Demeter which intents to
organize and reduce dependencies between classes [39]. As the service

2. the traditional development model represented as the client-server-database or
the Model-View-Controller architecture [34]

24

3. Microservices architecture pattern

presumably requires to communicate with other services in order to
provide system functionality, this law naturally applies to minimize
such coupling among microservices on the distributed component
level.

Another standard object-oriented rule that also applies in the mi-
croservices environment is the Single Responsibility Principle (SRP)
as deĄned by Robert C. Martin Ű a class should have only one reason
to change [40]. There is a common misconception associated with
the microservice architecture Ű the word micro should conform to the
service size. Although this statement is true to some extent (there is
no point in creating the microservice of the same size as the monolith),
the micro should more resemble a scope of the service responsibility.
This concept also corresponds to the Unix philosophy: Make each
program do one thing well [41].

The separation and loose coupling of microservices provide an
ability to deploy each individual service to the production environ-
ment autonomously, not affecting other applications or services. This
allows isolated teams to develop, maintain and upgrade services in-
dependently and to form these teams around the system problem
domains.

As microservices represent stateful entities, to achieve data isola-
tion each service exposes an application programming interface (API)
through which it is exclusively able to provide functionality to other
services. These APIs are often technology-agnostic to ensure that the
technology choices are not constrained [2]. Instead of in-process calls
employed in the monolithic architecture, applications based on the
microservices style utilize services by remote procedure calls which
are often asynchronous. This form of segregation also facilitates the
system failure recovery or resilience as each particular microservice
breakdown is less prone to inĆuence the rest of the system.

3.2 Principles of microservices

This section describes the microservices architecture from the perspec-
tive of the business use cases and the solution architecture. It is based
on the work of Sam Newman [2, 42] in which he proposed to build
each microservices system on a set of principles. These principles

25

3. Microservices architecture pattern

may differ for various systems (depending on the application and
microservices use cases), but in general, they can be reduced to these
eight principles:

1. Modeled around the business concepts Ű When the microser-
vices applications, together with the teams that are responsible
for their maintenance, correspond to the business domain, they
are generally more stable Ű the requirements on their function-
ality do not change frequently. This allows developers to focus
on the particular system segment, rather than on some speciĄc
technology stack. Additionally, it also permits services to reĆect
the business requirements directly.

2. Adapting a culture of automation Ű Because of the service mo-
tion, failures or the communication distribution through the
network, microservices brings additional complexity to the sys-
tem. When the number of services increases, their maintenance,
administration, and deployment can become unmanageable.
The automation then presents an essential part of the service
lifecycle. Practices as the automated service testing, the utiliza-
tion of the continuous delivery or the uniĄcation of the deploy-
ment strategy over services, allow enterprise systems to scale
more efficiently and to speed up the mechanism of the service
coordination.

3. Hiding the internal implementation details Ű Every microser-
vice generally needs to interact with other services or external
systems to provide its functionality to the rest of the system.
In order to keep the option of independent development, it is
essential that each service hides its implementation details. This
can be achieved through the motion of bounded contexts as de-
Ąned for the Domain-Driven design (DDD) [43]. The bounded
context delimits the applicability of a particular model, so that
team members have a clear and shared understanding of what
has to be consistent and how it relates to other contexts. The
context is separated by an explicit interface represented as an
API which allows teams to specify which utilities of the service
can be shared and which must be hidden. Every request for

26

3. Microservices architecture pattern

the service data must be subsequently processed through this
public interface.

4. Decentralizating all things Ű Microservices architecture is built
around the idea of self-sustaining development which means
that services are maintained autonomously. This allows to dele-
gate decision making and authority to the team that is account-
able for the service maintenance. The team is then able to take
full ownership of the service, which with the support of the in-
dependent deployment mechanism, results into the convenient
development, testing, and life-cycle management. This principle
accentuates that relevant business logic should be kept in ser-
vices themselves and the communication between them must be
as simple as possible. This permits to design systems in a way
that adheres to Conway’s law stated in 1967 [44]:

Any organization that designs a system (deĄned broadly)
will produce a design whose structure is a copy of the
organization’s communication structure.

This principle also affects the system architecture and design.
The purpose is to avoid approaches like enterprise service bus
(ESB) or other orchestration systems, which can lead to central-
ization of business logic [2]. In general, architectures build on the
choreography patterns rather than orchestration are preferred.
The comparison of these two approaches has been investigated
in many research works [45, 46, 47].

5. Independent deployments Ű This is the most important princi-
ple of the microservices architecture. When the service is being
deployed, it should be the requirement that it cannot inĆuence
the lifespan of any other service. To achieve this, various tech-
niques like consumer-driven contracts or co-existing endpoints
can be used. Consumer-driven contracts make services to state
their explicit expectations. These requirements are supported
by the provided test suite for individual parts of the domain
and they are run with each Continuous integration (CI) build.
Co-existing endpoints model accommodates consumers to ser-
vice changes over time. The idea is to make new endpoint which

27

3. Microservices architecture pattern

can process updated client requests while the former endpoint
still functions for a limited time. This includes techniques as
blue/green releases [48] or canary deployments [49]. Customers
can utilize both endpoints depending on the version their appli-
cations require which allows them to decide when to upgrade.
Once the previous endpoint is no longer in use, it can be safely
removed.

6. Customer first Ű Services exist to be called. It is indispensable
to make these calls as simple as possible for the customers. The
developers can advantage from any feedback from the clients
that use their service. To ease the understanding of the service
API, it should be supported by proper documentation provided
by API frameworks like Swagger [50]. This also includes the
service discovery mechanisms to propagate system services and
to make the discovery of the service providers more apparent.
To combine this information, we can use the humane registries
[51] which indicate the human interaction.

7. Failure isolation Ű Even if microservices force distributed iso-
lated development, the architecture still needs to protect against
the failure propagation between services. This principle encour-
ages resources separation to avoid the single point of failure. It
is also supported by the service location distribution. As ser-
vices require to communicate remotely, it is important to account
for the network failures. To prevent cascading failures, various
techniques like timeouts, bulkheads or circuit breakers [52] may
be employed. As there are many vulnerabilities in applications
which cannot be considered, there is no precise manual on how
to attain this principle.

8. High observability Ű Monitoring is an important part of devel-
opment and production deployment. Because of the microser-
vices system distribution, it is not sufficient to observe actions
performed by particular services apart. Instead, the monitoring
solution must record the system operations altogether. To make
this information more accessible, the aggregation is essential.
Storing all log entries and statistics in one place can highly im-
pact the monitoring process. Another relevant issue is to track

28

3. Microservices architecture pattern

the service calls as each service typically communicates with
other services. This can be achieved by mechanisms as semantic
monitoring and techniques like synthetic transactions or correla-
tion IDs [2]. By logging this kind of information, we can ensure
traceability in the case of service failure.

3.3 Reactive microservices

Before the deĄnition of what the reactivity means in distributed mi-
croservices environments, it is appropriate to start from the basics of
what the reactivity signiĄes in general terms and how these principles
may be applied in software architectures. This section introduces the
motion behind the reactive design and why it is suitable for the use in
the microservices environment.

By the deĄnition in the Oxford dictionary, the word reactive sym-
bolizes an exposure of a response to a stimulus or an action in response
to a situation rather than creating or controlling it. This deĄnition nat-
urally translates to software systems. However, the interpretation of
what the stimuli is in software applications may differ. It might be, for
instance, events, messages, requests or failures. The important com-
mon property of these impulses is that the development model cannot
be implemented in a way to control them. These motions differ from
the traditional style of programming models in which the program
functioned as a sequence of commands that were always executed in
the predeĄned order and in the maintained controlled state.

In software systems, we distinguish three distinct classes of reac-
tive concerns Ű reactive systems, reactive programming, and reactive
streams [53].

3.3.1 Reactive systems

Reactive systems are an architectural style that focuses on the respon-
siveness. By the deĄnition provided in the Reactive Manifesto [3],
reactive systems are also resilient, elastic and message driven which
makes them more Ćexible, loosely-coupled and scalable. Generally,
this model provides straightforward programming interactions and
simpliĄed dependency management which are required in modern

29

3. Microservices architecture pattern

applications. The following enumeration explains these essential prop-
erties in detail:

• Responsiveness is the most important characteristic of reactive
systems. It provides a guarantee of a timely response to regular
user requests, as well as the rapid failure detection. Reactive sys-
tems are expected to establish a sufficient upper bound placed
on the system response times to institute an end user assurance
in the system usage.

• Resilience covers the responsiveness of the system in the case
of the system failure. The manifesto states that the system is not
resilient if it becomes unresponsive after any failure. Resilience
can be achieved by, e.g., replication, isolation, delegation, and
loose-coupling. This ensures that the failure in one part of the
system cannot affect the system as a whole which shadows the
component clients from any form of the failure handling.

• Elasticity involves the system responsiveness in the case of an
alternating load. The reactive system is expected to be able to
dynamically adjust and scale system resources according to
the request traffic. Elasticity also implies that the system must
be able to actively replicate and regulate its components and
distribute user inputs among them by the scalable, predictive
(and possibly reactive) algorithms.

• Message driven elaborates on the asynchronous message ex-
change between system components that promotes the loose
coupling, isolation and location transparency. Explicit message
utilization has many advantages, e.g., Ćow control, load manage-
ment or monitoring and the engagement of the back pressure.
The location transparency, based on virtual addresses, decouples
individual components. It may also provide a failure manage-
ment mechanism, in which case the service cannot distinguish
between the communication with a single component or a clus-
ter. Additionally, the asynchronicity allows the system to utilize
resources in a non-blocking way, only when they are required
for the request processing.

30

3. Microservices architecture pattern

3.3.2 Reactive programming

Reactive programming is a development model focusing on the obser-
vation of data streams, reacting to changes, and propagating them [54].
In the rest of this section, we will be referencing these data streams
in the Reactive Extensions methodology as observables. An observable
is an object that contains dynamically versatile data that represent
a state which may be of interest to other objects. To consume data
emitted by the observable, the interested object must subscribe to it.

In practice, reactive programming distinguishes three kinds of
observable objects Ű observable data streams, singles, and completa-
bles. Observable, as a stream of data, represents an asynchronous
reaction. It provides three handlers, namely, for the data value, error
handling and the end of the data stream. The single is a special type of
observable that depicts the stream of one value. It is associated with an
execution of asynchronous operation which provides data and error
callback handlers. The completable observable symbolizes the stream
without any value. In contrast with the single, it does not return a data
value. For this reason, the completable should be conĄgured with the
completion and error handlers.

The observable stream can be of two types Ű a cold or hot observ-
able. The cold observables are lazy loaded. This means that the data
stream does not process any tasks until somebody starts observing it.
It represents an asynchronous action that is invoked only when there
is a consumer interested in the result. When an object subscribes to
the cold observable, it receives all data objects contained in the stream
which allows them to be shared. Conversely, the hot observable data
stream is active before the consumer subscriptions. When the con-
sumer subscribes to the hot observable, it will receive all data values
from the stream that are emitted after the subscription is created. Both
cold and hot observables require the user subscription to receive the
data values from the streams. If the consumer does not subscribe to
an observable stream, the data is lost.

The most important concept of reactive programs is the asyn-
chronicity. On the contrary from the traditional program invocations,
this processing model is based upon notiĄcations that are emitted
when the data stream produces a value. Each asynchronous operation
happens independently of the main program Ćow which introduces

31

3. Microservices architecture pattern

several new aspects that need to be considered for this kind of program-
ming paradigm. These aspects can be summarized in three simple
rules: avoid side effects3, avoid using too many threads and never
block.

One of the most popular implementations of the reactive program-
ming principles in modern systems is the Reactive eXtension (Rx). It
represents a library for asynchronous and event-based programs by us-
ing observable sequences [55]. These extensions combine the observer
and iterator patterns with a range of functional idioms to allow devel-
opers to easily adapt reactive methods. Reactive extensions provide a
broad range of implementations for various programming languages
as, for instance, Java (RxJava), C# (Rx.NET) or Kotlin (RxKotlin).

To conclude, it is important to remember that reactive program-
ming does not build a reactive system [56]. It only provides a devel-
opment model that can be used for asynchronous processing, a task
based concurrency model or the non-blocking Input/Output (I/O)
that may be applied with other reactive principles to create responsive
and reliable distributed systems as deĄned in the Reactive Manifesto.

3.3.3 Reactive streams

Reactive streams represent an initiative to provide a standard for asyn-
chronous stream processing with non-blocking back pressure4 [57]. It
addresses the issue of controlling the load placed on the stream desti-
nation in case of the consumption overload. The main focus of reactive
streams is placed on mediating the stream of data among different API
components without the requirement to buffer unreasonable amount
of data on the receiver side.

This speciĄcation aims to provide a minimal set of interfaces and
protocols that would describe the operations and entities to achieve
asynchronous streams of data with non-blocking back pressure [54].
It mainly serves as an interoperability layer. The current provided Java

3. The side effect is any interaction of the function with the remainder of the
program in other way than through its arguments or its return value
4. Back pressure is a form of feedback mechanism that allows consuming object
to regulate the load which is being sent to it. It is typically employed in situations
where the publishing object (observable) is able to emit data items more quickly
than the consuming side is able to process them

32

3. Microservices architecture pattern

virtual machine (JVM) implementation includes the Java API, the spec-
iĄcation, the technology compatibility kit (TCK) and programming
examples.

The API components that are required to be provided by the Reac-
tive Streams implementations are publisher, subscriber, subscription,
and processor. The publisher provides a potentially inĄnite number
of elements in a sequence which are being published according to the
subscriber’s demands. The subscriber subscribes to the data publisher
with a call to Publisher.subscribe(Subscriber). The outcome of
this operation is signaled to the subscribing consumer by a call to the
Subscriber.onSubscribe(Subscription) method. The subscriber is
able to request data delivery by a call to Subscription.request(long)

in which it can specify the number of items it is able to consume. This
call is then followed by a requested number of Subscriber.onNext

calls that represent the delivery of the data item to the subscriber. If the
requested number of items is Long.MAX_VALUE, the request is treated
as effectively unbounded. The termination of the data consumption is
signaled to the subscriber by the call to one of the onComplete or the
onError methods. The subscriber is also allowed to request the pub-
lisher to stop sending data at any time by a call to Subscription.cancel

method, but there still may be some data received due to the asyn-
chronous nature of the publisher. The processor represents the com-
ponent which is both the publisher and the subscriber in one instance,
and it must follow the contract of both interfaces. The full API provided
by the Reactive Streams in version 1.0.2 is available in the Appendix B.

All of the API component interfaces discussed above has been
already included in the Java development kit (JDK) 9 in the class
java.util.concurrent.Flow. The reactive streams initiative is sup-
ported by the companies like NetĆix, Pivotal, Red Hat, Twitter and
many others.

3.3.4 Summary

Previous sections described the reactive principles that may be used
in software systems. As the microservices architecture supports the
service isolation and loose-coupling, it can provide a reasonable envi-
ronment for the achievement of properties demanded by the reactive
systems [3]. Additionally, as microservices are expected to provide

33

3. Microservices architecture pattern

asynchronous processing with a single and well-deĄned purpose, they
can certainly beneĄt from the utilization of the reactive programming
and reactive streams. The reactive principles naturally Ąt into the mi-
croservices architecture which is why these reactive microservices may
form a suitable building block of modern responsive microservices
systems [54].

3.4 Challenges

As it is common with every architectural style, microservices bring
together with the above mentioned beneĄts also some drawbacks.
Although the development experience showed that microservices
are preferred choice over monolithic architecture, they may not be
inevitably suitable for every system. This section describes some of the
challenges that may impose problems when building systems based
on the microservices pattern.

3.4.1 Distributed systems

The service distribution supports the architecture by the inherent
model of the service boundaries. However, the communication over
the network brings a few complications that microservices need to
account for.

The Ąrst considerable issue is network failures. Because this is
something that cannot be controlled by the invoking service, it is
required that each microservice call is treated with caution (e.g., by
setting an explicit timeout). Consequently, every service should always
be designed in a resilient way with the possibility of failures in mind.

Another relevant problem presented by the network overhead is
the communication performance. Remote calls that are required for
inter-service invocations, represent additional complexity and time
consumption that are not present in modular monolithic systems.
There are several various techniques that may be employed to improve
the general performance like, for instance, decreasing the number of
calls or making them asynchronous.

The problems mentioned above have been elaborated in the work
of James Gosling who in 1997 extended the draft created by Peter

34

3. Microservices architecture pattern

Deutsch which stated wrong assumptions that are commonly being
made about distributed systems. These assumptions are known as The
8 fallacies of distributed computing:

1. The network is reliable.

2. Latency is zero.

3. Bandwidth is inĄnite.

4. The network is secure.

5. Topology doesn’t change.

6. There is one administrator.

7. Transport cost is zero.

8. The network is homogeneous.

Unfortunately, the original work of authors is no longer available, but
Arnon Rotem-Gal-Oz provides in his publication [58] a very detailed
description of each individual assumption.

