
University of West Bohemia

Faculty of Applied Sciences

Department of Computer Science and Engineering

Master thesis

Application of data

dependent discrete

Laplacian

Plzeň 2018 Jan Dvořák

Místo této strany bude

zadání práce.

Declaration

I hereby declare that this master thesis is completely my own work and that

I used only the cited sources.

Plzeň, 15th May 2018

Jan Dvořák

Acknowledgement

Author of this thesis would like to thank his supervisor, Doc. Ing. Libor

Váša Ph.D., for his guidance, valuable comments on the topic and provision

of source codes of Curvature and Compression benchmarking software.

This work was supported by the Ministry of Education, Youth and Sports

of the Czech Republic, project SGS 2016-013 Advanced Graphical and Com-

puting Systems and institutional research support (1311).

Abstract

Discrete Laplace operator has wide spectrum of applications in the mesh

processing, for example in smoothing, parameterization, editing and com-

pression. In the latter, Váša et al. [44] have shown, that using geometric

discrete Laplace operator results in residual entropy reduction, when com-

pressing dynamic meshes. To generalize the ideas of their work, a new type

of discrete Laplace operator, which should reduce the entropy even further,

is proposed in this thesis. Properties of such Laplacian are studied. It is

also applied in various mesh processing techniques and results are discussed.

Abstrakt

Diskrétní Laplaceův operátor má široké spektrum využití při zpracování

trojúhleníkových sítí, například při vyhlazování, parametrizaci, editaci a

kompresi. V posledním zmiňovaném, Váša et al. [44] ukázali, že s využi-

tím geometrického diskrétního Laplaceova operátoru lze dosáhnout snížení

reziduální entropie v případě dynamických trojúhelníkových sítí. V této práci

je navržen, jako zobecnění jejich práce, nový diskrétní Laplaceův operátor,

který by měl danou reziduální entropii snížit ještě více. Vlastnosti takového

Laplaciánu jsou studovány. Je také aplikován v různých technikách zpraco-

vání trojúhelníkohých sítí, a výsledky jsou diskutovány.

Contents

1 Introduction 1

2 Laplace operator 3

2.1 Discrete Laplace operator 3

2.2 Properties . 5

2.2.1 Sparsity . 5

2.2.2 Singular matrix . 7

2.2.3 Symmetry . 8

2.2.4 Positive weights . 9

2.2.5 Linear precision . 9

2.2.6 Locality . 10

2.2.7 Unit sum of weights 10

2.2.8 Definiteness . 11

2.2.9 Eigenvalues and eigenvectors 11

2.3 Types of discrete Laplace operator 12

2.3.1 Kirchhoff Laplacian 12

2.3.2 Tutte Laplacian . 14

2.3.3 Cotangent Laplacian 14

2.3.4 Mean Value Laplacian 16

3 Laplacian mesh processing 18

3.1 Mean curvature estimation 18

3.2 Smoothing . 19

3.2.1 Filtering using manifold harmonics 19

3.2.2 Iterative smoothing 21

3.2.3 λ|µ smoothing . 23

3.2.4 Implicit fairing using diffusion flow 24

3.2.5 Dynamic mesh smoothing 25

3.2.6 Suitable Laplacians for Smoothing 26

3.3 Parameterization . 27

3.4 Mesh editing . 29

3.5 Mesh morphing . 32

3.6 Least-squares meshes . 34

4 Mesh compression 36

4.1 Connectivity coding . 36

4.2 Geometry coding . 37

4.2.1 Static mesh compression 38

4.2.2 Dynamic mesh compression 40

4.3 Error metrics . 42

5 Data Dependent discrete Laplace operator 44

5.1 Theoretical background . 44

5.2 Construction . 44

5.3 Properties . 47

5.4 Weight coding . 49

5.5 Possible advantages . 50

6 Experimental results 51

6.1 Verification of properties . 51

6.1.1 Linear precision . 51

6.1.2 Definiteness . 53

6.2 Application in Laplacian mesh processing 54

6.2.1 Mean curvature estimation 54

6.2.2 Smoothing . 57

6.2.3 Parameterization . 66

6.2.4 Mesh editing . 70

6.2.5 Mesh morphing . 74

6.2.6 Least-squares meshes 78

6.3 Dynamic mesh compression 82

6.3.1 Entropy . 82

6.3.2 Rate-Distortion curve 83

6.3.3 Normal matrix conditioning 84

6.3.4 Asymmetric Data Dependent Laplacian 85

7 Conclusion 87

Bibliography 88

1 Introduction

Laplace operator is extensively used in geometry processing, for example

in mesh filtering ([43], [39] or [11]) or parameterization [14]. In the continu-

ous setting, it is very well understood. It has also some quite interesting

properties. Its generalization to the discrete case is however ambiguous.

Various discretizations exist, differing mainly in the weights used in the dis-

cretized formula. Each of the discretizations preserves different subset of the

properties (or their discrete equivalents) of the smooth Laplace operator. It

can be even proven, that no discretization can preserve a certain set of those

properties at once[50]. This makes each of the discretizations suitable for

different purposes.

As part of this thesis, a new discretization of Laplace operator will be pro-

posed in Chapter 5, minimizing the lengths of differential coordinates used

in compression of dynamic triangle meshes. It is based on the assumption,

that such minimization of lengths should lead to a decrease of the entropy

of the encoded data. The weights of such discretization are calculated using

a linear system constructed from mesh connectivity and geometry. It has

one other big advantage over other discretizations that require the geometry

information - it can be constructed from the geometry of more than one

mesh at once, without requiring any complex analysis of the shapes of those

meshes.

However, there is no direct geometric relation between vertex positions

and weights of such operator, which means that some of its properties are

difficult to prove. As a consequence, it is unclear, what Laplacian mesh

processing techniques is this discrete Laplace operator suitable for apart

from dynamic mesh compression, for which it is constructed. The goal of

this thesis is to study those properties and explore possible improvements the

Data Dependent Laplace operator can provide, in various mesh processing

tasks.

In the first part, a theoretical background of Laplacian mesh processing

will be provided. Laplace operator will be defined, and its properties de-

scribed in Sections 2.1 and 2.2. The most popular of its discretizations will

be listed, with the properties they preserve in Section 2.3. Then, some of the

mesh processing techniques, that require application of a discrete Laplace

operator will be described in Chapter 3. Each of the methods requires differ-

ent properties of the Laplacian used. These properties will be shown. Then,

a more detailed description of mesh compression problem will be provided

1

in Chapter 4.

In the second part of the thesis, a new discretization of Laplace operator

(so-called Data Dependent Laplacian) will be proposed. A process, how to

calculate its weights, will be described in Section 5.2. From the construction

process, some of the properties will be shown to be preserved or broken.

Those properties, that are not easy to be proven, will be stated.

Third part of the thesis will show the experimental results of applying

such Laplace operator in various mesh processing techniques. The results

will be evaluated, pointing out some of its issues and possible applications.

2

2 Laplace operator

Laplace operator is a second order differential operator denoted ∆. It is

defined as divergence of gradient [9]. That means:

∆ = ∇2 = ∇ · ∇.

The Laplace operator can be understood as a generalization of second order

derivative in a multi-dimensional space. For a function f on n-dimensional

euclidean space, it is equal to [43]:

∆f = div∇f =
n∑

i=1

∂2f

∂x2
i

.

In mesh processing, however, the term Laplace operator usually refers to

the Laplace-Beltrami operator ∆M, which extends its functionality to mani-

folds. Interesting property of ∆M is that if it is applied on vertex coordinate

function x, it evaluates to a surface normal of length dependent on mean

curvature [9], also called mean curvature normal:

∆Mx = −2Hn. (2.1)

2.1 Discrete Laplace operator

Although triangle meshes are usually designed to approximate smooth

surfaces, they are piecewise linear, thus no analytic second order differential

operator can be applied to obtain mean curvature normal. That means, for

an estimation, the Laplacian operator must be somehow discretized. When

measuring values on a regular grid, the discretization of Laplace operator

can be obtained using finite differences:

∆Xi,j =
Xi−1,j + Xi,j−1 − 4Xi,j + Xi+1,j + Xi,j+1

h2
,

where Xi,j is value on position (i, j) and h is horizontal and vertical dis-

tance between neighbouring cells. This can be viewed as a weighted sum of

differences between neighbouring values and the value in the cell (i, j):

∆Xi,j =
∑

(k,l)∈N(i,j)

1

h2
(Xi−k,j−l − Xi,j),

3

where N(i, j) is the set of positions of neighbouring cells. This can be

extended on triangle meshes, where instead of value differences, displacement

vectors will be used:

δi =
∑

vj∈N(vi)

wij(xj − xi), (2.2)

where δi is so-called differential coordinate of vertex vi, xi is its coordinate,

N(vi) is a set of its neighbouring vertices and wij is a weight assigned to

an edge between vertices vi and vj. Rearrangement of the formula reveals a

more convenient interpretation - displacement vector between weighted sum

of positions of neighbours and weighted position of the vertex itself.

δi =
∑

vj∈N(vi)

wijxj −
∑

vj∈N(vi)

wijxi,

The weight that multiplies the position of vi will be denoted as wi and

the formula shows, that it is equal to sum of all weights assigned to edges

incident to vertex vi. This leads to a formula 2.3 ,which will be used in the

majority of this thesis:

δi =
∑

vj∈N(vi)

wijxj − wixi. (2.3)

Given formula can be also rewritten in matrix form:

LX = D,

or

Lx = dx, Ly = dy and Lz = dz,

(2.4)

where X is a matrix containing vertex coordinates, D contains δ-coordinates

and L is so-called Laplacian matrix. The structure of L is as follows:

lij =

−wi i = j

wij vj ∈ N(vi)

0 otherwise

. (2.5)

The size of Laplacian matrix is |V |×|V |, where |V | is the number of vertices

of given triangle mesh. From the way the diagonal weight was calculated

it is clear that for each row of L, sum of non-diagonal elements is equal to

negative value of the diagonal element. In other words, sum of all coefficients

in each row is zero, independently on the choice of the weights wij.

4

2.2 Properties

Discrete Laplace operators and Laplacian matrices can have some inter-

esting properties which could be extensively utilized to improve the desired

results or speed up the computation. In general, however, not all properties

are present for every variant of Laplacian. In fact, Wardetzky et al. [50]

have presented four properties no discrete Laplace operator can satisfy sim-

ultaneously on non-regular surface triangulation. This makes every variant

suitable for different usages. In this section, the most important properties

will be described with their effect on Laplacian mesh processing techniques.

First of all, however, a few assumptions will be made. First assumption

is that all the weights are real, as some of the properties will be true only for

real matrices. Other than that, no duplicate edges or vertices are present in

the processed triangle mesh. The mesh should also have a large number of

vertices, about 1000 and more.

2.2.1 Sparsity

It can be shown, that for most triangle meshes the Laplacian matrix is

sparse. Structure of such matrix implies that when increasing its size, the

ratio between non-zero and zero elements gets lower, reaching zero in limit.

From definition 2.5, it can be seen that a non-diagonal element lij can be

non-zero if and only if there exists an edge between vertex i and vertex

j. This means that the number of non-diagonal non-zero elements can be

estimated as sum of all vertex degrees:

n ≤
∑

vi∈V

deg(vi) = d · |V |,

where V is set of vertices and d is the average vertex degree. Inequality is

used, because there is no rule forcing any weight to be non-zero. By adding

the number of diagonal elements, which is equal to |V |, we get estimate of

the total number of non-zero elements:

m ≤ |V | + d · |V |

m ≤ (d + 1) · |V |.

As the size of the Laplacian matrix is |V | × |V |, it remains to show that:

(d + 1) · |V | ≪ |V | · |V |

(d + 1) ≪ |V |.

5

Euler formula implies that average vertex degree is less or equal to 6 [9].

With increasing number of vertices, the average vertex degree is still the

same. This implies that the ratio between the non-zero and zero elements

is in fact getting lower. Thus, the Laplacian matrix is indeed sparse. This

enables the usage of special data structures and algorithms, which are more

memory and performance efficient compared to the standard ones working

with dense matrix structures.

The sparsity of L is one of the properties present for all of its variants

described in this thesis. However, it can be also shown that even LT L is

sparse. Element of LT L on position i, j can be calculated as dot product of

i-th and j-th column of L. Dot product can be non-zero only if there exist

an index k on which both row vectors are non-zero. If i = j, there can be

always at least one non-zero value at k = i = j, as even for every vertex

there is at least diagonal element lii with value −wi. For i 6= j, there are

two cases that can occur. First case is when

vi ∈ N(vj), (2.6)

in other words, vertex vi shares an edge with vertex vj. Then there are at

least two elements, with k = i or k = j respectively, that can be non-zero.

The second case occurs when vertices vi and vj do not share a common edge,

but there exists a vertex vk for which the statement 2.7 is true:

vk ∈ N(vi) ∧ vk ∈ N(vj) (2.7)

In other words, vi and vj must share at least one common neighbour vk.

Then for such index k, lki · lkj might be a non-zero value. For any other pairs

of columns there is no way their dot product can have any other value than

zero. The statements 2.6 and 2.7 can be combined to get general requirement

for non-diagonal non-zero element:

vj ∈ N2(vi),

where N2(vi) is 2-ring neighbourhood of vertex vi (see Figure 2.1). As num-

ber of vertices in given set is bigger than or equal to the size of the N(vi),

which determined the number of possible non-diagonal non-zero elements

corresponding row of L, it is obvious that LT L is less sparse. However, it

is still not dense, because average size of the 2-ring neighbourhood has up-

per bound of square of average vertex degree, which is still relatively small

compared to expected number of vertices of a triangle mesh. The next sec-

tion will point out why this property is so important in Laplacian mesh

processing techniques.

6

v0 v1

v2v3

v4

v5 v6

v7

v8v9v10

v11

v12

v13 v14 v15

v16

Figure 2.1: 2-ring neighbourhood of a vertex v0. Vertices v1, . . . , v6 form

a 1-ring neighbourhood. The 2-ring neighbourhood is created by adding

vertices v7, . . . , v16.

2.2.2 Singular matrix

Instead of calculating δ-coordinates from vertex positions, it is often re-

quired to do the opposite. Then, for n-dimensional space, n linear systems

of the following form must be solved:

Lxi = di,

where xi is an unknown vector of i-th coordinates of vertices and di is a

vector of i-th δ coordinates. Unfortunately, this cannot be solved, because

the Laplacian matrix is singular. This is a consequence of a property of a

discrete Laplace operator itself - translation invariance [34]. If the mesh was

translated by a vector u, using the formula 2.2, the δ-coordinates would be

calculated as:

δi
′ =

∑

vj∈N(vi)

wij((xj + u) − (xi + u)),

δi
′ =

∑

vj∈N(vi)

wij(xj − xi + u − u),

δi
′ =

∑

vj∈N(vi)

wij(xj − xi) = δi.

There are infinitely many triangle meshes with equal differential coordinates

and thus it is impossible to reconstruct the vertex positions without at least

one vertex position, so-called anchor, provided for each mesh component.

This statement directly implies the rank of the L:

rank(L) = |V | − k,

7

where k is the number of components of the given mesh. Providing position

x′
a of a vertex va means including equation of form

xa = x′
a

to the system that is being solved. In matrix representation, this is achieved

by extending L by a row that has all elements equal to zero except the

element at index a, which is equal to one. Vector di must be also extended

with a value xa
′
i. This creates a new linear system:

L̃xi = d̃i, (2.8)

where L̃ is the extended rectangular Laplacian matrix and d̃i is extended

vector of differential coordinates. As stated Sorkine [34], with only one

anchor vertex, the L̃ is ill-conditioned. Thus it is usually required to provide

more anchors. However, after that, the linear system is overdetermined and

a solution must be estimated in the least-squares sense:

L̃T L̃xi = L̃T d̃i.

It is important to point out that extending L by only rows with single non-

zero element cannot make the L̃T L̃ dense, for such extension only affects

diagonal elements, which were already non-zero.

Not only is the L̃T L̃ matrix sparse, it is also symmetric and positive

semi-definite, which are properties consequent to the transpose matrix mul-

tiplication with itself. This means a special direct sparse linear system solv-

ing algorithm can be used. For example, the Eigen library for C++ [16]

provides direct methods based on L∗L∗T or L∗DL∗T Cholesky factorization

[10] (there is no connection between Laplacian matrix L and the factor L∗),

which are specially designed to work with sparse symmetric and positive

semi-definite matrices.

2.2.3 Symmetry

Although it is not required, for some types of discrete Laplace operator,

the Laplacian matrix is symmetric, in other words:

wij = wji. (2.9)

Symmetry is one of the properties that as standalone have not as import-

ant influence, but are much stronger in combination with other properties.

However, if assumption that all elements are real is true, even eigenvalues

8

are real. Additionally, each two eigenvectors vi and vj that correspond to

different eigenvalues λi and λj are orthogonal, in other words:

vT
i vj = 0.

This will be further discussed in section 2.2.9.

Another advantage of symmetric matrices is lower storage requirements.

Mathematical frameworks can save storage space by storing only upper tri-

angle of the matrix, as the lower triangle contains the same values.

2.2.4 Positive weights

A discrete Laplace operator is said to have positive weights if all the

weights assigned to edges have the same sign or are zero. Even when all

the non-zero weights are negative, a similar discrete Laplace operator with

the same properties can be obtained by simply multiplying the Laplacian

matrix by −1. Such operator has clearly all the weights positive or zero.