3.4.2 Eventual consistency

The arguable problem present in the distributed microservices sys-
tems is the delay between the write of the data value and its actual
obtainable update. Maintaining strong consistency between individ-
ual nodes is extremely difficult, which means that each service has
to manage eventual consistency [59]. This may lead to the decreased
system usability and customer satisfaction.

The eventual consistency is a model where after an update the
system guarantees that if no new updates are made to the object,
eventually all accesses (data reads) will return the last updated value
[60]. It is a form of weak consistency Ű the system does not provide
any consistency guarantees for a limited time called inconsistency
window. The advantage of this model is that the maximal size of the
inconsistency window can be computed from system statistics if no
failure occurs.

35

3. Microservices architecture pattern

Imagine a situation where the customer creates an order in a web
interface. After the conĄrmation, the order request is sent to the service
A which starts its processing. Right after the conĄrmation, the user
wants to check if the order was created in the orders section which is
provided by a service B. If the message about the order creation has
not yet been propagated to the service B (the inconsistent window is
still open), it cannot respond with the actual updated system state.

Microservices are required to manage eventual consistency to avoid
making decisions based on the inconsistent information. These kind
of issues are often hard to Ąnd as they are often discovered only after
the inconsistent window has been closed.

The propagation delay problems are also present in the monolithic
systems, but as it was mentioned in the previous chapter, the remote
calls are typically remarkably less performant than in-process commu-
nication. However, in practice applications do not really depend on the
strong consistency guarantees to the expected extent Ű for instance, the
saga pattern (Section 4.3) is based on the eventually consistent model.
As it will be presented in the following section, it was proven that
distributed systems cannot achieve both strong consistency and high
availability at the same time, which is why modern distributed busi-
ness applications are often willing to reasonably tolerate temporary
data inconsistencies in order to promote availability.

3.4.3 CAP theorem

In 2000, Eric Brewer introduced the idea that there is a fundamental
trade-off between consistency, availability and partition tolerance [61]
in the distributed system. This proposal is known as the CAP theorem
and it states that distributed systems can provide at most two of these
three properties.

The consistency guarantee ensures that if some value has been
written by a speciĄc node, the query placed on any other node must
return the same value or the later update. The availability states that
if the node has not failed, it must always be able to respond. This does
not permit error responses since the system could be trivially available
by always returning an error [62]. Finally, the partition tolerance is an
ability of the system to continue functioning even if the communication
access between two or more nodes has been lost. In other words,

36

3. Microservices architecture pattern

this means that services are still operating but they are not mutually
reachable.

In practice, the general belief is that for wide-area systems, design-
ers cannot forfeit the partition tolerance and therefore have to make
a choice between consistency and availability [13]. The only effective
way of how the system can guarantee that the partition can be avoided
is to only maintain a single service.

The CAP theorem was formally proven in 2002 by Seth Gilbert
and Nancy Lynch [63]. The prove is surprisingly simple and can be
modeled by just two nodes.

In 2012, Daniel J. Abadi proposed an extension of the CAP the-
orem called PACELC theorem which is particularly applicable for
distributed database systems (DDBSs). The theorem states Ű if there
is a partition (P), how does the system trade off availability and con-
sistency (A and C) or else (E) when the system is running normally
in the absence of partitions, how does the system trade off latency
(L) and consistency (C) [64]. Conversely to the CAP theorem, which
implies to any read-write distributed implementation, the ELC part
applies only when the system replicates data.

3.4.4 Operations

With the microservices architecture comes an inherent complexity
incurred by the operational service management. As services are ex-
pected to be dynamically created and destroyed, upgraded, scaled and
deployable, it is essential that the system employs techniques which
simplify the operations processes. Such methods include automation,
continuous delivery (CD) and integration (CI) and possibly external
monitoring and orchestration tooling. Many of these approaches are
useful even for the monolithic applications, but they become necessary
if the system makes use of microservices [59].

In the modern move to the cloud architectures Ű platform as a
Service (PaaS) considerably ease operations tasks. Containerization
platforms like OpenShift [65] or Kubernetes [66] simplify the manage-
ment of networking, automatic scaling, replication, resilience, tracing,
monitoring and many other tasks.

All of the above mentioned procedures remarkably accelerate the
software lifecycle process intervals. Therefore, the utilization of De-

37

3. Microservices architecture pattern

vOps [67] (development and operations) principles which promote
increased collaboration and shared responsibilities across teams is
also essential. DevOps allows not only to deliver products faster, while
still maintaining the reliability assurance, but they also provide capa-
bilities to bring the quality into the development process itself.

3.4.5 Human factor

Previous sections discussed the complexities of microservices archi-
tecture from the technical point of view. This section focuses on teams
that are creating individual services and explains some of the rea-
sons which may inĆuence how this mind shift can affect their end
performance.

• Communication Ű The team communication is essential. The
opinion and problem solution discussion capabilities inside
a team directly inĆuence the deliverability of the maintained
service. Although the service boundaries should prevent the re-
quirement for inter-service agreements, it is not always possible
to avoid it entirely (e.g., version management). The commitment
to the DevOps culture can also support the communication
process.

• Nonuniform technology Ű The possibility to choose the tech-
nology stack individually for each service may promote inde-
pendence and exploring possibilities, but may also impose a
maintenance overhead in a long duration.

• Design shift Ű As microservices still represent a relatively young
architecture, the design composition change may be hard to uti-
lize. Even if there are a few successful systems based on the
microservices architecture (NetĆix or Spotify), inexperienced
teams may be hesitant to make a move to the split of the work-
ing monolithic applications. Furthermore, the transition itself
impose a complex task.

• Monitoring Ű With the high number of services, collecting and
processing of the monitoring information may become a very
complex task. It also affects the problem traceability and debug-
ging across services.

38

3. Microservices architecture pattern

• Testing Ű Despite the fact that there exist several microservices
testing strategies [68] which may help with the test case deĄni-
tions, the asynchronous communication and the service distri-
bution may still impose signiĄcant problems associated with
test development and execution.

39

4 Saga pattern

The conventional transaction processing, as described in previous
chapters, represents a complex challenge in the distributed microser-
vices environment. In this chapter, we introduce the notion of sagas Ű
an alternative approach to the traditional distributed ACID transaction
execution.

A saga, as described in the original publication [4] from 1987, is a
sequence of operations that can be interleaved with other operations.
Each operation, which is a part of the saga, represents a unit of work
that can be undone by the compensation action. The saga guarantees
that either all operations complete successfully or the corresponding
compensation actions are run for all executed operations to cancel the
partial processing (Figure 4.1). The original paper [4] deĄnes the saga
as the long lived transaction in the database environment.

Figure 4.1: Example saga execution

In this chapter, we will describe the saga processing as it is deĄned
by the initial publication [4], explain how the operations and compen-
sations work in sagas, how the saga handles the failure recovery and
present several modern frameworks that provide the support for the
saga implementation.

40

4. Saga pattern

4.1 Operations

An operation represents a particular work segment that is a part of
the saga. Each saga can be split into a sequence of operations in which
each individually can be implemented as a transaction with full ACID
guarantees. When the operation completes, all results of the performed
work are expected to be persisted in the durable storage. This means
that the external observer may see the system in intermediate states of
the saga execution, as well as that it may also introduce the system into
an inconsistent state between the individual operation invocations.

The ability to commit a partial operation breaks the isolation (seri-
alizability) property as it makes the segment changes available before
the saga ends. Intermediate saga states may also introduce consistency
contraventions. However, the saga utilizes the eventual consistency
model (Section 3.4.2) which guarantees that the state will become
eventually consistent after the saga completes.

As the deĄnition in the original paper by Garcia-Molina and Salem
[4] allows individual saga operations to interleave, it prohibits any
form of dependencies between them. This would imply that the partici-
pating operation cannot depend on results committed by any previous
operation in the saga sequence. However, in modern systems, the se-
quential execution of local operations is possible to implement if the
system employs a single saga coordination process that manages the
entire sequential execution.

4.2 Compensations

Each operation in a saga needs to have an associated compensation
action. The purpose of the compensating action is to semantically undo
the work performed by the original operation. This is not necessarily
the contradictory action that puts the system into the same state as it
was before the operation began or generally the saga started.

Imagine that the operation consists of the sending of an email.
The compensation cannot directly undo the email dispatch. Instead,
it would send another email to the same destination which could
explain why the previous action did fail. In this case, the system is in
the state where it has two additional emails being sent. However, the

41

4. Saga pattern

comprising system state is expected to be semantically consistent as
both operation and compensation have been deĄned by the participant.
Therefore, the consistency guarantees must be ensured by individual
participants at the operation level.

The compensating actions for the individual operations are ex-
pected to be idempotent. The main reason for this requirement is the
saga failure and recovery management which in detail described in
Section 4.5.

It is important to keep in mind that even compensating actions may
fail. There are several options of how the saga management system can
handle such situations. The Ąrst option is to retry the compensating
operation again, but as the reason of the failure may still be valid which
means that the system can get caught in an inĄnite retry loop. Another
option is to provide a recovery block Ű a separated block of code which
would get executed in place of the primary compensation in case of
failure. The last option, which is not elegant but it is practical, is the
manual intervention. This is possible to implement due to the saga
nature Ű it does not hold any locks on resources it is being performed
on. When the compensation handler is manually repaired, the saga
can continue its execution where it has left off.

4.3 BASE transaction

In contrast to the traditional transaction approach, the Saga pattern
relaxes the ACID requirements to achieve availability and scalability
with built-in failure management. As the saga commits each operation
separately, updates of the not fully committed saga are immediately
visible to other parallel operations [69] which directly breaks the iso-
lation property.

Sagas utilize an alternative BASE model [70, 71] which values the
availability over the consistency provided by ACID (CAP theorem,
Section 3.4.3). The speciĄed system properties are:

• Basically Available Ű The system guarantees availability with
regards to the CAP theorem.

42

4. Saga pattern

• Soft state Ű The state may change as time progresses even with-
out any immediate modiĄcation request due to the eventual
consistency.

• Eventual consistency Ű The state of the system is allowed to be
in inconsistent states, but if the system does not receive any new
update requests, then it guarantees that the state will eventually
get into the consistent state (Section 3.4.2).

In practice, many modern applications are not always entirely
restricted to all of the ACID transaction guarantees, so the saga pattern
with the BASE model is emerging as a real alternative to traditional
transactional approach.

4.4 Saga execution component and transaction log

The saga execution component (SEC) is a process that is responsible
for the saga management. It communicates with the transaction man-
ager which manages operations included in the saga. Both of these
components require a transaction log to record their respective inter-
actions1. The saga execution component does not require concurrency
control because the saga operations can be interleaved.

The entries that may be written to the transaction log are usu-
ally associated with the saga or operation lifecycle. The saga log in-
cludes start-saga entry followed by one or more start-operation /
end-operation entries and is Ąnished by the end-saga entry. Option-
ally, the transaction system may also provide an ability for users to
cancel the saga execution with the abort-saga command.

Each saga operation is channeled through the saga execution com-
ponent and is recorded in the transaction log before any action may be
taken. The transaction log can also contain any parameters associated
with the saga execution.

1. it is convenient to share the transaction log between both components

43

4. Saga pattern

4.5 Recovery modes

The saga paper [4] distinguishes two options to handle a failure that
interrupts the saga. These two supported modes are backward and
forward recovery.

Backward recovery

A backward recovery mode is the most common way of handling
saga failure management as it was described in previous sections. It
requires that all operations must deĄne a compensation handler.

When the SEC component receives an abort-saga command in
the backward recovery mode, it Ąrstly aborts the currently executed
operation. Then for every previous operation in the reverse order of
the original execution, it calls its respective compensation action. After
the invocation of the compensation handler corresponding to the Ąrst
operation is completed, the saga may end and the system is in the
semantically consistent state as it was before the saga began.

When the saga management system applies the backward recovery
mode, the associated transaction log is also used to recover from the
crashes of the saga coordinator. After the recovery, once all operations
have been completed (committed or aborted), the saga coordinator
determines the status of each saga execution by the investigation of
transaction log entries.

If the log contains only both start-operation and end-operation

entries for the operations comprised in the saga, then the execution is
safe to continue with the next operation which has not been started.
Another safe state is when the transaction log contains the abort-saga

entry. In this case, it calls all compensation handlers for all referenced
operations in the saga. This is possible due to the fact that all compen-
sating actions are required to be idempotent.

The only unsafe state, which may be introduced after the coordina-
tor recovers, is when the transaction log contains the start-operation

entry without the corresponding end-operation. In this case, the saga
coordinator selects the last successfully executed operation (contained
in the transaction log) and invokes its compensation handler and
compensations for all operations that have been performed before it.

44

4. Saga pattern

As in the case of repetitive recovery for the same saga, the saga
coordinator may call the corresponding compensation handlers re-
peatedly, the compensation actions are required to be idempotent. The
original paper acknowledges that this constraint may be difficult to im-
plement in some applications which is the reason for the introduction
of the forward recovery mode discussed in the following section.

Forward recovery

For the use of the forward recovery mode, the transaction manage-
ment requires that the saga itself is predeĄned and that the system is
able to produce a checkpoint. The checkpoint represents a snapshot of
the system state at the particular point in time into which the system
can always be restored.

The pure forward recovery mode takes the checkpoint automati-
cally at the beginning of each operation. Furthermore, it also disallows
to abort the intermediate saga execution. This effectively eliminates the
need to deĄne any compensation actions. If the crash of the SEC occurs,
it will abort the last executed operation and restart the saga from the
last checkpoint. This approach effectively degrades the saga execution
component to a basic persistent transaction executor, therefore losing
most of the saga beneĄts.

Backward / forward recovery

In addition to modes deĄned above, it is also possible to combine
these two approaches into the backward / forward recovery mode.
In this mode, the transaction system takes checkpoints in predeĄned
intervals which may be periodical or based on different criteria (e.g.,
the operation complexity). In case of the SEC failure, the system per-
forms the backward recovery to the last deĄned checkpoint and then
continues the saga execution in forward recovery mode.

4.6 Distributed sagas

The notion of sagas can be naturally extended into distributed en-
vironments [4]. The saga pattern as an architectural pattern focuses

45

4. Saga pattern

on integrity, reliability, quality and it pertains to the communication
patterns between services [72]. This allows the saga deĄnition in dis-
tributed systems to be redeĄned as a sequence of requests that are
being placed on particular participants invocations. These requests
may provide ACID guarantees, but this is not restricted and it must
be ensured by individual participants. Similarly, each participant is
also required to expose the idempotent compensating request han-
dler which can semantically undo the request that is handled by this
participant in the saga.

Analogously to the centralized system, the distributed saga man-
agement also requires a transaction log which needs to be durable and
distributed. The examples of distributed database providers include,
e.g., Cassandra, RethinkDB or Apache Ignite and many others.

The saga execution coordinator (SEC) is spanned process across
the participating services. This process manages and interprets the
saga and it persists all processing information into the transaction log.
The coordinator does not represent a single point of failure as it is
allowed to fail. This is possible because the SEC process does not hold
any state data, the complete saga state is contained in the distributed
log. The general example of the application model employing SEC is
available in Figure 4.2.

As all of the above mentioned components are distributed, the
saga management system needs to deal with a number of additional
problems that are not present in the localized environment. The main
problem is that the saga system is required to deal with network and
participant failures that may happen between remote invocations. The
four main locations where these failures can inĆuence the saga exe-
cution are writes of the beginning and the end of the request to the
transaction log and request and response calls to the associated par-
ticipant. This may introduce unnecessary saga aborts2, but generally
approaches from the non-distributed environment still apply.

2. e.g. if the SEC fails after it has written the start-request entry to the transaction
log Ű the recovery cannot determine whether the failure happened before the request,
due to the network failure, or the participant response has been lost

46

4. Saga pattern

Figure 4.2: Distributed saga example [73]

4.7 Current development support

This section presents the current implementations of the saga pattern
available for the enterprise use in Java applications. The four explored
frameworks are Axon [6], Eventuate Event Sourcing (ES) [7], Eventuate
Tram [8] and Narayana Long Running Actions (LRA) [9].

4.7.1 Axon framework

Axon is a lightweight Java framework that helps developers build
scalable and extensible applications by addressing these concerns
directly in the core architecture [6]. It is composed on the top of the
Command Query Responsibility Segregation (CQRS) pattern which
is described in the Appendix A.

The Axon framework is based upon event processing including
asynchronous message passing and event sourcing. To decouple the
communication between system components, it employs the mech-
anisms of the asynchronous message buses. This allows to design
components with well-deĄned boundaries and therefore easy mi-
croservices development.

47

4. Saga pattern

The CQRS architecture is directly embedded in the framework.
Developers are controlling distinct CQRS components (aggregates,
repositories, commands) by annotations.

Axon supports two types of message buses Ű the command bus
and the event bus. This aligns with the CQRS pattern and allows to
scale each part of the domain independently.

Saga definition

As the most of the Axon functionality, the easiest way to deĄne
sagas in an application is by annotations. The annotation @Saga marks
the Java class as a saga implementation. In Axon, sagas are a special
type of event listeners. Each object instance of the saga class is re-
sponsible for the management of a single business transaction. This
includes controlling the saga state information, execution and han-
dling of the transaction (including start and stop) or performing the
corresponding compensation actions.

All interaction with the saga class happens only by triggering
of events. Event handlers in saga instances are annotated with the
annotation @SagaEventHandler.

To start a saga execution, the framework needs to receive the event
with the special event handler annotated with @StartSaga annotation.
By default, the new instance will be created only if the corresponding
saga cannot be found.

The end of the saga can be deĄned by two means Ű by the event
or by the API call. If the ending event is used, then the conforming
event handler needs to be annotated with the @EndSaga annotation.
Alternatively, the conditional end of the saga can be signaled by the
call to the SagaLifecycle.end() from any method inside the saga
class.

As many instances of the saga class may exist at the same time,
there is a need to publish events only to the saga for which they are
intended. This is done by a deĄnition of association values. The asso-
ciation value is a simple key-value pair where the key is a property
present in the event which forms a connection to the saga instance. The
@SagaEventHandler annotation contains a custom attribute called the
associationProperty which denotes the key property in the incom-

48

4. Saga pattern

ing event. Axon also allows the deĄnition of additional association val-
ues by a call to the SagaLifecycle.associateWith(key, value) and
the SagaLifecycle.removeAssociationWith(key, value) inside any
method of the saga class.

4.7.2 Eventuate ES

Eventuate is a platform for developing asynchronous microservices [7].
It focuses on the distributed data management allowing developers
to focus on the business implementations. The platform consists of
two products Ű the Eventuate ES and the Eventuate Tram. By the time
of this writing, the Eventuate Tram was still in development, but as
it introduced the sophisticated saga processing to the platform, it is
in detail described in Section 4.7.3. This section presents the more
general Eventuate ES product.

The Eventuate Event Sourcing (ES) provides the application with
the programming model based on the event sourcing Ű a mechanism
that tracks all changes to the data model as a sequence of events stored
in the event log. Every model change is appended to the log and the
sequence can be anytime replayed to restore the application state. The
event log can also serve as an auditing solution and provide temporal
queries to track previous application states. Another advantage is that
the events can be replayed to the failed service after it reconnects.

The ES project is also based on CQRS principles which allow nat-
ural usage of event sourcing capabilities for aggregate entities. It is
provided in two versions Ű as a service hosted on Amazon Web Ser-
vices (AWS) or as an open source local platform.

Saga definition

The saga processing of the Eventuate platform is handled by Even-
tuate Tram project and therefore the ES product does not support
saga implementation directly. However, the example Eventuate service,
which is presented in the following chapter, is based exclusively on
the Eventuate ES local platform providing the complete CQRS saga
solution. It represents the manual user saga handling implementation
not supported by the platform.

49

4. Saga pattern

4.7.3 Eventuate Tram

The Eventuate Tram framework enables a Java/Spring application
to send asynchronous messages as a part of a database transaction
[8]. It utilizes the traditional Java Database Connectivity (JDBC) and
Java Persistence API (JPA) based persistence model to provide the
transactional messaging. This enables the microservice to atomically
update its state and to publish this information as a message or as an
event to other services.

The Eventuate ES platform builds the communication exchange
on top of the event sourcing. The Tram additionally provides three
types of transactional messaging abstractions Ű messaging, events and
commands. The messages are sent through dedicated named channels.
The platform still supports the application development according to
the CQRS pattern, but it does not enforce it.

The Eventuate Tram Sagas is a framework that provides saga pro-
cessing on top of the Eventuate Tram message passing. It introduced
a very sophisticated saga model that allows users to specify the saga
deĄnition as a single point of reference.

Saga definition

The saga is deĄned by the saga orchestrator Ű the service responsi-
ble for the saga handling. It is identiĄed as an implementation of
the io.eventuate.tram.sagas.orchestration.Saga interface. The
respective saga deĄnition is represented as an instance of the class
io.eventuate.tram.sagas.orchestration.SagaDefinition. This in-
stance must be returned by the Saga.getSagaDefinition method. It
can be speciĄed with a simple Ćuent API that provides methods to
deĄne operations that should be executed when the saga fails, when
it needs to invoke a participant or how to process participants com-
pensations.

The saga is deĄned as a sequence of steps speciĄed by a simple
Domain SpeciĄc Language (DSL) available in the StepBuilder class.
Each step represents a local invocation, a remote participant invoca-
tion or the compensation deĄnition. The last two return a participant
builder which allows to additionally specify more actions that need to

50

4. Saga pattern

be processed when the participant is invoked or the handler method
which will be called when the participant responds.

4.7.4 Narayana LRA

Narayana Long Running Actions (LRA) is a speciĄcation developed
by the Narayana team in collaboration with the Eclipse MicroProĄle
initiative [74]. It proposes a new API for the coordination of long run-
ning activities with the assurance of the globally consistent outcome
and without any locking mechanisms.

The current reference implementation of the LRA speciĄcation
is based on the Context and Dependency Injection (CDI) and Java
API for RESTful Web services (JAX-RS) Java EE speciĄcations. The
communication is handled over HyperText Transfer Protocol (HTTP)
and the Representational State Transfer (REST) architectural style.

The LRA is utilizing an orchestration saga model. One node is
selected as a dedicated LRA coordinator that manages the saga pro-
cessing. Its main responsibilities are the LRA initialization, participant
enlisting and either the saga completion or compensation.

The coordinator can be a standalone service or it can be embedded
within application service. For the second option, the coordinator
communicates with the enclosing application by in-memory calls
rather than REST.

The second model component deĄned in the LRA processing is the
saga participant. This may be any service that is involved in the LRA.
Each participant is required to provide at least one REST endpoint
that serves as the compensation handler.

The execution of the LRA is started by the initiating service on
the user request. The service calls the coordinator that in turn starts a
new LRA and returns its unique identiĄcation to the initiating service.
This id is used to enlist every participant in the saga. After the initiat-
ing service receives the LRA id, it can optionally enlist itself within
the LRA and continues the saga processing with other participants
invocations where each call has to contain the acquired LRA id. When
a participant is invoked, it will enlist itself within the received LRA,
perform its work request and subsequently return the invocation out-
come to the initiator. After the LRA processing is completed or an
error occurs, one of participating services (commonly the initiating

51

4. Saga pattern

service) that knows the LRA identiĄcation, contacts the coordinator
to close or compensate the LRA. The coordinator then performs the
corresponding requested action for each enlisted participant.

Saga Definition

The LRA speciĄcation permits users to control the LRA lifecycle
in two ways Ű by Java annotations or by a client API.

The MicroProĄle LRA support is primarily targeted for the use of
annotations which are present in the io.narayana.lra.annotation

package. The @LRA is the main concerned annotation which denotes
the method that should be executed within a compensatable LRA
context [9]. This is speciĄed by a required Type attribute which can
have same values as conventional transaction attributes (Section 2.4.3).
Additionally, this annotation may also specify if the participant should
join the incoming LRA or on which HTTP status codes the LRA should
be canceled. The LRA can also be declared as scoped under another ex-
isting LRA by the @NestedLRA annotation. In this case, a new LRA will
be started and its outcome will depend upon whether the enclosing
LRA is closed or canceled [9].

In the reference implementation, if the LRA is already present
on the invocation, it should be made available to the business pro-
cessing through the HTTP header Long-Running-Action. This header
contains the coordinator address and the LRA identiĄcation.

Narayana also provides an ability to control the coordinator di-
rectly by the LRA client API. These operations are contained in the
io.narayana.lra.client.LRAClient class which allows users to per-
form basic client requests for the LRA services. On the background,
the reference implementation contacts the LRA coordinator through
its REST interface which users are also allowed to use directly. The im-
plementation present in the NarayanaLRAClient class can be provided
by the CDI dependency injection.

The participant is deĄned by annotations present on the JAX-RS
resource class. It is required to expose at least one REST endpoint that
handles the participant compensation. The handler resource method is
deĄned by the @Compensate annotation and is automatically registered

52

4. Saga pattern

within the coordinator when the participant is enlisted. This method
will be invoked in case of the LRA cancellation.

The resource class is also allowed to specify more methods that
control the participant LRA lifecycle by respective annotations:

• @Complete Ű invoked when the LRA is closed

• @Status Ű reports the participant’s status to the coordinator

• @Forget Ű the coordinator allows the participant to forget infor-
mation about the LRA3

• @Leave Ű causes the participant to leave the LRA

Both @LRA and @Compensate methods may additionally be anno-
tated by the @Timelimit annotation that denotes the maximum time
period after which the participant is timed out.

The participant can also be registered directly through the API.
For this purpose, it must be a serializable Java class that implements
the LRAParticipant interface. The registration is performed by a call
to the joinLRA method of the LRAManagement class which can be in
the reference implementation injected through the CDI.

4.7.5 Summary

Previous sections described four frameworks that provide saga imple-
mentation support. The following Table 4.1 provides a simple sum-
mary of the discussed properties inĆuencing the saga deĄnition and
execution of each respective framework applicable in microservices
applications.

3. this information needs to be preserved if the participant is unable to complete
or compensate immediately

53

4. Saga pattern

Problem Axon Eventuate
ES

Eventuate
Tram

LRA

CQRS restriction Yes Yes Optional No

Asynchronous by
default

Yes Yes No No

Saga tracking and
deĄnition

No No Yes No

Single point of failure No Yes Yes Yes∗

Communication
restrictions

Yes Yes Yes No

Distributed by default No Yes Yes Yes

Table 4.1: Saga implementations comparison

∗there is a plan to make the coordinator Ćexible and resilient

54

5 Saga implementations comparison example

As a part of the investigation of the each discussed framework from
the previous chapter, we created a sample application simulating the
saga utilization. The main goal of this quickstart projects is to compare
the base attributes of the investigated saga solution provided by these
frameworks. This includes the comparison of the development model,
microservices feasibility, maintainability, scalability, performance and
the applicability of the reactive principles within the saga execution.
The examples created for this thesis may be considered as artifacts of
one iteration of design science research [75].

The sample application represents a backend processing for orders
with a simple REST user interface. Users are also allowed to query per-
sisted information through the deĄned microservices APIs available
in Appendix D.

All examples are based on the microservices pattern. As every
framework is suitable for the use in different environments, each ex-
ample is achieving the same goal through the different portfolio of
technologies. The exact mechanisms used in individual projects will
be discussed in more detail in their respective sections.

Applications are also compared from the performance perspective
in Section 5.8 by a created performance test executed in two different
load scenarios.

5.1 Common scenario

A user is able to create an order by a REST call to the dedicated end-
point of the order-service microservice. The request must provide
product information in the JavaScript object notation (JSON) format
containing the product id, the commentary, and the price. For the
simplicity reasons, the order always consists only of the single prod-
uct. Figure 5.1 presents the example of the input JSON format for the
product data. The complete REST API for each individual example is
provided in the Appendix D.

The setup of each example is described in detail in their respective
repositories. Generally, each microservice is a standalone Java appli-
cation that must run in a separated Java environment. By default, all

55

5. Saga implementations comparison example

Figure 5.1: Product information example JSON

examples are accessible on the local address. Every microservice is
also able to run in the Docker [76] platform and all quickstarts can be
easily set up using the Docker compose project [77].

Every saga invocation is asynchronous - the REST call for the order
request immediately returns a response. All of the following inter-
actions are documented in individual services by messages that are
logged by the underlying platform. The overall saga process can be ex-
amined in the order-service or in the case of LRA in the api-gateway

modules.
Users are also allowed to query the persisted saga data (orders,

shipments, and invoices) by the respective REST endpoints described
in the Appendix D. For the CQRS based examples, this information is
available at the query-service microservice, otherwise each service
is expected to be responsible for maintaining its individual persistence
solution which corresponds to the microservices pattern deĄnition.

5.2 Order saga

The saga pattern applied in this application performs the order re-
quests. The order saga consists of three parts Ű the production of
shipping and invoice information and if both invocations are success-
ful, the actual order creation. If any part of the processing fails, the
whole progress is expected to be undone. For instance, if the ship-
ment is successfully created but the invoice assembly is not able to be
conĄrmed, the persisted shipment information, as well as the order,
must be canceled (also optionally notifying the user that the order

56

5. Saga implementations comparison example

Figure 5.2: The saga model

cannot be created). The graphical representation of the saga progress
is available in Figure 5.2.

Every application is able to demonstrate three testing scenarios: the
valid pass, the shipment failure, and the invoice failure. In the valid
scenario, after the order is requested, the saga propagation invokes
requests for the shipment and the invoice. If the connection between
services is stable, both participants successfully return an artiĄcial
answer and the order is completed.

As most of the applied platforms invoke participants sequentially,
we distinguish separated member failures of the shipment or invoice.
The shipment failure simulates the termination of saga without the
full request coverage. This means that the compensations may be
distributed to all services including the invoice-service which has
not yet received the work request for the order being processed. The
scenario demonstrates the need of microservices to be able to react to
the requests that are not associated with any saga which means that
they need to actively keep track of the sagas being currently executed.

The invoice failure scenario, on the other hand, validates that the
saga compensations are executed on all participating services as the
shipment is already expected to be completed. Generally, the saga
pattern assumes that the compensations of the participants are called
in the reverse order of the invocations because of the possible depen-
dencies between them.

To initiate failures scenarios in examples both shipment-service

and invoice-service contain injected failure conditions. To invoke
the failure, the quickstarts expect product information containing a

57

5. Saga implementations comparison example

speciĄc product identiĄcation: failShipment or failInvoice respec-
tively.

The graphical representation in the form of the sequence diagrams
for corresponding scenarios in individual quickstarts is available in
the Appendix C.

5.3 Axon service

As it was stated in the previous chapter, the Axon framework is based
upon the CQRS principles. Because of this nature, it would be difficult
not to follow this pattern. The individual services contain separated
aggregates1 each processing its respective commands and producing
various events. Any inter-service interaction is restricted to the use of
the command and event buses.

5.3.1 Platform

Axon service is a Java Spring Boot [78] microservices application.
Each service is fully separated and independent Maven project [79].
Individual projects represent standalone runnable applications (fat
java archive (jar)) which is the preferred distribution method for the
Spring Boot applications. Axon is composed as a Java framework
which is why it is included as a Maven dependency in individual
microservices.

As a CQRS based quickstart, Axon service uses two different and
separated communication channels to exchange information between
services: the command bus and the event bus. By default, Axon frame-
work constraints both channels to a single JVM and therefore one
microservice. However, developers are also able to specify several
speciĄc ways of the conĄguration to distribute messages between
different services which is used in this Axon quickstart.

1. for the deĄnition of aggregate, please refer to the Appendix A

58

5. Saga implementations comparison example

Command bus – Registration server service

The quickstart utilizes a variant of the distributed command bus
which is based upon a different approach than the one used in the
traditional single JVM Axon applications. The distributed command
bus forms a bridge between separated command bus implementations
to transfer commands between different JVMs [80]. Apart from the
command distribution, it is also responsible for the selection of the ap-
plied communication protocol and the choice of the target destination
for each transferred command.

Axon provides two options for the connection of different ser-
vices through the distributed command bus Ű JGroups Connector

and Spring Cloud Connector. The one used in this quickstart is the
Spring Cloud [81] method. Axon also allows users to choose which
particular Spring Cloud implementation will be used to distribute
commands. The underlying implementation utilized in this quickstart
is based on the NetĆix Eureka Discovery client and Eureka Server
combination [82].

Eureka server is a REST based service that is primarily used in
the Amazon Web Services (AWS) cloud for locating services for the
purpose of load balancing and failover of middle-tier servers [83]. In
this application, it is represented by the registration-server service.

Eureka is also distributed as a Java-based client library Eureka
Client which is included in all application business services Ű each
service, as a part of its initialization, registers itself with the Eureka
server. Axon is then able to redirect commands to the right service cho-
sen by the value of parameters in the command class that is annotated
by the @TargetAggregateIdentifier annotation.

Event bus - RabbitMQ service

For the distribution of the event bus, Axon service uses an external
messaging system based on the Advanced Message Queuing Protocol
(AMQP) protocol. The utilized message broker implementation is the
RabbitMQ [84] which is contained in the rabbitmq service.

RabbitMQ is an open source message broker that supports multiple
messaging protocols and is easy to deploy both on premises and in the

59

5. Saga implementations comparison example

cloud [84]. Main provided features include asynchronous messaging,
high availability cluster deployment or various tooling that supports
continuous integration, management and monitoring.