Positive weights are very important in mesh parameterization, where

breaking this property may result in self intersections in the parameter space

[15]. This will be further discussed in Section 3.3.

2.2.5 Linear precision

As was shown in formula 2.1, Laplace operator is related to the surface

mean curvature. If the Laplace operator was applied to a point on plane,

the result should be a zero vector [50]. In the discrete case, the requirements

are the same, but they are not guaranteed by every discrete Laplacian. This

can be shown by adjusting formula 2.3:

δi = wi · (
∑

vj∈N(vi)

wij

wi

xj − xi). (2.10)

Note that the adjustment assumes the weight wi to be non-zero. This can

be interpreted as if δ coordinates were calculated by selecting a single point

representing the neighbourhood of the vertex vi, then calculating the dis-

placement vector between this representing point and the position of vi, and

multiplying it by wi. This means that δ coordinate is zero vector if the

representing point has the same position as vi. The representing point in

the planar case, however, can be placed generally everywhere on the plane

incident with the neighbouring vertices.

It is obvious that when the discrete Laplace operator is used to approx-

imate surface mean curvature and surface normal, it is important to use a

9

variant that does not break linear precision, otherwise the result would be

inaccurate for planar surfaces.

2.2.6 Locality

This property means that if the position of a single vertex is slightly

adjusted, the only differential coordinates that change are those in given

vertex neighbourhood. From equation 2.3, one would assume that for such

defined Laplacian, the locality is always present. However, it depends on

how the weights are calculated. Locality holds only when the weight wij

can be proven to be calculated using at most the positions of the neighbours

of vertices vi and vj.

Locality is required, when the processed mesh is expected to change

frequently, for example in real-time applications for 3D object modelling.

Instead of frequent recomputing of all weights and δ-coordinates, only those

affected by the mesh modification must be actually recomputed.

2.2.7 Unit sum of weights

It is often desired that the sum of all non-diagonal elements of Laplacian

matrix are equal to one. As shown in the Formula 2.10, the length of the

displacement vector depends on the weight assigned to the vertex, which

is equal to the sum of edge weights. Some of the mesh processing meth-

ods require, or have better results, if the discrete Laplace operator used is

independent of such value, or in other words, all the diagonal elements of

Laplacian matrix are equal to the same value k. Such Laplace operator

then meets the requirements of unit sum of weights, because it is possible

to obtain a similar Laplace operator with same properties by multiplying its

Laplacian matrix by 1
k
.

In Laplacian mesh smoothing, the length of δ coordinate vector determ-

ines how much the vertex moves in the process. If this property is broken,

there can be two vertices with the same surface curvature, which are after

one iteration moved by different distance, even though they should not.

The length of the δ coordinate vector is also important in mesh compres-

sion, where it influences quantization. The more the diagonal values vary,

the more problematic is to efficiently find quantization parameters that work

for the whole mesh [45]. It also influences the entropy of the data, as the

differential coordinates also contain additional information.

10

2.2.8 Definiteness

This property is defined only for symmetric Laplacian matrices. A sym-

metric matrix A of size n×n is said to be positive definite, if for any x ∈ R
n:

xT Ax > 0.

If the given scalar is always negative, the matrix is said to be negative

definite. If the scalar also results in zero value, the matrix is positive (or

negative) semi-definite. Otherwise, the matrix is said to be indefinite.

In Section 2.2.2 it was stated that matrix L̃T L̃ is positive semi-definite for

every discrete Laplace operator. However, for some of the variants, even the

Laplacian matrix is positive semi-definite. Positive semi-definiteness is im-

plied by positive edge weights. On the other hand, positive semi-definiteness

does not imply positive weights [50].

In the Laplacian mesh processing, positive semi-definiteness of Lapla-

cian matrix results in performance and accuracy improvements. Every lin-

ear system that is described by Laplacian matrix or any matrix created by

removing any column and its corresponding row, can be directly solved us-

ing algorithms based on L∗L∗T or L∗DL∗T Cholesky factorization, which

also allow to quickly solve large amount of linear systems differing only by

right-hand side vectors.

2.2.9 Eigenvalues and eigenvectors

Interesting properties of a Laplacian matrix are hidden in its eigenvalues

and eigenvectors. Since L is singular, its smallest eigenvalue in the sense

of magnitude is λ0 = 0, no matter its definiteness and symmetry. The

corresponding eigenvector contains the same value in all elements. This

means that for any vector, that has all the values same, multiplication with

a Laplacian matrix results in zero vector. This can be proven using Formula

2.2. Suppose that all vertices have the same x-coordinate equal to some

constant c. Then, for any vertex, the x-coordinate of δ is zero:

δix =
∑

vj∈N(vi)

wij(c − c) = 0.

One particularly interesting eigenvalue is the smallest non-zero eigen-

value that is often referred to as Algebraic connectivity or Fiedler value. Its

corresponding eigenvector, so-called Fiedler vector [13], is used in the field

of graph theory, for example in spectral graph clustering, or partitioning [6].

In computer graphics, this vector can be used for example in 1D embedding,

11

where it is desired to embed a mesh on a line, so that all the vertices lie as

close as possible to their neighbours [54].

The most important property is, however, shared across all the eigen-

vectors. In the smooth one-dimensional case, it can be shown, that sine and

cosine functions are eigenfuctions of Laplace operator:

∆(sin(x)) = −sin(x).

In the discrete case, the equivalents can be eigenvectors of Laplacian matrix[9].

If the Laplacian matrix is symmetric and positive semi-definite, the eigen-

vectors form an orthogonal basis. Finding a representation of a vector in

such basis is equivalent to performing the Fourier transform on a signal [39].

This is performed accordingly:

f =
n∑

i=0

〈ei, f〉 ei, (2.11)

where 〈a, b〉 = aT b, f is a function assigning a value to each vertex, ei is

i-th eigenvector of the Laplacian matrix and n is number of eigenvectors.

2.3 Types of discrete Laplace operator

In this section, various types of discrete Laplace operator will be dis-

cussed. For each type, its advantages and flaws will be described with their

consequences pointed out. Generally, discrete Laplace operators can be di-

vided into two separate groups according to the data needed for calculating

the weights.

The first group is called Combinatorial Laplacians. These Laplacians are

calculated using the mesh connectivity only. This means that two triangle

meshes with identical connectivity, but completely different shape, share the

same Laplacian matrix.

The second group, so-called Geometric Laplacians, are as the name im-

plies calculated using also the mesh geometry. With more information re-

quired, geometric discrete Laplace operators usually approximate more pre-

cisely the smooth case. However, this also introduces some disadvantages.

2.3.1 Kirchhoff Laplacian

This variant of combinatoric Laplacian, often referred to as Graph Lapla-

cian, is primarily used in the field of graph theory. It is named after the

German physicist Gustav Kirchhoff, who is most known for his contribution

12

in the field of electrical engineering. The matrix of the Kirchhoff Laplacian,

usually called Kirchhoff’s matrix, is very popular for its use in the Matrix-

Tree-Theorem which is usually attributed to Kirchhoff [24], even though he

never explicitly stated it [19]. Matrix-Tree-Theorem says that the number

of all unique spanning trees of a graph can be calculated as determinant of

a matrix generated by deleting any single row and any single column of the

Kirchhoff’s matrix [24].

Matrix of Kirchhoff Laplacian can be calculated as:

LK = D − A,

where D is matrix containing vertex degrees on diagonal and A is so-called

adjacency matrix, which contains elements equal to one on position i, j only

if there exists an edge between vertices vi and vj. The structure of the LK

is as folows [34]:

lK
ij =

deg(vi) i = j

−1 vj ∈ N(vi)

0 otherwise

. (2.12)

Applied on the vertex positions, the differential coordinates of vertex vi can

be calculated from following formula:

δKi =
∑

vj∈N(vi)

(xi − xj).

As any non-diagonal value is equal to minus one, it is obvious that LK

is symmetric. Even though all the weights are negative, they have the same

sign. Thus, the positive weight property is not broken. Those two properties

imply, that Kirchhoff’s matrix is positive semi-definite. In the section 2.2.6,

it was pointed out, that the only way how the discrete Laplace operator, as

defined in this thesis, can break the locality, is through the weight calcula-

tion. With Kirchhoff Laplacian, this can never occur, because the weights

are constant.

However, the unit sum of weights property is obviously broken, and more

importantly, the linear precision does not hold [50]. The reason is as fol-

lows: Applying Kirchhoff Laplacian on vertex positions can be interpreted

as calculating displacement vector between average position of neighbours

and the vertex itself, which is then multiplied by the vertex degree. This

implies that the vertex must lay exactly in the average neighbour position to

achieve zero length differential coordinate. On non-uniformly triangulated

planar surfaces, vertices generally do not have to lay exactly in such position.

13

2.3.2 Tutte Laplacian

This combinatorial Laplacian is named after William Thomas Tutte, Brit-

ish mathematician, who in the field of mesh processing is mostly known for

his barycentric mapping theorem [41], which will be discussed in the Section

3.3.

Formula for calculating the Tutte Laplacian matrix is the following:

LT = −D−1LK = D−1A − I.

It is obvious from the formula, that Tutte Laplacian is closely related to the

Kirchhoff Laplacian. In fact, it can be interpreted as its normalized variant,

because each row is multiplied by the negative value of the inverse of the

corresponding vertex degree. This is even more clear when the structure of

LT is examined:

lT
ij =

−1 i = j
1

deg(vi)
vj ∈ N(vi)

0 otherwise

. (2.13)

Such discrete Laplace operator results in following differential coordinates:

δT i =
1

deg(vi)

∑

vj∈N(vi)

(xj − xi).

It can be seen that the representing point from which the displacement vector

is calculated is again the barycenter of neighbours.

By normalizing, the unit sum of weights is achieved. However, the sym-

metry of Laplacian matrix is sacrificed. As weight calculation still involves

only connectivity information, the locality is preserved. Even though it has

all the weights positive, the matrix is not positive semi-definite as this ter-

minology works only for symmetric matrices.

Although the differential coordinates are very similar to those generated

by Kirchhoff Laplacian, because both variants use the barycenter as repres-

enting point of neighbours, the Tutte Laplacian has main advantage in that

the lengths do not depend on the vertex degree. This is mostly important

in mean curvature estimation. In spite of both variants breaking linear pre-

cision, the Kirchhoff Laplacian is even worse, because even a vertex on a

plane could have the highest curvature from the whole mesh if it had the

highest valence.

2.3.3 Cotangent Laplacian

Previously mentioned variants of discrete Laplace operator were not really

suitable for differential operator approximation because of the broken linear

14

precision. This problem is targeted by Cotangent Laplacian. It is often

attributed to Pinkall – Polthier, who used a similar formula based on finite

element method to calculate discrete minimal surfaces[26]. Their research

was further extended by Meyer et al., who then proposed a set of discrete

differential operators on triangle meshes and used the cotangent Laplacian

for estimating the mean curvature normal vector [23].

The formula to calculate Cotangent differential coordinates is as follows:

δCi =
1

2Ai

∑

vj∈N(vi)

(cot αij + cot βij)(xj − xi), (2.14)

where αij and βij are angles opposite to the edge between vertices vi and vj,

as can be seen in Figure 2.2.

vi

αij

βij

vj

Figure 2.2: Angles αij and βij used to calculate weight wij of Cotangent

Laplacian.

Ai is an area on the surface belonging to the vertex vi. There are multiple

ways to obtain Ai. The simplest way is to divide the area of each triangle

to thirds:

Asimplei =
∑

vj∈T (vi)

1

3
Aj,

where T (vi) is a set of triangles incident to vertex vi [11]. Another approach

is approximating the area of a Voronoi cell. If all the incident triangles are

acute, the vertices forming the boundary of the cell are their circumcenters.

However, for obtuse triangles, a problem arises. The circumcenter lays out-

side the triangle, making it possible for an incident area to be bigger than

the actual area of the triangle. Meyer et al. suggested a triangle division, so

that for the vertex incident to obtuse angle, the corresponding area is half

of the triangles area and for other two vertices, it is one fourth (see Figure

2.3) for each. One other possibility is to assign each vertex unit area, which

results in less accurate curvature estimation. However, the direction of such

differential coordinates is still the same, it saves much of computing time,

and most importantly, the corresponding Laplacian matrix is symmetric.

15

v5

v1v2

v3

v4

c5v0

c1

c2

c3

c4

c′
5

Figure 2.3: Area incident to vertex. For obtuse angle, the half point of the

opposite edge is used to divide the triangle area instead of the circumcenter.

Calculating the weights and areas still requires only 1-ring neighborhood,

which means that locality is preserved. As was already mentioned, the sym-

metry depends on how the incident area is estimated. In fact, as Wardetzky

et al. [50] stated, the symmetric cotangent Laplacian is also positive semi-

definite. If it is desired, the formula can be also adjusted so that the sum

of weights is unit, but then again, the symmetry is sacrificed. The most im-

portant property of Cotangent Laplacian is linear precision. Given discrete

Laplace operator was specially designed to approximate mean curvature nor-

mal vector which has obviously zero length on planar surface. However, if

the sum of angles incident to an edge is greater than π, the corresponding

weight is negative. Another problem arises, when one of the incident angles

gets close to π, as

lim
x→π−

cot(x) = −∞.

In spite of all the issues related to large angles, the cotangent Laplacian

is probably the most widely used discrete Laplace operator[9]. It is also

important to note, that by constantly making sampling denser in a particular

way, the cotangent Laplacian converges to the smooth Laplace operator[50].

2.3.4 Mean Value Laplacian

Mean Value Laplacian (offten abbreviated to MV Laplacian) was designed

by Floater [15] to address the negative weights of Cotangent Laplacian,

which result in undesired triangle flipping in mesh parameterization.

Mean value coordinates are generalization of barycentric coordinates for

star-shaped polygons in the sense that for a point v0 lying inside of the planar

star-shaped polygon consisting of points v1, v2, . . . , vk a set of weights λ can

16

be found, so that

v0 =
k∑

i=1

λivi,

k∑

i=1

λi = 1.

One way to calculate the λ weights is to use the cotangent formula (2.14).

However, as it was mentioned before, given λ weights can be negative, even

though the point lies inside the polygon, which is in contradiction with

the concept of barycentric coordinates. Floater proposed weights that are

positive for star-shaped polygons, based on the mean value theorem for

harmonic functions (hence the name Mean value coordinates):

λi =
wi∑k

j=1 wj

, wi =
tan(αi−1

2
) + tan(αi

2
)

‖vi − v0‖
,

where angles αi−1 and αi are shown in Figure 2.4.

v0

αi−1

αi

vivi−1

vi+1

Figure 2.4: Angles αi−1 and αi used to calculate weights of Mean Value

Coordinates.

MV Laplacian is then constructed with weights calculated as λ weights.

For vertex on planar surface, the representing point from which the dis-

placement vector is equal to the weighted sum of neighbours with λ weights.

Resulting weighted sum is exactly equal to the position of the processed

vertex, which is obvious from the definition of mean value coordinates. As

a consequence, the linear precision cannot be broken. Another property

forced directly by the definition is the unit sum of weights. It can be also

shown that all the weights are positive and the operator is local. However,

the symmetry is broken and given operator does not converge to the smooth

case with denser sampling[50].

17

3 Laplacian mesh processing

This chapter targets the most popular methods in mesh processing, that

involve application of the discrete Laplace operator, except for the mesh

compression, which has whole chapter reserved for itself, as the Data De-

pendent discrete Laplace operator was initially designed for compression.

3.1 Mean curvature estimation

Mean curvature, as well as other differential properties defined on triangle

mesh, is extensively used in mesh processing, for example in shape analysis.

It also serves for detection of significant features of triangle meshes, as usu-

ally those features are located in places with higher magnitude of curvature.

The mean curvature estimation can be derived from the Formula 2.1:

H(vi) =
1

2
‖δi‖ ,

where H(vi) is an absolute value of mean curvature at vertex vi. To obtain

a sign, one must compare the direction of normal vector and a differential

coordinate. If the vectors point to opposite directions, the mean curvature is

positive, otherwise it is negative. Although there exists a lot of algorithms

that are more precise (for example [30] or [27]), the mean curvature es-

timation using discrete Laplace operator is still being used, as it is fast,

straightforward and easy to understand.

The most suitable discrete Laplace operator should have following prop-

erties: linear precision and convergence. As was already explained, broken

linear precision may result in non-zero curvature estimate on planar sur-

faces, particularly with non-uniform sampling. Convergence assures, that

when the density of sampling approaches the smooth case, the estimate gets

more accurate. The only discrete Laplace operator that fulfils both proper-

ties is the Cotangent Laplacian. In fact, the mean curvature estimation was

one of the motivations to its construction [23]. From all its variants, the one

normalized with areas incident to vertices is most accurate.

However, instead of requiring the most accurate results, an approxima-

tion that attempts to capture the distribution of curvature on the measured

surface is often desired. The result still provides enough information to allow

detection of significant points as the relations between values are preserved.

This means, that other variants of discrete Laplace operator can still be used

to obtain useful results.

18

3.2 Smoothing

Processed triangle meshes are often result of some 3D object capturing

method. Such method usually introduces high frequency noise into data,

which is undesired, as it distorts the information. To eliminate the noise,

smoothing or some low-pass filtering technique is usually employed. Smooth-

ing can be also used to smooth out rough edges of a model.