This quickstart provides a separated message queue for each busi-
ness service and one special queue for the query-service microser-
vice which is subscribed to all processing events. Axon platform pro-
vides the direct support for the AMQP, so no speciĄc handling of the
produced events is required Ű Axon automatically distributes events
to all connected queues.

Both the Spring Cloud registration server and the RabbitMQ mes-
sage broker are required external providers that need to be running
before the business services can be deployed. Unfortunately, by the
time of this writing, there is no way to distribute commands or events
directly in the Axon platform.

5.3.2 Project structure

The application is composed of six microservices Ű the order-service,
the shipment-service, the invoice-service, the query-service, the
registration-server and the rabbitmq. Furthermore, it also contains
a separated project service-model which serves as a support library
for individual microservices.

The order-service project is a business microservice responsible
for the saga handling. It contains the logic for the order request, the
saga initiation, and the saga compensation.

Both shipment-service and invoice-service are business ser-
vices functioning only as saga participants. Their only obligation is to
provide their respective computations.

The query-service is a speciĄc microservice included for pur-
poses of the CQRS pattern. It collects information about prepared
orders, shipments and invoices, and provides an external APIs for
users to query the collected data.

Both registration-server and rabbitmq services are summa-
rized in the previous section. They provide capabilities to distribute
command and event buses respectively.

Finally, the service-model is a Kotlin and Java Maven application
providing the core API for commands and events used by various
business services. This is required as all classes must match in order

60

5. Saga implementations comparison example

for particular handlers to be invoked. Furthermore, it also provides
common utilities and the logging support. It is mandatory to include
this project on the classpath of every other service.

5.3.3 Problems

Maintenance of the saga structure

The main substantial problem of the saga processing in Axon is
the missing structure of the internal lifecycle of the saga. Axon only
provides ways to indicate the start and the stop of the saga. The actual
invocation of participants, collecting of responses and handling of the
compensations is up to the developer as the only way of communica-
tion with the saga is through events.

In this application, the OrderManagementSaga contains two inter-
nal classes Ű OrderProcessing and OrderCompensationProcessing

which are responsible for tracking of the saga execution and compen-
sation respectively. As production ready sagas can be expected to run
in a number of days, this kind of saga speciĄcation can quickly become
the bottleneck of the saga maintenance.

AMQP usage with sagas

When the distributed event bus is processing events from an AMQP
queue which the saga class is listening to, the framework does not
deliver events correctly to the attached handlers. This issue has been
reported to the Axon framework and it will be Ąxed in the next release.
The workaround that was used in the quickstart was to artiĄcially
wait 1000 milliseconds before delivering the event from the queue to
the framework.

CQRS restrictions

As CQRS is a pattern that manages the domain formation of the
application, Axon can place hard requirements for the projects that do
not follow the CQRS domain separation. Like it was already presented,
sagas in Axon are only a specialized type of the event listener. The

61

5. Saga implementations comparison example

only way Axon produces events is through an interaction with the
aggregate instance - events are produced purely as a response to the
received command. Therefore, the use of Axon sagas in the non-CQRS
environment may be too restrictive to the user implementation.

5.4 Eventuate service

Similarly to Axon, Eventuate service is also based on the event sourc-
ing and the CQRS pattern. For this reason, the business execution is
managed in the aggregates which correspond to the respective mi-
croservices projects. The communication is as a result restricted to
the command processing and the event application. However, con-
versely to Axon, the command and event buses are not distributed.
The remote messaging is restricted to the REST protocol.

This quickstart represents the pure CQRS approach to the saga
processing. This means that the whole saga implementation is created
by the developer using the platform only for the event and command
distribution. For this reason, the Eventuate service is more complex
than any other quickstart but for the example purposes, it distinctively
demonstrates how sophisticated is the saga administration provided
by all remaining platforms.

5.4.1 Platform

Eventuate service is a microservices application consisting of a set of
Spring Boot [78] business services, one backing module and a number
of support services provided by the Eventuate platform. In this section,
we will focus on the Eventuate platform and services it provides, the
business part of the application is described in the following section.

This quickstart is established as an Eventuate Local version of
the platform. This means that it uses underlying SQL database for
the event persistence and the Kafka streaming platform for the event
distribution. Eventuate Local provides Ąve services used by the quick-
start that are managed by the platform, namely, Apache Zookeeper,
Apache Kafka, MySQL database, the change data capture component
and the Eventuate console service. The example employs these ser-

62

5. Saga implementations comparison example

vices as Docker images included in the provided docker-compose
conĄguration.

Apache Zookeeper service

Apache Zookeeper is an open-source project which enables highly
reliable distributed coordination [85]. It maintains a centralized ser-
vice which supervises various functionalities like the handling of
conĄguration information, synchronization, naming or grouping. The
Eventuate Local platform provides its own Docker image tagged as
eventuateio/eventuateio-local-zookeeper.

Apache Kafka service

The Apache Kafka streaming platform is the service which is re-
sponsible for the administration of subscription and publishing mech-
anisms controlling the event processing for business microservices. As
it is based on the Streams API, it allows the platform to react to events
in real time. Eventuate manages Kafka as the notiĄcation service for
the event propagation. Eventuate ships its own Kafka version in the
eventuateio/eventuateio-local-kafka docker image.

MySQL database service

The SQL database used in this application for the event persis-
tence is the MySQL open-source database which is currently the only
database supported by the platform. The Eventuate Local maintains
two tables Ű EVENTS and ENTITIES. This database also serves as a trans-
action log maintained as a base for the event sourcing. The container-
ized version is located under eventuateio/eventuateio-local-mysql

tag.

CDC service

This service represents the change data capture (CDC) component.
The CDC service has two main responsibilities Ű it follows the transac-
tion log and it publishes each event which is inserted into the EVENTS

63

5. Saga implementations comparison example

table to the Kafka topic that corresponds to the aggregate for which
the event is intended. Eventuate Local supports two options of the
execution of the CDC Ű internally in each business service or as a
standalone application. This quickstart applies the Eventuate CDC ser-
vice eventuateio/eventuateio-local-cdc-service as a standalone
Docker container.

Eventuate console

The last support service is the consoleserver. It provides a simple
interface for accessing collected information about created aggregate
types and the event log. The supplied Docker container image is the
eventuateio/eventuateio-local-console.

5.4.2 Project structure

This section describes the set of services composing the business side
of the application. This set contains four services that cover the saga
execution and data processing (order-service, shipment-service,
invoice-service and query-service), one service representing the
persistent storage (mongodb) and the support module (service-model).

All of the business services are Spring Boot applications based on
the Gradle [86] build system. Each microservice is represented as an
independent module capable of being separately built and deployed.
Even if Spring Boot projects can be executed directly from the com-
mand line as regular Java applications, this quickstart leverages the
Docker approach of the Eventuate Local platform and containerize all
of its services.

To connect to the Eventuate platform, each service deĄnes a set
of environment properties that are utilized in their Spring Boot con-
Ąguration. This information includes connection and authentication
details for the MySQL database, the CDC component, and the con-
nection Uniform Resource Locators (URLs) for Kafka and Zookeeper
services. These properties are speciĄed in the container speciĄcation
for each individual business service in the docker-compose.yml Ąle.

The actual saga execution is managed in the order-service mi-
croservice. The saga realization implementation is contained in three
classes Ű the OrderSagaAggregate, the SagaEventSubscriber and the

64

5. Saga implementations comparison example

OrderSagaService. The Ąrst class is an ordinary CQRS aggregate that
handles commands for the saga initialization and participants out-
comes. Conversely, the second class represents the event processor
listening for the events produced by the aggregate. It is basically a
wrapper around the OrderSagaService Ű the class responsible for the
remote REST calls to other services and the command dispatching for
the OrderSagaAggregate. The usage of the separated event listener is
required because Eventuate does not allow aggregates to be declared
as Spring components. The reason of this drawback is described in
more detail in the following section.

Except for the normal order API, the order-service also provides
a management API for the participants to be able to share the infor-
mation about their processing. These endpoints are hardcoded in the
application which may not be acceptable for a production realization.

Both the shipment-service and the invoice-service contain a
simple aggregate together with its associated event listener which
control participant interactions within the saga. Each service accom-
modates REST endpoints for the saga request and its possible com-
pensation.

Similarly to Axon service, the service-model project acts as a sup-
port library for other services. It contains a core API for each business
service which needs to be shared and a few utilization classes.

The last business microservice is the query-service. It performs as
a response service providing the information about persisted orders,
shipments, and invoices. It contains an event listener for each desig-
nated microservice which in turn preserves the achieved information
in the Mongo NoSQL database. This service also provides a simple
Swagger interface to ease the user application interaction.

5.4.3 Problems

Complexity

As this project represents a plain CQRS based example, it com-
pletely demonstrates the background process required for the saga
execution. Therefore, the complexity of this quickstart may appear
more critical than in other projects as the background saga execution
often contains many optimizations.

65

5. Saga implementations comparison example

The Ąrst complexity problem is that the project contains a high
number of command and event classes. This is required as aggregate
classes are only able to consume commands and produce events. For
this reason, the communication between components often demands
a few additional steps.

The full saga administration is handled by the project from the
very beginning. It covers the support of starting, stopping and fol-
lowing the saga execution as well as saga compensations. Restrictions
placed by the CQRS pattern furthermore put additional requirements
on the saga processing which may not be demanded by other frame-
works. Before the introduction of the Eventuate Tram framework, the
Eventuate platform did not provide any saga support.

Command bus distribution restrictions

This quickstart uses the REST architectural style for the remote
distribution of commands between services. Even if all of the microser-
vices are connected to the same MySQL database, they cannot directly
propagate commands between each other. This is due to the way Even-
tuate dispatches commands through the aggregate repository. The
aggregate repository represents the database table that is restricted to
one aggregate and it is provided by the platform through the depen-
dency injection. For this reason, it must declare the target aggregate
class and the command type. The sharing of the aggregate class type
may be very restrictive, especially for microservices applications.

Aggregate instantiation

The Eventuate framework creates the instances of aggregate classes
by a call to the default constructor. This effectively prohibits the use
of aggregate instance managed by the underlying server container.

For this reason, each aggregate in this project is separated into two
classes Ű the actual aggregate responsible for the command processing
and the event subscriber instance managing incoming events. The
aggregate class is required to extend the ReflectiveMutableCommand

ProcessingAggregate specifying the type of the command interface
which allows the classpath instantiation. The event listener is deĄned

66

5. Saga implementations comparison example

by the @EventSubscriber annotation on the target class and by the
@EventHandlerMethod annotation on respective methods consuming
dispatched events.

This restriction is seconded by the rule stating that each produced
event from the aggregate’s command processing method must also
be applied by the different method of the same aggregate. This limita-
tion exists because of the event sourcing feature providing the ability
to replay already executed commands to reconstruct the aggregate’s
state in the case of failure. The aggregate then may contain unneces-
sary empty methods as the saga also requires the propagation of the
information to different components (e.g., the REST controller).

Event entity specification

As well as the command type, Eventuate also requires the deĄni-
tion of the event type each aggregate is able to apply. The aggregate
class is deĄned as a value of the entity attribute of the @EventEntity

annotation. This annotation is usually placed on the event interface
which implementation represents produced events.

The problem rises when the events need to be shared between sev-
eral modules. This is a common requirement as the CQRS pattern re-
quires the query domain to be separated. The event interfaces are there-
fore included in the shared library module same as the service-model

used in this project. The hard coded information of the full name of
the aggregate class used in the @EventEntity annotation then may
become hard to maintain.

Platform structure

The platform structure places the obligation on each developed
microservice to conduct with the connecting speciĄcation. This means
that every service must provide linking information for the Eventuate
platform services described in the previous section, namely, MySQL
database, Apache Kafka, Apache Zookeeper and CDC component.
This information is manually replicated in each service (restricted to
system properties) and therefore predisposed to errors.

67

5. Saga implementations comparison example

In the end, it is worth mentioning that as the Eventuate service is
the pure CQRS saga example, it has a few problems which have been
reduced or removed in the later Eventuate Tram implementation that
is in detail described in the following section.

5.5 Eventuate Tram service

The Eventuate Tram service quickstart is based on the new recently
introduced Eventuate Tram framework. This framework provides
several solutions to problems associated with the saga management
that are present in the Eventuate platform.

5.5.1 Platform

Similarly to the full Eventuate distribution, the Eventuate Tram estab-
lishes four services that form the Tram platform: Apache Zookeeper,
Apache Kafka, MySQL database and CDC component. The Ąfth ser-
vice, Console server, is not included as the platform does not present
this functionality by the time of this writing. As all mentioned ser-
vices represent the same functionality as they are responsible for in
the full Eventuate platform, individual descriptions of each service
are deĄned in detail in Section 5.4.1.

All services are deployed by the docker-compose conĄguration
distributed with the framework. This setup is based on the same
Eventuate docker images for zookeeper and kafka services, and with
mysql and cdcservice redeĄned by Tram.

5.5.2 Project structure

As Eventuate Tram does not restrict its services to the CQRS pattern,
this project, in contrast to Eventuate service, contains only three busi-
ness microservices and one support module. Every service is conĄg-
ured in a similar way as for the full platform containing the references
and authentication details for the MySQL database, Kafka framework,
and Apache Zookeeper service. The quickstart is distributed with

68

5. Saga implementations comparison example

the predeĄned docker-compose conĄguration Ąle that enables one
command startup of all speciĄed services.

The last service which is not required for the saga execution and
handling is the mongodb NoSQL server. This service is present only for
the demonstration purposes to allow the data retrieval from different
storage than the one that is used by the Eventuate platform.

The Ąrst microservice order-service is responsible for the order
requests and saga processing. It also provides the ability to query
persisted orders from the mongodb service.

The most important element in the order-service is the saga def-
inition that is located in the OrderSaga class. This deĄnition uses the
declarative approach with the Ćuent API to denote the saga in steps of
execution. Every step declares a handler method that will be invoked
when this step is reached by a reference to the private method in this
class.

The step provides an ability to advance the saga execution in three
ways Ű by invoking of the local function, by a call to the remote partic-
ipant or by the deĄnition of the compensation method for the saga.
Furthermore, the participant is able to deĄne individual actions that
comprise its engagement in the saga, the compensation handler and
several reply handlers that are distinguished by the data object class
that is received in the reply. This deĄnition provides a simple in one
place saga speciĄcation which is suitable for easier maintenance and
distribution. This declarative approach provides many advantages
that will be detailed in the following chapter.

The last two business services that contribute to the saga execution
are shipment-service and invoice-service. Both of these microser-
vices deĄne several command handler methods associated with the
channel that is dedicated to their respective functionality.

The channel is a main communication mechanism used in Even-
tuate Tram platform. It is denoted by a string name that needs to be
speciĄed in the command message as a target destination. The deĄ-
nition of channel associates commands that it is able to receive with
command handling methods that are invoked when the correspond-
ing commands are delivered. The command handler returns a Message

object identifying the outcome of the invocation. The failure outcome
of any participant will immediately result in the saga compensation.

69

5. Saga implementations comparison example

Both services are also connected to the mongodb server in order to
provide the browsing of created shipments or invoices respectively.

In conclusion, Tram remarkably simpliĄed the Eventuate platform
for the usage of sagas. Most importantly, it introduced a simple Ćuent
API for the saga deĄnition and the loss of CQRS restrictions. Alto-
gether, Eventuate Tram platform makes a suitable saga solution for
microservices based environment.

5.5.3 Problems

Destination identification

The destination channels in Tram are distinguished by a simple
string which may cause problems in the case of name conĆicts. Cur-
rently, the choice of the handler to be invoked depends on two re-
sources Ű the name of the channel and the command dispatcher id.
When both strings match the same destination even in different ser-
vices, the platform delivers the commands between handlers in the
random fashion which may become a complex issue in larger projects.

Command handlers

Handler methods that are referenced in the deĄnition are restricted
to the communication model provided by the platform. This allows a
single command to be sent to the required destination. Unfortunately,
the platform does not allow the saga to perform any other operation
without the participant invocation which may lead to unnecessary
empty commands and channels declarations.

Similarly, the saga may need to interact with the same participant in
several different commands. This may cause problems with deĄnitions
of compensation and reply handlers as the developer needs to mind
the logical grouping of participant invocations.

70

5. Saga implementations comparison example

5.6 LRA service

The LRA service is the Ąrst example which differs from previous quick-
starts as it does not restrict its services to any particular conventions.
Individual services are connected through the exposed REST routes.

5.6.1 Platform

This quickstart is composed as a set of WildFly Swarm microservices
applications. Every microservice is designed to be easily deployed to
the OpenShift container application platform provided by Red Hat,
Inc. [65] Both of these platforms are in detail described in the following
technology section.

Each service uses the fabric8-maven-plugin for the build and the
deployment to the OpenShift platform. This plugin provides a straight-
forward way of declaring the necessary conĄguration information the
platform requires to orchestrate the service according to the user de-
mands. This project applies the source to image (S2I) toolkit that builds
imminent Docker images which can be immediately deployed to the
OpenShift.