In the past, complex techniques based on energy minimization were usu-

ally used (e.g. [51]). Those techniques were computationally expensive [39].

By employing discrete Laplace operator, simpler methods with comparable

results were created. Those techniques are easy to implement and result in

much less expensive computations.

3.2.1 Filtering using manifold harmonics

In the Section 2.2.9, it was shown, that eigenvectors of a Laplacian matrix

form an orthogonal harmonic basis. Just like in signal processing, where the

signals are often filtered in the frequency domain, one can interpret vertex

positions as 3D signals, transform them by finding their representation in

the harmonic basis using Formula 2.11 and apply the filter on such repres-

entation.

The simplest way to perform smoothing in harmonic basis is to recon-

struct the positions only from a subset of eigenvectors corresponding to lower

frequencies:

f̂ =
m∑

i=0

〈ei, f〉 ei,

where m < n is number of the eigenvectors corresponding to m smallest

eigenvalues [43]. This also means, that it is not necessary to compute all

the eigenvectors of Laplacian matrix, but only the ones that will be used in

the reconstruction. The result of such smoothing technique can be seen in

Figure 3.1.

Figure 3.1: Reconstruction of the positions using subset of eigenvectors form-

ing the harmonic basis. Source: [43]

19

Sometimes, it is not desired to remove all the high frequency information,

only to attenuate it. In such case, another technique is required. In signal

processing, this would be achieved by following process: User specifies the

desired frequency response of the filter, which represents how much each

frequency will be amplified or attenuated. Then, the signal is transformed

into the frequency domain, and each of its coordinates in the frequency

basis is multiplied according to the frequency response. Finally, the signal is

transformed back to the time domain. In the mesh processing, one can apply

almost identical technique. Only difference is the basis used to represent the

frequencies on the mesh and the transformation used. This technique is not

only suitable for low-pass filtering, it can be used for more advanced filtering

tasks as band-attenuation etc. (see 3.2).

Figure 3.2: Mesh filtering using frequency response. From left to right: Ori-

ginal mesh, low-pass, enhancement and band-exaggeration filters. Source:

[43]

The Laplacian matrix that can be used in the manifold harmonic basis

approach, must be symmetric and positive semi-definite, because its eigen-

vectors must form orthogonal basis. Only two discrete Laplace operators

have such Laplacian matrix - Kirchhoff’s Laplacian and symmetric variant

of Cotangent Laplacian. The issue of Kirchhoff’s Laplacian is, that its ei-

genvectors are not geometry aware. This can be seen in Figure 3.3, where

the distortion of iso-contours on the function represented by one of the ei-

genvectors (so-called eigenfunction) is present. The reason of that behaviour

are the different sampling rates across the surface of the mesh.

The main issue with smoothing spectral approaches is that it is compu-

tationally expensive to calculate eigenvectors for Laplacian matrices repres-

enting meshes with thousands of vertices, although the sparsity of the matrix

can be utilized, for example using iterative Arnoldi method [12], that is part

of the ARPACK library. It is also almost impossible to store the whole basis

in the system memory [43]. The following smoothing approaches will be

applied directly on data, which is more efficient in this case.

20

Figure 3.3: Iso-contours of fourth eigenfunction. Left: Kirchhoff’s Laplacian,

Right: Cotangent Laplacian. Source: [43]

3.2.2 Iterative smoothing

This is the most basic approach for mesh smoothing. It is in some sense

inspired by Gaussian filtering method from signal-processing. Main idea

of this method is to iteratively move vertices on surface, so that the mean

curvature decreases. The movement can be described by following formula:

x′ = x + λδ, (3.1)

where x is position of vertex at current step, λ is smoothing coefficient and

δ is differential coordinate. This explains the connection between discrete

Laplace operator and this smoothing technique. In fact, this vertex move-

ment can be interpreted as if the vertices were moved in normal direction (or

its approximation) by an amount derived from their mean curvature. This

means, that vertices with high estimated mean curvature move significantly

more, than vertices on nearly planar surface. The Figure 3.4 visualizes one

step of this technique on discrete signal in two dimensions with λ = 0.5.

Red arrows represent the differential coordinates, dashed line represents the

result of the smoothing step.

21

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 3.4: Visualization of single step of basic iterative smoothing in two

dimensions (λ = 0.5).

Crucial for this technique is the selection of the λ coefficient. Positive

value is required, as for negative values, instead of smoothing, the detail gets

even sharper. The bigger the value is, the farther vertices move. However,

λ > 1 results in curvature flipping - vertices that had positive mean curvature

in previous step, are moved, so that they have negative mean curvature and

vice versa. This can be seen in the Figure 3.5, where it is demonstrated on

λ = 1.5.

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 3.5: For λ > 1 (λ = 1.5 in this case), smoothing introduces curvature

flipping.

The core problem of this technique is that it introduces shrinkage (see

Figure 3.6). Geometrically this problem can be interpreted as follows: For

a surface isomorphic with a sphere, this technique tries to obtain the lowest

curvature for each vertex. If it was applied with infinitely many steps, it

would result in all the vertices laying in the same position. In such case,

the differential coordinates are zero vectors and thus the curvature at any

22

vertex is zero. The shrinkage is a problem of Gaussian filtering itself. The

reason is that Gaussian filter is in fact not a low-pass filter [39].

v1

v2v3

v4

v5 v6

Figure 3.6: Basic iterative smoothing technique introduces shrinking

3.2.3 λ|µ smoothing

This technique, proposed by Taubin, [39] addresses the shrinkage prob-

lem of previous method. The principle of λ|µ smoothing is to divide the

smoothing iteration step into two sub-steps:

x′ = x + λδ,

x′′ = x′ + µδ′,
(3.2)

where λ and µ are smoothing coefficients for which λ > 0, µ < 0 and

µ < −λ. The first sub-step is exactly identical to the step of the basic

smoothing method and it introduces shrinking as well. For this reason it is

usually referred to as shrinking sub-step. Then, the vertices are moved in

the opposite direction, increasing the volume of the represented model. This

is usually referred to as growing sub-step. Both steps are shown in Figure

3.7 with λ = 0.35 and µ = −0.5.

v1

v2

v3

v4

v5

v6

v7

v8

v9

(a) Shrinking

v1

v2

v3

v4

v5

v6

v7

v8

v9

(b) Growing

Figure 3.7: Substeps of λ|µ smoothing algorithm (λ = 0.35, µ = −0.5)

23

Taubin has shown that not only this technique does not shrink the

smoothed triangle mesh, but for proper configuration of smoothing coef-

ficients, it is also a proper low-pass filter with transfer function

f(k) = (1 − λk)(1 − µk)

in the region of interest k ∈ [0, 2]. The coefficient configuration can be

calculated by choosing pass-band frequency kP B for which

kP B =
1

λ
+

1

µ
> 0,

and coefficient λ, then calculating the µ from previous formula. Taubin

stated that good smoothing results are produced by kP B in interval between

0.01 and 0.1. Selecting λ is more difficult. It must be chosen, so that it is

as large as possible, while keeping |f(k)| < 1 for any frequency higher than

kP B. Otherwise, these frequencies would not be attenuated [39].

The complexity of choosing suitable smoothing coefficient configuration

is one of the two main disadvantages of this technique. Another one is that

increased number of iterations is required to obtain similarly smooth surface

compared to the basic technique [11].

3.2.4 Implicit fairing using diffusion flow

Previous methods both required many iterations to obtain fairly smooth

surface. Desbrun et al. [11] proposed a new approach based on noise at-

tenuation through the diffusion flow. That is usually modelled by diffusion

equation:
∂X

∂t
= λL(X),

where X is matrix of vertex coordinates and L(X) is analytic Laplacian of

X. Integrating the equation by explicit Euler scheme, formula similar to the

iterative smoothing is obtained:

Xn+1 = (I + λdtL)Xn.

It is no surprise that λdt < 1 otherwise the curvature flipping is obtained.

The approach derived from explicit Euler scheme still requires more steps

to achieve satisfying results. If implicit integration was used instead, the

results can be obtained in considerably fewer steps:

Xn+1 = Xn + λdtL(Xn+1).

24

The unknown Xn+1 is on both sides of the equation. This means that it

must be further adjusted:

(I − λdtL)Xn+1 = Xn. (3.3)

To obtain Xn+1, a linear system must be solved. However, this system is

sparse, as I is diagonal and L was already shown to be sparse in Section 2.2.1.

Another advantage over explicit integration is that λdt can be chosen much

larger, resulting in much smoother surface in single step. In comparison with

previously mentioned smoothing techniques, Desbrun et al. have shown that

in fact, implicit fairing obtains better results in less or the same computing

time [11] (see Figure 3.8).

Figure 3.8: Comparison of smoothing techniques: (a) Original mesh,

(b) 10 steps of basic iterative smoothing, (c) One step of implicit smoothing,

(d) 20 iterations of λ|µ smoothing. Source: [11]

Although the whole method based on diffusion flow seems complicated,

there exists a trivial geometric interpretation. In each step, the goal is to

find a smoother surface, from which the surface from previous step can be

derived by amplifying high frequencies.

3.2.5 Dynamic mesh smoothing

All of the smoothing techniques mentioned in this thesis can be also ap-

plied to a sequence of triangle meshes with identical connectivity. Such

data structure is calleddynamic mesh and it will be rigorously defined in

section 4.2.2. If such mesh sequence was smoothed with each frame being

smoothed independently using unique Laplacian matrices, some inconsisten-

cies between the smoothed results of subsequent frames might occur, creating

visual artifacts when rendering the animated sequence.

This can be addressed by using the same Laplacian matrix to smooth all

the frames. In the case of a combinatorial Laplacian, this is not an issue,

since all the frames already share the same Laplacian matrix. However, in

the case of a geometric Laplacian, there is no simple way to calculate the

25

Laplacian matrix, as it requires some geometry information of the mesh.

The problem is, how to choose a geometry, from which the matrix will be

calculated, while still representing the geometry of all the frames. One

particular approach of how to obtain such geometry will be described in

Section 4.2.2.

3.2.6 Suitable Laplacians for Smoothing

It is difficult to select a single Laplace operator as the most suitable for

mesh smoothing. It depends, on what results are desired. The combinatorial

Laplacian is used, when the user requires smoother surface with more regular

triangulation. This more regular triangulation means, however, that the ver-

tices experience so-called tangential drift, which means that they were moved

in the tangential plane of the surface. The tangential drift is undesired, for

example, when the smoothed model has already calculated parameteriza-

tion. When texture is mapped on the surface using such parameterization,

it is visibly distorted, no matter how precise the parameterization was for

the original mesh. A geometric Laplacian, on the other hand, is used, when

the user requires angle preservation in triangles. It is also better to use

geometric Laplacians on mesh with different sampling rates, as the com-

binatorial Laplacians introduce distortion, when applied on such mesh (see

Figure 3.9).

Figure 3.9: From left to right: original mesh with different sampling rates,

result of smoothing with Tutte Laplacian, result of smoothing with Cotan-

gent Laplacian. Source: [11]

26

3.3 Parameterization

Parameterization is a process of mapping points from the surface of a

triangle mesh onto a parametric, usually two dimensional space. In other

words, finding a parametric representation

x = f(u, v),

where x ∈ R
3 is coordinate of point on surface, and u and v are parameters

of triangle vertices. In every triangle forming the surface of the mesh, the

parameters u and v can be obtained for any point on its surface knowing

only the parametric representations of the triangle vertices, by calculating

the barycentric coordinates:

u =
3∑

i=1

λiui,

where u, ui ∈ R
2 are vectors consisting of the u and v parameters, and λi

are barycentric coordinates.

Parameterization is extensively used for texture and normal mapping,

where values of an image are mapped to properties on surface (colour in

case of texture mapping, surface normal in case of normal mapping). This

allows adding additional detail to the modelled three dimensional object,

which then looks more realistic even with a lower number of faces (see Figure

3.10). However, it can be used in many more fields, for example in remeshing

[5].

Figure 3.10: Appearance preserving simplification. Mesh is simplified and

normal mapping is applied. Source: [17]

27

Although there are many algorithms for mesh parameterization with bet-

ter results (for example [33] or [31]), only the basic algorithm involving usage

of discrete Laplace operator - barycentric mapping, will be described in this

thesis. The algorithm is based on Barycentric mapping theorem formulated

by Tutte [41], which states, that for any triangulated surface isomorphic to

a disk, a valid parameterization (in the sense that no edges intersect) can

be obtained, if boundary points lie on a convex polygon in the parametric

space, and any internal vertex is a convex combination of its neighbours

[9]. Such parameterization can be obtained by fixing boundary vertices to

a convex polygon and iteratively moving internal vertices to the barycenter

of their neighbours, until there is no movement. This can be interpreted as

if the edges of such mesh were substituted by springs with fixed boundary

vertices, and the parameterization is obtained as positions of vertices when

the system of springs reaches the equilibrium.

Instead of iteratively moving the vertices, their positions in equilibrium

state can be calculated by solving two linear systems based on following

equations:

aiiui = −
∑

vj∈N(vi)

aijuj,

where uj, uj ∈ R
2 are parametric coordinates, aij is the stiffness of the spring

between vertices vi and vj and aii = −
∑

vj∈N(vi) aij. Moving all the values

that are unknown to the left-hand side results in:

aiiui +
∑

vk∈N(vi)∧vk /∈B

aikuk = −
∑

vj∈N(vi)∧vj∈B

aijuj,

where B is set of boundary vertices. This directly leads to the two linear

systems [14]:

Au = ū, Av = v̄.

However, it is important to state that indexing inside of the matrix A does

not correspond to the indexing of the vertices, as the size of the matrix A

is n × n, where n = |V | − |B|, and |B| is number of boundary vertices.

The connection between barycentric mapping and discrete Laplace op-

erator is in the stiffness of springs. In fact, the weights of Laplacian can

be used as the values for the aij and aii coefficients. If Tutte or Kirchhoff

Laplacian is used, the result corresponds to the parameterization sugges-

ted by Tutte. However, such parameterization usually does not capture the

geometry correctly, because the Laplacian breaks linear precision. Another

property that is crucial for parameterization is positive weights. Negative

weight can be interpreted as a spring that instead of pulling, pushes the

vertices away from each other. It also means, that the position found for

28

a vertex incident to an edge with such weight is not a convex combination

of its neighbours. This may lead to triangle overlapping. However, if the

weights are positive, it is guaranteed that the mapping to parametric space

is one-to-one [15]. The only Laplacian, that satisfies both properties, is MV

Laplacian, which makes it the most suitable discrete Laplace operator for

this purpose.

The barycentric mapping can be, as well as all the smoothing techniques

described in previous section, applied to mesh sequences. When using a

geometric Laplacian, to prevent visual differences between frames in the

texture during animation of such sequence, one must use the same Laplacian

matrix for each of the frames, which is, as was already stated, not trivial to

obtain.

3.4 Mesh editing

In 3D modelling, it is often desired to edit or deform a surface, while

preserving visual appearance of the edited model. There are generally two

approaches: space deformation and surface deformation [9]. The first ap-

proach is based on deforming the space in which the model is embedded,

thus implicitly deforming the model as well. The most known algorithm us-

ing this approach is Free-Form deformation [32]. The latter approach works

with the surface itself, allowing better control over the vertex movement.

The Figure 3.11 visualizes the differences between both approaches.

(a) Space based deformation

(b) Surface based deformation

Figure 3.11: Difference between space and surface based deformation ap-

proaches. Images taken from [8]

29

The surface based mesh deformation works usually on this principle:

First, the vertices of the mesh are divided into three subsets:

• F (Fixed),

• H (Handle),

• U (Unconstrained).

Usually, it is enough to specify H and U and define F as a set of vertices that

are not in any of the two previously mentioned subsets. After the division, a

transform (translation, rotation, scaling etc.) is applied to all vertices in H.

Then, positions of all the unconstrained vertices must be calculated with the

knowledge of the positions of fixed points and the transformed positions of

handles. The main difference between surface based deformation methods

is in the process of calculating the unconstrained vertex positions.

It is desired to preserve the details of the surface before deformation.

For example, if a model of a person with a wristband on the hand was de-

formed so that translation was applied to the hand, the wristband should

still be visually recognizable. One approach that targets this, was described

by Alexa [1]. It is based on an interesting property of differential coordin-

ates: by representing relation between a vertex and its neighbourhood, the

differential coordinates store information of the surface detail. To preserve

the detail, the differential coordinates should be as close as possible to those

of the original mesh.

To obtain positions of unconstrained vertices, Formula 2.3 for calculating

δ-coordinates can be utilized. Moving all the known values (differential

coordinates and positions of fixed vertices and handles) to right-hand side

results in three overdetermined linear systems, one for each coordinate. The

process will be described only for x-coordinate:

L′x′ = d′
x,

where L′ is matrix obtained by removing all the columns corresponding to

fixed vertices and handles, x′ is vector of x-coordinates of all unconstrained

vertices, and d′
x is a vector which consists of rows dx

′
i:

dx
′
i = δxi −

∑

vj∈K

lijxj,

where δxi is δ-coordinate of vertex vi, lij is element of Laplacian matrix at

position (i, j), and K = (N(i)∪i)∩(H∪F) is set of all indices cooresponding

to non-zero elements in row i of L at removed columns. The matrix L′ is of

30

size |V | × |U|, however, it is important to state, that for any vertex vk /∈ U

with no unconstrained neighbour, the corresponding equation in the linear

system is 0 = 0. It then remains to solve the system in the least-squares

sense:

x′ = (L′T L′)−1L′T d′
x.

L′T L′ is symmetric,sparse and positive semi-definite, allowing quick solution

using for example Cholesky decomposition.

Sometimes, a new set of anchor vertices is introduced to the process [37].

This set is similar to U in the sense that their positions need to be calculated.

However, they are somewhat constrained by including equation of the form

x′
i = xi to the overdetermined linear system. When the system is solved in

the least-squares sense, their position approximate the original values, while

smoothly transitioning between fixed and unconstrained vertices.

The technique described so far has one big issue. The differential co-

ordinates are only translation invariant. This means that if the handles

were for example rotated or scaled, one would expect the orientation and

length of the displacement vectors to be altered as well. However, in such

case, the technique would still try to force the orientation and length of the

original δ (see Figure 3.12). The issue is addressed by Lipman et al. [20]

and Sorkine et al. [37]. Both approaches alter the orientation of differential

coordinates before inputting them to the overdetermined linear system.

Figure 3.12: Distortion of detail caused by the techniques rotation variance.

Left column: Original mesh, Right column: Result. Bottom row shows

detail. Source: [20]

31

The choice of discrete Laplace operator again depends on what are the

desired results. Botsch – Sorkine [7] have shown that geometric Laplacians

preserve better the details. However, if interactivity is desired, the combin-

atorial Laplacians provide faster performance as their weights require little

to no computation time.

3.5 Mesh morphing

Mesh morphing (or mesh interpolation) is a process of combining two

different triangle meshes to obtain a new one that is similar to them. Some-

times, it is only desired to map detail of one mesh on part of the second

meshes geometry. For the sake of simplicity, it will be assumed that both

meshes share the same connectivity and each vertex of the first mesh cor-

responds exactly to the vertex of the second mesh with the same index.

Otherwise, remeshing and feature matching would be performed. For more

information, reader can refer for example to [25]. Mesh morphing techniques

are quite often used in animation, when a user wants to insert interpolated

frame between two consecutive animation frames.

The most basic and naïve mesh morphing technique is simple euclidean

coordinate interpolation:

xi = (1 − t)x1i + tx2i, (3.4)

where xi denotes result position of vertex vi, x1i is its position in the first

input mesh, x2i the position in the second mesh and 0 ≤ t ≤ 1 is the

interpolation parameter. In the case when there is no significant difference

between the two meshes, the method performs quite well. The problems,

however, occur, when only some parts of the model are being morphed.

When the two meshes do not align well, undesired effects can be seen on the

boundary between morphed vertices and the static parts of the mesh (see

Figure 3.13).

This can be solved by using some intrinsic parameters [38], which store

information relative to the vertex neighbourhood. Such intrinsic properties

can be differential coordinates, which are employed in the technique pro-

posed by Alexa [1]. The technique is very similar to the surface editing

approach described in the previous section. In fact, both techniques were

described in the same article. Again, the vertices are subdivided into three

subsets. However, the positions of handles are not moved by the user, but

are calculated using Formula 3.4. Another difference is in the differential

coordinates used in the solved linear system which are calculated as an in-

terpolation between differential coordinates of both meshes, to morph the

32

Figure 3.13: Undesired effects of naïve morphing. From left to right: Two

input meshes, result of naïve morhping, morphing technique proposed by

Alexa [1]. Source: [1]

details. To smooth the transition between handles and fixed vertices, one

can specify interpolation parameter for each vertex independently [1].

It is important to note that when the morphing is applied on the whole

mesh, the linear interpolation of differential coordinates does not introduce

any improvement over the vertex position interpolation, because of the dis-

tributive property of matrix multiplication:

D = (1 − t)LX1 + tLX2 = L((1 − t)X1 + tX2),

where D is matrix of differential coordinates, X1 is matrix of vertex positions

of the first mesh and X2 is matrix of vertex positions of the second mesh. In

other words, linear interpolation of differential coordinates is equivalent to

calculating the differential coordinates from linearly interpolated positions.

Again, the problem of differential coordinates is that they are not ro-

tation and scaling invariant. In fact, interpolating between two vectors d1

and d2 that are oriented in opposite direction may result in a zero vector,

although both lengths are non-zero. It is desired, that scale and rotation are

interpolated independently. In the case of scale, simple linear interpolation

can be used. The orientation, however, requires a more sophisticated ap-

proach. The vector must be rotated around an axis which is perpendicular

to both d1 and d2. This can be achieved using Rodrigues’ rotation formula

[28]:

drot = d1cos(αt) + (n × d1)sin(αt),

n =
d1 × d2

|d1 × d2|
,

α = arccos

(
d1 · d2

|d1||d2|

)
,

where n denotes a unit vector in the direction of axis of rotation and α is

an angle between d1 and d2. The final delta coordinate is then obtained as:

d = dscale ·
drot

|drot|
.

33

When interpolating differential coordinates using such interpolation tech-

nique, the result is no longer equivalent to calculating the differentials co-

ordinate from interpolation of vertex positions. This means that the morph-

ing of the whole mesh can be also improved by this interpolation technique.

This technique requires a discrete Laplacian that results in the same

Laplacian matrix for both meshes, because otherwise it would cause incon-

sistency of values in the solved linear system. For this reason, geometric

Laplacians cannot be used without any complex adjustment, even though

they result in better results when applied in linear systems like the one in

this morphing method. On the other hand, the combinatorial Laplacians de-

termine the weights only from connectivity, which as was already mentioned,

is shared between both meshes.

3.6 Least-squares meshes

This interesting technique proposed by Sorkine – Cohen-Or [35] is used

to approximate a set of input control points by a mesh with arbitrary con-

nectivity. Usually, the set of points is first approximated by some function,

from which the surface must be then constructed. This technique skips this

step entirely resulting directly in the desired surface.

The surface is required to be as smooth as possible, ideally with zero

curvature. In such case

Lx = 0, Ly = 0 and Lz = 0,

where x, y, z are vectors corresponding to individual coordinates of vertex

positions. This yields three linear systems to be solved. To enforce its

position, one must add an equation of following type for each control point:

ωcx
′
c = ωcxc,

where xc and x′
c are original and calculated positions of control point c and

ωc is the weight forcing the position. It is important to specify at least

two control points, because as was already mentioned, Laplacian matrix is

singular and for one point, there exists a trivial solution of all vertices lay-

ing in the position of the single control point. For any other control point

count, the linear system is overdetermined, which means only an approxim-

ate solution in the least-squares sense can be obtained. The control points

thus generally do not lay on the resulting surface. However, the distance of

these points from the surface can be manipulated by adjusting the weights

ωc. Higher the weight is, the more important is the position of given control

34

point. This can be seen in Figure 3.14. To find the least-squares solution to

this system is equivalent to minimizing the value of the following expression:

‖Lx‖2 +
∑

c∈C

ω2
c |xc − x′

c|
2,

where xc is x-th coordinate of control point c, x′
c is its calculated x-th co-

ordinate and C is set of all control points.

Figure 3.14: Weight influence in the Least-squares meshes algorithm. The

red dots denote a control point. Source: [35]

Other than for shape approximation, the Least-squares meshes can be

used in surface editing. A set of vertices of the mesh is selected as control

points. Then the positions of such control points are altered. Finally, the

mesh is reconstructed from the altered control points. This can be seen in

Figure 3.15

The technique, in the form as was defined in this section, requires us-

ing combinatorial types of discrete Laplace operator, because the surface

was constructed knowing only the connectivity and positions of few control

points. To allow application of a geometric Laplacian, the method must be

reformulated - geometry must be known to form the Laplacian matrix, which

is not always the case. Another reason, why the combinatorial Laplacians

are used more often, is that they produce better triangulation of the surface

with triangles much closer to regular.

Figure 3.15: Mesh editing using Least-squares meshes algorithm. Source:

[35]

35

4 Mesh compression

The main goal of mesh compression is to reduce the amount of data re-

quired to describe a triangle mesh without introducing too much distortion.

This is important, especially when the mesh is transmitted over a network

or archived. The usual format used to store uncompressed mesh data is

3 floating point numbers per vertex for storing the geometry, one for each

coordinate, and 3 integers per triangle, one for each index of triangle vertex.

However, such format contains significant amount of data redundancy.

4.1 Connectivity coding

It is undesired to distort information about connectivity, in the sense, that

two neighbouring vertices do not share a common edge after compression.

However, the data can be still reduced in a lossless manner. The naïve

storage format of three integers per triangle requires 3 · 32 = 96 bits per

triangle assuming 32 bit integers. From Euler formula, it can be derived that

F ≈ 2V , where F the is number of triangles of the mesh, and V is the number

of vertices. This implies that the naïve format requires approximately 2·96 =

192 bits per vertex (bpv).

The most redundant information in the naïve storage format is ordering.

Even though the vertices would be reordered, the connectivity would still

remain the same. This is exploited by the algorithm called Edgebreaker

[29]. The algorithm first selects a random triangle. Through its edges, the

remaining triangles are then traversed. During the process, the algorithm

builds two data structures - a list of all already found vertices and a list

of edges forming the boundary of already processed area. There are five

situations that can occur while processing single triangle, according to the

edge e through which the triangle was found and a vertex v that is opposite

to this edge:

• C - v was not yet found.

• L - v was already found and lies on the boundary on the left of e.

• R - v was already found and lies on the boundary on the right of e.

• E - v was already found and lies on the boundary on the left and right

of e.

36

• S - v was already found, but does not lay near e on the boundary.

All of the situations are shown in Figure 4.1.

Figure 4.1: All the situations during the traversal of Edgebreaker al-

gorithm. Yellow triangle denotes currently processed triangle. Gray

color denotes already processed triangle. The arrow pointing inside

the yellow triangle marks the direction, from which the triangle was

found. The outgoing arrows denote next traversal directions. The ver-

tex, that was not yet found is marked white, already found vertex is

marked black. Source: https://www.computer.org/cms/Computer.org/

dl/trans/tg/2004/05/figures/v049916.gif

Instead of coding the vertex-triangle incidences, it is enough to encode

only the symbols representing the situations in the order of the triangle

traversal. Huffman or arithmetic coding can be used to reduce the bit rate

even further, as it can be shown, the symbol C occurs more likely. The

average bit rate is then less than 4 bpv.

If the mesh is more regular, the data can be reduced even more by as-

suming the vertex valence does not vary too much. This is the principle of

the technique called Valence encoding [4]. A lot of other techniques for con-

nectivity compression exists with comparable results. However, connectivity

compression is not a main subject of this thesis, thus it is not necessary to

describe them all.

4.2 Geometry coding

This section will be divided into two parts. The first part will discus

possible compression techniques for reducing data rate of a static triangle

mesh geometry. The second part will be reserved for geometry of triangle

mesh sequences. It will be shown, that even though both problems look

similar, each of them often requires a different approach.

37

https://www.computer.org/cms/Computer.org/dl/trans/tg/2004/05/figures/v049916.gif
https://www.computer.org/cms/Computer.org/dl/trans/tg/2004/05/figures/v049916.gif

4.2.1 Static mesh compression

The term static mesh refers to the triangle mesh as was described until

now. It is thus defined by the connectivity and positions of each vertex in

three dimensional space. The positions are mostly represented using single

or double precision floating point numbers. In 3D, this requires 3 · 32 = 96

bpv or 3 ·64 = 192 bpv. To allow application of standard coding techniques,

these values must be quantized. This means that geometry compression

is usually lossy [36]. If the coordinates are quantised directly, too many

quantization levels are required in order not to introduce too much distor-

tion. For this reason, the compression techniques usually encode some other

information, that has lower entropy. Most techniques are based on a predic-

tion scheme, where instead of encoding the original value, only a difference

between this value and some prediction is encoded. The prediction must be

known to both the encoder and the decoder, otherwise the original value

cannot be reconstructed. In this thesis, two such prediction techniques will

be described - parallelogram prediction[40] and high-pass quantization [36].

Parallelogram prediction is a simple, yet powerful compression technique

that is extensively used to this date. The mesh is traversed in a way similar

to the Edgebreaker algorithm. In fact, the method can be used alongside this

algorithm and the geometry can be encoded when the case with symbol C

occurs. Then, a prediction is performed using already encoded positions of

vertices of the triangle opposite to currently processed vertex. The prediction

assumes that both currently processed triangle and the opposite triangle lay

on a single plane, and that they form a parallelogram (see Figure 4.2). The

position of any single vertex of a parallelogram can be calculated using the

positions of the other three vertices:

x = xo + (xl − xo) + (xr − xo) = xl + xr − xo,

where xr and xl denote positions of directly connected vertices and xo is

position of the opposite vertex. Instead of the vertex position, only a dis-

placement vector between the correct and predicted value is encoded. It

is important to note, that for stopping the error propagation, the encoder

must itself reconstruct the encoded values and use them for the prediction

instead of the original ones.

38

vo vl

vr v̂

v

~c

Figure 4.2: Parallelogram prediction. vo, vr, vl are already encoded vertices,

v is currently coded vertex, v̂ is the prediction of its position and ~c is cor-

rection vector.

This technique and many others that work directly in euclidean coordin-

ates tend to introduce distortion in high frequencies, where it is more visible,

especially when the mesh represents a smooth surface (see Figure 4.3). To

address this issue, Sorkine et al. [36] have proposed a technique called high-

pass quantization. The process is simple: on the encoder side, δ-coordinates

are calculated using the Formula 2.4. After that, they are quantized and

encoded. The decoder then must reconstruct the positions by solving the

linear system derived from the calculation formula. However, it was already

stated in Section 2.2.2 that the Laplacian matrix has not a full rank, thus

at least one vertex position for each connected component must be also en-

coded. The decoder then must add equation of form x′
i = xrecieved for each

anchor vertex, where i is index of such vertex. This results in an overde-

termined linear system described by Formula 2.8, which is then solved in

the least-squares sense.

Figure 4.3: Comparison of distortion introduced by High-pass quantization

(Left) and Compression working with euclidean coordinates (Right). Visible

high frequency distortion in the second technique. Source: [36]

39

In the case of static meshes, only combinatorial Laplacians can be used,

because they require only the knowledge of connectivity, which in the geo-

metry compression phase is already known to both encoder and decoder.

Transmitting the amount of information required to construct a geometric

Laplacian, turns out to be as expensive as transmitting the mesh itself [44].

The high-pass quantization can be classified as a prediction technique, be-

cause of the interpretation stated in Section 2.2.6 - the encoded differential

coordinate can be interpreted as displacement vector between the position

of a vertex and a point representing the vertex neighbourhood.

Sorkine et al. have shown, that high-pass quantization results in low-

frequency errors, thus it produces less visible distortion [36]. There is still one

big issue with this technique - there is no direct control over error propaga-

tion. By increasing the number of anchor points, the error propagation can

be only attenuated, at the cost of increasing the data redundancy. Two

modifications were already proposed to reduce the effects even more: Error

diffusion [2], and Hierarchical Laplacian-based compression [21].

4.2.2 Dynamic mesh compression

The term dynamic mesh will in this thesis refer to a sequence of triangle

meshes representing an object continuously moving in time (see Figure 4.4).

Each single triangle mesh of this sequence will be referred to as a frame. It

will be also assumed that the connectivity is shared between all the frames,

in other words, if the first frame of the sequence contains an edge between

vertices vi and vj, such edge is present in all the other frames.

Figure 4.4: Example of dynamic triangle mesh: dataset Samba [49]

In the uncompressed form, the individual frames are usually stored as

static meshes in separate files. This means, that each frame contains inform-

ation about the connectivity, even though this information can be stored only

once. The geometry now requires 3f · 32 bpv or 3f · 64 bpv for double preci-

sion format, where f is the number of frames in the sequence. This means,

that the positions of a vertex in a dynamic mesh are now represented by an

40

array of 3f floating point numbers:

x = [x1, y1, z1, x2, y2, z2, . . . , xf , yf , zf].

Assuming the continuous movement of the represented object, the po-

sition of a vertex must change only slightly between any two subsequent

frames. To reduce data redundancy, the compressing tool can work with

so-called trajectories instead. Trajectory is an array of the form:

t = [x1, y1, z1, t2x, t2y, t2z, . . . , tf x, tf y, tf z],

where for example t2x = x2 − x1, is difference between the x-coordinate of

the vertex in the first and second frame.

To reduce the dimensionality of the problem, Principal Component Ana-

lysis (PCA) is usually performed. Alexa – Müller [3] applied this technique

directly on the mesh geometry, to find the set of so-called key-frames - basis

of the shapes, which represents the encoded sequence. Such approach is,

however, computationally expensive. Váša – Skala [47] proposed a more

efficient algorithm called CODDYAC. This algorithm performs PCA on the

trajectories to find the significant trajectories characterizing the motion of

the shape over the sequence [44] by calculating eigenvectors of autocorrel-

ation matrix of the input data. These significant trajectories then form a

reduced basis of the space of vertex trajectories. The basis is then encoded

alongside the compressed geometry data.

The original CODDYAC algorithm uses the parallelogram prediction to

encode the PCA coefficients. This technique, however, as was noted in

the previous section, introduces a distortion in the high frequencies. Váša

– Petřík [45] thus proposed using the high-pass quantization [36] instead.