As it was already presented in the previous chapter, Narayana’s
long running actions are not composed as a platform, but rather as a
standalone coordination service. This project employs the standalone
Narayana LRA coordinator service which is constructed as a WildFly
Swarm microservice called lra-coordinator.

All other traditional microservices requirements are handled by
the OpenShift platform. This covers service discovery and location
transparency, monitoring, logging, resiliency and health checking
(failure discovery) which is why this conĄguration is not included in
example services.

5.6.2 Project structure

This project consists of Ąve WildFly Swarm microservices and one
support module. Each service is designed and conĄgured with the
fabric8-maven-plugin providing simple deployment to the Open-
Shift platform. Additionally, services contain a customized DockerĄle

71

5. Saga implementations comparison example

specifying environment properties and the target Swarm uberjar Ąle
which is used for the source-to-image (S2I) builds in OpenShift.

The support module is called the service-model. This module is
responsible for the speciĄcation of the LRA deĄnition and exchanged
JSON data formats, the description of the communication model used
in other services and the administration of common utilities.

The LRADefinition class denotes the JSON format of the LRA
representation. It presents a simpliĄed version of the LRA capabilities
for example purposes. The deĄnition includes only required attributes
Ű the name of the LRA, a list of individual actions that form the LRA
and the unspeciĄed object containing the user deĄned data associated
with the LRA. The example LRA deĄnition JSON format is available
in Figure 5.3.

Figure 5.3: LRA deĄnition example JSON

The individual actions that compose the LRA are incident to the
pattern services in this quickstart use for the communication. The
information exchange is based upon the REST architectural style which
expects that services adhere to predeĄned endpoint rules.

The action deĄnition consists of the name, the action type and
the service for which the invocation is intended. The service-model

project contains both ActionType and Service enumerations that de-
note possible values. The example action JSON is included in Figure
5.4.

The actual deployable microservices project consists of Ąve services
Ű api-gateway, order-service, shipment-service, invoice-service

and lra-coordinator. Every service is conĄgured with the addresses
of other services as they reĆect the OpenShift/Kubernetes application
names. All of exposed APIs are deĄned in the Appendix D.

72

5. Saga implementations comparison example

Figure 5.4: Action example JSON

The services that provide the LRA execution capabilities are the
order-service, the shipment-service and the invoice-service. Ev-
ery service provides a simple computation that contributes to the
LRA realization. Additionally, order-service also provides a user
invocation endpoint that can initiate the LRA. As all three services are
eventually subscribed to the LRA, they all provide REST endpoints
annotated by the LRA annotations for completion and compensation
invocations. Each service is conĄgured with an in-memory H2 SQL
database for the data persistence.

The lra-coordinator project is provided by the Narayana frame-
work. Although the LRA speciĄcation does not require the application
of the REST architectural style, the lra-coordinator operates a set
of REST endpoints that maintain the start of the LRA, gathering the
information about active and recovering LRAs, the management of the
nested LRAs, and the ability of participants to join (enlist in) or leave
the LRA. Narayana provides this project already as a WildFly Swarm
distribution. However, for the investigation purposes, this quickstart
still builds it as a part of the S2I deployment.

Even if the lra-coordinator presents the REST endpoints for the
LRA management, this quickstart invokes the coordinator by the client
module provided by Narayana. The lra-client dependency provides
the LRAClient class that is conĄgured with the coordinator location
and serves as a proxy separating the user from the actual REST invoca-
tions. This class is deĄned as a CDI bean to enable simple use through
the dependency injection. The participant enlisting and invocations are
deĄned by annotations present in the io.narayana.lra.annotation

package.

73

5. Saga implementations comparison example

The last service is the api-gateway. This module functions as an
interface that makes the LRA execution transparent for the invoking
services. The current state of the Narayana handling of LRA requests
will be described in the following section.

The api-gateway uses the LRA and action deĄnition classes from
the service-module to handle the LRA processing on behalf of the
initiating service. It exposes a REST interface that consumes the LRA
deĄnition JSON.

The actual LRA execution is managed in the LRAExecutor class.
This class provides one public method processLRA(LRADefinition

lraDefinition) : void that is responsible for starting and perform-
ing of the LRA, collecting the participants results and closing or com-
pensating the LRA. This method processes the LRA asynchronously Ű
each execution is propagated to the new thread from the cached thread
pool deĄned by the executor service present in the LRAExecutor class.

As this module was designed for this particular LRA scenario, it
is conĄgured to execute the LRA actions (order, shipment and invoice
requests) independently and in parallel. It collects the result of each ac-
tion and eventually closes or cancels the LRA with methods provided
by the LRAClient. Certainly, this is an area which could be in a more
general execution module further extended with, e.g., the sequential
conĄguration or the LRA nesting.

5.6.3 Problems

REST restriction

The Narayana Long running actions are a very efficient develop-
ment model for the microservices applications. Although it mainly
aims for the compatibility with the MicroProĄle speciĄcation (REST
and CDI), it does not restrict microservices to essentially any other
particular implementation restrictions. Even if the MicroProĄle is re-
stricted to REST invocations, Narayana LRA speciĄcation does not
require the usage this architectural style for the communication with
the coordinator. However, the only implementation that is currently
available is based on REST, but it certainly can be extended to other
communication protocols in the future.

74

5. Saga implementations comparison example

LRA execution

The current implementation is that the LRA framework provides
only coordination and management capabilities, it does not handle
the saga structuring and execution. Extraction of these capabilities
directly to the LRA processing would be certainly applicable in many
common speciĄcally reactive applications use cases which can ease
the development and orchestration of the saga execution.

In the LRA service is this problem addressed by the api-gateway

service which functions as a proxy for the lra-coordinator that han-
dles the saga execution. This approach does not affect the Narayana
LRA management. The only change from the traditional processing is
that series of LRA actions are performed by the api-gateway instead
of the initiating service. This allows the service to be immediately
available for the subsequent user requests and to scale the LRA pro-
cessing independently from the application services that utilize the
saga actions execution.

Single point of failure

By the time of this writing, the LRA coordinator represents a single
point of failure for the LRA processing as it contains the object store
that is used for storing the LRA information. User services also need
to be adjusted for the situations when the coordinator is not available.

5.7 Used technologies

This section provides a point of reference that summarizes the tech-
nologies applied in all of the above described quickstart examples.

5.7.1 Microservices platforms

Spring Boot

Spring Boot is a framework built on top of the Spring Framework
[87]. Its main focus is on the creation of standalone runnable applica-
tions that are easily employed in microservices architectures. It favors

75

5. Saga implementations comparison example

convention over conĄguration to allow the usage of Spring features
with a little of the Spring conĄguration [78].

The Spring Boot platform is composed into aggregate modules
known as starters. The starter is a dependency descriptor which con-
tains dependencies that are required to provide some functionality to
the application. In order to use Spring Boot, the spring-boot-starter

core module must be incorporated. Other useful modules, for instance,
spring-boot-starter-web or spring-boot-starter-data-jpa can be
provided to support the microservice adoption. Starters can be pack-
aged with the application using Maven or Gradle build conĄgurations.

Another responsibility of this framework is the packaging of the
application. The preferable way for the microservice is to create an
executable fat Java archive (jar) which contains all of the application
dependencies. The application can then be simply executed by a java

-jar command.
A spring Boot microservice must fulĄll two requirements Ű it must

follow a Maven layout convention and it must provide an entry point.
This can be any class annotated with the @EnableAutoConfiguration

annotation that starts the Spring Boot context.
Spring provides various ways for exposing available services. Reg-

istration servers like Eureka or Consul which are integrated within
the Spring cloud [81] can be used as the service discovery mecha-
nisms. For a manual approach, the microservices functionality can be
exposed through the RESTful API.

WildFly Swarm

WildFly Swarm is the Red Hat microservices initiative designed
to enable deconstructing the WildFly application server and pasting
just enough of it back together with the application to create a self-
contained executable jar [88]. It is compatible with the MicroProĄle
project.

The traditional Java Enterprise Edition (EE) approach follows the
development of the application and its subsequent deployment to the
application server which includes necessary dependencies which the
application requires to run. On the other hand, WildFly Swarm creates
a fat Java archive which packages all needed dependencies. This emu-

76

5. Saga implementations comparison example

lates the packaging of only requisite parts of the application server.
The resulting jar is a standalone runnable Java application which can
be executed by the java -jar command. It also provides Maven and
Gradle plugins to ease the development of Swarm applications.

The default fat jar (also called the uberjar) contains the user applica-
tion and the needed parts of the WildFly server. Swarm also supports
the packaging of the necessary server parts separately from the ap-
plication. This method is known as the hollow jar and is particularly
useful in the containerized environment as the server may be placed
in the lower layers that do not require frequent rebuilds.

The individual server parts are being delivered in packages named
fractions. The fraction represents a precise selection of capabilities that
can be included in the application. It may denote the exact WildFly
subsystem as JAX-RS or CDI, or a more sophisticated set of facilities
to provide some additional functionality like Red Hat Single Sign-On
(RHSSO).

5.7.2 Docker

Docker is an open source container platform designed to make it
easier to build, secure and manage the widest array of applications
from development to production both on premises and in the cloud
[76]. Docker containers allow applications to run on top of the kernel
services provided by the hosting system which considerably affects the
application performance. However, it still builds containers on top of
the generalized interface which warrants straightforward portability
between different machines.

A container image is a lightweight, stand-alone, executable package
of a piece of software that includes everything needed to run it Ű code,
runtime, system tools, libraries or settings [76]. All docker containers
that run on the same machine share the kernel services of the host.
The images are built on the concept of layers. The layer provides an
abstraction to share common Ąlesystems, conĄguration and other data
that can be reused by several docker containers.

Containers isolate applications from the operating system they are
running on and also provide the separation from other docker con-
tainers running concurrently on the same computer. Instead of virtual
machines which provide similar functionality, Docker virtualizes the

77

5. Saga implementations comparison example

operating system, not the hardware. Docker provides abstraction at
the application level.

Docker as a tool is targeted for the simple utilization. It provides a
uniĄed environment for both developers and administrators support-
ing the DevOps (development and operations) practices. Particularly,
developers proĄt from portable code that is able to run on almost
any operating platform supporting Docker2, while operations gain
visibility and management services from comprehensive control panel
covering all containerized applications.

Docker compose

Docker compose is a tool for the deĄning and running multi-
container Docker applications [77]. It allows to specify conĄguration
for several containers as YAML Ąle that can be passed as an argument
to the command line tool to run all services with a single command.

The YAML conĄguration includes the same options that are avail-
able as switches to native Docker commands. Additionally, it also
provides functionality to orchestrate the speciĄed services once they
are started through the docker-compose command line utility. These
functions include the network deĄnition which allows easy addressing
and the location transparency of employed containers, the preserva-
tion of the container volumes, recreation of only changed containers or
the speciĄcation of environment variables directly in the conĄguration
Ąle.

Docker compose represents a simple way to provide container
automation that may ease development and support of the continuous
delivery (CD) and integration (CI) pipelines.

5.7.3 Containerization platforms

OpenShift platform

Red Hat OpenShift is an open source container application plat-
form that brings Docker and Kubernetes to the enterprise [65] which
is generally built on top of the Red Hat Enterprise Linux. It provides

2. e.g., the image built on AMD cannot always run on Intel processors

78

5. Saga implementations comparison example

deployment, management and monitoring capabilities of the con-
tainerized software. OpenShift provides automation in the cloud en-
vironment that enables simple development workĆow including easy
provisioning, building, and deployment of enterprise applications
allowing faster delivery to end customers.

The platform provides extensive set of features like self-service
maintenance, polyglot (language independent) application support,
container-based environment and the automation of application builds,
scaling and health management. It can also administer persistence,
the application centric networking and multiple interaction models,
e.g., command line tools or the web console.

OpenShift is provided in several variants. The upstream open
source community project is OpenShift Origin which is a distribution
of Kubernetes optimized for continuous application development and
multi-tenant deployment [65]. On top of the Kubernetes platform,
Origin provides the developer and operations centric tooling, security,
logging or pipelining and many other capabilities. Origin is also avail-
able as the all in one virtual machine called Minishift which utilizes a
local single-node OpenShift cluster targeted for the local development.

The second alternative is the OpenShift Online. Currently dis-
tributed in version 3, it serves as a Red Hat multi-tenant public cloud
application development and hosting service. OpenShift Online pro-
vides an integrated environment that allows developers to focus on
the application development instead of its management through the
set of facilities like source-to-image builds eliminating the DockerĄles
creation, one click deployments through git hooks, automatic scal-
ing according to the traffic and the integration with many Integrated
Development Environments (IDEs).

OpenShift Dedicated offers a private, highly available OpenShift
cluster provided as a cloud service managed by Red Hat that is dedi-
cated to a single customer (single-tenant). It can be hosted on public
cloud services platforms like Amazon Web Services (AWS) or the
Google Cloud Platform (GCP).

The Red Hat OpenShift Container Platform provides a solution to
operate OpenShift on the customer’s own infrastructure Ű in the data
center or in the private cloud. It is based on the same code base as the
OpenShift Dedicated.

79

5. Saga implementations comparison example

The last OpenShift variant it the OpenShift.io. It provides an open
online end-to-end development environment for planning, creating
and deploying hybrid cloud services [89]. It supports an integrated ap-
proach to DevOps, including tools as one-click container management,
machine learning system and the integration with many practical
projects like fabric8 or Eclipse Che.

Kubernetes

Kubernetes is an open source project providing automation, scaling
and management of containerized applications [66]. It groups the
application containers into logical units for easier management and
discovery.

The features of Kubernetes include the service discovery, load
balancing, automatic container placement or the self-healing for the
automated failure recovery and rollbacks. It also manages the storage
orchestration, scaling of containers, secrets, container conĄguration
and batch capabilities.

Kubernetes platform is suitable and portable to any cloud environ-
ment involving public, private, hybrid clouds and the multi-cloud. It
allows application containers to be run in the clusters of physical or
virtual machines. Kubernetes is not a traditional PaaS (Platform as a
Service) solution but it provides the platform that many PaaS systems
build upon, e.g., OpenShift or Deis.

5.8 Performance test

To compare examples for their applicability in real systems from the
performance perspective, a simple performance test has been created
to investigate how they behave under large load.

As these projects represent only quickstart examples which were
not adjusted for performance problems, this test serves only as a ref-
erence to inspect the behavior of the simple starting application. It
does not correspond to the real production environment, but it still
references some of possible performance improvement points present
in each inspected framework.

80

5. Saga implementations comparison example

The test has been run in the cloud computing platform Digital
Ocean [90]. The virtual machine speciĄcation:

OS: Fedora 27 x64

Kernel: 4.13.9-300.fc27.x86_64

CPU: 6 vCPUs (Intel(R) Xeon(R) CPU E5-2650 v4 2.20GHz)

RAM: 16 GB

SSD: 320 GB

Java: OpenJDK 1.8.0_144

Maven: 3.5.0

Gradle: 2.13

The performance test is using the PerfCake [91] testing framework
to generate requested number of order requests. As all investigated
frameworks perform the saga execution asynchronously, the test Ąrst
requests the number of orders and then performs the get orders call
to the respective service in periodic intervals. The test ends when all
orders are processed or the deĄned timeout is reached (Figure 5.5).

Every example has been tested in two modes Ű 1000 order requests
with 10 threads (scenario 1) and 10 000 order requests with 100 threads
(scenario 2). The reason was that some of the frameworks are not able
to handle the later test because of various problems discussed in
following sections. The scenario 2 has been run three times for each
individual example, and the presented results are taken from the best
execution. Each test execution has been run in the same setup on a
new virtual machine.

Axon service

The major performance problem of this example was the artiĄcial
one second delay placed on the shipment and invoice response re-
ceival in the order-service. This problem has been reported to the
Axon framework and this quickstart has been provided with a Ąxed
conĄguration that removed the need for the timeout. This setting will
be included by default in the Axon next release.

Another problem was synchronous REST calls for the inter-service
command dispatching over distributed command bus. This issue has

81

5. Saga implementations comparison example

Figure 5.5: Saga performance test execution

been reported and it was still being investigated by the time of this
writing.

The performance test in the scenario 1 has been executed success-
fully in 51 seconds. The scenario 2 met the limits of the platform when
the database lock for the Ąrst command could not be taken after about
5000 requests. This scenario was run three times with the best result
of 5657 completed orders in 7 minutes and 44 seconds.

Eventuate service

This performance test discovered a new issue in the Eventuate
Local platform. When order requests are created in fast succession,
the database update may fail which results in redelivery of the same
events and therefore several orders for one request. This problem has
been reported to the Eventuate project.

In the scenario 1 the 1000 request has been created in 58 seconds,
but because of the above mentioned issue the Ąnal count reached
2000 orders. The scenario 2 was executed three times where each

82

5. Saga implementations comparison example

run produced different amount of completed orders. The presented
test execution Ąnished after 14 minutes and 46 seconds with 19791
completed orders.