Compared to the static mesh compression, the dynamic mesh compression

has one big advantage. With the large number of the frames, it is less

expensive to transmit some information about the overall mesh geometry

that will serve to construct a geometric Laplacian on the decoder side. Váša

et al. [44] have shown, that applying the geometric Laplacian, results

in a more accurate prediction, which means, that fewer quantization bits

are required to achieve comparable results. Their algorithm first encodes a

representing frame, the so-called average mesh. From the average mesh, a

geometric Laplacian is computed. This Laplacian is then used to calculate

the δ-trajectories, which are encoded. It is important to adjust the vertex

positions of this mesh according to the compression error, so that both the

encoder and the decoder work with the same data.

The way, how the average mesh is calculated, is crucial for this technique.

The easiest way would be to spatially align all the frames, and then to

41

calculate the average position over time for each of the vertices. Such mesh

may, however, suffer from shrinkage and self-intersections [44]. For this

reason, they proposed to represent each of the frames in the edge shape

space [52] where each edge is represented by edge length and dihedral angle.

Calculating the average mesh in this space results in a more visually plausible

result (see Figure 4.5).

Figure 4.5: Average mesh used as representing frame in dynamic mesh com-

pression. (a) Input mesh sequence, (b) Average mesh calculated the naïve

way, (c) Average mesh calculated in the edge shape space. Source: [44]

The accuracy of the prediction in the high-pass quantization is directly

related to the variance in the lengths of the δ vectors. For this reason, it

is better to use a discrete Laplace operator with unit sum of weights, for

example MV Laplacian. Also, the linear precision is important, because if

it is broken, the δ coordinates become a combination of the mean curvature

normal and tangential shift. The second of the two negatively affects the

entropy of the encoded data [44].

4.3 Error metrics

To compare the results of different geometry compression techniques, a

Rate-Distortion curve is usually used. This curve visualizes how changing

the parameters of the compression affects the data bit rate and the distortion.

To measure the distortion, some error metric must be applied.

In the past, the mechanistic error metrics were usually used. Such metrics

usually try to measure distance between original and reconstructed vertex

positions. The most basic mechanistic error metric is called Mean Squared

42

Error (MSE), which is computed:

MSE =
1

|V |

|V |∑

i=1

(‖xi − x′
i‖)2,

where |V | is the number of vertices, xi is the position of the vertex with the

index i and x′
i is its reconstructed position. In the case of dynamic meshes,

for example the Karni-Gotsman (KG) [18] error metric can be used:

KGerror = 100 ·
‖A − A′‖

‖A − E(A)‖
,

where ‖.‖ is the Frobenius norm, A is matrix of size 3|V | × f , where each

row represents the development of the corresponding coordinate over time,

A′ is matrix of the same size containing data from reconstructed positions

and E(A) is a matrix created from A by substituting values in each column

with the mean value of that column [48].

The mechanistic error metrics are most suitable, when the user defines a

tolerance to which the reconstructed positions must be close to the original

positions. However, these techniques do not capture how much is the dis-

tortion visible. For such criteria, perceptual error metrics must be applied.

These metrics are specially designed to detect visible compression artifacts.

For static meshes, for example, the Dihedral Angle Mesh Error (DAME)

[46] metric can be used. This metric calculates the difference between the

original and the reconstructed dihedral angles. For dynamic meshes, to the

best of the authors knowledge, there are only few error metrics, for example

Spatio-Temporal Edge Difference (STED) proposed by Váša – Skala [48],

which is based on measuring the relative change in edge lengths, or a metric

proposed by Yildiz – Capin [53].

The compression techniques that work directly with euclidean coordin-

ates usually provide better results when mechanistic error metrics are used.

However, as was already mentioned, they introduce distortion in high fre-

quencies, where it is more visible, thus they usually do not perform well from

the perspective of perceptual error metrics. On the other hand, the tech-

niques working with intrinsic representations do not usually provide com-

petitive results in mechanistic error metrics, while performing excellent in

the perceptual metrics.

43

5 Data Dependent discrete

Laplace operator

In this chapter, a new type of discrete Laplace operator will be proposed.

First, the motivation of creating such type will be noted. Next, the process

of calculating its weights will be described. All the properties, that do

not require experimental verification, will be also stated. It will be also

shown, how to transmit the data required to construct such operator on

both encoder and decoder side during dynamic mesh compression.

5.1 Theoretical background

In Section 4.2.2, it was stated, that Váša et al. have shown significantly

better compression results using geometric Laplacians. One reason is more

accurate prediction, as one would expect the point representing the vertex

neighbourhood to be closer to the vertex itself in comparison with a com-

binatorial Laplacian. The better prediction allows fewer quantization levels

with comparable results. To generalize the idea, lets assume a Laplacian

matrix L0, for which

L0T = O, (5.1)

where T is a matrix of size |V | × r, where r is reduced dimension of data,

whose rows represent vertex trajectories in the reduced basis and O is zero

matrix. Such matrix results in all delta trajectories equal to a zero length

vector. If non-trivial L0 existed, there would be no need to transmit the

δ trajectories. Instead, only the positions of anchors would be required.

However, as will be shown, such matrix cannot be constructed.

5.2 Construction

To construct a discrete Laplace operator, for which the L0 is its Laplacian

matrix, the weights wij and wi must be calculated. For this purpose, Formula

5.1 can be used to construct a linear system of equations of the following

form: ∑

vj∈N(vi)

wijtjk − witik = 0,

44

where tik is k-coordinate of the trajectory vector of vertex i. For the sake of

simplicity, it will be assumed, that wi = 1 and that L0 is symmetric. Moving

all the constant values to the right-hand side results in:

∑

vj∈N(vi)

wijtjk = tik.

The resulting linear system consists of |V |·r equations of |E| uknowns, where

|E| is number of edges. The Euler characteristic implies, that |E| ≃ 3|V |.

Also, usually |V | · r > 3|V |, which means, that the system is overdetermined

and generally no exact solution exists. The least-squares solution results in

a matrix L∗
0, which generates δ-trajectories that are as close to zero vectors

as possible. Such δ-trajectories still must be encoded, but one would expect

their entropy to get lower in comparison with a geometric Laplacian.

There is still one issue with the way, how the matrix is constructed.

There is no mechanism forcing the sum of all weights assigned to the edges

incident to a vertex to be equal to the weight assigned to that vertex. This

means that L∗
0 is not a proper Laplacian matrix, as:

∑

vj∈N(vi)

wijtjk − witik 6=
∑

vj∈N(vi)

wij(tjk − tik).

The δ-trajectories calculated using such matrix are, in fact, translation vari-

ant, thus L∗
0 is not singular, which is a property of all discrete Laplace

operators.

As far as the author of this thesis is concerned, there exist two approaches

to solve this issue. The first approach is to use the method of Lagrange

multipliers. This method is usually used to solve the problem of constrained

minimization. In this case, the function to be minimized is the least squares

residual of the linear system in the Formula 5.3 and the constraints are the

equalities of the sum of weights (see Formula 5.2). The method will not be

described in this thesis, however, it would lead to increasing the number of

unknowns.

The second approach leads to the exact opposite - decrease of the number

of unknowns. For each vertex, it is desired to force

∑

vj∈N(vi)

wij = 1. (5.2)

One of the weights in this formula is selected and marked as dependent. Value

of such weight then depends on the values of other weights and is therefore

no longer unknown, and must be substituted in all the equations, where it

45

occurs. For a vertex, that has no incident edge with already substituted

weight, the substitution formula is as follows:

wil = 1 −
∑

vm∈N(vi)∧m6=l

wim.

Generally, the substitution formula has, however, a different structure:

wil = ci −
∑

wim∈I∧m6=l

cimwim,

where ci and cim are some constants resulting from previous substitutions

and I is the set of independent weights assigned to edges incident to ver-

tex vi, or the weights, that got substituted to the equation. Applying this

process, the number of unknowns reduces to 2|V |, and solving such linear

system results in weights that form a discrete Laplace operator, which will

be referred to as Data Dependent Laplacian.

The Data Dependent Laplacian can be calculated even on a static mesh,

as for this mesh, the weights can be obtained by solving a system of 3|V |

equations of 2|V | unknowns. It is important to note, that for dynamic

meshes, one could even calculate Data Dependent Laplacian with a non-

symmetric Laplacian matrix. However, this Laplacian requires solving a

linear system of 2|E| − |V | = 5|V | unknowns, which means that for static

meshes, this linear system would be underdetermined.

The linear system, that was mentioned before can be written in matrix

form:

Qw = b, (5.3)

where Q is a matrix of the size 2|V |×(r · |V |) representing the linear system,

w is column vector of the size 2|V | of unknown weights and b is a right-

hand side vector of the size r · |V |. It is obvious that storing such matrix

and vertices directly is memory inefficient.

In the case of matrix Q, there are usually only few non-zero values in each

row. One would then assume, that Q is sparse. Additionally, the system will

be solved in the least-squares sense. Thus, one can directly store the matrix

QT Q, which is only of size 2|V | × 2|V |. This matrix can be constructed as

sum of outer products of its rows:

QT Q =
r·|V |∑

i=1

qT
i qi,

where qi denotes the i-th row of Q. Because of the sparsity of Q, the outer

product can be computed as follows: for each pair of non-zero elements with

46

indices k and l on the given row, one would add the product of their values to

the element of QT Q on the position (k, l). It is also important to note, that

for each vertex, there are r corresponding equations, one for each coordinate.

The rows, that correspond to such equations, share the same structure, in

the sense, that all have the non-zero values at the same positions. In fact,

instead of adding the products coordinate after coordinate, it is possible to

add a scalar product of trajectories tl and tk.

It is also possible to construct QT b directly instead of the original right-

hand side. The elements of this column vector can be calculated as scalar

product of columns of Q and the vector b:

b̂i =
r·|V |∑

j=1

qjibj,

where b̂i is element of QT b on the position i, qji is value of Q on the position

(i, j) and bj is element of vector b on the position j. Values of a single column

of Q corresponding to a weight wkl are non-zero only in rows corresponding

either to vertex vk or vl. Thus, instead of calculating using all the values,

only the non-zero values can be used.

5.3 Properties

In this section, all the properties that are not shared across all discrete

Laplace operators will be considered, if they are present for the discrete Data

Dependent Laplace operator. It is not expected, that this Laplacian does

not break any of those properties, as this would be in contradiction of the

research of Wardetzky et al. [50].

The Laplacian matrix of Data Dependent Laplace operator is obviously

symmetric, because the linear system used to calculate the weights was ex-

plicitly formulated to result in symmetric weights. It was also already men-

tioned, that even a non-symmetric variant can be constructed, however, such

Laplacian cannot be used with static triangle meshes, unless some other cri-

teria were applied to raise the number of equations.

Another property, that is obviously not broken, is the unit sum of weights.

In both symmetric and non-symmetric variant, this property is directly en-

forced by the weight substitutions.

There is no guarantee, that the weights are positive. This property is thus

generally broken. To force positive weights, some constrained minimization

technique would be used, with inequality constraints. Such techniques are,

however, much more complex than linear constrained minimization.

47

In the case of linear precision, it is difficult to decide, whether this prop-

erty is broken or not. There is no proof, that for any vector on a planar

surface, the δ coordinate is zero. However, the matrix was designed, so that

all of the δ coordinates are as close to zero as possible. For a vertex that

lies on a planar surface, there certainly exists a combination of weights, for

which the δ coordinate has zero length. One would expect, that for a ver-

tex far enough from the non-planar part of the surface or boundary, the

construction algorithm will assign such combination of weights. To show,

whether this is actually true, experiment will be done, and the results will

be discussed in Section 6.1.1.

Another property, that is difficult to decide, is definiteness. As was

already mentioned in the Section 2.2.8, the definiteness in the simple form,

is defined only for symmetric matrices. This means, that the non-symmetric

variant will not be further concerned. As the property of positive weights can

be generally broken, there is no proof, that the matrix is positive definite

or positive semi-definite. However, it can be verified experimentally. If

one attempts to apply Cholesky decomposition to a matrix derived from a

Laplacian matrix by removing one column and its corresponding row, and

the decomposition fails, the matrix clearly breaks the positive definite or

positive semi-definite property.

The locality is unfortunately broken. This is caused by the mechanism

that forces the equality of the sum of weights. When for vertex vi, the

weight wij is marked as dependent and this weight is substituted in all of

its occurrences, it means, that the equation of the sum of weights for vertex

vj now contains also the weights assigned to the edges incident to vi. In the

worst case, this dependency chain affects the whole mesh. This means, that

by changing the position of a single vertex, not only the δ coordinate of this

vertex changes, but generally any of the δ coordinates can change. In the

case of forming the weight dependencies, the order, in which the vertices

are processed is crucial. One particular order that causes long dependency

chains is the one, in which the vertices are reordered during connectivity

compression, when encoded by the Edgebreaker algorithm. As the Data

Dependent Laplacian was initially designed for dynamic mesh compression,

it is important to be aware of such issue. To reduce the effect, the vertices

can be processed in randomized order. However, the order must be the same

on both encoder and decoder side to construct the same Discrete Laplace

operator. It is also important to note, that the dependency propagation

does not occur in the case of the non-symmetric variant of discrete Data

Dependent Laplace operator, as the weight wij occurs always only in one

weight sum equation.

48

5.4 Weight coding

The compression technique proposed by Váša et al. [44] used a represent-

ing frame to construct the geometric Laplacian on both sides of compression.

This means, that connectivity and 3|V | values had to be transmitted. The

discrete Data Dependent Laplace operator, however, can be defined using

connectivity and 2|V | values, as this is the number of unknowns of the linear

system 5.3 in the symmetric case. Thus, instead of a representing frame, one

can transmit only the weights that are not dependent.

A naïve approach is to simply quantize all the weights and encode them

using a lossless compression technique, for example arithmetic coding. How-

ever, it is much more efficient to use a prediction scheme, as the correction

value is expected to be much lower than the original value, resulting in lower

entropy. However, it is crucial to design an efficient prediction function. One

can utilize the formula 5.2. If there is no information about any weight, the

best prediction of weight wij is:

pij =
1

|N(vi)|
.

The more weights are encoded, the more information the encoder has about

their values. This information can be of course used in the prediction. The

formula 5.2 can be adjusted by moving all the already known weights to

the right-hand side. The sum of all the weights unknown to the encoder

decreases, which also means a decrease of their uncertainty and increase of

the accuracy of the prediction. The new prediction formula is the following:

pij =
1 −

∑
vl∈Nk(vi) ŵil

|Nu(vi)|
,

where Nk(vi) is the set of neighbours of the vertex i that are connected by

an edge with already decoded weight and Nu(vi) is set of neighbours that

are connected by an edge with weight unknown to the decoder. The weights

ŵil are not the original values, but those reconstructed by the decoder.

The weights are decoded during some vertex traversal. The order of the

vertices is important, because it influences the accuracy of the prediction.

For example, if they were processed, so that vertices with the highest number

of the known weights have higher priority, the rest of the unknown weights

would be encoded more accurately, while increasing the number of known

weights of neighbouring vertices.

49

5.5 Possible advantages

At this point, it would be useful to recapitulate all the expected advantages

of the proposed Laplacian over the other types. The biggest advantage is

obviously the minimization of the lengths of differential coordinates. It

is expected, that this would cause a significant decrease of the encoded

differential coordinate entropy. Such minimization, however might be also a

disadvantage, for example, in mesh smoothing, where slower convergence is

expected.

The Data Dependent Laplacian also requires only 2|V | values to be en-

coded instead of the 3|V | required by the average mesh. This leads to an

assumption, that the encoded weights can be encoded more precisely, while

still decreasing the bitrate.

There is still another advantage over other geometric Laplacians that

should be mentioned. In order to construct a Laplacian representing the

geometry of a whole mesh sequence, a representing frame is usually required

to be calculated using some complex, sophisticated method, for example

the average in the edge-shape space [44]. With Data Dependent Laplace

operator, this can be directly bypassed, because of the way how the weights

are calculated. As a consequence, it can be used in mesh morphing without

significant adjustments.

50

6 Experimental results

In this chapter, the experimental results will be shown. The experiments

were divided into three groups. The first group of experiments was designed

to verify some of the properties of discrete Data Dependent Laplace operator.

The second group of experiments serves to compare the results of applica-

tion of the proposed Laplacian and other types in selected Laplacian mesh

processing techniques. The last group of experiments compares the results

of application of the proposed Laplacian in dynamic mesh compression.

All the experiments were executed on a 64-bit computer with Intel Core

i7-6700HQ (2.6 GHz) CPU, 16GB of RAM, NVidia GeForce GTX 960 M

GPU. It is important to note, that time performance was not measured in

any of the experiments. All the experiments were written in C# program-

ming language, using Bluebit Matrix Library for matrix algebra.

6.1 Verification of properties

In this section, all the properties of the Data Dependent Laplacian that

could not be proven to be broken or not, will be verified experimentally.

6.1.1 Linear precision

For this experiment, a mesh representing a cube was created in the Blender

3D modelling software. The connectivity of the cube was altered to obtain

non-uniform sampling and different sampling rates. Positions of some points

were also altered to create more rough surface. The model can be seen in

Figure 6.1a. Following discrete Laplace operators were compared:

• Mean Value Laplacian (MV)

• Cotangent Laplacian with unit sum of weights (Cotan)

• Cotangent Laplacian weighted by incident areas (CotanA)

• Tutte Laplacian (Tutte)

• Kirchhoff Laplacian (Kirhchoff)

• Data Dependent Laplacian (DD)

51

(a) Input mesh

(b) MV (c) Cotan (d) CotanA

(e) Tutte (f) Kirchhoff (g) DD

Figure 6.1: Visualization of length of differential coordinates. Azure colour

denotes a surface that is considered planar.