Eventuate Tram service

The Eventuate Tram project performed well in the scenario 1 which
has been Ąnished in 34 seconds with all completed orders. However,
the scenario 2 in some cases produced an exception in Kafka service
that timed out on the session.timeout.ms Ű a timeout that is used
to detect consumer failures. The default value for this property is
hardcoded in the Eventuate code base and cannot be customized. This
issue has been reported to the platform as the feature request. The
representing successful run has been completed in 3 minutes and 56
seconds.

LRA service

This quickstart was for the performance test adjusted to be run
directly in the Docker platform to simulate a similar environment for
all examples. The test presented that the LRA coordinator orchestra-
tion does not inĆuence the processing performance. The scenario 1
has been Ąnished with exceptional overhead only 4 seconds and total
time 1 minute and 10 seconds while the scenario 2 Ąnished in 8 min-
utes and 58 seconds with just 22 seconds spent on the additional saga
processing. Both scenarios successfully completed all order requests.

Summary

Tables 5.1 and 5.2 present a summary of the performance test
executions. The processing delay deĄnes the time between the last
sent request and the last processed order and the total time denotes
time from the Ąrst request to the last completed order. The format for
both times is mm:ss. Results presented in Table 5.2 represent the best
result of three performed test executions in scenario 2.

83

5. Saga implementations comparison example

Project Processing
delay

Total Time Completed
requests

Axon service 00:46 00:51 1 000

Eventuate service 00:49 00:58 2 000

Eventuate Tram service 00:27 00:34 1 000

LRA service 00:04 01:10 1 000

Table 5.1: Performance test Ű scenario 1 (1 000 requests, 10 threads)

Project Processing
delay

Total time Completed
requests

Axon service 06:53 07:44 5 657

Eventuate service 14:05 14:46 19 791

Eventuate Tram service 03:20 03:56 10 000

LRA service 00:22 08:58 10 000

Table 5.2: Performance test Ű scenario 2 (10 000 requests, 100 threads)

84

6 LRA executor extension

One of the main goals of this thesis was the investigation of how the
saga pattern implementation in the Narayana LRA can be updated
for the better support of the LRA utilization in reactive microservices
environments. The LRA executor extension has been created as a proof
of concept implementation of the proposed solution which extends
the saga orchestration capabilities of the LRA coordinator with the
saga execution according to the speciĄed user deĄnition.

6.1 Motivation

With the current LRA implementation, the LRA coordinator is an
orchestrating service that manages the saga processing spanning mul-
tiple user services. When the service wants to start a new saga, it
contacts the coordinator which creates and starts a new LRA and re-
turns its identiĄcation (an URL combining coordinator address and
transaction object unique identiĄer) to the initiating service. This ser-
vice then begins the saga execution by invoking other services that
perform individual operations passing them the saga identiĄcation in
the HTTP header. The participant upon invocation contacts the coor-
dinator to enlist itself within the received saga. After the processing
is completed or an error occurs, the coordinator is requested by any
(commonly initiating) service that knows the saga identiĄcation to
complete or compensate the LRA execution.

This approach is suitably employable in any application with a
minimal impact on the existing code base. The coordinator ensures
that the saga guarantee is preserved Ű either all enlisted participants
complete their operations successfully or their compensating actions
are invoked. It does not inĆuence the actual saga execution which is
in full control of the initiating and other included services.

The current LRA implementation expects at some point a certain
system service to be able to make a decision of how the saga execution
should be Ąnished. This means that the system needs to track the
saga execution in one or more of its services. The LRA coordinator
maintains the information only about enlisted participants and has
no further knowledge about the performed saga semantics. The LRA

85

6. LRA executor extension

then commonly consists of a sequence of service invocations and the
Ąnalizing outcome decision depending on collected responses.

Certainly, this processing is something that can be implemented
by the user services1, but as it represents an expected use case in many
applications, the LRA executor extension has been created to present
a feature of the LRA execution on the user’s behalf. It extends the
coordinator orchestrating capabilities with the actual saga execution
based on the user description which allows developers to focus on the
saga business tasks rather than on its processing.

Another advantage of this approach is the decrease of the number
of exchanged messages required for the saga processing. As the coor-
dinator / executor receives all participating services in the user’s saga
deĄnition, it is possible to enlist each participant within the LRA prior
to its actual invocation. This means that the participating service is not
required to contact the coordinator. It also allows the coordinator to
manage participant invocations uniformly (number of retries, failure
policies). After the coordinator collects responses from all speciĄed
participants, it makes the decision of whether to complete or compen-
sate the LRA and optionally informs the initiating service about the
result.

This approach is deĄnitely not appropriate for every user saga
scenario. For instance, if the saga should be formed dynamically de-
pending on certain intermediate results, some services may be only
occasionally enlisted within the saga execution. However, long run-
ning transactions have generally well-deĄned purpose which is why
the LRA executor extension may be effective in many applications uti-
lizing the Narayana LRA implementation.

6.2 Design

The LRA executor extension project consists of two main modules Ű the
lra-definitions and the lra-executor. It is designed in a general
way to ensure the portability and the simplicity of further extensions.
In particular, users are encouraged to customize most of the classes to
accommodate executor to their speciĄc communication requirements.

1. e.g., the LRA service or a new Saga enterprise integration pattern recently intro-
duced in Apache Camel [92]

86

6. LRA executor extension

These modules do not have any direct dependency on the Narayana
project. However, this proof of concept includes custom code base
changes that adjust the Narayana lra-coordinator project to the ex-
ecutor capabilities providing the implementation based on the REST
protocol.

The lra-definitions module aims to provide a uniform interface
for the user LRA deĄnition. This deĄnition is intended to fully describe
the saga execution with all necessary information that the initiator
needs to propagate to participating services. The deĄnition can be
supplied to the executing service as the Java class or as a provided
JSON representation.

This module also maintains a set of builder classes that focus on
the ease of the saga development experience in a similar way as it is
implemented in the Eventuate Tram project (Section 4.7.3). It provides
a Ćuent API that promotes the readability and the presentation of the
LRA Domain SpeciĄc Language (DSL).

The lra-executor module represents a simple executor deĄnition
and both synchronous and asynchronous default processing imple-
mentation. Both execution methods consume the LRA deĄnition as
an argument. The default implementation executes individual LRA
actions in the same order as they were speciĄed in the LRA deĄnition.

The executor has been designed in a way that is intended for an
extension. This mainly includes the action invocation implementation
that is associated with communication conventions utilized in targeted
applications.

The current design also requires that the executor implementation
speciĄes how the LRA is started as the existing LRA orchestration
logic is available only in the Narayana’s lra-coordinator module. The
inclusion of this module in the LRA executor extension would result into
cyclic dependencies as the lra-coordinator has been modiĄed as the
presently only executor implementation. This problem can be easily
resolved by a refactoring of the lra-coordinator module that would
extract the LRA orchestration from the LRA REST processing to allow
further extensions with different protocols. The current integration
implementation is described in Section 6.4.

87

6. LRA executor extension

6.3 Implementation

This section describes the implementation of two modules included
in the LRA executor extension: LRA deĄnitions and the LRA executor.
Each component contains a set of unit tests that verify the solution ap-
plicability and also present basic usage examples. Figure 6.1 provides
an overview of the LRA executor extension utilization together with its
integration in the Narayana LRA project which is in detail discussed
in the following section. Class diagrams of individual modules are
available for reference in the Appendix E.

Figure 6.1: Narayana LRA executor extension component diagram

6.3.1 LRA definitions

The essential part of this module is the LRADefinition interface. It
encapsulates all necessary information describing the saga execution.
The full list of included properties is available in the Appendix E.

The lra-definitions module contains one implementation of this
interface called the LRADefinitionImpl which represents the JSON
representation of the LRADefinition interface. This is required as the

88

6. LRA executor extension

automatic JSON object creation can be determined only from the Java
classes, not interfaces. This representation has been included as the
JSON format is commonly utilized in the microservices applications,
but certainly it is not required in every environment (e.g., in-JVM
implementation).

The main concerned segment of the LRADefinition interface for
the saga executor is the list of Action objects that deĄne individual
saga participant invocations. The Action represents a functional inter-
face2 with one included method Ű ActionResult invoke(LRAData).
This interface is intended to be implemented by the respective executor
implementation to deĄne the communication procedures required to
invoke the participant (e.g., REST calls or JMS messages). It consumes
an LRAData object that encapsulates the optional saga data provided
by the initiating service which are to be included in invocations. The
returned ActionResult class provides information about the outcome
of the invocation with the potential failure description.

6.3.2 LRA executor

The main deĄnition of the executor capabilities is deĄned by the
LRAExecutor interface. This interface contains three methods (the full
API speciĄcation is available in the Appendix E):

• LRAResult executeLRA(LRADefinition) Ű This method starts
and executes the LRA according to the provided deĄnition. It
will return the result once all actions are processed.

• Future<LRAResult> executeLRAAsync(LRADefinition) Ű Sim-
ilarly as above, but the invocation of this method is asynchronous.
It returns a Future<LRAResult> which allows users to optionally
wait for the end of the execution.

• URL startLRA(LRADefinition) Ű This method starts a new LRA
based on the information provided in the deĄnition. This method
can be removed once the LRA executor extension is included in
the Narayana project.

2. an interface with exactly one abstract method

89

6. LRA executor extension

The AbstractLRAExecutor class represents a default abstract im-
plementation of the LRAExecutor interface. Both execution methods
process provided actions in the order they are deĄned in the received
LRA deĄnition. This class provides three abstract protected methods:

• ActionResult executeAction(Action, LRAData) Ű By default, it
represents a wrapper around the action invocation. Users can
override this method to customize the action processing.

• void completeLRA(LRAResult) Ű Signalizes the successful LRA
execution.

• void compensateLRA(LRAResult) Ű Indicates that the LRA
needs to be compensated.

The LRAResult class contains all information about the saga execu-
tion, namely, the LRA id, deĄnition and optionally the failure cause.

The current implementation functions exclusively as the LRA ex-
ecutor. The actual orchestration and tracking are left to the implemen-
tations of the LRAExecutor interface. The following section describes
how it is integrated on top of the current LRA implementation.

6.4 Narayana LRA integration

The LRA executor extension solution provided in this thesis has been
integrated and tested with the Narayana transaction manager 5.8.1.Fi-
nal.

A new module lra-rest-definitions provides a REST extension
of the LRA deĄnitions project. The RESTLra interface declares the
REST LRADefinition. It additionally speciĄes only the callback end-
point which can be optionally notiĄed about LRA completion. The
implementation of the action interface is included in the RESTAction

class. It is deĄned by the participant URL and an optional callback
resource address which speciĄes where the LRA operations handlers
are expected. If the callback address is not provided, the participant
target address is used3. This module also provides a custom builder

3. in future, it may be possible to add support for the retrieval of this information
from LRA annotations upon the participant invocation

90

6. LRA executor extension

class and the JSON representation for both the LRA deĄnition and
the action respectively.

The executor implementation is contained in the lra-coordinator

module which contains the main concerned class RESTLRAExecutor.
It represents the LRAExecutor implementation based on the REST
protocol. Internally, it also utilizes the Narayana LRAService class to
manage the saga lifecycle (start, complete and compensate of the LRA).

The RESTLRAExecutor provides a capability to enlist saga partici-
pants prior to the invocation. This allows to lose the requirement of
the enlisting call from participants and therefore the need to declare
LRA processing on their endpoints. However, participants are still
expected to expose endpoints for LRA handlers (e.g., complete, com-
pensate). For this reason, the lra-rest-definitions module contains
a ParticipantCallback interface that declares the required methods
for the RestEasy JAX-RS resource. The callback URL may be provided
as a part of the RESTAction deĄnition.

The integration also includes some minor modiĄcations to ease
the use of the deĄnition within the coordinator. This mainly concerns
a separate starting endpoint in the lra-coordinator which consumes
the RESTLra and the corresponding client method declaration in the
NarayanaLRAClient.

6.5 LRA executor quickstart

To demonstrate asynchronous LRA execution capabilities of the pro-
posed solution, we created a sample quickstart application LRA ex-
ecutor quickstart that utilizes the LRA coordinator with incorporated
LRA executor extension.

The example consists of four microservices: a saga service, two
participant services, and the LRA coordinator. The execution simu-
lates artiĄcial asynchronous processing. The LRA is initiated on user
request by the saga service which sends the predeĄned LRA deĄ-
nition to the coordinator and immediately returns a response. The
coordinator processes the deĄnition by two invocations of respective
participants and completes the LRA (processing can be monitored in
the coordinator’s output). Both participants only wait for speciĄed
time periods to simulate asynchronous tasks.

91

6. LRA executor extension

For the ease of use, the LRA coordinator is provided as a docker
image under xstefank/lra-coordinator:5.8.1.Final tag available
on Docker hub. The example is accommodated to be run with the
Docker compose or OpenShift conĄguration.

As the LRA start request to the saga service returns a response
immediately, it allows the saga service to be instantly available for
subsequent requests. This extraction of the LRA execution from the
invoking service enables the microservices system to stay responsive
in a way aligned with the reactive principles [3].

6.6 Future work

The current implementation of the LRA executor extension, discussed
in previous sections, provides a working proof of concept of potential
Narayana LRA execution capabilities. However, there are still some
tasks that need to be addressed before it can be included in the project.

The Ąrst assignment of the executor inclusion would be the refac-
toring of the current LRA code base to extract the orchestration logic
from the LRA coordinator. This will allow to employ different com-
munication patterns and protocols for the LRA processing on top of
the same service layer.

Apart from the refactoring, the main problem that needs to be ad-
dressed is the recovery capabilities of the executor. If the executor fails
in the middle of the execution, there is currently no failure handling
that may allow it to continue processing once it is recovered. One
possible solution can be implemented by persisting the LRA deĄni-
tion before the execution starts and also by marking each participant
invocation start and completion.

As a part of the failure handling, it may also be useful to allow
developers to declare a strategy that would be applied in case of the
participant failure. These strategies can be mapped exactly to saga
recovery modes.

Another issue that may present an improvement point is that cur-
rently, the default implementation executes actions sequentially in the
same order as they are speciĄed in the deĄnition. However, when the
actions do not depend on each other, it may be effective to execute
them in parallel. This information can be included directly in the LRA

92

6. LRA executor extension

deĄnition to permit users to specify the processing mode for separated
parts of the saga execution.

93

7 Conclusion

This thesis had three main objectives Ű to investigate the use of transac-
tion processing in the reactive microservices environment, to propose
an asynchronous saga execution solution for the Narayana transaction
manager and to present an example quickstart application utilizing
the proposed solution.

7.1 Saga pattern research

The initial study covered the examination of the basic transactions
concepts and the description of the well-known consensus protocols
that can be currently utilized for the distributed transaction commit
problem in modern architectures. Furthermore, it provided a detailed
description of the microservices architectural style and the application
of the reactive ideology in this environment.

The Saga pattern [4] methodology has been introduced as an al-
ternative approach to the traditional transactional processing. It pre-
sented that by the relaxation of ACID requirements, the distributed
system can provide availability instead of consistency guarantees
which is commonly desirable in reactive architectures. Because of
its non-locking nature and the simplicity of its programming model,
it was selected as the primary research subject for the utilization of
the transaction management in reactive microservices applications.

The current development support of the saga pattern for the pro-
duction environment was explored through the implementation of
an order processing microservices application that utilized the saga
processing in four Java frameworks Ű Axon, Eventuate ES, Eventuate
Tram and Narayana LRA. Every example provides a straightforward
quickstart introduction to the saga conĄguration, deĄnition, and exe-
cution in each respective framework. Almost all examples have already
been recognized in the community for their contribution.

These quickstart applications were also compared from a perfor-
mance perspective through a created test that examined saga process-
ing under large applied load. These performance experiments resulted
into several interesting discoveries of possible improvement points
in the saga processing of individual frameworks. In total, there were

94

7. Conclusion

two issues reported to the Axon framework, one problem reported to
the Eventuate ES and one feature request submitted to the Eventuate
Tram framework.

7.2 Narayana asynchronous LRA execution

The prepared Narayana LRA quickstart microservices application in-
troduced a simple API gateway that abstracted business services from
the saga processing by the asynchronous execution capability based
on the service provided LRA deĄnition. This processing implementa-
tion presented that Narayana LRA does not inĆuence how the user
structures or employs the LRA realization, provided that coordinator
is available.

However, the saga deĄnition and execution logic were required to
be provided by the application employing LRA. As the asynchronous
saga execution represents an expected use case in many reactive ap-
plications, the LRA executor extension was created to extract this saga
processing implementation and introduce it as an extension to the
current LRA coordination capabilities.

The project was structured into two logical parts Ű the LRA deĄni-
tions and the LRA executor.

The LRA deĄnitions module provided uniform LRA saga deĄ-
nition capabilities that fully described the LRA with all necessary
information required for its successful execution. The implementation
provided LRA deĄnition in the form of the Java class or the JSON for-
mat, but its universal design may promote further expansions utilizing
various data formats in the future.

The LRA executor represents a consistent method of the LRA pro-
cessing according to the speciĄed deĄnition. The speciĄcation sup-
ports both synchronous and asynchronous LRA invocation based on
the strategy deĄned by the implementation. Due to its general de-
sign, implementations are encouraged to adjust the execution to their
particular LRA use cases.

Both modules abstract the communication methods the executor
employs to contact LRA participants in the form of actions which
specify how the individual invocations are performed. The current
proof of concept was based on the REST protocol.

95

7. Conclusion

7.3 Contributions

This thesis provides a general overview of approaches that are avail-
able for the transaction processing in the microservices environment.
With regards to the reactive architectures, it in detail describes the
saga pattern as a suitable solution for the asynchronous transaction
execution in distributed applications.

The Ąrst important contribution is the research of the saga solu-
tions available for the Java platform. The created quickstart examples
function as a stable starting point for the saga deĄnition, conĄguration,
and execution demonstration in each respective framework. This the-
sis additionally also contributes with the detailed comparison and the
summary of advantages and disadvantages regarding saga processing
in implemented examples. The produced performance test revealed
several problems that have been properly reported to the respective
frameworks main developers.

The main contribution is concluded with the implementation of
LRA executor extension. This project provides a proof-of-concept pro-
totype that illustrates the LRA execution capabilities that are built
on top of the Narayana LRA implementation. The project is also pro-
moted by a created LRA executor quickstart application that presents
the asynchronous LRA processing.

The full list of projects produced within this thesis:

• Axon service Ű 2 reported issues

• Eventuate service Ű 1 reported issue

• Eventuate Tram service Ű 1 feature request

• LRA service

• Saga example performance test

• LRA executor extension

• LRA executor quickstart

• Narayana LRA integration

All of these projects are available as open source contributions.

96

7. Conclusion

This publication was also supported by a blog post article [74] and
the talk presented at the Laboratory of software architectures and
information systems [93].

7.4 Future tasks

The LRA executor extension provides a stable base prototype implemen-
tation of the LRA synchronous and asynchronous processing based
on the user speciĄed deĄnition. Even if it can be applied as the exten-
sion on top of the current Narayana LRA implementation, it may be
beneĄcial to adjust the Narayana code base to include it directly in the
future.

As the Narayana LRA speciĄcation is still in the pre-released state
[9], the inclusion of this project would require a proper speciĄcation,
implementation and API Ąnalization, and more comprehensive testing
support. Additionally, due to the design of the executor, there are many
possibilities of how it can be extended including support of new LRA
deĄnition formats, processing strategies and most importantly by the
promotion of new communication protocols facilitating the Narayana
LRA execution in microservices environments.

97

Bibliography

[1] M. Little, J. Maron, and G. Pavlik, Java transaction processing. Pren-
tice Hall, 2004.

[2] S. Newman, Building Microservices, 1st ed. O’Reilly Media, Inc.,
2015.

[3] J. Bonér, D. Farley, R. Kuhn, and M. Thompson, ŞReactive mani-
festo,Ť 2018. [Online]. Available: https://www.reactivemanifesto.
org/

[4] H. Garcia-Molina and K. Salem, ŞSagas,Ť ACM SIGMOD Record,
vol. 16, no. 3, pp. 249Ű259, 1987.

[5] Narayana, ŞNarayana,Ť 2018. [Online]. Available: http:
//narayana.io/

[6] A. framework, ŞAxon framework,Ť 2017. [Online]. Available:
http://www.axonframework.org/

[7] Eventuate.io, ŞEventuate.io,Ť 2017. [Online]. Available: http:
//eventuate.io/

[8] Eventuate, Inc, ŞEventuate tram,Ť 2018. [Online]. Available:
http://eventuate.io/abouteventuatetram.html

[9] Narayana, ŞNarayana LRA,Ť 2017. [Online]. Avail-
able: https://github.com/eclipse/microproĄle-sandbox/tree/
master/proposals/0009-LRA

[10] GNU / FSF, ŞGNU Lesser General Public License, version
2.1,Ť 1999. [Online]. Available: https://www.gnu.org/licenses/
old-licenses/lgpl-2.1.en.html

[11] M. Musgrove, ŞNarayana + wildĆy,Ť 2015. [On-
line]. Available: https://developer.jboss.org/servlet/JiveServlet/
download/53044-3-129391/jbug-brno-transactions.pdf

98

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://doi.org/10.1145/38714.38742
http://narayana.io/
http://narayana.io/
http://www.axonframework.org/
http://eventuate.io/
http://eventuate.io/
http://eventuate.io/abouteventuatetram.html
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/0009-LRA
https://github.com/eclipse/microprofile-sandbox/tree/master/proposals/0009-LRA
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html
https://developer.jboss.org/servlet/JiveServlet/download/53044-3-129391/jbug-brno-transactions.pdf
https://developer.jboss.org/servlet/JiveServlet/download/53044-3-129391/jbug-brno-transactions.pdf

BIBLIOGRAPHY

[12] T. Haerder and A. Reuter, ŞPrinciples of transaction-oriented
database recovery,Ť ACM Computing Surveys, vol. 15, no. 4, pp.
287Ű317, 1983.

[13] E. Brewer, ŞCAP twelve years later: How the "rules" have
changed,Ť Computer, vol. 45, no. 2, pp. 23Ű29, feb 2012.

[14] M. Kleppmann, Designing Data-Intensive Applications: The Big
Ideas Behind Reliable, Scalable, and Maintainable Systems. O’Reilly
Media, 2017.

[15] ISO, ŞInformation Technology - Database Language SQL,Ť
International Organization for Standardization, Maynard, Mas-
sachusetts, Standard, july 1992. [Online]. Available: http:
//www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt

[16] H. Berenson, P. Bernstein, J. Gray, J. Melton, E. O’Neil, and
P. O’Neil, ŞA critique of ANSI SQL isolation levels,Ť ACM SIG-
MOD Record, vol. 24, no. 2, pp. 1Ű10, 1995.

[17] M. Kleppmann, ŞTransactions: myths, surprises and opportuni-
ties,Ť 2018. [Online]. Available: https://martin.kleppmann.com/
2015/09/26/transactions-at-strange-loop.html

[18] Sun Microsystems Inc., ŞJava Transaction API,Ť 2002. [On-
line]. Available: http://download.oracle.com/otn-pub/jcp/jta-1.
1-spec-oth-JSpec/jta-1_1-spec.pdf

[19] Sun Microsystems Inc., ŞJava Transaction Service,Ť 1999. [Online].
Available: http://download.oracle.com/otn-pub/jcp/7309-jts-1.
0-spec-oth-JSpec/jts1_0-spec.pdf

[20] X/Open Company Ltd., ŞDistributed Transaction Processing:
The XA SpeciĄcation,Ť X/Open CAE SpeciĄcation, Dec. 1991.
[Online]. Available: http://pubs.opengroup.org/onlinepubs/
009680699/toc.pdf

[21] M. Richards, Java transaction design strategies, 1st ed. C4Media,
2006.

99

https://doi.org/10.1145/289.291
https://doi.org/10.1145/289.291
https://doi.org/10.1109/mc.2012.37
https://doi.org/10.1109/mc.2012.37
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
http://www.contrib.andrew.cmu.edu/~shadow/sql/sql1992.txt
https://martin.kleppmann.com/2015/09/26/transactions-at-strange-loop.html
https://martin.kleppmann.com/2015/09/26/transactions-at-strange-loop.html
http://download.oracle.com/otn-pub/jcp/jta-1.1-spec-oth-JSpec/jta-1_1-spec.pdf
http://download.oracle.com/otn-pub/jcp/jta-1.1-spec-oth-JSpec/jta-1_1-spec.pdf
http://download.oracle.com/otn-pub/jcp/7309-jts-1.0-spec-oth-JSpec/jts1_0-spec.pdf
http://download.oracle.com/otn-pub/jcp/7309-jts-1.0-spec-oth-JSpec/jts1_0-spec.pdf
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf

BIBLIOGRAPHY

[22] Spring community, ŞSpring documentation/Transaction
Management,Ť 2018. [Online]. Available: https://docs.
spring.io/spring/docs/current/spring-framework-reference/
data-access.html#transaction

[23] A. D. Kshemkalyani and M. Singhal, Distributed Computing: Prin-
ciples, Algorithms, and Systems. Cambridge University Press,
2008.

[24] L. Lamport, R. Shostak, and M. Pease, ŞThe byzantine gen-
erals problem,Ť ACM Transactions on Programming Languages
and Systems, vol. 4/3, pp. 382Ű401, July 1982. [Online]. Avail-
able: https://www.microsoft.com/en-us/research/publication/
byzantine-generals-problem/

[25] D. Skeen, ŞA quorum-based commit protocol,Ť Ithaca, NY, USA,
Tech. Rep., 1982.

[26] I. Keidar and D. Dolev, ŞIncreasing the resilience of distributed
and replicated database systems,Ť J. Comput. Syst. Sci., vol. 57,
no. 3, pp. 309Ű324, Dec. 1998. [Online]. Available: http:
//dx.doi.org/10.1006/jcss.1998.1566

[27] L. Lamport, ŞThe part-time parliament,Ť ACM Trans. Comput.
Syst., vol. 16, no. 2, pp. 133Ű169, May 1998. [Online]. Available:
http://doi.acm.org/10.1145/279227.279229

[28] OASIS, ŞWeb Services Atomic Transaction 1.2,Ť 2018. [On-
line]. Available: http://docs.oasis-open.org/ws-tx/wstx-wsat-1.
2-spec.html

[29] J. Gray and L. Lamport, ŞConsensus on transaction commit,Ť
ACM Trans. Database Syst., vol. 31, no. 1, pp. 133Ű160, Mar.
2006. [Online]. Available: http://doi.acm.org/10.1145/1132863.
1132867

[30] M. Štefanko, ŞMessaging providers in the SilverWare microser-
vices platform,Ť Bachelor’s thesis, Masaryk University, Faculty
of Informatics, Botanická 68a, Brno, Czech republic, 6 2016.

[31] A. Rotem-Gal-Oz, SOA Patterns. Manning Publications, 2012.

100

https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://docs.spring.io/spring/docs/current/spring-framework-reference/data-access.html#transaction
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://www.microsoft.com/en-us/research/publication/byzantine-generals-problem/
https://doi.org/10.1006/jcss.1998.1566
https://doi.org/10.1006/jcss.1998.1566
http://dx.doi.org/10.1006/jcss.1998.1566
http://dx.doi.org/10.1006/jcss.1998.1566
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/279227.279229
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
http://docs.oasis-open.org/ws-tx/wstx-wsat-1.2-spec.html
https://doi.org/10.1145/1132863.1132867
http://doi.acm.org/10.1145/1132863.1132867
http://doi.acm.org/10.1145/1132863.1132867

BIBLIOGRAPHY

[32] J. Bonér, Reactive microservices architecture, 1st ed. O’Reilly Media,
Inc., 2016.

[33] J. Lewis and M. Fowler, ŞMicroservices,Ť 2014. [Online].
Available: http://martinfowler.com/articles/microservices.html

[34] I. H. Sarker and K. Apu, ŞMvc architecture driven design and
implementation of java framework for developing desktop ap-
plication,Ť International Journal of Hybrid Information Technology,
vol. 7, no. 5, pp. 317Ű322, 2014.

[35] E. Stump P.E., ŞAll about learning curves,Ť Galorath Incorporated,
2014.

[36] C. Richardson, ŞPattern: Monolithic architecture,Ť 2017. [Online].
Available: http://microservices.io/patterns/monolithic.html

[37] C. Richardson, ŞIntroduction to Microservices | NGINX,Ť
2015. [Online]. Available: https://www.nginx.com/blog/
introduction-to-microservices/

[38] W. Hasselbring and G. Steinacker, ŞMicroservice architectures for
scalability, agility and reliability in e-commerce,Ť 2017 IEEE In-
ternational Conference on Software Architecture Workshops (ICSAW),
2017.

[39] K. Lieberherr and I. Holland, ŞAssuring good style for object-
oriented programs,Ť IEEE Software, vol. 6, no. 5, pp. 38Ű48, 1989.

[40] R. C. Martin and M. Martin, Agile principles, patterns, and practices
in C#, 1st ed. Prentice Hall, 2006.

[41] M. D. McIlroy, E. N. Pinson, and B. A. Tague, ŞUnix time-sharing
system: Foreword,Ť Bell System Technical Journal, vol. 57, no. 6, pp.
1899Ű1904, 1978.

[42] S. Newman, ŞPrinciples of Microservices,Ť 2016. [Online]. Avail-
able: http://samnewman.io/talks/principles-of-microservices/

[43] E. Evans, Domain-driven design. Addison-Wesley, 2003.

101

http://martinfowler.com/articles/microservices.html
https://doi.org/0.14257/ijhit.2014.7.5.29
https://doi.org/0.14257/ijhit.2014.7.5.29
https://doi.org/0.14257/ijhit.2014.7.5.29
http://microservices.io/patterns/monolithic.html
https://www.nginx.com/blog/introduction-to-microservices/
https://www.nginx.com/blog/introduction-to-microservices/
https://doi.org/10.1109/icsaw.2017.11
https://doi.org/10.1109/icsaw.2017.11
https://doi.org/10.1109/52.35588
https://doi.org/10.1109/52.35588
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
https://doi.org/10.1002/j.1538-7305.1978.tb02135.x
http://samnewman.io/talks/principles-of-microservices/

BIBLIOGRAPHY

[44] M. Conway, ŞConway’s law,Ť 2018. [Online]. Available: http:
//www.melconway.com/Home/Conways_Law.html

[45] N. Busi, R. Gorrieri, C. Guidi, L. roberto, and G. Zavattaro,
ŞChoreography and orchestration conformance for system de-
sign,Ť Lecture Notes in Computer Science, p. 63Ű81, 2006.

[46] R. Dijkman and M. Dumas, ŞService-oriented design: A
multi-viewpoint approach,Ť International Journal of Cooperative
Information Systems, vol. 13, no. 04, pp. 337Ű368, dec 2004. [Online].
Available: https://doi.org/10.1142%2Fs0218843004001012

[47] K. Benghazi, M. Noguera, C. Rodríguez-Domínguez, A. B.
Pelegrina, and J. L. Garrido, ŞReal-time web services or-
chestration and choreography,Ť in Proceedings of the 6th In-
ternational Workshop on Enterprise & Organizational Modeling
and Simulation, ser. EOMAS ’10. Aachen, Germany, Ger-
many: CEUR-WS.org, 2010, pp. 142Ű153. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1866939.1866952

[48] V. Farcic, The DevOps 2.0 Toolkit. Packt Publishing Ltd., 2016,
pp. 222Ű252.

[49] J. Humble and D. Farley, Continuous Delivery: Reliable Software
Releases through Build, Test, and Deployment Automation. Addison-
Wesley, 2010, pp. 263Ű265.

[50] Swagger community, ŞSwagger framework,Ť 2016. [Online].
Available: http://swagger.io/

[51] M. Fowler, ŞHumaneregistry,Ť 2008. [Online]. Available: http:
//martinfowler.com/bliki/HumaneRegistry.html

[52] M. T. Nygard, Release It!: Design and Deploy Production-Ready Soft-
ware. Pragmatic Bookshelf, 2018.

[53] C. Escoffier, ŞThe reactive landscape,Ť 2018. [Online].
Available: https://www.slideshare.net/RedHatDevelopers/
the-reactive-landscape

102

http://www.melconway.com/Home/Conways_Law.html
http://www.melconway.com/Home/Conways_Law.html
https://doi.org/10.1007/11767954_5
https://doi.org/10.1007/11767954_5
https://doi.org/10.1142/s0218843004001012
https://doi.org/10.1142/s0218843004001012
https://doi.org/10.1142%2Fs0218843004001012
http://dl.acm.org/citation.cfm?id=1866939.1866952
http://swagger.io/
http://martinfowler.com/bliki/HumaneRegistry.html
http://martinfowler.com/bliki/HumaneRegistry.html
https://www.slideshare.net/RedHatDevelopers/the-reactive-landscape
https://www.slideshare.net/RedHatDevelopers/the-reactive-landscape

BIBLIOGRAPHY

[54] C. Escoffier, Building Reactive Microservices in Java, 1st ed.
O’Reilly Media, Inc., 2017.