During the experiment, for each of the compared Laplacians, the lengths

of differential coordinates were measured. Figure 6.1 shows the lengths visu-

alized on the mesh surface. It is important to note, that flat shading was

used and that colour scales are not the same between the subfigures. How-

ever, the surface, that is considered planar for the used type of discrete

Laplace operator, is visualized in azure colour. A point is considered to be

on a plane, if the length of its δ-coordinate is less than a threshold value

ε = 10−3. The figure shows, that MV Laplacian and both variants of Cotan-

gent Laplacian detected planar surfaces correctly. The Tutte Laplacian and

Kirchhoff Laplacian failed to detect most of the planar surface. In the case

of the Data Dependent Laplacian, the effects of broken locality are clearly

visible around the corners of the cube. However, vertices far enough from

a non-planar surface were detected planar correctly by the Data Dependent

Laplacian.

52

Table 6.1 compares the length of differential coordinate of the vertex

shown as a red dot in the Figure 6.1. The vertex was specially selected, so

that it does not lay in the barycenter of its neighbours. The table shows, that

the Data Dependent Laplace operator still results in considerably long differ-

ential coordinate in comparison with other geometric Laplacians. However,

when compared to Combinatorial Laplacians, the results are better in the

order of magnitudes. It is also expected, that with increasing sampling rate,

the difference between Geometric Laplacians and Data Dependent Laplacian

would decrease.

Table 6.1: Comparison of lengths of differential coordinates in selected point.

MV Cotan CotanA Tutte Kirchhoff DD

|δ| 5,55E-17 5,00E-17 4,66E-13 4,39E-02 3,07E-01 1,50E-04

From the results, it can be concluded, that the Data Dependent Lapla-

cian, unfortunately, breaks the linear precision. However, the issues, that are

a consequence of this property being broken, should have less impact, than

for the Kirchhoff and Tutte Laplacian, because this Laplacian is considerably

close to preserving it.

6.1.2 Definiteness

To show, whether a symmetric Laplacian matrix is positive semi-definite

or not, two experimental approaches can be used. The first approach would

be to calculate all of its eigenvalues and check their signs. The Laplacian

matrix is then positive semi-definite if all of the eigenvalues are higher than

or equal to zero. This is, however, computationally inefficient, due to the

size of the matrix and distance between the eigenvalues.

A simpler approach is to try to apply the L∗L∗T Cholesky factorization

on a matrix created by removing single a row and corresponding column for

each directly connected component of the mesh. Removing such rows and

columns results in the non-singular square matrix. Thus, if the Laplacian

matrix was positive semi-definite, the resulting matrix should be positive

definite. Most of the implementations of the Cholesky factorization raise an

exception or set some flag, when the matrix is not positive definite.

The experiment was done using Eigen C++ library [16]. All the sym-

metric Laplacians were tested by applying the Cholesky factorization imple-

mented in the SimplicialLLT class. To check whether the factorization was

successful, info() function was then called. The returned value was either

0 - Success, or 1 - Failure. The compared Laplacians were:

53

• Kirchhoff Laplacian (Kirchhoff)

• Symmetric Cotangent Laplacian (SymCotan)

• Data Dependent Laplacian (DD)

Both Kirchhoff and Symmetric Cotangent Laplacian are positive semi-definite,

thus it was expected that the factorization of the reduced matrix would be

successful. The Table 6.2 shows the factorization results for the average

frame [44] of the Samba dataset [49]. It is important to note, that by find-

ing any mesh, for which the Data Dependent Laplacian is not positive semi-

definite, it is actually proven that generally the positive semi-definiteness

property is broken. However, when the Cholesky factorization is success-

ful for a single mesh, it is not guaranteed that it will be successful for any

arbitrary mesh.

Table 6.2: The L∗L∗T Cholesky factorization results for the average

frame[44] of the Samba dataset[49]

Kirchhoff SymCotan DD

Result Success Success Failure

Both Kirchhoff and symmetric Cotangent Laplacian are positive semi-

definite, so it was no surprise, that the Cholesky factorization did not fail.

For the Data Dependent Laplacian, the Cholesky factorization failed. Thus,

it can be concluded that the Laplacian matrix of such Laplacian is not

positive semi-definite.

6.2 Application in Laplacian mesh processing

In this section, experimental application of the proposed Laplacian in

mesh processing techniques described in Chapter 3 will be shown. The

results were visualized using SlimDXRenderer framework [22], which was

also used in the project Mesh statistics for robust curvature estimation [42],

and Blender modelling software. The program used for testing is included

on the attached DVD.

6.2.1 Mean curvature estimation

The Data Dependent Laplacian was designed to minimize the lengths of

δ-coordinates. This means, that it is not expected to estimate the values

54

of mean curvature exactly in all the vertices. However, the distribution of

the values should still correspond to the exact values. The correspondence

can be measured by correlation, which tells, how close two sets of randomly

distributed values are to being linearly dependent.

For this experiment, Pearson correlation coefficient was used as a metric:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
,

where x̄ is mean value of the first set of values, ȳ is mean value of the second

set, and −1 ≤ r ≤ 1 is the Pearson correlation coefficient. If |r| = 1, there

exists a value s, for which every value xi = s · yi. The closer to one |r| is,

the more correlated the two sets of values are.

It is important to calculate the correlation with exact curvature values.

For this reason, some analytic function, on which the exact values can be

calculated, must be used. In this experiment, the correlation was measured

on the surface of so-called peaks function:

f(x, y) = 3(1 − x)2e(−x2−(y+1)2) − 10(
x

5
− x3 − y5)e(−x2−y2) −

1

3
e(−(x+1)2−y2).

This function can be seen in Figure 6.2. The function was randomly sampled

in the interval from -4 to 4 in both x and y axe. The number of samples was

10000 and the surface of the triangle mesh was then created using Delaunay

triangulation. For generating mesh and calculating the exact mean curvature

values, the CurvatureBenchmark [42] was used.

Figure 6.2: Peaks function

55

Following discrete Laplace operators were compared:

• Mean Value Laplacian (MV)

• Cotangent Laplacian with unit sum of weights (Cotan)

• Cotangent Laplacian weighted by incident areas (CotanA)

• Tutte Laplacian (Tutte)

• Kirchhoff Laplacian (Kirhchoff)

• Data Dependent Laplacian (DD)

Mean curvature estimation using discrete Laplace operator usually results in

inaccurate values near the boundary of the mesh. For this reason, both exact

and estimated curvature were considered zero on boundary vertices and their

neighbours. Figure 6.3 shows the measured mean curvature visualized on

the surface.

All of the Laplacians performed considerably well in the sense that they

all detected positive mean curvature on the peaks and negative curvature

in valleys. The performance of combinatorial Laplacians was clearly worse,

as a red colour, that marks the places with highest curvature, is frequently

present in places where no local extreme should be. The Data Dependent

Laplacian seems to be less vulnerable to this issue, however, for its broken

locality, there are places, where it detects negative curvature instead of pos-

itive. However, the places with highest estimated curvature correspond to

the exact local maxima. In the case of correlation with exact values, the

results are shown in Table 6.3.

Table 6.3: Pearson correlation coefficient of measured mean curvatures and

exact values

MV Cotan CotanA Tutte Kirchhoff DD

r 0,781 0,764 0,866 0,389 0,377 0,636

The highest correlation was achieved using Cotangent Laplacian weighted

by areas incident to vertices. The lowest correlation was achieved by com-

binatorial Laplacians. The Data Dependent Laplacian is unfortunately the

worst of all geometric Laplacians, although any result with correlation higher

than 0, 5 can be considered a decent mean curvature estimation.

56

(a) Exact values

(b) MV (c) Cotan (d) CotanA

(e) Tutte (f) Kirchhoff (g) DD

Figure 6.3: Estimation of mean curvature visualized on the surface of peaks

function. Yellow and red colour denotes a surface with positive mean

curvature, blue colour denotes a surface with negative mean curvature.

6.2.2 Smoothing

Three smoothing techniques were tested: Basic iterative algorithm, λ|µ

algorithm, and Implicit mesh fairing. No metric was used during this exper-

iment, only a visual evaluation of results was done. Unfortunately, no tests

were made on dynamic meshes, due to the large scope of this thesis.

In the case of basic iterative algorithm, two tests were done. Only the

Laplacians that do not break unit sum of weights were considered:

• Tutte Laplacian (Tutte)

• Mean Value Laplacian (MV)

• Cotangent Laplacian with unit sum of weights (Cotan)

57

• Data Dependent Laplacian (DD)

The first test was performed on the Lion model consisting of 2119 vertices

(see Figure 6.4a), with λ = 0, 6 and 20 iterations. The results can be seen

in Figure 6.4.

(a) Original

(b) Tutte (c) MV

(d) Cotan (e) DD

Figure 6.4: Basic iterative smoothing of Lion model (λ = 0, 6, 20 iterations)

Application of Tutte Laplacian resulted in the most smoothed model.

However, the result is also shrinked and details were lost. It also experienced

the tangential drift. The Mean Value and Cotangent Laplacians have com-

parable results - visible detail, but decently smoothed surface. The Data

Dependent Laplacian unfortunately results in the least smoothed model.

This might be caused by the fact, that it tries to minimize the length of dif-

ferential coordinates, which means less movement in each iteration. Another

issue with Data Dependent Laplacian seems to be that some of the details

58

that should be smoothed are not smoothed at all. Notice the eyes, nose and

chin.

Second test was done on a model of a cube with randomly displaced

vertices in the direction of surface normal. The displacement was performed

to simulate the noise in 3D model data. The results of smoothing such mesh

with 20 iterations and λ = 0, 6 can be seen in Figure 6.5.

(a) Original

(b) Tutte (c) MV

(d) Cotan (e) DD

Figure 6.5: Basic iterative smoothing of cube with noise (λ = 0, 6, 20 itera-

tions)

Again, the Tutte Laplacian resulted in the most smoothed model. It

is also the only Laplacian that smoothed the edges of the cube. If the

edges of the cube should be preserved, the Mean Value Laplacian achieves

better results. After applying the Cotangent Laplacian, there is still some

visible noise. However, it still performed better than the Data Dependent

Laplacian, which, again, resulted in least smoothed model. From these two

tests, it seems that the Data Dependent Laplacian is not very suitable for

basic iterative smoothing algorithm.

Same models from previous two tests were also processed using the λ|µ

algorithm. The compared discrete Laplace operators were identical to the

59

ones in the previous test. Instead of tweaking the two parameters to obtain

the best results, the values suggested by Desbrun et al. [11], when they

compared this algorithm with their method, were used: λ = 0, 6307, µ =

−0, 6732. The Lion model was processed in 50 iterations and the cube with

noise was processed in 35 iterations.

(a) Original

(b) Tutte (c) MV

(d) Cotan (e) DD

Figure 6.6: λ|µ smoothing of Lion model (λ = 0, 6307, µ = −0, 6732, 50

iterations)

The results in Figure 6.6 have verified, that this technique converges

slower to smooth surface than the basic iterative technique. On the other

hand, all the resulting meshes are approximately of the same size as the

input mesh, thus the shrinking was prevented. Again, the Tutte Laplacian

resulted in the smoothest surface. In this case, there is still visible detail of

the mesh. The results of Mean Value Laplacian and Cotangent Laplacian

are indistinguishable. The Data Dependent Laplacian, again, converged

60

the slowest. However, there are no artifacts, that were visible, when basic

iterative technique was used.

(a) Original

(b) Tutte (c) MV

(d) Cotan (e) DD

Figure 6.7: λ|µ smoothing of of cube with noise (λ = 0, 6307, µ = −0, 6732,

35 iterations)

h In the case of a cube with noise, the best smoothing was achieved using

Tutte and MV Laplacian. The MV Laplacian achieved sharper edges of the

cube, however, the Tutte Laplacian removed more of the noise. The noise

is still significantly visible for Data Dependent Laplacian and Cotangent

Laplacian.

The last set of tests in this experiment were done to compare the results

of implicit mesh fairing technique. As the implicit mesh fairing does not

require unit sum of weights, it was possible to compare more variants of

discrete Laplace operators:

• Tutte Laplacian (Tutte)

• Kirchhoff Laplacian (Kirchhoff)

• Mean Value Laplacian (MV)

61

• Cotangent Laplacian with unit sum of weights (Cotan)

• Cotangent Laplacian weighted by incident areas (CotanA)

• Data Dependent Laplacian (DD)

However, there is one issue with the Laplacians that break the unit sum

of weights: It is impossible to use the same smoothing coefficient for all

the types, if it is desired to obtain comparable results. For this reason,

when using Kirchhoff or area weighted Cotangent Laplacian, the smoothing

coefficient had to be adjusted:

λ′ =
λ

sL

,

where sL is average absolute value on the diagonal of L.

First, the implicit mesh fairing was applied on the Lion model. Only two

iterations were performed, with λ = 10. The results can be seen in Figure

6.8.

The best result was obtained using Cotangent Laplacian weighted by

areas incident to vertices, because it smoothed the surface the best of all

geometric Laplacians, while preserving the most detail. It is only Laplacian

of all, that preserved the shape of the Lion’s shoulders. All the other Lapla-

cians still performed well. Even the Data Dependent Laplacian seems to

smooth the surface significantly.

62

(a) Original

(b) Tutte (c) Kirchhoff

(d) Cotan (e) CotanA

(f) MV (g) DD

Figure 6.8: Implicit mesh fairing applied on the Lion model (λ = 10, 2

iterations)

In the second test, again, the cube with noise was smoothed in two

iterations, with λ = 0, 5. The reason, why the λ is so small, will be explained

in following paragraph, where the results will be evaluated. The results can

be seen in Figure 6.9.

63

(a) Original

(b) Tutte (c) Kirchhoff

(d) Cotan (e) CotanA

(f) MV (g) DD

Figure 6.9: Implicit mesh fairing applied on a cube with noise (λ = 0.5, 2

iterations)

The smoothing coefficient is so small, that none of the Laplacians man-

aged to erase the noise. However, significant artifacts are visible in the result

of smoothing by Data Dependent Laplacian.

To further investigate the issue, additional test was done. In this test,

the undistorted model of the cube was used (see Figure 6.10a). Instead of

comparing the results with other types of Laplacians, the comparison was

done between different smoothing coefficients:

64

• λ = 8

• λ = 8, 5

• λ = 9

• λ = 9, 5

• λ = 10

(a) Original (b) λ = 8 (c) λ = 8, 5

(d) λ = 9 (e) λ = 9, 5 (f) λ = 10

Figure 6.10: Influence of the smoothing parameter λ on artifact visibility in

implicit mesh fairing technique.

The results have shown, that with increasing the smoothing parameter,

the artifacts are more visible and unpleasant. This issue occurs only in this

technique, which differs from other tested techniques by requiring to solve a

linear system. This leads to a conclusion, that the matrix of the system is

ill-conditioned, which also could mean that the matrix of Data Dependent

Laplacian has conditioning issues.

65

6.2.3 Parameterization

Previous experiment has pointed out one big issue of Data Dependent

Laplacian. During barycentric mapping parameterization technique, it is

required to solve a linear system that is formed by the weights of Laplacian.

Even though the matrix of the system is not the same as the one in implicit

mesh fairing, some conditioning issues are expected, when Data Dependent

Laplacian used.

During this experiment, the barycentric mapping was applied to three

models: already mentioned Lion model, and two models created from the

first frame of the Samba dataset [49] (see Figures 6.12a and 6.13a). All of the

processed models have boundary, as it is required by the tested technique.

To measure the quality, difference in angles was measured. The differ-

ence around a vertex was visualized on the surface of the mesh, to show the

distribution of the distortion over the surface. Comparison was also done in

maximum and average angle difference. The most importantly, the result-

ing parameterization was applied in texture mapping, where checkerboard

pattern was mapped on the surface to inspect texture distortion. Compared

Laplacians were:

• Tutte Laplacian (Tutte)

• Mean Value Laplacian (MV)

• Cotangent Laplacian with unit sum of weights (Cotan)

• Data Dependent Laplacian (DD)

First, the method was applied on Lion model. The results can be seen

in the Figure 6.11 and in the Table 6.4. First row of results shows textures

mapped on the surface using the resulting parameterizations. The second

row visualizes angle difference around vertices. All the results have the same

color scale. The red colour denotes a part of the surface with high angle

difference. In such places, the texture is expected to be the most distorted.

The lowest row shows the obtained parameterizations.

Table 6.4: Measured angle difference in parameterizations of Lion model

Tutte MV Cotan DD

Sum 5308,699 1463,492 885,760 2753,574

Max 2,025 1,075 1,028 2,710

Avg 0,422 0,116 0,070 0,219

66

(a) Original

(b) Tutte (c) MV (d) Cotan (e) DD

Figure 6.11: Parameterization of the Lion model

Visually, the worst result was obtained using Tutte Laplacian. The dis-

tortion of the checker pattern is distributed all over the surface. This is also

visible in angle differences. However, the obtained parameterizations have

shown, that there were issues with Data Dependent Laplacian. Some of the

points were mapped outside of the convex area formed by the boundary,

and also there is visible triangle overlap, which means that such mapping is

not one-to-one. This effect is also visible on the right shoulder of the model

in the visualized angle differences and on the texture. It could be caused

by the two factors: the negative weights of Data Dependent Laplacian and

conditioning issues. Even though there is no visible difference in Figure 6.11

between results of barycentric mapping using Mean value and Cotangent

Laplacian, the second one seems to be a bit better, as shows the Table 6.4.