[55] RxJava community, ŞRxjava,Ť 2018. [Online]. Available: https:
//github.com/ReactiveX/RxJava

[56] C. Escoffier, Ş5 things to know about reactive programming,Ť
2017. [Online]. Available: https://developers.redhat.com/blog/
2017/06/30/5-things-to-know-about-reactive-programming/

[57] R. S. community, ŞReactive streams,Ť 2018. [Online]. Available:
http://www.reactive-streams.org/

[58] A. Rotem-Gal-Oz, ŞFallacies of distributed computing ex-
plained.Ť [Online]. Available: http://www.rgoarchitects.com/
Files/fallacies.pdf

[59] M. Fowler, ŞMicroservice trade-offs,Ť 2015. [Online]. Available:
https://martinfowler.com/articles/microservice-trade-offs.
html

[60] W. Vogels, ŞEventually consistent,Ť Communications of the ACM,
vol. 52, no. 1, p. 40, jan 2009.

[61] S. Gilbert and N. Lynch, ŞPerspectives on the CAP theorem,Ť
Computer, vol. 45, no. 2, pp. 30Ű36, feb 2012.

[62] H. Robinson, ŞThe cap faq,Ť 2013. [Online]. Available: https:
//henryr.github.io/cap-faq/

[63] S. Gilbert and N. Lynch, ŞBrewer’s conjecture and the feasibility
of consistent, available, partition-tolerant web services,Ť ACM
SIGACT News, vol. 33, no. 2, p. 51, jun 2002.

[64] D. Abadi, ŞConsistency tradeoffs in modern distributed database
system design: CAP is only part of the story,Ť Computer, vol. 45,
no. 2, pp. 37Ű42, feb 2012.

[65] Red Hat, Inc., ŞOpenShift container application platform,Ť 2018.
[Online]. Available: https://www.openshift.com/

103

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/
https://developers.redhat.com/blog/2017/06/30/5-things-to-know-about-reactive-programming/
http://www.reactive-streams.org/
http://www.rgoarchitects.com/Files/fallacies.pdf
http://www.rgoarchitects.com/Files/fallacies.pdf
https://martinfowler.com/articles/microservice-trade-offs.html
https://martinfowler.com/articles/microservice-trade-offs.html
https://doi.org/10.1145/1435417.1435432
https://doi.org/10.1109/mc.2011.389
https://henryr.github.io/cap-faq/
https://henryr.github.io/cap-faq/
https://doi.org/10.1145/564585.564601
https://doi.org/10.1145/564585.564601
https://doi.org/10.1109/mc.2012.33
https://doi.org/10.1109/mc.2012.33
https://www.openshift.com/

BIBLIOGRAPHY

[66] Kubernetes, ŞKubernetes,Ť 2018. [Online]. Available: https:
//kubernetes.io/

[67] G. Kim, P. Debois, J. Willis, and J. Humble, The DevOps Hand-
book: How to Create World-Class Agility, Reliability, and Security in
Technology Organizations. IT Revolution Press, 2016.

[68] T. Clemson, ŞTesting strategies in a microservice architecture,Ť
2014. [Online]. Available: https://martinfowler.com/articles/
microservice-testing/

[69] J. Gray, ŞThe transaction concept: Virtues and limitations (invited
paper),Ť in Proceedings of the Seventh International Conference
on Very Large Data Bases - Volume 7, ser. VLDB ’81. VLDB
Endowment, 1981, pp. 144Ű154. [Online]. Available: http://
jimgray.azurewebsites.net/papers/thetransactionconcept.pdf

[70] P. Helland, ŞLife beyond distributed transactions: an apostate’s
opinion,Ť in CIDR. www.crdrdb.org, 2007, pp. 132Ű141.

[71] P. Helland and D. Campbell, ŞBuilding on quicksand,Ť CoRR,
vol. abs/0909.1788, 2009. [Online]. Available: http://arxiv.org/
abs/0909.1788

[72] U. R. Sharma, Practical Microservices, 1st ed. Packt Publishing
Ltd., 2017.

[73] C. McCaffrey, ŞApplying the saga pattern,Ť 2015.
[Online]. Available: https://speakerdeck.com/caitiem20/
applying-the-saga-pattern

[74] M. Štefanko, ŞSaga implementations comparison,Ť 2017.
[Online]. Available: http://jbossts.blogspot.cz/2017/12/
saga-implementations-comparison.html

[75] R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering. Springer, 2014.

[76] ŞDocker,Ť 2018. [Online]. Available: https://www.docker.com/

[77] ŞDocker compose,Ť 2018. [Online]. Available: https://docs.
docker.com/compose/

104

https://kubernetes.io/
https://kubernetes.io/
https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/
http://jimgray.azurewebsites.net/papers/thetransactionconcept.pdf
http://jimgray.azurewebsites.net/papers/thetransactionconcept.pdf
http://arxiv.org/abs/0909.1788
http://arxiv.org/abs/0909.1788
https://speakerdeck.com/caitiem20/applying-the-saga-pattern
https://speakerdeck.com/caitiem20/applying-the-saga-pattern
http://jbossts.blogspot.cz/2017/12/saga-implementations-comparison.html
http://jbossts.blogspot.cz/2017/12/saga-implementations-comparison.html
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

BIBLIOGRAPHY

[78] Spring community, ŞSpring Boot,Ť 2018. [Online]. Available:
http://projects.spring.io/spring-boot/

[79] B. Porter, J. Zyl, and O. Lamy, ŞMaven,Ť 2018. [Online]. Available:
https://maven.apache.org/

[80] Axon community, ŞAxon framework reference guide,Ť 2018.
[Online]. Available: https://docs.axonframework.org/v/3.1/

[81] I. Pivotal Software, ŞSpring cloud,Ť 2018. [Online]. Available:
https://projects.spring.io/spring-cloud/

[82] Spring community, ŞNetĆix service registration and discov-
ery,Ť 2018. [Online]. Available: https://spring.io/guides/gs/
service-registration-and-discovery/

[83] N. Eureka, ŞEureka at a glance,Ť 2014. [Online]. Available:
https://github.com/NetĆix/eureka/wiki/Eureka-at-a-glance

[84] Pivotal software, ŞRabbitmq,Ť 2018. [Online]. Available: https:
//www.rabbitmq.com/

[85] Apache software foundation, ŞApache zookeeper,Ť 2018. [Online].
Available: https://zookeeper.apache.org/

[86] Gradle Inc., ŞGradle,Ť 2018. [Online]. Available: https://gradle.
org/

[87] D. Woods, ŞBuilding Microservices with Spring Boot,Ť
2016. [Online]. Available: http://www.infoq.com/articles/
boot-microservices

[88] A. Gupta, ŞWildĆy swarm: Building microservices with
java ee,Ť 2018. [Online]. Available: http://blog.arungupta.me/
wildĆy-swarm-microservices-javaee/

[89] Red Hat, Inc., ŞOpenshift.io,Ť 2018. [Online]. Available: https:
//openshift.io/

[90] Digital Ocean, LLC, ŞDigital ocean,Ť 2018. [Online]. Available:
https://www.digitalocean.com/

105

http://projects.spring.io/spring-boot/
https://maven.apache.org/
https://docs.axonframework.org/v/3.1/
https://projects.spring.io/spring-cloud/
https://spring.io/guides/gs/service-registration-and-discovery/
https://spring.io/guides/gs/service-registration-and-discovery/
https://github.com/Netflix/eureka/wiki/Eureka-at-a-glance
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://zookeeper.apache.org/
https://gradle.org/
https://gradle.org/
http://www.infoq.com/articles/boot-microservices
http://www.infoq.com/articles/boot-microservices
http://blog.arungupta.me/wildfly-swarm-microservices-javaee/
http://blog.arungupta.me/wildfly-swarm-microservices-javaee/
https://openshift.io/
https://openshift.io/
https://www.digitalocean.com/

BIBLIOGRAPHY

[91] PerfCake community, ŞPerfcake,Ť 2016. [Online]. Available:
https://www.perfcake.org/

[92] N. Ferraro, ŞThe saga pattern in apache camel,Ť 2018. [On-
line]. Available: https://www.nicolaferraro.me/2018/04/25/
saga-pattern-in-apache-camel/

[93] M. Štefanko, ŞDistributed transactions and the saga pattern,Ť
2018. [Online]. Available: https://speakerdeck.com/xstefank/
distributed-transactions-and-the-saga-pattern

106

https://www.perfcake.org/
https://www.nicolaferraro.me/2018/04/25/saga-pattern-in-apache-camel/
https://www.nicolaferraro.me/2018/04/25/saga-pattern-in-apache-camel/
https://speakerdeck.com/xstefank/distributed-transactions-and-the-saga-pattern
https://speakerdeck.com/xstefank/distributed-transactions-and-the-saga-pattern

A CQRS pattern

The Command Query Responsibility Segregation pattern describes
the separation of the application domain into two distinct parts Ű the
command model which is responsible for the application processing
that changes the system state and the query model that provides in-
formation about the current system state to the user including various
transformations or Ąltering.

This pattern extends a base given by the Command-query sepa-
ration (CQS) which was introduced by Bertrand Meyer in his book
Object-Oriented Software Construction. The main idea is to split the ob-
ject’s methods into two categories Ű queries which just return a value
without changing the state, and commands that change the state of
the object and do not return any result.

The commands are typically illustrated as simple objects identiĄed
by their respective names which are always expected to be in an im-
perative tense. They contain all necessary information that is needed
to perform the request. Each command is delivered to a speciĄed
aggregate’s command handler method that matches its identiĄer.

The query segment is responsible for the presentation of data to the
end user. This typically represents methods that return data transfer
objects (DTOs) or other data model entities. It can also provide several
representations of the presented information or prevent users from
multiple round trips by the data accumulation.

An aggregate is a main building block in the CQRS architecture.
It represents a data entity that is always kept in a consistent state.
The state can be changed by a reaction to the published event. Events
are produced (applied) by the aggregate as a reaction to the received
command.

To create more resilient systems, most of the CQRS frameworks
also employ an event sourcing mechanism. Every published event is
being persisted to the durable storage which allows the aggregate to
rebuild its state in the case of failure. This can be done just by replaying
(reapplying) of the already published events. It also allows to persist
and redeliver events that cannot be transmitted to the aggregate during
the failed state.

107

A. CQRS pattern

Another advantage of the domain separation is the performance
increase. As both sides are allowed to scale up independently, the
system can perform more operations concurrently.

The CQRS pattern may be particularly suitable for service (mi-
croservices) oriented systems. Because of their distributed nature,
it is easy to separate concerns and allow customers to interact with
different services depending on their performed activities.

To Ąnalize, although the CQRS pattern has its beneĄts (ease of
complexity and performance support), the practice showed that sys-
tems usually need to share the model between command and query
sides. If the system is not built with this patter in mind, the CQRS
may place very hard restrictions that may not be applicable in every
application.

108

B Reactive Streams v1.0.2 API

org.reactivestreams.Publisher

public interface Publisher<T> {

public void subscribe(Subscriber<? super T> s);

}

org.reactivestreams.Subscriber

public interface Subscriber<T> {

public void onSubscribe(Subscription s);

public void onNext(T t);

public void onError(Throwable t);

public void onComplete();

}

org.reactivestreams.Subscription

public interface Subscription {

public void request(long n);

public void cancel();

}

org.reactivestreams.Processor

public interface Processor<T, R>

extends Subscriber<T>, Publisher<R> {

}

109

C Saga scenarios

C.1 CQRS

Figure C.1: CQRS saga example success

Figure C.2: CQRS saga example invoice failure

110

C. Saga scenarios

C.2 Eventuate Tram service

Figure C.3: Eventuate Tram service saga example success

Figure C.4: Eventuate Tram service saga example invoice failure

111

C. Saga scenarios

C.3 LRA service

Figure C.5: LRA service saga example success

Figure C.6: LRA service saga example invoice failure

112

D Example applications public APIs

D.1 Axon service

Order service

POST /api/order

Query service

GET /api/orders

GET /api/order/{orderId}

GET /api/shipments

GET /api/shipment/{shipmentId}

GET /api/invoices

GET /api/invoice/{invoiceId}

D.2 Eventuate service

Order service

POST /api/order

POST /management/shipment

POST /management/shipment/fail

POST /management/shipment/compensation

POST /management/invoice

POST /management/invoice/fail

POST /management/invoice/compensation

Shipment service

POST /api/request

POST /api/compensate

Invoice service

POST /api/request

POST /api/compensate

113

D. Example applications public APIs

Query service

GET /api/orders

GET /api/order/{orderId}

GET /api/shipments

GET /api/shipment/{shipmentId}

GET /api/invoices

GET /api/invoice/{invoiceId}

D.3 Eventuate Tram service

Order service

POST /api/order

GET /api/orders

GET /api/order/{orderId}

Shipment service

GET /api/shipments

GET /api/shipment/{shipmentId}

Invoice service

GET /api/invoices

GET /api/invoice/{invoiceId}

D.4 LRA service

Order service

POST /api/order

POST /api/request

PUT /api/complete

PUT /api/compensate

GET /api/orders

GET /api/order/{orderId}

GET /api/health

114

D. Example applications public APIs

Shipment service

POST /api/request

PUT /api/complete

PUT /api/compensate

GET /api/shipments

GET /api/shipment/{shipmentId}

GET /api/health

Invoice service

POST /api/request

PUT /api/complete

PUT /api/compensate

GET /api/invoices

GET /api/invoice/{invoiceId}

GET /api/health

LRA coordinator

GET /lra-coordinator

GET /lra-coordinator/{LraId}

GET /lra-coordinator/status/{LraId}

POST /lra-coordinator/start

PUT /lra-coordinator/{LraId}/renew

GET /lra-coordinator/{NestedLraId}/status

PUT /lra-coordinator/{NestedLraId}/complete

PUT /lra-coordinator/{NestedLraId}/compensate

PUT /lra-coordinator/{NestedLraId}/forget

PUT /lra-coordinator/{LraId}/close

PUT /lra-coordinator/{LraId}/cancel

PUT /lra-coordinator/{LraId}

PUT /lra-coordinator/{LraId}/remove

GET /api/health

GET /lra-recovery-coordinator/{LraId}/{RecCoordId}

PUT /lra-recovery-coordinator/{LraId}/{RecCoordId}

GET /lra-recovery-coordinator/recovery

115

D. Example applications public APIs

API gateway

PUT /api/complete

PUT /api/compensate

GET /api/health

POST /api/lra

116

E LRA executor extension class diagrams

E.1 LRA definitions

Figure E.1: LRA deĄnitions class diagram

117

E. LRA executor extension class diagrams

E.2 LRA executor

Figure E.2: LRA executor class diagram

118

E. LRA executor extension class diagrams

E.3 Narayana integration

E.3.1 LRA REST definitions

Figure E.3: LRA REST deĄnitions class diagram

119

E. LRA executor extension class diagrams

E.3.2 LRA coordinator

Required integration changes

Figure E.4: LRA coordinator required integration changes

120

	Introduction
	 Problem domain
	 Research objectives
	 Research contributions
	 Structure

	Transaction concepts
	 Transaction
	 ACID properties
	 Atomicity
	 Consistency
	 Isolation
	 Durability

	 Transaction manager
	 TM types
	 JTA and JTS
	 XA specification

	 Transaction models
	 Local transaction model
	 Programmatic transaction model
	 Declarative transaction model

	 Distributed transactions
	 Consensus protocols
	 2PC
	 3PC
	 Paxos
	 Conclusions

	Microservices architecture pattern
	 Architectural pattern
	 Monolithic architecture
	 Microservices architecture

	 Principles of microservices
	 Reactive microservices
	 Reactive systems
	 Reactive programming
	 Reactive streams
	 Summary

	 Challenges
	 Distributed systems
	 Eventual consistency
	 CAP theorem
	 Operations
	 Human factor

	Saga pattern
	 Operations
	 Compensations
	 BASE transaction
	 Saga execution component and transaction log
	 Recovery modes
	 Distributed sagas
	 Current development support
	 Axon framework
	 Eventuate ES
	 Eventuate Tram
	 Narayana LRA
	 Summary

	Saga implementations comparison example
	 Common scenario
	 Order saga
	 Axon service
	 Platform
	 Project structure
	 Problems

	 Eventuate service
	 Platform
	 Project structure
	 Problems

	 Eventuate Tram service
	 Platform
	 Project structure
	 Problems

	 LRA service
	 Platform
	 Project structure
	 Problems

	 Used technologies
	 Microservices platforms
	 Docker
	 Containerization platforms

	 Performance test

	LRA executor extension
	 Motivation
	 Design
	 Implementation
	 LRA definitions
	 LRA executor

	 Narayana LRA integration
	 LRA executor quickstart
	 Future work

	Conclusion
	 Saga pattern research
	 Narayana asynchronous LRA execution
	 Contributions
	 Future tasks

	Bibliography
	CQRS pattern
	Reactive Streams v1.0.2 API
	Saga scenarios
	 CQRS
	 Eventuate Tram service
	 LRA service

	Example applications public APIs
	 Axon service
	 Eventuate service
	 Eventuate Tram service
	 LRA service

	LRA executor extension class diagrams
	 LRA definitions
	 LRA executor
	 Narayana integration
	 LRA REST definitions
	 LRA coordinator