The second test was done on a modified frame of the Samba dataset

67

[49], where only an upper front part of the modelled body was preserved.

The model consisted of the 2648 vertices. The biggest angle difference was

expected to be on the arms of the model. The results are shown in Figure

6.12 and Table 6.5.

(a) Original

(b) Tutte (c) MV (d) Cotan (e) DD

Figure 6.12: Parameterization of the first modified model from the Samba

dataset [49]

As was expected, the biggest angle difference was on arms of the model.

Again, visually, the worst results were obtained using Tutte Laplacian. This

time, however, there was no issue with Data Dependent Laplacian. In fact,

the Table 6.5 shows, that the Data Dependent Laplacian resulted in the

lowest sum of angle differences and average angle difference. Also, when

inspecting the texture mapped on the surface, this Laplacian obtained the

best parameterization in the lower part of the model.

68

Table 6.5: Measured angle difference in parameterizations of the first modi-

fied model from the Samba dataset [49]

Tutte MV Cotan DD

Sum 10770,094 8846,555 8811,342 8312,775

Max 2,590 2,392 2,383 2,420

Avg 0,724 0,595 0,592 0,559

The second tested modification of the model from Samba dataset [49]

was directly derived from the previous one. This time, only the face of the

model was preserved. Such triangle mesh had only 317 vertices. As the

boundary was quite close to the convex polygon, it was expected, that there

would not be as much of the distortion in such places.

Table 6.6: Measured angle difference in parameterizations of the second

modified model from the Samba dataset [49]

Tutte MV Cotan DD

Sum 612,056 322,303 325,706 412,636

Max 1,746 1,681 1,681 1,681

Avg 0,354 0,187 0,188 0,239

The results have shown, that for such mesh, all of the Laplacians except

of the Tutte Laplacian resulted in decent parameterization. The Data De-

pendent Laplacian seems to obtain slightly worse results. There is slightly

higher distortion of the texture on the nose. Interestingly, the maximum

angle difference was the same for all the geometric Laplacians. The reason

could be, that such difference occurred on the boundary, where the vertices

are mapped on the convex polygon. Such polygon is the same for all the

applied Laplacians.

Unfortunately, for the extended scope of all the other experiments, the

parameterization was tested only on static meshes.

The experiments have shown, that Data Dependent Laplacian can be

quite useful in the barycentric mapping technique. There might still occur

some issues with matrix conditioning, however, for some triangle meshes,

this Laplacian can obtain better results than the Mean Value Laplacian

that is usually used.

69

(a) Original

(b) Tutte (c) MV (d) Cotan (e) DD

Figure 6.13: Parameterization of the second modified model from the Samba

dataset [49]

6.2.4 Mesh editing

In this experiment, the Laplacian surface editing technique[37] was applied

on the Lion model and the first frame of the Samba dataset [49]. The

selection of handles, unconstrained vertices and soft constraints is seen in

Figure 6.14. Angle and area differences were measured, although, in this

case, their value is only informative and cannot serve as a measurement of

the quality of the method. Compared discrete Laplace operators were:

• Tutte Laplacian (Tutte)

• Kirchhoff Laplacian (Kirchhoff)

• Mean Value Laplacian (MV)

70

• Cotangent Laplacian with unit sum of weights (Cotan)

• Cotangent Laplacian weighted by incident areas (CotanA)

• Data Dependent Laplacian (DD)

(a) Lion (b) Samba

Figure 6.14: Testing models for Laplacian surface editing. Red area denotes

handles, green area denotes unconstrained vertices and blue area denotes

soft constraints.

In the case of the Lion model, the tip of the nose was selected as a handle,

while a circle around the nose was selected as soft constraints. Rest of the

vertices between handles and soft constraints was marked as unconstrained.

The handle was moved forward and slightly rotated. The results can be seen

in Figure 6.15 and Tables 6.7 and 6.8.

Table 6.7: Measured angle difference in Laplacian surface editing of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 511,630 523,355 662,862 628,086 703,965 536,575

Max 1,441 1,473 1,095 1,943 1,810 1,799

Table 6.8: Measured area difference in Laplacian surface editing of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 1,656 1,724 2,460 1,889 2,055 1,617

Max 0,025 0,027 0,037 0,023 0,020 0,026

71

(a) Original

(b) Tutte (c) Kirchhoff

(d) Cotan (e) CotanA

(f) MV (g) DD

Figure 6.15: Laplacian surface editing applied on the Lion model. From left

to right for each discrete Laplace operator: result of the deformation, angle

difference, area difference.

In this case, all the discrete Laplace operators obtained satisfying results.

Only issue was a triangle intersection on the boundary of the handles in the

case of combinatorial Laplacians. It is impossible to determine which of the

Laplacians obtained best results. For example, even though the Cotangent

Laplacian weighted by incident areas resulted in the most visually pleasing

deformation, it was worst in the area preservation. On the other hand, the

result obtained using Data Dependent Laplacian seems unrealistic, however,

it has the lowest sum of area differences and it is the only discrete Data

Dependent Laplacian, that preserved the shape of the Lion’s chin.

In the second test, the first frame of the Samba dataset was deformed.

The hands of the modelled person were selected as handles, the rest of the

arms as unconstrained vertices and shoulders as soft constraints. The hands

72

were then moved farther from the body and slightly rotated. The results of

such deformation can be seen in Figure 6.16 and Tables 6.9 and 6.10.

(a) Original

(b) Tutte (c) Kirchhoff

(d) Cotan (e) CotanA

(f) MV (g) DD

Figure 6.16: Laplacian surface editing applied on the first frame of the Samba

dataset [49]. From left to right for each discrete Laplace operator: result of

the deformation, angle difference, area difference.

Table 6.9: Measured angle difference in Laplacian surface editing of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 1323,380 1348,490 1456,877 1561,659 1626,670 1302,569

Max 0,644 0,705 0,677 1,515 1,491 0,718

73

Table 6.10: Measured area difference in Laplacian surface editing of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 6,63E-02 6,86E-02 6,70E-02 8,06E-02 8,05E-02 6,82E-02

Max 1,24E-04 1,62E-04 1,29E-04 2,49E-04 2,44E-04 1,48E-04

In this case, the performance of combinatorial Laplacians was signific-

antly worse. The results of such Laplacians contained slight visual artifacts.

Even the angle and area differences are worse. Geometric Laplacians resulted

in visually smoother deformation. The differences in each of the geometric

discrete Laplace operator are almost imperceptible. The Data Dependent

Laplacian obtained satisfying result, and even had the lowest sum of angle

differences.

This section has shown, that the Data Dependent Laplacian is surely

suitable for Laplacian surface editing technique. However, the conditioning

issue may still occur, even though it did not occur in the experiments.

6.2.5 Mesh morphing

Even though the Data Dependent Laplacian can be classified as geometric,

it can be used in the mesh morphing. Only adjustment to be made is to

calculate the weights using positions of both meshes, just like it would be

calculated for a dynamic mesh with only two frames. The resulting discrete

Laplace operator should contain information of both input meshes.

Two tests were done in this experiment. In the first one, a mesh morphing

technique proposed by Alexa [1] was tested against two frames of the Samba

dataset (See figure 6.17a). Compared interpolations were:

• Linear interpolation of Tutte Laplacian δ coordinates (Naïve Tutte)

• Linear interpolation of Kirchhoff Laplacian δ coordinates (Naïve Kirch-

hoff)

• Linear interpolation of Data Dependent Laplacian δ coordinates (Naïve

DD)

• Proposed interpolation of Tutte Laplacian δ coordinates (Tutte)

• Proposed interpolation of Kirchhoff Laplacian δ coordinates (Kirch-

hoff)

74

• Proposed interpolation of Data Dependent Laplacian δ coordinates

(DD)

In this case, no metric was applied, because there was no frame that would be

similar to both input meshes that could be used for angle and area difference

measurement. The results can be seen in Figure 6.17.

(a) Original

(b) Naïve Tutte (c) Tutte

(d) Naïve Kirchhoff (e) Kirchhoff

(f) Naïve DD (g) DD

Figure 6.17: Morphing of parts of two frames from the Samba dataset [49]

All of the approaches using linear interpolation of the differential co-

ordinates result in the distortion of the mesh. This effect is most visible

on the hands that clearly shrank. The improved interpolations using com-

binatorial Laplacians did not result in such shrinkage. The result, however,

75

contains visible artifacts. The best result was obtained using the Data De-

pendent Laplacian, which shrank the result the least, and obtained the most

smooth surface formed by unconstrained vertices. This, however, does not

mean, that the artifacts might never appear. Again, this approach requires

a linear system to be solved, thus some conditioning issues might occur.

In the second test, two frames of the Squat dataset [49] were processed by

morphing technique working with the whole meshes. To measure the quality

of the morphing approach, the results were compared with actual frames of

the sequence that corresponded to to each used morphing parameter. In this

case, four different interpolations were tested:

• Linear interpolation of Tutte Laplacian δ coordinates (Naïve)

• Proposed interpolation of Tutte Laplacian δ coordinates (Tutte)

• Proposed interpolation of Kirchhoff Laplacian δ coordinates (Kirch-

hoff)

• Proposed interpolation of Data Dependent Laplacian δ coordinates

(DD)

The Linear interpolation was tested only for Tutte, as it was expected that

the results would be the same for any other tested Laplacian. All of the

interpolations used 10 vertices as anchors.

Table 6.11: Sum of angle differences between expected frame of Squat data-

set and the whole mesh morphing result in each morphing step.

t Naïve Tutte Kirchhoff DD

0,25 1945,339 2140,677 2137,548 2126,406

0,5 2828,021 3079,763 3079,182 3038,582

0,75 2238,963 2495,174 2489,948 2450,931

Table 6.12: Sum of area differences between expected frame of Squat dataset

and the whole mesh morphing result in each morphing step.

t Naïve Tutte Kirchhoff DD

0,25 2,37E-01 1,49E-01 1,49E-01 1,55E-01

0,5 3,26E-01 2,09E-01 2,08E-01 2,18E-01

0,75 2,46E-01 1,62E-01 1,61E-01 1,64E-01

76

(a) First frame (b) Last frame (c) Expected frames

(d) Naïve (e) Tutte

(f) Kirchhoff (g) DD

Figure 6.18: Parameterization of the first modified model from the Samba

dataset [49]

Although the naïve approach resulted in the lowest angle difference, some

issues are visible. For example, the hands of the model were shrinked. The

shrinkage can be seen even in the Table 6.12, where this approach obtained

77

the highest area difference. The Kirchhoff and Tutte Laplacians, on the

other hand, resulted in higher angle difference. The compromise between

the two approaches would be the Data Dependent Laplacian, which is close

to the best result in both metrics. Even visually, its result is more appealing.

However, there were visual artifacts on the back of the right leg (See Figure

6.19). Again, in this technique, linear system is solved in the least-squares

sense, which means, that this should be a matrix conditioning issue.

Figure 6.19: Artifacts on the right leg occuring during the whole mesh

morphing with Data Dependent Laplacian. Colour visualizes the angle dif-

ference from the expected result.

From all the results of this experiment, it can be concluded, that the dis-

crete Data Dependent Laplace operator is indeed very suitable for mesh

morphing, as it combines abilities of both geometric and combinatorial

Laplacians. It contains the geometric information, while allowing two meshes

to have the same Laplacian matrix. However, the matrix conditioning is still

a big issue.

6.2.6 Least-squares meshes

The results of this technique were evaluated using two tests. In both tests,

the angle and area difference between the result and the input mesh. In the

first test, reconstruction of the geometry of a hole was simulated on the Lion

model. First, the Laplacian was calculated, Then, all of the vertices of the

mesh except the ones forming a nose (denoted by blue color in Figure 6.20a)

were selected as control points, the geometry of the rest was thrown away.

Finally, using the Least-squares meshes technique, the geometry was again

reconstructed. The results can be seen in Figure 6.20, the angle difference

in Table 6.13 and area difference in Table 6.14.

78

(a) Original

(b) Cotan (c) CotanA

(d) Tutte (e) Kirchhoff

(f) MV (g) DD

Figure 6.20: Hole geometry reconstruction of the Lion model using Least-

squares meshes technique [35]

Table 6.13: Measured angle difference of Least-Square mesh of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 151,657 181,009 177,698 781,022 794,418 488,597

Max 0,499 0,543 0,550 1,918 1,929 1,573

Avg 0,012 0,014 0,014 0,062 0,063 0,039

Table 6.14: Measured area difference in Laplacian surface editing of the Lion

model

MV Cotan CotanA Tutte Kirchhoff DD

Sum 5,83E-01 5,72E-01 7,08E-01 1,16E+00 1,17E+00 9,26E-01

Max 6,53E-03 7,20E-03 6,76E-03 1,79E-02 1,78E-02 9,96E-03

Avg 1,39E-04 1,36E-04 1,69E-04 2,78E-04 2,80E-04 2,21E-04

79

The highest angle and area difference was obtained using combinatorial

Laplacians. This does not mean, that these Laplacians are not suitable for

least-square meshes. It only pointed out that tangential drift occurred. Also,

when no geometry is provided for the hole in the object before calculating

the Laplacian weights, they are the only option, as they require only the

connectivity information. When inspecting the visual results, the worst

result is clearly achieved by Data Dependent Laplacian. There are quite

visible artifacts. Again, this seems to be caused by the matrix conditioning

issue.

The second test was done to simulate shape approximation. A set of

1000 random vertices on the surface of the first frame of the Samba dataset

was selected as control points (selected vertices can be seen in Figure 6.21a),

and position of the rest of the vertices were calculated using this technique.

The results are shown in Figure 6.21 and Tables 6.15 and 6.16.

Table 6.15: Measured angle difference of Least-Square mesh of the first frame

of the Samba dataset [49]

MV Cotan CotanA Tutte Kirchhoff DD

Sum 1890,504 2352,444 2630,000 18551,416 18791,218 2306,554

Max 1,197 1,487 1,697 2,221 2,168 1,886

Avg 0,032 0,039 0,044 0,310 0,314 0,039

Table 6.16: Measured area difference of Least-Square mesh of the first frame

of the Samba dataset [49]

MV Cotan CotanA Tutte Kirchhoff DD

Sum 7,95E-02 9,83E-02 1,24E-01 6,57E-01 6,62E-01 1,02E-01

Max 1,17E-04 3,46E-04 1,01E-03 7,96E-04 8,00E-04 3,90E-04

Avg 3,99E-06 4,93E-06 6,20E-06 3,30E-05 3,32E-05 5,14E-06

Again, the combinatorial Laplacians resulted in the tangential drift. In-

specting the area and angle differences, the best result seems to be obtained

using Mean Value Laplacian. In the case of the Data Dependent Laplacian,

there are visible artifacts on the feet of the model, again, probably caused

by conditioning issues.

80

(a) Original

(b) Cotan (c) CotanA

(d) Tutte (e) Kirchhoff

(f) MV (g) DD

Figure 6.21: Shape approximation of the first frame of the Samba dataset[49]

using Least-squares meshes technique [35] (1000 control points)

The both tests have shown, that the Data Dependent Laplacian is not

very suitable for least-squares meshes technique. It seems like it performs

quite badly in all the techniques, where it is desired to obtain an as smooth as

possible result, as it had many issues even during experiments with smooth-

ing.

81

6.3 Dynamic mesh compression

The method proposed by Váša et al. [44] was modified to use the discrete

Data Dependent Laplace operator. In this section, the compression results

will be discussed. The experiments were done directly in the compression

framework used in [44], which was written in C# programming language.

The compression framework is not part of the attached DVD as it is not

publicly available. The results were primarily compared to the results ob-

tained using original method with Mean value Laplacian, that Váša et al.

pointed out to work the best.

6.3.1 Entropy

First experiment was made to ensure that the assumption about decrease

of entropy with more accurate prediction is true. Each coordinate of the

trajectory space has its own distribution, which means that the entropy

must be based on probability of the corresponding coordinate distributions,

not on probability across all values. The measured value can be calculated

from following:

H =
B∑

i=1

Hi =
B∑

i=1

Ni∑

j=1

pij log2(pij),

where Ni is number of quantized values with non-zero probability in i-th

coordinate and pij is probability of j-th value in the set of all quantized

values with non-zero probability in i-th coordinate.

Both methods rely on input parameters: Reduced dimension of traject-

ories, number of bits per quantization level of trajectory basis and num-

ber of bits per quantization level of residuals. The configurations of these

parameters will be reffered to in this experiment as a triplet of values

(dim, basisQ, residualQ). Experiment was done on dataset Samba [49]. Res-

ults can be seen in Table 6.17.

Table 6.17: Measured residual entropy of compared compression methods

for Samba dataset

Configuration MV DD

(55, 18, 4) 78,70201 72,03983

(70, 18, 5) 135,53843 125,93480

(125, 20, 7) 361,55749 342,36423

The experiment has shown that the proposed discrete Laplace operator

truly lowers the entropy of encoded residuals.

82

6.3.2 Rate-Distortion curve

As a part of the compression framework, there is optimization algorithm,

that estimates input parameters of the method for specified target data rate.

For each step, the optimization algorithm outputs current bitrate (in bits

per frame vertex - bpfv) and data distortion measured in the STED error

metric [48]. Visualizing the given data results in so-called Rate-Distortion

curve. This curve is very important for comparison of compression methods,

as it shows trends that cannot be simply seen from measured data.

For this experiment, the optimization algorithm was simply executed for

5 bpfv target bitrate. The measured R-D curves are shown only for bitrates

under 3 bpfv as that way the results are more convenient. Tests were made

again for Samba dataset. Results are shown in Figure 6.22.

0,020

0,025

0,030

0,035

0,040

D
is

to
rt

io
n
 [
ST

E
D
]

MV

DD

0,000

0,005

0,010

0,015

0,00 0,50 1,00 1,50 2,00 2,50 3,00

Data rate [bpfv]

Figure 6.22: Comparison of R-D curves of tested compression methods

The results are surprising, as for the same parameter configuration, the

Data Dependent Laplacian outputs lower bitrate, as can be seen in Table

6.18. However, with lower bitrate, the Data Dependent Laplacian outputs

slightly higher distortion. If instead of comparing same configurations we

compare same bitrate, the Mean value Laplacian achieves slightly better

results.

83

Table 6.18: Measured bitrate in bits-per-frame-vertex of compared compres-

sion methods for Samba dataset

Configuration MV DD

(55, 18, 4) 0,63132 0,57736

(70, 18, 5) 0,95384 0,88490

(125, 20, 7) 2,32923 2,21431

6.3.3 Normal matrix conditioning

The distortion of the data highly depends on the condition number of

so-called normal matrix N which is used for geometry reconstruction. Such

matrix can be calculated as:

N = (L̄∗)T L̄∗,

where L̄∗ is Laplacian matrix extended by one row with single value 1 in it

for each anchor point. The higher the condition number of N is, the more

the data is distorted. The condition number is

κ(N) =
σmax(N)

σmin(N)
,

where σmax(N) and σmin(N) are the maximal and minimal singular values

of N. Instead of performing Singular value decomposition of N, simple

experiment can be performed to measure how much error is introduced by

solving the least squares linear system represented by such matrix.

Let x be a vector of random values xi ∈ 〈−1, 1〉 of size V . By multiplying

given vector with N vector b is obtained:

b = Nx.

If a vector c of small random values ci ∈ 〈−k, k〉 , k > 0 ∧ k ≪ 1 is added to

b, the result is a vector b′. Then, a linear system is solved:

Nx′ = b′.

Finally, a metric for matrix conditioning can be calculated:

∆ = ‖x − x′‖ .

Given metric actually simulates the process of geometry encoding and de-

coding, where the vector b′ represents the residuals with introduced quant-

ization error.

84

Table 6.19: Measured ∆ of compared compression methods for Samba data-

set

Configuration MV Tutte DD

(55, 18, 4) 847,16491 727,49836 1592,98270

(70, 18, 5) 847,16491 727,49836 1665,44730

(125, 20, 7) 847,16491 727,49836 1537,78865

For this experiment, ∆ was measured on Mean value, Tutte and Data

Dependent Laplacian. The results are shown in Table 6.19.

The results have proven the hypothesis about worse conditioning of the

normal matrix for Data Dependent Laplacian. Although it seems condition-

ality of MV an Tutte Laplacian is static, it is not true. However, the values

differ so little, that it cannot be seen, when the numbers are rounded to 5

decimal digits.

6.3.4 Asymmetric Data Dependent Laplacian

Only 2V degrees of freedom to define a Laplacian matrix might be too

constraining. By using asymmetric Laplacian matrix, a further decrease of

the entropy of δ-trajectories can be expected, as the weights generated from

such least squares solution can produce a better prediction. Another advant-

age of asymmetric Laplacian is simpler weight dependency handling. With

symmetric Laplacian, each weight wij occurs in all equations corresponding

to vertices vi and vj. If one weight is selected as dependent, it must be

substituted in all occurrences, even in substitutions of already substituted

dependent weights, which can lead to significant increase of complexity of

the substitution process. In the case of asymmetric Laplacian, each weight

wij occurs only in the equations corresponding to vertex vi.

Problem is, that by forcing weight dependences, the number of unknowns

is reduced only by 1V . This means that the number of weights necessary

to be encoded is 5V . To encode such amount of data can be advantageous,

only if the entropy of δ-trajectories decreases enough. Simple comparison of

R-D curves between symmetric and assymetric Laplacian was made on the

Samba dataset [49]. The results are shown in Figure 6.23.

85

0,060

0,080

0,100

0,120

0,140

D
is

to
rt

io
n
 [

S
T
E
D

]

Asymmetric DD

Symmetric DD

0,000

0,020

0,040

0,00 0,50 1,00 1,50 2,00 2,50 3,00

Data rate [bpfv]

Figure 6.23: Comparison of R-D curves of symmetric and asymmetric Data

Dependent Laplacian

As R-D curves have shown, the asymmetric Data Dependent Laplacian

did not introduce any improvement over the symmetric variant. In fact, it

performs far worse. The reason can be seen in Table 6.20 - for its normal mat-

rix, the ∆ is significantly bigger than for the normal matrix of the symmetric

Data Dependent Laplacian. In fact, it can be considered ill-conditioned.

Table 6.20: Measured ∆ of symmetric and asymmetric Data Dependent

Laplacian

Configuration Symmetric DD Asymmetric DD

(55, 18, 4) 1592,98270 606640,65607

(70, 18, 5) 1665,44730 579801,88392

(125, 20, 7) 1537,78865 721965,44510

86

7 Conclusion

In this thesis, a new discretization of Laplace operator, called Data De-

pendent Laplacian, was proposed. The results have shown, that the assump-

tion that minimizing the lengths of differential coordinates leads to residual

entropy reduction, was correct. It was, however, also found, that entropy

reduction is not the only concern in the case of mesh compression. It is

also important to reduce, or at least preserve, a condition number of the

Laplacian matrix, as the conditioning directly affects the amount of distor-

tion of data. It was also shown, that an asymmetric variant of such Laplace

operator has even worse conditioning, while requiring even more data to be

transmitted.

In the case of static mesh processing, the results have shown, that there

are some possible applications of such operator. The conditioning issue is

also present, however, it does not occur all the time. In the case of surface

editing, the Data Dependent Laplacian introduces quite interesting detail

preservation. However, the best improvement this Laplacian introduces is

in the mesh morphing, where it behaves like a geometric Laplacian, while

allowing to construct a single Laplacian matrix from geometry data of two

triangle meshes without any complex shape analysis.

In the future, it would be interesting to investigate application of such

Laplacian in dynamic mesh smoothing and parameterization, two mesh pro-

cessing problems which were unfortunately not investigated in this thesis

due to the large scope of all the other experiments. Another thing yet to be

done is to address further the conditioning issue of the Laplacian matrix.

87

Bibliography

[1] Alexa, M. Differential coordinates for local mesh morphing and

deformation. The Visual Computer. 2003, 19, 2, pages 105–114.

[2] Alexa, M. – Kyprianidis, J. E. Error diffusion on meshes. Computers &

Graphics. 2015, 46, pages 336–344.

[3] Alexa, M. – Müller, W. Representing animations by principal

components. In Computer Graphics Forum, 19, pages 411–418. Wiley

Online Library, 2000.

[4] Alliez, P. – Desbrun, M. Valence-Driven Connectivity Encoding for 3D

Meshes. In Computer graphics forum, 20, pages 480–489. Wiley Online

Library, 2001.

[5] Alliez, P. et al. Isotropic surface remeshing. In Shape Modeling

International, 2003, pages 49–58. IEEE, 2003.

[6] Bıyıkoglu, T. – Leydold, J. – Stadler, P. F. Laplacian eigenvectors of

graphs. Lecture notes in mathematics. 2007, 1915.

[7] Botsch, M. – Sorkine, O. On linear variational surface deformation

methods. IEEE transactions on visualization and computer graphics. 2008,

14, 1, pages 213–230.

[8] Botsch, M. et al. Geometric modeling based on triangle meshes. In ACM

SIGGRAPH 2006 Courses, pages 1. ACM, 2006.

[9] Botsch, M. et al. Polygon mesh processing. CRC press, 2010.

[10] Davis, T. A. – Rajamanickam, S. – Sid-Lakhdar, W. M. A survey of

direct methods for sparse linear systems. Acta Numerica. 2016, 25,

pages 383–566.

[11] Desbrun, M. et al. Implicit fairing of irregular meshes using diffusion and

curvature flow. In Proceedings of the 26th annual conference on Computer

graphics and interactive techniques, pages 317–324. ACM

Press/Addison-Wesley Publishing Co., 1999.

[12] Dong, S. et al. Spectral surface quadrangulation. In ACM Transactions on

Graphics (TOG), 25, pages 1057–1066. ACM, 2006.

[13] Fiedler, M. Algebraic connectivity of graphs. Czechoslovak mathematical

journal. 1973, 23, 2, pages 298–305.

88

[14] Floater, M. S. Parametrization and smooth approximation of surface

triangulations. Computer aided geometric design. 1997, 14, 3,

pages 231–250.

[15] Floater, M. S. Mean value coordinates. Computer aided geometric design.

2003, 20, 1, pages 19–27.

[16] Guennebaud, G. – Jacob, B. – others. Eigen v3.

http://eigen.tuxfamily.org, 2010.

[17] Hormann, K. – Lévy, B. – Sheffer, A. Mesh parameterization: Theory

and practice. 2007.

[18] Karni, Z. – Gotsman, C. Compression of soft-body animation sequences.

Computers & Graphics. 2004, 28, 1, pages 25–34.

[19] Kirby, E. C. et al. What Kirchhoff actually did concerning spanning trees

in electrical networks and its relationship to modern graph-theoretical

work. Croatica Chemica Acta. 2016, 89, 4, pages 403–417.

[20] Lipman, Y. et al. Differential coordinates for interactive mesh editing. In

Shape Modeling Applications, 2004. Proceedings, pages 181–190. IEEE,

2004.

[21] Lobaz, P. – Váša, L. Hierarchical Laplacian-based compression of triangle

meshes. Graphical Models. 2014, 76, 6, pages 682–690.

[22] Malík, Z. Image-driven simplifikace trojúhelníkovỳch sítí s použitím

percepční metriky. 2012.

[23] Meyer, M. et al. Discrete differential-geometry operators for triangulated

2-manifolds. Visualization and mathematics III. 2003, pages 35–57.

[24] Mohar, B. et al. The Laplacian spectrum of graphs. Graph theory,

combinatorics, and applications. 1991, 2, 871-898, pages 12.

[25] Parus, J. Morphing of meshes: technical report no. DCSE/TR-2005-02.

2005.

[26] Pinkall, U. – Polthier, K. Computing discrete minimal surfaces and

their conjugates. Experimental mathematics. 1993, 2, 1, pages 15–36.

[27] Razdan, A. – Bae, M. Curvature estimation scheme for triangle meshes

using biquadratic Bézier patches. Computer-Aided Design. 2005, 37, 14,

pages 1481–1491.

89

[28] Rodrigues, O. Des lois geometriques qui regissent les desplacements d’un

systeme solide dans l’espace et de la variation des coordonnees provenant de

deplacements consideres independamment des causes qui peuvent les

produire. J Mathematiques Pures Appliquees. 1840, 5, pages 380–440.

[29] Rossignac, J. Edgebreaker: Connectivity compression for triangle meshes.

IEEE transactions on visualization and computer graphics. 1999, 5, 1,

pages 47–61.

[30] Rusinkiewicz, S. Estimating curvatures and their derivatives on triangle

meshes. In 3D Data Processing, Visualization and Transmission, 2004.

3DPVT 2004. Proceedings. 2nd International Symposium on, pages

486–493. IEEE, 2004.

[31] Sawhney, R. – Crane, K. Boundary First Flattening. ACM Transactions

on Graphics (TOG). 2017, 37, 1, pages 5.

[32] Sederberg, T. W. – Parry, S. R. Free-form deformation of solid

geometric models. ACM SIGGRAPH computer graphics. 1986, 20, 4,

pages 151–160.

[33] Sheffer, A. – Sturler, E. Parameterization of faceted surfaces for

meshing using angle-based flattening. Engineering with computers. 2001,

17, 3, pages 326–337.

[34] Sorkine, O. Laplacian mesh processing. In Eurographics (STARs), pages

53–70, 2005.

[35] Sorkine, O. – Cohen-Or, D. Least-squares meshes. In Shape Modeling

Applications, 2004. Proceedings, pages 191–199. IEEE, 2004.

[36] Sorkine, O. – Cohen-Or, D. – Toledo, S. High-Pass Quantization for

Mesh Encoding. In Symposium on Geometry Processing, 42, 2003.

[37] Sorkine, O. et al. Laplacian surface editing. In Proceedings of the 2004

Eurographics/ACM SIGGRAPH symposium on Geometry processing, pages

175–184. ACM, 2004.

[38] Sun, Y. M. – Wang, W. – Chin, F. Y. Interpolating polyhedral models

using intrinsic shape parameters. The Journal of Visualization and

Computer Animation. 1997, 8, 2, pages 81–96.

[39] Taubin, G. A signal processing approach to fair surface design. In

Proceedings of the 22nd annual conference on Computer graphics and

interactive techniques, pages 351–358. ACM, 1995.

90

[40] Touma, C. – Gotsman, C. Triangle mesh compression. Proceedings -

Graphics Interface. 1998, pages 26–34.

[41] Tutte, W. T. How to draw a graph. Proceedings of the London

Mathematical Society. 1963, 3, 1, pages 743–767.

[42] Váša, L. et al. Mesh Statistics for Robust Curvature Estimation.

Computer Graphics Forum. 2016. ISSN 1467-8659. doi: 10.1111/cgf.12982.

[43] Vallet, B. – Lévy, B. Spectral geometry processing with manifold

harmonics. In Computer Graphics Forum, 27, pages 251–260. Wiley Online

Library, 2008.

[44] Váša, L. et al. Compressing dynamic meshes with geometric laplacians. In

Computer Graphics Forum, 33, pages 145–154. Wiley Online Library, 2014.

[45] Váša, L. – Petřík, O. Optimising perceived distortion in lossy encoding

of dynamic meshes. In Computer Graphics Forum, 30, pages 1439–1449.

Wiley Online Library, 2011.

[46] Váša, L. – Rus, J. Dihedral angle mesh error: a fast perception correlated

distortion measure for fixed connectivity triangle meshes. In Computer

Graphics Forum, 31, pages 1715–1724. Wiley Online Library, 2012.

[47] Váša, L. – Skala, V. Coddyac: Connectivity driven dynamic mesh

compression. In 3DTV Conference, 2007, pages 1–4. IEEE, 2007.

[48] Váša, L. – Skala, V. A perception correlated comparison method for

dynamic meshes. IEEE transactions on visualization and computer

graphics. 2011, 17, 2, pages 220–230.

[49] Vlasic, D. et al. Articulated mesh animation from multi-view silhouettes.

In ACM Transactions on Graphics (TOG), 27, pages 97. ACM, 2008.

[50] Wardetzky, M. et al. Discrete Laplace operators: no free lunch. In

Symposium on Geometry processing, pages 33–37, 2007.

[51] Welch, W. – Witkin, A. Variational surface modeling. In ACM

SIGGRAPH computer graphics, 26, pages 157–166. ACM, 1992.

[52] Winkler, T. et al. Multi-Scale Geometry Interpolation. In Computer

graphics forum, 29, pages 309–318. Wiley Online Library, 2010.

[53] Yildiz, Z. C. – Capin, T. A perceptual quality metric for dynamic triangle

meshes. EURASIP Journal on Image and Video Processing. 2017, 2017, 1,

pages 12.

91

[54] Zhang, H. – Van Kaick, O. – Dyer, R. Spectral mesh processing. In

Computer graphics forum, 29, pages 1865–1894. Wiley Online Library,

2010.

92

	Introduction
	Laplace operator
	Discrete Laplace operator
	Properties
	Sparsity
	Singular matrix
	Symmetry
	Positive weights
	Linear precision
	Locality
	Unit sum of weights
	Definiteness
	Eigenvalues and eigenvectors

	Types of discrete Laplace operator
	Kirchhoff Laplacian
	Tutte Laplacian
	Cotangent Laplacian
	Mean Value Laplacian

	Laplacian mesh processing
	Mean curvature estimation
	Smoothing
	Filtering using manifold harmonics
	Iterative smoothing
	| smoothing
	Implicit fairing using diffusion flow
	Dynamic mesh smoothing
	Suitable Laplacians for Smoothing

	Parameterization
	Mesh editing
	Mesh morphing
	Least-squares meshes

	Mesh compression
	Connectivity coding
	Geometry coding
	Static mesh compression
	Dynamic mesh compression

	Error metrics

	Data Dependent discrete Laplace operator
	Theoretical background
	Construction
	Properties
	Weight coding
	Possible advantages

	Experimental results
	Verification of properties
	Linear precision
	Definiteness

	Application in Laplacian mesh processing
	Mean curvature estimation
	Smoothing
	Parameterization
	Mesh editing
	Mesh morphing
	Least-squares meshes

	Dynamic mesh compression
	Entropy
	Rate-Distortion curve
	Normal matrix conditioning
	Asymmetric Data Dependent Laplacian

	Conclusion
	Bibliography

